
Greenwich Academic Literature Archive (GALA)
– the University of Greenwich open access repository

http://gala.gre.ac.uk

__

Citation:

Zheng, Aihua (2012) A general state-based temporal pattern recognition. PhD thesis, University of
Greenwich.

__

Please note that the full text version provided on GALA is the final published version awarded

by the university. “I certify that this work has not been accepted in substance for any degree,

and is not concurrently being submitted for any degree other than that of (name of research

degree) being studied at the University of Greenwich. I also declare that this work is the result

of my own investigations except where otherwise identified by references and that I have not

plagiarised the work of others”.

Zheng, Aihua (2012) A general state-based temporal pattern recognition. ##thesis _type## ,

##institution##

Available at: http://gala.gre.ac.uk/8773/

__

Contact: gala@gre.ac.uk

http://gala.gre.ac.uk/
mailto:gala@gre.ac.uk

A General State-Based Temporal Pattern

Recognition

Aihua Zheng

A thesis submitted in partial fulfilment of the requirements of the University of

Greenwich for the degree of Doctor of Philosophy

January 2012

The University of Greenwich

School of Computing and Mathematical Science

30 Park Row

Greenwich SE10 9LS

DECLARATION

I certify that this work has not been accepted in substance for any degree, and is not

concurrently being submitted for any degree other than that of Doctor of Philosophy being

studied at the University of Greenwich. I also declare that this work is the result of my

own investigations except where otherwise identified by references and that I have not

plagiarised the work of others

X---

Aihua Zheng

X--

Dr. Jixin Ma

(Supervisor)

X---

Prof. Miltos Petridis

(Supervisor)

ACKNOWLEDGEMENTS

ii

ACKNOWLEDGEMENTS
Education is not the filling of a pail but the lighting of a fire. At the completion of

this thesis, I am first and foremost grateful to my supervisors: Dr. Jixin Ma and Prof.

Miltos Petridis.

Heartfelt thanks to my supervisors Dr. Jixin Ma and Prof. Miltos Petridis of the

University of Greenwich. They gave me great help and inspiration during my overseas

research in the United Kingdom. I was deeply affected by their indefatigable academic

spirit and vast academic knowledge. They guided me through my academic endeavours

step by step with their rigorous encouragement.

Thanks to all the members in QM165 who brought me so much happiness, especially

Esther, who shared the same room with me for more than half a year. Friends forever!

Thanks to Professor Bin Luo and Associate Professor Jin Tang in Anhui University,

for their great help and support during my successive postgraduate and doctoral programs

of study. They not only helped me find the research direction, embark on the way of my

cross-country study, but also helped build my confidence through continuous recognition

and encouragement. Their noble character has influenced me all this time. Meanwhile,

they understand students‘ economic and living difficulties and have given me great

economic support. Also thanks to the Information Processing and Pattern Recognition

research group in Anhui University for the loving care from all members.

Thanks to the positive impact of my mother. My mother works very hard and is a

strong person.

Thanks to my fiancé who gave me quiet dedication and support throughout and

always helped lift my spirits! Thanks for his thoughtful love and care.

Thanks everyone else who has helped me, given me full support but whom I have not

had space to mention here. I would like to take this opportunity to express that I will

remember your affection in my heart forever!

ABSTRACT

iii

ABSTRACT

Time-series and state-sequences are ubiquitous patterns in temporal logic and are

widely used to present temporal data in data mining. Generally speaking, there are three

known choices for the time primitive: points, intervals, points and intervals. In this

thesis, a formal characterization of time-series and state-sequences is presented for both

complete and incomplete situations, where a state-sequence is defined as a list of

sequential data validated on the corresponding time-series. In addition, subsequence

matching is addressed to associate the state-sequences, where both non-temporal

aspects as well as rich temporal aspects including temporal order, temporal duration

and temporal gap should be taken into account.

Firstly, based on the typed point based time-elements and time-series, a formal

characterization of time-series and state-sequences is introduced for both complete and

incomplete situations, where a state-sequence is defined as a list of sequential data

validated on the corresponding time-series. A time-series is formalized as a tetrad (T, R,

Tdur, Tgap), which denotes: the temporal order of time-elements; the temporal relationship

between time-elements; the temporal duration of each time-element and the temporal gap

between each adjacent pair of time-elements respectively.

Secondly, benefiting from the formal characterization of time-series and

state-sequences, a general similarity measurement (GSM) that takes into account both

non-temporal and rich temporal information, including temporal order as well as temporal

duration and temporal gap, is introduced for subsequence matching. This measurement is

general enough to subsume most of the popular existing measurements as special cases. In

particular, a new conception of temporal common subsequence is proposed. Furthermore,

a new LCS-based algorithm named Optimal Temporal Common Subsequence (OTCS),

which takes into account rich temporal information, is designed. The experimental results

on 6 benchmark datasets demonstrate the effectiveness and robustness of GSM and its

new case OTCS. Compared with binary-value distance measurements, GSM can

ABSTRACT

iv

distinguish between the distance caused by different states in the same operation;

compared with the real-penalty distance measurements, it can filter out the noise that may

push the similarity into abnormal levels.

Finally, two case studies are investigated for temporal pattern recognition:

basketball zone-defence detection and video copy detection.

In the case of basketball zone-defence detection, the computational technique and

algorithm for detecting zone-defence patterns from basketball videos is introduced,

where the Laplacian Matrix-based algorithm is extended to take into account the effects

from zoom and single defender‘s translation in zone-defence graph matching and a set

of character-angle based features was proposed to describe the zone-defence graph. The

experimental results show that the approach explored is useful in helping the coach of

the defensive side check whether the players are keeping to the correct zone-defence

strategy, as well as detecting the strategy of the opponent side. It can describe the

structure relationship between defender-lines for basketball zone-defence, and has a

robust performance in both simulation and real-life applications, especially when

disturbances exist.

In the case of video copy detection, a framework for subsequence matching is

introduced. A hybrid similarity framework addressing both non-temporal and temporal

relationships between state-sequences, represented by bipartite graphs, is proposed. The

experimental results using real-life video databases demonstrated that the proposed

similarity framework is robust to states alignment with different numbers and different

values, and various reordering including inversion and crossover.

LIST OF TABLES

v

CONTENTS

CHAPTER 1. INTRODUCTION ... 1

Section 1.1 The Motivation: Temporal Pattern Recognition 1

Section 1.1.1 Characterization of Time-series and State-sequences 1

Section 1.1.2 State-sequence Matching with Rich Temporal Aspects 2

Section 1.1.3 Similarity Measurement for State-sequence Matching 4

Section 1.2 Objective: A General State-Based Framework for Temporal Pattern
Recognition .. 7

Section 1.3 Outline of the Main Contributions .. 8

Section 1.4 Thesis Structure .. 9

CHAPTER 2. LITERATURE REVIEW ... 12

Section 2.1 The ontology of primitive time ... 12

Section 2.1.1 Point-based Time Structure ... 12

Section 2.1.2 Interval-based Time Structure ... 14

Section 2.1.3 Point and Interval-based Time Structure 15

Section 2.2 The notion of time and time-series ... 19

Section 2.2.1 The notion of time .. 20

Section 2.2.2 The notion of time-series and state-sequence 21

Section 2.3 LCS-Based Subsequence Matching .. 22

Section 2.3.1 Original Longest Common Subsequence (LCS)................. 22

Section 2.3.2 Compacted LCS (CLCS) ... 27

Section 2.3.3 All Common Subsequence (ACS) 30

Section 2.3.4 Time-Warped LCS (T-WLCS) ... 34

Section 2.4 ED-Based Subsequence Matching .. 37

Section 2.4.1 Original Edit Distance (OED) ... 37

Section 2.4.2 Edit Distance on Real sequence (EDR) 40

Section 2.4.3 Edit distance with Real Penalty (ERP) 42

Section 2.4.4 Dynamic Time Warping (DTW) ... 45

Section 2.4.5 Time Warped Edit Distance (TWED) 47

CHAPTER 3 GENERAL FRAMEWORK OF STATE-SEQUENCE
MATCHING ... 50

Section 3.1 Formal Characterization of Time-series and State-sequences 50

Section 3.1.1 Typed Point-based Time-elements and Time-series........... 50

Section 3.1.2 States and State-sequences ... 54

Section 3.2 State-based Subsequence matching .. 56

Section 3.2.1 Formal Characterization of State-sequence Matching 57

Section 3.2.2 General Framework for State-sequence Matching 60

Section 3.2.3 General Definition of Cost Function 61

CHAPTER 4 GENERALIZATION AND APPLICATION OF GSM 65

Section 4.1 The Generalization of GSM .. 65

Section 4.1.1 Original ED Special Case .. 65

Section 4.1.2 EDR Special Case .. 66

LIST OF TABLES

vi

Section 4.1.3 DTW Special Case ... 67

Section 4.1.4 ERP Special Case ... 67

Section 4.1.5 TWED Special Case ... 68

Section 4.1.6 LCSS Special Case ... 69

Section 4.1.7 CLCS Special Case .. 70

Section 4.1.8 ACS Special Case ... 71

Section 4.1.9 T-WLCS Special Case .. 71

Section 4.2 The Optimal Temporal Common Subsequence 72

Section 4.2.1 Definition of OTCS ... 72

Section 4.2.2 The Two Properties of OTCS ... 73

Section 4.2.3 The Length of The OTCS by Dynamic Programming 76

Section 4.2.4 The Temporal Duration and Temporal Gap by Backtracking
.. 77

Section 4.3 Experimental Results of Application of GSM 82

Section 4.3.1 Experiment Databases ... 82

Section 4.3.2 Construction of Temporal Duration and Temporal Gap ... 83

Section 4.3.3 Contribution of Temporal Aspects in GSM 85

Section 4.3.4 Comparison of GSM with Binary-value Measurements 86

Section 4.3.5 Comparison of GSM with Real-penalty Measurements 88

Section 4.3.6 Capability to Handle Rich Temporal Aspects 90

CHAPTER 5 CASE STUDY OF STATE-BASED TEMPORAL PATTERN
RECOGNITION .. 91

Section 5.1 Formal Characterization and Basketball Zone-defence Detection 91

Section 5.1.1 Formal Characterization of Video Database 91

Section 5.1.2 Basketball Zone-defence .. 93

Section 5.1.3 Graphic Representation of Basketball Zone-defence 95

Section 5.1.4 System of Basketball Zone-defence Detection 97

Section 5.2 LM-based state matching algorithm ... 99

Section 5.3 Structure-based Feature Extraction ... 103

Section 5.3.1 Structure-based Features in 2-3 Zone-defence 104

Section 5.3.2 Structure-based Features in 1-3-1 Zone-defence 107

Section 5.3.3 Structure-based Features in 1-2-2 Zone-defence 109

Section 5.4 Experimental Results .. 112

Section 5.4.1 Experimental Setup .. 112

Section 5.4.2 LM-based Basketball Zone-defence Detection 113

Section 5.4.3 CA-based Basketball Zone-defence Detection 115

Chapter 6 CASE STUDY OF VIDEO COPY DETECTION FOR TEMPORAL
PATTERN RECOGNITION ... 119

Section 6.1 Problem Definition of Video Copy Detection 119

Section 6.2 Bipartite Graphical Representation ... 122

Section 6. 2.1 Searching the similar pairs by thNN 123

Section 6.2.2 Constructing un-weighted bipartite graph 124

Section 6.2.3 Maximum Size Matching (MSM) algorithm 125

Section 6.3 Hybrid Similarity Model ... 127

LIST OF TABLES

vii

Section 6.3.1 Non-temporal similarity ... 127

Section 6.3.2 Temporal order similarity .. 127

Section 6.3.3 Temporal alignment similarity: 128

Section 6.3.4 Temporal concentration similarity: 128

Section 6.3.5 Hybrid Similarity Model .. 129

Section 6.4 Experimental Results .. 130

Section 6.4.1 Set up .. 131

Section 6.4.2 Effectiveness of dmax ... 132

Section 6.4.3 Effectiveness of Į .. 132

Section 6.4.4 Effectiveness of ȕ .. 133

Section 6.4.5 Robustness .. 134

CHAPTER 7 CONCLUSION AND FUTURE WORK 135

Section 7.1 Conclusion .. 135

Section 7.2 Future Work Discussion ... 137

REFERENCE: ... 139
APPEDIX A TEMPORAL PATTERN RECOGNITION IN VIDEO CLIPS

DETECTION……………………………………………………………………….151
APPENDIX B REASONING ABOUT UNCERTAIN AND INCOMPLETE

TEMPORAL KNOWLEDGE………………………………………………………158
APPENDIX C STRUCTURE BASED FEATURE EXTRACTION IN

BASKETBALL ZONE-DEFENCE STRATEGIES………………………………..165
A PPE N DI X D A R O BUS T AP P R O AC H T O S U BS E Q UE NC E

MATCHING………………………………………………………………………..179
APPENDIX E EFFICIENT AND EFFECTIVE STATE-BASED FRAMEWORK

FOR NEWS VIDEO RETRIVAL………………………………………………….189
APPENDIX F ORDER, DURATION AND GAP —TAKE THEM ALL……..200

LIST OF TABLES

viii

LIST OF FIGURES

Figure 1.1 Non-temporal set in state-sequence .. 3

Figure 1.2 Various Temporal Durations in State-sequences 3

Figure 1.3 Various Temporal gap in state-sequences .. 4

Figure 1.4 Temporal differences between two example state-sequence with

binary-value model and real-penalty model .. 7

Figure 2.1 Graphical paradigm of TWED for edit cost function 49

Figure 3.1 Temporal illustration of the three stories .. 58

Figure 4.1 OTCS table and OTCS path with OTCS =abcd 79

Figure 4.2 Distribution examples of temporal duration and temporal gap 84

Figure 4.3 Weights contribution of temporal duration 85

Figure 4.4 Weights contribution of temporal gap .. 86

Figure 4.5 Optimal combination of temporal duration and temporal gap 86

Figure 4.6 An example of clustering results on 2-d MNIST dataset 88

Figure 4.7 Retrieval precision of GSM on MNIST against Gaussian noise 89

Figure 5.1 Video database organization ... 92

Figure 5.2 Defenders‘ positions in 1-3-1 zone press 94

Figure 5.3 A typical round attacking in 1-3-1 zone-defence clip 95

Figure 5.4 The flow chart of basketball zone-defence detection system 97

Figure 5.5 Zone graph examples in 2-3 zone-defence 104

Figure 5.6 Zone graph examples in 1-3-1 zone-defence 108

Figure 5.7 Zone graph examples in 1-2-2 zone-defence 110

Figure 5.8 An example of basketball zone-defence video clip recognition ... 114

Figure 5.9 Detecting precision comparison with different methods 116

Figure 5.10 Detecting complexities comparison with different methods 117

Figure 5.11 Disturbance of the nodes on the farthest defence-line 117

Figure 5.12 Precision influence with disturbance in each method 118

Figure 6.1 Key frame sequences from the same video scenario with difference

file:///D:/Aihua%20Zheng/Resources/Research/PhD%20THESIS/draft/minor%20correction-Aihua%20Zheng's%20Thesis_2012.docx%23_Toc316908738
file:///D:/Aihua%20Zheng/Resources/Research/PhD%20THESIS/draft/minor%20correction-Aihua%20Zheng's%20Thesis_2012.docx%23_Toc316908739

LIST OF TABLES

ix

temporal order .. 121

Figure 6.2 An example of bipartite graph .. 122

Figure 6.3 Bipartite graph representation .. 124

Figure 6.4 1:1 mapping bipartite graphs .. 125

Figure 6.5 Precision of OQS against dmax .. 132

Figure 6.6 Precision of RQS against Į ... 133

Figure 6.7 Precision of SQS against ȕ .. 133

Figure 6.8 Precision with Gaussian noise against mean and variance 134

LIST OF TABLES

x

 LIST OF TABLES

Table 2.1 LCS subsequence table .. 25

Table 2.2 LCS length table .. 26

Table 2.3 LCS‘ table between five example state-sequences 27

Table 2.4 Example evolution of CLCS length ... 29

Table 2.5 CLCS table between five example state-sequences 30

Table 2.6 Example evolution of ACS .. 32

Table 2.7 ACS table between five example state-sequences 34

Table 2.8 Example evolution of T-WLCS ... 35

Table 2.9 T-WLCS table between five example state-sequences 37

Table 3.1 The aspects considered in similarity measurements 64

Table 3.2 General similarity measurement .. 64

Table 4.1 OTCS length table .. 77

Table 4.2 Example evolution of OTCS .. 80

Table 4.3 OTCS table between S1
 to S5 .. 82

Table 4.4 Description of 6 benchmark datasets. .. 82

Table 4.5 Clustering accuracy comparison of Binary-value measurements 88

Table 4.6 Statistic of the retrieval precision of noised dataset 89

Table 4.7 Classification precision with combinations of distance aspects 90

Table 5.1 The number of standard zone-defence graphs 112

Table 5.2 The number structure of test data ... 113

Table 5.3 Matching precise for each zone-defence pattern 115

Table 5.4 Detection result of 3 algorithms on different data 116

Table 6.1 Notations used in this section ... 123

Table 6.2 Video clip database structure ... 131

Table 6.3 Statistic of the precision of noised query set 134

LIST OF ALGORITHMS

xi

LIST OF ALGORITHMS

Algorithm 2.1: Calculate all common subsequence .. 32

Algorithm 4.1: The length of the OTCS .. 76

Algorithm 4.2: Track back of OTCS ... 78

Algorithm 5.1: Laplacian matrix-based graph matching 99

Algorithm 5.2: Notes determination to construct CA23 105

Algorithm 5.3: Character angle detection of 2-3 zone-defence 106

Algorithm 5.4: Character angle detection of 1-3-1 zone-defence 108

Algorithm 5.5: Character angle detection of 1-2-2 zone-defence 110

Algorithm 6.1: The threshold Nearest Neighbours .. 124

Algorithm 6.2: Hungarian Algorithm for Maximum Size Matching 126

GLOSSARY

xii

GLOSSARY

M An inverse-ordered matching of M

 ,  thresholds

(A1), (A2), … axioms

(F1), (F2), … formula for fluents

(r1), (r2), … deduction results in time theory

a, b, c, d,… states

A1, A2, A3 state-sequences

ACS All Common Subsequence

B1, B2, B3 state-sequences

BG = <Q, SS, E> Bipartite graph between Q and SS

C1, C2, C3 state-sequences

CA122 Character-Angle of 1-2-2 zone-defence

CA131 Character-Angle of 1-3-1 zone-defence

CA23 Character-Angle of 2-3 zone-defence

CLCS Compacted LCS

CN23 the set of notes constructing CA23

D = [SS1,…, SSL] A state-sequence in database

d the movement distance

dmax threshold in kNN

DTW Dynamic Time Warping

E set of edges between notes (defenders‘ position)

EDR Edit Distance on Real Sequence

ERP Edit Distance with Real Penalty

f fluents

G zone-defence graph

GSM general similarity measurement

GLOSSARY

xiii

H set of Holds

I = [I1, …, In] key-frames sequence

i, j, k recursion variances

kNN the k nearest neighbours algorithm

LCS Longest Common Subsequence

LCS‘ length of the Longest Common Subsequence

LM Laplacian Matrix-based graph matching algorithm

M A normal matching in MSM(Q, D)

m, n real numbers

MSM Maximum Size Matching

NN(Q, SS, dmax) Set of nearest neighbours of all qi in Q in SS

NN(qi, SS, dmax) Set of nearest neighbours of qi in SS

OED Original Edit Distance

OTCS Optimal Temporal Common Subsequence

P a set of points

p, p1, p2 points

Q = [q1, q2,…, qm] Query state-sequence

R temporal relationship

Rd denotes d-dimensional real number domain

S state-sequence

s1, s2, … states

S1, S2, … state-sequence examples

SS state-sequences

STD standard deviation

 t1, t2, … time-elements

TCS temporal common subsequence

Tdur temporal duration

Tgap temporal gap

th threshold in CLCS

Tn vector of time-elements temporally well ordered

GLOSSARY

xiv

TWED Time Warp Edit Distance

T-WLCS Time-warped LCS

U triple domain with

V set of the notes (defenders‘ position)

X , Y state-sequence

x1, …, xm states

y1, …, yn states

Į, ȕ parameters between [0, 1]

Ȗ the acute angle

CHAPTER 1 INTRODUCTION

1

CHAPTER 1. INTRODUCTION

Section 1.1 The Motivation: Temporal Pattern Recognition

A term temporal pattern can be defined as a collection of states (events) that exist

along some timeline. For instance, a temporal pattern could be a sequence of actions

comprising of eating, walking, taking a shower and then going to sleep.

Temporal pattern recognition is the process of matching two temporal patterns

with respect to the temporal properties.

Section 1.1.1 Characterization of Time-series and State-sequences

The notion of time is ubiquitous and vital in modelling natural phenomena and

human activities. Time-series and state-sequences are important patterns in data mining

and have attracted a lot of interest among researchers [BC1996, DGM1997, FRM1994,

KP1998, YJF1998].

However, in most of the proposed formalisms, the fundamental time theories on

which time-series and state-sequences are based are not usually explicitly specified.

Time-series and sequences are simply expressed as lists in the form of t1, t2, …. tn, or as

sequences of collections of observations, and so on, where formal characterizations with

respect to the temporal basis are neglected, leaving some critical issues unaddressed. For

example:

 What sort of objects do these t1, t2, … and tn belong to? In other words, are

they time points, time intervals, or simply some absolute values from the set of real

numbers or integers?

CHAPTER 1 INTRODUCTION

2

 What are the temporal order relationships between t1, t2, … and tn, and/or

between the sequence of collections? Are they well-ordered according to ordinal

number sequenes, or are they relatively ordered by means of relations such as

―Before‖, ―Meets‖, ―During‖, and so on?

 What are the associations between time-series/state-sequences and

non-temporal data that represent various states of the world of discourse?

Therefore, a formal characterization of time-series and state-sequences is

required.

Section 1.1.2 State-sequence Matching with Rich Temporal Aspects

The typical temporal pattern recognition is actually the state-sequence

matching problem. State-sequence matching can be divided into two categories:

whole matching (matching the state-sequences with the same length) and

subsequence matching (match the state-sequences with different length). Obviously,

the whole matching problem is in fact a special case of subsequence matching,

which has been widely researched for many years. In this thesis, without losing

generality, subsequence matching is the focus for the state-sequence matching

problem. One of the most active and essential research topics in state-sequence

matching is the similarity measurement. For general treatment, a versatile

similarity measurement should be able to deal with both non-temporal similarity

and temporal similarity for any two given state-sequences, where:

(1) Non-temporal similarity denotes the similarity between those states

appearing in two given state-sequences according to the collection of state

elements in the sets, ignoring any temporal issues. For instance in figure 1.1, there

is no temporal information in the two state-sequences A1 = {a, b, c, e, d} and A2 =

{a, b, b, d, d, d, e, g}. The only similarity we can identify is that both of them

contain the state {a, b, d, e}.

CHAPTER 1 INTRODUCTION

3

a
b

c

d e

d

b

a d

e
db g

A1 A2

Figure 1.1 Non-temporal set in state-sequence

(2) Temporal similarity consists of 3 aspects:

i. Temporal Order:

 The temporal relation along the same time axis as shown in figure 1.2

and figure 1.3 where the axis denotes the temporal order. This issue has

been well dealt with in most existing subsequence matching algorithms

built through dynamic programming.

ii. Temporal Duration:

 The duration of each state. For instance, as shown in figure 1.2 where

each column block denotes a single unit time interval, the two

state-sequences, B1 and B2, have different temporal duration assignment

functions Tdur1 = [1, 1, 1, 1] and Tdur2 = [1, 2, 3, 4] , respectively.

 The overall duration of continuous duplications of states. For instance,

as shown in figure 1.2, for state-sequences B1 and B3, the common

subsequence ‗abcd‘ has different overall durations, Tdur1 = [1, 1, 1, 1]

and Tdur3 = [2, 3, 4, 3], even if the duration of each unit state is identical

to 1. This is because of the duplications of those unit states.

 B3

a

b

c

d

Tdur3

 B2

3 4 2

Tdur2 4 3 2 1

B1

Tdur11 1 1 1 1

3

Figure 1.2 Various Temporal Durations in State-sequences

CHAPTER 1 INTRODUCTION

4

iii. Temporal Gap:

 The time element between two adjacent states as shown in figure 1.3.

For the state-sequence ‗abcd‘, C1 and C2, C3 have different temporal gap

values between ab, bc and cd, with Tgap1 = [2, 2, 2], Tgap2 = [1, 2, 3] and

Tgap3 = [1, 1, 3] respectively.

Therefore, a general similarity measurement that takes into account both the

non-temporal aspects and the rich temporal aspects is required.

Section 1.1.3 Similarity Measurement for State-sequence Matching

Plenty of similarity measurements have been developed in past decades. On one

hand, from the point of view of similarity strategy, subsequence matching can be

classified into two categories:

 Edit Distance-based measurements: match the state-sequences with least

operations. Edit Distance (ED) [Lev1965] (also known as Levenshtein

Distance) is an innovative distance measurement that has been widely and

actively investigated and extended upon by many researchers. ED measures

the distance between two state-sequences according to the number of

operations (such as insertion, deletion and substitution) required to transform

one state-sequence to the other. What follows are some representatives:

[WF1973] developed an efficient ED with O(mn) time complexity by

C3

1

Tgap1 2 2 2
C2

1 1
Tgap3

Tgap2

1

1 2 3

3

a

b

c

d

C1

Figure 1.3 Various Temporal gap in state-sequences

CHAPTER 1 INTRODUCTION

5

employing dynamic programming algorithm [Bel1957]. Dynamic Time

Warping (DTW) [SC1978] allowed time warping such as stretching and

shrinking by duplicating the previous state during matching, and was followed

by variants such as PDTW [SC1978], SPRING method [SFY2007] and

EDTW [APPK2008], and so on. [CN2004] developed the Edit Distance on

Real Sequence (EDR). Subsequently, [COO2005] developed the Edit distance

with Real Penalty (ERP), which takes the real penalty as the cost of each

operation. Distinguishing from DTW, it adds a gap instead of duplicating the

previous state while aligning two state-sequences. [MM2008a] extended ED

(EDD) to take into account the different costs for different states in the

operation and subsequently developed its Multi-Resolution for EDD (MREDD)

in [MM2008b]. They distinguish the different unmatched states by adding a

frequency function to the basic ED. Highlighting that none of the above

measurements takes into account Temporal Gap difference during matching,

[Mar2008] produced an elastic measurement, named Time-Warped Edit

Distance (TWED), which takes into account the Temporal Gap difference in

terms of the temporal index of states.

 LCS-based measurements: match the state-sequence according to the presence

of common subsequences. The most successful measurement is the longest

common subsequences (LCSS) [DGM1997]. The basic idea is to find the

longest common sequence in all the sequences along the same temporal order.

Several algorithms based on the original LCS have been proposed. Some

representative variants of these are: Time-warped LCS (T-WLCS) [GS2004],

which counts continuously duplicated common states in the spirit of the

Dynamic Time Warping (DTW) [SC1978] algorithm; Compacted LCS (CLCS)

[KC2005], where only the common subsequence, the continuous length of

which is longer than the specified threshold, (th) is counted; All Common

Subsequence (ACS) [Wan2007] which measures the similarity by means of

counting the number of all common subsequences (including empty string in

CHAPTER 1 INTRODUCTION

6

actual algorithm) and taking the strategy that the more common subsequences

a pair of state-sequences have, the more similar they are.

