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1.1 Background and motivation 

With the rapid development of advanced location-aware technologies, such as GPS (global 

positioning system), RFID (radio frequency identification), Bluetooth, WiFi, image 

recognition, and video tracking, data related to the trajectories of moving objects can be 

acquired more easily than ever before. This type of data has different names, such as 

(geospatial) lifeline data (Laube et al., 2004; Laube et al., 2005), trace data (Pan et al., 

2013), trajectory data (Miller and Han, 2009; Zheng, 2015), movement data (Andrienko et 

al., 2007; Long & Nelson, 2013; Dodge et al., 2016), and mobility data (Giannotti & 

Pedreschi, 2008; Guo et al., 2012). In this thesis, we mainly adopt the term ‘movement 

data’ to denote such data. However, in specific cases where ‘movement data’ does not 

provide a good representation, the terms ‘trajectory’ or ‘trajectory data’ are adopted. The 

proliferation of rich and voluminous movement data has drawn enormous attention from 

researchers in various fields, thereby promoting related research topics with respect to 

movement data. Typical research topics include modelling and simulating movement data 

(Wang et al., 2016; Yeoman & Duckham, 2016; Ahearn et al. 2017), visual analyses of 

movement data (Andrienko & Andrienko, 2013), knowledge discovery in movement data 

(Laube et al., 2005; Wachowicz et al., 2011), similarity measurements of movement data 

(Dodge et al., 2012; Yuan & Raubal, 2014), scale-aware analyses of movement data (Laube 

& Purves, 2011; Soleymani et al., 2014), context-aware analyses of movement data (Siła-

Nowicka et al., 2016; Sharif & Alesheikh, 2017), dynamic interactions in movement data 

(Long & Nelson, 2013; Miller, 2015), predictions of movement data (Yavaş et al., 2005; 

Borkowski, 2017), etc. In addition to the various research topics, the methods and 

techniques of analysing movement data have already been applied in a large number of 

domains, such as transportation (Li et al., 2012; Zhang et al., 2017), urban planning (Ratti 

et al., 2010; Liu et al., 2012), ecology (Long & Nelson, 2013; Miller, 2015), environment 

(Hsieh et al., 2015), social media (Li et al., 2015; Shi et al., 2016), sport science (Stein et 

al., 2015; Sacha et al., 2017), and business (Körner et al., 2010). In this thesis, we are 

particularly motivated by four of the aforementioned research topics (i.e., visual analyses 
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of movement data, knowledge discovery in movement data, scale-aware analyses of 

movement data, and dynamic interactions in movement data), and we aim to explore their 

potential applications in a relatively novel domain: sports. In the following, a general 

overview of these research topics and their current applications for sports is provided. 

1.1.1 Visual analysis of movement data 

Data visualisation techniques enable us to form multi-dimensional data representations, 

which can be used to provide knowledge and potential insights into these data (Soukup & 

Davidson, 2002). The process of data visualisation generally includes data collection and 

storage, data pre-processing and transformation, and information display and perception 

(Ware, 2004). Through these steps, interesting information or useful knowledge can be 

identified. Given the popularity of movement data, the visual analysis of movement data 

has been an active topic in recent years. Because movement data can represent the 

trajectories of moving objects in both space and time, these data are also considered spatio-

temporal data. Representing spatio-temporal data or time (in particular) along with the two 

spatial dimensions has been a longstanding problem in geographical information science 

(GIScience) (Kwan & Neutens, 2014). One of the primary yet still frequently used tools to 

visually represent such information is the so-called space-time cube (STC), which was 

originally established in time geography (Hägerstraand 1970). In a STC, spatio-temporal 

data are visualised in 3D space, where the bottom 2D plane represents the 2D geographical 

space and the third axis represents time. Since its introduction, STCs have become a 

popular tool in GIScience to visualise human activity-related data/information, including 

movement data.  

In addition to STCs, a large variety of other tools have also been developed to visually 

represent movement data from different perspectives. Some of the typical tools are 

introduced as follows. A traditional tool for the visualisation of movements is flow chart 

(such as discrete points, flow lines and arrows) which is drawn on a map or image (Vasiliev, 

1997). Animation is also a widely used way to visualise movement data, .e.g., the 

trajectories of objects during a time interval can be visualised by animations (Andrienko et 
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al., 2007; Klein et al., 2014). This is usually effective when the data sets are not large. 

When the movement data are large, visual displays of all trajectories become unsatisfactory, 

since problems such as clutter and overprinting can inevitably occur. Thus, aggregation is 

used for visualising (Andrienko & Andrienko, 2008). Edge bundling is a common method 

to aggregate movement data for spatial visualisations (Holten et al., 2009; Hoeferlin et al., 

2013; Hurter et al., 2014; Takayanagi & Okada, 2015). It is often used for origin-

destination (OD) data, i.e., movement data where the start and end points are the main 

focuses. Kernel density estimation is a frequently used aggregation method as well 

(Demšar & Virrantaus, 2010; Hurter et al., 2012). It can also be extended to 3D space-time 

density estimation by combining the STC and the standard 2D kernel density estimation to 

better visually display movement data. Besides, visualising the attribute information of 

movement data is important. Cartographical representations have been used for visualise 

such information. Common tools include flow map (Tobler, 1987; Han et al., 2017) and 

heatmap (Cakmak et al., 2015). In addition, movement data can also be visualised with 

linked views to allow incorporation of contextual information (Andrienko et al., 2011; 

Andrienko & Andrienko, 2013). Other interesting methods/tools can be found in(Randell 

et al., 1992; Kwan, 2000; Andrienko et al., 2007; Ren & Kwan, 2007; Rinzivillo et al., 

2008; Willems et al., 2009; Shamoun-Baranes et al., 2012; Enguehard et al., 2013; Zeng et 

al., 2013; Wang et al., 2014; Konzack et al., 2017). With the improvements of visual 

representation tools and techniques, movement data have been better understood over time.  

The Triangular Model (TM) is an interesting tool that was originally introduced by Kulpa 

(Kulpa, 1997; Kulpa, 2006) and has been recently extensively adopted to model and 

visualise temporal information in a two-dimensional space (Van de Weghe et al., 2007; 

Qiang et al., 2010; Qiang et al., 2012; Qiang et al., 2012; Qiang et al., 2014). On the basis 

of the TM, the Continuous Triangular Model (CTM) was then developed by Qiang et al. 

(2014) to represent temporal information continuously. Currently, the CTM is only 

preliminarily used as a useful tool for analysing movement data. Qiang et al. (2014) 

initially used the CTM to simply analyse the movement data of a football match lasting 13 
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minutes. Subsequently, the CTM was used to visualise repetitive motion patterns in groups 

of moving objects (Chavoshi et al., 2015). Given the distinctive characteristics of the CTM 

in representing time-related data (including movement data as well), more extensive 

explorations on the applications of the CTM in the domain of movement data analysis 

deserve further attention. 

1.1.2 Knowledge discovery in movement data 

Data mining has attracted a great deal of attention in both the information industry and 

society as a whole for a long time because of the wide availability of large amounts of data 

and the urgent need for converting such data into useful knowledge and information (Han 

& Kamber, 2006). Hence, data mining is a key technique for gaining knowledge, and a 

number of data mining methods and algorithms have been developed. Due to the sizable 

amount of movement data in this data-rich era, movement data mining methods for 

discovering valuable knowledge that can also be used for various movement data-related 

purposes are greatly needed.  

Knowledge discovery in movement data mainly includes three steps: movement data 

reconstruction, knowledge extraction and knowledge delivery (Giannotti & Pedreschi, 

2008; Dodge, 2011). Movement data reconstruction is considered a pre-processing step, 

and it mainly includes filtering (e.g., removing outliers), resampling (e.g., obtaining regular 

sampled data), smoothing (e.g., removing the effect of noise using specific techniques), 

and map matching for specific data (e.g., matching the position data with the actual map). 

Knowledge extraction aims to discover patterns and structures in movement data and 

acquire useful knowledge about the behaviour of moving objects. In this step, movement 

data mining methods and techniques, such as movement pattern discovery, trajectory 

classification, trajectory clustering, and movement similarity analysis, are adopted. In the 

knowledge delivery step, the main purpose is to evaluate or interpret the discovered 

patterns or other outcomes. To perform evaluations or interpretations, effective 

visualisation techniques are required so that the results can be appropriately presented and 

the extracted knowledge can be delivered.    
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Among the three steps, knowledge extraction using movement data mining methods and 

techniques plays an important role because different methods may derive different 

knowledge. With respect to the movement data mining methods, we can broadly divide 

them into three categories: (1) shape-based methods; (2) attribute-based methods, and (3) 

shape-and-attribute based methods. Shape-based methods essentially focus on the 

geometric characteristics (i.e., shape) of the trajectory of a movement because a trajectory 

can be considered as a series of discrete points in chronological order. Typical shape-based 

methods include methods that are used for trajectory clustering (Lee et al., 2007; Palma et 

al., 2008; Zhang et al., 2014), movement pattern mining (Laube et al., 2005; Gudmundsson 

et al., 2007; Andersson et al., 2008; Jeung et al., 2008; Wachowicz et al., 2011; Jacob & 

Idicula, 2012; Kjærgaard et al., 2012; Fort et al., 2014; Turdukulov et al., 2014; Loglisci 

2017), and trajectory outlier detection (Lee et al., 2008; Yuan et al., 2011; Liu et al., 2012). 

Attribute-based methods mainly focus on analysing the changes of motion attributes (such 

as speed, acceleration, distance and direction) that are used to characterise the movements 

of objects over time. These methods can be used to mine useful patterns (Laube et al., 

2005), explore the similarities of trajectories (Dodge et al., 2012; Chavoshi et al., 2015), 

and even predict the positions of moving objects over time (Sabarish et al., 2015). Shape-

and-attribute based methods can be regarded as a mixture of shape-based methods and 

attribute-based methods. One of the distinct advantages of such methods is that the 

meanings of trajectories can be enhanced and refined by integrating semantic information 

(Buchin et al., 2012; Elragal & EL-Gendy, 2013; Buchin et al., 2014).  

Given the importance of movement data mining methods and techniques in knowledge 

discovery in movement data, investigations by researchers from various domains should 

focus on this important aspect. 

1.1.3 Scale-aware analysis of movement data 

Scale is an important issue in many disciplines, particularly those that involve space and/or 

time (e.g., GIScience). Well-known approaches to addressing this issue include the 

modifiable areal unit problem (MAUP) for the spatial scale and the modifiable temporal 
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unit problem (MTUP) for the temporal scale (Openshaw 1984; Cheng & Adepeju, 2014). 

In GIScience, scale mostly denotes resolution or extent (Goodchild 2011). Geographical 

data normally have a specific resolution; thus, operations for such data are scale specific 

because differences in scale could introduce dramatic changes. Thus, scale is of significant 

importance, especially after it was included as the fifth dimension in 5D data modelling 

(van Oosterom & Stoter, 2010). Therefore, scale must be considered when analysing space 

and/or time-related data.  

For movement data, relatively few researches have been undertaken from a cross-scale or 

multi-scale perspective. Laube & Purves (2011) investigated the changes of three motion 

attributes (i.e., speed, turning angle and sinuosity) of ten cows at six keenly selected 

temporal scales. Long & Nelson (2013) argued that dynamic interactions can be analysed 

from four analysis levels of scale: local, interval, episodal and global. Postlethwaite et al. 

(2013) presented the multi-scale measure MSSI (multi-scale straightness index) to analyse 

animal movement data at multiple temporal scales. Soleymani et al. (2014) proposed a 

methodology to explore the behavioural movement of zebrafish by joint spatio-temporal 

cross-scale analyses of three motion attributes (i.e., speed, acceleration and sinuosity). In 

addition, a continuous spatio-temporal model (CSTM) was proposed by Van de Weghe et 

al. (2014). The CSTM is a conceptual model that integrates both space and time over 

multiple scales. In theory, the CSTM has a strong ability to analyse movement data from 

either a spatial, temporal or spatio-temporal perspective at multiple levels. However, this 

is currently only a theoretical model. Real-world applications still need to be extended in 

the future. A disadvantage of these research approaches is that apparent discrepancies 

between the findings of the research and the real circumstances might exist because only a 

very small number of carefully selected temporal scales have been considered in the 

analyses. More precise findings can be obtained with additional temporal scales.  

1.1.4 Dynamic interactions in movement data 

Moving objects commonly move in geographical space, in which the geographical context 

(e.g., the environments where moving objects live) is considered one of the important 
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components. Therefore, movement data interactions can be categorised as the interactions 

between geographical contexts (Gray & Moseley, 2005; Seneviratne et al., 2010), between 

moving objects and geographical contexts, and between the moving objects themselves. 

Note that as the first two can be considered as a context-aware analysis of movement data, 

they are not within the scope of this thesis. In this thesis, we only consider the interactions 

between/among the moving objects themselves. Interactions can be classified as static 

interactions or dynamic interactions (Doncaster, 1990). In movement data, static 

interactions are purely described by spatial properties (without taking into account the 

possibility of temporal avoidance or attraction between individuals), whereas dynamic 

interactions are defined based on both spatial and temporal components (Miller, 2015). In 

this thesis, the main focus is on dynamic interactions in movement data.  

In general, dynamic interactions can be defined as the way the movements of individuals 

are related or the inter-dependency among the movements of individuals. For example, 

attraction and avoidance are two typical types of dynamic interactions (Miller, 2015). The 

research on dynamic interactions in movement data is still in its infancy. In GIScience, 

typical research related to movement data is listed as follows. Miller (2012) analysed the 

dynamic interactions between individuals based on the GPS data of animals using five 

different techniques, thereby comparing the results acquired by the different techniques. 

Subsequently, a null model approach (Miller, 2015) was developed by the same author to 

compare six dynamic interaction metrics. The approach was tested based on the data of 

five brown hyena dyads in northern Botswana. The comparison results highlight the need 

for further studies to identify appropriate methods for measuring and interpreting dynamic 

interactions (Miller, 2015). Long & Nelson (2013) introduced the method Dynamic 

Interactions (DI) for measuring the dynamic interactions between pairs of moving objects. 

The method was validated on six simulated datasets and two applied examples (i.e., team 

sports and wildlife). The results showed that the DI method can be used to measure 

dynamic interactions in movement data. Long et al. (2014) executed an examination of 

eight currently available indices of dynamic interactions in wildlife telemetry studies and 
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compared the effectiveness of the indices. In Long (2015), the statistical properties of a 

suite of currently available methods for evaluating dynamic interactions were examined. 

Konzack et al. (2017) proposed a new approach to analyse interactions between two 

trajectories and developed a prototype visual analytics tool to evaluate the approach based 

on three datasets.  

In all, the aforementioned research mainly focuses on either comparing/evaluating existing 

methods with respect to dynamic interactions based on various datasets or developing new 

methods of measuring dynamic interactions between two moving objects. Most of the 

research has been undertaken at a single temporal scale. In addition, few studies have 

focused on exploring the importance of each moving object and identifying moving objects 

that play relatively important roles in maintaining specific interactions. Hence, new efforts 

still have to be made to extend the research. 

1.1.5 Applications of movement data analysis in sports 

Recent developments in sensor or location-aware techniques have resulted in an increasing 

interest in recording and analysing movement in team sports. A team sport includes any 

sport that involves two or more players working together towards a shared objective, and 

it can be considered group movement in which individuals collaborate and compete 

following specific rules (Stein et al., 2017). Typical team sports include soccer/football, 

basketball, hockey, baseball, etc. Traditional analyses in team sports mainly rely on 

descriptive statistics of the data obtained. These approaches typically focus on basic 

analyses, such as distance, speed, sprints, heat maps, and preferred attacking side 

(Feuerhake 2016). However, traditional analysis methods are not well suited for more 

advanced tasks in team sports, such as passing possibilities, pass sequence patterns, and 

(frequent) movement patterns (Feuerhake 2016; Gudmundsson & Horton, 2017). 

Benefiting from the popularity of sports movement data in recent years and the various 

methods/techniques in movement data analysis, more advanced analyses can be executed, 

thereby facilitating the evaluation of player performance for sports professionals (e.g., 

coaches) during matches or training (Stein et al., 2017).  
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Therefore, a series of research work with respect to sports movement data has been 

undertaken in recent years. Among the many investigated sports, football has received 

much attention. The typical investigations focused on football are introduced below. Iwase 

& Saito (2002) proposed a method of tracking the positions of a specific football player by 

using multiple cameras. Subsequently, the authors extended this method to enable tracking 

the positions of multiple players (Iwase & Saito, 2003). In addition to the tracking of 

players, methods to track the ball were also developed (Ren et al., 2009). Thus, the 

trajectories of either the players or the balls can be acquired, and various advanced analyses 

have been executed based on trajectories. Laube et al. (2005) presented a generic 

geographical knowledge discovery approach called Relative Motion (REMO) to explore 

the movements of objects, and they applied the approach to a movement dataset consisting 

of 11 football players lasting 33 seconds. Kim et al. (2011) introduced a framework for the 

tactical analysis of football matches based on the trajectories of both the players and the 

ball using spatial and spatio-temporal approaches. Lucey et al. (2013) presented an 

approach to assessing team strategies based on the tracking data from the English Premier 

League (2010-2011 season) and investigated possible reasons why the home advantage 

exists in football. Gudmundsson & Wolle (2014) developed a collection of spatio-temporal 

tools specifically for the performance analysis of football players and teams. Horton et al. 

(2015) presented a model to automatically classify the passing in football. Feuerhake (2016) 

presented an approach for the recognition of movement patterns as an advanced analysis 

based on the players’ trajectories. Sacha et al. (2017) proposed a novel dynamic approach 

for abstracting players’ trajectories by combining trajectory simplification and clustering 

techniques to support the interpretation and understanding of movement patterns. In 

addition to football, movement data are used in other sports for related research as well. 

Demaj (2013) presented an approach for post-match analysis based on the trajectories of 

tennis balls and visualised the spatio-temporal patterns. Lucey et al. (2014) investigated 

how to obtain an open shot by analysing team movements in basketball based on the 

tracking data. Chavoshi et al. (2015) proposed a novel approach for measuring the 

similarity in the interactions between moving objects and validated the approach using the 
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movement data tracked from samba and tango dancers. Metulini et al. (2017) presented a 

method of identifying homogeneous spatial relations among players in the court, 

differentiating defensive or offensive actions, and analysing the transition probabilities 

from a certain group to another. 

The aforementioned research shows that with the development of methods and techniques 

for the analysis of movement data, the subject of sports analytics has stepped into a new 

stage where more advanced analysis tasks can be achieved and thus more potential insights 

can be provided to sports professionals (e.g., coaches) for suitable tactical arrangements. 

Moreover, the demand for sports analytics may represent driving forces for the emergence 

of new methods and techniques of analysing movement data. Hence, movement data 

analysis has the potential for use in a number of applications for sports in the future. 

1.2 Research objectives 

The previous section presented an overview of the state-of-the-art research of four topics 

with respect to the analysis of movement data and the application of movement data 

analysis in sports. Based on this overview, the thesis presented here proposes four general 

research questions (RQs), which are addressed in this section. 

RQ 1: Can the CTM bring added value to the analysis of movement data?  

This research question focuses on the applications of the CTM in the analysis of movement 

data based on its functionalities, and it is addressed in Chapters 2, 3 and 4 from different 

perspectives.  

Chapter 2 addresses an exhaustive application of the CTM in the visual analysis of football 

movement data obtained from a real and entire football match. In this chapter, three 

representative motion attributes (i.e., speed, ball possession and territorial advantage) that 

are either common for all types of moving objects or particularly meaningful for specific 

types of moving objects are visualised using the CTM. Based on the generated CTM 

diagrams, the performance of either the players or the whole team can be explored in detail; 

thus, insightful information can be generated for sports professionals. Moreover, the 
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implementation of algebra operators (e.g., summation, subtraction, maximum, minimum, 

and mean) allows the CTM to generate more advanced diagrams that can be used to address 

more sophisticated tasks. Based on the advanced functionalities, we propose a new measure 

for deeply exploring the performance of the whole team and visualising it using the CTM. 

With the help of the CTM diagrams, interesting information that is difficult to obtain using 

other tools can be obtained easily; thus, more abundant information can be provided for 

tactical improvements or arrangements. This chapter shows the strong ability of the CTM 

in the analysis of movement data based on its visualisation functionalities. Because of its 

strong visual analysis capabilities, the CTM is used as a visualisation tool as well in 

Chapter 4.  

In Chapter 4, the main focus is the exploration of dynamic interactions in movement data. 

In this chapter, a hybrid approach that combines the multi-temporal scale spatio-temporal 

network (MTSSTN) and the CTM is proposed. Based on the proposed approach, the 

interaction intensities between any two individual objects or among multiple objects can 

be explored by visualising the corresponding interaction intensity measures using the CTM. 

By using the extended functionalities of the CTM, we can further generate more advanced 

CTM diagrams. Based on the visualisations, the importance of each individual can be 

explored and the most important individuals can be identified. The proposed approach is 

validated using part of the aforementioned football movement data, and the results 

demonstrate the effectiveness of the approach in the application of football. 

In addition to its visualisation capabilities, the CTM has a strong ability to represent 

temporal data via multiple temporal scales. The results demonstrated in Chapters 2 and 4 

are also analysed from a multi-scale perspective. In addition to the brief introduction of the 

multi-scale ability of the CTM, we address this feature in more detail in Chapter 3. Chapter 

3 mainly focuses on the topic of knowledge discovery in movement data using a novel 

cross-scale oriented sequence analysis approach. The key to the proposed approach is the 

construction of sequences based on the CTM. Based on the different scale properties, four 

types of sequences are derived. Part of the aforementioned football movement data is used 
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to validate the effectiveness of the proposed approach. The findings demonstrate that the 

proposed approach is useful and efficient in mining information from movement data, 

which shows that the CTM can also be applied for knowledge discovery using movement 

data. 

RQ 2: What interesting information can be discovered in football movement data? 

This research question is addressed in Chapters 3 and 5. In Chapter 3, we propose a cross-

scale oriented sequence analysis approach. Based on the proposed approach, two distinct 

research aims are derived: investigating the changes in motion attributes of players across 

different temporal scales and detecting the time intervals during which active events might 

have occurred. We then apply this approach to football movement data. The results indeed 

reveal interesting information on the changes in motion attributes of the players across 

different temporal scales, which has been rarely obtained by former research and thus 

might be helpful for coaches to arrange tactics more scientifically. In addition, by 

automatically detecting the time intervals during which active events might have occurred, 

coaches can quickly adjust to specific time intervals for a post-analysis of the match rather 

than watching the video second by second to locate target time intervals. The findings 

indeed appear interesting from different perspectives.  

Chapter 5 proposes a novel Reeb graph-based approach to discover moving flock patterns 

formed by the players in the same team. Although considerable work on methods of 

identifying moving flock patterns has been performed for movement data in the field of 

GIScience, few researchers have developed such methods for football. In Chapter 5, we 

first develop an improved definition of moving flock and then propose a taxonomy of 

moving flock patterns, which are used to derive eight types of interesting moving flock 

patterns. Finally, the approach is applied to part of the football movement data. The results 

demonstrate that the proposed approach is capable of differentiating various types of 

moving flock patterns. Based on the discovered moving flock patterns, coaches can identify 

players that can form different types of groups, which can increase the confidence 

associated with arranging corresponding tactics according to specific demands.  
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RQ 3: Can added values be provided if taking multiple (temporal) scales into account when 

analysing movement data? 

Chapters 3 and 4 consider the temporal scale when developing corresponding approaches 

for analysing movement data. In Chapter 3, a cross-scale oriented sequence analysis 

approach is proposed and then applied to part of the football movement data with a duration 

of 95 minutes. When analysing the football movement data using the proposed approach, 

96 temporal scales are considered, which is a comparatively large number of temporal 

scales. The findings reveal the rules of changes for motion attributes across different 

temporal scales, which can be used to provide more abundant information to sports 

professionals. In addition, when detecting the time intervals during which active events 

might have occurred, the results based on the approach that involves multiple temporal 

scales are better than those involving only one temporal scale.  

In Chapter 4, a hybrid approach combining the MTSSTN and the CTM is proposed to 

explore the dynamic interactions in movement data. One distinctive characteristic of this 

approach is the generation of the MTSSTN, which to our knowledge is the first spatio-

temporal network that considers the multi-temporal scale. The results based on the 

MTSSTN are visualised using the CTM, and information at all temporal scales is displayed. 

Hence, based on the generated CTM diagrams, much more detailed information can be 

revealed compared with those that only use one temporal scale. The two chapters 

demonstrate that added values can be provided if multiple (temporal) scales are considered 

when analysing movement data. 

RQ 4: What efforts can be contributed to the relatively new research topic of dynamic 

interactions in movement data? 

As previously stated, the research on dynamic interactions in movement data is relatively 

new compared with other research topics with respect to the analysis of movement data. In 

this thesis, we contribute efforts to the exploration of dynamic interactions in movement 

data, which is addressed in detail in Chapter 4. In this chapter, we mainly aim to 

quantitatively explore the interaction intensities between two individual objects or among 
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multiple objects. This investigation is achieved based on a specific interaction pattern. In 

all, three types of interaction patterns are derived based on the Relative Trajectory Calculus 

(RTC) developed by Van de Weghe (2014). One distinctive characteristic with respect to 

previous research is that we propose a method of exploring the dynamic interactions among 

multiple individuals. We also propose a method of exploring the importance of each 

individual in maintaining the dynamic interactions and identifying the individuals who play 

important roles in maintaining each interaction pattern. Part of the aforementioned football 

movement data is used as a case study to validate the effectiveness of the proposed 

approach. The results demonstrate that the proposed approach is useful for exploring 

dynamic interactions in movement data and discovering insightful information. We are 

convinced that this approach represents an important contribution to the research topic and 

will propel its development in the future. 

1.3 Thesis outline 

This thesis consists of six chapters. Chapters 2 to 5 are the substantial parts of this thesis 

and include four academic articles that have been published by or submitted to international 

peer-reviewed journals or will be submitted in the future. Each chapter of this thesis is 

organised to answer the previously mentioned research questions. Because certain chapters 

may answer part of the research questions while others might respond to a specific research 

question, the chapters are not grouped. Strong links are observed between the chapters 

presented in this thesis. To ensure that these articles can be read smoothly and 

independently from each other, inevitable overlaps are included in the individual chapters 

with regard to the literature reviews and the description of the basic concept (e.g., the CTM) 

and dataset used in this thesis. Chapter 6 summarises the main findings and contributions 

of this thesis and proposes avenues for future research. The general outline of this thesis is 

shown in Figure 1.1. 
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Figure 1.1. Thesis outline. 
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2 
Visual Exploration of Match Performance Based on 

Football Movement Data Using the Continuous 

Triangular Model 

Modified from: Zhang, P., Beernaerts, J., Zhang, L., & Van de Weghe, N. (2016). 

Visual exploration of match performance based on football movement data using 

the Continuous Triangular Model. Applied Geography, 76, 1-13. 

 

Abstract: The rapid development of information and communication technologies has 

caused a proliferation of rich and voluminous movement data sources, which thereby 

necessitates further research on the analysis, modelling and visualisation of moving objects. 

The human performance analysis in the context of sports, based on sports-oriented 

movement data using geographical approaches, is an exciting new field. Yet, relatively 

little attention has been devoted to this topic within the GIScience domain. Therefore, this 

chapter aims to present a research effort in this fresh field based on the movement data 

obtained from an entire football match. The research focuses on the exploration of match 

performance, an important issue in the domain of sports analytics, by utilising the 

Continuous Triangular Model (CTM). In general, the performance of players and teams is 

explored from a visualisation perspective according to the CTM diagrams of various 

motion attributes so that potential suggestions for performance improvements and/or 

tactical arrangements can be provided. More specifically, the motion attributes comprise 
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several basic motion attributes and one composite motion attribute. The basic motion 

attributes include one general motion attribute (speed) that is valid for almost all kinds of 

moving objects, and two specific motion attributes (ball possession and territorial 

advantage) being particularly meaningful in football. The composite motion attribute 

(dominance index) is the combination of the three basic motion attributes. Among the CTM 

diagrams, some are generated by employing corresponding map algebra operators so as to 

discover extra information. The results demonstrate that the CTM approach is useful in 

exploring match performance and discovering important information. 

2.1 Introduction 

With the rapid development of advanced location-aware technologies such as GPS (global 

positioning system), RFID (radio frequency identification), Bluetooth, WiFi, and image 

recognition, data related to moving objects can be acquired more easily than ever before. 

Nowadays, a large variety of types of movement data are in use or already attracted 

attention, including floating car data (Civilis et al., 2005), pedestrian walking data 

(Delafontaine et al., 2012; Xu et al., 2013), bicycle data (Vogel et al., 2014), movement 

data of animals (Laube et al., 2005; Shamoun-Baranes et al., 2012) and natural phenomena 

such as hurricanes (Lee et al., 2007), as well as data of sports such as football (Kim et al., 

2011), basketball (Chin et al., 2005), volleyball (Chakraborty et al., 2012) and even dancing 

(Chavoshi et al., 2014). This opens up a new era for sports analytics, where new 

perspectives may answer questions where traditional methodologies fail. Given the 

emergence of this new kind of sports data, a number of researchers, particularly those from 

the fields of computer science, sports analytics and even GIScience (geographical 

information science), have conducted research from their own perspective. As the focus of 

this chapter is on football movement data, a review of the typical work that has been done 

in this area is given. 

