20,821 research outputs found

    Mining Heterogeneous Multivariate Time-Series for Learning Meaningful Patterns: Application to Home Health Telecare

    Full text link
    For the last years, time-series mining has become a challenging issue for researchers. An important application lies in most monitoring purposes, which require analyzing large sets of time-series for learning usual patterns. Any deviation from this learned profile is then considered as an unexpected situation. Moreover, complex applications may involve the temporal study of several heterogeneous parameters. In that paper, we propose a method for mining heterogeneous multivariate time-series for learning meaningful patterns. The proposed approach allows for mixed time-series -- containing both pattern and non-pattern data -- such as for imprecise matches, outliers, stretching and global translating of patterns instances in time. We present the early results of our approach in the context of monitoring the health status of a person at home. The purpose is to build a behavioral profile of a person by analyzing the time variations of several quantitative or qualitative parameters recorded through a provision of sensors installed in the home

    Exploring the Evolution of Node Neighborhoods in Dynamic Networks

    Full text link
    Dynamic Networks are a popular way of modeling and studying the behavior of evolving systems. However, their analysis constitutes a relatively recent subfield of Network Science, and the number of available tools is consequently much smaller than for static networks. In this work, we propose a method specifically designed to take advantage of the longitudinal nature of dynamic networks. It characterizes each individual node by studying the evolution of its direct neighborhood, based on the assumption that the way this neighborhood changes reflects the role and position of the node in the whole network. For this purpose, we define the concept of \textit{neighborhood event}, which corresponds to the various transformations such groups of nodes can undergo, and describe an algorithm for detecting such events. We demonstrate the interest of our method on three real-world networks: DBLP, LastFM and Enron. We apply frequent pattern mining to extract meaningful information from temporal sequences of neighborhood events. This results in the identification of behavioral trends emerging in the whole network, as well as the individual characterization of specific nodes. We also perform a cluster analysis, which reveals that, in all three networks, one can distinguish two types of nodes exhibiting different behaviors: a very small group of active nodes, whose neighborhood undergo diverse and frequent events, and a very large group of stable nodes

    Time perception: the bad news and the good.

    Get PDF
    Time perception is fundamental and heavily researched, but the field faces a number of obstacles to theoretical progress. In this advanced review, we focus on three pieces of 'bad news' for time perception research: temporal perception is highly labile across changes in experimental context and task; there are pronounced individual differences not just in overall performance but in the use of different timing strategies and the effect of key variables; and laboratory studies typically bear little relation to timing in the 'real world'. We describe recent examples of these issues and in each case offer some 'good news' by showing how new research is addressing these challenges to provide rich insights into the neural and information-processing bases of timing and time perception. WIREs Cogn Sci 2014, 5:429-446. doi: 10.1002/wcs.1298 This article is categorized under: Psychology > Perception and Psychophysics Neuroscience > Cognition.This is the final published version. It originally appeared at http://onlinelibrary.wiley.com/doi/10.1002/wcs.1298/abstract, published by Wiley

    A Partitioning Algorithm for Detecting Eventuality Coincidence in Temporal Double recurrence

    Full text link
    A logical theory of regular double or multiple recurrence of eventualities, which are regular patterns of occurrences that are repeated, in time, has been developed within the context of temporal reasoning that enabled reasoning about the problem of coincidence. i.e. if two complex eventualities, or eventuality sequences consisting respectively of component eventualities x0, x1,....,xr and y0, y1, ..,ys both recur over an interval k and all eventualities are of fixed durations, is there a subinterval of k over which the occurrence xp and yq for p between 1 and r and q between 1 and s coincide. We present the ideas behind a new algorithm for detecting the coincidence of eventualities xp and yq within a cycle of the double recurrence of x and y. The algorithm is based on the novel concept of gcd partitions that requires the partitioning of each of the incidences of both x and y into eventuality sequences each of which components have a duration that is equal to the greatest common divisor of the durations of x and y. The worst case running time of the partitioning algorithm is linear in the maximum of the duration of x and that of y, while the worst case running time of an algorithm exploring a complete cycle is quadratic in the durations of x and y. Hence the partitioning algorithm works faster than the cyclical exploration in the worst case

    Developing new approaches for the analysis of movement data : a sport-oriented application

    Get PDF

    Repeated Web Page Visits and the Scanpath Theory: A Recurrent Pattern Detection Approach

    Get PDF
    This paper investigates the eye movement sequences of users visiting web pages repeatedly. We are interested in potential habituation due to repeated exposure. The scanpath theory posits that every person learns an idiosyncratic gaze sequence on first exposure to a stimulus and re-applies it on subsequent exposures. Josephson and Holmes (2002) tested the applicability of this hypothesis to web page revisitation but results were inconclusive. With a recurrent temporal pattern detection technique, we examine additional aspects and expose scanpaths. Results do not suggest direct applicability of the scanpath theory. While repetitive scan patterns occurred and were individually distinctive, their occurrence was variable, there were often several different patterns per person, and patterns were not primarily formed on the first exposure. However, extensive patterning occurred for some participants yet not for others which deserves further study into its determinants
    corecore