However, most of these existing similarity measurements characterize temporal

similarity in terms of only the temporal order over the state-sequences, whilst other

important temporal characters such as the temporal duration of each state itself and the

temporal gap between two adjacent states have been neglected. The only noted

exception is TWED, which addresses temporal gap similarity in terms of the simple

temporal index of states, whilst temporal duration of states is not dealt with at all.

According to the formal theory of time-series and state-sequences, a general matching

measurement should take into account all of the temporal aspects illustrated above. All

the existing measurements can be regarded as special cases of a General Similarity

Measurement. Therefore, designing a general similarity measurement for

state-sequence matching is a vital and attractive focus of my research.

On the other hand, with respect the ways in which the cost function is specified,

similarity measurements can be classified into two alternative categories: (a)

binary-value distance models, where the cost functions take binary value (0/1) as

matching cost that is not sensitive to noise since they treat the noise and unmatched

states with the same cost (1) and (b) real-penalty distance models, in which the cost

functions take real difference as matching cost. Generally speaking, binary-value

models are more robust since they are not sensitive to the outliers and noise but the

real-penalty models are more rational since, in comparing with the logic binary values 0

and 1, the real distance refines the distance. The real-penalty distance models

demonstrably outperform binary-value distance models. However, real-penalty distance

models are much more sensitive to noise since the real difference between noise and

non-noise states may push the overall distance to an abnormal degree.

For instance, take two state-sequences [a1, a2, c0, b1] and [a3, a4, b0, b4], as shown

in figure 1.4, and suppose the distance between a0, a9, b0, b9, c0, c9 is 10 sequentially,

whilst two states are matched if they start with the same character (i.e. a1 matches a3).

CHAPTER 1 INTRODUCTION

7

The matching cost during the two state-sequences can be calculated as 0 + 0 + 1 + 0 = 1,

whilst in binary-value measurements it is calculated as 2 + 2 + 10 + 3 = 17. If we keep

the characters the same and change the subscription of any state (s) in S2, the matching

cost will remain the same for binary-value measurements. This means the

state-sequences with different subscriptions will not be distinguished in binary-value

measurements, whilst real-penalty measurements will generate different matching costs.

For example, the matching cost between [a1, a2, c0, b1] and [a0, a3, b0, b2] is 13, which

is smaller than that between [a1, a2, c0, b1] and [a3, a4, b0, b4]. However, if noise exists

(change b0 into $ which is 100 units away from c9), the matching cost in binary-value

measurements remains 1, whilst it becomes 117 in real-penalty measurements.

0 2

a1 a2 c0 b1

a3 a4 b0 b4

0 2 0 31 10

$

S1

S2

 a0 a9 b0 b9 c0 c9 $

10 10 100

Figure 1.4 Temporal differences between two example state-sequences with

binary-value model and real-penalty model

Therefore, the similarity measurement should be as reasonable as real-penalty

measurements and also robust in the face of the noise.

Section 1.2 Objective: A General State-Based Framework for

Temporal Pattern Recognition

This thesis aims to achieve the following tightly associated research goals:

1). A formal characterization of time-series and state-sequence: based on the

typed point-based intervals, a formal characterization of time-series and

state-sequence is required to describe the objects of time elements and states,

the temporal relationships between them and the associations between

CHAPTER 1 INTRODUCTION

8

time-series/sequences and non-temporal data.

2). A general similarity measurement for subsequence matching: based on the

formal characterization of time-series and state-sequence, it is necessary to

design a general similarity measurement (GSM) to take into account both

non-temporal and rich temporal aspects. The measurement should be able to

tackle temporal order, temporal duration and temporal gap, and also be

versatile enough to subsume most of the existing representative similarity

measurements as special cases.

3). Investigation of basketball zone-defence detection: as a case study of temporal

pattern recognition, the basketball zone-defence detection will be investigated

to explore the structural relationship between the defenders.

4). Investigation of video copy detection: as will be demonstrated in another case

study of temporal pattern recognition, it is important to design a model that is

robust when faced with the re-ordering editing and noise which is ubiquitous

in video clips. Furthermore, it is also necessary to design an accurate

measurement to distinguish the possible video clips with identical similarity to

the query video clip.

Section 1.3 Outline of the Main Contributions

In order to meet the goals outlined above, the following work has been carried out:

1). Based on the typed point based time-elements and time-series, a formal

characterization of time-series and state-sequences was consummated with

respect to the three temporal aspects including temporal order, temporal

duration and temporal gap.

2). Based on the formal characterization of time-series and state-sequence, a

general similarity measurement tackling both non-temporal and rich temporal

CHAPTER 1 INTRODUCTION

9

similarity was designed for state-sequence matching. It is versatile enough to

subsume most of the existing representative similarity measurements.

Experimental results on 6 benchmark datasets demonstrate that GSM can

tackle the most general problems in matching time-series data with rich

temporal information. In particular, a new LCS-based similarity measurement

named the Optimal Temporal Common Subsequence (OTCS) has been

proposed, where a new concept of common subsequence named ‗temporal

common subsequence‘ is proposed to describe the rich temporal similarity. In

addition, it can release non-uniqueness problems and abnormal output

problems in conventional LCS-based similarity measurement.

3). As a case-study of temporal pattern recognition, a system to detect the

zone-defence strategy in basketball videos was investigated, where the

detecting task was transferred into graph matching problem. An improved

Laplacian Matrix-based graph matching algorithm was designed for basketball

zone-defence detection. Meanwhile, due to the computational complexity of

graph matching algorithms, an efficient feature descriptor, named

Character-Angle based feature descriptor, was designed for zone-defence

graphs.

4). As another case of temporal pattern recognition, a hybrid state-sequence

matching framework was designed for video copy detection, where both the

non-temporal and temporal similarities were taken into account. The

non-temporal similarity was defined in the form of Euclidean distance whilst

the temporal similarity was constructed with temporal order similarity,

temporal alignment similarity and temporal concentration similarity.

Section 1.4 Thesis Structure

The rest of this thesis is organized as follow:

CHAPTER 1 INTRODUCTION

10

Chapter 2 is a comprehensive review of the representations of time-series and

state-sequence as well as the popular existing measurements for state-sequence

matching based on the typed point based time-elements and time-series. A formal

characterizations of time-series and state-sequences in introduced for both complete and

incomplete situations, where a state-sequence is defined as a list of sequential data

validated on the corresponding time-series. While a state-sequence is formalized as the

triple domain U = S × D × G, where: S ؿ Rd denotes d-dimensional domain of

non-temporal data ordered in consequential (that is, ―Meets or Before‖) temporal order

and D, G ؿ R denote the domains of temporal duration and temporal gap respectively. In

addition, the framework of the general similarity measurement is addressed to associate

state-sequence matching, where both the non-temporal aspects and temporal aspects

including temporal order, temporal duration and temporal gap should be taken into

account.

In chapter 3, based on the general similarity measurement, a new conception of

temporal common subsequence is first proposed, and then a new LCS-based algorithm

named Optimal Temporal Common Subsequence (OTCS) that takes into account rich

temporal information (including temporal order, temporal duration and temporal gap)

between state-sequences is finally designed and tested on news video retrieval. The

experimental results demonstrate the effectiveness and robustness of the new algorithm.

In chapter 4, a general similarity measurement (GSM), which takes into account both

non-temporal and rich temporal information, including temporal order, as well as temporal

gap and duration, is introduced for subsequence matching. Benefitting from a formal

characterization of time-series and state-sequences, this measurement is general enough to

subsume most of the popular existing measurements as special cases. In particular,

compared with the binary-value similarity measurements, the GSM can distinguish the

difference caused by various states in the same operation, whilst, compared with the

real-penalty similarity measurements, it can also filter out the noise which may lead the

similarity into a abnormal level.

CHAPTER 1 INTRODUCTION

11

In chapter 5, the basketball zone-defence detection is investigated as a case study

of temporal pattern recognition. The Laplacian Matrix-based algorithm is extended to

take account of the effects from zoom and single defender‘s translation in zone-defence

graph matching. Furthermore, a set of character-angle based features are proposed to

describe the structure relationship between defender-lines in the zone-defence graphs.

Experimental results demonstrate the robust performance in both simulation and

real-life applications, especially when disturbance exists.

In Chapter 6, video copy detection is investigated as another case study. A hybrid

framework addressing both non-temporal and temporal relationships between

state-sequences, which are represented by bipartite graphs, is proposed. The experimental

results using real-life news video database demonstrate that the proposed similarity model

is robust when faced with states alignment with different numbers and different values,

and various reordering including inversion and crossover.

Finally, a summary of conclusion and recommendations for future work is

presented in chapter 7.

There are also six appendices for this thesis. These are six of my published papers

tightly associated with this research.

CHAPTER 2. LITERATURE REVIEW

12

CHAPTER 2. LITERATURE REVIEW

Focusing on the two objectives of this thesis, a detailed review of related works

will be presented in this chapter. First, we shall elaborate on the evolution of

representations of primitive time and time-series, followed by the conventional existing

measurements for state-sequence matching.

Section 2.1 The ontology of primitive time

There has been a longstanding debate in the literature on the issue of which sorts

of objects should be taken as the time primitive. Commonsense, on one the hand,

denotes that points are needed for both theoretical and practical modelling of temporal

phenomena. For instance, it is intuitive and convenient to associate punctual events,

such as ―The database was updated at 0:00 midnight‖ etc., with instantaneous points

rather than durative intervals. On the other hand, intervals also seem to be needed for

representing temporal phenomena that take up time with positive duration, e.g., ―He ran

γ hours yesterday morning‖.

Generally speaking, there are three known objects that may be taken as the time

primitive:

 points, i.e., instants of time with no duration;

 intervals, i.e., periods of time with positive duration;

 both points and intervals

Section 2.1.1 Point-based Time Structure

The so-called point-based time structure was first proposed by Bruce [Bru1972]: a

typical time structure based on points only as primitive is an ordering (P, ), where P is

a set of points, and  is a relation that (partially or totally) orders P. In point-based

CHAPTER 2. LITERATURE REVIEW

13

systems, intervals may be defined as derived temporal objects, either as sets of points

[DGM1997], or as ordered pairs of points [Gal1990, S1987, YJF1998].

Problems

Point-based time structure provides an efficient indexing method for temporal

systems, but may suffer from the requirement that precise time values for all temporal

data need to be available. Generally speaking, in many AI systems, temporal

knowledge can be uncertain and incomplete. For instance, we may only know that

event A happened before event B, without knowing their precise starting and finishing

time, or what happened between them. Incomplete relative temporal knowledge such as

this is typically derived from humans, where complete and absolute temporal

information is rarely available and remembered for knowledge representation and

reasoning.

It has been argued by some researchers that defining intervals as objects derived

from points may lead to the so-called Dividing Instant Problem [AH1989, Bru1972,

Lad1987], which is in fact an ancient historical puzzle encountered when attempting to

represent what happens at the boundary point that divides two successive intervals. For

instance, consider the fire example cited in [Ben1983]:

A fire that had been burning was later burnt out.

Intuitively, we can assume the two states, i.e., ―The fire was burning‖ and ―The fire

was not burning‖ hold true throughout two successive point-based intervals, say <p1,

p> and <p, p2>, respectively. The question then becomes: ―Was the fire burning or not

burning at point p?‖ This, in terms of the open or closed nature of the involved

point-based intervals, turns out to be the question of which of the two successive

intervals, i.e., <p1, p> and <p, p2>, is closed/open at the dividing point p? Virtually,

there are four possible cases:

(a) The fire was burning rather than not burning at p;

CHAPTER 2. LITERATURE REVIEW

14

(b) The fire was not burning rather than burning at p;

(c) The fire was both burning and not burning at p;

(d) The fire was neither burning nor was it not burning at p.

While both (c) and (d) are absurd, since they violate the Law of Contradiction and

the Law of Excluded Third [Ben1983] respectively, the choice between (a) and (b) must

be arbitrary and artificial. In fact, since we have no better reason, from the point of

view of philosophy, for saying that the fire was burning than for saying that it was not

burning at the dividing-instant, such an arbitrary approach has been criticized as

unjustifiable and hence unsatisfactory [Ben1983, All1984, Gal1990, Vil1994].

Section 2.1.2 Interval-based Time Structure

The point-based structure of time has been challenged by many researchers who

believe that time intervals are more suited for representing commonsense temporal

knowledge, notably in the domain of linguistics and artificial intelligence. It is argued

that intervals should be taken as the temporal primitive, where points may be

constructed with a subsidiary status, e.g., as ―maximal nests" of intervals that share a

common intersection, or as "meeting places" of intervals [Bee1992, BC1996, Lad1987,

Vil1994]. For instance, Allen‘s temporal theory [All1984, AH1989] is a representative

example of the interval-based approach, which posits a set of intervals as the primitive

temporal entities. Over the time intervals, Allen introduces thirteen temporal relations,

including ―Equal‖, ―Before‖, ―After‖, ―Meets‖, ―Met-by‖, ―Overlaps‖,

―Overlapped-by‖, ―Starts‖, ―Starts-by‖, ―During‖, ―Contains‖, ―Finishes‖ and

―Finished-by‖, which can be derived from the single immediate predecessor relation

―Meets‖ [BC1996].

As Allen claims in his paper [All1984], the interval-based approach avoids the

annoying question of whether or not a given point is part of, or a member of a given

interval, and therefore can successfully overcome/bypass puzzles such as the Dividing

CHAPTER 2. LITERATURE REVIEW

15

Instant Problem. Allen's contention is that nothing can be true at a point, for a point is

not an entity at which things happen or are true. However, as Galton [Gal1990] shows

in his critical examination of Allen's interval logic [All1984], a theory of time based

only on intervals is inadequate for reasoning correctly about continuous change.

Furthermore, instantaneous phenomena do exist in the real world and therefore make

points necessary for general temporal reference. For instance, consider the following

scenario:

A ball was thrown into the air from the east to the west.

By common sense, the state that the ball was at the east of and below its apex was

immediately followed by the state that the ball was at its apex, and which, in turn, was

immediately followed by the state that the ball was at the west of and below the apex.

Also, the time by which the ball was at its apex – neither at the east of the apex nor at

the west of the apex, should be a point with zero duration, rather than any interval or

moment [AH1989], no matter how small it might be. In fact, during the process of the

motion of the ball, the velocity of the ball became zero only at the time point when the

ball was at its apex.

Problems

The interval-based time structure was proposed based on Allen‘s interval theory.

However, it has been argued in [Gal1990] that Allen‘s interval theory lacks clarity in

semantics and completeness. In addition, the corresponding matching algorithm

proposed in [JAS2002] lacks in theoretical foundation. Therefore, a new matching

algorithm that still uses the interval-based time structure is required.

Section 2.1.3 Point and Interval-based Time Structure

For the sake of general treatments, we shall take the time theory proposed

previously in [MK1994] as the temporal basis, in which both points and intervals are

CHAPTER 2. LITERATURE REVIEW

16

addressed as temporal primitives on an equal footing: points do not have to be defined

as limits of intervals and intervals do not have to be constructed out of points.

 The time theory, T, takes a nonempty sort, T, of primitive time elements, with a

primitive order relation ‗Meets‘ over time elements, and a function ‗Dur‘ from time

elements to non-negative real numbers. The basic set of axioms concerning the triad (T,

Meets, Dur) is given as below:

 (A1). t1,t2,t3,t4(Meets(t1, t2)  Meets(t1, t3)  Meets(t4, t2)  Meets(t4, t3))

That is, if a time element meets two other time elements, then any time element that

meets one of these two must also meet the other. This axiom is actually based on the

intuition that the ―place‖ where two time elements meet is unique and closely associated

with the time elements [AH1989].

 (A2). tt1,t2(Meets(t1, t)  Meets(t, t2))

That is, each time element has at least one immediate predecessor, as well as at least

one immediate successor.

 (A3).t1,t2,t3,t4(Meets(t1, t2)  Meets(t3, t4) 

 Meets(t1, t4)  t'(Meets(t1, t')  Meets(t', t4))  t''(Meets(t3, t'')  Meets(t'', t2)))

where  stands for ―exclusive OR‖. That is, any two meeting places are either identical

or there is at least a time element standing between the two meeting places if they are not

identical.

 (A4).t1,t2,t3,t4(Meets(t3, t1)  Meets(t1, t4)  Meets(t3, t2)  Meets(t2, t4))  t1 = t2)

That is, the time element between any two meeting places is unique.

 N.B. In this thesis, for any two adjacent time elements, that is to say two time

elements t1 and t2 such that Meets(t1, t2), we shall simply use t1  t2 to denote their ordered

CHAPTER 2. LITERATURE REVIEW

17

union. The existence of such an ordered union of any two adjacent time elements is

guaranteed by axioms A2 and A3, whilst its uniqueness is guaranteed by axiom A4.

 (A5).t1,t2(Meets(t1, t2)  Dur(t1) > 0  Dur(t2) > 0)

That is to say, time elements with zero duration cannot meet each other.

 (A6).t1,t2(Meets(t1, t2)  Dur(t1  t2) = Dur(t1) + Dur(t2))

Thus, the ―ordered union‖ operation over time elements is consistent with the

conventional ―addition‖ operation over the duration assignment function, i.e., ‗Dur‘.

 N.B. In the time theory T introduced here, we adopt the following results of real

number theory:

(r1) The set of real numbers is totally ordered by the less-than-or-equal-to relation „≤‟,

where „>„ is the „bigger than‖ relation, that is, not(≤).

(r2) „+‟ is the conventional addition operator over (non-negative) real numbers.

In terms of the ‗Meets‘ relation, other exclusive order relations over time elements

can be derived as below:

 Equal(t1, t2)  t‟,t‟‟(Meets(t‟, t1)  Meets(t‟, t2)  Meets(t1, t‟‟)  Meets(t2, t‟‟))

 Before(t1, t2)  t(Meets(t1, t)  Meets(t, t2))

 Overlaps(t1, t2)  t,t3,t4(t1 = t3  t  t2 = t  t4)

 Starts(t1, t2)  t(t2 = t1  t)

 During(t1, t2)  t3,t4(t2 = t3  t1  t4)

 Finishes(t1, t2)  t(t2 = t  t1)

CHAPTER 2. LITERATURE REVIEW

18

 After(t1, t2)  Before(t2, t1)

 Overlapped-by(t1, t2)  Overlaps(t2, t1)

 Started-by(t1, t2)  Starts(t2, t1)

 Contains(t1, t2)  During(t2, t1)

 Finished-by(t1, t2)  Finishes(t2, t1),

 Met-by(t1, t2)  Meets(t2, t1)

On one hand, the completeness of the 13 possible exclusive order relations (the

above 12 plus Meets) between any two time elements can be simply characterized by a

single axiom as below:

 t1,t2(Equal(t1, t2)  Before(t1, t2)  After(t1, t2)  Meets(t1, t2)  Met-by(t1, t2)

  Overlaps(t1, t2)  Overlapped-by(t1, t2)  Starts(t1, t2)  Started-by(t1, t2)

  During(t1, t2)  Contains(t1, t2)  Finishes(t1, t2)  Finished-by(t1, t2))

On the other hand, the exclusiveness of these 13 order relations needs to be

characterized by 78 axioms of the following form:

 t1,t2(Relation1(t1, t2)  Relation2(t1, t2))

where Relation1 and Relation2 are two distinct relations from the above 13 relations.

 N.B. In the above, 78 is the combinational number 2
13C = 13!/2!11!.

 For convenience of expression, we shall extend Allen‘s non-exclusive relation ‘In‗,

which is defined for intervals alone [All1984], to accommodate both time intervals and

points, and in addition, to introduce another temporal relation, ‘Part‗, as below:

CHAPTER 2. LITERATURE REVIEW

19

 In(t1, t2)  Starts(t1, t2)  During(t1, t2)  Finishes(t1, t2)

 Part(t1, t2)  Equal(t1, t2)  In(t1, t2)

Problems

The point & interval-based time structure seems to be general and efficient enough

for temporal representation. However, the following two issues still exist and solving

them is a motivation of this thesis.

1) The fundamental temporal theory of the point & interval-based time

structure is the temporal theory of Ma and Knight in [MK1994, MK1996].

However, only temporal order and temporal relationship is specified. The

other temporal aspects such as temporal duration and temporal gap were

neglected.

2) Only the basic temporal representation is illustrated whilst the

corresponding matching algorithm, especially with respect to the rich

temporal aspects, is required.

Section 2.2 The notion of time and time-series

Data mining is the process of finding trends and patterns in data [Gro1999].

Generally speaking, data mining requires some historical knowledge about the internal

temporal relationships of certain patterns such as those in Decision Support, Diagnosis

and Explanation, Forecasting/Prediction, Planning/Scheduling, and History

Reconstruction, etc. In particular, time-series and state-sequences are important patterns

in data mining and have attracted the interest of many researchers [BC1996, DGM1997,

FRM1994, KP1998, YJF1998].

CHAPTER 2. LITERATURE REVIEW

20

Section 2.2.1 The notion of time

1) What is time?

Even today we still cannot define ―time‖ as we define any real thing. We

can measure time, yet do not know what time is, although we hang "time" on

the wall or on the wrist. According to Einstein's theory of relativity, we know

that time can be extended or shortened. That is why the physicists set the time

simply as a sequence of events and mark them with time, such as the person's

birthday or the shelf life of food.

2) Is time like a river flow, or with intermittency as a replacement?

Unfortunately, no theory or experiment has confirmed that time is flowing

in a continuous manner or like every frame in a movie screen, giving a

continuous picture of intermittency. Research on the continuity and the

intermittency of time is ubiquitous and vital in modelling natural phenomena

and human activities.

Now we are back to the "continuity" of time. The strange thing is that it

can approach a continuous or intermittent flow, yet the smallest calculable time

interval is the same as "Planck time". In short, time is a continuous tape, and

physicists regard it as an interlocking, non-continuous necklace.

3) For everyone, is time passing in the same way?

Einstein's theory suggests that the answer is no. In fact, the same as space,

time is also relative. What does ―relative‖ mean in this context? That is, in order

to completely and unambiguously describe an event, this event should be placed

in a reference system. For example, if I meet someone at the end of the road,

then the "end" might just be the beginning of another person‘s road. If I add "at

the end of the road behind the plaza," then the event "meet" is accurate. If I said

CHAPTER 2. LITERATURE REVIEW

21

10 years later, then I must point out to which reference system 10 years has

passed. Obviously, in everyday life there is no need to be detailed. However,

detail is vital in time-series analysis.

Section 2.2.2 The notion of time-series and state-sequence

A time-series is a chronological series of observations made. In accordance with

different phenomena or problems studied, one can obtain all kinds of time-series. For

example, some economists observe fluctuations in the price index; a meteorologist

studies the rainfall in some location and electrical engineers study electronic receiver's

internal noise. All of them will observe a string of data measured by some unit of

measurement. The natural order is the chronological order of appearance of data in the

time-series. The typical essential characteristic of time-series is the dependency

between adjacent observations. This dependence has great practical significance.

Time-series analysis is addressed in the techniques of this dependence analysis. The

new method of prediction of time-series data not only provides a effective prediction

method for time-series data produced from for example the national economy,

agriculture, biology, meteorology, hydrology and other fields, but also enables

researchers to exercise math skills and programming techniques.

Broadly speaking, a state is the way something is with respect to its main attributes.

A state-sequence is defined as a list of states together with corresponding time-series.

In order to analyze time-series and state-sequences, formalism is required.

However, in most proposed formalisms, the fundamental time theories upon which

time-series and state-sequences are built up are usually not explicitly specified.

Time-series and sequences are simply expressed as lists in the form of t1, t2, …. tn, or as

sequences of collection of observations, and so on, where formal characterizations with

respect to the temporal basis are neglected, leaving some critical issues unaddressed. For

example:

CHAPTER 2. LITERATURE REVIEW

22

 What sorts of objects are t1, t2 …and tn? In other word, what sorts of objects

should be taken as the time primitive? Are they time points, time intervals, or simply

some absolute values from the real numbers, integers, or the clock?

 What are the temporal order relationships between t1, t2…and tn, and/or

between the sequence of collections? Are they simply well-ordered as according to

natural numbers, or might they be relatively ordered by means of relations such as

―Before‖, ―Meets‖, ―During‖, and so on?

 What are the associations between time-series/state-sequences and

non-temporal data that represent various states of the world in discourse?

Section 2.3 LCS-Based Subsequence Matching

The Longest Common Subsequence (LCS) is a typical similarity measurement for

subsequence matching. Recently, a group of LCS-like measurements were proposed for

subsequence matching. Given two state-sequences X = [x1, …, xm] and Y = [y1, …, yn],

several algorithms based on the original LCS have been proposed to match these two

state-sequences. Some representative variants of these are: (i) Compacted LCS (CLCS)

[KC2005] where only the common subsequences, the continuous length of which is

longer than the specified threshold (th), is counted; (ii) All Common Subsequence

(ACS) [Wan2007] which measures the similarity by means of counting the number of

all common subsequences (including empty strings) and taking the strategy that the

more common subsequences a pair of state-sequences have, the more similar they are;

and (iii) Time-Warped LCS (T-WLCS) [GS2004], which counts continuously

duplicated common states in the spirit of the Dynamic Time Warping (DTW) [SC1978]

algorithm. Each of these is discussed in further detail in the following four

sub-sections.

Section 2.3.1 Original Longest Common Subsequence (LCS)

The basic idea of the original LCS algorithm [BHR2000] is to find the longest

CHAPTER 2. LITERATURE REVIEW

23

subsequence common to two state-sequences (X and Y) along the same temporal order.

Then the length of the common subsequence is counted as the similarity between the

two given state-sequences. We shall now explain the solution of LCS in what follows.

Suppose the current state pair is xi and yj, a table with size of (m+1) × (n+1) is

designed to store the process of LCS computation. An empty state is added in front of

each state-sequence. The procedure of finding the longest common subsequence can be

illustrated by the following 3 rules:

1) Setup rule: i = 0 or j = 0

In this case, we are comparing the empty state with another state-sequence.

Obviously, the common state between an empty state-sequence and any state-sequence

is the empty state as well. Therefore, LCS(X0, Yj) = LCS(Xi, Y0) = φ.

2) Matching rule: x i = yj

In this case, the two state-sequences match each other by ending in the same state.

Shorten each state-sequence by removing states xi and yj from state-sequences X and Y

respectively. The longest common subsequence would be the LCS of the shortened

sequences appended by the removed state (xi or yj). In terms of prefixes:

LCS(Xi, Yj) = (LCS(Xi-1, Yj-1); xi) or (LCS(Xi-1, Yj-1); yj) (2-1)

where Xi and Yj indicates the substring [x1, x2, …, xi] and [y1, y2, …, yj] for 1  i  m, 1
 j  n, the semicolon indicates that the following element, xi, is appended to the
sequence.

3) Unmatching rule xi  yj

In this case, X and Y do not end in the same state. Then the LCS of X and Y is the

longer of the two sequences LCS(Xi, Yj-1) and LCS(Xi-1, Yj).

ĀDynamic programming can be thought of as being the reverse of recursion.