In the field of computer science, extensive efforts have already been made with regard to 

the high precision tracking of the positions of both the players and the ball, the extraction 

of corresponding trajectories from match videos and simple analyses based on the extracted 
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trajectory data. For example, Iwase & Saito (2002) proposed a method of tracking a 

specific football player by using multiple cameras. Since by means of this method only one 

player can be tracked, they subsequently extended their work to enable the tracking of 

multiple players based on homography among multiple views to avoid the occlusion 

problem of players (Iwase & Saito, 2003). Later, a model that is based on the relationships 

between the players and the ball was proposed to quantitatively analyse and evaluate the 

performance of players (Kang et al., 2006). Kim et al. (2011) introduced a framework for 

the tactic analysis of football matches based on the trajectories of both the players and the 

ball using spatial and spatio-temporal approaches. As for the work of Niu et al. (2012), 

they first extracted real-world trajectories from a football video and then analysed the 

attack patterns that could be found in these trajectories. Lucey et al. (2013) presented an 

approach to assess team strategy based on an entire season of ball tracking data from the 

English Premier League (2010 - 2011 season) and investigated possible reasons why the 

home advantage exists in football. Recently, a collection of spatio-temporal tools 

specifically for the performance analysis of football players and teams was developed by 

Gudmundsson & Wolle (2014).  

Within the sports analytics field, the first regular occurrences of automated football 

analysis appeared about a decade ago (Amisco; ProZone; Gudmundsson & Wolle, 2014). 

These occurrences resulted in the emergence of a large amount of methods and tools aimed 

at various analysis of football. Among them, the performance of both the players and teams 

are of great importance to researchers. As such, a football interaction and process model 

was developed by Beetz et al. (2005) to acquire, interpret and analyse the game using a 

real-time positioning system. Zhu et al. (2009) proposed a novel approach for extracting 

tactic information from football video and presented the events in a tactic mode to the 

coaches and sports professionals. Wisbey et al. (2010) quantified the movement patterns 

of AFL (Australian Football League) football and the differences among players playing 

at different positions in order to investigate whether the physical demands had increased 

over a four season period based on GPS data of the matches. Sampaio & Maçãs (2012) 
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explored how to use football players’ dynamic positional data to assess the tactic behaviour 

by the measurement of movement patterns and inter-player coordination. 

In contrast, in spite of the fact that a number of visualisation tools and methods have been 

developed in the GIScience field towards other types of movement data (Andrienko & 

Andrienko, 2011; Andrienko & Andrienko, 2012; Andrienko et al., 2012; Wang et al., 

2014), these tools and methods are seldom applied in football movement data . Within this 

field, the work of Laube et al. (2005) takes a central role. In their paper, they presented a 

generic geographical knowledge discovery approach called REMO (Relative Motion) to 

explore the motion of moving objects and applied it on a movement dataset consisting of 

11 football players covering a time frame of approximately 33 seconds. However, the 

dataset in their paper is relatively small and they only performed a rather simple analysis, 

which seems not enough for coaches to grasp a whole match in order to improve 

corresponding tactics. 

Built upon these efforts, the central aim of this chapter is to explore human performance, 

one of the most important activities in nature, by visualising a number of important motion 

attributes in football match performance evaluation so that they might better serve coaches 

and other sports professionals. The adopted tool for visualisation is called the Continuous 

Triangular Model (CTM), a geographical approach which mainly focuses on time. We aim 

to apply the CTM to the football analytics domain to extend the applications of the CTM 

and we believe that this research can provide distinctive added values to the current 

research in the domain of sports analytics. 

The remainder of this chapter is organised as follows. Section 2.2 gives an introduction to 

the CTM. Section 2.3 introduces the dataset used in this chapter and elucidates the 

processing of these data. In section 2.4, the match performance is explored in terms of the 

CTM diagrams generated based on the basic motion attributes. Some of the CTM diagrams 

are transformed further using related map algebra operators so as to discover extra 

information. Section 2.5 introduces a composite attribute that is derived by combining 

multiple basic motion attributes and gives the performance exploration based on the CTM 
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diagrams of the composite motion attribute. In section 2.6, some additional advantages of 

the CTM in the application domain of sports analytics are discussed. Finally, in section 2.7, 

the conclusions and recommendations for future work are described. 

2.2 The Continuous Triangular Model (CTM) 

The Continuous Triangular Model (CTM) is an extension of a 2D representation of time 

intervals – the Triangular Model (TM) (Qiang et al., 2010; Qiang et al., 2012; Qiang et al., 

2012; Qiang et al., 2014), which was originally introduced by Kulpa (Kulpa, 1997; Kulpa, 

2006). In the TM, a time interval I (bounded by a start point I- and an end point I+) is 

represented by the intersection point of two straight lines L1 and L2, with L1 passing through 

I- and L2 passing through I+ (see Figure 2.1). In Figure 2.1, α1 = α2 = α, with α1 being the 

angle between L1 and the horizontal axis (along the same direction with L1), α2 being the 

angle between L2 and the horizontal axis (along the same direction with L2) and α being 

constant for the entire conceptual space. Thus, the point I in Figure 2.1 is considered as an 

equivalence of the time interval [I-, I+]. This way, the horizontal position of the point mid(I) 

indicates the midpoint of this interval and the vertical position h represents its duration 

dur(I). In theory, α can be any value in (0°, 90°). However, since the fluctuation of α can 

cause various space problems on paper, we suggest an angle of 45°. In order to understand 

the TM with comparative ease, Figure 2.2 gives a supplementary illustration on how to 

represent time intervals using the TM.  

 

Figure 2.1. Construction of an interval in the Triangular Model (Qiang et al., 2014). 
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(a) 

 

(b) 

Figure 2.2. Representation of time intervals using (a) the classical linear model, and (b) the TM 

(Qiang et al., 2012). 

As can be seen in Figure 2.2, the TM provides significant benefits in representing (complex 

configurations of) time intervals by transforming a line (figure (a)) into a point (figure (b)). 

This representation results in a collection of discrete points, each of which represents a 

specific time interval. However, it appears incapable to represent the time intervals 

continuously. To make this possible, Qiang et al. (2014) extended the TM to the CTM. The 

core principle of this extension is as follows. Given a time interval I, all time intervals 

during I are enclosed in a triangular zone below it, as is shown in Figure 2.3. Thus, every 

point in this triangular zone corresponds to a specific time interval within the time interval 

I. If assigning to every point a certain value related to the time interval it represents (e.g., 

f(Ii)), the triangular zone can be filled and thus becomes a continuous field. Note that f(Ii) 

can represent different functions (such as the average, the summation or the standard 

deviation). Through colour-coding, the continuous field can be displayed as an image, in 

which every point represents a specific time interval and the colour at that point 

corresponds to the value of an attribute within this time interval. 

Figure 2.4 presents a simple example of representing linear data using the CTM. In Figure 

2.4, figure (a) is a linear representation of the speed of a player during five minutes, and 

figure (b) is the corresponding representation of this linear data using the CTM. For 

example, the part of curve marked by the dotted red rectangle in figure (a) is represented 

by the dotted red triangular in figure (b). From figure (b) one can observe that every single 

point in the CTM has a specific colour that corresponds to a speed value. As each point in 
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the CTM represents a specific time interval, the CTM has the important property that it can 

simultaneously display the dataset at all temporal resolutions.  

 

Figure 2.3. Illustration of all time intervals during I (represented by the triangle in black). 

 

(a) 

 

(b) 

Figure 2.4. Illustration of representing linear data using the CTM: (a) the linear representation of 

speed data, and (b) the CTM representation of the linear data. 

The abilities of the CTM can be enhanced by the support of map algebra operations. Map 

algebra was first introduced in the late 1970s (Tomlin & Berry, 1979). It is a set of primitive 

operations in a geographical information system which allows two or more raster layers 
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(‘maps’) of similar dimensions to produce a new raster layer (‘map’) using algebra 

operators. Tomlin (1990) proposed numerous operators, among which the most commonly 

used ones include addition, subtraction, maximum, minimum, equal to, greater than, and 

so on. These can be considered as local operators. Besides local operators, focal operators, 

zonal operators, and global operators are also available. Additionally, different algebra 

operations can be combined to reveal different kinds of information. 

2.3 Dataset and motion attributes 

2.3.1 Dataset 

The dataset used in this chapter comes from a real football match between ‘Club Brugge 

KV’ and ‘Standard de Liège’ of the Belgian Jupiler Pro League (the top league competition 

for association football clubs in Belgium), which took place on the second of March 2014. 

For simplicity, we call them respectively ‘Club Brugge’ and ‘Standard Liège’ in the 

remainder of the chapter. Note that Club Brugge won the match by 1-0 by successfully 

scoring a goal in around the 77th minute. The two teams ranked respectively first and 

second at the moment of playing. In this dataset, the (x, y) positions of all players during 

the whole match were tracked at a temporal resolution of 0.1 seconds. In the original dataset, 

1,260,782 (625,131 in the first half and 635,651 in the second half) discrete points with a 

format of (id, x, y, t) were contained, where id identifies a specific player, x and y denote 

the x and y coordinates of a player’s position and t denotes the timestamp when this position 

was recorded. Besides the spatial and temporal information, the semantic information is 

included as well, such as the information of both teams and the events that happened during 

the match.  

Given the vast volume of the dataset and according to the needs in this chapter, the dataset 

is changed to a temporal resolution of 1 second. A small extract of the dataset (after 

interpolation) is illustrated in Table 2.1. Note that the (x, y) value of the middle point of 

the football pitch is considered as (0, 0). The structure of the information of both teams is 

shown in Table 2.2 and some of the important events that happened during the match are 
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listed in Table 2.3. 

Table 2.1. An illustration of the dataset. 

id x (cm) y (cm) t (s) 

342459 -970 -130 0 

342459 -950 -120 1 

342459 -940 -110 2 

… … … … 

348909 -990 760 0 

348909 -980 760 1 

348909 -980 760 2 

… … … … 

348909 2820 1380 5730 

… … … … 

  

Table 2.2. The structure of the information of both teams. 

TeamName IdActor Occupation JerseyNumber Position IsStarter 

Club Brugge 348909 Player 32 Central midfielder right True 

Club Brugge 390565 Player 21 Goalkeeper True 

… … … … … … 

Standard Liège 343253 Player 37 Wide defender left True 

Standard Liège 379872 Player 39 Centre forward right True 

… … … … … … 

 

Table 2.3. An illustration of important events that happened during the match. 

EventTime IdActor1 IdActor2 EventName BodyPart LocationX LocationY 

35988 364737 373607 Reception foot -2860 -3150 

72818 378540  Running with ball foot 280 3170 

173295 373607 379259 Pass foot -1320 -230 

1993335 348909  Yellow card    

2300226 373607  Off side  -1960 1240 

2835701 349993 390565 Shot on target Header -4530 340 

… … … … … … … 

2.3.2 Motion attributes 

2.3.2.1 Speed 

Speed is a common attribute that is popularly used. The speed during a time interval                   

equals to the value the total distance during the time interval divided by the corresponding 

time duration. 

 2.3.2.2 Ball possession 

Among the most fundamental aspects of a football game and the performance of players 
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is the passing of the ball (Gudmundsson & Wolle, 2014). Therefore, in this chapter, we 

define ball possession as the percentage of successful passes made by a team, which is 

currently popularly adopted by data providers, either TV companies for live games or 

specialists like Opta, one of the world’s leading sports data companies (Opta, 2011). The 

ball possession of both teams is calculated according to equations (2.1) and (2.2), 

respectively: 

 𝑝𝐴 =
𝑁𝐴

𝑁𝐴+𝑁𝐵
 (2.1) 

 𝑝𝐵 =
𝑁𝐵

𝑁𝐴+𝑁𝐵
    (2.2) 

where 𝑝𝐴 and 𝑝𝐵 represent the ball possession of team A and team B, 𝑁𝐴 and 𝑁𝐵 represent 

the number of successful passes made by team A and team B, respectively.  

2.3.2.3 Territorial advantage 

Territorial advantage denotes the dominance of a team on the football pitch. It is measured 

by the distance between the centroid of a team (excluding the goalkeeper) and the edge of 

the pitch where the scoring goal of the opponent team lies. For example, assume an 11vs11 

match in Figure 2.5, where the goalkeepers are represented by open circles and the field 

players are represented by closed circles in the colour of their team, and the scoring 

directions of the red and the blue teams are respectively located to the left and to the right. 

Thus, the length of the red line is considered as the index of the territorial advantage of the 

red team, and the length of the blue line the blue team. Note that the longer the line is, the 

stronger the dominance of the team on the field is. Assume the sets of centroids of a team 

are represented as in half 1 and in half 2, the x coordinate values for the edge of the field 

at the scoring goal direction is Xedge_1 in half 1 and Xedge_2 in half 2, the values of territorial 

advantage at timestamp i in half 1 and timestamp j in half 2 are calculated based on 

equations (2.3) and (2.4), respectively: 

 

 𝑓𝑖 = |𝑥𝑖 − Xedge_2| (2.3) 

 𝑓𝑗 = |𝑥𝑗 − Xedge_1| (2.4) 
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Figure 2.5. An illustration of the territorial advantage: the longer line (in red) indicates that the 

red team has a stronger territorial advantage, correspondingly the blue team has a weaker 

territorial advantage. 

2.4 Performance exploration based on basic motion attributes 

2.4.1 Performance exploration in terms of general motion attribute 

2.4.1.1 Speed 

Speed is the most common attribute analysed in the existing literature (Wallace & Norton, 

2014, Carling et al., 2015). It is meaningful for an individual player, a group of players or 

a whole team. All these can be visualised using the CTM. In the following, the speed 

attribute of the goal scorer, the group of midfielders (player b1, player b2 and player b3) and 

both teams will be explored. For simplicity, the names of players in Club Brugge are 

replaced by b1, b2, b3 and so on and in Standard Liège’ s1, s2, s3 and so on. Besides, the 

same substitution denotes the same player throughout the whole chapter. 

The CTM diagrams of the goal scorer are shown in Figure 2.6. Figure 2.6(a) denotes the 

average speed of the player at all temporal levels during the whole match. We can observe 

that fewer fluctuations appear at higher levels (e.g., longer than about 4 minutes) and more 

fluctuations exist at lower levels (e.g., shorter than about 4 minutes). Therefore, more 

variations in performance can be investigated within short time intervals. In figure (b), 

intervals shorter than 4 minutes are considered. In this figure, the fluctuations of speed are 

explicitly displayed. The dark areas represent that the player ran intensively during the 
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corresponding time intervals, which might mean that he was attacking or defending. The 

light areas indicate that the player was not quite active during the corresponding time 

intervals. The details during even shorter time intervals (e.g., during seconds) can be 

displayed as well. In figure (c), speed during the time intervals no more than 9 seconds is 

demonstrated. According to figure (c), we can infer that the player performed relatively 

better in terms of speed at around the 10th, the 14th, the 21st, the 28th, the 62nd, the 67th, and 

the 80th minute, during a time span no more than 9 seconds. Besides, as the player scored 

the goal at around the 77th minute, we also visualised the changes in speed from the 75th 

minute to the 79th minute, in order to investigate his performance during the time intervals 

before and after the goal. This visualisation is shown in figure (d). Figure (d) clearly 

exhibits that the average speed from approximately the 76.5th to the 76.7th minute is 

obviously larger than that during other time intervals. It indicates that the ball was shot into 

the net and the player was running fast subsequently celebrating his goal during this period. 

In the following, he experienced a short period with relatively low speed from the 76.7th 

minute, which indicates the continuing of the match after the temporary celebration.  

The speed of the group of midfielders can also be visualised and compared with each other 

using types of CTM diagrams similar to Figure 2.6(a). However, as one might observe, in 

Figure 2.6(a), the changes of speed at high temporal levels are not obvious. This makes a 

visual comparison difficult. Hence, we propose to visualise the values of the CTM 

diagrams at each temporal level using the same colour-coding, meaning that for each 

temporal level, the minimum speed value is white, the maximum speed value is black, and 

the in-between values are coloured by a corresponding colour from light blue to dark blue. 

Thus, in the CTM diagram, darker colours mean that the player has a higher speed during 

the corresponding time intervals, while lighter colours represent the opposite. The three 

CTM diagrams denoting respectively the speed of the three midfielders are generated based 

on this method. They are shown in figures (a), (b) and (c) in Figure 2.7. From figure (a), 

we can infer that in general player b1 ran relatively fast from the beginning to about the 

30th minute and from about the 32nd minute to about the 80th minute. Figure (b) shows that 
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(a) (b) 

(c)                                                                                              (d) 

Figure 2.6. The CTM diagrams of the goal scorer during: (a) all time intervals, (b) all time 

intervals no more than 4 minutes, (c) all time intervals no more than 9 seconds, and (d) all time 

intervals between the 75th minute and the 79th minute. 

player b2 had a relatively large speed from about the 32nd minute to the end of the match, 

which indicates that player b2 performed more active in terms of speed during this period 

than during the period before. Player b3 also ran relatively fast from about the 32nd minute 

to the end, which can be observed in figure (c).  Note that there was a pause from about the 

30th minute to about the 32nd minute in the match, which makes the speed of the three 

players similar during this period. 

As figures (a), (b) and (c) can only visualise the relative values of speed, they cannot be 

used to precisely compare which player ran faster than the other, and during which time 

intervals. However, with map algebra operators, this can be achieved. In this case, the 

operator of subtraction is adopted. Based on the subtraction operator, three new CTM 

diagrams are generated, as shown in figures (d), (e) and (f). Figure (d) shows that player 

b1 had an advantage in performance in terms of speed during long time intervals (e.g., 

longer than about 4 minutes) when compared to player b2, but during short time intervals  
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 (a) 
(d) 

(b) (e) 

(c) (f) 

Figure 2.7. The CTM diagrams of the three midfielders: (a) player b1, (b) player b2, (c) player 

b3, (d) player b1 compared with player b2, (e) player b1 compared with player b3, and (f) player 

b2 compared with player b3. 

(e.g., less than about 4 minutes), each player had his own dominant periods during which 

he performed better in speed. Based on this, we can infer that player b2 might be better at 

executing short-term runs than long-term runs. Figure (e) shows that player b1 also ran 

faster compared to player b3 during long time intervals, especially for intervals longer than 

about 20 minutes. For time intervals shorter than 20 minutes, player b1 ran faster in the first 

half while in the second half player b3 ran faster. Based on figure (f), we can infer that 

player b3 ran faster than player b2 during time intervals longer than about 20 minutes. For 
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time intervals shorter than 20 minutes, player b2 performed better in speed than the others 

between the 32nd minute and the end of the first half, even though each player had periods 

during which he had advantage in speed.  

In addition, the overall performance of the three midfielders can be compared together by 

generating one single CTM diagram using the relational operator of maximum. The 

generated CTM diagram is shown in Figure 2.8. Based on Figure 2.8, in general, we can 

conclude that player b1 performed best in speed during time intervals longer than about 20 

minutes among the three players, but during time intervals shorter than 20 minutes, player 

b1 performed better in speed in the first half while player b3 better in speed in the second 

half. However, player b2 had his own advantage in performance according to speed during 

quite short time intervals (e.g., shorter than about 4 minutes). 

 

Figure 2.8. The CTM diagram of the comparison of the three midfielders of player b1, player b2 

and player b3. 

The CTM diagram denoting the speed performance of both teams is generated with the 

subtraction operator and displayed in Figure 2.9. Figure 2.9 shows that Club Brugge was 

dominant in speed during time intervals longer than about 24 minutes, and Standard Liège 

had its advantage in speed during time intervals shorter than 24 minutes. From the legend 

of Figure 2.9, we can notice that the speed of Club Brugge was about 3.6 m/s higher than 

that of Standard Liège at most during the same time interval, but Standard Liège was about 
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2.0 m/s higher than that of Club Brugge at most. During time intervals shorter than 24 

minutes, the overall performance of Standard Liège in speed was obviously better during 

the periods from the beginning to the 14th minute, from the 22nd minute to the 36th minute, 

from the 38th minute to the 50th minute, from the 54th minute to the 60th minute, from the 

70th minute to the 74th minute, from the 78th minute to the 82nd minute and from the 83rd 

minute to the 86th minute. In addition, the colour from the 75th minute to the 78th minute is 

relatively dark, which means that Club Brugge was relatively more dominant in speed 

during this period. This is probably due to that the players of Club Brugge ran fast trying 

to score, and after scoring, they all ran fast towards the goal scorer for celebration. 

Figure 2.9. The CTM diagram of the speed of both teams after subtraction operation (the speed 

of Club Brugge subtracts that of Standard Liège): blue colour means that the speed of Club 

Brugge is higher and red colour means that the speed of Standard Liège is higher (the darker the 

colour is, the higher the speed is), a positive value (e.g., n) denotes that the speed of Club Brugge 

is n m/s faster than that of Standard Liège, a negative value (e.g., -n) denotes that the speed of 

Club Brugge is n m/s slower than that of Standard Liège, and 0 means that both teams have the 

same speed 

The performance of players in each team can also be explored by generating the CTM 

diagrams according to their speed by means of the relational operator of maximum to 

determine which player has the largest speed and during each time interval. The fastest 
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players during each time interval at all temporal scales for both Club Brugge and Standard 

Liège are shown in Figure 2.10. In Figure 2.10, figure (a) corresponds to the fastest players 

in Club Brugge during all time intervals and figure (b) in Standard Liège. From Figure 2.10 

we can observe that players b10, b1 and b6 were the three fastest players on a whole in Club 

Brugge while in Standard Liège the two players who had obvious advantages in speed were 

player s3 and player s8. This may indicate that these players might play a relatively 

important role in their corresponding teams and thus deserved specific attention during this 

match.  

(a)  (b) 

Figure 2.10. The fastest players in both teams: (a) Club Brugge, and (b) Standard Liège. 

2.4.2 Performance exploration in terms of specific motion attributes 

2.4.2.1 Ball possession 

The ball possession of a team denotes the ratio between the successful passes executed by 

this team and the sum of successful passes executed by both teams. The CTM diagram of 

the comparison of both teams on ball possession is shown in Figure 2.11. It can be observed 

that, on a whole, Standard Liège had more ball possession than Club Brugge during the 

whole match, which implies that Standard Liège had more passes in this match. 

Specifically, during the first half, Standard Liège had an obvious advantage in ball 

possession during the time intervals from the 2nd minute to the 12nd minute and from the 

36th minute to the end of the first half on a whole, while Club Brugge dominated ball 

possession during the period from the 12th minute to the 28th minute. During the second 

half, Club Brugge performed better in terms of ball possession from the beginning to the 

68th minute and from the 70th minute to the 83rd minute, while Standard Liège performed 
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better from the 68th minute to the 70th minute and from the 83rd minute to the end. Besides, 

Standard Liège appeared to perform better in ball possession in relatively long time 

intervals while Club Brugge better in relatively short time intervals. 

Figure 2.11. The CTM diagram of the 

comparison of ball possession for both teams. 

Figure 2.12. The CTM diagram of the 

comparison of territorial advantage for both 

teams. 

2.4.2.2 Territorial advantage 

The territorial advantage denotes the dominance of a team on the football pitch, and it can 

be considered as a measure of the aggression abilities of a team. When the territorial 

advantage is larger, the team tends to be attacking on a whole. However, similar to ball 

possession, a stronger territorial advantage cannot always mean a final win. The CTM 

diagram of the comparison of territorial advantage for both teams is shown in Figure 2.12. 

From Figure 2.12 we can see that generally Club Brugge performed better in field 

dominance than Standard Liège during the whole match, but Standard Liège performed 

better during the first half while Club Brugge performed better during the second half, 

although the territorial advantage of both teams oscillated in short time intervals. Besides, 

Club Brugge appeared to perform better during relatively long time intervals (e.g., longer 

than about 74 minutes). However, during the time intervals shorter than 74 minutes, 

Standard Liège also had its significant dominant periods in field, such as from the 0th 

minute to the 20th minute, from the 27th minute to the 33rd minute, from the 36th minute to 

the 50th minute, from the 52nd minute to the 64th minute, from the 66th minute to the 71st 

minute, and from the 83rd minute to the end of the match. Based on the CTM diagram, 

coaches can try to find out the reasons why the team had good/bad territorial advantage 
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during specific time intervals so that they can arrange corresponding tactics in the future 

matches. 

2.5 Performance exploration based on the composite motion attribute 

Composite motion attributes that build upon different types of individual motion attributes 

can also be employed to serve the performance exploration using the CTM on the basis of 

corresponding map algebra operations. In this section, the overall dominance of both teams 

is explored based on a composite motion attribute – dominance index. Note that this index 

is proposed by us since we haven’t found similar index in literature. We consider the 

dominance index of a team consisting of three variables: ball possession of the team, 

territorial advantage of the team and average speed of the team, and each of the variables 

has a corresponding weight. Hence, the dominance index can be represented as equation 

(2.5): 

 𝐼 = 𝑤1 ∗ 𝑝 +  𝑤2 ∗ 𝑓 +  𝑤3 ∗ 𝑣 (2.5)  

where I, p, f and v respectively denote the dominance index, ball possession, territorial 

advantage and average speed of the team, and w1, w2, w3 denote the corresponding weights. 

Note that w1, w2 and w3 are larger than 0 and w1 + w2 + w3 = 1.  

As three CTM diagrams can be generated based on p, f and v, respectively, a corresponding 

CTM diagram of I can be derived based on the three CTM diagrams using the map algebra 

of addition, according to which the overall dominance of the corresponding team can be 

explored. However, as the units of the three variables are distinct, a normalisation operation 

should be applied to each variable before executing the map algebra operations so that the 

three variables have the same range of values. In this chapter, the values are all transformed 

to a range between 0 and 1.  

Figure 2.13 illustrates the specific procedure of generating the CTM diagram of dominance 

index for Club Brugge. Similarly, the CTM diagram of dominance index for Standard 

Liège can also be generated. As different weights for the three variables can cause different 

results, we also investigated the effect under different parameter combinations and found 
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that the results are significantly similar for relatively long time intervals (e.g., longer than 

about 5 minutes), although some differences exist for short time intervals. This indicates 

that the dominance index is robust in weights setting, thus is suitable for exploring the 

overall dominance abilities, especially from the perspective of long time intervals. 

 

Figure 2.13. The procedure of generating the CTM diagram of dominance index for Club Brugge. 

In this chapter, we take the values of the three weights as an example: w1 = 0.25, w2 = 0.5 

and w3 = 0.25. The comparison of both teams on the performance of overall dominance 
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can be investigated according to the CTM diagram displayed in Figure 2.14, which is 

generated based on the two corresponding CTM diagrams of dominance index by 

employing the map algebra operator of subtraction. According to Figure 2.14 we can 

conclude that Club Brugge had a stronger overall dominance ability than Standard Liège 

for relatively long (e.g., longer than about 24 minutes) periods. During the time intervals 

between 2 minutes and 24 minutes, both teams had their own time intervals during which 

the overall dominance ability of the team was stronger. However, it seems that the overall 

dominance ability of Club Brugge was stronger than that of Standard Liège on a whole. 

During the time intervals less than 2 minutes, it appears that during many time intervals 

(i.e., the time intervals in white), the overall dominance ability of Club Brugge was 

equivalent to that of Standard Liège. However, during the remaining time intervals (i.e., 

the time intervals in blue or red), the overall dominance of Club Brugge is stronger than 

that of Standard Liège. Hence, in all, during the time intervals less than 2 minutes, the 

overall dominance of Club Brugge is stronger. However, as the time intervals became 

longer, both teams had their dominant time intervals, but relatively Club Brugge had 

stronger overall dominance abilities than Standard Liège. Besides, when the time intervals 

became even much longer, Club Brugge had overwhelming overall dominance ability 

compared to Standard Liège. This indicates that Club Brugge revealed stronger overall 

dominance ability than Standard Liège. 

 

Figure 2.14. The CTM diagram of dominance index for both teams after subtraction operation. 
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2.6 Discussion 

As a key contribution, this chapter addresses the application of the Continuous Triangular 

Model into the domain of sports analytics to explore match performance. The results show 

that the CTM can provide distinctive information about match performance to sports 

professionals and it has the potential to be used in sports analytics to support tactics 

decision making. Besides, the CTM can also reveal its advantage in other ways as follows. 

The CTM can be used to solve current practical problems. Currently, to better analyse the 

match and to acquire more information about the movement and performance of players, 

clubs usually first divide a match video into several short episodes (normally 15 minutes 

per episode, such as from the 0th minute to the 15th minute, from the 15th minute to the 30th 

minute) and then analyse the match episode by episode. In this way, insights can be gained 

into the overall movement and performance of the players during each episode. This 

method, however, fails to automatically generate insights, which are related to time 

intervals that do not map directly to this predefined set of episodes (e.g., an attack which 

starts in one episode and ends in the next). Besides, the events that occur over the 

boundaries of an episode cannot be recognised, since the event is divided into subparts. 

The CTM approach, in contrast, does not necessitate such predefined sets of episodes, since 

the CTM diagrams can visualise the movement during any time interval at any temporal 

scale. Take Figure 2.15 for example to compare both methods. With the method currently  

 

Figure 2.15. The comparison between the CTM approach and currently used method. 
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adopted by the clubs, typically the overall movement of the players over the six intervals 

(represented with green closed circles) are explored. However, with the CTM approach, 

the movement during all time intervals on the temporal scales below the green dotted line 

(e.g., the blue dotted line), above it (e.g., the red dotted line) and in between can be explored. 