Recursion is a top-down mechanism – we take a problem, split it up, and solve the

CHAPTER 2. LITERATURE REVIEW

24

smaller problems that are created. Dynamic programming is a bottom-up mechanism-

we solve all possible small problems and then combine them to obtain solutions for

bigger problems. The reason that this may be better is that, using recursion, it is

possible that we may solve a small subproblem many times. Using dynamic

programming, we solve it once.”1

According to the above, the recursive function of LCS can be defined as follows:

Definition 2-1: the longest common subsequence of given state-sequences X =

[x1, …, xm] and Y = [y1, …, yn] is:

1 1

1 1

0 0

(,) ((,),)

((,), (,))

i j i j j i j

i j i j i j

if i or j

LCS X Y LCS X Y x if x y

longer LCS X Y LCS X Y if x y



 

 

  
 
 

(2-2)

where 0≤ i ≤ m, 0 ≤ j ≤ n.

In order to measure the similarity between two state-sequences, the length of LCS

is defined as below:

Definition 2-2: the length of the LCS of two given state-sequences X and Y is:

1 1

1 1

0 0 0

'(,) '(,) 1

max((,), (,))

i j i j i j

i j i j i j

if i or j

LCS X Y LCS X Y if x y

LCS X Y LCS X Y if x y

 

 

  
  
 

 (2-3)

The original LCS is designed for 1-dimention state-sequences. In order to cope

with multi-dimension situations, [VHGK2003] extended the original LCS to

2-dimention situations:

1 http://www.ics.uci.edu/~dan/class/161/notes/6/Dynamic.html

CHAPTER 2. LITERATURE REVIEW

25

, 1 1

,

, 1 , 1

0 0 0

(,) 1
(,)

max((,), (,))

i j ik jk

i j

i j i j

if i or j

LCSS X Y if x y for all k
LCSS X Y

and j i

LCSS X Y LCSS X Y otherwise

 
 

   




 

 

 


  
 

 



(2-4)

where the constant  and  denote the controller in space and time respectively.

Example evolution:

For the given state-sequence X = [abcd] and Y = [adcbd], the procedure of the

longest common subsequence is illustrated next. Assuming that the LCS function starts

with zero, two empty states are inserted as prefixes of two state-sequences respectively.

X0 = x0 = Y0 = y0 = Ø is placed as shown in table 2.1 with the size 4×5, where LCS(Xi, Yj)

denotes the longest common subsequence between Xi and Yj, and the arrow directs to

the source cell of current longest common subsequence, for example ĸĹ indicates the

current cell LCS(Xi, Yj) is generated by longer(LCS(Xi, Yj-1), LCS(Xi-1, Yj)) from

Eq.(2-2).

Table 2.1 LCS subsequence table

LCS(X, Y) Ø a d c b d
Ø Ø Ø Ø Ø Ø Ø

a Ø a ĸ a ĸ a ĸ a ĸ a

b Ø Ĺ a ĸĹ a ĸĹ a ab ĸ ab
c Ø Ĺ a Ĺ a ac ĸĹ ac/ab ĸĹ ac/ab
d Ø Ĺ a ad ĸĹac/ad ĸĹ ac/ad acd/abd

The LCS table is designed to store the step of LCS calculation between X and Y

placed in the first column and the first row while LCS(Xi, Yj) indicates the longest

common subsequence of Xi and Yj.

LCS(X0, Yj) is always Ø for j = 0, 1, …, n since the longest common sequence

between the empty sequence and any other sequence is considered as empty. Likewise,

LCS(Xi, Y0) = Ø for i = 0, 1, …, m (setup rule).

CHAPTER 2. LITERATURE REVIEW

26

LCS(X1, Y1) is indicated by states ‗a‘ (x1) and ‗a‘ (y1). According to the matching

rule, LCS(X1, Y1) = (LCS(X0, Y0), ‗a‘) = ‗Øa‘, simplified as ‗a‘.

LCS(X1, Y2) is indicated by states ‗a‘ (x1) and ‗d‘ (y2). According to the

unmatching rule, LCS(X1, Y2) = longer (LCS(X1, Y1), LCS(X0, Y2)) = longer(‗a‘, ‗Ø‘) =

‗a‘.

LCS(X1, Y3) is indicated by states ‗a‘ (x1) and ‗c‘ (y3). Unmatching rule, LCS(X1,

Y3) = longer (LCS(X1, Y2), LCS(X0, Y3)) = longer(‗a‘, ‗Ø‘) = ‗a‘.

LCS(X1, Y4) is indicated by states ‗a‘ (x1) and ‗b‘ (y4). Unmatching rule, LCS(X1,

Y4) = longer (LCS(X1, Y3), LCS(X0, Y4)) = longer(‗a‘, ‗Ø‘) = ‗a‘.

LCS(X1, Y5) is indicated by states ‗a‘ (x1) and ‗d‘ (y5). Unmatching rule, LCS(X1,

Y5) = longer (LCS(X1, Y4), LCS(X0, Y5)) = longer(‗a‘, ‗Ø‘) = ‗a‘.

Analogously, the rest of the table can be filled. The corresponding length of LCS is

stored in the table 2.2.

Table 2.2 LCS length table

δCS‟(X, Y) Ø a d c b d
Ø 0 0 0 0 0 0

a 0 1 1 1 1 1

b 0 1 1 1 2 2
c 0 1 1 2 2 2
d 0 1 2 2 2 3

Problem of LCS

In order to visually demonstrate the performance of LCS-based measurements, five

state-sequences are defined as follows: S1 = [abcd], S2 = [aaaaabc], S3 = [aabbccdd], S4

= [aaebbfccgdd] and S5 = [aaaabbb]. According to Eq.(2-3), the similarity table can be

obtained as follows:

CHAPTER 2. LITERATURE REVIEW

27

Table 2.3 LCS‘ table between five example state-sequences

Similarity S1 S2 S3 S4 S5

LCS’

S1 4 3 4 4 2
S2 3 7 4 4 5
S3 4 4 8 8 4
S4 4 4 8 11 4
S5 2 5 4 4 7

“Non-uniqueness” problem˖different state-sequences have the same similarity to

the query state-sequence. For instance, for a given three state-sequence pairs (S1, S1),

(S1, S3) and (S1, S4) with the same longest common subsequence ‗abcd‘, we shall get

LCS‘(S1, S1) = LCS‘(S1, S3) = LCS‘(S1, S4) = 4, which means S1 has the same similarity

to S3 and S4 as well as to S1 itself, whereas in real-life application the measurement

should distinguish the similarity as clear as possible.

“Unreasonable problem”: some other abnormal or unreasonable results occur

when continuously duplicated common states exist frequently in state-sequences. For

example, LCS‘(S2, S5) > LCS‘(S2, S3). The reason is that the continuously duplicated

common states are counted without distinguishing from the non-duplicated common

states. However, according to the definition of temporal common subsequences, the

similarity degree between S3 and S2 should in fact be higher than that between S5 and

S2.

Section 2.3.2 Compacted LCS (CLCS)

In contrast to the original LCS, in Compacted LCS (CLCS) [KC2005] only the

common subsequence, the continuous length of which is longer than the specified

threshold (th), is counted. The procedure for CLCS is as the following 4 steps:

Step 1: calculate the Matching Matrix. Without lose of generality, assume that X is the

query state-sequence and Y denotes one of the state-sequences in the database. The

Matching Matrix is defined as: for i=1, β, … m.

CHAPTER 2. LITERATURE REVIEW

28

1,
()

0,

if i th state is matched
m i

if i th state is unmatched

  


 (2-5)

In fact, the length of the original LCS can be obtained by computing
1

()
n

i

m i

 .

Step 2: the length of continuously matched subsequence:

(1) (), () 1
()

() () 0

LC i m i if m i
LC i

m i if m i

   


 (2-6)

Step 3: the length of continuously matched subsequence separated by unmatched

subsequence: for i=1, β, … n-1

(), (1) 0
()

0, (1) 1

LC i if m i
SLC i

if m i

   
 

 (2-7)

In this situation, the length of LCS can be repressed by
1

()
n

i

SLC i



Step 4: calculate the compacted-LCS (CLCS) where only the length of continuous

matched common subsequence is longer than the threshold (th) is counted:

1

() (), ()
(,) ()

() 0, ()

n

i

MLC i SLC i if SLC i th
CLCS X Y MLC i

MLC i if SLC i th

   
 

 (2-8)

where ,0 1th k n k    .

Example evolution:

For the same five state-sequence: S1 = [abcd], S2 = [aaaaabc], S3 = [aabbccdd], S4

= [aaebbfccgdd] and S5 = [aaaabbb]. The examples of CLCS are calculated in table

2.4:

CHAPTER 2. LITERATURE REVIEW

29

Table 2.4 Example evolution of CLCS length

(a) CLCS(S1, S1) table

CLCS(S1, S1) Ø a b c d
Ø 0 0 0 0 0
a 0 0 0 0 0
b 0 0 0 0 0
c 0 0 0 1 1
d 0 0 0 1 2

(b) CLCS(S1, S2) table

CLCS(S1, S2) Ø a a a a a b c
Ø 0 0 0 0 0 0 0 0
a 0 0 0 0 0 0 0 0
b 0 0 0 0 0 0 0 0
c 0 0 0 0 0 0 0 3
d 0 0 0 0 0 0 0 3

(c) CLCS(S1, S3) table

CLCS(S1, S3) Ø a a b b c c d d
Ø Ø 0 0 0 0 0 0 0 0
a 0 1 1 1 1 1 1 1 1
b 0 1 1 2 2 2 2 2 2
c 0 1 1 2 2 3 3 3 3
d 0 1 1 2 2 3 3 4 4

(d) CLCS(S1, S4) table

CLCS(S1, S4) Ø a a e b b f c c g d d
Ø Ø 0 0 0 0 0 0 0 0 0 0 0
a 0 0 0 0 0 0 0 0 0 0 0 0
b 0 0 0 0 0 0 0 0 0 0 0 0
c 0 0 0 0 0 0 0 0 0 0 0 0
d 0 0 0 0 0 0 0 0 0 0 0 0

(e) CLCS(S1, S5) table

CLCS(S1, S5) Ø a a a a b b b
Ø Ø 0 0 0 0 0 0 0
a 0 0 0 0 0 0 0 0
b 0 0 0 0 0 0 0 0
c 0 0 0 0 0 0 0 0
d 0 0 0 0 0 0 0 0

CHAPTER 2. LITERATURE REVIEW

30

Problem of CLCS:

“Non-uniqueness” problem˖this problem is ubiquitous in CLCS as shown in the

tables, where CLCS(S1, S3)= CLCS(S1, S4)= CLCS(S2, S4)= CLCS(S3, S4)= CLCS(S5, S4)

= 0. The non-uniqueness problem must be more serious than the original LCS since the

threshold smoothes the difference of the two state-sequences: the length of continuous

matched states will be smoothed to be the same level (0) if it varies from 1 to th-1.

“Unreasonable problem”: one will also get the unreasonable phenomenon

CLCS(S2, S5) > CLCS(S2, S3). The reason is that the matched states ―c‖ are separated

and the length is 1, which is smaller than the threshold th=2.

Particularly, CLCS is very fluctuant since the continuity of matched common

subsequences may be destroyed easily by the unmatched states (for example, resulting

as CLCS(S4, S1) = CLCS(S4, S2) = CLCS(S4, S3) = CLCS(S4, S5) = 0) or by the

continuously duplicated common states (for example., resulting as CLCS(C1, C3) = 0),

which in turn means that for real applications, it will be very sensitive to noise which

will be taken as unmatched states in state-sequence matching.

Table 2.5 CLCS table between five example state-sequences

Similarity S1 S2 S3 S4 S5

CLCS
(th=2)

S1 4 3 0 0 2
S2 3 7 3 0 5
S3 0 3 8 0 4
S4 0 0 0 11 0
S5 2 5 8 0 7

Section 2.3.3 All Common Subsequence (ACS)

From above LCS-like measurements, we can see that only the longest common

subsequence may not be sufficient to distinguish the difference (similarity) between

state-sequences. It is necessary therefore to explore the information in the second

longest common subsequence, the third longest common subsequence and so on.

CHAPTER 2. LITERATURE REVIEW

31

Different from the CLCS, which discards the short continuously matched subsequence,

the All Common Subsequence (ACS) [Wan2007] takes into account the information of

the second, third, … longest subsequences by counting the number of all common

subsequences. For instance, let us take the three state-sequences {A, B, C} = {cbabca,

bcabac, abcade}. Obviously, LCS(A, B) = {caba} and LCS(A, C) = {abca}, therefore,

LCS‘(A, B) = LCS‘(A, C) = 4, which means we cannot distinguish the state-sequence B

and C when comparied to A. The set of all common subsequences of A and B is

(ignoring the empty sequence): {a, aa, ab, aba, abc, ac, b, ba, baa, bab, baba, babc,

bac, bb, bba, bbc, bc, bca, c, ca, caa, cab, caba, cabc, cac, cb, cba, cbac, cbc, cc}. The

set of all common subsequences of A and C is: {a, aa, ab, aba, abc, abca, ac, aca, b,

ba, bc, bca, c, ca}. ACS(A, B) = 31, ACS(A, C) = 15, suggesting that state-sequence B

is more similar to state-sequence A than to state-sequence C.

Theorem 2.1. Given two state-sequences, X = (x1, … , xm) and Y = (y1, …, yn). N(i,

j) denotes the number of common subsequences of (x1, … , xi) and (y1, …, yj), i.e., the

prefixes of sequences X and Y of lengths i and j. Then:

1 0

(,) (1, 1) 2,

(1,) (, 1) (1, 1),

i j

i j

if i or j

N i j N i j if x y

N i j N i j N i j if x y

 
    


      

ˈ

 (2-9)

Consequently ACS(X, Y) = N(m, n).

Proof: Let A(i-1, j-1) be the set of all common subsequences between (x1, … , xi-1)

and (y1, …, yj-1). So N(i-1, j-1)=|A(i-1, j-1)|. If xi = yj, then A(i, j) = A(iѸ1, jѸ1)ĤA(iѸ1, j

Ѹ1)xi. where A(iѸ1, jѸ1)xi = {axi | a A(i-1, j-1)}. Therefore N(i, j) = N(iѸ1, jѸ1)

×2. If xi  yj, then some new common subsequences may be added to A(i, jѸ1) or A(iѸ1,

j) on top of A(iѸ1, jѸ1). Therefore, A(i, j) = A(i, jѸ1)ĤA(i Ѹ1, j)ѸA(i Ѹ1, jѸ1).

Consequently we have N(i, j) = N(i, jѸ1)+N(iѸ1, j)ѸN(iѸ1, jѸ1).

CHAPTER 2. LITERATURE REVIEW

32

Algorithm 2.1: Calculation of all common subsequence

Input: Two sequences X and Y.

Output: The number of all common subsequences ACS(X, Y).

for i = 0 to |X| do N(i, 0) = 1

for j = 0 to |Y| do N(0, j) = 1

for i = 1 to |X| do

for j = 1 to |Y| do

if xi = yj then

N(i, j) = N(iѸ1, jѸ1) × 2

else

N(i, j) =N(iѸ1, j) + N(i, jѸ1) Ѹ N(iѸ1, jѸ1)

end

end

ACS(X, Y) = N(|X|, |Y|)

End

Example evolution:

For the same five state-sequences: S1 = [abcd], S2 = [aaaaabc], S3 = [aabbccdd], S4

= [aaebbfccgdd] and S5 = [aaaabbb]. Examples of ACS calculation are evaluated in the

following tables.

Table 2.6 Example evolution of ACS

(a) ACS(S1, S1) table

ACS(S1, S1) Ø a b c d
Ø 0 0 0 0 0
a 0 1 1 1 1
b 0 1 3 3 3
c 0 1 3 7 7
d 0 1 3 7 15

CHAPTER 2. LITERATURE REVIEW

33

(b) ACS(S1, S2) table

ACS(S1, S2) Ø a a a a a b c
Ø 0 0 0 0 0 0 0 0
a 0 1 1 1 1 1 1 1
b 0 1 1 1 1 1 3 3
c 0 1 1 1 1 1 3 7
d 0 1 1 1 1 1 3 7

(c) ACS(S1, S3) table

ACS(S1, S3) Ø a a b b c c d d
Ø 0 0 0 0 0 0 0 0 0
a 0 1 1 1 1 1 1 1 1
b 0 1 1 3 3 3 3 3 3
c 0 1 1 3 3 7 7 7 7
d 0 1 1 3 3 7 7 15 15

(d) ACS(S1, S4) table

ACS(S1, S4) Ø a a e b b f c c g d d
Ø 0 0 0 0 0 0 0 0 0 0 0 0
a 0 1 1 1 1 1 1 1 1 1 1 1
b 0 1 1 1 3 3 3 3 3 3 3 3
c 0 1 1 1 3 3 2 3 7 7 7 7
d 0 1 1 1 3 3 2 7 7 7 15 15

(e) ACS(S1, S5) table

ACS(S1, S5) Ø a a a a b b b
Ø 0 0 0 0 0 0 0 0
a 0 1 1 1 1 1 1 1
b 0 1 1 1 1 3 3 3
c 0 1 1 1 1 3 3 3
d 0 1 1 1 1 3 3 3

Problem:

 “Non-uniqueness” problem: this problem is ubiquitous in ACS as well. One will

get ACS(S1, S1)=ACS(S1, S3)= ACS(S1, S4)=16.

“Unreasonable” problem: the unreasonable phenomenon ACS(S2, S5) > ACS(S2,

S3) still exists. In particular, in ACS, the similarity becomes extremely large (such as S3

and S4) when continuously duplicated common states exist frequently in

CHAPTER 2. LITERATURE REVIEW

34

state-sequences and this will therefore underestimate the high similarity between S3 and

S1.

Table 2.7 ACS table between five example state-sequences

Similarity S1 S2 S3 S4 S5

ACS

S1 15 7 15 15 3
S2 7 127 15 15 31
S3 15 15 255 255 15
S4 15 15 255 2047 15
S5 3 31 15 15 127

Section 2.3.4 Time-Warped LCS (T-WLCS)

If we consider two state-sequences ‗aabbcc‘ and ‗abc‘, the output of

LCS‘(‗aabbcc‘, ‗abc‘) would be γ since LCS(‗aabbcc‘, ‗abc‘) = ‗abc‘. What about

‗adbecf‘ and ‗abc‘? The output of LCS‘(‗adbecf‘, ‗abc‘) would also be γ since

LCS(‗adbecf‘, ‗abc‘) = ‗abc‘ as well. However, considering that in the first pair

(‗aabbcc‘ and ‗abc‘), ‗aabbcc‘ is just the extension version of ‗abc‘, which should be

considered as more similar to the second pair (‗adbecf‘ and ‗abc‘). The main reason is

that in the first pair, the unmatched states (‗a‘, ‗b‘, ‗c‘) are regarded and discarded in

the same way as that in the second pair (‗d‘, ‗e‘, ‗f‘) in LCS. In the spirit of the

Dynamic Time Warping (DTW) [SC1978] algorithm, the Time-Warped LCS

(T-WLCS)[GS2004] was proposed. The recurrence formula for T-WLCS is:

1 1

1 1

1 1

0 0 0

max[(,), (,), , 0

(,) (,)] 1

max[(,), (,)] , 0

i j i j

i j i j i j

i j i j

i j

if i or j

T WLCS X Y T WLCS X Y if i j

T WLCS X Y T WLCS X Y and x y

T WLCS X Y T WLCS X Y if i j

and x y

 

 

 

  

   
    


  




(2-10)

where T-WLCS(Xi, Yj) denotes the maximum length of a time warped common

subsequence (we name the common subsequence plus the continuously duplicated

CHAPTER 2. LITERATURE REVIEW

35

common subsequences as time warped common subsequence, distinguishing from the

traditional conception of common subsequence in the original LCS). The length of

longest time-warped common subsequence can be read in T-WLCS(Xm, Yn).

Example evolution:

For the same five state-sequences: S1 = [abcd], S2 = [aaaaabc], S3 = [aabbccdd], S4

= [aaebbfccgdd] and S5 = [aaaabbb]. The examples of T-WLCS calculation is

evaluated in the following tables:

Table 2.8 Example evolution of T-WLCS

(a) T-WLCS (S1, S1) table

T-WLCS(S1, S1) Ø a b c d
Ø 0 0 0 0 0
a 0 1 1 1 1
b 0 1 2 2 2
c 0 1 2 3 3
d 0 1 2 3 4

(b) T-WLCS (S1, S2) table

T-WLCS(S1, S2) Ø a a a a a b c
Ø 0 0 0 0 0 0 0 0
a 0 1 2 3 4 5 5 5
b 0 1 2 3 4 5 6 6
c 0 1 2 3 4 5 6 7
d 0 1 2 3 4 5 6 7

(c) T-WLCS (S1, S3) table

T-WLCS(S1, S3) Ø a a b b c c d d
Ø 0 0 0 0 0 0 0 0 0
a 0 1 2 2 2 2 2 2 2
b 0 1 2 3 4 4 4 4 4
c 0 1 2 3 4 5 6 6 6
d 0 1 2 3 4 5 6 7 8

CHAPTER 2. LITERATURE REVIEW

36

(d) T-WLCS (S1, S4) table

T-WLCS(S1, S4) Ø a a e b b f c c g d d
Ø 0 0 0 0 0 0 0 0 0 0 0 0
a 0 1 2 2 2 2 2 2 2 2 2 2
b 0 1 2 2 3 4 4 4 4 4 4 4
c 0 1 2 2 3 4 4 5 6 6 6 6
d 0 1 2 2 3 4 4 5 6 6 7 8

(e) T-WLCS (S1, S5) table

T-WLCS(S1, S5) Ø a a a a b b b
Ø 0 0 0 0 0 0 0 0
a 0 1 2 3 4 4 4 4
b 0 1 2 3 4 5 6 7
c 0 1 2 3 4 5 6 7
d 0 1 2 3 4 5 6 7

Problem:

For the same five state-sequences: S1 = [abcd], S2 = [aaaaabc], S3 = [aabbccdd],

S4 = [aaebbfccgdd] and S5 = [aaaabbb].

“Non-uniqueness” problem: this problem is ubiquitous in T-WLCS as well. One

will get T-WLCS(S1, S3)= T-WLCS(S1, S4)=8 and T-WLCS(S1, S2)= T-WLCS(S1,

S5)=8.

“Unreasonable” problem: the unreasonable phenomenon T-WLCS(S2, S5) >

T-WLCS(S2, S3) still exists. Even T-WLCS cannot guarantee that the query

state-sequence has the highest similarity with itself: for instance, T-WLCS(S1, S1) <

T-WLCS(S1, S2), T-WLCS(S1, S3), T-WLCS(S1, S4), T-WLCS(S1, S5), which means the

state-sequence S1 has least similarity to itself comparing with the other state-sequences

S2, S3, S4
, S5. Such a problem becomes absurd if, for instance, we have S2‘ =

‗aaaaaaaaaaaa‘, which will lead to T-WLCS(S1,S2‘) = 1β due to the unreasonable

treatment of continuously duplicated common states.

CHAPTER 2. LITERATURE REVIEW

37

Table 2.9 T-WLCS table between five example state-sequences

Similarity S1 S2 S3 S4 S5

T-WLCS

S1 4 7 8 8 7
S2 7 11 10 10 11
S3 8 10 12 12 9
S4 8 10 12 15 9
S5 7 11 9 9 12

Section 2.4 ED-Based Subsequence Matching

The Edit Distance is a popular measurement for subsequence matching besides the

longest common subsequence-based measurements. Various distance models based on

Edit Distance have been developed over the past half century for state-sequence

matching, including: Dynamic Time Warping (DTW) [SC1978]; Edit Distance

[Lev1965] and its variants such as Edit Distance on Real Sequence (EDR) [CN2004];

Edit Distance with Real Penalty (ERP) [COO2005] and Time Warp Edit Distance

(TWED) [Mar2008] etc. However, most of these existing distance models characterize

temporal distance only in terms of the temporal order over the state-sequences, whereas

other important temporal features such as the temporal gap between two adjacent states,

and the temporal duration of each state itself have been neglected.

Section 2.4.1 Original Edit Distance (OED)

The edit distance between two state-sequences is defined as the cost of

transforming one state-sequence into the other state-sequence using operations such as

substitution, deletion, insertion, transposition and so on. Four examples are

demonstrated as follows for transforming one word into another one.

1) ―night‖ ―light‖: substitute ―n‖ in ―night‖ with ―l‖, obtain ―light‖

2) ―knight‖  ―night‖: delete ―k‖ at the beginning of ―knight‖, obtain ―night‖

CHAPTER 2. LITERATURE REVIEW

38

3) ―discover‖  ―discovery‖: insert ―y‖ into the end of ―discover‖, obtain

―discovery‖

4) ―quiet‖  ―quite‖: transpose ―et‖ in ―quiet‖ into ―te‖, obtain ―quite‖

From the examples, we can also conclude that the deletion operation and insertion

operation are reciprocally inversed: we can also transform ―night‖ into ―knight‖ by

inserting ―k‖ into the front of ―night‖ or transform ―discovery‖ into ―discover‖ by

deleting the last character ―y‖ of ―discovery‖.

 There are many algorithms to calculate the Edit Distance, including: Hamming

Distance, Levenshtein Distance, Damerau-Levenshtein Distance, Jaro-Winkler

Distance and ←kkonen‘s Algorithm. The Levenshtein Distance, which is named after

Vladimir Levenshtein from 1965, is a widely used specification of the Edit Distance

that calculates the minimum number of operations of substitution, deletion and

insertion. In most applications, Edit Distance is referred to as Levenshtein Distance.

Therefore, we shall refer to the Levenshtein Distance as the original Edit Distance if

not specified.

For the two state-sequences X and Y, the edit distance between them can be

defined as the following recursion:

Definition 2.3: the Edit Distance of given state-sequences X and Y is

1 1

1 1

1 1

0

0

(,) (,)

min((,), (,),

(,))+1

i j i j i j

i j i j

i j i j

j if i

i if j

ED X Y ED X Y if x y

ED X Y ED X Y

ED X Y if x y

 

 

 





 


 

(2-11)

Therefore, the Edit Distance (ED) between X and Y can be read as ED(Xm, Yn). What

follows are further explanations of the recursion: the problem can be summarized as

transforming Xi into Yj using a minimum operations ED(Xi, Yj). The procedure of edit

distance can be illustrated as:

CHAPTER 2. LITERATURE REVIEW

39

1) Setup rule: i = 0 or j = 0

 i=0 and j=0: the number of operations to transform one empty

state-sequence into another empty state-sequence is zero.

 i0 and j=0: the length of the first state-sequence is non-zero. The

operations transforming Xi into Y0 is deleting i states in the first

state-sequence Xi.

 i=0 and j0: the length of the second state-sequence is non-zero. The

operations transforming X0 into Yj is inserting j states in the first

state-sequence Xi.

In general, we can conclude that ED(X0, Yj) = j and ED(Xi, Y0) = i. Typically, ED(X0, Y0)

=0.

2) Matching rule: x i = yj (i  0 and j  0)

In this case, the current two states match each other. Suppose the number of

operations required to transform Xi-1 into Yj-1 is ED(Xi-1, Yj-1), so that no additional

operations are required to transform Xi into Yj. Therefore, ED(Xi, Yj) = ED(Xi-1, Yj-1).

3) Unmatching rule: xi  yj (i  0 and j  0)

In this case, the current two states are not matched. There are three ways to

transform the first state-sequence into the second state-sequence:

 Substitution: if we can transform Xi into Yj by exchanging xi for yj, and the

number of operations required to transform Xi-1 to Yj-1 is ED(Xi-1, Yj-1),

then the total number of operations is ED(Xi-1, Yj-1) + 1.

 Deletion: if we can transform Xi into Yj by removing xi at the end of Xi,

and the number of operations required to transform Xi-1 to Yj is ED(Xi-1, Yj),

then the total number of operations is ED(Xi-1, Yj) + 1.

CHAPTER 2. LITERATURE REVIEW

40

 Insertion: if we can transform Xi into Yj by adding yj at the end of Xi, and

the number of operations required to transform Xi to Yj-1 is ED(Xi, Yj-1),

then the total number of operations is ED(Xi, Yj-1) + 1.

Therefore, the number of operations required to transform Xi into Yj is obviously

the minimum of the above three sub-cases: ED(Xi, Yj) = min(ED(Xi, Yj-1) + 1, ED(Xi-1,

Yj) + 1, ED(Xi-1, Yj-1)+1) = min(ED(Xi, Yj-1), ED(Xi-1, Yj), ED(Xi-1, Yj-1)) + 1. In view of

the above analysis, the following conclusion can be reached for the original ED:

 The non-temporal distance is not considered.

 For the temporal distance, only the temporal order is considered in terms of

Dynamic Programming.

 It is a binary-value distance model. Therefore, it is not sensitive to outliers and

noise, and therefore arguably.

Section 2.4.2 Edit Distance on Real sequence (EDR)

The original Edit Distance was designed for string sequence matching where states

are presented in the form of characters. However, in many real-life applications, states

are not characters. Therefore, more practical distance measurements are required. The

Edit Distance on Real Sequence, as an important extension of original Edit Distance,

has been shown to be effective with respect to real-life state-sequence matching.

Distinguishing the character states in the original Edit Distance, the multi-dimensional

state is referred to as a state vector. The matching between two multi-dimensional

real-life states is first defined:

Definition 2.4. d-dimensional state vectors xi and yj from two state-sequence X

and Y are matched if and only if |xit -yjt|   for all 1 t  d, where  is the matching

threshold.

Definition 2.5. For two given state-sequence Xm and Yn, the Edit Distance on Real

sequence (EDR) between them is defined as the following recursion:

CHAPTER 2. LITERATURE REVIEW

41

1 1

1 1

0

0=
min{ () subcost, 0,

() 1, () 1} 0

i j

i j

i j i j

j if i

i if jEDR(X ,Y)
EDR X ,Y i and
EDR X ,Y EDR X ,Y j

 

 


 

 
  

(2-12)

where subcost = 0 if xi and yj are matched and subcost = 1 if xi and yj are unmatched.

The procedure of edit distance on real sequence can be illustrated as:

1) Setup rule: i = 0 or j = 0

Analogous to the original Edit Distance, we can conclude that EDR(X0, Yj) = j and

EDR(Xi, Y0) = i. Typically, EDR(X0, Y0) =0.

2) Edition rule: i  0 and j  0

We also consider the three ways to transform the first state-sequence into the

second state-sequence:

 Substitution: In this case, we first need to justify whether the current two states

match each other or not. if we can transform Xi into Yj by exchanging xi for yj,

and the number of operations required to transform Xi-1 to Yj-1 is EDR(Xi-1, Yj-1),

then the total number of operations is EDR(Xi-1, Yj-1) + subcost, where the

subcost is specified in following two sub-cases:

 | xit -yjt |   for all 1 t  d: the current two state vectors are matched.

According to the definition, subcost = 0, which means no additional

operation is required to transform Xi into Yj.

 | xit -yjt | >  for some 1 t  d: the current two state vectors are unmatched.

According to the definition, subcost = 1, which means the substitution

operation is required to transform Xi into Yj.

CHAPTER 2. LITERATURE REVIEW

42

 Deletion: if we can transform Xi into Yj by removing xi at the end of Xi, and the

number of operations required to transform Xi-1 to Yj is EDR(Xi-1, Yj), then the

total number of operations is EDR(Xi-1, Yj) + 1.

 Insertion: if we can transform Xi into Yj by adding yj at the end of Xi, and the

number of operations required to transform Xi to Yj-1 is EDR(Xi, Yj-1), then the

total number of operations is EDR(Xi, Yj-1) + 1.

Therefore, the number of operations required to transform Xi into Yj is obviously

the minimum of the above three sub-cases: EDR(Xi, Yj) = min(EDR(Xi, Yj-1) + subcost,

EDR(Xi-1, Yj) + 1, EDR(Xi-1, Yj-1)+1).

 The non-temporal distance is not considered.

 For the temporal distance, only the temporal order is considered in terms of the

Dynamic Programming.

 It is a binary-value distance model. Therefore, it is not sensitive to the outliers

and noise, and therefore not realistic.

Section 2.4.3 Edit distance with Real Penalty (ERP)

As a binary-value model, EDR is robust for the outliers and noise but not realistic

since the distance between two states is not refined. Edit distance with Real Penalty

(ERP) was proposed as another important extension of the original Edit Distance from

the point of view of real penalty, where the real distance between two states was

counted instead of a simple 0 or 1 being given. The ERP copes with the local time

shifting in terms of adding a gap g. for example, X = [1, 2], Y = [1, 3, 6], X may be

aligned into [1, 2, g] for alignment purposes. Therefore, the cost of an insertion

operation (or a deletion operation if swaping X and Y) can be regarded as the real

distance between the current state (‗6‘ in Y) and the gap g (normally specified as zero).

CHAPTER 2. LITERATURE REVIEW

43

(,)

i j

ERP i j i

j

x y substitution

dist x y x g deletion

g y inseartion

 
 




(2-13)

The recursion of Edit distance with Real Penalty can be defined as:

1

1

1 1

1

1

0

0

= min{ () (,),

() (,),

() (,)}

j

j

i

i

i j i j ERP i j

i j ERP i

i j ERP j

y g if i

x g if j

ERP(X ,Y) ERP X ,Y dist x y

ERP X ,Y dist x g otherwise

ERP X ,Y dist g y

 





  

  
 
 
 




(2-14)

The procedure of Edit distance with Real Penalty can be illustrated as:

1) Setup rule: i = 0 or j = 0

 i=0 and j=0: the cost to transform one empty state-sequence into another

empty state-sequence is zero.

 i0 and j=0: the length of the first state-sequence is non-zero. The

operations transforming Xi into Y0 is deleting i states in the first

state-sequence Xi. Therefore the cost is the sum of the real distance

between the first i states and the gap g.

 i=0 and j0: the length of the second state-sequence is non-zero. The

operations transforming X0 into Yj is inserting j states into the first

state-sequence Xi. Therefore the cost is the sum of the real distance

between the first j states and the gap g.

In general, we can conclude that ERP(X0, Yj) =
1

j

jy g and ERP(Xi, Y0) =

1

i

ix g . Typically, ERP(X0, Y0) =0.

CHAPTER 2. LITERATURE REVIEW

44

2) Edition rule: i  0 and j  0

There are three ways to transform the first state-sequence into the second

state-sequence:

 Substitution: different from the EDR, we do not need to justify whether the

current two states match each other or not. Since the real distance between the

two current states reflects the matching cost of substitution. If we can

transform Xi into Yj by exchanging xi for yj, and the real cost of operations

required to transform Xi-1 to Yj-1 is ERP(Xi-1, Yj-1), then the total cost of

operations is ERP(Xi-1, Yj-1) + distERP(xi, yj), where distERP(xi, yj) = | xi - yj |

denotes the substitution cost between xi and yj.

 Deletion: if we can transform Xi into Yj by removing xi at the end of Xi, and the

real cost of operations required to transform Xi-1 to Yj is ERP(Xi-1, Yj), then the

total cost of operations is ERP(Xi-1, Yj) + distERP(xi, g), where distERP(xi, g) = |

xi - g | denotes the deletion cost of xi.

 Insertion: if we can transform Xi into Yj by adding yj at the end of Xi, and the

real cost of operations required to transform Xi to Yj-1 is ERP(Xi, Yj-1), then the

total cost of operations is ERP(Xi, Yj-1) + distERP(g, yj), where distERP(g, yj) = | g

- yj | denotes the insertion cost of yj.

Therefore, the number of operations required to transform Xi into Yj is obviously

the minimum of the above three sub-cases: ERP(Xi, Yj) = min(ERP(Xi-1, Yj-1) +

distERP(xi, yj), ERP(Xi-1, Yj) + distERP(xi, g), ERP(Xi, Yj-1) + distERP(g, yj)).

 The non-temporal distance is not considered.

 For the temporal distance, only the temporal order is considered in terms of the

Dynamic Programming.

 It is a real-penalty distance model. Therefore, it is realistic, but not sensitive to

the outliers and noise.

CHAPTER 2. LITERATURE REVIEW

45

Section 2.4.4 Dynamic Time Warping (DTW)

Dynamic Time Warping (DTW), as the most important variant of original Edit

Distance, is defined as a real-penalty distance model. Different from the previous

real-penalty distance model (ERP), Dynamic Time Warping (DTW) copes with the

time shifting by duplicating the previous state. For instance, using the same example as

demonstrated in ERP: X = [1, 2], Y = [1, 3, 6], X may be aligned into [1, 2, 2] for

alignment purpose in DTW. Therefore, the cost of the insertion operation (or deletion

operation if swap X and Y) can be regarded as the real distance between the current

state (‗6‘ in Y) and the duplicated state (‗β‘ in X).

1 1

1 1

0 0

0 0
=

(,) min{ (),

(), ()}

i j
DTW i j i j

i j i j

if i j

if i or j
DTW(X ,Y)

dist x y DTW X ,Y

DTW X ,Y DTW X ,Y otherwise

 

 

 

  
 



(2-15)

where the distDTW(xi, yj) is normally specified as the Lp Norm. For instance, distDTW(xi,

yj) = | xi - yj | for L1 Norm and distDTW(xi, yj) = 2 2()i jx y for L2 Norm. The procedure

of Dynamic Time Warping can be illustrated as:

1) Setup rule: i = 0 or j = 0

 i=0 and j=0: the cost of transforming one empty state-sequence into

another empty state-sequence is zero. Therefore, DTW(X0, Y0) = 0.

 i=0 or j=0: DTW(X0, Yj) = DTW(Xi, Y0) = ∞. The cost of transforming one

empty state-sequence into another non-empty state-sequence is infinite.

2) Edition rule: i  0 and j  0

There are three ways to transform the first state-sequence into the second

state-sequence:

CHAPTER 2. LITERATURE REVIEW

46

 Substitution: similar to the ERP, the real distance between the two current

states reflects the matching cost of substitution. If we can transform Xi into Yj

by exchanging xi for yj, and the real cost of operations required to transform

Xi-1 to Yj-1 is DTW(Xi-1, Yj-1), then the total cost of operations is DTW(Xi-1, Yj-1)

+ distDTW(xi, yj), where distDTW(xi, yj) = distLp(xi, yj) denotes Lp Norm distance

between the current two states xi and yj.

 Deletion: if we can transform Xi into Yj by removing xi at the end of Xi,

according to the spirit of DTW, the state yj will be duplicated for alignment

purpose. Suppose the real cost of operations required to transform Xi-1 to Yj is

DTW(Xi-1, Yj), then the total cost of operations is DTW(Xi-1, Yj) + distDTW(xi,

yj), where distDTW(xi, yj) respects the real cost between the current state xi and

the duplicated state yj.

 Insertion: if we can transform Xi into Yj by adding yj at the end of Xi, opposite

to the deletion operation, the state xi will be duplicated for alignment purposes.

Suppose the real cost of the operations required to transform Xi to Yj-1 is

DTW(Xi, Yj-1), then the total cost of operations is DTW(Xi, Yj-1) + distDTW(xi,

yj), where distDTW(xi, yj) respects the real cost between duplicated state xi and

the current state yj.

Therefore, the number of operations required to transform Xi into Yj is obviously

the minimum of the above three sub-cases: DTW(Xi, Yj) = min(DTW(Xi-1, Yj-1) +

distDTW(xi, yj), DTW(Xi-1, Yj) + distDTW(xi, yj), + DTW(Xi, Yj-1) + distDTW(xi, yj)) =

distDTW(xi, yj) + min(DTW(Xi-1, Yj-1), DTW(Xi-1, Yj), DTW(Xi, Yj-1)).

 The non-temporal distance is not considered.

 For the temporal distance, only the temporal order is considered in terms of the

Dynamic Programming.

 It is a real-penalty distance model. Therefore, it is realistic, but not sensitive to

the outliers and noise.

CHAPTER 2. LITERATURE REVIEW

47

Section 2.4.5 Time Warped Edit Distance (TWED)

In distance models explored so far, including the original ED, EDR, ERP and

DTW, only the temporal order is taken into account in terms of dynamic programming.

Marteau [Mar 2008] produced an elastic model named Time Warped Edit Distance

(TWED), which takes into account the temporal gap difference in terms of the temporal

index of states where time-series and sequences are expressed as lists (timestamps) in

the form of t1, t2, …. tn,.

First, two domains S and T are defined for the binary Xm = [x1, …, xm] = [(s1,

is
t), …, (sm,

ms
t)]  S×T, where S  Rd

 denotes the d dimensional space state vector

and T R denotes the strictly increasing time-stamp variable. Therefore, for xi = (si,
is

t)

and xj = (sj,
jst),

is
t >

jst whenever i > j. denotes the null sample. For the current two

states xi and yj, the operations of substitution, deletion and insertion can be defined as

()

()

()

i j

i

j

x y substitution

x deletion

y insertion

 

 
 

(2-16)

where  denotes the arbitrary cost function. The recursion is defined as

1 1

1

1

0 0

0 0

= min{ () (),

() (),

() ()}

i j i j i j

i j i

i j j

if i j

if i or j

TWED(X ,Y) TWED X ,Y x y

TWED X ,Y x otherwise

TWED X ,Y y

 





  

  
  
  
  

(2-17)

In order to specify the cost function of the three operations (substitution, deletion

and insertion), the graphical paradigm is introduced. For the convenience of illustration,

the 1D time-series (as shown in y-axis) against the time-stamp (as shown in x-axis) is

constructed for two state-sequences X and Y. The three operations transforming X into Y

can be explained in terms of the graphical edit paradigm, as shown in the figure that

CHAPTER 2. LITERATURE REVIEW

48

shortly follows (analogously, the current states are xi = (si,
is

t) and yj = (qj,
jqt)):

 Substitution: as shown in figure 2.1 (a), the substitution operation for the two

current two states consists of adjusting xi to yj and adjusting xi-1 to yj-1 between

two state-sequences. Suppose the matching cost of Xi-1 and Yj-1 is

TWED(Xi-1,Yj-1), therefore the additional cost for substitution is dist(xi, yj) and

dist(xi-1, yj-1). Defining xi as a binary in TWED, dist(xi, yj) sequentially consists

of dist(si, qj) and dist(
is

t ,
jqt). Therefore, (xiyj) = dist(si, qj) + dist(si-1, qj-1)

+ dist(
is

t ,
jqt)+ dist(

1ist 
,

1jqt 
).

 Deletion: as shown in figure 2.1 (b), the deletion operation consists of

adjusting xi to xi-1 in the first state-sequence. No additional adjustment is

required in the second state-sequence. Suppose the matching cost of Xi-1 and Yj

is TWED(Xi-1,Yj), then the additional cost for insertion is dist(xi, xi-1). Defining

xi as a binary in TWED, dist(xi, xi-1) sequentially consists of dist(si, si-1) and

dist(
is

t ,
1ist 
). Therefore, (xi) = dist(si, si-1) + dist(

is
t ,

1ist 
).

 Insertion: as shown in figure 2.1 (c), the insertion operation consists of

adjusting xi to xi-1 in the first state-sequence. No additional adjustment is

required in the second state-sequence. Suppose the matching cost of Xi and Yj-1

is TWED(Xi, Yj-1), then the additional cost for insertion is dist(yj, yj-1). Defining

yj as a binary in TWED, dist(yj, yj-1) sequentially consists of dist(qj, qj-1) and

dist(
jqt ,

1jqt 
). Therefore, (yj) = dist(qj, qj-1) + dist(

jqt ,
1jqt 
).

CHAPTER 2. LITERATURE REVIEW

49

X

Y

X

Y

(a)
Substitution

X

Y

X

Y

Deletion
(b)

X

Y

X

Y

Insertion
(c)

Figure 2.1 Graphical paradigm of TWED for edit cost function

This provides the basis for the TWED distance:

1 1

1

1

() (,) (,),

() (,) ,

() (,) ,

i j i j i j

i i i

j j j

x y dist x y dist x y substitution

x dist x x deletion

y dist y y insertion





 





   

   

   

 (2-18)

In summary, based on the literature review of the representation of primitive time

and the conventional existing measurements for state-sequence matching, it can be

noted that, firstly, the time structure in terms of both point and interval is the most

reasonable to represent time-series, although it is necessary to formalize the

characterization of time-series and state-sequence with respect to the rich temporal

aspects including temporal order, temporal duration and temporal gap. Secondly, it is

neccesary to design a new similarity measurement in order to conqure the main

problems in the conventional existing measurements for state-sequence matching.

Therefore, the general similarity measurement based on the formal characterization of

time-series and state-sequence will be presentd in Chapter 3.

CHAPTER 3 GENERAL SIMILARITY MEASUREMENT FOR STATE-BASED
SEQUENCE MATCHING

50

CHAPTER 3 GENERAL FRAMEWORK

OF STATE-SEQUENCE MATCHING

Based on the review of the representation of time-series and state-sequences, as well

as the existing similarity measurements for state-sequence matching, a general framework

for state-sequence matching will be proposed. First, the formal characterization of

time-series and state-sequences will be presented based on typed point-based intervals.

Then, the general similarity measurement is designed to take into account both the

non-temporal aspects and rich temporal aspects.

Section 3.1 Formal Characterization of Time-series and

State-sequences

As mentioned in the introduction to this thesis, in most of the literature in the domain

of data mining, the fundamental time theories upon which time-series and sequences are

built up are not usually explicitly specified. Therefore, the formal characterizations with

respect to the temporal basis were neglected. In this section, we shall present a formal

characterization of time-series and state-sequences.

Section 3.1.1 Typed Point-based Time-elements and Time-series

In a system based solely on intervals as primitive, like that of Allen‘s interval

temporal theory [All1984], or a system based on both points and intervals like that of Ma

and Knight [MK1994], an ―immediately before‖ relation can be directly expressed by the

―Meets‖ relation.

N.B. The intuitive meaning of Meets(t1, t2) is that, on the one hand, t1 and t2 do not

overlap each other (i.e., they do not have any part in common, not even a point); on the

other hand, there is not any other time object standing between them.

CHAPTER 3 GENERAL SIMILARITY MEASUREMENT FOR STATE-BASED
SEQUENCE MATCHING

51

For the sake of allowing the expression of both absolute time values and relative

temporal relations, in this thesis, time-elements are defined as typed point-based

intervals as shown in [MH2006]. The two different approaches to the treatment of

intervals, i.e., taking intervals as primitive or as derived objects constructed out of

primitive points, are actually reducible to logically equivalent expressions under some

requisite interpretations. In fact, in a system based solely on points as primitives, say

(P, ), as the derived objects, an interval can be defined as a typed (left-open &

right-open, left-closed & right-open, left-open & right-closed, left-closed &

right-closed) subset of the set of primitive points, which must be in one of the following

four forms [GS1999]:

(p1, p2) = {p pRp1pp2

[p1, p2) =p | pRp1pp2

(p1, p2] =p | pRp1pp2

[p1, p2] =p | pR p1p p2

In the above, R stands for the set of real numbers, and real numbers p and q are called

the left-bound and right-bound of time-element t, respectively. The absolute values for the

left and/or right bounds of some time-elements might be unknown. In this case, real

number variables may be used for expressing relative relations to other time-elements (see

later). If the left-bound and right-bound of time-element t are the same, t is called a time

point; otherwise it is called a time interval. Without confusion, time-element [p, p] is taken

as identical to point p. Also, if a time-element is not specified as open or closed at its left

(right) bound (that is, the left (right) type of the time-element is unknown), we shall use

―<‖ (or ―>‖) instead of ―(‖ and ―[‖ (or ―)‖ and ―]‖) as for its left (or right) bracket. In

addition, the temporal duration of a time-element t, Tdur(t), and the temporal gap between

two adjacent elements t1and t2, Tgap (t1, t2) can be defined as below:

t = <p, q>  Tdur(t) = q – p

t1 = <p1, q1> , t2 = <p2, q2> Tgap (t1, t2) = |p2 – q1|

CHAPTER 3 GENERAL SIMILARITY MEASUREMENT FOR STATE-BASED
SEQUENCE MATCHING

52

Following Allen‘s terminology [All1984], we shall use ―Meets‖ to denote the

immediate predecessor order relation over time-elements, which can be formally defined

as:

Meets(t1, t2)  p1,p,p2R(t1 = (p1, p)  t2 = [p, p2)

 t1 = [p1, p)  t2 = [p, p2))  t1 = (p1, p)  t2 = [p, p2]

 t1 = [p1, p)  t2 = [p, p2]  t1 = (p1, p]  t2 = (p, p2)

 t1 = [p1, p]  t2 = (p, p2)  t1 = (p1, p]  t2 = (p, p2]

 t1 = [p1, p]  t2 = (p, p2])

It is easy to see that the intuitive meaning of Meets(t1, t2) is that, on the one hand,

time-elements t1 and t2 do not overlap each other (i.e. they do not have any part in

common, not even a point); on the other hand, there is no other time-element standing

between them.

Analogous to the 13 relations introduced by Allen for intervals [All1984], there are

30 exclusive temporal order relations over time-elements including both time points and

time intervals, which can be classified into the following 4 groups:

 Relations that relate points to points:

{Equal, Before, After}

 Relations that relate points to intervals:

{Before, After, Meets, Met_by, Starts, During. Finishes}

 Relations that relate intervals to points:

{Before, After, Meets, Met_by, Started_by, Contains, Finished_by}

 Relations that relate intervals to intervals:

{Equal, Before, After, Meets, Met_by, Overlaps, Overlapped_by, Starts,

Started_by, During, Contains, Finishes, Finished_by}

CHAPTER 3 GENERAL SIMILARITY MEASUREMENT FOR STATE-BASED
SEQUENCE MATCHING

53

We shall use a tetrad (T, R, D, G) to express the temporal reference of a given

collection of temporal propositions, where:

 T = {t1, …, tn} is a finite set of time elements, expressing the knowledge

(possibly incomplete) of what time elements are involved with respect to the

given collection of propositions;

 R = {R(ij) | R(ij) = r(ij)1  …  r(ij)
m(ij), 1 ≤ i, j ≤ n; i ≠ j} is a collection of

disjunctions of temporal relations over T, expressing the knowledge (possibly

incomplete) as to how the time elements in T are related to each other. Here, r(ij)
k

is one of the possible temporal relations as classified above.

 D is a collection of duration assignments (possibly incomplete) to every time

element in T.

 G is the collection of temporal gap assignments to each adjacent pair of time

elements in T.

The definition of these derived temporal order relations in terms of the single relation

Meets is straightforward. For example:

Before(t1, t2)  tT(Meets(t1, t)  Meets(t, t2))

Based on such a time theory, a time-series Tn can be defined as a vector of

time-elements temporally ordered one after another [MBZ2008]. Formally, a general

time-series is defined in terms of the following schema:

GTS3.1) Tn = [t1, …, tn] = [<p1, q1>, …, <pn, qn>]

GTS3.2) R = [Meets(ti, ti+1)Before(ti, ti+1)], for all i = 1, …, n-1

GTS3.3) Tdur = [Tdur(ti)]= [qi – pi], for some i where 1≤ i ≤ n.

GTS3.4) Tgap = [Tgap(ti, ti+1)] = [pi+1 – qi].for some i where 1≤ i ≤ n-1.

CHAPTER 3 GENERAL SIMILARITY MEASUREMENT FOR STATE-BASED
SEQUENCE MATCHING

54

Generally speaking, a time-series may be incomplete in various ways. For example,

if the relation between tj and tj+1 is ―Before‖ rather than ―Meets‖, it means that the

knowledge about the time-element(s) between tj and tj+1 is not available. In addition, if

Tdur(tk) is missing for some k, it means that duration knowledge as for time-element tk is

unknown. Correspondingly, a complete time-series is defined in terms of the schema as

below:

CTS3.1) T = [t1, …, tn] = [<p1, q1>, …, <pn, qn>]

CTS3.2) R = [Meets(ti, ti+1)], for all i = 1, …, n-1].

CTS3.3) Tdur = [Tdur(ti)]= [qi – pi], for all i = 1, …, n.

CTS3.4) Tgap = [Tgap(ti, ti+1) = 0], for all i = 1, …, n-1.

Section 3.1.2 States and State-sequences

The validation of data is usually dependent on time. For instance, $1000 (account

balance) can be valid before and on 1 January 2003 but become invalid afterwards. We

shall use ―fluents‖ to represent Boolean-valued, time-varying data, and denote proposition

―fluent f holds true over time t‖ by formula Holds(f, t) :

(F1) (f, t)  t1(Part(t1, t)  Holds(f, t1))

That is, if fluent f holds true over a time-element t, then f holds true over any part of

t.

(F2) t1(Part(t1, t)   t2 (Part(t2, t1)  Holds(f, t2)))  Holds(f, t)

That is, if any part of time t contains a part of itself over which fluent f holds true,

then f holds true over t. Here,

 Part(t1, t)  Equal(t1, t)  Starts(t1, t)  During(t1, t)  Finishes(t1, t)

(F3) Holds(f1, t)  Holds(f2, t)  Holds(f1  f2, t)

CHAPTER 3 GENERAL SIMILARITY MEASUREMENT FOR STATE-BASED
SEQUENCE MATCHING

55

That is, if fluent f1 or fluent f2 holds true over time t, then at least one of them holds

true over time t.

(F4) Holds(not(f), t)  t1(Part(t1, t)  Holds(f, t1))

That is, the negation of fluent f holds true over time t if and only if fluent f does not

hold true over any part of t.

(F5)Holds(f, t1) ޔ Holds(f, t2) ޔ Meets(t1, t2)  Holds(f, t1t2)

That is, if fluent f holds true over two time-elements t1 and t2 that meet each other,

then f holds over the ordered-union of t1 and t2.

A state is defined as a collection of fluents. Following the approach proposed in

[MBZ2008], we shall use Belongs(f, s) to denote that fluent f that belongs to the collection

of fluents representing state s. For the reason of simple expression, if f1, …, fm are all the

fluents that belong to state s, we shall represent s as <f1, …, fm>. Also, without confusion,

we shall use formula Holds(s, t) to denote that s is the state of the world with respect to

time t, provided that:

(F6) s1 = s2  f (Belongs(f, s1)  Belongs(f, s2))

That is, a state s holds true over time t if and only if every fluent in the s holds true

over time t.

Consequently, a state-sequence S is defined as a list of states together with its

corresponding time-series Tn. A general state-sequence is defined in terms of the schema

as below:

GSS1) Sn = [s1, …, sn]

GSS2) H = [Holds(si, ti)], for all i = 1, …, n, where [t1, …, tn] is a time-series.

CHAPTER 3 GENERAL SIMILARITY MEASUREMENT FOR STATE-BASED
SEQUENCE MATCHING

56

Correspondingly, a state-sequence is defined as complete if and only if the

corresponding time-series is complete.