Validation of the effectiveness of the results is another important task. Since the world 

wide popularity of football, lots of related reports can be found either on websites, in 

newspapers or magazines, especially for the matches of famous teams. Among the reports, 

many are textual descriptions. We can confront these textual descriptions to check whether 

the information/knowledge that we get from the CTM diagrams matches the true cases. For 

example, we checked the game reports1 at the official website of Club Brugge and we found 

two comments ‘Les Rouches2 were the dominant side in the opening minutes’ and ‘The 

Blues3 restored the balance after ten minutes and started dictating the rhythm of the game’. 

This denotes that the overall dominance abilities of Standard Liège probably appeared 

stronger than Club Brugge in the first ten minutes and then Club Brugge had stronger 

overall dominance abilities lasting for several minutes. From Figure 2.14 we can see that 

the results shown by the CTM diagram coincide well with the reports. Although this 

example is simple, it shows that the CTM diagrams indeed can be validated with textual 

descriptions. Thus, people may have a better understanding of the match if combining both 

the CTM diagrams and the necessary textual descriptions. 

The CTM can also be employed to explore semantic information related to movement data. 

Generally, lots of events can happen during a whole match, such as ‘pass’, ‘reception’, 

‘shot on target’, ‘shot not on target’ and ‘goal’. Coaches may be interested in some specific 

event(s) and wish to know the overall distribution of the event(s) in the whole match at all 

temporal scales. This can be achieved using the CTM. Take Club Brugge for example, the 

CTM diagram of the events of ‘shot on target’ and ‘goal’ is displayed in Figure 2.16, since  

                                                           
1 http://clubbrugge.be/en/news/game-reports/17723/club-brugge-defeat-standard-1-0. 
2 Standard Liège. 
3 Club Brugge. 

http://clubbrugge.be/en/news/game-reports/17723/club-brugge-defeat-standard-1-0
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the two events can be considered as one of the important factors whether a team can win 

or not. Figure 2.16 clearly demonstrates the overall distribution of the number of the two 

events during any time interval in the match, based on which coaches can analyse related 

things. Besides, the events between the two teams can also be compared using the CTM. 

For example, the CTM diagram of the two events ‘shot on target’ and ‘goal’ between Club 

Brugge and Standard Liège is shown in Figure 2.17, from which we can easily know that 

Standard Liège had more superiority in the two events on a whole, but Club Brugge was 

better during the late periods in the second half in the match. Similarly, other basic events 

can also be investigated using the CTM. This might be an interesting added value to news 

media (e.g., newspapers) since it is not difficult for ordinary readers to understand. 

 

Figure 2.16. The CTM diagram of ‘shot on 

target’ and ‘goal’ for Club Brugge. 

 

Figure 2.17. The CTM diagram of the 

comparison of ‘shot on target’ and ‘goal’ for 

both teams. 

2.7 Conclusions and future work 

In this chapter, we propose to employ a rather novel approach, the Continuous Triangular 

Model, to explore match performance based on the movement data obtained from a 

complete football match in order to provide some currently under investigated values to 

sports professionals (especially coaches) from a GIScience perspective. This is strongly 

stimulated by the fast development of advanced location-aware technologies in recent years, 

which makes it easier to obtain movement data of a complete sports match. We aim to 

extend the application of geographical approaches to the domain of sports analytics to solve 

domain problems. Generally speaking, the work involved in this chapter focuses on a 
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distinctive characteristic of the CTM – visualisation. Specifically, we explore the 

performance of both players and teams by means of visualising their various motion 

attributes. As for the motion attributes, we visualise not only the basic attributes, but also 

a more complex composite attribute which builds upon multiple basic ones. Some further 

operations are also executed to the basic motion attributes based on map algebra operators, 

by which some useful knowledge is discovered. The results show that the CTM approach 

from the GIScience domain can indeed be used to serve the domain of sports analytics, 

especially the match performance exploration, by which sports professional can get some 

distinctive information that traditional approaches in sports analytics cannot or are not easy 

to find. According to the distinctive information discovered by the CTM and other 

information discovered using traditional sports analytics approaches, coaches can improve 

tactics further and arrange tactics more flexible than ever before in the future in order to 

try all the best to win the matches. For example, according to Figure 2.10(a), player b10 can 

be considered as a potential (best) player if the coach wishes to choose a player with fast 

running to execute this tactic. We believe that this new approach can be used to better serve 

the domain of sports analytics in the future.  

Due to the strong extensibility and the various functions the CTM has, we summarise a 

number of avenues for future research. One avenue is the incorporation of the methodology 

in an interactive graphical user interface. This will greatly aid in augmenting the usability 

of the approach for sports analytics experts. Another avenue is that the CTM can be 

incorporated with a heat map, a useful and popular visualisation tool in football analysis, 

so as to enhance the abilities of the basic heat map.  Thus, the weak ability of heat map in 

coping with temporal information can be made up for. 
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3 
Knowledge Discovery in Movement Data: A Cross-

Scale Oriented Sequence Analysis Approach 

Modified from: Zhang, P., & Van de Weghe, N. (2018). Knowledge discovery in 

movement data: a cross-scale oriented sequence analysis approach. Applied 

Geography. (Under review) 

 

Abstract: Recent advances in location-aware technologies have resulted in the ubiquity of 

movement data. Hence, numerous approaches have been developed within GIScience to 

explore movement data in order that valuable information can be revealed. Yet, relatively 

few have considered the cross-scale issue on the temporal dimension. Therefore, this 

chapter proposes a cross-scale oriented sequence analysis approach for discovering 

knowledge in movement data by taking temporal scale into account. The key of our 

approach is the construction of sequences based on the Continuous Triangular Model 

(CTM), a tool to represent linear data at multiple temporal scales. Two distinct research 

aims are subsequently derived: investigating the changes of motion attributes of moving 

objects across different temporal scales and detecting the time intervals during which active 

events might have occurred. The movement data obtained from an entire football match 

are employed to validate the effectiveness of the proposed approach. The findings 

demonstrate that the proposed approach is useful and efficient in discovering knowledge 

in movement data.  
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3.1 Introduction 

With the recent advances in location-aware technologies, such as GNSS (global navigation 

satellite system), RFID (radio-frequency identification), Bluetooth sensors, WiFi, and 

image recognition, the changes of positions of various moving objects over time are 

becoming more convenient to be tracked than ever before. This directly results in the 

ubiquity of movement data, such as transportation related movement data (Civilis et al., 

2005; Xu et al., 2013; Vogel et al., 2014), animal movement data (Laube et al., 2005; 

Shamoun-Baranes et al., 2012; Demšar et al., 2015), sports movement data (Gudmundsson 

& Wolle, 2014; Gomez et al., 2014; Zhang et al., 2016; Zhang et al., 2018), eye movement 

data (Andrienko et al., 2012), and even natural phenomena movement data (Lee et al., 

2007). Due to the sizable amount of movement data in this data-rich era, data mining 

methods to discover valuable knowledge that can be used for various purposes are large in 

demand.  

Data mining has already attracted a great deal of attention both in the information industry 

and in society as a whole for a long time, due to the wide availability of huge amounts of 

data and the urgent needs for turning such data into useful knowledge and information (Han 

& Kamber, 2006). Specific to movement data mining, we broadly divide the existing 

methods into three categories: (1) shape-based methods; (2) attribute-based methods, and 

(3) shape-and-attribute based methods. Shape-based methods essentially focus on the 

geometric characteristics (i.e., shape) of the trajectory of a movement, as a trajectory can 

be considered as a series of discrete points in chronological order. Shape-based methods 

are typically used for trajectory clustering (Lee et al., 2007; Zhang et al., 2014), pattern 

mining (Laube et al., 2005; Gudmundsson et al., 2007; Andersson et al., 2008; Jeung et al., 

2008; Wachowicz et al., 2011; Turdukulov et al., 2014) and outlier detection (Lee et al., 

2008; Liu et al., 2012). Attribute-based methods mainly focus on analysing the changes of 

motion attributes (such as speed, acceleration, distance and direction) which are used to 

characterise the motions of moving objects over time. They can be used to mine useful 

patterns (Laube et al., 2005), explore the similarities of trajectories (Dodge et al., 2012; 
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Chavoshi et al., 2015), and even predict the positions of moving objects over time (Elsner 

& Kara, 1999). Shape-and-attribute based methods can be considered as a mixture of 

shape-based methods and attribute-based methods. An important strength of this type of 

methods is that it can enhance and refine the meanings of trajectories by integrating 

semantic information (Buchin et al., 2012; Elragal & EL-Gendy, 2013; Buchin et al., 2014). 

Among the current methods, those that focus on discovering knowledge at a single spatial 

or a single temporal scale take a large proportion. As is known, scale is a common 

problematic issue in many disciplines, particularly those that study phenomena embedded 

in space and time, e.g., GIScience. In GIScience, scale is of important significance, and 

mostly denotes resolution or extent (Goodchild, 2011). Geographical data normally have a 

specific resolution, so the operations (such as transformations and analyses) of such data 

are scale-specific, since things might vary dramatically as scale changes. Given the 

importance of scale in geographical data, it even has been considered as the fifth dimension 

in 5D data modelling (van Oosterom & Stoter, 2010). Thus, it is crucial to take scale into 

account when analysing space and/or time related data. In movement data, limited research 

has been undertaken from a cross-scale perspective. Laube & Purves (2011) investigated 

the changes of three motion attributes (i.e., speed, turning angle and sinuosity) of ten cows 

at six keenly selected temporal scales. Postlethwaite et al. (2013) presented a new multi-

scale measure MSSI (Multi-Scale Straightness Index) to analyse animal movement data at 

multiple temporal scales. Soleymani et al. (2014) proposed a methodology to explore the 

behavioural movement of zebrafish by joint spatio-temporal cross-scale analysis of three 

motion attributes (i.e., speed, acceleration and sinuosity). A prevalent flaw of the current 

research is that only a very small number of temporal scales have been carefully selected 

and taken into consideration, which may result in apparent discrepancies between the 

findings and the real circumstances. More precise findings are capable to be gained with 

more temporal scales.  

Hence, one of the aims in this chapter is to investigate the changes of motion attributes by 

taking into account many typical temporal scales. Additionally, the changes of motion 
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attributes transformed with a descriptive statistics measure (i.e., mean) across different 

temporal scales are explored so that more abundant information can be gained. In order to 

achieve this, a cross-scale oriented sequence analysis approach is proposed. Note that our 

aim is primarily methodological, which means that we aim not to investigate the detailed 

changes of all possible motion attributes, but rather demonstrate how the proposed 

approach can be applied to analyse the changes in motion attributes across different 

temporal scales in a large volume of movement data. Based on the proposed approach, the 

other aim of this chapter is derived: investigating the time intervals during which active 

events might have occurred. This has been rarely conducted in previous research. One 

similar research, to some extent, is the one presented in (Teimouri et al., 2016), where the 

authors detected the time intervals during which inactive events might have occurred. 

However, in this work, the scale issues in the temporal dimension were not considered. 

Sequence analysis is a promising approach to the analysis of processes, events and changes 

(Abbott 1990). It has been proverbially used in various application fields, such as pattern 

recognition (Jain et al., 2000), speech recognition (Sakoe & Chiba, 1978), handwriting 

recognition (Tappert et al., 1990), as well as in the GIScience domain (Çöltekin et al., 2010; 

Delafontaine et al., 2012; Yuan & Raubal, 2014). In our approach, three main steps are 

included. First, the values of the motion attributes at the finest temporal scale are calculated 

based on the movement data. Second, four types of sequences are constructed based on the 

Continuous Triangular Model (CTM), initially proposed by Qiang et al. (2014). Third, the 

discovery of knowledge (i.e., the changes in motion attributes across different temporal 

scales and the time intervals during which active events might have occurred) is executed 

based on these four types of sequences. The proposed approach can be classified as an 

attribute-based movement data mining method, and mainly focuses on the temporal scale. 

The remainder of this chapter is organised as follows. In section 3.2, the CTM, on the basis 

of which the four types of sequences are constructed, is introduced. In section 3.3, the four 

types of sequences are described in detail. Section 3.4 mainly depicts the knowledge 

discovery methods. In section 3.5, a case study is conducted using the proposed approach. 
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The conclusions and future work are summarised in section 3.6. 

3.2 The Continuous Triangular Model (CTM) 

The Continuous Triangular Model (CTM) is an extension of a 2D representation of time 

intervals, the Triangular Model (TM), which was initially introduced by Kulpa (1997). In 

the TM, a time interval I, which starts at I- and ends at I+, is represented by an intersection 

point P of two corresponding lines L1 and L2, as is shown in Figure 3.1. Thus, given a 

specific time interval, any sub interval inside it can be represented by a corresponding point 

in the TM. In addition to discrete time intervals, the TM was extended to the CTM by 

Qiang et al. (2014) to represent continuous temporal data. Thus, the CTM has the ability 

to represent the attribute values during all time intervals. The attribute value during a time 

interval can be calculated using an algebra operator (such as mean, maximum and 

minimum) based on the attributes at the finest sampled timestamps within this time interval, 

and the attribute values at the timestamps between any two neighbouring sampled 

timestamps can be derived using interpolation. Through colour-coding, the continuous 

field of the CTM can be displayed as an image, in which each colour corresponds to the 

attribute value of a specific time interval.  

 

Figure 3.1. An illustration of the TM. 

 

Figure 3.2. An illustration of the CTM. 

Figure 3.2 shows an example of the CTM, which represents the values of the mean speed 

of a football player during the first five minutes. Obviously, the values of the mean speed 

during any time interval within [2, 4] minutes can be found in triangle A. For example, the 

value of point B corresponds to the mean speed of this player during the time interval [3, 

3.5] minutes. 
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3.3 Introduction of the sequences 

Numerous sequences can be generated in the CTM. However, not all of them are interesting. 

We construct four types of sequences that might have specific meanings. In the following, 

the basic concepts and the four types of sequences are introduced. 

3.3.1 Basic concepts 

3.3.1.1 Tevel 

The basic element in the CTM is the temporal evolution element, or in short, tevel, which 

is named according to the term ‘stevel’ proposed by Van de Weghe et al. (2014). A tevel 

is a time interval represented as 𝐼𝑖
𝑡, where i is the beginning of the time interval and t is the 

temporal scale. For example, the tevel 𝐼2
4, which is denoted by the red point in Figure 3.3, 

means that the tevel begins at timestamp 2 and has a temporal scale of 4. Thus, the tevel 

equals to the time interval [2, 6]. If each tevel at the finest temporal scale is assigned a 

value, then the values for the tevels at coarser temporal scales can be calculated. The value 

of a tevel is represented as 𝑉(𝐼𝑖
𝑡), where i and t have the same meanings as those in 𝐼𝑖

𝑡. 

3.3.1.2 Sequence 

A sequence consists of a series of tevels. Assume there are n known timestamps (i.e., 0, 1, 

2, …, n-1) at the finest temporal scale. All tevel values can form a maximum set, which 

can be represented as 𝑆 = {𝑉(𝐼𝑖
𝑡)| (0 ≤ 𝑖 ≤ 𝑛 − 1) ⋀ (0 ≤ 𝑡 ≤ 𝑛 − 𝑖)}. Any subset of S is 

considered as a sequence. Take Figure 3.4 for instance, the sequence S1 consisting of eight 

tevels is represented as 𝑆1 = {𝑉(𝐼𝑖
0)|𝑖 ∈ ℕ ⋀ (0 ≤ 𝑖 ≤ 7)}. Assume the values of the eight 

tevels are 3, 6, 1, 4, 6, 9, 7 and 5, respectively, then sequence S1 can be visualised as a 

curve plotted in Figure 3.5. 

3.3.2 The four types of sequences 

3.3.2.1 Scaling-at sequence 

The tevels involved in a sequence of this type have different beginnings of time intervals 

but the same temporal scale. Hence, a sequence of this type can be represented as  
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Figure 3.3. An illustration of 

tevel 𝐼2
4. 

 

Figure 3.4. An illustration of 

sequence S1. 

 

Figure 3.5. Visualisation of 

sequence S1. 

𝑆 = {𝑉(𝐼𝑖
𝑘)|0 ≤ 𝑖 ≤ 𝑛 − 1}, where 𝑛 − 1 means the largest timestamp, k is a constant 

denoting the temporal scale and 0 ≤ 𝑘 ≤ 𝑛 − 1. Two such types of sequences S1 and S2 are 

illustrated in Figure 3.6(a). According to this type of sequences, the changes of motion 

attributes of moving objects across different temporal scales can be investigated.  

3.3.2.2 Beginning-at sequence 

The tevels involved in a sequence of this type have the same beginning of time intervals 

but different temporal scales. Hence, a sequence of this type can be represented as 𝑆 =

{𝑉(𝐼𝑘
𝑡)| 0 ≤ 𝑡 ≤ 𝑛 − 1}, where 𝑛 − 1 means the largest timestamp, k is a constant denoting 

the beginning of time intervals and 0 ≤ 𝑘 ≤ 𝑛 − 1. Figure 3.6(b) gives an illustration of 

two such types of sequences S3 and S4. 

3.3.2.3 Centring-at sequence 

The tevels involved in a sequence of this type have the same centre of time intervals but 

different temporal scales. Hence, a sequence of this type can be represented as 𝑆 =

{𝑉(𝐼
𝑘−

𝑡

2

𝑡 )| 0 ≤ 𝑡 ≤ 2 ∗ 𝑘}  when 0 ≤ 𝑘 ≤
𝑛−1

2
 and 𝑆 = {𝑉(𝐼

𝑘−
𝑡

2

𝑡 )| 0 ≤ 𝑡 ≤ 2 ∗ (𝑛 − 1 −

𝑘)} when 
𝑛−1

2
< 𝑘 ≤ 𝑛 − 1, where 𝑛 − 1 denotes the largest timestamp, k is a constant 

denoting the centre of time intervals and 0 ≤ 𝑘 ≤ 𝑛 − 1. Figure 3.6(c) illustrates two such 

types of sequences S5 and S6. 

3.3.2.4 Ending-at sequence 

The tevels involved in a sequence of this type have the same end of time intervals but 
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different temporal scales. Hence, a sequence of this type can be represented as 𝑆 =

{𝑉(𝐼𝑘−𝑡
𝑡 )|0 ≤ 𝑡 ≤ 𝑘}, where 𝑛 − 1 denotes the largest timestamp, k is a constant denoting 

the end of time intervals and 0 ≤ 𝑘 ≤ 𝑛 − 1. Two such types of sequences S7 and S8 are 

shown in Figure 3.6(d). 

 

                   (a) 

 

(b) 

 

(c) 

 

(d) 

Figure 3.6. Illustrations of the four types of sequences: (a) scaling-at sequence ( 

𝑆1 = {𝑉(𝐼𝑖
0)|𝑖 ∈ ℕ ⋀ (0 ≤ 𝑖 ≤ 7)} , 𝑆2 = {𝑉(𝐼𝑖

3)|𝑖 ∈ ℕ ⋀ (0 ≤ 𝑖 ≤ 4)} ), (b) beginning-at 

sequence (𝑆3 = {𝑉(𝐼0
𝑡)|𝑡 ∈ ℕ ⋀ (0 ≤ 𝑡 ≤ 7)}, 𝑆4 = {𝑉(𝐼3

𝑡)|𝑡 ∈ ℕ ⋀ (0 ≤ 𝑡 ≤ 4)}), (c) centring-

at sequence (𝑆5 = {𝑉(𝐼
1−

𝑡

2

𝑡 )|𝑡 ∈ ℕ ⋀ (0 ≤ 𝑡 ≤ 2)}, 𝑆5 = {𝑉(𝐼
4−

𝑡

2

𝑡 )|𝑡 ∈ ℕ ⋀ (0 ≤ 𝑡 ≤ 6)}), and (d) 

ending-at sequence (𝑆7 = {𝑉(𝐼4−𝑡
𝑡 )|𝑡 ∈ ℕ ⋀ (0 ≤ 𝑡 ≤ 4)}, 𝑆8 = {𝑉(𝐼7−𝑡

𝑡 )|𝑡 ∈ ℕ ⋀ (0 ≤ 𝑡 ≤ 7)}). 

Among the four types of sequences, the latter three somewhat appear to be novel, since the 

tevels involved in the same sequence, on the one hand, are all at different temporal scales, 

and on the other hand, all have some property in common, e.g., sharing the same timestamp 

as the beginning/centre/end of the time intervals. Interesting information hidden in 

movement data might be revealed based on these four types of sequences. 

3.4 Knowledge discovery based on sequence analysis 

In this section, two research aims are derived based on the four types of sequences: (1) 

investigating the changes of motion attributes of moving objects across different temporal 

scales, and (2) detecting the time intervals during which active events might have occurred.  

3.4.1 Investigating the changes of motion attributes across different temporal 

scales 

The influences of temporal scales on moving objects can be explored by investigating the 

changes in motion attributes across different temporal scales. As this chapter mainly 
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focuses on methodology, only the attribute of speed is taken as a representative, since speed 

is one of the attributes that has been frequently discussed in current research, such as in the 

work by Laube & Purves (2011), Chavoshi et al. (2014), Soleymani et al. (2014) and Zhang 

et al. (2016). Statistic measures can be employed to capture the distinctive features of the 

speed distribution. In this research, only the measure of mean, which denotes the average 

value in the speed distribution, is taken into consideration, as this can reveal interesting 

findings that have not been mentioned in previous research. For each moving object, the 

motion attributes with or without statistic measures can be visualised as a curve, according 

to which the changes across different temporal scales can be investigated.  

In addition, we provide a simple yet useful method to give recommendations on the 

selection of optimal scales, at which specific demands might be met. The scale selection 

method stands on two measures, which can be used to measure the overall variations of a 

sequence: standard deviation and sinuosity (Dodge et al., 2012). Standard deviation reflects 

the changes of amplitude variation of a sequence, and sinuosity reflects the changes of 

frequency variation of a sequence. For each sequence, the corresponding values of standard 

deviation and sinuosity can be calculated. To compare the variations of different sequences 

at different temporal scales, the values of standard deviation and sinuosity have to be 

normalised. The normalisation method adopted is the Z-score method (Dodge et al., 2012). 

After normalisation, for each measure, three types of values exist: high values, neutral 

values and low values. Note that in theory neutral values mean that the values equal to zero, 

however, this cannot certainly appear in practice. Hence, a threshold ought to be set to 

distinguish neutral values. After analysing the values, we consider that 0.01 is an applicable 

threshold, which is the same as that used in (Dodge et al., 2012) as well. Thus, any value 

within [-0.01, 0.01] can be considered as a neutral value. The values larger than 0.01 are 

considered as high values, and those smaller than -0.01 as low values. Hence, based on the 

two measures and their different values, nine categories are derived and listed in Table 1. 

Figure 3.7 gives an illustration of the nine categories. According to Table 3.1, the variation 

of any sequence at any temporal scale belongs to a certain category from A to I. Hence, 
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one can select the optimal scale(s) based on different demands on the extent of variations 

of a sequence in terms of this table. 

 

 

Figure 3.7. Illustration of the nine categories of the variations of a sequence. 

3.4.2 Detecting the time intervals during which active events might have 

occurred 

The detection of time intervals is of importance, since active or inactive events might occur 

during specific time intervals. Active events are considered as events happened during the 

time intervals which make the moving objects have large variations in geographical 

location. Scale is an important factor that should be taken into account when detecting such 

time intervals. However, traditionally, time intervals are detected based on a sequence at 

only one temporal scale. In this chapter, we propose an alternative approach to detect time 

intervals based on sequences at multiple temporal scales. Specifically, in this chapter, the 

time intervals are detected based on the three types of sequences: beginning-at sequence, 

centring-at sequence and ending-at sequence. 

The approach consists of six steps. A simple dataset is used to illustrate how the approach 

works. Suppose this dataset corresponds to the speed of a moving object during the time 

interval [0, 7] minutes, and the selected temporal scales are 0 minute, 1 minute, 2 minutes,  

3 minutes, 4 minutes, 5 minutes, 6 minutes and 7 minutes. Note that in order to make the 

Table 3.1. The classifications of the variations of a sequence. 

Sinuosity 
Standard deviation 

High Neutral Low 

High A B C 

Neutral D E F 

Low G H I 
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units to be consistent, 1 second is replaced by 0 minute. 

3.4.2.1 Selecting the type of sequence to be analysed 

In this illustration, the beginning-at sequence is taken as an example.  

3.4.2.2 Generating the sequences by determining all the corresponding tevels 

The eight sequences are {𝑆𝑖+1 = {𝑉(𝐼𝑖
𝑡)|𝑖 ∈ ℕ ⋀ (0 ≤ 𝑡 ≤ 7)}|𝑡 ∈ ℕ ⋀ (0 ≤ 𝑡 ≤ 7 − 𝑖)} 

and are shown in Figure 3.8(a). Assume each tevel at the finest temporal scale is assigned 

a corresponding speed value (e.g., 1, 3, 7, 2, 4, 5, 3 and 2), the speed values of the other 

tevels can be calculated based on the CTM. The eight sequences thus can be visualised as 

curves that are presented in Figure 3.8(b). The following calculations are all based on the 

eight sequences and the corresponding speed values. 

3.4.2.3 Calculating the standard deviation and sinuosity of each sequence 

We propose to detect time intervals based on two important measures: standard deviation 

and sinuosity. They both can be used to measure the variations of a sequence. A small value 

indicates a small variation while a large value means a large variation. After calculating, 

the values of both measures are then normalised using the Z-Score method. The normalised 

values of the two measures are plotted as curves that are shown in Figure 3.8(c). 

3.4.2.4 Extracting the sequences with relatively large variations 

If a sequence has a relatively large variation, there are more possibilities for active events 

to be occurred during the time intervals related to this sequence. As a large standard 

deviation and a large sinuosity indicate a large variation, the extraction of sequences with 

a large standard deviation and a large sinuosity is the key in this step. The method to extract 

the sequences with relatively large variations is demonstrated as follows.  

(1) For the curve of standard deviation (or sinuosity), calculate the absolute differences of 

the values between any two neighbouring points (assume the calculated results are stored 

in R1); 

(2) Given a parameter p1 (0 ≤ p1 ≤ 1), the value at the (100* p1)th percentile in R1 is 
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considered as a threshold to determine whether a sequence has a large variation. If a value 

is larger than the threshold, the corresponding sequence is regarded as having a large 

variation, otherwise, not; 

(3) For a point in the curve of standard deviation (or sinuosity), if the differences of its 

value and the values of its neighbouring points are both larger than the threshold, the 

sequence corresponding to this point is considered to be with a large variation. 

According to this method, the corresponding sequences with large variations can be 

extracted based on either standard deviation or sinuosity. Note that only the sequences that 

are extracted according to both measures are considered as with large variations. For 

example, in the illustrated dataset, only the third sequence (i.e., S3) is extracted and it is 

plotted in Figure 3.8(d).  

3.4.2.5 Getting the time intervals based on the extracted sequences 

If the speed increases more than a specific threshold during a time interval than that during 

its last time interval, it indicates that active events might have occurred during this time 

interval, thus resulting in the increase of speed. According to this, the time intervals during 

which active events might have occurred can be detected based on the method below.  

(1) For a sequence, calculate the differences of the speed values of any two neighbouring 

points (assume the calculated results are stored in R2); 

(2) Given a parameter p2 (0 ≤ p2 ≤ 1), the value at the (100* p2)th percentile in R2 is 

considered as a threshold to determine the potential time intervals; 

(3) For each point in the sequence, if the differences of its speed value and that of its last 

point is larger than the threshold, the corresponding time interval between these two points 

are considered as the detected time interval. 

For example, according to this method, the detected time intervals based on the sequence 

displayed in Figure 3.8(d) is [4, 5]. 

3.4.2.6 Validating the time intervals based on the corresponding dataset 

Similarly, based on the centring-at sequence and the ending-at sequence, corresponding 
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(a) 

 

      (b)  

(c) 

 

(d) 

Figure 3.8. Illustrations of the proposed approach: (a) the eight sequences generated based on the 

CTM, (b) the visualisation of the eight sequences, (c) the plot of standard deviation and sinuosity 

(after normalisation), and (d) the plot of the sequence with relatively large variation. 

time intervals can be detected. The final detected time intervals are considered as the union 

of all the time intervals detected respectively based on the three types of sequences. Finally, 
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the time intervals have to be validated based on the corresponding dataset so that the 

accuracy can be evaluated. 

3.5 Case study 

3.5.1 Dataset 

The dataset adopted in this case study is the movement data of football players, which were 

tracked during a real football match lasting about 95.5 minutes between ‘Club Brugge KV’ 

and ‘Standard de Liège’ in Belgium on the second of March 2014. For simplicity, we call 

the teams ‘Club Brugge’ and ‘Standard Liège’ respectively in the remainder of the text. 