According to the basic set of axioms with respect to the point and interval based

time-series theory [MH2006], for any two adjacent time elements t1 and t2 such that

Meets(t1, t2), we can denote the ordered union of t1 and t2 as t1  t2. If Holds(s, t1),

Holds(s, t2) , we have:

Holds(s, t1  t2)

Tdur(t1  t2) = Tdur(t1) + Tdur(t2)

That is, the ―ordered union‖ operation over time elements is consistent with the

conventional ―addition‖ operation over the duration assignment function, i.e., ‗Tdur‘.

Section 3.2 State-based Subsequence matching

Subsequence matching is one of the most significant associations between

state-sequences. First, we should note the differences between ―substring‖ and

―subsequence‖ which are often cited in computer science and mathematics. The notion of

string is always regarded as a synonym for sequence, however, substring is different from

subsequence.

 Substring: A substring of a string (sequence) 1... nS s s can be represented

as 1
ˆ ...i m iS s s  , where 0 i and m i n  , which denotes the consecutive

part of the string S.

 Subsequence: a subsequence of a sequence (string) 1... nS s s can be

represented as
1

ˆ ...
mi iS s s where 1 21 ... mi i i n     or we can say the

subsequence is exacted from a sequence along the same temporal order.

CHAPTER 3 GENERAL SIMILARITY MEASUREMENT FOR STATE-BASED
SEQUENCE MATCHING

57

From the above definition, we can see that a substring of a string must be a

subsequence of the string, rather than vice versa. For example, ―ABCD‖ is a substring as

well as a subsequence of ―ABCDEFG‖, however, ―ABD‖, which is a subsequence of

―ABCDEFG‖, is not a substring of ―ABCDEFG‖.

Section 3.2.1 Formal Characterization of State-sequence Matching

The notion of state is fundamental for many state-based applications; a state

represents a static snapshot of the world of discourse, while the dynamic historical

scenarios of the world can be characterized in terms of temporally ordered

state-sequences. Generally speaking, a state-sequence presents a sequence of data,

measured and/or spaced typically at successive times, which can be either points or

intervals. State-sequence matching is a popular research topic in state-based systems and

has been applied in various areas such as financial data analysis [WSZ2004], audio

recognition [ZS2003], visual information retrieval [SSHZ2009], etc. Normally,

state-sequence matching can be divided into two categories: whole matching [AFS1993,

BKSS1990] (i.e., all state-sequences have the same length) and subsequence matching

[AFS1993, MWL2001] (i.e., state-sequences have various lengths). Obviously, the whole

matching problem is in fact a special case of the subsequence matching problem.

Followed by the formal tetrad characterization of state-sequence, the two

state-sequences Xm and Yn to be matched can be defined as:

GSSX1) Xm = [x1, …, xm]

GSSX2) H = [Holds(xi, ti)], for all i = 1, …, m,

where [t1, …, tm] is a time-series:

GTSX1) Tm= [t1, …, tm] = [<p1, q1>, …, <pm, qm>]

GTSX2) R= [Meets(ti, ti+1)Before(ti, ti+1)], for all i = 1, …, m-1

GTSX3) [] [()] []dur i dur i i iT d T t q p    , for all i = 1, …, m.

GTSX4) 1 1[] [(,)] []gap i gap i i i iT g T t t p q     for all i = 1, …, m-1and 0 0g  .

CHAPTER 3 GENERAL SIMILARITY MEASUREMENT FOR STATE-BASED
SEQUENCE MATCHING

58

Analogously:

GSSY1) Yn = [y1, …, yn]

GSSY2) H‘ = [Holds(yj, '
jt)], for all j = 1, …, n,

where [' '
1,..., nt t] is a time-series:

GTSY1) ' ' '

1
[,...,]

n n
T t t = [' ' ' '

1 1, ,..., ,n np q p q   ]

GTSY2) ' ' ' ' '

1 1[(,) (,)]j j j jR Meets t t Before t t   for all j = 1, …, n-1

GTSY3) ' ' ' ' '[] [()] []dur j dur j j jT d T t q p    , for all j = 1, …, n.

GTSY4) ' ' ' ' ' '
1 1[] [(,)] []gap j gap j j j jT g T t t p q     for j = 1, …, n-1and '

0 0g  .

Based on the tetrad representation of time-series and state-sequences, 3 temporal

aspects should be taken into account: (i) Temporal Order (also known as temporal

shifting tolerance, which has been taken into account by most ED-based similarity

measurement approaches in the spirit of dynamic programming) (ii) Temporal Duration

and (iii) the Temporal Gap, since they will vary the meanings of the state-sequences.

For instance, the story (state-sequence) I (as SI shown in Figure 3.1): ―I ate for half an

hour. After 1 hour, I walked out for β hours and then took a shower for half an hour‖.

Figure 3.1 Temporal illustration of the three stories

The time-series can be described as below:

GSSI1) SI= [s1, s2, s3]

GSSI2) Holds(si, ti), for all i = 1, 2, 3.

SI

SII

SIII

0.5

eat

walk

shower

CHAPTER 3 GENERAL SIMILARITY MEASUREMENT FOR STATE-BASED
SEQUENCE MATCHING

59

Where s1, s2, s3 denote actions (states) ―eat‖, ―walk‖ and ―shower‖ respectively and

[t1, t2, t3] is its corresponding time-series described as a tetrad:

GTSI = (T, R, Tdur,Tgap) with

GTSI1) T = [t1, t2, t3]

GTSI2) R = [Before(t1, t2), Meets(t2, t3)]

GTSI3) Tdur = [Tdur(t1)=0.5, Tdur(t2)=2, Tdur(t3)=0.5]

GTSI4) Tgap = [Tgap(t1, t2), Tgap(t2, t3)]= [p21 – p12, p31 – p22] = [t12, 0]

And its corresponding complete description is (t12 denotes the time-element

standing between t1 and t2) CTSI = (T, R, Tdur,Tgap) with:

CTSI1) T = [t1, t12, t2, t3]

CTSI2) R = [Meets (t1, t12), Meets (t12, t2), Meets(t2, t3)]

CTSI3) Tdur = [Tdur(t1)=0.5, Tdur(t12)=1, Tdur(t2)=2, Tdur(t3)=0.5]

CTSI4) Tgap = [Tgap(t1, t2), Tgap(t2, t12), Tgap(t2, t3)]= [0, 0, 0]

Let us think about story II as SII shown in Figure 3.1: ―I ate for half an hour. Then

walked out for β hours and then took a shower for half an hour‖.

Obviously, the three states (events) have the same temporal order (t1, t2, t3) in

these two stories (state-sequences). However, the lengths of temporal gap standing

between ―ate‖ and ―walked out‖ are different in the two stories (1 hour in story I and 0

in story II). In addition, for story III (as SIII shown in Figure 3.1): ―I ate for half an hour.

After 1 hour, I walked out for 5 hours and then took a shower for half an hour‖, where

the lengths of the temporal gaps between each adjacent state pair are the same as those

in story I. However, the duration of the state ―walked out‖ is various. The statement ―I

walked out for 5 hours‖ in story III might be abnormal.

CHAPTER 3 GENERAL SIMILARITY MEASUREMENT FOR STATE-BASED
SEQUENCE MATCHING

60

Section 3.2.2 General Framework for State-sequence Matching

Based on the formal characterization of time-series and state-sequences, the

general similarity measurement with respect to the non-temporal information and the

rich temporal information for two given state-sequences is defined as:

(,) (,) (,)
m n ntem ntem m n tem tem m n

GSM X Y w Dis X Y w Dis X Y  (3-1)

where (,)
ntem m n

Dis X Y and (,)
tem m n

Dis X Y denote the non-temporal distance and temporal

distance, respectively with the corresponding weight
ntem

w and
tem

w .

Section 3.2.2.1 Non-temporal Matching

Non-temporal matching means common elemental state matching of the

state-sequences Xm and Yn, due to the fact that the elemental state appearing in the

state-sequences are not actually ordered by their index, which in turn means the

state-sequences are actually regarded as sets of states. It is a combinational problem to

pair the two state-sequences in the first place. In general, for m ≥ n, there are mPrn =

m!/(m-n)! ways of pairing Xm and Yn. Let Pr denote the set of all possible ordered

vectors formed by selecting, in order, n random elemental states from Xm. It seems

reasonable to take the pairing which gives the minimal overall distance. Hence, in this

thesis, we shall define the non-temporal distance between Xm and Yn as:

(,) (,)ntem m n pr Pr ntem nDis X Y min dis pr Y (3-2)

where 2

1 1

(,) (,) /
n n

ntem n jpr jpr j j ipr
j i

dis pr Y w dis pr y w
 

   , pr = [pr1, …, prn] and.

Section 3.2.2.2 Temporal Matching

Based on the triad representation of state-sequences, the temporal measurement

between two given state-sequences Xm with Yn with respect to the 3 temporal aspects is

CHAPTER 3 GENERAL SIMILARITY MEASUREMENT FOR STATE-BASED
SEQUENCE MATCHING

61

defined recursively as below:

1

1

1 1

(,) ()

(,) min (,) ()

(,) ()

tem m n del m

tem m n tem m n ins n

tem m n sub m n

Dis X Y W Cost x

Dis X Y Dis X Y W Cost y

Dis X Y W Cost x y








 

 
  
  

 (3-3)

where m, n ≥ 1, ()mCost x  , ()nCost y and ()m nCost x y denote the cost

function for edit operations deletion, insertion and substitution, respectively, and

{ , , }() (),i i i Tord Tdur TgapCost a b w Cost a b     (3-4)

and() {(),(),()}m n m nya b x x y      .

The initialization is set as below:

0 0

0

0

(,) 0

(,) 1

(,) , 1

tem

tem j

tem i

Dis X Y

Dis X Y for j

Dis X Y for i



  

  

ˈ (3-5)

Section 3.2.3 General Definition of Cost Function

The cost function is a significant issue in similarity measurement. We have

currently two categories: binary-value cost functions which are not sensitive to noise

and real-penalty models which are more reasonable for real-life application but

sensitive to noise since the operation cost with respect to a noise becomes much larger

than normal states and will take the total cost into a much higher level. For instance, 4
1A

= [1, 2, 3, 4], 4
1B = [1, 2, 5, 4], 4

1C = [1, 2, 6, 4], 4
1D = [1, 2, 1000, 4] (for the sake of

convenience, we only consider the cost function of temporal order since the cost

functions for temporal gap and temporal duration can be evaluated analogously).

Assume that the states in any two state-sequences will be matched bi-objectively along a

corresponding temporal order. Then in the binary-value models, CostTord(4
1A , 4

1B) = Cost-

Tord{(1,1), (2,2), (3,5), (4,4)}= CostTord{0, 0, 1, 0}=1, CostTord(4
1A , 4

1D) CostTord{(1,1),

(2,2), (3,1000), (4,4)} = CostTord{0, 0, 1, 0}=1. So CostTord(4
1A , 4

1B) = CostTord(4
1A , 4

1D)

CHAPTER 3 GENERAL SIMILARITY MEASUREMENT FOR STATE-BASED
SEQUENCE MATCHING

62

which in turn means it is not sensitive to the noise (1000 in 4
1D) since the cost between

all the unmatched state pairs (may include noise) is calculated as 1. Analogously, Cost-

Tord(4
1A , 4

1B) = CostTord(4
1A , 4

1C) = 1 which means it cannot distinguish the various values

(s3 = 5 in 4
1B while 6 in 4

1C) in the domain of the states. In order to make up for this

deficiency, the real-penalty cost function emerges, where the real distance between

state pairs instead of the binary value (0/1) is accumulated. For instance, with respect to

the real-penalty cost function, CostTord(4
1A , 4

1B) =CostTord{(1,1), (2,2), (3,5), (4,4)}=

CostTord{0, 0, 2, 0} = 2 and CostTord(4
1A , 4

1D) CostTord{(1,1), (2,2), (3,6), (4,4)} = Cost-

Tord{0, 0, 3, 0} = 3 (here the simplest one-dimension LP distance is employed for the

real distance between each state pair). So CostTord(4
1A , 4

1B) < CostTord(4
1A , 4

1C). Obviously,

it is more reasonable than the binary-value cost function. However, CostTord(4
1A , 4

1D)

CostTord{(1,1), (2,2), (3,1000), (4,4)} = CostTord{0, 0, 997, 0}=997 ب CostTord(4
1A , 4

1B),

even though they have just got one unmatched state pair, which means it is very

sensitive to noise since the operation on state ―1000‖ (with insertion, deletion or

substitution) is much more expensive. Therefore, the problem of how to filter out the

noise, or decrease its influence, should be taken into account in a real-penalty cost

function. Unfortunately, none of the existing real-penalty distance models have

considered it.

To filter out the noise or decrease its influence, a cost function is defined as:

{ , , }

() ()
()

i i ii

for all i Tord Tgap Tdur

w Cost a b if Cost a b
Cost a b

elsec




    
  





 (3-6)

Where , { , , }i ja b x y  and c is a constant usually set to 0 (to filter out the noise) or the

maximum cost that we have currently got (release the influence of the noise).

As for subsequence matching, insertion (or deletion) is required to align the two

CHAPTER 3 GENERAL SIMILARITY MEASUREMENT FOR STATE-BASED
SEQUENCE MATCHING

63

state-sequences to be matched. It is important especially using the real-penalty cost

function since the way of insertion (or deletion) will vary the cost value during

matching. Reviewing the typical three real-penalty distance models ERP, DTW and

TWED, the main difference is: when insertion (or deletion) is required to align

state-sequence mX and nY , ERP inserts a constant g (usually 0) into mX while DTW

duplicates the previous state inmX and TWED duplicates the previous state innY in terms

of the graphical editor paradigm [12]. For instance, mX = [1, 2], nY = [1, 3, 6], mX

may be aligned into [1, 2, _], [1, 2, 2] and [1, 2, 3] in ERP, DTW and TWED

respectively. These different disposals will result in various costs for the insertion,

deletion and substitution operations. We shall inherit the spirit of EDR and leave the

task of how to adjust the importance of different operations to their corresponding

weight
delW ,

insW and
subW . Therefore, the cost functions of GSM are defined as below:

(0,)

() (,0)

(,)

Lp i i

Tord i j Lp j j

Lp i j

dist y if x

Cost x y dist x if y

dist x y else





 
  



 (3-7)

'' '

'''

'''

,

,

,

(0) 0

() (0) 0

()

Lp j i

Tdur i j Lp i j

Lp i j

dist d

dist d

dist d

if d

Cost x y d if

d else

 
  



 (3-8)

'
1 1

'
1 1

'
1 1

,

,

,

(0) 0

() (0) 0

()

Lp j i

Tgap i j Lp i j

Lp i j

dist g g

dist g g

dist g g

if

Cost x y if

else

 

 

 




  



 (3-9)

Where i = 1, …, m, j = 1, …, n.

In summary, the aspects considered in GSM compared with existing similarity

measurements are exhibited in Table 3.1. GSM is the only similarity measurement that

accounts for both the non-temporal aspects and rich temporal aspects. Meanwhile, it is

also a reasonable real-penalty-style measurement and robust to noise.

CHAPTER 3 GENERAL SIMILARITY MEASUREMENT FOR STATE-BASED
SEQUENCE MATCHING

64

Table 3.1 The aspects considered in similarity measurements

 Aspects
Model

Non-
temporal

Temporal Difference Cost Function
Temporal

Order
Temporal
Duration

Temporal
Gap

Anti-
noise

Real Penalty

LCSS 
CLCS  
ACS  

T-WLCS  
OED  
EDR  
DTW  
ERP  

TWED   
GSM      

All the non-temporal and temporal distances have been taken into account (as

shown in table 3.2):

Table 3.2 General similarity measurement

Distance Aspects Consideration

Non-temporal Aspect Formula (3-2)

Temporal Aspect
Temporal Order Formula (3-7)
Temporal Gap Formula (3-8)

Temporal Duration Formula (3-9)

Cost Function
Anti-noise Formula (3-6)

Real Penalty Formula (3-6)

In summary, a formal characterization of time-series and state-sequence has been

presented based on the typed point based interval. Benefitting from the formal

consideration of temporal aspects (temporal order, temporal duration and temporal

gap), a general similarity measurement named as GSM, which covers both

non-temporal and all the three temporal aspects, has been designed for general

state-sequence matching. In the next chapter, we shall demonstrate the generality of

proposed GSM and examine the validity and effectiveness for state-sequence matching.

 CHAPTER 4 GENERALIZATION AND APPLICATION OF GSM

65

CHAPTER 4 GENERALIZATION AND

APPLICATION OF GSM

Since the GSM proposed in chapter 3 addresses both the non-temporal aspects and

all the 3 temporal aspects, it is versatile enough to subsume other existing similarity

measurements in the literature of sequence matching. In fact, most of those existing

measurements can be taken as special cases of GSM by means of specifying the

non-temporal and temporal weights, and the cost functions, correspondingly.

Meanwhile, to demonstrate the performance of the proposed GSM, experiments were

conducted on 6 benchmark datasets.

Section 4.1 The Generalization of GSM

In this section, we shall analyse the powerful expressive ability of GSM by

deducing the conventional existing measurements as its special cases.

Section 4.1.1 Original ED Special Case

Set the following restriction:

1) wntem = 0, wtem = 1

2) Wdel = Wins = Wsub = 1

3) wTord = wTgap = wTdur = 0

4) CostTord(xi, φ) = CostTord(φ,yj) = 1, CostTord(xi,yj) = (xi,yj) with

0
(,)

1

i jED
Trod i j

if x y
Cost x y

else

  


Then we will get the recursion formulation of OED:

 CHAPTER 4 GENERALIZATION AND APPLICATION OF GSM

66

1

1

1 1

(,) 1

(,) min (,) 1

(,) (,)

i j

i j i j

ED
i j Tord i j

ED X Y

ED X Y ED X Y

ED X Y Cost x y





 

 
 




 (4-1)

which in turn means in OED:

1) Only the temporal order aspect has been accounted for

2) The three operations have the same status

3) No temporal gap or duration difference is taken into account

4) The cost function is binary-value

Section 4.1.2 EDR Special Case

Set the following restriction:

1) wntem = 0, wtem = 1

2) Wdel = Wins = Wsub = 1

3) wTord =1, wTgap = wTdur = 0

4) CostTord(xi, φ) = CostTord(φ,yj)= 1, CostTord(xi, yj) = EDR
TrodCost (xi, yj) with

0 (,)
(,)

1

LP i jEDR
Trod i j

if d x y
Cost x y

else

  


where (,)LP i jd x y denotes the LP-Norm distance between xi and yj. Then we will get the

formulation of EDR:

1

1

1 1

(,) 1

(,) min (,) 1

(,) (,)

i j

i j i j

EDR
i j Tord i j

EDR X Y

EDR X Y EDR X Y

EDR X Y Cost x y





 

 
 




 (4-2)

 CHAPTER 4 GENERALIZATION AND APPLICATION OF GSM

67

Similar to the basic ED, the cost function is binary value (0/1). In contrast, in order to

be applied to real life data, EDR relaxes the matching equality by parameter since the

strict equality in ED is limited to symbol (or string) matching.

Section 4.1.3 DTW Special Case

In the formula of GDM, set the following restriction:

1) wntem = 0, wtem = 1

2) Wdel = Wins = Wsub = 1

3) wTord =1, wTgap = wTdur = 0

4) CostTord(xi,φ) = CostTord(φ, yj) = CostTord(xi, yj) = dLP(xi, yj)

Then we will get the formulation of DTW:

1

1

1 1

(,)

(,) (,) min (,)

(,)

i j

i j LP i j i j

i j

DTW X Y

DTW X Y d x y DTW X Y

DTW X Y





 




  



 (4-3)

Comparing with the binary-value models like basic ED and EDR, DTW is a

real-penalty model which takes real cost (computed with LP-Norm) for each operation

and it duplicates the previous state when inserting or deleting.

Section 4.1.4 ERP Special Case

Set the following restriction:

1) wntem = 0, wtem = 1

2) Wdel = Wins = Wsub = 1

3) wTord =1, wTgap = wTdur = 0

4) CostTord(xi,φ) = dLP(xi, g), CostTord(φ,yj) = dLP(g, yj),

CostTord(xi, yj) = dLP(xi, yj)

 CHAPTER 4 GENERALIZATION AND APPLICATION OF GSM

68

Then we will get the formulation of ERP:

1

1

1 1

(,) (,)

(,) min (,) (,)

(,) (,)

i j LP i

i j i j LP j

i j LP i j

ERP X Y d x g

ERP X Y ERP X Y d g y

ERP X Y d x y





 

 


 
 

 (4-4)

 Distinguishing from DTW, ERP adds a constant g (usually set to 0) instead of

duplicating the previous state when inserting or deleting.

Section 4.1.5 TWED Special Case

Set the following restriction:

1) wntem = 0, wtem = 1

2) Wdel = Wins = Wsub = 1

3) wTord =1, wTgap = v, wTdur = 0

4)

1 1

1 1

(,) (,) (,)

(,) (,) (,)

(,) (,) (,)

((,)

TWED TWED
i Tord i i Tgap i i

TWED TWED
j Tord j j Tgap j j

TWED TWED
i j Tord i j Tord i j

TWED
Tgap i j

Cost x Cost x x v Cost x x

Cost y Cost y y v Cost y y

Cost x y Cost x y Cost x y

v Cost x y Co

 

 
 

 

    
    


  
  1 1(,))TWED

Tgap i jst x y 

with
(,) (,)

(,) (,)

TWED
Tord i j LP i j

TWED
Tgap i j LP

Cost a b d a b

Cost a b d i j

 




 for 1 1 1 1(,) {(,),(,),(,),(,)}i j i i j j i j i ja b x x y y x y x y   

Then we will get the formulation of TWED

1

1

1 1

(,) (,)

(,) min (,) (,)

(,) (,)

i j i

i j i j j

i j i j

TWED X Y Cost x

TWED X Y TWED X Y Cost y

TWED X Y Cost x y








 

 


 
 

 (4-5)

In TWED, the temporal gap difference is counted, but no duration difference has

been taken into account. Meanwhile, based on the timestamp theory, the index value of

the states are used to compute the temporal gap distance, where, for the corresponding

 CHAPTER 4 GENERALIZATION AND APPLICATION OF GSM

69

the tetrad (T, R, Tdur, Tgap) and triad (T‟, R‟, '

dur
T , '

gap
T) we have:

For time-series Tm = [t1, …, tm] and state-sequences Xm = [x1, …, xm] with H =

[Holds(xi, ti)], for all i = 1, …, m:

1) Tm= [1, β, …, m] = [<1, 1>, [<2, 2>, …, <m, m>]

2) R = [Before(ti, ti+1)], for all i = 1, …, m-1

3) [] [] [0,...,0]dur i i iT d q p    , for all i = 1, …, m.

4) 1[] [] [1,1,...,1]gap i i iT g p q    for all i = 1, …, m-1and 0 0g  .

And for time-series ' ' '

1
[,...,]

n n
T t t and state-sequences Yn = [y1, …, yn] with H‘ =

[Holds(yj,
'
jt)], for all j = 1, …, n:

1) '

n
T = [1, β, …, n] = [<1, 1>, [<2, 2>, …, <n, n>]

2) ' ' '

1[(,)]j jR Before t t for all j = 1, …, n-1

3) ' ' ' '[] [] [0,...,0]dur j j jT d q p    , for all j = 1, …, n.

4) ' ' ' '
1[] [] [1,1,...1]gap j j jT g p q    for j = 1, …, n-1and '

0 0g  .

Section 4.1.6 LCSS Special Case

Distinguishing from other models, LCSS considers the matched states to describe

the similarity (inverse to the distance used in ED based models). So the min is replaced

by max in LCSS and the initialization should be changed into a minimum value 0

correspondingly. The multi-dimensional LCSS uses  to control the matching in time

that can be regarded as the temporal gap range when duration function equals to 0 and

the temporal relationship between each two adjacent states is only ―before‖. N.B. the

temporal gap is just used to restrict the matching range in time. No cost on temporal

gap difference is counted (set 3)).

In LCSS,

1) wntem = 0, wtem = 1

 CHAPTER 4 GENERALIZATION AND APPLICATION OF GSM

70

2) Wdel = Wins =0, Wsub = 1

3) wTord =1, wTgap = wTdur = 0

4) (,) (,)=0Tord i Tord jCost x Cost y  , , ,() ()LCSS
Tord i j i jTordCost x y Cost x y

Then we will get the formulation of LCSS:

1

1

1 1

0 0 0

(,)
(,) max

(,)

(,) (,)

i j

i j
i j

LCSS
i j Tord i j

if i or j

LCSS X Y
LCSS X Y

LCSS X Y

LCSS X Y Cost x y





 

 



 

 

 (4-7)

where:

(,)
1

(,)(,)

0

Tord i j

LCSS
Tgap i jTord i j

Cost x y
if

Cost x yCost x y

else





 


 



 (4-8)

Where, İ and į are employed to control the matching in space and time.

Section 4.1.7 CLCS Special Case

As reviewed in chapter 2, CLCS is the further disposal of LCSS; therefore it has

the same setting as LCSS.

1) wntem = 0, wtem = 1

2) Wdel = Wins =0, Wsub = 1

3) wTord =1, wTgap = wTdur = 0

4) (,) (,)=0Tord i Tord jCost x Cost y  , , ,() ()CLCS
Tord i j i jTordCost x y Cost x y

Despite the length of the longest common subsequence, the real common

subsequence is also recorded according to formula (2-2), and then the CLCS can be

calculated with formulas (2-5) to (2-8).

 CHAPTER 4 GENERALIZATION AND APPLICATION OF GSM

71

Section 4.1.8 ACS Special Case

Similar to LCSS, we set:

1) wntem = 0, wtem = 1

2) Wdel = Wins =0, Wsub = 1

3) wTord =1, wTgap = wTdur = 0

4) (,) (,)=0Tord i Tord jCost x Cost y  , , ,() ()ACS
Tord i j i jTordCost x y Cost x y

When substituting the first 3 settings into formula (3-1) to (3-4), we can get:

1 1 ,(,) (,) ()ACS
i j i j Tord i jACS X Y ACS X Y Cost x y   (4-9)

with:

1 1

1 1

1 1

,

(,)

() (,) (,)

2 (,)

i j i j

ACS
Tord i j i j i j

i j i j

ACS X Y if x y

Cost x y ACS X Y ACS X Y

ACS X Y if x y

 

 

 

 
 
  


(4-10)

Therefore:

1 1

1 1

1 1

(,) 2

(,) (,) (,)

(,)

i j i j

i j i j i j

i j i j

ACS X Y if x y

ACS X Y ACS X Y ACS X Y

ACS X Y if x y

 

 

 

  
 
  


(4-11)

Section 4.1.9 T-WLCS Special Case

As a LCS-based similarity measurement, the first three settings of the T-WLCS

special case are the same as those in the LCSS special case but with different cost

functions in the fourth setting which can be listed as:

1) wntem = 0, wtem = 1

2) Wdel = Wins =0, Wsub = 1

 CHAPTER 4 GENERALIZATION AND APPLICATION OF GSM

72

3) wTord =1, wTgap = wTdur = 0

4) (,) (,)=0Tord i Tord jCost x Cost y  , , ,() ()T WLCS
Tord i j i jTordCost x y Cost x y

We can define the formula of T-WLCS as:

1

1

1 1 ,

(,)

(,) max (,)

(,) ()

i j

i j i j

T WLCS
i j Tord i j

T WLCS X Y

T WLCS X Y T WLCS X Y

T WLCS X Y Cost x y






 

 
  


 

(4-12)

with:

,
1

()
0

i jT WLCS
Tord i j

i j

if x y
Cost x y

if x y


  



(4-13)

Therefore:

1 1

1 1

1 1

max[(,), (,),

(,) (,)] 1

max[(,), (,)]

i j i j i j

i j i j

i j i j i j

T WLCS X Y T WLCS X Y if x y

T WLCS X Y T WLCS X Y

T WLCS X Y T WLCS X Y if x y

 

 

 

      


  

(4-14)

Section 4.2 The Optimal Temporal Common Subsequence

In this section, so as to distinguish from the concept of common subsequence in

conventional LCS, we define the temporal common subsequence of two

state-sequences as the common subsequence where each state is different from its

neighbour(s) (predecessor and successor):

Section 4.2.1 Definition of OTCS

Definition 4.1: Given two state-sequences, X=[x1, x2, …, xm] and Y=[y1, y2,…, yn],

with time series TX=[tx1, tx2, …, txm] and TY=[ty1, ty2,…, tyn], temporal common

subsequence is defined as:

TCS(X, Y) = {[s1, s2,…, st] | s1, s2,…, st {x1, x2, …, xm} { y1, y2,…, yn } and 0 <

 CHAPTER 4 GENERALIZATION AND APPLICATION OF GSM

73

ts1 < ts2 < … < tst < min(m, n) and sj ≠ sj+1 for j = 1,…,t-1.

That is to say, there are no continuous duplications of states in temporal common

subsequence. Let us return to the examples in figure 1.2 and figure 1.3 in chapter 1: For

instance, the longest common subsequence of B3 and Cγ is ‗aabbbcd‘, while the

temporal common subsequence of B3 and Cγ is ‗abcd‘. Correspondingly, the Optimal

Temporal Common Subsequence (OTCS) is the one with the highest overall similarity

integrated by the length of temporal common subsequence, the temporal duration

difference and temporal gap difference, noted as OTCSL, OTCSD and OTCSG

respectively.

Section 4.2.2 The Two Properties of OTCS

The task is how to solve the OTCS problem for two arbitrary sequences, X and Y.

First, let us explore the properties of the OTCS function: suppose the current

state-sequences to be matched is [x1, …, xi-1, xi] and [y1, …, yj-1, yj]

1) Matching rules: xi = yj

In this case, the current states are matched. In order to detect whether the

matched states are the continuous duplicated states in the two state-sequences

respectively, four situations should be considered:

i) Both of them are continuous duplicated states: xi-1 = yj-1 = xi = yj

According to the definition of OTCS, to find the temporal common

subsequence, shorten each state-sequence by deleting the current state. The

OTCS of the shortened state-sequences is equal to the OTCS of the current

state-sequences since the continuously duplicated common state(s) will be

regarded as the same temporal common state with different temporal

durations in each state-sequence. This means OTCS(Xi, Yj) = OTCSL(Xi−1,

Yj−1). For example: X = ‗aaaabb‘, Y = ‗aaeebbb‘, xi-1 = yj-1 = xi = yj = ‗b‘,

 CHAPTER 4 GENERALIZATION AND APPLICATION OF GSM

74

OTCS(‗aaaabb‘, ‗aaeebbb‘) = OTCS(‗aaaab‘, ‗aaeebb‘) = ‗ab‘.

ii) Neither of the current states is the continuously duplicated state, but have

the same predecessor:

xi-1 = yj-1  xi = yj

In this case, the currently matched states can be regarded as the new

temporal common state. So, shortening each state-sequence by deleting the

current state, the OTCS of current state-sequences is equal to the OTCS of

the shortened state-sequences appending the currently matched state.

OTCS(Xi, Yj) = (OTCSL(Xi−1, Yj−1), xi) or (OTCSL(Xi−1, Yj−1), yj). For

example: X = ‗aaaabbc‘, Y = ‗aaeebbbc‘, ‗b‘ = xi-1 = yj-1  xi = yj = ‗c‘,

OTCS(‗aaaabbc‘, ‗aaeebbbc‘) = (OTCS(‗aaaabb‘, ‗aaeebbb‘), ‗c‘) =

‗abc‘

iii) Either of the current states is the continuously duplicated states and

obviously the two current states have different predecessors: (xi-1  yj-1) &

(either xi-1 or yj-1= xi = yj).

There are two sub-cases in this case: xi-1 = xi = yj or yj-1= xi = yj, if

xi-1 = xi = yj, which means xi is the continuously duplicated state, so shorten

X by deleting xi and the OTCS between the current X and Y is equal to the

OTCS between the shortened X and current Y: OTCS(Xi, Yj) = OTCS(Xi−1,

Yj). For example: X = ‗aaaabb‘, Y = ‗aaeeb‘, OTCS(‗aaaabb‘, ‗aaeeb‘) =

OTCS(‗aaaab‘, ‗aaeeb‘) = ‗ab‘; else, yj-1= xi = yj, which means yj is the

continuously duplicated state. In the same manner, shorten Y by deleting yj

and the OTCS between current X and Y is equal to the OTCS between the

current X and shortened Y: OTCS(Xi, Yj) = OTCS(Xi, Yj−1). for example: X

= ‗aaaab‘, Y = ‗aaeebbb‘, OTCS(‗aaaab‘, ‗aaeebbb‘) = OTCS(‗aaaab‘,

‗aaeebb‘) = OTCS(‗aaaab‘, ‗aaeeb‘) = ‗ab‘. To summarize the two

sub-cases, the OTCS can be calculated as: OTCSL(Xi, Yj) =

max(OTCSL(Xi−1, Yj), OTCSL(Xi, Yj−1)).

 CHAPTER 4 GENERALIZATION AND APPLICATION OF GSM

75

iv) Neither of the current states is the continuously duplicated state and have

different predecessors: xi-1  yj-1  xi = yj

In this case, the currently matched states can be regarded as the new

temporal common state. So, after shortening each state-sequence by

deleting the current state, the OTCS of the current state-sequences is equal

to the OTCS of the shortened state-sequences appending the currently

matched state. OTCS(Xi, Yj) = (OTCSL(Xi−1, Yj−1), xi) or (OTCSL(Xi−1,

Yj−1), yj). For example: X = ‗aaaabbc‘, Y = ‗aaeebbbfffc‘, xi-1 = ‗b‘  yj-1 =

‗f‘  xi = yj = ‗c‘, OTCS(‗aaaabbc‘, ‗aaeebbbfffc‘) = (OTCS(‗aaaabb‘,

‗aaeebbbfff‘), ‗c‘) = ‗abc‘.

2) Unmatching rules: xi  yj

This means the current states are not matched, and then the OTCS of X

and Y is equal to the longer of OTCS(Xi,Yj-1) and LCS(Xi-1,Yj). To explain the

procedure, we shall demonstrate it by dividing the situation into two cases:

i) The predecessor of the current state in the first state-sequence matches the

current state in the second state-sequence: xi-1 = yj. For example, X=

‗aaaabbc‘, Y= ‗aaeebbb‘, xi-1 = yj = ‗b‘, therefore, OTCS(Xi, Yj) =

OTCS(Xi-1, Yj)

ii) The predecessor of the current state in the second state-sequence matches

the current state in the first state-sequence: xi = yj-1. For example, Xi=

‗aaaabb‘, Yj= ‗aaeebbbc‘, xi = yj-1 = ‗b‘, therefore, OTCS(Xi, Yj) = OTCS(Xi,

Yj-1)

To summarize the two cases in the second property, OTCS(Xi, Yj) =

longer(OTCS(Xi-1, Yj), OTCS(Xi, Yj-1)).

 CHAPTER 4 GENERALIZATION AND APPLICATION OF GSM

76

Section 4.2.3 The Length of The OTCS by Dynamic Programming

According to the two properties of OTCS, the algorithm calculating the length of

the optimal temporal common subsequence between state-sequences Xi and Yj for all 1

≤ i ≤ m and 1 ≤ j ≤ n can be illustrated as algorithm 4.1, where the length of OTCS will

be stored in OTCSL(i, j) and OTCSL(m, n) returns the length of OTCS of X and Y.

Algorithm 4.1: The length of the OTCS

 In algorithm 4.1, the continuously duplicated states are not re-counted as new

common states in any state-sequence. For example, for the same five state-sequence: S1

= [abcd], S2 = [aaaaabc], S3 = [aabbccdd], S4 = [aaebbfccgdd] and S5 = [aaaabbb], the

OTCS length is illustrated as table 4.1. For reasons of simple illustration, the temporal

duration of each state is set as 1 and the temporal gap between each pair of adjacent

states is set as 0 if they are identical, or 1 if they are different.

Input: two state-sequences Xm and Yn.
Output: the length of the longest temporal common subsequences OTCSL(Xm, Yn).

1) Initiation : x0 = y0 = null
for i = 0 : m: OTCSL(i, 0) = 0
for j = 0 : n: OTCSL(0, j) = 0

2) Recursion:
 for i = 1: m
 for j = 1 : n
 if xi = yj # matched
 case 1: xi-1 = yj-1 = xi = yj

 OTCSL(i, j) = OTCSL(i − 1, j − 1)
 case 2: xi-1 = yj-1  xi = yj
 OTCSL(i, j) = OTCSL(i − 1, j − 1) + 1
 case 3: (xi-1  yj-1) & (either xi-1 or yj-1= xi = yj)
 OTCSL(i, j) = max(OTCSL(i−1, j), OTCSL(i, j−1))

 case 4: xi-1  yj-1  xi = yj
 OTCSL(i, j) = OTCSL(i − 1, j − 1) + 1

 else xi  yj # unmatched
OTCSL(i, j) = max(OTCSL(i−1, j), OTCSL(i, j−1))

 3) Accomplishment
 OTCSL(Xm, Yn) = OTCSL(m, n)

 CHAPTER 4 GENERALIZATION AND APPLICATION OF GSM

77

Table 4.1 OTCS length table

OTCSL Ø a a e b b f c c g d d

Ø 0 0 0 0 0 0 0 0 0 0 0 0

a 0 1 1 1 1 1 1 1 1 1 1 1

a 0 1 1 1 1 1 1 1 1 1 1 1

b 0 1 1 1 2 2 2 2 2 2 2 2

b 0 1 1 1 2 2 2 2 2 2 2 2

b 0 1 1 1 2 2 2 2 2 2 2 2

c 0 1 1 1 2 2 2 3 3 3 3 3

d 0 1 1 1 2 2 2 3 3 3 4 4

From table 4.1, we can see that the duplicated continuous states are regarded as once

matching which means they are not re-counted as the length of common subsequence.

For instance, OTCSL(‗a‘,‘a‘) = OTCSL(‗aa‘,‘aa‘) = 1, OTCSL(‗aab‘,‘aaeb‘) =

OTCSL(‗aabbb‘,‘aaebb‘) = β. Meanwhile, it is necessary to take into account the

various duplicated continuous states besides the length (number) of common

subsequence. In OTCS, the various duplications will be counted with various temporal

durations correspondingly.

Section 4.2.4 The Temporal Duration and Temporal Gap by Backtracking

The distinguishing character of OTCS is that besides the length of the optimal

common subsequence based on the definition 4.1, the temporal duration and temporal gap

are also taken into account. In order to compute the differences of temporal duration and

temporal gap, a backtracking technique is developed as shown in Algorithm 4.2:

 CHAPTER 4 GENERALIZATION AND APPLICATION OF GSM

78

Algorithm 4.2: Track back of OTCS

During the procedure of backtracking, we simultaneously record (,)k k kInd f l

and ' ' '(,)k k kInd f l as the first and the last index of the k-th common state

between mX and nY , where k = 1, …, L = OTCSL(mX , nY), ,k kf l א [1, m] and ' ',k kf l א [1,

n]. According to the typed point-based intervals, the temporal duration

difference (,)D m nOTCS X Y and temporal gap difference (,)G m nOTCS X Y are calculated as

below:

' '
' '

1

(,) () ()
k k k k

L

D m n l f l f

k

OTCS X Y q p q p


    (4-9)

' '

1 1

' '

2

0 1
(,)

() ()
k k k k

L
G m n

f l f l

k

if k
OTCS X Y

p q p q else
 




 

  


 (4-10)

Finally, the overall similarity with respect to the temporal order, temporal duration

Function backTrack(OTCSL[0..m,0..n], X[1..m], Y[1..n], i, j)
If i=0 or j=0

return ― ‖
Else if X(i)=Y(j)
 if X(i-1)= Y(j-1)
 return backTrack(OTCSL, X, Y, i-1, j-1)
 else % X(i-1)≠ Y(j-1)
 if X(i-1)= X(i) or Y(j-1)= Y(j)%one of the predecessor is equal to

current state
 if OTCSL(i-1,j) > OTCSL(i,j-1)
 return backTrack(OTCSL, X, Y, i-1, j)
 else
 return backTrack(OTCSL, X, Y, i, j-1)
 else %none of the predecessor is equal to current state
 return backTrack(OTCSL, X, Y, i-1, j-1) + X[i]
 else% X(i)≠Y(j)
 if OTCSL(i-1,j) > OTCSL(i,j-1)
 return backTrack(OTCSL, X, Y, i-1, j);
 else
 return backTrack(OTCSL, X, Y, i, j-1);

 CHAPTER 4 GENERALIZATION AND APPLICATION OF GSM

79

and temporal gap is defined as:

(,) (,)

(,) (,)
m n Tord L m n

Tdur D m n Tgap G m n

OTCS X Y w OTCS X Y

w OTCS X Y w OTCS X Y

 

   
 (4-11)

Example evolution:

First, let us show an example of OTCS. Figure 4.1 presents the OTCS table for

state-sequences X=[aabbccdddd] and Y=[bbaaeebbbfccccedd], where the elements in

the table denote the length of the OTCS obtained by the algorithm and the first and the

last indices of the temporal common states are circled in red and green respectively. For

instance, for the first common state ‗a‘, (1,2)kInd  , ' (3,4)kInd  , which means it

starts from the first state and ends at the second state in the first state-sequence X,

whilst it starts from the third state and ends by the forth state in the second

state-sequence Y.

a a b b c c d d d d

b

b

a

a

e

e

b

b

b

f

c
c

c

c

e

d

d

OTCS table and OTCS path; with OTCS = abcd

0

0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

0

0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

2

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

2

1

1

1

1

1

1

2

2

2

2

3

3

3

3

3

3

3

1

1

1

1

1

1

2

2

2

2

3

3

3

3

3

3

3

1

1

1

1

1

1

2

2

2

2

3

3

3

3

3

4

4

1

1

1

1

1

1

2

2

2

2

3

3

3

3

3

4

4

1

1

1

1

1

1

2

2

2

2

3

3

3

3

3

4

4

1

1

1

1

1

1

2

2

2

2

3

3

3

3

3

4

4

Figure 4.1 OTCS table and OTCS path with OTCS =abcd

 CHAPTER 4 GENERALIZATION AND APPLICATION OF GSM

80

For the same five state-sequences: S1 = [abcd], S2 = [aaaaabc], S3 = [aabbccdd], S4

= [aaebbfccgdd] and S5 = [aaaabbb]. The examples of OTCS calculation are evaluated

in the following five tables in table 4.2. In order to clearly see the difference from the

point of view of temporal order, temporal duration and temporal gap individually, the

result of OTCS is shown by a triad that denotes the OTCSL, OTCSD and OTCSG

respectively. From which we can see that we can distinguish the common subsequence

with the same length by further comparison of the differences of temporal duration and

temporal gap.

Table 4.2 Example evolution of OTCS

(a) OTCS(S1, S1) table

OTCS(S1, S1) Ø a b c d

Ø [0,0,0] [0,0,0] [0,0,0] [0,0,0] [0,0,0]
a [0,0,0] [1,0,0] [1,0,0] [1,0,0] [1,0,0]
b [0,0,0] [1,0,0] [2,0,0] [2,0,0] [2,0,0]
c [0,0,0] [1,0,0] [2,0,0] [3,0,0] [3,0,0]
d [0,0,0] [1,0,0] [2,0,0] [3,0,0] [4,0,0]

(b) OTCS(S1, S2) table

OTCS(S1, S2) Ø a a a a a b c

Ø [0,0,0] [0,0,0] [0,0,0] [0,0,0] [0,0,0] [0,0,0] [0,0,0] [0,0,0]
a [0,0,0] [1,0,0] [1,1,0] [1,2,0] [1,3,0] [1,4,0] [1,4,0] [1,4,0]
b [0,0,0] [1,0,0] [1,1,0] [1,2,0] [1,3,0] [1,4,0] [2,4,0] [2,4,0]
c [0,0,0] [1,0,0] [1,1,0] [1,2,0] [1,3,0] [1,4,0] [2,4,0] [3,4,0]
d [0,0,0] [1,0,0] [2,1,0] [2,2,0] [2,3,0] [2,4,0] [2,4,0] [3, 4, 0]

(c) OTCS(S1, S3) table

OTCS(S1, S3) Ø a a b b c c d d

Ø [0,0,0] [0,0,0] [0,0,0] [0,0,0] [0,0,0] [0,0,0] [0,0,0] [0,0,0] [0,0,0]

a [0,0,0] [1,0,0] [1,1,0] [1,1,0] [1,1,0] [1,1,0] [1,1,0] [1,1,0] [1,1,0]
b [0,0,0] [1,0,0] [1,1,0] [2,1,0] [2,2,0] [2,2,0] [2,3,0] [2,3,0] [2,3,0]
c [0,0,0] [1,0,0] [1,1,0] [2,1,0] [2,2,0] [3,2,0] [3,3,0] [3,3,0] [3,3,0]
d [0,0,0] [1,0,0] [1,1,0] [2,1,0] [2,2,0] [3,2,0] [3,3,0] [4,3,0] [4,4,0]

 CHAPTER 4 GENERALIZATION AND APPLICATION OF GSM

81

(d) OTCS(S1, S4) table

OTCS(S1,S4) Ø a a e b b f c c g d d

Ø

[0,
0,
0]

[0,
0,
0]

[0,
0,
0]

[0,
0,
0]

[0,
0,
0]

[0,
0,
0]

[0,
0,
0]

[0,
0,
0]

[0,
0,
0]

[0,
0,
0]

[0,
0,
0]

[0,
0,
0]

a

[0,
0,
0]

[1,
0,
0]

[1,
1,
0]

[1,
1,
0]

[1,
1,
0]

[1,
1,
0]

[1,
1,
0]

[1,
1,
0]

[1,
1,
0]

[1,
1,
0]

[1,
1,
0]

[1,
1,
0]

b

[0,
0,
0]

[1,
0,
0]

[1,
1,
0]

[1,
1,
0]

[2,
1,
2]

[2,
2,
2]

[2,
2,
2]

[2,
2,
2]

[2,
3,
2]

[2,
3,
2]

[2,
3,
2]

[2,
3,
2]

c

[0,
0,
0]

[1,
0,
0]

[1,
1,
0]

[1,
1,
0]

[2,
1,
2]

[2,
2,
2]

[2,
2,
2]

[3,
2,
4]

[3,
3,
4]

[3,
3,
4]

[3,
3,
4]

[3,
3,
4]

d

[0,
0,
0]

[1,
0,
0]

[1,
1,
0]

[1,
1,
0]

[2,
1,
2]

[2,
2,
2]

[2,
2,
2]

[3,
2,
4]

[3,
3,
4]

[3,
3,
4]

[4,
3,
6]

[4,
4,
6]

(e) OTCS(S1, S5) table

OTCS(S1, S5) Ø a a a a b b b
Ø [0,0,0] [0,0,0] [0,0,0] [0,0,0] [0,0,0] [0,0,0] [0,0,0] [0,0,0]
a [0,0,0] [1,0,0] [1,1,0] [1,2,0] [1,3,0] [1,3,0] [1,3,0] [1,3,0]
b [0,0,0] [1,0,0] [1,1,0] [1,2,0] [1,3,0] [2,3,0] [2,4,0] [2,5,0]
c [0,0,0] [1,0,0] [1,1,0] [1,2,0] [1,3,0] [2,3,0] [2,4,0] [2,5,0]
d [0,0,0] [1,0,0] [1,1,0] [1,2,0] [1,3,0] [2,3,0] [2,4,0] [2,5,0]

Table 4.3 shows the matching results between each pair of state-sequences of the

given five state-sequences. For instance, the length of the optimal common

subsequence is identical between (S1, S1), (S1, S3) and (S1, S4) with OTCSL(S
1, S1) =

OTCSL(S1, S3) = OTCSL(S1, S4) = 4. However, S1 will be taken as the most similar

state-sequence to S1 itself since OTCSD(S1, S1) = 0 < OTCSD(S1, S3) or OTCSD(S1, S4)

and OTCSG(S1, S1) = 0 < OTCSG(S1, S3) or OTCSG(S1, S4) which means S1 has less

temporal duration difference and temporal gap difference to S1 itself than to S3 or S4.

Furthermore, S3 seems closer to S1 than S4 with less difference in temporal gap but the

same length of optimal common subsequence and the same difference in temporal

 CHAPTER 4 GENERALIZATION AND APPLICATION OF GSM

82

duration. Thus, the similarity between S1 and S1 to S5 can be ordered as: OTCS(S1, S1) >

OTCS(S1, S3) > OTCS(S1, S4) > OTCS(S1, S2) > OTCS(S1, S5), which is reasonable.

Table 4.3 OTCS table between S1
 to S5

Similarity S1 S2 S3 S4 S5

OTCS

S1 [4, 0, 0] [3, 4, 0] [4, 4, 0] [4, 4, 6] [2, 5, 0]
S2 [3, 4, 0] [3, 0, 0] [3, 5, 0] [3, 5, 4] [2, 3, 0]
S3 [4, 4, 0] [3, 5, 0] [4, 0, 0] [4, 0, 6] [2, 3, 0]
S4 [4, 4, 6] [3, 5, 4] [4, 0, 6] [7, 0, 0] [2, 3, 2]
S5 [2, 5, 0] [2, 3, 0] [2, 3, 0] [2, 3, 2] [2, 0, 0]

Section 4.3 Experimental Results of Application of GSM

Section 4.3.1 Experiment Databases

To demonstrate the performance of the proposed GSM as well as OTCS,

experiments were conducted on 6 benchmark datasets as elaborated in Table 4.4.

Table 4.4 Description of 6 benchmark datasets.

Dataset Sample Dimension Class

AT&T face 1 400 1024 40

USPS2 9298 256 10

MNIST 3 1000 784 10

COIL204 1440 1024 20

Isolet15 1560 617 26

BinAlpha6 1014 320 26

1 http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
2 http://www.gaussianprocess.org/gpml/data/

3 http://yann.lecun.com/exdb/mnist/

4 http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php

5 http://archive.ics.uci.edu/ml/datasets/ISOLET

6 http://yann.lecun.com/exdb/mnist/

http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
http://www.gaussianprocess.org/gpml/data/
http://yann.lecun.com/exdb/mnist/
http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php
http://archive.ics.uci.edu/ml/datasets/ISOLET
http://yann.lecun.com/exdb/mnist/

 CHAPTER 4 GENERALIZATION AND APPLICATION OF GSM

83

 AT&T Faces Dataset contains 400 different images of 40 distinct subjects with 10

images per subject. For some subjects, the images were taken at different times,

varying the lighting, facial expression and facial details (glasses/no glasses). All

images were taken against a dark homogeneous background with the subjects in an

upright, frontal, position. We reshape each image into one vector.

 USPS Dataset is a handwritten digit database, 500 images (50 images for every

digit) were selected for the reported experiments.

 MNIST Dataset is a handwritten digit database. Each image is centered (according

to the center of mass of the pixel intensities) on a 28×28 grid. In our experiments,

we randomly chose 1000 images (i.e. each digit has 100 images). We reshaped

each image into one vector.

 COIL20 Dataset contains 20 objects. Each image of the same object is taken at 5

degrees intervals as the object is rotated on a turntable, consequently each object

has 72 images associated with it. The size of each image is 32×32 pixels, with 256

grey levels per pixel. Each image is represented by a 1024 dimensional vector.

 Isolet1 Spoken Letter Recognition Dataset generated by 150 subjects announcing

the name of each letter of the alphabet twice. The speakers are grouped into sets of

30 speakers each, and are referred to as isolet1, isolet2, isolet3, isolet4, and isolet5.

The features include spectral coefficients, contour features, sonorant features,

pre-sonorant features, and post-sonorant features. In our experiment, we utilized

subset isolet1 only.

 BinAlpha Dataset containing 26 hand-written alphabets. We selected 30 images

for every alphabet. We reshaped each image into one vector.

Section 4.3.2 Construction of Temporal Duration and Temporal Gap

In order to demonstrate the effectiveness of our measurement, and to avoid

destroying the well organised structure of the original data sets, we construct 10

different distributions for temporal duration and temporal gap. For each class of the 6

 CHAPTER 4 GENERALIZATION AND APPLICATION OF GSM

84

benchmark datasets, the distributions of the temporal duration and temporal gap were

selected randomly from the following 10 distributions. Figure 4.2 shows one example

for each of the 10 distributions of duration.

1) Normal distribution with mean 0.5 and standard deviation 1;

2) Quadratic distribution: y = x(2+i/10);

3) Constant distribution: y = i/100;

4) Negative quadratic distribution: y = (1-x)(2+i/10);

5) Circle distribution: (2+ /10)1 iy x  ;

6) Power distribution: 1/(2+ /10)iy x ;

7) Cosine distribution: 1 1
2 400 2=-(+)sin(2)+iy x ;

8) Sine distribution: 1 1
2 400 2=(+)sin(2)+iy x ;

9) Step function:
400

400

1 50i

i

i
y

else

  


;

10) Quadratic distribution: 21
50 2 200=(4-) (-) +i iy x ;

1 n
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time-series

d
is

tr
ib

u
ti

o
n

1) Normal

2) Quadratic
3) Constant

4) Negative

5) Circle

6) Power

7) Cosine

8) Sine
9) Step

10) Quadratic

Figure 4.2 Distribution examples of temporal duration and temporal gap

 CHAPTER 4 GENERALIZATION AND APPLICATION OF GSM

85

Section 4.3.3 Contribution of Temporal Aspects in GSM

A K-means a clustering experiment was conducted to explore the weight

contribution of temporal order, temporal duration and temporal gap. In order to highlight

the contribution of temporal aspects, we first set 0ntemw  , 1temw  . The clustering

accuracies against temporal duration and temporal gap on 6 datasets are reported in

figure 4.3 and figure 4.4. We set the weight of temporal order 1Tordw  , while the

temporal duration and temporal gapTdurw and
Tgapw were varied as {1/256, 1/64, 1/16, 1/4,

1, 4, 16, 64}. Generally speaking, the temporal order contributes more significance than

temporal duration and temporal gap. The temporal duration plays a slightly more

significant role than temporal gap. The first 3 optimal weights for temporal duration

and temporal gap are selected to construct the optimal combination of the temporal

duration and temporal gap, and the clustering accuracies, are shown in figure 4.5 where

the red circles denote the highest clustering accuracies and the corresponding weight

combination is set as the final weight for temporal duration and temporal gap of the

GSM on each dataset.