The dataset includes both spatio-temporal information and semantic information. The 

spatio-temporal information mainly denotes the discrete points with a format of (id, x, y, t), 

where id identifies a specific player, x and y denote the x and y coordinates of the player’s 

position, and t corresponds to the timestamp. The semantic information used in this chapter 

is mainly the information of both teams (especially the basic information of the players, 

such as the names, the id numbers, and the positions) and the events that happened during 

the match (including the event name, the time of occurrence and the id of the actors). Given 

the vast volume of the dataset and according to the needs in the chapter, the temporal scale 

employed in this dataset is set to 1 second. Due to the limit of the chapter, in this case study, 

only the players of Club Brugge are taken into account. For the scaling-at sequence, the 

speed of the eight players who played for the whole match are used, since our aim is to 

investigate the motion attributes of individual players across different temporal scales. For 

the remaining three types of sequences, the speed of all the players (except the goalkeeper) 

are adopted to detect the time intervals during which active events might have occurred, as 

an event usually involves multiple players. With respect to the temporal scales, only the 

integral minutes are selected, namely the temporal scales are 0 minute (i.e., 1 second), 1 

minute, 2 minutes, .., and 95 minutes, although any temporal scale within 1 second and 

95.5 minutes is applicable in theory. Therefore, there are 96 sequences for each type. In 

detail, the 96 sequences for the scaling-at sequence are {𝑆𝑡+1 = {𝑉(𝐼𝑖
𝑡)|𝑡 ∈ ℕ ⋀ (0 ≤ 𝑡 ≤
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95)}|𝑖 ∈ ℕ ⋀ (0 ≤ 𝑖 ≤ 95 − 𝑡)} , the 96 sequences for the beginning-at sequence are 

{𝑆𝑖+1 = {𝑉(𝐼𝑖
𝑡)|𝑖 ∈ ℕ ⋀ (0 ≤ 𝑡 ≤ 95)}|𝑡 ∈ ℕ ⋀ (0 ≤ 𝑡 ≤ 95 − 𝑖)}, the 96 sequences for 

the centring-at sequence are {𝑆𝑖+1 = {𝑉(𝐼
𝑖−

𝑡

2

𝑡 )|𝑖 ∈ ℕ ⋀ (0 ≤ 𝑖 ≤ 47)}|𝑡 ∈ ℕ ⋀ (0 ≤ 𝑡 ≤

2 ∗ 𝑖)}  and {𝑆𝑖+1 = {𝑉(𝐼
𝑖−

𝑡

2

𝑡 )|𝑖 ∈ ℕ ⋀ (48 ≤ 𝑖 ≤ 95)}|𝑡 ∈ ℕ ⋀ (0 ≤ 𝑡 ≤ 2 ∗ (𝑛 − 1 −

𝑖))}, and the 96 sequences for the ending-at sequences are {𝑆𝑖+1 = {𝑉(𝐼𝑖−𝑡
𝑡 )|𝑖 ∈ ℕ ⋀ (0 ≤

𝑖 ≤ 95)}|𝑡 ∈ ℕ ⋀ (0 ≤ 𝑡 ≤ 𝑖)}. 

3.5.2 The changes in motion attributes across different temporal scales 

The changes of speed of the eight players across the 96 temporal scales are visualised using 

the scatter plot, which can be seen in Figure 3.9. Note that ‘temporal scale(s)’ is replaced 

by ‘scale(s)’ for simplicity in the remainder of the text. In Figure 3.9, the speed values are 

all normalised to be within [0, 1] so that they can be qualitatively compared. In the scatter 

plot the horizontal axis denotes the scales and the vertical axis means the speed values, 

each of which is represented by a point.  

Figure 3.9. The changes of speed of the eight players across the 96 scales. 

According to Figure 3.9, we can notice that the speed of the eight players shows a number 

of general features, which can be summarised as follows: 
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(1) For each player, the overall variance in speed decreases as the scale increases;  

(2) For each player, the minimum value increases and the maximum value decreases as the 

scale increases; 

(3) The eight players exhibit very similar overall patterns, and the patterns are unaffected 

to the roles of the individual players (note that players #1 ~ #4 are defenders, player #5 is 

a goalkeeper, and players #6 ~ #8 are midfielders). 

The changes of the mean speed of the eight players across all scales are shown in Figure 

3.10. Note that the variations of the speed values are all normalised to be within a range of 

1 so that they can be qualitatively compared. As shown in Figure 3.10, on a whole, three 

different patterns can be found: pattern 1 (players #1 and #8), pattern 2 (players #2, #3, #4, 

#6 and #7) and pattern 3 (player #5), which are generalised and shown in Figure 3.11. 

According to Figure 3.11, we can notice that on the one hand, generally the changes of the 

mean speed for pattern 1 and pattern 3 are very obvious as the scale increases, but is 

relatively stable for pattern 2, and on the other hand, pattern 1 and pattern 3 look almost 

opposite. This demonstrates that different players may exhibit different patterns among all 

the scales, and the mean speed values tend to be relatively large (or small) around the 

median scale when patterns 1 (or 3) occurs. One common characteristic for the three 

patterns is that the changes (either increase or decrease) from the first scale to the second 

scale are dramatically large. This indicates that the mean speed might be sensitive to 

particularly small scales, e.g., scales less than 1 minute.  

 

Figure 3.10. The changes of the mean speed of the eight players across the 96 scales. 
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(a) 

 

(b) 

 

(c) 

Figure 3.11. The three generalised patterns: (a) pattern 1, (b) pattern2, and (c) pattern 3. 

The findings based on the approach coincide well with those presented in (Laube & Purves, 

2011) on a whole, although different types and numbers of moving objects are investigated. 

In addition, we have found three interesting patterns by taking the statistics measure of 

mean into consideration, which has not been conducted in former research. This 

demonstrates that the approach proposed in this chapter is valid and can be applied to 

analyse movement data from a cross-scale perspective.   

According to the scale selection method, we draw a figure that demonstrates the applicable 

scales corresponding to the specific categories of sequence variations. As shown in Figure 

3.12, only five categories listed in Table 3.1 appear among all the scales: categories A, B, 

C, F and I. Specifically, for players #1, #6 and #7, categories A, B, C, F and I appear; for 

players #3, #4 and #8, only categories A, C, F and I appear, and for players #2 and #5, only 

categories A, C and I appear. This demonstrates that, on the one hand, for each player, not 

all mentioned categories (listed in Table 3.1) can certainly appear among all the scales in 

practice, and on the other hand, different players usually exhibit different categories among 

all the scales, but some specific categories tend to appear certainly, such as categories A, C 

and I. Besides, by analysing categories A, C and I, we can find that they tend to appear at 

relatively fine-scale, intermediate-scale and coarse-scale, respectively. According to this 

figure, one can find out the optimal scales at which specific needs can be met. For example, 

if one is interested in the scales at which a sequence exhibits low standard deviation and 

high sinuosity (i.e., category C) for player #3, then any scale between 6 minutes and 22 

minutes appears to be applicable. 
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Figure 3.12. Recommendations of the optimal scales for the eight players at the 96 scales when 

analysing the mean speed. 

3.5.3 The detection of time intervals during which active events might have 

occurred 

The dataset used in this section is the speed of all the players (except the goalkeeper) of 

Club Brugge during the whole match, since an active event usually involves multiple 

players in a match, not just one specific player. In the adopted dataset, we consider the four 

events, i.e., ‘shot not on target’, ‘shot on target’, ‘goal’ and ‘foul direct free-kick’, as active 

events, and use them to validate the detected time intervals. This is because that among the 

events in the original dataset, these four have the most possibilities to result in 

rapid/obvious/instantaneous changes of speed. The basic duration of the time intervals to 

be detected is one minute.  

Apparently, the final results depend on the parameter combinations adopted. Hence, 

numerous different parameter combinations were tested to compare the results. The results 

under nine typical parameter combinations are intuitively shown in Figure 3.13. Note that 

in Figure 3.13, the detected time intervals are marked either in blue or in black. Blue 

indicates that at least one active event happened during the corresponding time intervals, 

and black indicates that no event happened during the corresponding time intervals. 

Besides, the actual time intervals during which shot events (either ‘shot not on target’, ‘shot 

on target’ or ‘goal’) and ‘foul direct free-kick’ events happened are marked respectively in 

red and in green. According to Figure 3.13, the corresponding quantitative comparisons of 

the results are shown in Table 3.2. In Table 3.2, N denotes the number of target time 

intervals that are derived from the original dataset, ND denotes the number of time intervals 

that are detected under each parameter combination and NCD means the number of correct 

time intervals that are detected. Based on N, ND and NCD, two new indices, namely PD 

and PCDD, are derived in order to explore the accuracies of the results detected by the 

approach. PD and PCDD are respectively calculated as follows:  𝑃𝐷 = 𝑁𝐷 𝑁⁄  

and 𝑃𝐶𝐷𝐷 = 𝑁𝐶𝐷 𝑁𝐷⁄ . The changes of PD and PCDD with parameters p1 and p2 are 
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plotted based on Table 3.2 and shown respectively in figures (a) and (b) in Figure 3.14. 

From Figure 3.14, we can notice that when one parameter is fixed, the values of PD 

decrease as the other parameter increases, but the values of PCDD increase as the other 

parameter increases. In our case, we propose that a good parameter combination should be 

one that can make PD and PCDD to be as large as possible, while the variations between 

PD and PCDD should be as small as possible. Therefore, the values of the mean and the 

standard deviation of PD and PCDD under each parameter combination are calculated, and 

they are shown in Table 3.3. Besides, the values of the difference between the mean and 

the standard deviation, which can be denoted as the potential minimum accuracy, are 

calculated and listed in Table 3.3 as well. According to Table 3.3, p1 = 0.75 and p2 = 0.50 

appears to be a good parameter combination.  

 

Figure 3.13. The results under nine different parameter combinations: (a) p1 = 0.50, p2 = 0.50, (b) 

p1 = 0.50, p2 = 0.75, (c) p1 = 0.50, p2 = 0.90, (d) p1 = 0.75, p2 = 0.50, (e) p1 = 0.75, p2 = 0.75, (f) 

p1 = 0.75, p2 = 0.90, (g) p1 = 0.90, p2 = 0.50, (h) p1 = 0.90, p2 = 0.75, and (i) p1 = 0.90, p2 = 0.90. 

 

Table 3.2. The quantitative comparisons of the results under different parameter combinations. 

Parameter combination N ND NCD PD PCDD 

p1 = 0.50, p2 = 0.50 48 46 36 0.958 0.783 

p1 = 0.50, p2 = 0.75 48 37 30 0.771 0.811 

p1 = 0.50, p2 = 0.90 48 24 21 0.500 0.875 

p1 = 0.75, p2 = 0.50 48 43 35 0.896 0.814 

p1 = 0.75, p2 = 0.75 48 32 27 0.667 0.844 

p1 = 0.75, p2 = 0.90 48 17 15 0.354 0.882 

p1 = 0.90, p2 = 0.50 48 36 30 0.750 0.833 

p1 = 0.90, p2 = 0.75 48 19 19 0.396 1.000 

p1 = 0.90, p2 = 0.90 48 10 10 0.208 1.000 

Note: ‘N’, ‘ND’, ‘NCD’, ‘PD’ and ‘PCDD’ respectively denote ‘number of target time 

intervals’, ‘number of the detected time intervals’, ‘number of the correctly detected time 

intervals’, ‘percentage of the detected time intervals’ and ‘percentage of the correctly detected 

time intervals among all the detected time intervals’. 
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(a) 

 

(b) 

 Figure 3.14. The changes of PD and PCDD with the parameters p1 and p2: (a) PD, and (b) PCDD. 

 

In order to compare the pros and cons of the proposed approach, we also show the time 

intervals that are detected with traditional approaches which do not take cross-scale into 

account, namely the time intervals detected based on sequences of a single scale. In this 

case, we take two single scales, i.e., 1 second and 1 minute, as an example. The results are 

presented in Figure 3.15 (scale: 1 second) and Figure 3.16 (scale: 1 minute), respectively. 

The corresponding quantitative comparisons are listed in Table 3.4. Based on Table 3.4, 

we can notice that: (1) the values of ND at the scale of 1 second are much larger than N, 

which makes the results to be meaningless to some extent; (2) although the values of ND 

at the scale of 1 minute appear reasonable, the values of PCDD are relatively small, which 

 Table 3.3. The values of the mean, the standard deviation and the difference between the mean 

and the standard deviation of PD and PCDD under different parameter combinations. 

Parameter combination Mean Standard deviation Mean-Standard deviation 

p1 = 0.50, p2 = 0.50 0.871 0.124 0.747 

p1 = 0.50, p2 = 0.75 0.791 0.028 0.763 

p1 = 0.50, p2 = 0.90 0.688 0.265 0.423 

p1 = 0.75, p2 = 0.50 0.855 0.058 0.797 

p1 = 0.75, p2 = 0.75 0.756 0.125 0.631 

p1 = 0.75, p2 = 0.90 0.618 0.373 0.245 

p1 = 0.90, p2 = 0.50 0.792 0.059 0.733 

p1 = 0.90, p2 = 0.75 0.698 0.427 0.271 

p1 = 0.90, p2 = 0.90 0.604 0.560 0.044 
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makes the accuracy of the results not that high, and (3) according to Table 3.4, we can infer 

that the parameter of p = 0.50 at the scale of 1 minute is the optimal parameter, however, 

the overall accuracy is still lower than that based on the proposed approach. Therefore, the 

proposed approach which takes cross-scale into account has advantages and is effective in 

detecting the time intervals during which active events might have occurred with relatively 

high accuracy. 

 

Figure 3.15. The results under different parameter combinations based on the sequences with a 

scale of 1 second: (a) p = 0.50, (b) p = 0.75, and (c) p = 0.90. 

Figure 3.16. The results under different parameter combinations based on the sequences with a 

scale of 1 minute: (a) p = 0.50, (b) p = 0.75, and (c) p = 0.90. 

 

3.6 Conclusions and future work 

Knowledge discovery in movement data is an important issue in many research domains. 

Table 3.4. The quantitative comparisons of the results under different parameters based on the 

two single scales. 

Parameter combination N ND NCD PD PCDD 

p = 0.50 (scale: 1 second) 48 95 48 1.979 0.505 

p = 0.75 (scale: 1 second) 48 94 48 1.958 0.511 

p = 0.90 (scale: 1 second) 48 90 47 1.875 0.522 

p = 0.50 (scale: 1 minute) 48 47 22 0.979 0.468 

p = 0.75 (scale: 1 minute) 48 24 11 0.500 0.458 

p = 0.90 (scale: 1 minute) 48 10 3 0.208 0.300 

Note: ‘N’, ‘ND’, ‘NCD’, ‘PD’ and ‘PCDD’ respectively denote ‘number of target time intervals’, 

‘number of the detected time intervals’, ‘number of the correctly detected time intervals’, 

‘percentage of the detected time intervals’ and ‘percentage of the correctly detected time intervals 

among all the detected time intervals’. 
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Current research mainly focuses on one single scale. In this chapter, we propose a cross-

scale oriented sequence analysis approach to discover knowledge in movement data. Key 

to this approach are the four different types of sequences that are constructed on the basis 

of the Continuous Triangular Model (CTM), a useful tool for representing data at multiple 

temporal scales. The approach mainly serves two specific aims: investigating the changes 

in motion attributes across different temporal scales and detecting the time intervals during 

which active events might have occurred. The changes of motion attributes of moving 

objects across different temporal scales are investigated based on the first type of sequences. 

Motion attributes include speed, distance, motion azimuth, and so on. As our aim is 

primarily methodological, only speed is investigated. The speed is investigated based on 

the movement data obtained from an entire football match. When investigating the changes 

of speed, the eight players of Club Brugge who played for the whole match are taken into 

account. Besides, the changes of speed involving a commonly used statistics measure are 

also investigated, according to which one is able to gain more abundant information. The 

time intervals during which active events might have occurred are detected based on the 

remaining three types of sequences. The data used for detecting the time intervals are the 

mean speed of all the players (except the goalkeeper) of Club Brugge during the whole 

match. By combining the corresponding time intervals detected based on each of the three 

types of sequences, the final detected time intervals can be acquired. The results show that 

the time intervals can be detected with high accuracies under suitable parameter 

combinations. The results acquired using the proposed approach are also compared with 

those that do not take cross-scale into account. The comparison demonstrates that the 

results acquired using the proposed approach have relatively high accuracies. Hence, the 

proposed approach is efficient in discovering useful knowledge in movement data.  

In this chapter, only the attribute of speed is investigated. As part of future work, other 

attributes, either meaningful for all kinds of moving objects, such as distance and motion 

azimuth, or only meaningful for specific kinds of moving objects, e.g., ball possession of 

sports-related moving objects, can also be explored using this approach. Although for 
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better comparison purposes, only the eight players who played for the whole match are 

taken into consideration, the players who played for only part of the match can also be 

taken for analysis when necessary. In addition, the proposed approach can be further 

extended to other application domains. For example, in the transportation domain, the time 

intervals during which the cars have a low speed can be detected using the proposed 

approach. This is of significant importance in practice since these time intervals are the 

potential periods during which traffic congestion has happened. Another interesting 

application domain, for example, might be animal movement studies. 
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4 
A Hybrid Approach for Exploring Dynamic 

Interactions in Movement Data 

Modified from: Zhang, P., Beernaerts, J., & Van de Weghe, N. (2018). A hybrid 

approach combining the Multi-Temporal Scale Spatio-Temporal Network with the 

Continuous Triangular Model for exploring dynamic interactions in movement 

data: a case study of football. ISPRS International Journal of Geo-Information, 7(1), 31. 

 

Abstract: Benefiting from recent advantages in location-aware technologies, movement 

data are becoming ubiquitous. Hence, numerous research topics with respect to movement 

data have been undertaken. Yet, the research of dynamic interactions in movement data is 

still in its infancy. In this chapter, we propose a hybrid approach combining the Multi-

Temporal Scale Spatio-Temporal Network (MTSSTN) and the Continuous Triangular 

Model (CTM) for exploring dynamic interactions in movement data. The approach mainly 

includes four steps: first, the Relative Trajectory Calculus (RTC) is used to derive three 

types of interaction patterns; second, for each interaction pattern, a corresponding 

MTSSTN is generated; third, for each MTSSTN, the interaction intensity measures and 

three centrality measures (i.e., degree, betweenness and closeness) are calculated; finally, 

the results are visualised at multiple temporal scales using the CTM and analysed based on 

the generated CTM diagrams. Based on the proposed approach, three distinctive aims can 

be achieved for each interaction pattern at multiple temporal scales: (1) exploring the 
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interaction intensities between any two individuals; (2) exploring the interaction intensities 

among multiple individuals, and (3) exploring the importance of each individual and 

identifying the most important individuals. The movement data obtained from a real 

football match are used as a case study to validate the effectiveness of the proposed 

approach. The results demonstrate that the proposed approach is useful in exploring 

dynamic interactions in football movement data and discovering insightful information. 

4.1 Introduction 

With the technical developments in location-aware technologies such as GPS (global 

positioning system), RFID (radio-frequency identification), WiFi, Bluetooth, and image 

recognition, the position changes of moving objects over time can be tracked more easily 

than ever before. This has caused a proliferation of rich and voluminous movement data. 

Specific types of movement data include transportation related movement data (Civilis et 

al., 2005; Delafontaine et al., 2012; Xu et al., 2013; Vogel et al., 2014; Zhang et al., 2017), 

animal movement data (Laube et al., 2005; Shamoun-Baranes et al., 2012; Demšar et al., 

2015), eye movement data (Andrienko et al., 2012), sports movement data (Gudmundsson 

& Wolle, 2014; Gomez et al., 2014; Zhang et al., 2016), as well as natural phenomena 

movement data (Lee et al., 2007). Benefiting from the large amount of tracked movement 

data, the analysis of movement data has become a state-of-the-art research theme in the 

community of geographical information science (GIScience). Currently, numerous 

methods to analyse movement data, such as movement pattern mining (Laube et al., 2005; 

Meijles, et al., 2014; Wang et al., 2015), movement visualisation (Andrienko et al., 2007; 

Andrienko et al., 2010; Kveladze, et al., 2015) and movement modelling (Hornsby & 

Egenhofer, 2002; Ahearn et al., 2016; Wang et al., 2016), have been undertaken extensively. 

In addition, the study of interactions in movement data has become active recently, but is 

still in its infancy (Long & Nelson, 2013; Long, 2015). In this chapter, we mainly focus on 

exploring the interaction issues in movement data aiming to provide additional insights 

into this relatively new research topic.  

Moving objects commonly move in geographical space, in which the geographical context 
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(e.g., the environments where moving objects live) is considered one of the important 

components. Therefore, the interactions in movement data can be categorised as the 

interactions between geographical contexts, the interactions between moving objects and 

geographical contexts, and the interactions between moving objects themselves. In this 

chapter, we only consider the interactions between/among moving objects themselves. 

Interactions can be classified as static interactions or dynamic interactions (Doncaster, 

1990). In spatio-temporal data (e.g., movement data), static interactions are purely 

described by spatial properties, without taking account of the possibility of temporal 

avoidance or attraction between individuals, while dynamic interactions are defined based 

on both spatial and temporal components (Miller, 2015). Hence, ‘dynamic interaction’ is 

sometimes synonymously termed as ‘spatio-temporal interaction’ (Long, 2015). We 

mainly focus on dynamic interactions in this chapter.  

Generally, dynamic interactions can be defined as the way the movements of individuals 

are related or the inter-dependency in the movements of individuals. For example, 

attraction and avoidance are two typical kinds of dynamic interactions (Miller, 2015). 

Typical research on dynamic interactions in movement data within the domain of 

GIScience is listed as follows. Miller (2012) analysed the dynamic interactions between 

individuals based on the GPS data of animals using five different techniques, thereby 

comparing the results acquired by the different techniques. Later, a null model approach 

(Miller, 2015) was developed by the same author to compare six dynamic interaction 

metrics using data on five brown hyena dyads in Northern Botswana. The comparisons 

highlighted the need for further study of appropriate methods for measuring and 

interpreting dynamic interactions (Miller, 2015). Long & Nelson (2013) introduced a new 

method, Dynamic Interactions (termed DI), for measuring dynamic interactions between 

pairs of moving objects. Six simulated datasets and two applied examples (i.e., team sports 

and wildlife) were used to validate the DI method. The results showed that the DI method 

was able to be used to measure dynamic interactions in movement data. Long et al. (2014) 

executed an examination of eight currently available indices of dynamic interactions in    
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wildlife telemetry studies and compared the effectiveness of the indices. Long (2015) 

examined the statistical properties of a suite of currently available methods in dynamic 

interactions. In this work, the ability of each method in characterising and capturing 

different patterns of dynamic interactions was examined in practice. Konzack et al. (2017) 

proposed a new approach to analyse interactions between two trajectories and developed a 

prototype visual analytics tool to evaluate the approach based on three datasets.  

By summarising the aforementioned studies, we can find that the current research mainly 

focuses on either comparing or evaluating existing interaction methods based on various 

datasets, or developing new methods to measure dynamic interactions between a pair of 

trajectories. Besides, most of the current research on dynamic interactions has been done 

at a single temporal scale. Few work has focused on exploring the dynamic interactions 

among multiple moving objects and at multiple temporal scales. In addition, few has aimed 

at exploring the importance of each individual and identifying the individuals which play 

relatively important roles in maintaining specific types of interaction patterns. Hence, in 

order to achieve the above-mentioned explorations, we develop a hybrid approach 

combining the Multi-Temporal Scale Spatio-Temporal Network (MTSSTN) and the 

Continuous Triangular Model (CTM). Currently, networks are widely used to explore 

many systems. However, in the data-rich era, it appears necessary to deal with data that are 

temporally evolving. To this end, temporal networks are proposed and applied to various 

domains (Lee et al., 2012; He & Chen, 2015; Holme, 2015). More recently, spatio-temporal 

networks have been proposed to enhance the abilities of networks (Von Landesberger et 

al., 2016; Williams & Musolesi, 2016). In this chapter, we propose a novel spatio-temporal 

network (i.e., Multi-Temporal Scale Spatio-Temporal Network) to extend the analytics 

applicability of spatio-temporal networks at multiple temporal scales. We then integrate 

the MTSSTN with the CTM to compose our proposed approach. In this approach, first, the 

Relative Trajectory Calculus (RTC) (Van de Weghe, 2004) is employed to derive specific 

types of interaction patterns. Second, the MTSSTN is generated based on a specific 

interaction pattern. Third, for each MTSSTN, the interaction intensity measures and three 
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frequently used centrality measures in network theory (i.e., degree, betweenness and 

closeness) (Newman, 2003; Jiang & Claramunt, 2004) are calculated. Finally, the results 

are visualised using a multi-temporal scale visualisation tool, the CTM (Qiang et al., 2014; 

Zhang et al., 2016), and the results are analysed based on the generated CTM diagrams. 

Based on the generated CTM diagrams, the following aims can be achieved for each 

interaction pattern at multiple temporal scales: (1) exploring the interaction intensities 

between any two individuals; (2) exploring the general interaction intensities among 

multiple individuals, and (3) exploring the importance of each individual and identifying 

the most important individuals by applying map algebra operations to multiple CTM 

diagrams.  

The remainder of this chapter is organised as follows. Section 4.2 gives a brief introduction 

to network theory, RTC and CTM. In section 4.3, the methodology of the proposed 

approach is described in detail. In section 4.4, a case study of football is conducted using 

the proposed approach, and the results are analysed. Some advantages and disadvantages 

of the proposed approach are discussed in Section 4.5. Finally, in section 4.6, the 

conclusions and recommendations for future work are described. 

4.2 Background knowledge 

In this section, the basic information on network theory, the Relative Trajectory Calculus 

(RTC) and the Continuous Triangular Model (CTM) are introduced, so that one can be able 

to understand the proposed approach easily. 

4.2.1 Network theory 

A large number of systems, either natural or man-made, are structured in the form of 

networks. Therefore, network theory has been widely used to explore the complex systems 

existing in many domains. Typical examples include social networks, World Wide Web, 

transportation networks, academic cooperation networks, biological networks, and so forth 

(Newman, 2003; Barrat et al., 2004). Essentially, a network is a graph which can be 

represented as  𝐺 = (𝑉, 𝐸) , where 𝑉 = {𝑣1, 𝑣2, … , 𝑣𝑛}  and 𝐸 = {𝑣𝑖𝑣𝑗}(1 ≤ 𝑖 ≤ 𝑛, 1 ≤
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𝑗 ≤ 𝑛) respectively denote the set of vertices and edges. A graph can be connected or 

disconnected, directed or undirected, and weighted or unweighted. A connected, undirected 

and unweighted graph with n vertices can be represented by an adjacency matrix 𝑅(𝐺) as 

denoted by equation (4.1):  

𝑅(𝐺) = [𝑟(𝑣𝑖, 𝑣𝑗)]
𝑛×𝑛

, where 𝑟(𝑣𝑖 , 𝑣𝑗) = {
1, 𝑖𝑓 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 𝑣𝑖  𝑎𝑛𝑑 𝑣𝑗 𝑎𝑟𝑒 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑

0, 𝑖𝑓 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 𝑣𝑖  𝑎𝑛𝑑 𝑣𝑗 𝑎𝑟𝑒 𝑑𝑖𝑠𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑
 (4.1) 

Note that in this case, matrix 𝑅(𝐺) is symmetric. Besides, all diagonal elements of 𝑅(𝐺) 

are zero. Hence, in practice, we can just calculate either the top right or the bottom left part 

of 𝑅(𝐺) in order to reduce the complexity. The other part of 𝑅(𝐺) can be computed via a 

symmetric transformation. 

Several measures have been proposed to characterise the topological structural properties 

of a network or to investigate the importance of vertices. Among these measures, centrality 

measures are widely used. Frequently used centrality measures are degree, betweenness 

and closeness. In a graph, the degree of a vertex corresponds to the number of vertices that 

are directly connected to this vertex. Formally, the degree of a given vertex 𝑣𝑖  (1 ≤ 𝑖 ≤ 𝑛) 

is calculated as follows: 

 
𝐶𝐷(𝑣𝑖) = ∑ 𝑟(𝑣𝑖 , 𝑣𝑗)

𝑛

𝑗=1

 (4.2) 

where 𝐶𝐷 represents the degree and n is the total number of vertices in the graph. 

The betweenness of a vertex measures to what extent the vertex is located in between the 

paths that connect pairs of vertices. Formally, the betweenness of a given vertex 𝑣𝑖  (1 ≤

𝑖 ≤ 𝑛) is calculated as follows: 

 
𝐶𝐵(𝑣𝑖) =

∑ ∑ 𝑝𝑣𝑗𝑣𝑖𝑣𝑘

𝑛
𝑘=𝑗+1

𝑛−1
𝑗=1

∑ ∑ 𝑝𝑣𝑗𝑣𝑘

𝑛
𝑘=𝑗+1

𝑛−1
𝑗=1

 (4.3) 

where 𝐶𝐵 denotes the betweenness, 𝑝𝑣𝑗𝑣𝑖𝑣𝑘
 is the number of shortest paths from vertex 𝑣𝑗 

to vertex 𝑣𝑘 that pass through vertex 𝑣𝑖, 𝑝𝑣𝑗𝑣𝑘
 represents the number of shortest paths from 

vertex 𝑣𝑗 to vertex 𝑣𝑘, and n is the total number of vertices in the graph. 
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The closeness of a vertex measures the closeness of a vertex to all other vertices in a graph. 