Figure 4.3 Weights contribution of temporal duration

 CHAPTER 4 GENERALIZATION AND APPLICATION OF GSM

86

Figure 4.4 Weights contribution of temporal gap

1/64
1/16

1

1/64

1/16

1/4
0

0.25

0.5

0.75

1

Duration

AT&T face

Gap

C
lu

st
er

in
g

A
cc

ur
ac

y

1/16
1/4

1

1/64

1/16

1/4
0

0.25

0.5

0.75

1

Duration

USPS

Gap

C
lu

st
er

in
g

A
cc

ur
ac

y

1/64
1/16

1

1/64

1/16

1
0

0.25

0.5

0.75

1

Duration

MNIST

Gap

C
lu

st
er

in
g

A
cc

ur
ac

y

1/16
1/4

1

1/64

1/4

1
0

0.25

0.5

0.75

1

Duration

COIL20

Gap

C
lu

st
er

in
g

A
cc

ur
ac

y

1/16
1/4

1

1/16

1/4

1
0

0.25

0.5

0.75

1

Duration

Isolet1

Gap

C
lu

st
er

in
g

A
cc

ur
ac

y

1/16
1/4

1

1/64

1/16

1/4
0

0.25

0.5

0.75

1

Duration

BinAlpha

Gap

C
lu

st
er

in
g

A
cc

ur
ac

y

Figure 4.5 Optimal combination of temporal duration and temporal gap

Section 4.3.4 Comparison of GSM with Binary-value Measurements

In order to compare the performance of GSM with binary-value measurements OED,

EDR, LCSS, CLCS, T-WLCS and ACS, the GSM was refined as OTCS with wntem

 CHAPTER 4 GENERALIZATION AND APPLICATION OF GSM

87

varying from {10-4, 10-3, …104} and the optimal wntem that led to the best performance,

while temporal duration and temporal gap were set as the optimal weight combination as

shown in figure 4.5 (1Tordw ). Figure 4.6 shows an example of the clustering results

on the MNIST dataset with OTCS compared to other binary-value measurements. The

dimension was reduced to 2-dimension by PCA dimensionality reduction in order to

plot the clustering results. From this we can see that OTCS has the best clustering

results since the centroids are the most consistent to the data distribution.

0.7 0.75 0.8 0.85 0.9 0.95 1
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8
OTCS

Cluster1
Cluster2

Cluster3

Cluster4

Cluster5

Cluster6
Cluster7

Cluster8

Cluster9

Cluster10
centriods

0.7 0.75 0.8 0.85 0.9 0.95 1
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8
T-WLCS

Cluster1
Cluster2

Cluster3

Cluster4

Cluster5

Cluster6
Cluster7

Cluster8

Cluster9

Cluster10
centriods

0.7 0.75 0.8 0.85 0.9 0.95 1
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8
ACS

Cluster1
Cluster2

Cluster3

Cluster4

Cluster5

Cluster6
Cluster7

Cluster8

Cluster9

Cluster10
centriods

0.7 0.75 0.8 0.85 0.9 0.95 1
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8
LCSS

Cluster1
Cluster2

Cluster3

Cluster4

Cluster5

Cluster6
Cluster7

Cluster8

Cluster9

Cluster10
centriods

0.7 0.75 0.8 0.85 0.9 0.95 1
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8
CLCS

Cluster1
Cluster2

Cluster3

Cluster4

Cluster5

Cluster6
Cluster7

Cluster8

Cluster9

Cluster10
centriods

 CHAPTER 4 GENERALIZATION AND APPLICATION OF GSM

88

0.7 0.75 0.8 0.85 0.9 0.95 1
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8
EDR

Cluster1
Cluster2

Cluster3

Cluster4

Cluster5

Cluster6
Cluster7

Cluster8

Cluster9

Cluster10
centriods

0.7 0.75 0.8 0.85 0.9 0.95 1
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8
OED

Cluster1
Cluster2

Cluster3

Cluster4

Cluster5

Cluster6
Cluster7

Cluster8

Cluster9

Cluster10
centriods

Figure 4.6 An example of clustering results on 2-d MNIST dataset

Table 4.5 shows the clustering accuracy of each dataset. Generally speaking,

compared with the other reputable binary-value measurements, OTCS outperforms all of

them with highest clustering accuracy, especially on the BinAlpha dataset.

Table 4.5 Clustering accuracy comparison of Binary-value measurements

Dataset

 Measurement

AT&T
face

USPS MNIST COIL20 Isolet1 BinAlpha

OED 65.39 60.50 54.95 59.84 65.85 68.96
EDR 76.92 66.87 66.31 61.28 70.49 71.32
LCSS 74.57 66.25 52.96 53.74 60.37 56.44
CLCS 60.23 57.64 50.35 51.87 55.24 53.49
ACS 75.84 73.85 55.66 60.55 64.85 60.55

T-WLCS 72.59 70.17 58.23 66.62 66.36 61.21
OTCS 78.36 76.41 66.35 69.20 75.58 72.66

Section 4.3.5 Comparison of GSM with Real-penalty Measurements

In comparison to real-penalty measurements such as ERP, DTW and TWED, the

main advantage of GSM is that it is not sensitive to noise. In order to demonstrate the

soundness of GSM, the noised datasets have been reconstructed by meanings of adding

Gaussian noise with different means ([0, 0.β,…, β]) and variances ([0.1, 0.β,…, 1]) to

each dataset. Table 4.6 below shows the average mean and standard deviation (STD) of

the retrieval precision on each noised dataset, which statistically demonstrates the

 CHAPTER 4 GENERALIZATION AND APPLICATION OF GSM

89

soundness of GSM with higher precision (mean) and smaller fluctuation (STD). Figure

4.7 illustrates the retrieval precision on the MNIST dataset in detail with respect to various

mean and variance of Gaussian noise, which verifies the effectiveness of GSM visually.

Table 4.6 Statistic of the retrieval precision of noised dataset

Dataset
Statistic

AT&T
face

USPS MNIST COIL20 Isolet1 BinAlpha

ERP
Mean 63.71 65.60 59.48 61.53 74.66 71.25
STD 0.1249 0.1391 0.1742 0.2519 0.1285 0.1595

DTW
Mean 73.37 72.29 65.79 73.11 78.51 74.29
STD 0.1932 0.1128 0.1890 0.1438 0.0891 0.1032

TWED
Mean 79.95 75.30 68.80 72.96 79.38 76.90
STD 0.0993 0.1025 0.1359 0.1235 0.0940 0.0895

GSM
Mean 85.65 80.54 74.82 78.44 84.19 82.84
STD 0.0632 0.0738 0.1022 0.0983 0.0593 0.738

0
0.5

1
1.5

2

0
0.25

0.5
0.75

1
0

0.25

0.5

0.75

1

mean

ERP

variance

pr
ec

is
io

n

0
0.5

1
1.5

2

0
0.25

0.5
0.75

1
0

0.25

0.5

0.75

1

mean

DTW

variance

pr
ec

is
io

n

0
0.5

1
1.5

2

0
0.25

0.5
0.75

1
0

0.25

0.5

0.75

1

mean

TWED

variance

pr
ec

is
io

n

0
0.5

1
1.5

2

0
0.25

0.5
0.75

1
0

0.25

0.5

0.75

1

mean

GSM

variance

pr
ec

is
io

n

Figure 4.7 Retrieval precision of GSM on MNIST against Gaussian noise

 CHAPTER 4 GENERALIZATION AND APPLICATION OF GSM

90

Section 4.3.6 Capability to Handle Rich Temporal Aspects

In order to demonstrate the capability of GSM to handle rich temporal aspects, a

classification experiment was conducted on each dataset where a leave-one-out

mechanism was employed. Half of each dataset was chosen as the training data while

the rest was taken as the test data. Table 4.7 shows the classification precision with

different combinations of temporal aspects. From this we can see that the GSM can

address most matching tasks involved in time-series and state-sequence data, especially

with different temporal matching requirements.

Table 4.7 Classification precision with combinations of distance aspects

Dataset
Aspects

AT&T
face

USPS MNIST COIL20 Isolet1 BinAlpha

Tord 87.50 90.69 85.40 87.08 89.23 86.00
Tdur 91.00 86.56 82.20 88.75 90.13 87.18
Tgap 88.50 87.12 83.80 88.47 89.87 87.77

Tord+Tdur 89.50 89.61 86.80 89.86 92.69 90.73
Tord +Tgap 90.50 91.44 89.20 89.72 93.21 89.15
Tdur + Tgap 87.50 90.77 86.60 89.86 92.82 90.34

Tord+Tgap+Tdur 94.00 93.53 89.80 91.81 94.23 92.90

In summary, the generalization of the proposed GSM has been explored first,

which demonstrates that the conventional existing measurements can be regarded as

special cases of our GSM. Particularly, the new LCS-based measurement named OTCS

has been proposed, followed by its detail algorithms and the example evolution. The

experimental results of the proposed GSM and the particular OTCS on 6 benchmark

datasets have verified the performance for state-sequence matching. State-sequence

matching is quite ubiquitous in real-life. So the next chapter will present two interesting

investigations/case studies.

CHAPTER 5 CASE STUDY OF BASKETBALL ZONE-DEFENCE DETECTION

91

CHAPTER 5 CASE STUDY OF

BASKETBALL ZONE-DEFENCE

DETECTION

State-based temporal pattern recognition, the procedure for matching temporal

pattern of time-series and state-sequences (also known as state-sequence matching), is a

popular activity in real-life such as financial data analysis, audio recognition, visual

information retrieval, etc. It has played a very important role in data mining,

particularly with respect to temporal information. In the following two chapters, we

shall investigate two video-based cases for temporal pattern recognition: basketball

zone-defence detection in chapter 5 and video copy detection in chapter 6. The model

of each case will be designed, and then novel strategies will be proposed to address the

typical problems in each case.

Section 5.1 Formal Characterization and Basketball

Zone-defence Detection

Based on the formal characterization of time-series and state-sequence, the formal

characterization of our particular case, basketball zone-defence detection, will be

presented in this section.

Section 5.1.1 Formal Characterization of Video Database

With the development and progress in information age, multimedia information,

especially video information, is becoming an active and topical research object, which

includes video retrieval, video structural representation, video annotation and so on.

Videos can be organized at different levels for various research purposes. In this thesis,

videos are organised in terms of clips as shown in figure 5.1. Each video, which

CHAPTER 5 CASE STUDY OF BASKETBALL ZONE-DEFENCE DETECTION

92

presents an entire story that to be analyzed/ studied, can be firstly divided into

sequential video clips (each of which is actually constructed by sequential frames).

Then, the sequential key-frames are obtained by specific key-frame extraction

algorithm to represent the corresponding video clips. Therefore, the task of video

analysis can actually be transformed into the problem of exploring the knowledge

between key-frame sequences, where a feature vector is extracted from each

corresponding key-frame.

Video
database

Video1

Video2

Videod

Video set Clip set

Clip1

Clip2

Clipn

I1

I2

In

Key-frame set

Figure 5.1 Video database organization

Therefore, the formal temporal characterization of video database based on the

tetrad time-series and state-sequence can be described as follows:

GSSI1) I= [I1, …, In]

GSSI2) H = [Holds(Ii, ti)], for all i = 1, …, n,

where [t1, …, tn] is a time-series:

GTSI1) Tn= [t1, …, tn] = [<p1, q1>, …, <pn, qn>]

GTSI2) R= [Meets(ti, ti+1)Before(ti, ti+1)], for all i = 1, …, n-1

GTSI3) [] [()] []dur i dur i i iT d T t q p    , for all i = 1, …, n.

GTSI4) 1 1[] [(,)] []gap i gap i i i iT g T t t p q     for all i = 1, …, m-1and 0 0g  .

Specifically:

CHAPTER 5 CASE STUDY OF BASKETBALL ZONE-DEFENCE DETECTION

93

 Tn= [t1, …, tn] = [<p1, q1>, …, <pn, qn>] expresses the knowledge time elements

involved with respect to the given collection of video clip. <pi, qi> denotes the

start time and end time of the ith video clip.

 R= [Meets(ti, ti+1)Before(ti, ti+1)] is the collection of disjunctions of temporal

relations over Tn, expressing the possible temporal relationship between each pair

of adjacent key-frames (also the corresponding states) where ―Meets(ti, ti+1)‖ for

complete time-series and ―Before(ti, ti+1)‖ for incomplete time-series.

 [] [()] []dur i dur i i iT d T t q p    is the collection of temporal duration assignments

(possibly incomplete) to every time element in Tn, which is actually the duration

of the ith video clip.

 1 1[] [(,)] []gap i gap i i i iT g T t t p q     is the collection of temporal gap assignments

to each adjacent pair in time element Tn, which is actually the possible interval

between each pair of adjacent key-frames.

From the tetrad characterization of the video database, we can see that the video

pattern recognition follows the GSM (or the proposed OTCS), which is flexible enough

to handle the situations with various temporal aspects. In this chapter, the video of

basketball zone-defence will be studied and the zone-defence detection system with

particular structure relationship will be explored.

Section 5.1.2 Basketball Zone-defence

As a case study of state-sequence matching, zone-defence detection in basketball

videos is investigated in this chapter. Different from images, videos contain rich

temporal information. Therefore, we focus our case study on video patterns. Broadly

speaking, video pattern recognition aims to search out similar video(s) to match a query

video. Video clip detection is an important task that has been widely researched

[BABST2007, HR2007 and MBG2008].

CHAPTER 5 CASE STUDY OF BASKETBALL ZONE-DEFENCE DETECTION

94

Zone-defence detection is important in basketball games. On one hand, a coach

needs to lay out the zone-defence strategy and check whether the team is playing in the

right strategy or not all the time; at the same time, the coach also needs to know which

zone-defence strategy the defenders are adopting.

Basketball zone-defence is a defensive strategy whereby each ―zone defender‖ is

responsible for guarding an area on the court (or "zone"), and any offensive player that

comes into that area. Figure 5.2 shows the ordinary positions of 5 defenders in 1-3-1

zone defence. Zone defenders move their positions on the court according to where the

ball moves. Zone-defence can disrupt the opponent‘s offensive plan by means of

protecting the paint area and forcing the opponent to shoot from outside. In addition,

changing defences from man-to-man to various zones can make the offense

off-balanced and confused.

Figure 5.2 Defenders‘ positions in 1-3-1 zone press

For instance, a typical round attacking in a 1-3-1 zone-defence clip can be

represented by the frames showing in figure 5.3 where the yellow circles, the blue

squares and the red dot denote the defenders, the offenders and the ball respectively.

The arrows with solid lines show how the defenders generally move in the zone, while

the arrows with dotted lines denote the direction of passing the ball, and the arrows

with the curved lines denote the direction of dribbling the ball.

CHAPTER 5 CASE STUDY OF BASKETBALL ZONE-DEFENCE DETECTION

95

Diagram A shows the basic formation of the setup. Diagram B shows player

movements as the ball crosses the half-court. If the ball is passed to the corner, the

formation changes into diagram C. Similarly, the following diagrams (D-J) show the

way on which the formation adjusts when the ball is moved.

Figure 5.3 A typical round attacking in 1-3-1 zone-defence clip

Section 5.1.3 Graphic Representation of Basketball Zone-defence

In basketball zone-defence video, each clip represents a certain round of offense

(or defence) and is denoted as a list of images, or the so-called key-frames sequence: I

= [I1, …, In], which consists of the key-frames extracted one per 2 seconds from the

Diagram A Diagram B Diagram C

Diagram D Diagram E Diagram F

Diagram G Diagram H Diagram I

CHAPTER 5 CASE STUDY OF BASKETBALL ZONE-DEFENCE DETECTION

96

clip. We premise that:

(1) The defenders have adjusted to their best defensive positions at the moment

when the ball is about to be passed or dribbled;

(2) Since the zone-defence strategy is to defend against the offensive opponent

attacking into the interior playfield, we only consider the key-frames when the ball is in

the midfield, the wing and the corner as key-frames.

According to these two premises, a basketball zone-defence video clip is

structured by zone-defence states or so-called state-sequence˖SS = [S1, …, Sn], and

Holds(Si, ti) for i = 1, …, n, where [t1, …, tn] is a time-series of the moments referred to

the premise (1).

Each key-frame Ii (i = 1, …, n) can be described by its corresponding six-note

graph Gi structured by the 5 defenders‘ positions (horizontal and vertical coordinates)

plus the ball‘s position. Following the conventional notations in graph theory, we

represent a zone-defence graph as G = <V, E>, where V and E denote the set of notes

(defenders‘ positions) and the set of edges respectively, and E  V×V. In particular,

here |V| = 6. The position of each note is denoted by the horizontal and vertical

coordinates of the corresponding vertex. Assuming V = {Vb, V1, V2, V3, V4, V5} , it is

presented in ascending ordered by Euclidean distance to the ball (Vb).

Obviously, each state Si has its corresponding graph Gi, where i = 1, …, n. In

addition, we shall use the following vector [ball1, …, balln] to record the ball‘s position

of each state, where balliא {midfield, wing, conner} for i = 1, …, n.

Zone-defence can be divided into various kinds of zone-defence strategies,

including 2-3, 1-3-1, 1-2-2, 3-2, 2-2-1, 2-1-2 and 1-2-1-1 strategies. The first three

strategies, which have been noted as the most typical ones employed in actual

basketball games, are focused upon in this thesis.

CHAPTER 5 CASE STUDY OF BASKETBALL ZONE-DEFENCE DETECTION

97

Section 5.1.4 System of Basketball Zone-defence Detection

Figure 5.4 shows the flow chart of the basketball zone-defence detection system.

Each test zone-defence video clip is decomposed into a sequence of key-frames. Each

key-frame is represented by a zone-defence graph as mentioned above and matched

with the graphs in the standard zone graph database. The global distance from each

standard zone is then obtained according to the graph-sequence that is the most similar

(has the smallest distance) to the test graph-sequence, which in turn, provides matching

results to confirm which zone-defence strategy the test key-frame sequence belongs to.

I1

Im

G1

Gm

2-3

1-2-2

1-3-1

D2-3

D1-3-1

D1-2-2

Ztest

key frames test graphs
zone graph
database

the most
similar graphs

global
distance

detecting
result

Figure 5.4 The flow chart of basketball zone-defence detection system

The detail procedure of basketball zone-defence detection is shown as follows:

Firstly, compute the distance between test clip and standard 2-3 zone-defence

strategy.

Step 1: For each key frame Ii, i = 1, β, …, m, compute the distances between

its corresponding zone-defence graph Gi and graphs with the same ball position

as Gi in the standard 2-3 zone graph database:

23 23()=[]
ji z ijD G ,G d (5-1)

CHAPTER 5 CASE STUDY OF BASKETBALL ZONE-DEFENCE DETECTION

98

where 23

j

test

i zball ball ,
23{1,2,..., }jz n ,

231,2,..., pj n n  , and
pn is the number

of the graphs with the same ball position astest

iG in 2-3 zone graph database..

Step 2: Determine the distance between Gi (1  i  m) and 2-3 zone-defence

strategy. The one with the smallest distance is the most similar graph to Gi:

23 23argmin([])i ij
j

D d (5-2)

Step 3: Compute the global distance between the test clip and the 2-3

zone-defence strategy example. The sum of the smallest distances to each

key-frame in the test zone-defence clip is calculated as the global distance:

23 23

test iGD D (5-3)

Secondly, using the above three steps, we can define the global distance between

the test clip and the 1-3-1 zone-defence strategy examples as:

131 131

test iGD D (5-4)

Thirdly, we can define the global distance between the test clip and the 1-2-2

zone-defence strategy example in the same manner as:

122 122

test iGD D (5-5)

Finally, the zone-defence strategy with the smallest global distance is regarded as

the strategy that the test clip belongs to. The zone-defence strategy pattern of the test

zone-defence video clip is calculated as:

23 131 122

{23,131,122}

argmin (, ,)test

test test test
z

Z GD GD GD


 (5-6)

CHAPTER 5 CASE STUDY OF BASKETBALL ZONE-DEFENCE DETECTION

99

From the flowchart, we can see the step 1 is one of the most important techniques

in the basketball zone-defence detection. How can we measure the similarity between

the zone-defence graphs? The graph matching approach is the natural solution.

Therefore, the Laplacian Matrix based graph matching algorithm is introduced for the

basketball zone-defence detection in the next section.

Section 5.2 LM -based state matching algorithm

As mentioned above, each zone state has its corresponding zone graph. Therefore,

state matching can be transformed into the corresponding graph matching. In this

section, we shall extend the Laplacian matrix-based algorithm proposed in

[LTWB2005] for matching zone graphs. The original algorithm proposed in

[LTWB2005] is demonstrated to be precise in matching image pairs; however, on one

hand, it is invariant with respect to zoom, and on the other hand, it is very sensitive to

the translation of single vertex. The main process of the Laplacian matrix-based

algorithm proposed in [LTWB2005] is expounded as follows:

Algorithm 5.1: Laplacian matrix-based graph matching

1) Formulate the Laplacian distance Matrices for zone graph G and H:

2
2 ()

() []
(, {1,..., }), , 1,...,5

i jG G

ij

ik
k i

V V M i j
L G l

l i j k n i j


    
   



 (5-7)

2
2 ()

() []
(, {1,..., }), , 1,...,5

i jH H

ij

ik
k i

V V M i j
L H l

l i j k n i j


    
   



 (5-8)

Here, we take M as the diagonal line length of the half-court playfield.

Obviously, Laplacian Matrix L(G) and L(H) have following properties: positive,

CHAPTER 5 CASE STUDY OF BASKETBALL ZONE-DEFENCE DETECTION

100

semi-definite, the multiplicity of eigenvalue 0 is 1, and the corresponding eigen

vector is with all 1 elements.

2) Compute the Singular Value Decomposition (SVD) for each Laplacian Matrix

respectively:

1 5() { ,..., } TL G U diag U  (5-9)

 1 5() { ,..., } TL H V diag V  (5-10)

where 1 1 0n n     ... and 1 1 0n n     ... denote the singular values

of L(G) and L(H), 1 2{ , ,..., }nU U U U and 1 2{ , ,..., }nV V V V aren n orthogonal matrices,

(1,2,...,)iU i n and (1,2,...,)iV i n are column vectors of U and V.

3) Sign adjusting [LTWB2005] V and intoV .

The decomposition of L(H) is slight different from that of L(G). The smaller the

distance between Vi and Ui, the better. The detail measurement is: fixing the Ui, the Vi

is adjusted and marked asiV .

1,2, ,

i i i i i

i

i

V if V U V U
V

V else i n

     
 

 (5-11)

Where the i th row vectors of U andV reflect the features of i th vertices
(characteristic points) of G and H respectively, marking as iU and iV .

4) Construct the matching distance. Thinking that:

()() 2[1 ()]i j i j i j T i j T
ijD = U V U V U V U V      (5-12)

CHAPTER 5 CASE STUDY OF BASKETBALL ZONE-DEFENCE DETECTION

101

So, the bigger()i j TU V is, the smaller the distance betweeniU and iV is, which

means the higher the possibility of matching the ith vertex of G and the jth vertex
of H.

5) Define the matching relationship matrix:

[()] []T i T
ijC UV U V C   (5-13)

Cij reflects the matching relationship of vertices (characteristic points) between

graph G and H. The ith vertex of G matches the jth vertex of H if Cij is the biggest

element in both its columns and rows.

6) Compute the matching distance of each vertex in G, with respect to its

relationships to the vertices in H: , , , (1,2,...,)i j k t n  :

, max() max()

max ,

ij ij it ij kj

i

kt

D if C C C C
MD

D else

    


 (5-14)

7) Compute the compound matching distance between graph G and H:

1

(,)
n

i
i

Dis G H MD


 (5-15)

Obviously, n = 5 in basketball zone-defence graphs.

Note that in basketball zone-defence, in addition to the Spatial Distance (SD)

relationships as characterized by formula (5.7) and (5.8), the Spatial Direction (SD‘)

relationships between defenders also plays an indispensable role. Hence, additional

direction Laplacian Matrices with respect to the direction relationships are formulated

as:

CHAPTER 5 CASE STUDY OF BASKETBALL ZONE-DEFENCE DETECTION

102

2 2

' '

'

() ()

() []
(, {1,..., }), , 1,...,5

i jG G

ij

ik
k i

R V V i j

L G l
l i j k n i j





  


  
   



 (5-16)

2 2

' '

'

() ()

() []
(, {1,..., }), , 1,...,5

i jH H

ij

ik
k i

R V V i j

L H l
l i j k n i j





  


  
   



 (5-17)

where ()
i jG GR V V and ()

i jH HR V V denotes the direction relationships between

vertex pairs (
iGV ,

jGV) and (
iHV ,

jHV) respectively:

[0,]
(,) argcos()

G Gj i

i j

j i

V V

G G

G G

x x
R V V

V V





 (5-18)

[0,]
(,) argcos()

H Hj i

i j

j i

V V

H H

H H

x x
R V V

V V






(5-19)

N.B.: Single vertex translation has less effect on the direction Laplacian

Matrices (as formulated in Eq.(5.16) and Eq.(5.17)) than the distance Laplacian

Matrices.

With the same procedure as step 2) to step 6) as illustrated in the above, we can

obtain the spatial direction distance between graph G and H: ' '

1

(,)
n

i
i

Dis G H MD




Finally, the global matching distance between graph G and H is defined by:

' '(,) (,) (,)D G H Dis G H Dis G H   (5-20)

Where denotes the weight of the spatial distance in the global distance. The

experimental results of the extended Laplacian Matrix-based graph matching algorithm

CHAPTER 5 CASE STUDY OF BASKETBALL ZONE-DEFENCE DETECTION

103

taking into account both spatial distance and spatial direction will be tested and

demonstrated on basketball zone-defence detection system in section 5.1.5.

Section 5.3 Structure-based Feature Extraction

Graphical representation has been investigated for zone-defence detection. Graph

matching (GM) algorithms and their improved variants have been well applied to match

graph patterns [ZMLP2009 and MZH2007]. However, the efficiency and accuracy of

most graph matching algorithms depends very much on the tested graphs constructed

according to the expectation or artificial criteria, rather than real-life applications

[ZMLP2009], which in turn means most graph matching algorithms are sensitive to

outliers or local bias such as the translation of subprime notes in the graph.

[CHTH2005] proposed a Spatial-Relationship (SR) based approach to describe the

position relationship between defenders. However, this relies on the accuracy of

identification of each defender, which is hardly achievable.

As we know, the defence-lines and the structure relationship between

defence-lines play a crucial role in team sports such as basketball, football, volleyball

and so on. The analysis of the structure relationship between defence-lines is very

necessary and significant in basketball zone-defence. Therefore, in this thesis, a

structure-based feature is proposed to describe the structure relationship between

defence-lines.

Different zone-defence strategies have a different number and type of

defence-lines in basketball, For instance, there are two defence-lines in the 2-3

zone-defence strategy. Generally, the 2 defenders in the front line construct the first

defence-line and the remaining 3 defenders are viewed as the second defence-line.

Different zone-defence strategies have their own typical defence-lines. For instance, the

typical defence-line of the 2-3 zone defence strategy is the second defence-line. We

shall define the structure-based features to describe the structure relationship between

defence-lines. The angle formed by the typical defence-line in each zone-defence

CHAPTER 5 CASE STUDY OF BASKETBALL ZONE-DEFENCE DETECTION

104

strategy is named the Character-Angle (CA), the definition of which is crucial to the

extraction of the other structure features. Therefore, the 10 dimensional feature vector

will be defined to describe the basketball zone-defence graphs in the following three

subsections.