Formally, the closeness of a vertex 𝑣𝑖  (1 ≤ 𝑖 ≤ 𝑛) is calculated as follows: 

 
𝐶𝐶(𝑣𝑖) =

𝑛 − 1

∑ 𝑑(𝑣𝑖 , 𝑣𝑗)𝑛
𝑗=1

 (4.4) 

where 𝐶𝐶  denotes the closeness, 𝑑(𝑣𝑖 , 𝑣𝑗) is the length of the shortest path from vertex 𝑣𝑖 

to vertex 𝑣𝑗, and n is the total number of vertices in the graph. 

The measures of degree, betweenness and closeness describe the status of vertices. As 

degree only considers the relations between a vertex and its immediate neighbouring 

vertices, it is characterised as a local measure. In contrast, betweenness and closeness are 

considered as global measures, since they take the relations of a vertex and all other vertices 

into account. Specific to the objects in the real world, if an object has a high degree value, 

it means that the object directly connects to a large number of other objects, hence, it is a 

relatively important object. Betweenness evaluates to what extent a given object is part of 

the shortest paths that connect to any two other objects. A high betweenness value indicates 

that the object plays an important role in the connectivity of other objects as a ‘bridge’, 

hence, without this object, the connectivity of other objects might be broken. Closeness 

reflects how far (on average) an object is to every other object. This gives a sense to what 

extent an object is integrated or segregated with respect to other objects. A high closeness 

value denotes that the object is more integrated to all other objects, thus is more central and 

important. 

4.2.2 Relative Trajectory Calculus (RTC) 

The Relative Trajectory Calculus (RTC) was proposed by Van de Weghe (2004) as a 

qualitative approach to represent the spatio-temporal relationships between two disjoint 

moving objects based on describing their relative trajectories. Important in this calculus is 

that an object moving during a time interval I, which starts at timestamp t1 and ends at 

timestamp t2, is represented by means of a vector starting at t1 and ending at t2. Two objects 

moving during the same time interval can be represented by two vectors, each 
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corresponding to a specific object. Using a single character label to denote the distance 

relation between the two objects, the RTC relationship between the two objects is 

determined. In the following, the RTC relationship is introduced in detail. 

Assume: moving objects k and l, and timestamp t 

k|t denotes the position of k at t 

l|t denotes the position of l at t 

d(u, v) denotes the Euclidean distance between two positions u and v 

t1 ≺ t2 denotes that t1 is temporally before t2 

  −: the distance between k and l decreases: 

∃𝑡1, 𝑡2 (𝑡1 ≺ 𝑡 ≺ 𝑡2⋀ ∀𝑡−, 𝑡+(𝑡1 ≺ 𝑡− ≺ 𝑡 ≺ 𝑡+ ≺ 𝑡2 → 𝑑(𝑘|𝑡−, 𝑙|𝑡−) > 𝑑(𝑘|𝑡+, 𝑙|𝑡+))) 

  0: the distance between k and l remains the same: 

∃𝑡1, 𝑡2 (𝑡1 ≺ 𝑡 ≺ 𝑡2⋀ ∀𝑡−, 𝑡+(𝑡1 ≺ 𝑡− ≺ 𝑡 ≺ 𝑡+ ≺ 𝑡2 → 𝑑(𝑘|𝑡−, 𝑙|𝑡−) = 𝑑(𝑘|𝑡+, 𝑙|𝑡+))) 

  +: the distance between k and l increases: 

∃𝑡1, 𝑡2 (𝑡1 ≺ 𝑡 ≺ 𝑡2⋀ ∀𝑡−, 𝑡+(𝑡1 ≺ 𝑡− ≺ 𝑡 ≺ 𝑡+ ≺ 𝑡2 → 𝑑(𝑘|𝑡−, 𝑙|𝑡−) < 𝑑(𝑘|𝑡+, 𝑙|𝑡+))) 

According to the relationship syntax between two moving objects, three RTC relations can 

be distinguished, as illustrated in Figure 4.1. For example, the RTC relation ‘–’ indicates 

that the distance between the two objects before t is larger than the distance between the 

two objects after t. As the relations can represent the inter-relationship between two moving 

objects, they can be adopted to denote specific types of interaction patterns. Hence, three 

types of interaction patterns (i.e., attraction pattern, stability pattern and avoidance pattern) 

can be derived based on the RTC relations. The relationship between the RTC relations 

and the three types of interaction patterns is shown in Table 4.1. 
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Figure 4.1. Illustration of the RTC relations. 

Table 4.1. The relationship between the RTC relations and the three types of interaction patterns. 

RTC relations Types of interaction patterns 

– Attraction pattern 

0 Stability pattern 

+ Avoidance pattern 

4.2.3 Continuous Triangular Model (CTM) 

The Continuous Triangular Model (CTM) is an extension of the Triangular Model (TM), 

a 2D representation of time intervals that was initially introduced by Kulpa (1997). In the 

TM, any time interval is represented by a corresponding point. For example, in Figure 4.2, 

the time interval I, which starts at t1 and ends at t2, is represented by the intersection point 

P of two corresponding lines L1 and L2. In other words, point P equals to time interval I (or 

[t1, t2]). Hence, any sub time interval within I (or [t1, t2]) can be represented by a 

corresponding point within the triangle consisting of points P, t1 and t2. However, the TM 

appears incapable to represent the time intervals continuously. Hence, it was extended to 

the CTM by Qiang et al. (2014) to represent continuous temporal data. The CTM has the 

ability to represent the attribute values during all time intervals. The attribute value during 

a time interval is calculated using a specific algebra operator (such as mean, summation 

and maximum) based on the attributes at the finest sampled timestamps within the time 

interval. The attribute values at the timestamps between any two neighbouring sampled 

timestamps can be calculated using interpolation. Through colour-coding, the continuous 

field of the CTM is displayed as an image, in which each colour denotes the corresponding 

attribute value of a specific time interval. Hence, the colour at a specific point in the CTM 

denotes the attribute value during a corresponding time interval. For example, Figure 4.3 

illustrates the values of the mean speed of a football player during the first five minutes of  
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a game using the CTM. In Figure 4.3, the value of the mean speed during any time interval 

within [2, 4] minutes corresponds to a specific point within triangle A.  

 

Figure 4.2. Illustration of the TM. 

 

Figure 4.3. Illustration of the CTM. 

In all, the CTM has a strong ability in visualising temporal information at any temporal 

scale, from the finest till the coarsest. Therefore, it can be employed as a multi-temporal 

scale tool, by which meaningful information, which cannot be revealed by other tools, 

might be discovered. Based on these characteristics, the CTM is utilised in this chapter to 

visualise the interaction patterns at multiple temporal scales so that useful information on 

dynamic interactions might be discovered (Zhang et al., 2016).  

4.3 Methodology 

In this chapter, we propose a hybrid approach combining the MTSSTN and the CTM to 

explore dynamic interactions in movement data. A MTSSTN is an extension of a network 

by taking space, time and temporal scale into account. The methodology mainly includes 

four steps: (1) the selection of a specific interaction pattern; (2) the generation of a 

MTSSTN; (3) the calculation of the interaction intensity measures and centrality measures, 

and (4) the visualisation and analysis of the results based on the CTM diagrams. In the 

following, these steps are introduced in detail. 

4.3.1 The selection of a specific interaction pattern 

The interaction patterns are derived based on RTC. As introduced in section 2, according 

to the RTC relations, three interaction patterns (i.e., attraction pattern, stability pattern and 

avoidance pattern) can be derived. Before generating MTSSTN, a specific interaction 
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pattern has to be selected. 

4.3.2 The generation of a MTSSTN 

A MTSSTN is generated based on a corresponding interaction pattern. The generation of 

a MTSSTN includes three steps: (1) the generation of the vertices of the sub-networks 

during the time intervals at multiple temporal scales; (2) the generation of the edges of the 

sub-networks, and (3) the generation of the MTSSTN. A sample dataset, which is displayed 

in Figure 4.4(a), is utilised to illustrate how a MTSSTN is generated. In this dataset, three 

trajectories which are generated by three corresponding objects (i.e., O1, O2 and O3) during 

five consecutive time intervals at the finest temporal scale are involved. In Figure 4.4(a), 

the (x, y) positions of each object at each of the six timestamps are given. Hence, the RTC 

relations of the three objects during the five consecutive time intervals at the finest 

temporal scale can be derived, which are shown in Figure 4.4(b). 

4.3.2.1 The generation of the vertices of the sub-networks during the time intervals at 

multiple temporal scales 

A sub-network is a part of a MTSSTN. More specifically, a sub-network is considered as 

a vertex of a MTSSTN. A sub-network is essentially a network during a time interval. A 

vertex in a sub-network denotes a corresponding moving object. For a moving object k, 

assume the spatial positions of k at timestamps t0, t1, t2, …, tn are (x0, y0), (x1, y1), (x2, y2), 

…, (xn, yn), respectively, for a time interval [ti, tj] (0 ≤ 𝑖 < 𝑗 ≤ 𝑛), the centroid of (xi, yi), 

(xi+1, yi+1), …, (xq, yq), …, (xj, yj) (𝑖 < 𝑞 < 𝑗) is considered as the position of the vertex 

corresponding to k during this time interval. The vertex is represented as 𝑣𝑘|[𝑡𝑖 , 𝑡𝑗]. As the 

CTM is an excellent tool to visually represent time intervals at multiple temporal scales, 

the sub-networks during time intervals at multiple temporal scales are visualised using the 

CTM-like format. According to this method, the generated vertices of the sub-networks 

during time intervals at multiple temporal scales are displayed in Figure 4.4(c). In Figure 

4.4(c), the black points in each square denote the vertices of the sub-networks, and the 

squares denote the vertices of the MTSSTN. Besides, the temporal scale becomes coarser 
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from the bottom to the top. 

4.3.2.2 The generation of the edges of the sub-networks 

For an interaction pattern P, if two moving objects k and l form pattern P during a time 

interval [ti, ti+1] (0 ≤ 𝑖 ≤ 𝑛 − 1) at the finest temporal scale, the corresponding value in the 

adjacency matrix is 𝑟(𝑣𝑘, 𝑣𝑙)|[𝑡𝑖 , 𝑡𝑖+1] = 1 , otherwise, 𝑟(𝑣𝑘, 𝑣𝑙)|[𝑡𝑖 , 𝑡𝑖+1] = 0 . For any 

time interval [ti, tj] (0 ≤ 𝑖 < 𝑗 ≤ 𝑛), the corresponding value in the adjacency matrix is the 

summation of that (i.e., the summation of the number of connections) during all the sub 

time intervals at the finest temporal scale. Hence, the corresponding value in the adjacency 

matrix is calculated as follows: 

 

𝑟(𝑣𝑘, 𝑣𝑙)|[𝑡𝑖 , 𝑡𝑗] = ∑ 𝑟(𝑣𝑘 , 𝑣𝑙)|[𝑡𝑢, 𝑡𝑢+1]

𝑗−1

𝑢=𝑖

 (4.5) 

If 𝑟(𝑣𝑘, 𝑣𝑙)|[𝑡𝑖 , 𝑡𝑗] ≥ 1, an edge exists between the two corresponding vertices 𝑣𝑘|[𝑡𝑖 , 𝑡𝑗] 

and 𝑣𝑙|[𝑡𝑖 , 𝑡𝑗] , otherwise, not. Take the sample dataset and the attraction pattern for 

instance, the adjacency matrix during each of the time intervals at multiple temporal scales 

are calculated. The results are shown in Figure 4.4(d). Based on Figure 4.4(d), the edges 

of the sub-networks can be generated, which are shown in Figure 4.4(e). 

4.3.2.3 The generation of the MTSSTN 

A sub-network during a time interval is considered as a vertex of a MTSSTN. Hence, in 

this sub section, a vertex refers in particular to a sub-network mentioned above. For 

example, in Figure 4.4(e), each square is considered as a vertex of the final MTSSTN. 

When generating the edges of a MTSSTN, two principles are obeyed: (1) any two 

consecutive vertices at the same temporal scale are not allowed to be connected, and (2) 

any two vertices at two consecutive temporal scales are connected if the time intervals 

corresponding to the two vertices share a common time interval. According to these 

principles, the final MTSSTN can be generated. The generated MTSSTN corresponding to 

the sample dataset is shown in Figure 4.4(f). 
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(a) 

 

(b) 

 

(c) 
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(d) 

 

(e) 

 

(f) 

Figure 4.4. Illustration of the generation of a MTSSTN: (a) the three sample trajectories during 

five consecutive time intervals at the finest temporal scale, (b) the RTC relations during each time 

interval at the finest temporal scale, (c) the generated vertices of the sub-networks, (d) the 

adjacency matrix generated based on the attraction pattern during the time intervals at multiple 

temporal scales, (e) the generated edges of sub-networks, and (f) the generated MTSSTN. 
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4.3.3 The calculation of the interaction intensity measures and centrality 

measures 

In this chapter, we define interaction intensity between two individuals during a time 

interval as the number of edges between the two corresponding vertices in the 

corresponding sub-networks at the finest temporal scale in the MTSSTN divided by the 

number of edges that they can have in theory. Hence, for two moving objects k and l, the 

interaction intensity between k and l in the sub-network during time interval [ti, tj] (0 ≤

𝑖 < 𝑗 ≤ 𝑛) is calculated according to equation (4.6): 

 
𝐼𝐼(𝑣𝑘, 𝑣𝑙)|[𝑡𝑖 , 𝑡𝑗] =

∑ 𝑟(𝑣𝑘, 𝑣𝑙)|[𝑡𝑢, 𝑡𝑢+1]
𝑗−1
𝑢=𝑖

𝑗 − 𝑖
 (4.6) 

where 𝐼𝐼 denotes the interaction intensity, and r has the same meaning as in equation (4.5). 

The larger 𝐼𝐼 is, the stronger the interaction between the two objects. 

For at least three, the interactions among the individuals can be categorised as local 

interactions and global interactions. Local interactions denote the overall interaction 

between one individual and the others, while global interactions denote the overall 

interaction between all individuals. Assume m moving objects (i.e., O1, O2, O3, …, Om), 

the local interaction intensity measure and global interaction intensity measure can be 

calculated according to equations (4.7) and (4.8), respectively: 

 
𝐿𝐼𝐼(𝑣𝑂𝑝

)|[𝑡𝑖 , 𝑡𝑗] = ∑ 𝐼𝐼(𝑣𝑂𝑝
, 𝑣𝑂𝑞

)|[𝑡𝑖 , 𝑡𝑗]

𝑚

𝑞=1

 (4.7) 

 

𝐺𝐼𝐼|[𝑡𝑖 , 𝑡𝑗] = ∑ ∑ 𝐼𝐼(𝑣𝑂𝑝
, 𝑣𝑂𝑞

)|[𝑡𝑖 , 𝑡𝑗]

𝑚

𝑞=𝑝+1

𝑚−1

𝑝=1

 

(4.8) 

where 𝐿𝐼𝐼  denotes the local interaction intensity of one individual, 𝐺𝐼𝐼  the global 

interaction intensity of all the individuals, and 𝐼𝐼  the interaction intensity between two 

individuals. 

The calculation of centrality measures in MTSSTN is similar to that in traditional networks. 

Specifically, the degree, betweenness and closeness of a moving object k during time 
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interval [ti, tj] (0 ≤ 𝑖 < 𝑗 ≤ 𝑛) in the MTSSTN are calculated according to equations (4.9), 

(4.10) and (4.11), respectively: 

 𝐶𝐷(𝑣𝑘)|[𝑡𝑖 , 𝑡𝑗] = ∑ 𝑟(𝑣𝑘 , 𝑣𝑢)|[𝑡𝑖 , 𝑡𝑗]

𝑛

𝑢=1

 (4.9) 

 𝐶𝐵(𝑣𝑘)|[𝑡𝑖 , 𝑡𝑗] =
∑ ∑ 𝑝𝑣𝑢𝑣𝑘𝑣𝑣

|[𝑡𝑖 , 𝑡𝑗]𝑛
𝑣=𝑘+1

𝑛−1
𝑢=1

∑ ∑ 𝑝𝑣𝑢𝑣𝑣

𝑛
𝑣=𝑘+1

𝑛−1
𝑢=1 |[𝑡𝑖 , 𝑡𝑗]

 (4.10) 

 
𝐶𝐶(𝑣𝑘)|[𝑡𝑖 , 𝑡𝑗] =

𝑛 − 1

∑ 𝑑(𝑣𝑘, 𝑣𝑢)|[𝑡𝑖 , 𝑡𝑗]𝑛
𝑢=1

 (4.11) 

where CD, CB and CC denote degree, betweenness and closeness, respectively. The larger 

CD/CB/CC is, the more important the object. 

4.3.4 The visualisation and analyses of results based on the CTM diagrams 

For each interaction pattern, both the interaction intensity measures and the centrality 

measures can be visualised using the CTM. Based on the corresponding CTM diagrams of 

the interaction intensity measures, the interaction intensities between any two individuals, 

or among multiple individuals can be explored. Based on the corresponding CTM diagrams 

of the centrality measures, the importance of the individuals in maintaining each interaction 

pattern can be explored. By applying the map algebra operator of ‘maximum’ to the CTM 

diagrams of the centrality measures of all individuals, the most important individuals in 

maintaining each interaction pattern can be identified. 

4.4 Case study 

4.4.1 Dataset 

The movement data adopted in this chapter come from a real and entire football match 

between ‘Club Brugge KV’ and ‘Standard de Liège’ which took place on March 2nd 2014. 

For simplicity, we call them ‘Club Brugge’ and ‘Standard Liège’ respectively in the 

remainder of the chapter. Football is considered as a highly interactive sport since the 

players need to interact (e.g., collaborate) frequently with the teammates. As such, various 
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types of interaction patterns can be involved during a match. The exploration of player 

interactions is important as player interactions can give insight into a team’s playing style 

and can be used to assess the importance and performance of individual players of the team. 

In this dataset, the positions of all the players were tracked at a temporal resolution of 0.1s. 

The data include both spatio-temporal information and semantic information. The spatio-

temporal information is recorded in a (id, x, y, t) format, where id identifies a specific 

player, x and y represent the x and y coordinates of the player’s position, and t denotes the 

corresponding timestamp. The semantic information mainly includes the information of 

both teams, especially the basic information of the players (e.g., names, id numbers and 

positions played) and the events that happened during the match (e.g., event name, time of 

occurrence and id of the actors).  

Note that Club Brugge won the match by 1-0 by scoring a goal at the timestamp 4733s. As 

relatively more sophisticated interactions might be involved in a relatively short time 

interval before a goal event, the movement data of the players (except the goalkeeper) of 

Club Brugge during the time interval before and until the goal event are used as the 

experiment data. After checking the semantic information in the original data, time interval 

[4493, 4733]s is used since it contains many interesting events (e.g., shot events and free-

kick events) just before the goal was scored. Besides, in order to reduce the computational 

complexity, we down-sampled the temporal resolution from 0.1s to 1s. Note that for 

reasons of simplicity, the time interval is changed to [0, 240]s from [4493, 4733]s. In 

addition, due to privacy issues, the actual names of the 10 players are all replaced by player 

1, player 2, player 3, …, and player 10. 

4.4.2 Results and analysis 

4.4.2.1 The interaction intensities between two individuals for each interaction 

pattern 

Based on the proposed approach, the interaction intensities between any two individuals 

during all time intervals for each interaction pattern can be explored. Take for instance the 

attraction pattern, the interaction intensities between player 1 and player 6 are shown in 
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Figure 4.5, in which a darker colour denotes a stronger interaction and a lighter colour 

corresponds to a weaker interaction. For example, according to Figure 4.5, we can notice 

that the interactions between the two players during time interval just before the goal, [3.7, 

3.8] minutes were relatively strong. In order to validate this, we plotted the trajectories of 

the two players during this time interval, which is shown in Figure 4.6, in which the red 

line denotes the trajectory of player 1, the green line the trajectory of player 6, and the 

black dotted line corresponds to the distance between the two players at each timestamp. 

Obviously, from Figure 4.6, we can clearly see that the distance between player 1 and 

player 6 decreased during each time interval from the 3.7th minute to the 3.8th minute. One 

is thus able to explore the interactions between any two individuals based on the 

corresponding CTM diagrams according to the specific demands (e.g., particularly 

interested in the movements of players during a specific time interval by watching the 

video), after which the performance of a pair of players can be explored, which might be 

important to sports professionals (e.g., coaches). 

 

Figure 4.5. The interaction intensities between 

player 1 and player 6 during all time intervals 

for the attraction pattern. 

 

Figure 4.6. The trajectories of player 1 and 

player 6 during time interval [3.7, 3.8] minutes. 

4.4.2.2 The interaction intensities among multiple individuals for each interaction 

pattern 

Under many circumstances, one individual might interact with more than one other 

individual. Specifically in team sports, tactics may involve multiple players 

simultaneously. For example, as the most fundamental aspect of a football match, the 



A Hybrid Approach for Exploring Dynamic Interactions in Movement Data 

 

105 

 

passing of the ball always involves multiple players. Thus, the exploration of the overall 

interaction intensities between one player and other players (i.e., the local interaction 

intensity of one player) is important to related sports professionals. This can be achieved 

using the proposed approach. By checking the dataset, we select four players (i.e., player 

1, player 2, player 5 and player 6) as an illustration, since they were involved in a sequence 

of passes before the goal. Take the attraction pattern for example, the local interaction 

intensities of each player are shown in Figure 4.7. From Figure 4.7, we can observe that 

each player had time intervals during which his general interactions with others were 

relatively strong. For instance, by comparing Figure 4.7(a), (b), (c) and (d), we can find 

that during the time interval around [3.7, 3.8] minutes, the local interactions of each of the 

four players were all relatively strong, which indicates that each of them may collaborate 

well with the others during this time interval. When looking at the football match, we can 

see that this interval of strong local interactions coincides with spatial compression of these 

four players just before the goal. 

 

 (a) 

 

(b) 

 

(c) 

 

(d) 

Figure 4.7. The local interaction intensities of each of the four players for the attraction pattern: 

(a) player 1, (b) player 2, (c) player 5, and (d) player 6. 
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Besides, as introduced in (Zhang et al., 2016), by employing corresponding map algebra 

operations, additional information can be discovered. In this case, a new CTM diagram is 

generated by employing the ‘maximum’ operator to the four CTM diagrams displayed in 

Figure 4.7. The new CTM diagram is shown in Figure 4.8, in which each colour 

corresponds with a specific player. Figure 4.8 depicts which player had the strongest local 

interactions during all time intervals. For instance, from Figure 4.8, we can conclude that 

player 6 interacted comparatively more intensively with the other three players from the 

perspective of a long time interval (e.g., longer than about 2.5 minutes). When the time 

intervals were shorter than about 2.5 minutes, each of the four players had specific time 

intervals during which he interacted comparatively more intensively with the other three 

players. This shows that, the proposed approach has potential to help sports professionals 

(e.g., coaches) to explore the local interactions of a group of target players in order to 

examine which player had a high influence on the movement patterns of the players around 

him, thus allowing evaluating player performance. 

 

Figure 4.8. The players which had the strongest local interactions for the attraction pattern. 

Apart from exploring the local interaction intensities of each individual for each interaction 

pattern, the approach can be used to explore the global interaction intensities of multiple 

individuals as well. This is particularly useful in team sports when examining the overall 

performance of multiple players. Take for instance all the ten players in a football match. 

When a team (e.g., team 1) possesses the ball, the players in the other team (e.g., team 2) 

tend to run towards each other to compress the space in order to tackle the opponents and 

to limit their options to pass the ball. Thus, for a good performance, the attraction pattern 
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is expected to happen in team 2. On the contrary, the players of team 1 are expected to run 

away from each other in order to extend the space to pass the ball. Hence, for a good 

performance, the avoidance pattern is expected to happen in team 1. The overall 

performance of a team can be examined using the proposed approach by calculating the 

global interaction intensities among all the players. Take the avoidance pattern for instance, 

the global interaction intensities among all the players are shown in Figure 4.9.  

 

Figure 4.9. The global interaction intensities among all the players for the avoidance pattern. 

In Figure 4.9, for example, we can notice that the global interaction intensity values during 

time interval [0.85, 0.95] minutes were relatively large (which indicates that the overall 

interactions during this time interval were relatively strong), and the global interaction 

intensity values during time interval [2.95, 3.10] minutes were relatively small (which 

indicates that the overall interactions during this time interval were relatively weak). By 

checking the adopted dataset, we find that during time interval [0.85, 0.95] minutes, Club 

Brugge possessed the ball, thus the avoidance pattern was expected to occur in case of a 

good performance. This coincides well with the results during the corresponding time 

interval in Figure 4.9, which demonstrates that Club Brugge indeed performed well 

generally during this time interval. On the other hand, during time interval [2.95, 3.10] 

minutes, Standard Liège possessed the ball. In case of a good performance, the attraction 

pattern was thus expected to happen for Club Brugge, which should make the overall 

interactions in the avoidance pattern weak during this time interval. Obviously, this 

coincides well with the results in Figure 4.9 as well. Based on this, we can infer that Club 
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Brugge also indeed had a good performance during this time interval. In terms of the simple 

analysis, we can conclude that the proposed approach has the ability to assist coaches to 

explore the overall interaction intensities among multiple players for each interaction 

pattern. 

4.4.2.3 The importance of each individual and the identification of the most important 

individuals in each interaction pattern  

The centrality measures can be used to measure the importance of an individual in an 

interaction pattern from different perspectives. In this case study, based on the centrality 

measures, the importance of each player for each interaction pattern can be evaluated, 

which might provide insightful information to coaches. Take player 6 and the attraction 

pattern for instance, the results of the centrality measures are visualised in Figure 4.10. In 

Figure 4.10, a dark colour corresponds to a high value, which means that the player was a 

central player during the corresponding time intervals according to the corresponding 

centrality measure. Note that ‘central player’ here and hereafter means a player playing an 

important role according to centrality measures, but not a player who is located at the 

spatial center of the field. In Figure 4.10, we can find that the importance of player 6 was 

different during all time intervals based on the same measure. For example, based on the 

measure of degree, player 6 can be considered as a central player during the time intervals 

which are dark, because player 6 had more direct connections with the other players in the 

MTSSTN during these time intervals. This indicates that the number of players whose 

distances between player 6 decreased during these time intervals was relatively large. Thus, 

player 6 had relatively good interactions with the other players for the attraction pattern 

and was considered a relatively central player of the movement pattern. Hence, based on 

the proposed approach, the importance of each player in each interaction pattern can be 

explored by using different centrality measures. This might provide potential insights to 

sports professionals and coaches for arranging suitable tactics and selecting the starting 

lineup for a match. 
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 (a) 

 

(b) 

 

(c) 

Figure 4.10. The visualisation of the centrality measures of player 6 for the attraction pattern: (a) 

degree, (b) betweenness, and (c) closeness. 

The identification of important individuals is of high importance since they might play 

rather important roles in specific types of interactions. In this case study, the most central 

players for each interaction pattern during all time intervals can be identified based on the 

proposed approach. This is achieved by employing corresponding map algebra operators 

(‘maximum’ in this case) to the corresponding CTM diagrams of the centrality measures 

of each player. The detailed principle can be seen in (Zhang et al., 2016). The results are 

shown in Figure 4.11. Note that in Figure 4.11, similar colours are used for players at 

similar positions (i.e., players 1~3 are forward, players 4~6 midfielders and players 7~10 

defenders). Figure 4.11 clearly demonstrates which player was the most central player 

during which time interval for each interaction pattern based on different centrality 

measures. For instance, for the attraction pattern (Figure 4.11(a)), player 4 can be 

considered as playing key roles based on degree and player 1 based on betweenness on a 

whole during relatively long time intervals (e.g., longer than about 1 minute). When the 

time intervals were shorter than 1 minute, each player had his own dominant time intervals, 

during which this player was considered as a central player. Similarly, for the stability 

pattern, players 1, 3 and 5 can be considered as the most central players on a whole based 

on degree, players 1 and 8 the most central in general based on betweenness, and players 

1, 3, 5 and 6 the most central generally based on closeness. For the avoidance pattern, 

obviously, player 1 was the most central player on a whole based on betweenness. From 

Figure 4.11 we can observe that the results vary a lot, as in some of the figures, the most 

central players are quite easy to be identified, while in others this is not possible. However, 

one can draw specific conclusions by analysing the corresponding figures in depth (e.g., 
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zooming in the zone of a specific time interval on a CTM diagram) according to specific 

demands. Therefore, this approach has the potential to provide insightful suggestions to 

related sports professionals for suitable tactical arrangement and players performance 

evaluation. 

(a) 

 

(b) 

 

(c) 

Figure 4.11. The most central players in each interaction pattern during all time intervals based on 

the centrality measures (from left to right: degree, betweenness and closeness): (a) the attraction 

pattern, (b) the stability pattern, and (c) the avoidance pattern. 

4.5 Discussion 

As a key contribution of this chapter, we develop a hybrid approach combining the Multi-

Temporal Scale Spatio-Temporal Network and the Continuous Triangular Model and 

addressed the applicability of the approach in exploring dynamic interactions in movement 

data. Specifically, the approach is utilised in football movement data, a type of sports 

movement data which has gained much attention in recent years. The results show that the 

proposed approach can be used to explore various interactions between the players. 
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Besides, it is useful in evaluating the importance of each player and identifying the most 

central players.  

As is known, scale is a common problematic issue in many disciplines, especially those 

that involve space and/or time (e.g., GIScience). In GIScience, scale is of significant 

importance. It even has been considered as the fifth dimension in 5D data modelling (van 

Oosterom & Stoter, 2010). Thus, it is crucial to take scale into consideration when dealing 

with space and/or time related data. However, only limited research on dynamic 

interactions in movement data has taken scale (or in detail, temporal scale) into 

consideration. The research conducted by Long & Nelson (2013) can be regarded as a 

typical example. In this research, it was argued that dynamic interactions can be analysed 

from four analysis levels, i.e., local, interval, episodal and global. Local level is described 

as the finest temporal scale, interval level and episodal level correspond to a coarser 

temporal scale, and global level is considered as the coarsest temporal scale. A new 

computation has to be made if the analysis level changes, and new results have to be 

visualised correspondingly. Actually, the results at the four levels are contained 

simultaneously in the results of the proposed approach in this chapter. In other words, the 

results at any of the four levels can be found in one corresponding CTM diagram.  

 

Figure 4.12. Illustration of the local level (red dotted line), interval level (green dotted line), 

episodal level (green dotted line) and global level (blue dotted line) in the CTM. 

Take the simple CTM diagram in Figure 4.12 for example, the x-coordinate and y-

coordinate denote the timestamps and the temporal scales, respectively, the red dotted line 

and the blue dotted line indicate the local level and the global level, respectively, and the 
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green dotted line either an interval level or an episodal level. Therefore, the values at points 

A, B, C and D correspond to the values at the local level, and the value at point J 

corresponds to the value at the global level. The values at the interval level can be found at 

points E, F and G, and the values at the episodal level can be found at points E and G. 

Hence, this approach appears to be superior in analysing dynamic interactions at multiple 

temporal scales. 

The dynamic interactions in movement data include both the interactions between a pair of 

individuals and the interactions among multiple (usually at least three) individuals. So far, 

current methods have mainly focused on the interactions between two individuals. 

However, it is common in practice to consider several objects as a group (e.g., four players 

as a moving flock). Hence, a method to explore the interactions among more than two 

individuals simultaneously is very much in need. Benefitting from the map algebra 

operations supported by the CTM, the proposed approach is capable to explore the 

interactions among multiple individuals. The results show the effectiveness of this 

approach. 

Network science provides a lot of powerful methods to study systems in the real world. 

Therefore, networks have been widely adopted as a useful tool to enable researchers to 

explore many systems in society, nature and technology. In the area of movement data 

analysis, networks have already been utilised as a tool as well. In recent time, a new type 

of network (i.e., Spatio-Temporal Network) has been developed by Williams & Musolesi 

(2016) in order to analyse spatio-temporal data more accurately. However, it appears 

unsatisfactory to analyse multi-temporal scale related issues. Based on this, in this chapter, 

we propose an even more novel type of network (i.e., Multi-Temporal Scale Spatio-

Temporal Network). To the best of our knowledge, this is the first case that adopted 

networks as a tool to analyse spatio-temporal data at multiple temporal scales. The results 

reveal the advantages of using the Multi-Temporal Scale Spatio-Temporal Network to 

discover insightful information that current networks cannot. We expect that the new type 

of network could be considered as a potential tool to gradually serve the domain of data 
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analysis in the future. 

However, the proposed approach still has its own flaws. On the one hand, although the 

interaction patterns derived based on RTC are prevalent between/among any two/multiple 

objects, they are still relatively simplistic. This, to some extent, limits the significance of 

the results exhibited during all time intervals in the case study. The results primarily make 

sense quite well during part of the time intervals, which are chosen by users (e.g., coaches) 

based on relevant information (e.g., the video of the match) according to their demands. In 

the future, more sophisticated interaction patterns might be derived using other potential 

methods automatically, such as Qualitative Trajectory Calculus (QTC) (Van de Weghe et 

al., 2004; Van de Weghe et al., 2005; Van de Weghe et al., 2006), Dynamic Interaction 

(DI) (Long & Nelson, 2013) and RElative MOtion (REMO) (Laube et al., 2005), in order 

to enhance the meanings of results. On the other hand, the current approach appears costly 

in time (the complexity is O(n3), where n is the number of time intervals at the finest 

temporal scale), thus limiting its applicability for very large movement datasets, although 

it showed its applicability and usefulness in relatively small datasets (e.g., it took 

approximately 4 minutes in this case study on a Windows 10 system with a processor of 

2.6 GHz and a RAM of 8 GB). Things thus need to be optimised in the future.  

4.6 Conclusions and future work 

Currently, movement data are collected in a variety of domains and are becoming a popular 

type of data. Although many research topics with respect to movement data have been 

undertaken, the research on dynamic interactions in movement data is still in its infancy. 

This chapter proposes a hybrid approach combining the Multi-Temporal Scale Spatio-

Temporal Network and the Continuous Triangular Model to explore dynamic interactions 

in movement data. Four main steps are included in the approach: first, RTC is used to 

derive three interesting interaction patterns; second, a corresponding MTSSTN is 

generated for each interaction pattern; third, for each MTSSTN, both the interaction 

intensity measures and the three centrality measures - degree, betweenness and closeness - 
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are computed; finally, the results are visualised using the CTM and analysed based on the 

CTM diagrams. Based on the proposed approach, three distinctive aims regarding the 

dynamic interactions in movement data can be achieved at multiple temporal scales. The 

approach is then validated based on the movement data obtained from a real football match. 

The results demonstrate that the dynamic interactions involved in movement data can be 

explored effectively and useful information can be discovered based on the proposed 

approach. 

In this chapter, central to the approach is the construction of the MTSSTNs. For each 

interaction pattern, a corresponding MTSSTN can be generated. Networks include 

undirected or directed networks, and unweighted or weighted networks. As our aim is 

primarily methodological, in this chapter, only unweighted undirected networks are 

generated. In the future, directed networks can be generated so that more insightful 

information might be revealed. Besides, in the proposed approach, the MTSSTN is 

generated only based on the spatio-temporal information involved in the movement data. 

In the future, the semantic information can also be employed to generate new types of 

MTSSTNs. For example, based on the passing information in football movement data, the 

multi-temporal scale spatio-temporal passing networks can be derived, according to which 

the dynamic interactions of football players regarding passing can be explored. In addition, 

the movement data from other domains can also be employed in order to extend the range 

of applications of the proposed approach. 
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5 
Discovering Moving Flock Patterns in Movement 

Data: A Reeb Graph-Based Approach 

Modified from: Zhang, P., & Van de Weghe, N. (2018). Discovering moving flock 

patterns in movement data: a Reeb graph-based approach. (To be submitted) 

 

Abstract: With the rapid development of location-aware technologies, a proliferation of 

rich and voluminous movement data have been resulted in. This thereby necessitates the 

various research topics with respect to movement data, such as the analysis, mining and 

visualisation of movement data. Among the many topics, the mining of movement patterns 

in movement data takes a large proportion. In this chapter, we mainly aim at discovering 

one of the typical movement patterns, i.e., moving flock patterns. Although a large body 

of research with respect to moving flock patterns has been undertaken, specific shortages 

still exist. Based on this, we first develop an improved definition of moving flock on the 

basis of the existing one. Then, a taxonomy of moving flock patterns is proposed, according 

to which eight types of interesting moving flock patterns are derived. Subsequently, we 

propose a Reeb graph-based approach for discovering moving flock patterns in movement 

data, and further use this approach to distinguish the eight types of moving flock patterns. 

The novel sports-oriented movement data, which were obtained from a real football match, 

are adopted as a case study to validate the effectiveness of the proposed approach and 

expand the application fields of the research of moving flock patterns. The results 
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demonstrate that the proposed approach is capable of discovering the desired moving flock 

patterns and insightful information can be provided by applying the proposed approach to 

specific fields. 

5.1 Introduction 

Benefiting from the developments of location-aware technologies such as GPS (global 

positioning system), Bluetooth, RFID (radio frequency identification), WiFi, and image 

recgoniton, data related to the trajectories of moving objects can be acquired more easily 

than ever before. This has caused a proliferation of rich and voluminous movement data. 

Nowadays, a large variety of movement data are in use or already attracted attention. 

Specific types of movement data include transportation related data (Civilis et al., 2005; 

Delafontaine et al., 2012; Zhang et al., 2017), animal movement data (Laube et al., 2005; 

Shamoun-Baranes et al., 2012; Demšar et al., 2015), natural phenomena movement data 

(Lee et al., 2007), as well as sports movement data (Gudmundsson et al., 2014; Gomez et 

al., 2014; Zhang et al., 2016; Zhang et al., 2018). Given the emergence of the large amount 

of tracked movement data, the analysis of movement data has been paid more and more 

attention by researchers from various disciplines and fields, including geographical 

information science (GIScience), data mining and knowledge discovery, computational 

geometry, and so forth.  

Among the current research, the mining of movement patterns takes a large proportion. 

The mining of movement patterns appears important because movement patterns can 

exhibit the rules of objects’ movements, which may imply important meanings in practice. 

However, in most cases, movement patterns are hidden behind the large amount of 

movement data. Thus, the approaches for mining movement patterns in movement data are 

much in need. Compared to the mining of movement patterns of individual moving objects, 

the mining of movement patterns of multiple moving objects has been attracting much 

more attention. Typical movement patterns existing in multiple moving objects include 

flock patterns (Laube & Imfeld, 2002; Laube et al., 2004; Laube et al., 2005; Gudmundsson  
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& van Kreveld, 2006; Gudmundsson et al., 2007; Benkert et al., 2008; Vieira et al., 2009; 

Wachowicz et al., 2011; Jacob & Idicula, 2012; Kjærgaard et al., 2012; Fort et al., 2014; 

Turdukulov et al., 2014; Cao et al., 2016), convoy patterns (Jeung et al., 2008; Yeoman & 

Duckham, 2016), leadership patterns (Laube et al., 2005; Gudmundsson et al., 2007; 

Andersson et al., 2008; Solera et al., 2015), moving clusters (Kalnis et al., 2005) and crews 

(Loglisci 2017). Among the listed movement patterns, the research on flock patterns takes 

a large proportion. Flocks are usually associated with the movements of a group of moving 

objects, such as birds, animals, pedestrians and vehicles. It can be informally depicted as 

‘a group of spatially close objects staying together for a specific time interval’, as illustrated 

in Figure 5.1. Figure 5.1 illustrates the movements of four objects (i.e., O1, O2, O3 and O4) 

during seven consecutive timestamps. In Figure 5.1, as objects O1, O2 and O3 stay closely 

together during time interval [t2, t4], they can be considered as a flock pattern during this 

time interval. Flock patterns include moving flock patterns and stationary flock patterns. If 

all members involved in a flock pattern keep moving during the corresponding time interval, 

they can be regarded as a moving flock pattern. On the contrary, if all members keep 

stationary during the corresponding time interval, they are considered as a stationary flock 

pattern. Take Figure 5.1 for instance, in Figure 5.1(a), objects O1, O2 and O3 form a moving 

flock pattern during time interval [t2, t4] since they keep moving during this period. In 

Figure 5.1(b), objects O1, O2 and O3 form a stationary flock pattern during time interval [t2, 

t4] as they keep stationary during this period. 

 

(a) 

 

(b) 

Figure 5.1. Illustration of flock patterns: (a) moving flock pattern, and (b) stationary flock pattern 

(O1, O2, and O3 are stationary during time interval [t2, t4] while O4 is moving). 



  Chapter 5 

 

122 

 

The pioneering work on flock pattern discovery stems from (Laube & Imfeld, 2002; Laube 

et al., 2004; Laube et al., 2005). In their work, they proposed the concept ‘flock’ for the 

first time and defined flock as a set of objects that stay spatially close and exhibit similar 

properties in terms of motion attributes (e.g., speed, change of speed and motion azimuth) 

at some timestamp. They then designed corresponding algorithms based on the REMO 

(RElative MOtion) concept to discover flock patterns. The flock patterns that last for one 

timestamp indeed can be discovered using these algorithms. However, since they didn’t 

take a minimum lasting time into consideration, the flock patterns that last for more than 

one timestamp were not able to be discovered. Given this limitation, Benkert et al. (2008) 

extended the definition of flock to a new one, in which the minimum lasting time is taken 

into account. Specifically, they emphasised that the objects should stay together for at least 

a period of time, for instance, k (k > 1) timestamps, rather than just one single timestamp.  

Then, they simplified the definition by transferring flock patterns to approximate flock 

patterns and developed corresponding algorithms to discover approximate flock patterns 

based on skip-quadtree (Eppstein et al., 2005). Apart from the approximate flock patterns, 

Gudmundsson & van Kreveld (2006) proposed two other types of flock patterns: fixed-

flock pattern and varying-flock pattern. Fixed-flock pattern means that the members of a 

flock pattern keep the same during the entire time interval while the members in a varying-

flock pattern have changes during the entire time interval. They then generated 

corresponding algorithms to compute longest duration flock patterns from trajectory data. 

Besides, other researchers have also focused on developing various algorithms to discover 

flock patterns. Vieira et al. (2009) for the first time exhibited an on-line flock patterns 

discovery approach from spatio-temporal data and designed five corresponding algorithms. 

Wachowicz et al. (2011) proposed the first formal definition of moving flock and used 

collective coherence (Wood & Galton, 2009) to refer to the spatial closeness over some 

time interval with a minimum number of members. Then, they used it to find moving flock 

patterns among pedestrians. Kjærgaard et al. (2012) conducted the work on finding 

pedestrian flocks in indoor environments from the dataset collected via WiFi signals of 

mobile phones. Turdukulov et al. (2014) presented a frequent pattern mining approach for 
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discovering moving flock patterns in large spatio-temporal datasets. The approach was 

combined with the visual interface of the space-time cube, which allows users to 

interactively explore the results. Fort et al. (2014) developed an efficient parallel GPU-

based algorithm for reporting three different variants of flock patterns: all maximum flocks, 

the largest flock and the longest flock. The algorithm was tested on three real trajectory 

datasets and showed its efficiency and scalability. Cao et al. (2016) proposed a definition 

of ‘freedom moving flock pattern’ and a corresponding algorithm for extracting such 

pattern. The algorithm was tested on two real pedestrian trajectory datasets and the results 

showed the usefulness of extracting such pattern. 

By summarising the aforementioned research, we can find that although different 

researchers proposed different types/classifications of movement patterns (e.g., a 

taxonomy of movement patterns presented in Dodge et al. (2008), there still lacks a general 

taxonomy of flock patterns and moving flock patterns. Besides, although Wachowicz et al. 

(2011) proposed the first formal definition of moving flock based on the definition of flock 

previously proposed by Benkert et al. (2008), there still exists specific drawbacks, as it 

might classify some stationary flock patterns wrongly as moving flock patterns. Based on 

this, in this chapter, we first develop an improved definition of moving flock so as to find 

more exact moving flock patterns. Second, a taxonomy of moving flock patterns is 

proposed, by which various types of moving flock patterns can be derived. Among the 

generated moving flock patterns, we then extract eight different types which appear quite 

interesting from our perspective and consider them as the main focus in this chapter. Finally, 

a Reeb graph-based approach is proposed in order to discover moving flock patterns and 

further the eight types of moving flock patterns. 

The remainder of this chapter is organised as follows. Section 5.2 introduces the existing 

definition of moving flock, the improved definition of moving flock proposed by us, and 

the taxonomy of moving flock patterns. In section 5.3, the methodology for discovering 

moving flock patterns and further the eight types of moving flock patterns is described in 

detail. In section 5.4, a case study is conducted by using the movement data acquired from 
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a real football match to validate the effectiveness of the proposed approach. Finally, section 

5.5 gives the conclusions and some recommendations for future work. 

5.2 Definition of moving flock and taxonomy of moving flock patterns 

In this section, first, the definitions of moving flock, including both the previous one and 

the improved one, are introduced. Then, a taxonomy of moving flock patterns is proposed, 

according to which various types of moving flock patterns can be derived.  

5.2.1 Definitions of flock and moving flock 

There have already been several definitions of flock, such as the ones proposed by Laube 

et al. (2005), Gudmundsson & van Kreveld (2006), Benkert et al. (2008) and Vieira et al. 

(2009). Among them, the one defined by Benkert et al. (2008) is adopted in this chapter, 

as it is used frequently in existing research. It can be defined as follows. 

Definition 5.1 (Flock): Given a set of n trajectories, an (r, m, k)-flock F during a time 

interval 𝐼 = [𝑡𝑖 , 𝑡𝑗], where 𝑗 − 𝑖 ≥ 𝑘 , consists of at least m objects such that for every 

discrete timestamp 𝑡𝑙 ∈ 𝐼 (𝑖 ≤ 𝑙 ≤ 𝑗), there is a disk of radius r that contains all the m 

objects. 

Nevertheless, this definition cannot distinguish between stationary flock and moving flock. 

Hence, Wachowicz et al. (2011) proposed the definition of moving flock based on 

Definition 5.1. To the best of our knowledge, this was the first formal definition of moving 

flock. The detailed definitions are defined below. 

Definition 5.2 (Spatial extent of a flock): Given an (r, m, k)-flock F during a time interval 

I, its spatial extent, 𝑒𝑥𝑡(𝐹, 𝐼), is defined as 𝑒𝑥𝑡(𝐹, 𝐼) = 𝑚𝑎𝑥{𝑙, 𝑤}, where l and w are the 

length and width of the minimum bounding rectangle (MBR) of the set of sub trajectories 

belonging to the flock, respectively.  

Definition 5.3 (Moving flock): Given a set of n trajectories, an (r, m, k)-moving flock FM 

during a time interval 𝐼 = [𝑡𝑖 , 𝑡𝑗], where 𝑗 − 𝑖 ≥ 𝑘, consists of at least m objects such that 

for every discrete timestamp 𝑡𝑙 ∈ 𝐼 (𝑖 ≤ 𝑙 ≤ 𝑗), there is a disk of radius r that contains all 
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the m objects and the spatial extent of FM meets the requirement 𝑒𝑥𝑡(𝐹𝑀 , 𝐼) ≥ 𝑟.  

However, it still appears deficient as a stationary flock might be misunderstood as a moving 

flock according to the definition. Take a collection of m objects for example, assume they 

were a flock during time interval 𝐼 = [𝑡𝑖 , 𝑡𝑗] (𝑗 − 𝑖 ≥ 𝑘), but they kept stationary during 

[𝑡𝑖 , 𝑡𝑗−1]  and kept moving during [𝑡𝑗−1, 𝑡𝑗]  (met the requirement 𝑒𝑥𝑡(𝐹𝑀 , 𝐼) ≥ 𝑟  when 

moving). According to Definition 5.2 and Definition 5.3, the m objects are considered as a 

moving flock during [𝑡𝑖 , 𝑡𝑗]. However, strictly speaking, they were a moving flock only 

during [𝑡𝑗−1, 𝑡𝑗] instead of the whole interval [𝑡𝑖 , 𝑡𝑗]. Hence, in this chapter, an improved 

definition of moving flock is proposed on the basis of the aforementioned definitions. The 

improved definition is described in detail as follows. 

Definition 5.4 (Spatial extent of a flock between two consecutive timestamps): Given 

an (r, m, k)-flock F during a time interval 𝐼 = [𝑡𝑖 , 𝑡𝑗], where 𝑗 − 𝑖 ≥ 𝑘, assume 𝑡𝑢 and 𝑡𝑢+1 

(𝑖 ≤ 𝑢 ≤ 𝑗 − 1) are two consecutive timestamps, the spatial extent of F between 𝑡𝑢 and 

𝑡𝑢+1 is defined as 𝑒𝑥𝑡(𝐹|𝑡𝑢, 𝐹|𝑡𝑢+1) = 𝑑{𝑝𝑢, 𝑝𝑢+1}, where 𝑝𝑢 and 𝑝𝑢+1 are the geometric 

centres of the MBRs of F at 𝑡𝑢 and 𝑡𝑢+1, respectively, and 𝑑{𝑝𝑢, 𝑝𝑢+1} is the Euclidean 

distance between 𝑝𝑢 and 𝑝𝑢+1.  

Take Figure 5.2 for example, 𝑒𝑥𝑡(𝐹|𝑡𝑢, 𝐹|𝑡𝑢+1) denotes the spatial extent of a flock F 

(consisting of three objects, i.e., O1, O2 and O3) between two consecutive timestamps 𝑡𝑢 

and 𝑡𝑢+1. 

 

Figure 5.2. Illustration of the spatial extent of a flock between two consecutive timestamps. 

Definition 5.5 (Moving flock): Given a set of n trajectories, an (r, m, k, θ)-moving flock 
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FM in a time interval 𝐼 = [𝑡𝑖 , 𝑡𝑗], where 𝑗 − 𝑖 ≥ 𝑘, consists of at least m objects such that 

for every discrete timestamp 𝑡𝑙 ∈ 𝐼 (𝑖 ≤ 𝑙 ≤ 𝑗), there is a disk of radius r that contains all 

the m objects and any spatial extent between two consecutive timestamps 

𝑒𝑥𝑡(𝐹𝑀|𝑡𝑢, 𝐹𝑀|𝑡𝑢+1) ≥ 𝑑 (𝑖 ≤ 𝑢 ≤ 𝑗 − 1, 𝑑 > 0). Assume the m objects are O1, O2, …, 

Om, respectively,  FM is represented as 𝐹𝑀 = {𝑂1, 𝑂2, … , 𝑂𝑚}|[𝑡𝑖 , 𝑡𝑗]. 

Note that d is a parameter distinguishing moving flock from flock, and Definition 5.5 is 

adopted as the definition of moving flock here and hereafter in this chapter. 

5.2.2 Taxonomy of moving flock patterns 

In this chapter, a brief hierarchical taxonomy of moving flock patterns is proposed in order 

to derive various types of moving flock patterns. According to the definitions of flock and 

moving flock, the main factors that can directly influence the classification of flock patterns 

are proximity (r), number of members in a flock (m), time duration (k) and displacement 

(d). Hence, the taxonomy is proposed based on these four factors. It is shown in Figure 5.3. 

 

Figure 5.3. The taxonomy of moving flock patterns. 

In Figure 5.3, the taxonomy can be classified into four main parts, i.e., parts 1, 2, 3 and 4. 

Part 1 is based on proximities and displacements, and it lies on the highest level. As a flock, 

the spatial locations of the involving members should be proximate at the same timestamp. 

When the displacement of locations meets the requirement of moving flock, it is classified 
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as a moving flock pattern. Otherwise, stationary flock pattern. Parts 2 and 3 are based on 

time duration and number of members in a flock, respectively, and they are on the 

intermediate level. As for the time duration of a flock, it can be either the longest, the 

shortest or in between. Similarly, the number of members in a flock can be either the largest, 

the smallest or in between. Part 4 is on the lowest level, and it is based on the variability of 

flock members. The members in a moving flock can be either fixed or varying during the 

whole time interval.  

According to the taxonomy, a large amount of types of moving flock patterns can be 

derived based on a sole part or the combinations of multiple parts. For example, three types 

of moving flock patterns can be derived based solely on part 3, which are longest duration 

moving flock patterns, shortest duration moving flock patterns and moving flock patterns 

with a time duration in between. Nevertheless, not all types of moving flock patterns are 

interesting to people in practice. Comparatively, the moving flock patterns that are with 

specific properties, such as the top p (p ≥ 1) largest/smallest number of members, the top 

p (p ≥ 1) longest/shortest time durations, and fixed flock members, might be more 

interesting to people. Note that as four parameters have already been involved in the 

definition of moving flock, the cases where p is larger than 1 are not considered in this 

chapter in order to reduce complexities. Hence, in this chapter, we are particularly 

interested in eight types (i.e., types A ~ H) of moving flock patterns which are derived 

based on one or mutiple of the following specific properties: the largest/smallest number 

of members, the longest/shortest time duration and fixed flock members. The eight types 

of moving flock patterns are listed in Table 5.1. Note that in Table 5.1, types A and B are 

derived based on part 2 in Figure 5.3, types C and D are derived based on part 3 in Figure 

5.3, and types E, F, G and H are derived based on the combination (i.e., intersection) of 

one type from A or B and the other type from C or D. The detailed relationships between 

types E, F, G and H and types A, B, C and D are shown in Figure 5.4. The eight types of 

moving flock patterns are thus considered as the main focus in this chapter, and a Reeb 

graph-based approach is proposed in order to discover them.  



  Chapter 5 

 

128 

 

Table 5.1. The eight types of moving flock patterns. 

Type of moving 

flock patterns 
Explanation 

A Moving flock patterns with longest time duration and fixed members 

B Moving flock patterns with shortest time duration and fixed members 

C Moving flock patterns with largest number of fixed members 

D Moving flock patterns with smallest number of fixed members 

E Moving flock patterns with longest time duration and largest number of fixed members 

F Moving flock patterns with longest time duration and smallest number of fixed members 

G Moving flock patterns with shortest time duration and largest number of fixed members 

H Moving flock patterns with shortest time duration and smallest number of fixed members 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 5.4. The relationships of moving flock patterns between: (a) type E and types A and B; 

(b) type F and types A and D; (c) type G and types B and C, and (d) type H and types B and D. 

5.3 Methodology 

In this chapter, we propose a Reeb graph-based approach to discover moving flock patterns. 

Specifically, we mainly aim to discover the eight types of moving flock patterns listed in 

Table 5.1. The approach includes five steps: (1) generating Reeb graphs based on 

movement data; (2) filtering specific Reeb graphs; (3) extracting flock patterns; (4) 

extracting moving flock patterns, and (5) extracting each type of moving flock patterns. In 

the following, the five steps are introduced in detail. 

In order to make things easier to be understood, a sample dataset is illustrated to show how 

the approach works. The dataset is shown in Figure 5.5(a). Figure 5.5(a) illustrates the 

movements of five objects (note that the ids of the objects are 1, 2, 3, 4 and 5, respectively) 

moving during a time interval consisting of five consecutive timestamps (i.e., t0, t1, t2, t3 

and t4) and two other objects (the ids of the objects are 6 and 7) moving during a time 

interval consisting of two consecutive timestamps (i.e., t2 and t3). The discrete points denote 
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the spatial locations of the objects at the corresponding timestamps. 

5.3.1 Generating Reeb graphs based on movement data  

Reeb graph is a concept from topology. It has already been extensively used in many fields, 

especially in shape analysis (Biasotti et al., 2008; Chen et al., 2013) and visualisation of 

scientific data (Fomenko & Kunii, 1997; Edelsbrunner & Harer, 2010). Given its strong 

ability in representing the evolution of connected components of the level sets on a two or 

higher dimensional scalar function, it has been introduced to trajectory analysis as well 

(Buchin et al. 2013; Zhang & Van de Weghe, 2018). Basically, it is a structure that reveals 

the temporal changes of the spatial closeness of a group of moving objects. Hence, it can 

be used to represent the evolution of grouping with time for moving objects. In this chapter, 

the Reeb graph is generated based on regularly sampled movement data. Similar to other 

types of graphs, the Reeb graph can also be represented as = {𝑉, 𝐸}  , where 𝑉 =

{𝑣1, 𝑣2, … , 𝑣𝑛} and 𝐸 = {𝑣𝑖𝑣𝑗} (1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑛) denote the set of vertices and edges, 

respectively. Generally, two steps are necessary for generating a Reeb graph: (1) the 

generation of vertices, and (2) the construction of edges. As on the one hand, the aim of 

generating the Reeb graphs is to discover moving flock patterns, and on the other hand, 

there are four key parameters (i.e., r, m, k and d) for a moving flock pattern, we propose to 

generate a simplified Reeb graph instead of a complete Reeb graph in order to reduce 

computational complexities. Specifically, a simplified Reeb graph is generated by deleting 

the vertices (and the corresponding edges that are connected to the vertices) from the 

corresponding complete Reeb graph. Note that for reasons of convenience, Reeb graph 

specifically denotes the simplified Reeb graph here and hereafter in this chapter. In general, 

three steps are included when generating simplified Reeb graphs: (1) the generation of 

vertices; (2) the deletion of specific vertices, and (3) the construction of edges.   

5.3.1.1 The generation of vertices 

As introduced previously, four parameters (i.e., r, m, k and d) are involved in a moving 

flock pattern. The generation of vertices is based on parameter r. For each timestamp, if 
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the objects whose spatial locations at the same timestamp are within a circle of radius r, 

they are considered as being involved in the same vertex. Note that the selection of the base 

object (i.e., the object whose spatial location at a timestamp is considered as the centre of 

the corresponding circle) is important, as different base objects may result in different 

results. In this approach, we propose that for each timestamp, the object whose spatial 

distance (i.e., Euclidean distance, here and hereafter) is closest to the centroid of all the 

objects is considered as the base object. In this way, the base objects can be determined 

automatically, thus avoiding the variation of results caused by the random selection of base 

objects. The vertices of Reeb graphs are generated according to the four steps below:  

(1) For each timestamp, calculate the centroid of the spatial locations of all objects;  

(2) Find the object whose spatial distance is closest to the centroid, and consider this object 

as a base object; 

(3) Find all the objects whose spatial distances to the base object are no more than r, and 

consider them together with the base object as being involved in the same vertex; 

(4) For the remaining objects, recursively execute steps (1), (2) and (3) till every object at 

every timestamp is involved in a corresponding vertex. Thus, all vertices are generated. 

Based on the proposed approach, for each timestamp, the objects can be divided into one 

or more groups. Note that a group means that the objects involved in the group are within 

a circle of radius r. Take Figure 5.5(a) for instance, assume r equals to a specific value, the 

groups of objects at each timestamp can be generated. The result is shown in Figure 5.5(b). 

The corresponding vertices of the Reeb graphs are shown in Figure 5.5(c), in which the 

points denote the vertices of the Reeb graphs and the numbers next to the vertices indicate 

the ids of the objects involved in the corresponding vertices.  

5.3.1.2 The deletion of specific vertices 

The deletion of specific vertices is executed based on parameter m. As there might be 

vertices in which the number of involved objects is less than m, we propose to delete such 

vertices. The method is described as follows:  
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(1) For each vertex, calculate the number of objects involved in it;  

(2) If the number is less than m, then delete the vertex; 

(3) Recursively execute steps (1) and (2) till all vertices are checked.  

Take Figure 5.5(c) for example, assume m equals to 2, three vertices ought to be deleted in 

Figure 5.5(c). The result after deleting the three vertices is shown in Figure 5.5(d), in which 

all vertices involve at least two objects. 

5.3.1.3 The construction of edges 

When constructing the edges, two principles are obeyed: (1) any two vertices at the same 

timestamp are not allowed to be connected, and (2) any two vertices at two consecutive 

timestamps are connected if at least one common object is involved in both vertices.  

According to these principles, the edges of the vertices in Figure 5.5(d) can be constructed, 

which are displayed in Figure 5.5(e). Thus, the graphs in Figure 5.5(e) are considered as 

the final Reeb graphs generated based on the sample movement data. 

5.3.2 Filtering specific Reeb graphs 

The filtering of specific Reeb graphs is carried out based on parameter k, as the time 

durations of some Reeb graphs might be shorter than k. Hence, such Reeb graphs should 

be filtered. The method of filtering such Reeb graphs is described as follows: 

 (1) For each Reeb graph, find its minimum timestamp 𝑡𝑚𝑖𝑛 and maximum timestamp 𝑡𝑚𝑎𝑥, 

if 𝑡𝑚𝑎𝑥 − 𝑡𝑚𝑖𝑛 < 𝑘, delete this graph; 

(2) Recursively execute step (1) until all Reeb graphs are checked.  

Take Figure 5.5(e) for example, assume k equals to 2, the Reeb graph on the right should 

be filtered. The result after filtering is shown in Figure 5.5(f). 

5.3.3 Extracting flock patterns 

The Reeb graphs existing so far all meet the requirements of flock, which means that for 

each Reeb graph: (1) the objects involved in each vertex are all within a circle of radius r; 

(2) the number of objects involved in each vertex is no less than m, and (3) the time duration 



  Chapter 5 

 

132 

 

of the Reeb graph is no less than k. Hence, based on each Reeb graph, one or multiple flock 

patterns can be extracted. The method for extracting flock patterns based on each Reeb 

graph is described in detail as follows:  

(1) For a vertex 𝑣𝑖, find all subgroups (each of which consists of at least m objects)  that 

can be formed by the objects involved in 𝑣𝑖; 

(2) Select the first group, if this group hasn’t been processed, then go to the next vertex 

𝑣𝑖+1 which connects to 𝑣𝑖. If this group can also be formed by the objects involved in 𝑣𝑖+1, 

then go to the next vertex which connects to 𝑣𝑖+1. Recursively execute this till this group 

cannot be formed by the objects involved in a vertex. Then, for this group, record the 

corresponding timestamps when it starts and ends. Besides, identify this group as processed; 

(3) For the remaining groups formed by the objects involved in 𝑣𝑖, continue step (2) till all 

the groups are processed; 

(4) For vertex 𝑣𝑖+1, repeat similar operations as demonstrated in steps (1), (2) and (3). 

Based on the above operations, all groups of objects together with their corresponding time 

durations can be extracted. They can be considered as candidates of flock patterns. 

Nevertheless, among the extracted groups, some might no longer meet the requirement that 

the corresponding time durations should be no less than k. Hence, in order to extract the 

correct flock patterns, such groups have to be deleted. After deleting such groups, the 

remaining groups are considered as flock patterns.  

Take Figure 5.5(f) for example, assume m still equals to 2 and k still equals to 2, five flock 

patterns can be extracted, which are {1, 3}|[𝑡0, 𝑡3] , {4, 5}|[𝑡1, 𝑡4] , {2, 4}|[𝑡2, 𝑡4] , 

{2, 5}|[𝑡2, 𝑡4] and {2, 4, 5}|[𝑡2, 𝑡4], respectively. 

5.3.4 Extracting moving flock patterns 

Among the extracted flock patterns, however, not all of them are certainly moving flock 

patterns. Hence, each flock pattern has to be checked so that moving flock patterns can be 

correctly extracted. The method for extracting moving flock patterns is described below: 
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(1) For each flock pattern 𝐹𝑖 , assume the corresponding time interval of 𝐹𝑖  is [𝑡0, 𝑡𝑛], 

calculate the spatial extent of 𝐹𝑖 between 𝑡𝑗 and 𝑡𝑗+1 (0 ≤ 𝑗 ≤ 𝑛 − 1) 𝑒𝑥𝑡(𝐹𝑖|𝑡𝑗 , 𝐹𝑖|𝑡𝑗+1), 

if 𝑒𝑥𝑡(𝐹𝑖|𝑡𝑗 , 𝐹𝑖|𝑡𝑗+1) < 𝑑 (𝑑 > 0) , then time interval [𝑡0, 𝑡𝑛] is split into two sub time 

intervals, i.e., [𝑡0, 𝑡𝑗] and [𝑡𝑗+1, 𝑡𝑛]. Continue this until the spatial extents of 𝐹𝑖 between any 

two consecutive timestamps are checked. Thus, 𝐹𝑖  is divided into multiple sub flock 

patterns if there exits time intervals during which the objects involved in 𝐹𝑖  appear 

stationary. 

(2) Repetitively execute step (1) till all flock patterns are checked. 

Based on the operations mentioned above, for specific flock patterns, a collection of sub 

flock patterns might be generated if there exists time intervals during which the involved 

objects are not ‘moving’. However, among the generated sub flock patterns, the time 

durations of some might be shorter than k. In this case, such sub flock patterns have to be 

deleted. Finally, the remaining flock patterns are all considered as moving flock patterns.  

Take Figure 5.5(b) for example, if we consider the spatial extent of flock pattern 

{1, 3}|[𝑡0, 𝑡3] between 𝑡2 and 𝑡3 does not meet the requirement of a moving flock, then the 

flock pattern is split into two sub flock patterns: {1, 3}|[𝑡0, 𝑡2] and {1, 3}|[𝑡3, 𝑡3]. Assume 

m still equals to 2 and k still equals to 2, {1, 3}|[𝑡3, 𝑡3] is not considered as a flock pattern. 

Hence, based on the extracted flock patterns presented in section 3.3, we can finally extract 

all the moving flock patterns, which are {1, 3}|[𝑡0, 𝑡2] , {4, 5}|[𝑡1, 𝑡4] , {2, 4}|[𝑡2, 𝑡4] , 

{2, 5}|[𝑡2, 𝑡4] and {2, 4, 5}|[𝑡2, 𝑡4], respectively. 

5.3.5 Extracting the eight types of moving flock patterns 

In this chapter, we mainly focus on the eight types of moving flock patterns listed in Table 

5.1. The method to extract each of the eight types of moving flock patterns is described as 

follows:  

(1)  Assume n moving flock patterns 𝐹𝑀 = {𝐹𝑀1
 , 𝐹𝑀2

, … , 𝐹𝑀𝑛
}, for each moving flock  
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pattern 𝐹𝑀𝑖
 ( 1 ≤ 𝑖 ≤ 𝑛 ), calculate the number of objects involved in it and its 

corresponding time duration. Assume the results are 𝑛𝑖 and 𝑡𝑖, respectively; 

(2) Repetitively execute step (1) till all moving flock patterns are checked. The final results 

are stored in two collections N and T, respectively, where 𝑁 = {𝑛1, 𝑛2, … , 𝑛𝑛} and 𝑇 =

{𝑡1, 𝑡2, … , 𝑡𝑛}; 

(3) Calculate the minimum values and the maximum values of N and T. Assume they are 

min_N, max_N, min_T and max_T, respectively; 

(4) Each of the eight types of moving flock patterns is extracted according to the 

corresponding method as follows: 

Type A: find out the moving flock patterns whose time duration equals to max_T in 𝐹𝑀; 

Type B: find out the moving flock patterns whose time duration equals to min_T in 𝐹𝑀; 

Type C: find out the moving flock patterns whose number of involved objects equals to 

max_N in 𝐹𝑀; 

Type D: find out the moving flock patterns whose number of involved objects equals to 

min_N in 𝐹𝑀; 

Type E: find out the moving flock patterns whose time duration equals to max_T and 

number of involved objects equals to max_N in 𝐹𝑀; 

Type F: find out the moving flock patterns whose time duration equals to max_T and 

number of involved objects equals to min_N in 𝐹𝑀; 

Type G: find out the moving flock patterns whose time duration equals to min_T and 

number of involved objects equals to max_N in 𝐹𝑀; 

Type H: find out the moving flock patterns whose time duration equals to min_T and 

number of involved objects equals to min_N in 𝐹𝑀. 

Based on this method, all the eight types of moving flock patterns can be extracted. Take 

the sample dataset in Figure 5.5 for instance, the finally extracted eight types of moving 

flock patterns are listed in Table 5.2. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

Figure 5.5. Illustration of the methodology: (a) the sample dataset, (b) the groups of objects at each 

timestamp according to parameter r, (c) the generated vertices, (d) the remaining vertices after deleting 

specific ones, (e) the generated Reeb graphs, and (f) the remaining Reeb graph after filtering the specific 

one. 
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Table 5.2. The extracted eight types of moving flock patterns based on the sample dataset shown 

in Figure 5.4. 

Type of moving flock patterns Extracted moving flock patterns 

A {4, 5}|[t1, t4] 

B {1, 3}|[t0, t2] 

{2, 4}|[t2, t4] 

{2, 5}|[t2, t4] 

{2, 4, 5}|[t2, t4] 

C {2, 4, 5}|[t2, t4] 

D {1, 3}|[t0, t2] 

{4, 5}|[t1, t4] 

{2, 4}|[t2, t4] 

{2, 5}|[t2, t4] 

E none 

F {4, 5}|[t1, t4] 

G {2, 4, 5}|[t2, t4] 

H {1, 3}|[t0, t2] 

{2, 4}|[t2, t4] 

{2, 5}|[t2, t4] 

5.4 Case study 

5.4.1 Dataset 

The movement data adopted in this chapter were obtained from a real and entire football 

match between ‘Club Brugge KV’ and ‘Standard de Liège’ which took place on 2nd March 

2014. For simplicity, we call them ‘Club Brugge’ and ‘Standard Liège’ respectively in the 

remainder of this chapter. The dataset includes both spatio-temporal information and 

semantic information. The spatio-temporal information is recorded in a (id, x, y, t) format, 

where id identifies a specific player, x and y respectively denote the x and y coordinates of 

the player’s position, and t represents the corresponding timestamp. The semantic 

information mainly includes the basic information of both teams (such as names of players, 

id numbers of players and positions played) and the events that happened during the match 

(such as event name, time of occurrence and ids of the actors). The spatio-temporal 

information can be used to discover moving flock patterns based on the approach proposed 

in this chapter, and the semantic information can be used to validate the discovered moving 

flock patterns when necessary.  

As football is considered as a highly interactive sport (since the players need to interact 
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frequently with the teammates), various types of interaction patterns can be involved. 

Among them, moving flock patterns are the ones that are of particular interest to us. This 

is important as the discovery and exploration of moving flock patterns can give insight into 

a team’s playing style, thus might be useful for potential tactics arrangement. In this chapter, 

as the main focus is on the methodology, we only use the movement data of the players 

(except the goalkeeper) of Club Brugge during the first five minutes (i.e., [0, 300] s). This 

is because coaches might be very interested in the opening of the match, as they might give 

their instructions on the tactics just a few minutes before the start of the match, and want 

to evaluate them in the first minutes of the match. In the original dataset, the locations of 

all the players were tracked at a temporal resolution of 0.1 s. In order to reduce 

computational complexities, we down-sampled the temporal resolution from 0.1 s to 1 s. 

After processing, 3010 discrete points and 10 trajectories are generated. They are visualised 

in Figure 5.6. In addition, the ten players are represented by player 1, player 2, player 3, …, 

and player 10 due to privacy issues. 

 

(a) 

 

(b) 

Figure 5.6. Visualisation of the movement data: (a) the discrete points, and (b) the trajectories. 

5.4.2 Results and analysis 

As is introduced, four parameters (i.e., r, m, k and d) are involved in the proposed approach, 

hence, different parameter values might result in the variation of moving flock patterns 

discovered. Based on this, the relations between the values of parameters and the number 

of moving flock patterns discovered are explored. Note that when exploring the relations 
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between the varying values of one sole parameter and the number of moving flock patterns 

discovered, the other three parameters are set to the default values. The default values of 

the four parameters are listed in Table 5.3. The reason why considering them as default 

values is that: (1) for each parameter, the default value is neither too large nor too small, 

and (2) relatively more moving flock patterns can be found, based on which much useful 

information might be provided. Note that the units of r, k and d are meter, second and meter, 

respectively. The relations between the values of the four parameters and the number of 

moving flock patterns discovered are shown in Figure 5.7. 

Table 5.3. The default values of the four parameters. 

The parameters The default values 

r 10 

m 3 

k 3 

d 0.5 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 5.7. The relations between the values of parameters and the number of moving flock 

patterns discovered: (a) r, (b) m, (c) k, and (d) d. 

According to Figure 5.7, we can find that for parameter r, the number of moving flock 

patterns becomes larger when r becomes larger in general. However, there is an outlier 

when r equals to 9. Hence, 9 appears to be a good value for r. For parameters m, k and d, 

the number of moving flock patterns becomes smaller when the values become larger. 
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However, when the values are larger than specific values, no any moving flock pattern can 

be discovered. According to this, we can find that the default values for m, k and d listed 

in Table 5.3 appear reasonable. In addition, the figures reveal that the impacts of m, k and 

d on the results appear more regular and predictable compared to that of r.  

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 5.8. The relations between the values of parameters and the number of the eight types of 

moving flock patterns discovered: (a) r, (b) m, (c) k, and (d) d. 

In addition, the relations between the values of parameters and the number of the eight 

types of moving flock patterns discovered (i.e., types A ~ H) are explored as well, which 

are shown in Figure 5.8. From Figure 5.8, we can notice that generally the number of five 

types of moving flock patterns are relatively large, which are types B, D, F, G and H. 

Comparatively, the number of the other types of moving flock patterns is quite small. 

Besides, the overall trends between the number of moving flock patterns of types D, G and 

H and parameters r, m and d are similar to that in Figure 5.7. However, slight differences 

still exist. For moving flock patterns of type B, the differences are even obvious. This 

demonstrates that the number of the eight types of moving flock patterns discovered does 

not obey strict rules with the number of moving flock patterns discovered, although the 

overall trends are similar. On the other hand, for types A, C, E, and F, there are little 

differences between the number of moving flock patterns discovered and the values of the 
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four parameters. This is because types E, F, G and H can be considered as subsets of either 

type A, type B, type C or type D (as shown in Figure 5.4). Hence, the number of moving 

flock patterns which are considered as subsets is comparatively smaller. 

In addition to the values of individual parameters, the combination of different parameter 

vales can also influence the number of moving flock patterns discovered. Hence, key to 

this is to find a suitable value for each parameter. In order to achieve this, we perform the 

hierarchical clustering of the four parameters based on Figure 5.7. This is because more 

details (e.g., similarities and dissimilarities) can be revealed level by level via hierarchical 

clustering, based on which suggestions on good parameter values can be provided. Thus, 

one can determine the optimal parameter values according to his/her specific demands. The 

result after hierarchical clustering is shown in Figure 5.9. In Figure 5.9, for each 

dendrogram, the height of the links between/among the elements in the same cluster 

denotes their degree of similarity. A higher link demonstrates that the corresponding 

elements are more dissimilar to each other. The optimal parameter values thus can be 

determined based on the degree of similarity one desires. In our case, for each parameter, 

we determine the value who has the most dissimilarities with others to be the optimal value. 

Based on this, we can conclude that the optimal values for parameters m, k, and d are 4, 3, 

and 0.5, respectively. For parameter r, although values of 14 and 15 have the largest 

dissimilarity, they are not considered as the optimal values. This is because, according to 

the relations demonstrated in Figure 5.7(a), the number of moving flock patterns is rather 

too large when r equals to 14 or 15, thus the result appears not so satisfying. Hence, the 

values at a lower dissimilarity level (i.e., 9 and 12) appears fine. Combined with the outlier 

revealed in Figure 5.7(a), we adopt 9 as the optimal value for r. Therefore, according to 

Figure 5.9, the optimal values for the four parameters are: r = 9, m = 4, k = 3 and d = 0.5. 

We hence try the proposed approach under the following parameter combination: r = 9, m 

= 4, k = 3 and d = 0.5. Finally, 72 moving flock patterns are discovered. As not all of them 

are interesting, we further discover the eight types of moving flock patterns. In particular, 

the number of the eight types of moving flock patterns discovered are shown in Table 5.4.  
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(a) 
 

(b) 

 

(c) 

 

(d) 

Figure 5.9. The hierarchical clustering of the four parameters: (a) r; (b) m; (c) k, and (d) d. 

Table 5.4. The number of the eight types of moving flock patterns discovered based on the 

proposed approach under the parameter combination: r = 9, m = 4, k = 3 and d = 0.5. 

Type of moving flock patterns Number of moving flock patterns 

A 4 

B 33 

C 1 

D 40 

E 0 

F 3 

G 1 

H 17 

From Table 5.4, we can see that the numbers of some specific types of moving flock 

patterns are quite large, such as types D and B. This demonstrates that among the moving 

flock patterns, a large part is with the shortest time duration (type B) or with the smallest 

number of objects (type D). Comparatively, the number of moving flock patterns which 

are with the longest duration (type A) or with the largest number of objects (type C) are 

quite small. Furthermore, there is even no such pattern which is with both the longest 

duration and the largest number of objects (type E). In order to investigate the discovered 

moving flock patterns deeply, we exhibit the detailed information (i.e., the involved players 

and the corresponding time interval) of each moving flock pattern. Note that for illustration 

purposes and due to the length of the chapter, we only show the first three moving flock 

patterns of types A, B, D and H. The detailed information is listed in Table 5.5. The moving 
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 flock patterns which are listed in Table 5 are visualised in Figure 5.10. 

Table 5.5. The detailed information of the eight types of illustrated moving flock patterns under 

the parameter combination: r = 9, m = 4, k = 3 and d = 0.5.  

Type of moving flock patterns Detailed information of the moving flock patterns 

A {2, 8, 9, 10}|[244, 259] 

B {1, 8, 9, 10}|[264, 268] 

{2, 3, 9, 10}|[264, 268] 

{2, 5, 7, 10}|[247, 251] 

C {1, 4, 5, 8, 9, 10}|[247, 252] 

D {3, 5, 7, 9}|[233, 238] 

{1, 5, 8, 9}|[247, 252] 

{1, 8, 9, 10}|[244, 252] 

E none 

F {2, 8, 9, 10}|[244, 259] 

G none 

H {1, 8, 9, 10}|[264, 268] 

{2, 3, 9, 10}|[264, 268] 

{2, 5, 7, 10}|[247, 251] 

From Table 5.5, we can observe that generally there are only seven different moving flock 

patterns, as some of them affiliate to multiple types. Take moving flock pattern {5, 8, 9, 

10}|[244, 252] for example, it can be considered as either type A or type F. According to 

Figure 5.10 we can see that generally the overall variations of the spatial locations of the 

eight moving flock patterns listed in Table 5.5 are not quite large. By referring to the 

semantic information of the dataset, we find that the match was temporarily interrupted 

(e.g., ‘clearance’ event happened) during these time intervals, which hence resulted in the 

relatively small variations of spatial locations, as the players were not running fast. One 

important reason for this might be that 0.5 is not a quite large value for parameter d. Hence, 

some of the moving flock patterns which the spatial extents between two consecutive 

timestamps are not quite large are involved. In all, this demonstrates that the proposed 

approach indeed has the capability to discover moving flock patterns and further 

distinguish the eight types of moving flock patterns.  

In order to validate the proposed approach further, we also try another parameter 

combination: r = 15, m = 4, k = 3 and d = 2. This is because under this parameter 

combination, on the one hand, more number of moving flock patterns might be discovered. 

On the other hand, the variations of spatial locations of the discovered moving flock 
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patterns should be larger, which might be more interesting to people. The results show that 

94 moving flock patterns are discovered under this parameter combination. Specifically, 

the number of the eight types of moving flock patterns and the detailed information of the 

illustrated moving flock patterns under this parameter combination are listed in Table 5.6 

and Table 5.7, respectively. The moving flock patterns listed in Table 5.7 are visualised in 

Figure 5.11. 

Table 5.6. The number of the eight types of moving flock patterns discovered based on the 

proposed approach under the parameter combination: r = 15, m = 4, k = 3 and d = 2. 

Type of moving flock patterns Number of moving flock patterns 

A 1 

B 34 

C 6 

D 60 

E 0 

F 1 

G 4 

H 18 

Table 5.7. The detailed information of the eight types of illustrated moving flock patterns under 

the parameter combination: r = 15, m = 4, k = 3 and d = 2. 

Type of moving flock patterns Detailed information of the moving flock patterns 

A {1, 2, 6, 7}|[175, 182] 

B {1, 4, 5, 7}|[14, 17] 

{1, 4, 7, 8}|[15, 18] 

{2, 4, 7, 8}|[15, 18] 

C {1, 2, 4, 7, 8, 9}|[15, 18] 

{1, 2, 4, 7, 8, 10}|[15, 18] 

{1, 2, 4, 7, 9, 10}|[15, 21] 

D {1, 5, 7, 10}|[6, 11] 

{1, 2, 4, 7}|[15, 21] 

{1, 2, 4, 9}|[15, 21] 

E none 

F {1, 2, 6, 7}|[175, 182] 

G {1, 2, 4, 7, 8, 9}|[15, 18] 

{1, 2, 4, 7, 8, 10}|[15, 18] 

{1, 4, 7, 8, 9, 10}|[15, 18] 

H {1, 4, 5, 7}|[14, 17] 

{1, 4, 7, 8}|[15, 18] 

{2, 4, 7, 8}|[15, 18] 

From Table 5.7, we can see that generally eleven different moving flock patterns are listed. 

From Figure 5.11, we can find that the overall variations of the spatial locations of the 

eleven moving flock patterns are larger than that visualised in Figure 5.10. By combining 
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the semantic information, we found that during the time intervals listed in Table 5.7, the 

player were either passing the ball, receiving the ball or running with the ball. Hence, the 

spatial locations of the moving flock patterns vary more. According to Figure 5.10 and 

Figure 5.11, we can conclude that the proposed approach can indeed be used to discover 

moving flock patterns, and different results can be derived under different parameter 

combinations. One can thus select specific parameter values according to his/her own 

demands when necessary in order to find the desired moving flock patterns. 

Table 5.8. The top five most frequently appeared groups of players in all the detected moving 

flock patterns under the parameter combination: r = 9, m = 4, k = 3 and d = 0.5. 

Groups of players involved in moving flock patterns Number of appearance 

{3, 4, 8, 10} 13 

{3, 4, 9, 10} 12 

{1, 3, 4, 10} 12 

{1, 3, 4, 9} 12 

{3, 4, 8, 9} 11 

Table 5.9. The top five most frequently appeared groups of players in all the detected moving 

flock patterns under the parameter combination: r = 15, m = 4, k = 3 and d = 2. 

Groups of players involved in moving flock patterns Number of appearance 

{4, 7, 9, 10} 10 

{4, 7, 8, 10} 10 

{4, 7, 8, 9} 10 

{2, 4, 7, 10} 10 

{2, 4, 7, 9} 10 

Moreover, the group of players which are involved in the same moving flock pattern for 

multiple times appears interesting, as this group might interact well with each other 

comparatively. Thus, it might be helpful for coaches to arrange specific tactics based on 

this. We also provide an additional function to detect such groups of players from the 

discovered moving flock patterns. For illustration purposes, the top five groups of players 

which appear frequently in the discovered moving flock patterns under the two 

aforementioned parameter combinations are listed in Table 5.8 and Table 5.9, respectively. 

In Table 5.8 and Table 5.9, the first column denotes the group of players and the second 

column corresponds to the number of appearances of the group. Suggestions might be 

provided to sports professionals (e.g., coaches) for potential tactical arrangements based 
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on the results. 

5.5 Conclusions and future work 

Currently, movement data are collected in a variety of domains, thus are becoming a 

popular type of data. Many research topics have been undertaken with respect to movement 

data, among which the discovery of various movement patterns takes a large proportion. 

As key contributions of this chapter, first, an improved definition of moving flock is 

developed based on existing definitions. Second, a taxonomy of moving flock patterns is 

proposed, based on which eight types of interesting moving flock patterns are derived. 

Third, a Reeb graph based approach is proposed to discover moving flock patterns, and the 

approach is further used to discover the eight types of moving flock patterns. In general, 

five steps are included in the proposed approach: (1) the corresponding Reeb graphs are 

generated based on the movement data; (2) the Reeb graphs which do not meet specific 

requirements are filtered; (3) flock patterns are extracted from the remaining Reeb graphs; 

(4) moving flock patterns are discovered based on the extracted flock patterns, and (5) each 

of the eight types of moving flock patterns is discovered based on the extracted moving 

flock patterns. The approach is then validated based on the movement data obtained from 

a real football match. The results demonstrate that the proposed approach can indeed be 

used to discover moving flock patterns, and potential insights can be provided to sports 

professionals for tactics arrangements.  

In this chapter, when generating the Reeb graphs, only the simplified Reeb graphs are 

considered. The complete Reeb graphs can also be considered in the future. This is because 

with the complete Reeb graphs, the entire changes (e.g., spatial configuration) of all 

moving objects over time can be investigated, according to which more insightful 

information can be provided. With respect to the proposed approach, it involves four 

parameters. The impacts of the four parameters on the results are analysed. Although we 

suggest a way to select suitable parameter values, the selection of optimal parameter values 

is still an open question. In spite that the proposed approach is validated using the football 
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movement data obtained from a real football match and the approach shows its 

effectiveness, it is still a relatively small dataset. Larger datasets (e.g., the movement data 

of the whole match) might be adopted in the future to discover more moving flock patterns 

in order to provide more insights to sports professionals when necessary. In addition, the 

movement data from other domains can be employed to extend the range of applications 

of the proposed approach. 
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6.1 General discussion  

This section discusses the main outcomes and contributions of this thesis within a general 

research background. Because each of the chapters in this thesis focuses on at least one of 

the four research questions proposed in Chapter 1, this section elaborates on the value of 

this research and the remaining issues in a number of respects. Recommendations for future 

work are proposed where appropriate. 

As introduced in previous chapters, the amount of movement data is increasing with the 

rapid development of location-aware techniques. Thus, these data are among the most 

frequent and important data sources today, especially in the big data era. Movement data 

usually include abundant information, such as spatio-temporal information and semantic 

information, in which important information/knowledge with respect to one or multiple 

moving object(s) is hidden. Because moving objects can denote nearly all types of objects 

in the world ranging from the objects with huge volumes (e.g., planets) to the objects with 

extremely small sizes (e.g., molecules), the analysis of movement data has broad 

applications in various domains. The aim of this thesis is to develop new approaches for 

analysing movement data from the perspective of geographical information science 

(GIScience). We aim to propel the development of research with respect to the analytic 

approaches or techniques of movement data in the GIScience domain so that voluminous 

and various movement data can be easily analysed instantaneously or gradually in the 

future. In addition, one important innovation of this thesis is the application of state-of-the-

art approaches of analysing movement data into one novel field (i.e., sports), which has 

received increasing attention recently, to provide added value to current research in sports 

analytics. 

We first aim to conduct a visual analysis of movement data. Compared with previous 

research, we proposed the application of the Continuous Triangular Model (CTM) to the 

visual analysis of movement data. The CTM is a novel model that was originally developed 

by Qiang et al. (2014). The most distinctive characteristic of the CTM is that it can 

represent continuous changes of information for objects at all temporal scales and with 
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good visualisation capability. Accordingly, this method has been applied to analyse linear 

data (Qiang et al., 2014); however, it has rarely been used to analyse movement data.  

Chapter 2 presents the results of an analysis of football movement data using the CTM. 

The research focuses on the exploration of a match performance, which is considered an 

important issue in the domain of sports analytics. The results demonstrate that the CTM is 

indeed useful in exploring match performances, discovering insightful information, and 

providing potential suggestions to sports professionals (e.g., coaches) because compared 

with current methods that are frequently used in football match analysis, the CTM can 

visualise continuous changes of information (e.g., speed, ball possession, territorial 

advantage) at any temporal scale from the starting timestamp until the ending timestamp 

in one single figure. In this way, sports professionals (e.g., coaches) can gain an overall 

and detailed grasp of changes in player data. Therefore, the proposed method increases the 

added value compared with traditional methods and might have more options for further 

tactical arrangements, which represents one of the strengths of applying the CTM to the 

analysis of football movement data. A second strength is that in addition to representing 

information that can be derived by spatio-temporal data, the CTM also has the ability to 

visualise semantic information, which might be highly interesting to sports professionals. 

Important semantic information, such as ‘shot on target’ and ‘goal’ (which are two 

important factors that determine whether a team can win or not), can be clearly visualised 

in the CTM diagrams. With this information, sports professionals can obtain a clear 

overview of the desired semantic information and more conveniently explore the 

underlying reasons to identify potential suggestions for improving training or tactical 

arrangements. Because the abilities of the CTM can be enhanced by the support of map 

algebra operations (e.g., summation, subtraction, maximum, minimum, mean, median), 

this method has strong extensibility and provides various functions to achieve many simple 

or advanced analyses or investigations. Hence, potential future research into the CTM 

could focus on incorporating the CTM into an interactive graphical user interface, which 

could augment the usability of the CTM for sports analytics, and incorporating the CTM 
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with a heat map, which is considered as a useful and popular visualisation tool in team 

sports analysis. Thus, the ability of the heat map can be enhanced to address temporal 

information. In all, the CTM is regarded as a novel tool for analysing movement data. We 

are convinced that more extensive applications with respect to the CTM can emerge in the 

domain of movement data analysis in the future. 

Next, we conducted research on knowledge discovery in movement data. Because data 

mining has already attracted considerable attention in this data-rich era, it has been 

considered a key technique for knowledge discovery in various data (Han & Kamber, 2006). 

Thus, data mining techniques can be used to identify useful knowledge in movement data 

as well. Useful knowledge includes movement patterns and important time intervals, which 

are two main foci of this thesis.  

Chapter 5 mainly focuses on movement pattern discovery in movement data. Various types 

of movement patterns are observed in movement data, such as flock patterns, convoy 

patterns, leadership patterns, moving clusters, and crews. In this thesis, we are particularly 

interested in moving flock patterns. Definitions of moving flock patterns are still lacking, 

and few common taxonomies of moving flock patterns are available to divide moving flock 

patterns into various categories. Therefore, as one of the main contributions in this chapter, 

we proposed an improved definition of ‘moving flock’ in Chapter 5 based on the definition 

proposed in Wachowicz et al. (2011). Compared with the original definition of moving 

flock, the improved definition can identify moving flock patterns in movement data more 

accurately. Another main contribution is the proposed taxonomy of moving flock patterns, 

which is used to derive a number of different types of moving flock patterns. The desired 

types of moving flock patterns can be derived according to specific demands. Specifically, 

we are interested in eight types of moving flock patterns. To automatically identify these 

types of moving flock patterns in movement data, we developed a Reeb graph-based 

approach, which is considered the third main contribution. The proposed approach was 

applied to football movement data obtained from a real football match, and the results 

indicate that the proposed approach is capable of discovering the desired moving flock 
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patterns. In this approach, the Reeb graph is employed as a novel tool to model movement 

data as a graph, and based on the generated graph, corresponding algorithms are designed 

to discover the moving flock patterns. Although the Reeb graph has been extensively used 

in many fields, such as shape analysis (Biasotti et al., 2008; Chen et al., 2013) and scientific 

data visualisation (Fomenko & Kunii, 1997; Edelsbrunner & Harer, 2010), it has rarely 

been adopted in GIScience. In the future, other types of movement patterns might be 

discovered by developing corresponding Reeb graph-based approaches. If so, Reeb graphs 

can be adopted as an interesting tool for analysing movement data or even extended to 

analyse other types of spatio-temporal data. In addition, this approach consists of four 

parameters. Although we have investigated the influences of each parameter on the 

corresponding results and the findings demonstrate that the results are meaningful under 

the suggested/chosen parameter combinations, the selection of optimal parameter values is 

still an open and difficult question. Considerable research still needs to be conducted either 

to investigate how the parameters influence the results to determine more optimal 

parameter values or to improve the approach by involving less parameters. 

The work presented in Chapter 3 can be considered within the scope of knowledge 

discovery in movement data. The main contribution of Chapter 3 is the development of a 

cross-scale oriented sequence analysis approach to discovering knowledge in movement 

data. Scale is considered an important factor in this chapter in the development of the 

approach because scale is a common problematic issue in many disciplines, particularly 

when space and time are important components (e.g., GIScience). Correspondingly, scale 

can be classified as the spatial scale, temporal scale and spatio-temporal scale. The scale 

appears even more important, especially when it has been considered as the fifth dimension 

in 5D data modelling (van Oosterom & Stoter, 2010). Given the importance of scale, we 

primarily aim to explore the effects of scale in the analysis of movement data. In this 

chapter, we mainly focus on the temporal scale. The effects of temporal scale on the 

changes of movements of objects are explored by considering the values of motion 

attributes (e.g., speed) across a large number of temporal scales. The results reveal how 
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specific temporal scales affect the movement changes of objects. Another important 

contribution of this chapter is the development of an approach for identifying the time 

intervals during which important events might occur because such data are very important 

to specific people. For example, the time intervals during which traffic congestion might 

occur are important to traffic planning and management-related specialists. In sports, these 

data are also important. For example, in football, specific actions, such as a goal and a shot, 

are of interest to coaches because they can be used to analyse the performance of players 

or the whole team. Thus, the time intervals during which these events occur are important. 

In this approach, temporal scales were involved when detecting such time intervals, which 

is novel compared with approaches that do not consider temporal scales. The results 

demonstrate that the approach is capable of detecting the time intervals during which 

important events occur and can generate superior results compared with methods that only 

consider one temporal scale. In this chapter, only speed is used as an example when 

exploring the changes of motion attributes, and other attributes, such as distance and 

motion azimuth, might be explored using the proposed approach in the future. Only the 

temporal scale is considered in this chapter and this thesis. In addition to the temporal scale, 

the spatial scale and spatio-temporal scale are also important. In future research, either the 

spatial scale or the spatio-temporal scale can be considered. Combining the spatial or 

spatio-temporal scale with the research outcomes with respect to the temporal scale in this 

thesis can generate clear insights into the influence of scale on the analysis of movement 

data. This approach is also quite extensive; thus, it can also be applied to movement data 

in other domains. 

The last research focus in this thesis is the dynamic interactions in movement data. In this 

thesis, we only considered the interactions between/among moving objects themselves. 

Furthermore, interactions can be classified as static interactions and dynamic interactions 

(Doncaster, 1990). Similar to spatio-temporal data, dynamic interactions are defined based 

on both the spatial and temporal components, whereas static interactions are purely 

described by the spatial properties (Miller, 2015). In this work, we are more interested in 
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the dynamic interactions. The existing research on dynamic interactions mainly focuses on 

either comparing or evaluating existing interaction methods based on different datasets. 

Dynamic interactions are primarily explored between two moving objects, and previous 

research on dynamic interactions has generally been performed at a single temporal scale. 

Hence, an exploration of dynamic interactions among multiple moving objects and at 

multiple temporal scales is needed. To our knowledge, previous studies have not focused 

on exploring the importance of each object and identifying the objects that play relatively 

important roles in maintaining specific types of interaction patterns.  

Accordingly, Chapter 4 presents a hybrid approach that combines the Multi-Temporal 

Scale Spatio-Temporal Network (MTSSTN) and the CTM to meet the aforementioned 

demands. This approach represents the key contribution of Chapter 4, and it is applied to 

analyse football movement data. The results show that the proposed approach is capable of 

exploring various interactions either between two players or among multiple players at any 

temporal scale, and it is also useful in evaluating the importance of each player and 

identifying the most important players. The most obvious characteristics of the proposed 

approach are its superiority in analysing dynamic interactions at multiple temporal scales 

compared with previous methods and ability to explore the dynamic interactions among 

multiple (usually at least three) objects. Another distinctive characteristic proposed in this 

work is the MTSSTN, which is a rather novel type of network that is more advanced than 

the Spatio-Temporal Network (STN) recently developed by Williams & Musolesi (2016) 

because it can address multi-temporal scale related issues while the STN cannot. In this 

chapter, the interactions were explored based on the corresponding interaction patterns 

generated in terms of the Relative Trajectory Calculus (RTC) (Van de Weghe, 2004). 

Although the results demonstrate the meaning and effectiveness of the derived interaction 

patterns, the interaction patterns still appear simple. In future research, more sophisticated 

interaction patterns might be derived using other potential methods to enhance the 

meanings of the interaction patterns. Optional methods include the Qualitative Trajectory 

Calculus (QTC) (Van de Weghe et al., 2004; Van de Weghe et al., 2005; Van de Weghe et   
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al., 2006), Dynamic Interaction (DI) (Long & Nelson, 2013), and RElative MOtion (REMO) 

(Laube et al., 2005). In this way, more meaningful and insightful information on dynamic 

interactions in movement data might be revealed. 

6.2 Conclusions 

In recent decades, a dramatic improvement of positioning technologies has been observed, 

and it has led to the generation of massive volumes of tracked data on virtually any object 

that moves, which are called ‘movement data’ in this thesis. Thus, many new methods for 

managing these data have been developed and applied to a multitude of application 

domains. However, new approaches for analysing such data and extensions of approaches 

to novel applications are required. Motivated by these demands, this thesis mainly aims to 

develop new approaches for the analysis of movement data and extend the developed 

approaches to a relatively novel application domain: sports. Thus, this thesis contributes to 

both methodological and application-oriented research. Four general research questions are 

posed in this thesis. Based on the research questions, four chapters are subsequently 

presented, and each can answer the research questions in whole or in part. The answers 

provided to resolve these questions are considered the main contributions of this thesis.  

This thesis presents an original research effort on the use of the CTM to analyse football 

movement data obtained from a real and entire football match. Although the CTM has 

already been proposed by Qiang et al. (2014), it has not been used broadly and thus has the 

potential to be extended significantly to a large number of domains in the future. Moreover, 

the functionalities of the CTM could be extended to a considerable degree. Hence, in this 

chapter, we contribute to developing the functionalities of the CTM and the initial 

applications of the CTM in football. The applications are achieved via visual explorations 

of a match performance based on the obtained football movement data. In general, the 

performance of players and teams is explored according to the CTM diagrams of various 

motion attributes. Specifically, the motion attributes include several basic motion attributes 

and one more complex motion attribute, which builds upon multiple basic attributes. As 
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for the basic motion attributes, further operations are executed based on map algebra 

operators to identify more insightful information. The results demonstrate that the CTM 

can indeed be used to serve the domain of sports analytics (e.g., exploring a match 

performance) and thus can be used by sports professionals to obtain distinct information 

that cannot be obtained by traditional approaches in sports analytics or data that are difficult 

to obtain. Because the main focus of this thesis is developing new approaches for analysing 

movement data, this application for sports analysis (i.e., football) can be considered a first 

step. In the future, the proposed method can be combined with more detailed interpretations 

by domain specialists. We are convinced that this research can be extended significantly to 

better serve the domain of sports analytics in the future. 

This thesis contributes to knowledge discovery in movement data by developing a cross-

scale oriented sequence analysis approach. The key aspects of this approach are the four 

different types of sequences that are constructed based on the CTM, and each of the 

sequences is considered based on varying temporal scales. Based on the four types of 

sequences, two specific aims are achieved: investigating the changes of motion attributes 

across different temporal scales (based on the first type of sequences) and detecting the 

time intervals during which important events might occur (based on the remaining three 

types of sequences). The results show that more abundant information can be gained by 

investigating the changes of motion attributes across different temporal scales, and the time 

intervals detected by the proposed approach are more accurate than approaches that do not 

consider multiple temporal scales. This finding demonstrates the usefulness and 

effectiveness of the proposed approach. A hybrid approach that combines the MTSSTN 

and the CTM was proposed in this thesis to explore the dynamic interactions in movement 

data. Specifically, the dynamic interactions are explored based on specific interaction 

patterns derived by the RTC based on an exploration of the interaction intensities between 

two individuals or among multiple individuals as well as on the importance of each 

individual and identifying the most important individuals for maintaining each type of 

interaction pattern. The proposed approach is validated with the football movement data. 
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The results demonstrate that the proposed approach is useful for exploring dynamic 

interactions in movement data. We believe that this research can play specific roles in the 

relatively new domain of dynamic interactions in movement data in the future. 

This thesis also contributes to the discovery of movement patterns in movement data. 

Specifically, the primary objective of this thesis is to discover moving flock patterns, which 

is of particular interested. The main contributions in this chapter are threefold: first, an 

improved definition of ‘moving flock’ is proposed, and it can be used to more accurately 

characterise moving flock patterns; second, a taxonomy of moving flock patterns is 

developed, and it can be used to derive a large amount of moving flock patterns; third, a 

Reeb graph-based approach is developed. Among the large amount of moving flock 

patterns, we are particularly interested in eight types, and the Reeb graph-based approach 

is developed to identify the desired moving flock patterns. The football movement data are 

used to validate the proposed approach. The results show the effectiveness of the proposed 

approach in discovering moving flock patterns and the potential usefulness of the proposed 

approach in providing insightful information to domain experts. The results indicate that 

the approach has much potential for use in other application domains as well.  
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With the development of location-aware technologies, massive volumes of tracked data on 

virtually any object that moves have emerged, which has led to a proliferation of movement 

data. Thus, new approaches for analysing such data are greatly needed. In addition, the 

ability to extend available approaches to new domains is also in demand. Motivated by 

these developments, this thesis mainly focuses on developing new approaches for the 

analysis of movement data. As a first step, the approaches developed in this thesis are used 

in a relatively novel application domain: sports. Specifically, football movement data 

obtained from a real and entire football match are adopted to support the methodological 

and sports-oriented research in this thesis. In this section, the contributions with respect to 

the major research questions proposed in Chapter 1 are summarised. 

RQ 1: Can the CTM bring added value to the analysis of movement data? 

The Continuous Triangular Model (CTM) has two distinct characteristics in representing 

temporal information: visualisation and multiple scales. Hence, in this thesis, to explore 

the added value of the current research in the analysis of movement data, the CTM is used 

and developed as a tool to analyse movement data, either from a visualisation perspective 

or from a multi-scale perspective. This research question is addressed in Chapters 2, 3 and 

4. 

Chapter 2 presents an exhaustive application of the CTM in analysing movement data using 

football movement data obtained from a real and entire football match as an example. In 

this study, the functionalities of the CTM are extended and presented based on the 

movement data corresponding to an entire football match (from the beginning to the end), 

which to our knowledge is a first use of the CTM for such a large dataset. The performance 

of both the players and the whole team can be explored and evaluated according to the 

CTM diagrams of corresponding motion attributes, either from a visualisation perspective 

or a multi-scale perspective. The results demonstrate that the CTM is indeed useful in 

exploring a match performance and discovering insightful information. In Chapter 4, the 

main focus is on the exploration of dynamic interactions in movement data by developing 

a hybrid approach. The hybrid approach combines the Multi-Temporal Scale Spatio-
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Temporal Network (MTSSTN) and the CTM. The CTM is used as a reference to construct 

a MTSSTN with a CTM-like shape. Based on the constructed MTSSTNs, the interaction 

intensity measures between/among objects can be calculated and subsequently visualised 

using the CTM diagrams and the importance of individual objects can be determined. 

According to the corresponding CTM diagrams, the interaction intensities between/among 

objects, the importance of each individual, and the most important individuals in each 

interaction pattern can also be explored from a visualisation perspective or a multi-scale 

perspective. The results demonstrate the effectiveness of the proposed approach in the 

application of football. The research presented in both Chapters 2 and 4 show the 

applicability of the CTM in analysing movement data. 

Chapter 3 mainly focuses on the multi-scale characteristics of the CTM. In this chapter, a 

cross-scale oriented sequence analysis approach is proposed for knowledge discovery in 

movement data. The main contribution is the construction of the four types of sequences 

on the basis of the CTM. For the first type, the discrete points in the same sequence all 

have the same temporal scales. For the remaining three types, the discrete points in the 

same sequence all have different temporal scales. Based on the first type of sequences, the 

movements of objects across different temporal scales can be characterised according to 

the changes of corresponding motion attributes. Based on the combination of the remaining 

three types of sequences, the time intervals during which important events might occur can 

be detected. The application of the proposed approach in the football movement data shows 

its effectiveness and advantages in the analysis of movement data. 

RQ 2: What interesting information can be discovered in football movement data? 

Knowledge discovery in various types of data is a topic that has attracted the attention of 

researchers from different domains for a long time. Similar to other types of data, 

knowledge discovery in movement data can also be achieved by data mining techniques. 

As a novel type of movement data, various sports movement data have recently become 

available. Hence, interesting information could be discovered in such data using movement 

data mining techniques. To explore this aspect, two new data mining approaches for 
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movement data are developed and presented in Chapter 3 and Chapter 5. The approaches 

are applied to football movement data to discover interesting information. Based on the 

approach developed in Chapter 3, the changes of movements across different temporal 

scales can be characterised. In addition, the time intervals during which important events 

might occur can be detected. These findings are relatively novel compared with those of 

traditional methods for performing football analyses. Chapter 5 develops a Reeb graph-

based approach to automatically discovering various types of moving flock patterns. The 

members in a moving flock pattern can be simply understood by the characteristic ‘keep 

spatially close and move together for a specific duration’; thus, such players are rather 

interesting to coaches because they might show close interactions with each other. Based 

on the approach developed in Chapter 5, various groups of such players can be discovered 

and additional insightful information can be provided to coaches. The results in both 

chapters show that interesting information can indeed be discovered in football movement 

data using the methods for analysing movement data; thus, the proposed approaches for 

the analysis of movement data have the potential for use in various sports domains. 

RQ 3: Can added values be provided if multiple (temporal) scales are considered when 

analysing movement data? 

Scale is an important inner attribute of almost any type of movement data. Scale can be 

classified at the spatial scale, temporal scale and spatio-temporal scale. In this thesis, we 

mainly focus on the temporal scale. Chapters 3 and 4 both consider the temporal scale when 

developing respective approaches for the analysis of movement data. In Chapter 3, a cross-

scale-oriented sequence analysis approach is proposed. According to this approach, the 

changes of movement across different temporal scales are characterised. Such changes are 

not easily characterised without considering temporal scales. In addition, the time intervals 

during which important events might have occured can be detected with higher accuracy 

using the proposed approach than methods that only consider one temporal scale. In 

Chapter 4, a hybrid approach combining the MTSSTN and the CTM is proposed. When 

constructing the MTSSTN, the temporal scales are considered. Based on the MTSSTN, the 
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information at multiple temporal scales can be calculated and then visualised using the 

CTM. According to the CTM diagrams, much more abundant information can be acquired. 

Hence, added value can indeed be provided when multiple (temporal) scales are considered 

when analysing movement data. 

RQ 4: What efforts can be contributed to the relatively new research topic of dynamic 

interactions in movement data? 

The research on dynamic interactions in movement data is relatively new compared with 

other research topics with respect to the analysis of movement data. Therefore, many 

potential efforts can be devoted to this topic. In this thesis, one research effort is contributed 

to this topic and addressed in Chapter 4. In this chapter, a hybrid approach combining the 

MTSSTN and the CTM is proposed. The proposed approach is capable of performing a 

quantitative exploration of the interactions between two individuals as well as the 

interactions among multiple individuals, which have seldom been studied, and this 

capability represents one of the main contributions of this thesis. Another contribution is 

the ability to explore the importance of each individual in the interactions and identify the 

most important individuals in each interaction. By applying the proposed approach to 

football movement data, interesting results have been obtained, which shows the 

effectiveness of the proposed approach. Thus, the approach proposed in this thesis can 

contribute to revealing the dynamic interactions in movement data and promote the 

development of this research topic in the future. 
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De explosie van locatiebewuste technologieën zorgt voor uitgebreide datasets van 

bewegingsgegevens. Nieuwe methodes om zulke gegevens te analyseren zijn noodzakelijk. 

Geïnspireerd door deze ontwikkelingen, richt deze thesis zich voornamelijk op de 

ontwikkeling van nieuwe methodes met betrekking tot de analyse van bewegingsgegevens. 

De benaderingen ontwikkeld in deze thesis worden in eerste instantie toegepast op een 

relatief nieuw domein: sport. Meer specifiek worden in deze thesis de 

voetbalverplaatsingsgegevens (verkregen van een echte en volledige voetbalwedstrijd) 

benut om het methodologisch en sportgeoriënteerd onderzoek te ondersteunen. In deze 

sectie worden de bijdragen aangaande de belangrijkste voorgestelde onderzoeksvragen 

gepresenteerd. 

RQ 1: Kan het CTM een meerwaarde bieden bij de analyse van de bewegingsgegevens ? 

Het Continu Triangulair Model (CTM) heeft twee uitgesproken eigenschappen in het 

voorstellen van tijdelijke informatie: visualisatie en meerschaligheid. Daarom werd in deze 

thesis het CTM gebruikt om de meerwaarde van het huidige onderzoek in 

bewegingsgegevensanalyse te bekijken. Deze onderzoeksvraag werd behandeld in de 

hoofdstukken 2, 3 en 4. 

Hoofdstuk 2 stelt een grondige CTM-toepassing voor in het ontleden van 

voetbalbewegingsgegevens die verkregen werden uit een echte en volledige 

voetbalwedstrijd. In deze studie worden de functionaliteiten van het CTM voorgesteld en 

uitgebreid, op basis van de verplaatsingsgegevens die overeenstemmen met een volledige 

voetbalmatch (van begin tot einde). Dit is - voor zover wij op de hoogte zijn - de eerste 

CTM-toepassing op een dergelijk uitgebreide dataset. De prestatie van zowel de spelers als 

het hele team kan onderzocht en geëvalueerd worden volgens de CTM-representaties van 

overeenstemmende bewegingsattributen, zowel vanuit visualisatieperspectief als vanuit 

meerschalig oogpunt. De resultaten geven aan dat het CTM inderdaad nuttig is in het 

ontdekken van wedstrijdprestaties. In hoofdstuk 4 ligt de nadruk op het vinden van 

dynamische interacties in de bewegingsgegevens door het ontwikkelen van een hybride 

aanpak. Deze aanpak combineert het Multi-Temporal Scale Spatio-Temporal Network 
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(MTSSTN) en het CTM. Het CTM wordt gebruikt als referentie om een MTSSTN met een 

CTM-achtige vorm te construeren. Gebaseerd op de gebouwde MTSSTN’s kunnen de 

intensiteiten van de interacties tussen objecten berekend worden. Vervolgens kunnen deze 

gevisualiseerd worden door middel van de CTM-representaties en kan het belang van 

individuele objecten bepaald worden. Volgens de overeenstemmende CTM-representaties 

kunnen de intensiteiten van de interacties tussen objecten, het belang van ieder individu en 

de meest belangrijke personen in elk interactiepatroon onderzocht worden vanuit een 

visualisatieperspectief of een meerschalig oogpunt. De resultaten geven de effectiviteit 

weer van de voorgestelde aanpak in de voetbalapplicatie. Het gepresenteerde onderzoek in 

de hoofdstukken 2 en 4 toont de CTM-toepasbaarheid aan in de analyse van 

bewegingsgegevens. 

Hoofdstuk 3 richt zich hoofdzakelijk op de meerschalige eigenschappen van het CTM. In 

dit hoofdstuk wordt een zogenaamde schaaloverschrijdende georiënteerde sequentie-

analyse aanpak voorgesteld om kennis te verkrijgen uit de verplaatsingsgegevens. De 

belangrijkste bijdrage is de creatie van vier soorten sequenties gebaseerd op het CTM. Bij 

de eerste soort hebben de afzonderlijke punten in dezelfde sequentie allemaal dezelfde 

temporele schaal. Bij de resterende drie soorten hebben de afzonderlijke punten in dezelfde 

sequentie allemaal een verschillende temporele schaal. Gebaseerd op de eerste soort 

kunnen de objectbewegingen over verschillende temporele schalen getypeerd worden 

volgens de wijzigingen van de corresponderende attribuutbewegingen. Steunend op de 

combinatie van de drie resterende soorten sequenties kunnen tijdsintervallen (gedurende 

dewelke belangrijke gebeurtenissen kunnen plaatsvinden) gedetecteerd worden. De 

toepassing van de voorgestelde methode op deze voetbalbewegingsgegevens bewijst de 

effectiviteit en de voordelen van het ontleden van verplaatsingsgegevens. 

RQ 2: Welke interessante informatie kan verkregen worden aan de hand van 

voetbalbewegingsgegevens ? 

Het achterhalen van kennis in verschillende types van gegevens is een onderwerp dat sinds 

geruime tijd de aandacht trekt van onderzoekers uit verschillende domeinen. Vergelijkbaar 
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met andere soorten gegevens kan informatie verkregen worden uit bewegingsgegevens 

door het gebruik van data mining methodes. Om dit aspect te onderzoeken worden twee 

nieuwe data mining methodes (voor bewegingsgegevens) ontwikkeld en voorgesteld in 

hoofdstuk 3 en 5. Deze methodes worden toegepast op voetbalverplaatsingsgegevens. 

Gebaseerd op de ontwikkelde methode in hoofdstuk 3 kunnen de bewegingsveranderingen 

over verschillende temporele schalen gekarakterisererd worden. Bovendien kunnen de 

tijdsintervallen - gedurende dewelke belangrijke gebeurtenissen kunnen plaatsvinden - 

achterhaald worden. Deze bevindingen zijn vernieuwend vergeleken met deze die 

afkomstig zijn van traditionele methodes voor het uitvoeren van voetbalanalyses. 

Hoofdstuk 5 behandelt de op de Reeb-grafiek geënte aanpak om verscheidene types 

voortbewegende moving flock patronen automatisch op te sporen. Leden van een moving 

flock zijn objecten (bv. spelers) die samen bewegen op een korte afstand van elkaar 

gedurende een bepaalde tijd; zulke spelers kunnen dus interessant zijn voor coaches omdat 

ze nauwe interacties met elkaar kunnen vertonen. Op basis van de ontwikkelde aanpak 

beschreven in hoofdstuk 5 kunnen verschillende groepen bestaande uit dergelijke spelers 

gedetecteerd worden en kan relevante informatie aan coaches bezorgd worden. De 

resultaten in beide hoofdstukken tonen aan dat interessante informatie inderdaad verkregen 

kan worden. De voorgestelde aanpak heeft dus potentieel voor toepassingen in 

verschillende sportdomeinen. 

RQ 3: Kan er een meerwaarde geleverd worden indien er meerdere (temporele) schalen in 

overweging genomen worden bij het ontleden van de bewegingsgegevens ? 

De schaal is een belangrijke interne kenmerkende eigenschap van bijna elk type 

verplaatsingsgegevens. Schaal kan ruimtelijk, temporeel en tijdruimtelijk zijn. In deze 

thesis focussen we ons voornamelijk op de temporele schaal. Hoofdstukken 3 en 4 

bestuderen de temporele schaal bij het ontwikkelen van methodes voor de analyse van 

bewegingsgegevens. In hoofdstuk 3 wordt een schaaloverschrijdende volgorde-analyse 

(crossscale-oriented sequence analysis) voorgesteld. Volgens deze aanpak worden de 

bewegingswijzigingen op verschillende temporele schalen gekarakteriseerd. Zulke 
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veranderingen worden niet eenvoudig herkend zonder verschillende temporele schalen in 

rekening te nemen. Bovendien kunnen de tijdsintervallen (gedurende dewelke belangrijke 

gebeurenissen zouden kunnen plaatsgevonden hebben) gedetecteerd worden met een 

hogere nauwkeurigheid door middel van de voorgestelde aanpak dan met methodes die 

enkel één temporele schaal in rekening nemen. In hoofdstuk 4 wordt een hybride aanpak 

(die het MTSSTN en het CTM combineert) besproken. Bij het construeren van het 

MTSSTN worden de verschillende temporele schalen behandeld. Gebaseerd op het 

MTSSTN kan de informatie berekend en daarna gevisualiseerd worden op meerdere 

temporele schalen door middel van het CTM. Via de CTM-representaties kan veel 

informatie verworven worden. Er kan dus een meerwaarde verkregen door meerdere 

temporele schalen te gebruiken tijdens het analyseren van bewegingsgegevens. 

RQ 4: Welke inspanningen kunnen bijdragen tot het relatief nieuwe onderzoekstopic over 

dynamische interacties in bewegingsgegevens ? 

Het onderzoek van de dynamische interacties van verplaatsingsgegevens is nieuw in 

vergelijking met andere onderzoeksthema’s met betrekking tot de analyse van 

bewegingsgegevens. In hoofdstuk 4 wordt hier dieper op ingegaan. In dit hoofdstuk wordt 

een hybride methode (die het MTSSTN en het CTM combineert) voorgesteld. De 

voorgestelde aanpak onderzoekt op een kwantitatieve manier de interacties tussen 

meerdere personen; wat zelden bestudeerd werd. Dit vormt een van de voornaamste 

bijdragen van deze thesis. Een andere belangrijk bijdrage is om de meest belangrijke 

personen in elke interactie te identificeren. Door de voorgestelde aanpak op 

voetbalbewegingsgegevens toe te passen werden interessante resultaten verkregen die de 

effectiviteit van de voorgestelde methode aantonen. De voorgestelde aanpak in deze thesis 

kan dus bijdragen tot de analyse van de dynamische interacties in bewegingsgegevens en 

kan de ontwikkeling van dit onderzoeksthema in de toekomst bevorderen. 

 

 