Section 5.3.1 Structure-based Features in 2-3 Zone-defence

In the standard 2-3 zone-defence strategy, normally we define the 2 defenders

closest to the ball as the first defence-line and the remaining 3 defenders as the second

defence-line, which is defined as the 2-3 character line. The angle formed from the 2-3

character line is defined as the ―2-3 character-angle‖ and denoted in shorthand by

writing CA23: the angle constructed by the pink lines as shown in figure 5.5. One of the

two supplementary angles formed by the character-lines that face the ball is regarded as

the character-angle, similarly hereinafter for the 1-3-1 and 1-2-2 zone-defences.

There are two folds regarding the definition of CA23:

(a) a general example (b) counter example 1 (c) counter example 2

Figure 5.5 Zone graph examples in 2-3 zone-defence

(1) Which 3 notes construct CA23?

Normally, CA23 is composed of the 3 defenders furthest from the ball. However, in

some zone graphs, CA23 may not be exactly constructed by the 3 defenders furthest

from the ball by common sense from human understanding of zone-defence strategies.

˄Vl ˅

˄Vr ˅

˄Vv ˅

V6

V7
Vb

V1

 V2

V3

V4 V5

V1

V1

 V2

 V2

V3

V4
 V5

V3

V4

 V5

 Vb

 Vb

CHAPTER 5 CASE STUDY OF BASKETBALL ZONE-DEFENCE DETECTION

105

For instance, in Figure 5.5 (b), assume that V = {Vb, V1, V2, V3, V4, V5} has been

ascendingly ordered by the distance to the ball (Vb) and V3 and V2 have the

approximately same distance to the ball. For the reason of neatness, the layout of the 5

offenders is ignored. Obviously, the CA23 should be constructed by V2, V4 and V5

(marked as the angle constructed by the blue line), which is more reasonable according

to common sense than that constructed by the furthest 3 notes (V3, V4 and V5).

 In other word, if the difference between the distances from the third and forth

furthest notes to the ball is smaller than a given threshold, then the one forming a larger

angle with the segment constructed by the farthest two notes will be taken to form the

character line. The algorithm is described as follows:

Algorithm 5.2: Notes determination to construct CA23

where =0.05 (the distance of diagonal of half-court is normalized to 1), CN23

denotes the set of notes constructing CA23 and (,)X YZ represents the angle between

note X and segment YZ which is defined as:

(,)
else

XYZ XY XZ
X YZ

XZY

   


 (5-21)

(2) Which one is the vertex of CA23?

For the reason of simple description, without losing generality, we assume CN23 =

{V3, V4, V5}, as shown in Figure 5.5(c), and arrange {V3, V4, V5} into {Vl, Vv, Vr} in

clockwise order with respect to the ball, where l, v, r {3, 4, 5}. In general, node Vv is

If 2 3 2 4 5 3 4 5()&((,) (,))b bVV VV V VV V VV   

23 2 4 5{ , , }CN V V V

Else 23 3 4 5{ , , }CN V V V

CHAPTER 5 CASE STUDY OF BASKETBALL ZONE-DEFENCE DETECTION

106

then taken as the vertex of CA23 while Vl, Vr, which denote the left node and the right

node respectively, are the end-points of CA23. However, if Angle < Vv, Vb, Vl > (or

Angle <Vv, Vb, Vr>) is smaller than a given threshold, and |VlVb| < |VvVb| (or |VrVb| <

|VvVb|) then Vl (or Vr) will be re-taken as the vertex of CA23. For instance, in Figure

5.5(c), CN23 = {V3, V4, V5}. Assume that V4, V5 and V3 are in the clockwise order with

respect to the ball. V3 should be defined to be the vertex of CA23, which is more

reasonable than regarding V5 as the vertex of CA23. The algorithm is described as

follows:

Algorithm 5.3: Character angle detection of 2-3 zone-defence

where = /12  and we appoint CA23 as the obtuse angle if its vertex is biased towards

the ball compared with its two end points.

The first 4 structure features with respect to CA23 are correspondingly defined as

below (As for the general example illustrated in figure 5.5(a),
1 2VV is the first

defence-line and V3, V4, V5 is the second defence-line, and V6, V7 are the midpoints

of 3 5VV , 1 2VV respectively):

I. 23 3 4 5CA VVV : Character-Angle of 2-3 zone-defence.

As explained earlier, this angle characterises the defenders‘ positions on the

character line of 2-3 zone-defence.

If ()&()l b v l b v bVVV VV VV  

 23 v l rCA VVV

 Else if ()&()r b v r b v bVVV VV VV  

 23 v r lCA VVV

 Else 23 l v rCA VVV

CHAPTER 5 CASE STUDY OF BASKETBALL ZONE-DEFENCE DETECTION

107

II. 23 7 6 3 5(,)FSA VV VV : Angle formed by the first and the second

defence-lines.

where (,)XY ZW denotes the acute angle formed by segmentXY and

segmentZW and similarly hereinafter. It characterises the structural relationship

between the first and the second defence-lines.

III.
23 4 6 3 5(,)BCA VV VV : the bias of the CA23.

which is an angle that presents the bias of the vertex on second defence-lines of 2-3

zone-defence.

IV. 23 1 2 3 5 1 2 3 5()RFSA VV VV VV VV ˅ ˄ ˈ : restricted FSA23.

which denotes the restricted angle of the first and the second defence-lines of the 2-3

zone-defence. The shorter 1 2VV is in comparison to 3 5VV , the less effect the angle of

segment 1 2VV and segment 3 5VV has to zone graphs. So, it is reasonable to take into

account a coefficient to the angle.

Section 5.3.2 Structure-based Features in 1-3-1 Zone-defence

In 1-3-1 zone-defence, the nearest defender to the ball represents the first

defence-line. The second defence-line is constructed by 3 defenders, presenting the

basic character of the 1-3-1 zone-defence, which is defined as the 1-3-1 character line.

The angle formed from the 1-3-1 character line is defined as the ―1-3-1

character-angle‖ and denoted as CA131. The key point here is to define the vertex and

two end points of CA131.

CHAPTER 5 CASE STUDY OF BASKETBALL ZONE-DEFENCE DETECTION

108

 (a) CA23 < ʌ (b) CA23 > ʌ case 1 (c) CA23 > ʌ case 2

Figure 5.6 Zone graph examples in 1-3-1 zone-defence

Based on CA23, as defined above, there are two cases to define CA131: (Here, we

also use V1, V2, V3, V4 and V5 to denote the 5 defenders, and assume V1 is the nearest

defender to the ball, 23 3 5 4CA VVV in Figure 5.6(a) and 23 4 3 5CA VVV in Figure

5.6(b) and (c) marked as the blue lines). If the corresponding CA23 is smaller than ʌ (as

shown in Figure 5.6(a)), then CA131 has the same two end-points (V3 and V4) as that of

CA23, and the vertex of CA131 is the node (V2) from the remaining 3 that is neither the

closest to the ball nor the vertex of CA23. Otherwise (as shown in Figure 5.6(b) and (c)),

CA131 will have the same vertex as that of CA23 (V3), and the node (V2) which is neither

on the 2-3 character line nor the closest to the ball will be taken as one of the two

end-points of CA131, and then the other end-point is one of the two end-points of CA23

(V4) which will ensure that CA131 divides the remaining two nodes into each side of the

1-3-1 character line respectively. The detection algorithm is expounded below:

Algorithm 5.4: Character angle detection of 1-3-1 zone-defence

If 23 3 5 4CA VVV  

 131 3 2 4CA VVV

Else 23 4 3 5CA VVV  

 131 2 3 4CA VVV

V6

 Vb
 Vb

 Vb

 V1 V1 V1

 V2

 V3

 V4

 V5

 V2 V2

 V3 V3

 V4 V5 V4 V5

CHAPTER 5 CASE STUDY OF BASKETBALL ZONE-DEFENCE DETECTION

109

In continuation from the first 4 features with respect to CA23, the next 3 features

with respect to CA131 are defined below (as for the general example illustrated in Figure

5.6(a), and assumes V6 is the midpoint of segment3 4VV):

V. 131 3 2 4CA VVV : Character-Angle of 1-3-1 zone-defence, which

characterises the defenders‘ positions on the character line of the 1-3-1

zone-defence analogously.

VI. 131 1 6 3 4(,)FSA VV VV : Acute angle formed by the first and the second

defence-lines, which characterises the structure relationship between the first and

the second defence-lines of the 1-3-1 zone-defence.

VII. 131 5 6 3 4(,)STA VV VV : Acute angle formed by the second and the third

defence-lines, which characterises the structure relationship between the second

and the third defence-lines of 1-3-1 zone-defence.

Section 5.3.3 Structure-based Features in 1-2-2 Zone-defence

In the 1-2-2 zone-defence, the defender closest to the ball forms the first

defence-line. As per the examples shown in figure 5.7, assume that V1 is the closest

defender; the CA131 is 4 2 3VVV in figure 5.7(a) and (b) marked as the pink dotted line

and the pink solid line, while 2 4 3VVV in figure 5.7(c) marked as pink dotted lines. If

CA131 ≥  (Figure 5.7(a) and (b)), the vertex of CA131 (V2) and the nearer one (V3) to

the first defence-line (V1) of the two end-points of CA131 construct the second

defence-line (2 3VV marked as the pink solid line); the remaining two defenders define

the third defence-line (4 5VV marked as the blue line). Otherwise (Figure 5.7(c)), the two

end-points of CA131 define the second defence-line (2 3VV marked as the pink solid line)

and the rest two defenders define the third defence-line (4 5VV marked as the blue line).

CHAPTER 5 CASE STUDY OF BASKETBALL ZONE-DEFENCE DETECTION

110

The first and the second defence-lines present the basic character of 1-2-2

zone-defence. The angle formed from the 1-2-β character line is defined as ―1-2-2

character-angle‖ (2 1 3VVV marked as the yellow lines) and denoted as CA122.

(a) CA131 ≥ ʌ case 1 (b) CA131 ≥ ʌ case 2 (c) CA131 < ʌ

Figure 5.7 Zone graph examples in 1-2-2 zone-defence

The algorithm is described as follows (CA122, SDL122 and TDL122 denote the

Character Angle, the second defence-line and the third defence-line of 1-2-2

zone-defence, respectively):

Algorithm 5.5: Character angle detection of 1-2-2 zone-defence

Following the first 4 features with respect to CA23 and the 3 features with respect

to CA131, the last 3 features with respect to CA122 are defined as below (assume that

122 2 1 3CA VVV , 122 2 3SDL VV and 122 4 5TDL VV , V6 and V7 are the midpoints of

segment 4 5VV and segment2 3VV respectively as shown in Figure 5. 6(a)):

If C131 = 4 2 3VVV  

 1 3 1 4VV VV

 122 2 1 3CA VVV , 122 2 3SDL VV , 122 4 5TDL VV

Else

 122 3 1 4CA VVV , 122 3 4SDL VV , 122 2 5TDL VV

V6 V7

 Vb

 Vb
 Vb

 V1

 V1

 V1 V2

 V2

 V2
 V3

 V4
 V3

 V3

 V4

 V5 V5

 V4

 V5

CHAPTER 5 CASE STUDY OF BASKETBALL ZONE-DEFENCE DETECTION

111

VIII. 122 1 2 1 3 1 2 1 3 2 1 3(min(,) max(,))RCA VV VV VV VV VVV 

Here, we add a coefficient to take into account the effect from the movement of

node V1 along the circle formed from V1, V2 and V3.

IX. 122 2 3 4 5 2 3 4 5() (,)RSTA VV VV VV VV 

RSTA122 is with respect to the restricted angle of segment2 3VV and

segment 4 5VV and reflects the structure relationship between the second and the third

defence-lines of 1-2-2 zone-defence.

X. 122 6 7 2 3(,)BST VV VV

which reflects the bias between the second and the third defence-lines of 1-2-2

zone-defence.

The feature vector is constructed by the above 10 features with respect to the three

typical zone-defence strategies:

f = {CA23, FSA23, BCA23, RFSA23, CA131, FSA131, STA131, RCA122, RSTA122, BST122}

The feature vector is not only listed by the 10 components one by one, but also has

internal relationships. The features of one typical zone-defence also reflect the structure

relationship of the other typical zone-defences.

According to the structure-based features extracted above, the test basketball

zone-defence video clip with n key-frames (or zone-defence graphs) can be represented

by a 10n feature matrix 1 2{ , ,..., }'clip nF f f f and a ball‘s position vector

1 2{ , ,..., }clip nball ball ball ball , where 1 2 10{ , ,..., }i i i if f f f and iball denotes the

feature vector and the ball‘s position of the ith key-frame of the detected clip

CHAPTER 5 CASE STUDY OF BASKETBALL ZONE-DEFENCE DETECTION

112

respectively. Analogously, the 3 standard zone-defence databases are represented by 3

corresponding feature matrices with their respective ball position vectors. For instance,

the standard 2-3 zone-defence database is represented by 23 23 23
23 1 2 14{ , ,..., }'F f f f

and 23 23 23
23 1 2 14{ , ,..., }ball ball ball ball . The distance between two zone-defence graphs

can be expressed by:

23 23(,) (,) []
ji z ijD G H ED f f d 

(5-22)

 Section 5.4 Experimental Results

Section 5.4.1 Experimental Setup

A standard zone-defence graph database of the 3 typical zone-defence strategies

(2-3, 1-3-1 and 1-2-2 zone-defence) was constructed and populated with graph data

corresponding to some of the pictures illustrated on two basketball coaching web

sides8.

Table 5.1 below shows the detailed number of zone-defence graphs collected as

standard zone-defence graphs for each strategy in different ball position. Analogously,

only the key-frames when the ball is in the midfield, the wing and the corner are

considered.

Table 5.1 The number of standard zone-defence graphs

 Zone-defence
Ball’s position

2-3 1-3-1 1-2-2

Midfield 4 3 2
Wing 4 12 7

Corner 6 6 2
Totally 14 21 11

8 http://www.coachesclipboard.net; http://www.guidetocoachingbasketball.com

http://www.coachesclipboard.net/
http://www.guidetocoachingbasketball.com/

CHAPTER 5 CASE STUDY OF BASKETBALL ZONE-DEFENCE DETECTION

113

The metric position detection of defenders and the ball is implemented similarly as

in [ABCB2003]: The ball‘s position, which is either in the midfield, in the wing, or in

the corner, is obtained from its motion described in terms of camera motion, which in

turn, is captured by image motion estimation algorithm [BCB1999]. As for the

defenders‘ positions, in the first place, the defending and offensive sides are

distinguished by the colour difference of sportswear; template matching and projective

transformation are then implemented to determine the metric position of defenders

[ABCB2003].

The system has been tested using both simulated and real basketball zone-defence

video clips. We formulated 40 clips (key-frame sequences) provided by the

professional coaches and collected about 1 hour of real basketball zone-defence video,

including 112 clips containing 3 to 8 key-frames each as listed in Table 5.2.

Table 5.2 The number structure of test data

 Zone-defence
strategy

Total clips Total key-frames

Simulated

2-3 20
60

145
1-3-1 20 161
1-2-2 20 128

Real-life

2-3 52
112

286
1-3-1 31 221
1-2-2 29 169

Section 5.4.2 LM-based Basketball Zone-defence Detection

First, we give an example of the matching (global) distances between a given test

state-sequence and 3 standard zones as shown in figure 5.8, where: the second row is

the corresponding graphs of the test state-sequence with 3 states as shown in the first

row; the remaining rows are the most similar graph compared with each test graph in

2-3, 1-3-1, and 1-2-2 zone-defence strategies, as appearing in the row order. From

figure 5.8, it can clearly be seen that the most similar zone-defence formation in

CHAPTER 5 CASE STUDY OF BASKETBALL ZONE-DEFENCE DETECTION

114

comparison to the test state-sequence is the 2-3 zone-defence pattern, which agrees

with the matching result from our algorithm.

Figure 5.8 An example of basketball zone-defence video clip recognition

Table 5.3 below shows the matching precision for each zone-defence pattern. It

indicates that the matching algorithm (SDD‘) proposed here, which takes into account

both spatial distance and spatial direction relationships, outperforms SD or SD‘, whichh

only address spatial distance or spatial direction relationships, respectively. In

particular, the weights of SD is 0.75 (ȝ=0.75), which means the weight of SD‘ in SDD‘

is 0.25 in Eq. (5.20), leading to the optimal results.

From the table 5.3 we can see:

1) The LM-based graph matching algorithm is effective for zone-defence graphs

which can lead the average precision from 68.8% to 91.6%;

test(1)

D=0.49797

D=2.04

D=1.1107

test(2)

D=0.087146

D=0.4005

D=0.955

test(3)

D=0.28318

D=0.50064

D=1.0579

CHAPTER 5 CASE STUDY OF BASKETBALL ZONE-DEFENCE DETECTION

115

2) In LM-based graph matching schema, the Spatial Distance is more significant

than the Spatial Direction. In fact, the precision of SD (78.8%) is higher than

that of SD‘ (75.6%), where the setting of the weights of SD (0.75) and SD‘

(0.25) leads to the optimal results for SDD‘.

3) Both the Spatial Distance and the Spatial Direction should be taken into

account. In fact, the average precision of SDD‘ (85.β%) is higher than either

the precision with SD (78.8%) or the precision with SD‘ (75.6%).

Table 5.3 Matching precise for each zone-defence pattern

Test data Zone Precision (%) Average
precision SD SD‘ SDD‘

Real

2-3 74.6 69.8 82.7 75.7
1-3-1 65.9 63.1 77.4 68.8
1-2-2 80.3 70.7 86.2 79.0

Simulated

2-3 82 80 85 82.3
1-3-1 91 89 95 91.6
1-2-2 79 81 85 81.6

Average precision: 78.8 75.6 85.2

Section 5.4.3 CA-based Basketball Zone-defence Detection

The CA-based algorithm is the first work that focuses on feature description of

basketball zone-defence graphs. There are few systems focused on basketball

zone-defence detection. Here, we compare the proposed CA-based algorithm with the

LM-based algorithm in section 5.2 and SR-based algorithm [CHTH2005].

Table 5.4 reports the detection result of each algorithm based on both simulated

and real-life data. Here detection results of ―Correct MPD (Metric Position Detection)‖

are the results detected on the test clips with correct MPD. It‘s clear that the CA-based

algorithm has the highest efficiency, especially with regard to correct MPD.

CHAPTER 5 CASE STUDY OF BASKETBALL ZONE-DEFENCE DETECTION

116

Table 5.4 Detection result of 3 algorithms based on different data

Database Video clips Correct MPD
 Results Test Detected Test Detected
Simulated

data
SR

40
35

38
34

LM 36 35
CA 37 37

Real-life
data

SR
112

70
91

69
LM 78 74
CA 91 85

Figure 5.9 and figure 5.10 show the detecting precision and detecting complexity

of the proposed CA-based algorithm compared with the other two algorithms in both

simulated data and real-life data on each zone-defence. With respect to the

computational complexity of the flow chart of system shown in figure 5.4, the overall

time complexity Tall = Tin + Tf + Tm + Tout where Tin, Tf, Tm, Tout denote the time for

input, feature extracting, zone matching and output respectively. In order to emphasize

the effectiveness of different matching algorithms, the input and output time, which are

the same in the system with different matching approaches, were ignored. This means

only Tf + Tm were reported in figure 5.10. It is clear that the CA-based detecting

method has higher detecting precision than the SR-based and LM-based algorithms in

both simulated and real-life data. In comparison with LM-based graph matching

algorithm, benefiting from use of the simple similarity strategy (Euclidian Distance),

both SR-based and CA-based approaches have less computational complexity

(a) Simulated data (b) Real-life data

Figure 5.9 Detecting precision comparison with different methods

CHAPTER 5 CASE STUDY OF BASKETBALL ZONE-DEFENCE DETECTION

117

(a) Simulated data (b) Real-life data

Figure 5.10 Detecting complexities comparison with different methods

It is frequent for defenders to have some translational motion compared with the

standard position in standard zone graphs. So the translational motion of the farthest

defence-line from the ball in each zone-defence graph, which is regarded to have least

influence to the global strategy, is added to the test video clip as a disturbance to test

the robust of proposed approach. For each note V on the farthest defence-line in each

zone-defence, we add the disturbance as:

' (cos +sin)V V d    (5-23)

where d denotes the movement distance of note V to V‘ and Ȗ denotes the angle

between d and the x-axis (the mid-field line) as shown in Figure 5.11. Figure 5.12

shows the efficiency in each zone-defence with different disturbance.

dsinȖ

V
dcosȖ

d

V’

Ȗ

Figure 5.11 Disturbance of the nodes on the farthest defence-line

CHAPTER 5 CASE STUDY OF BASKETBALL ZONE-DEFENCE DETECTION

118

-0.12 -0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1 0.12
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

d

P
re

ci
si

o
n


CA

LM

SP

-0.12 -0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1 0.12

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

d

P
re

ci
si

o
n


CA

LM

SP

(a) Simulated data (b) Real-life data

Figure 5.12 Precision influence with disturbance in each method

The precision comes down with growing disturbance in every method. But in the

CA-based method, it drops much slower than the other two and still has a tolerable

performance even with a high disturbance, which demonstrates that the CA-based

method is robust for the detecting system.

CHAPTER 6 CASE STUDY OF VIDEO COPY DETECTION

119

CHAPTER 6 CASE STUDY OF VIDEO

COPY DETECTION

A video clip is constructed by a well-ordered sequence of frames (images). Due to

the rapid increase of multimedia and the shortage of storage, in many real applications,

the video databases are represented in terms of the sequence of high-dimensional

feature vectors, which consists of the popular low-level features including color

distribution, texture structure, shape configure, spectral character and so on. Therefore,

the video clip matching problem can be transferred into a feature sequence matching

problem.

Section 6.1 Problem Definition of Video Copy Detection

Video copy detection, also named video subsequence identification or video

subsequence matching, is very significant for copyright authorization in commercial

society where we would like to identify whether the current video clip is simply

transformed from another video clip. Especially in TV commerce, it is essential to

clarify the original TV shows from varies TV channels. Generally speaking, there are

two categories of video copy detection: video watermarking and content-based video

copy detection. First of all, it is essential to distinguish their conceptions.

Video watermarking: Video watermarking can be understood as the technique that

permanently "embeds" the identifiable signal(s) or pattern(s) into the host video, to

protect the copyright of digital video products. The main difference of watermarking is

that we cannot detect the originality of a product if it has not been ―watermarked‖ or

―embedded‖.

Video copy detection: Video copy detection can be considered as the procedure to

detect whether a query video clip has been re-edited (such as crossover, deleting,

CHAPTER 6 CASE STUDY OF VIDEO COPY DETECTION

120

inserting) or visual transformed (such as reformatted, resolved, brightened, ect.)

compared to some original one. It‘s a typical subsequence matching problem.

Previously, various similarity models based on Euclidean distance [AFS1993] have

been proposed for subsequence matching, one efficient category being the sliding

window based algorithms [FRM1994, MWL2001, MWH2002]. However, most models

are very brittle; even a slight misalignment in time axis and the time-consuming

problem would limit their application to large databases. Subsequently, many

successful measurements such as Longest Common Sequence (LCS) [VGK2002], Edit

distance [ALK1999], Dynamic time warping (DTW) [SC1978] and their variants

emerged as required. LCS is directed at finding the longest common sequence in all the

sequences (two in our case) along the same temporal order. It can skip some states that

include noise but ignores how many and which kind of states it skips. ED calculates

the similarity between two state-sequences by the number of operations such as

insertion, deletion and substitution required to transform one to the other. However,

reordering operations such as crossover and backward, which are very common in

time-series data, are not allowed. DTW is robust to time warping such as stretching and

shrinking (which means with different durations of each state), followed by variants

such as PDTW [KP2000], SPRING method [SFY2007], EDTW [APPK2008].

However, they are very sensitive to noise, since each state will be matched including

the noise.

Therefore, the objective of this chapter is to present an efficient framework for

subsequence matching based on a bipartite graph representation and to propose a hybrid

similarity model, while taking into account both spatial and temporal similarity with

high tolerance in inversion, crossover and noise (noises).

Based on the above explanation, the formal definition of video copy detection can

be defined as follows:

CHAPTER 6 CASE STUDY OF VIDEO COPY DETECTION

121

Definition 6.1: Video copy detection. Let Q = [q1, q2, …, qm] be the query video

state-sequence and SS = [s1, s2, …, sn] be the video state-sequence in the video database,

where m, n denote the length of video sequence Q and SS respectively and qi = (qi1,…,

qid) and sj = (sj1,…, sjd) denote the d-dimensional feature vectors for the corresponding

frames. The task of video copy detection is to detect a subsequence S = [sk1, sk2, …, skt]

in SS, where 1  k1 < kβ < …. < kt  n, which is most similar to the query video

sequence Q.

(a) Key frame sequence one

(b) Key frame sequence two

Figure 6.1 Key frame sequences from the same video scenario with difference

temporal order

CHAPTER 6 CASE STUDY OF VIDEO COPY DETECTION

122

Generally, the typical subsequence matching technique is directed at detecting

similar sequences along the strictly same temporal order. In fact, the restrictive

temporal order always ruins the task of video copy detection since the copy video may

derive from an existing video by different ordering. For instance, Figure 6.1 illustrates

such a scenario from ―Fox Business‖.

If we compare the two sequences in figure 6.1 according to the strict temporal

order, there will be low similarity between the corresponding frame pairs. However, the

two sequences contain the same content since they are from the same video scenario.

Therefore, for video copy detection, the similarity between sequences with different

temporal edition (eg. reorder) needs to be considered.

Section 6.2 Bipartite Graphical Representation

While the video clip is organized as a key-frame sequence, the video copy

detection problem can actually be transformed into the bipartite graph matching

problem with particular temporal measurement. We shall systematically introduce the

procedure of transforming subsequence matching into the bipartite graph matching

problem in this section.

Definition 6.2, bipartite graph: In graph theory, a bipartite graph <X, Y, E> is a

graph where the vertices can be classified into two disjoint sets X and Y. The pair of

vertices connected by each edge are in X and Y separately. Figure 6.2 shows an

example of a bipartite graph.

X

Y

 x1 x2 x3 x4 x5

 y1 y2 y3 y4

Figure 6.2 An example of bipartite graph

CHAPTER 6 CASE STUDY OF VIDEO COPY DETECTION

123

Table 6.1 Notations used in this section

Notation Definition
Q = [q1, q2,…, qm] Query state-sequence
SS = [s1,s2,…, sn] A state-sequence in database
D = [SS1,…, SSL] The database with L state-sequences
NN(qi, SS, dmax) Set of nearest neighbours of qi in SS
NN(Q, SS, dmax) Set of nearest neighbours of all qi in Q in SS
BG = <Q, SS, E> Bipartite graph between Q and SS

MSM(Q, SS) The set of MSM between Q and SS
MSM(Q, D) The set of MSM between Q and all SSj in D

M A normal matching in MSM(Q, D)

M An inverse-ordered matching of M

The list of notations that will be used in this section is given in Table 6.1. The

procedure can be briefly described as following:

Section 6. 2.1 Searching the similar pairs by thNN

For the query video clip Q and one of the video clips in the database, as shown in

figure 6.2, the first task is searching the similar key-frame pairs between two key-frame

sequences. Due to the repeating or re-referring phenomenon of video clips, for each

key-frame in a query video clip, there may be several similar key-frames in the

database. Therefore, a kNN (k Nearest Neighbours) approach is adopted. Given a query

key-frame, the idea of kNN is to search out the k nearest key-frames in the video

sequence to be matched. Considering that some key-frames may have few similar

key-frames in the video clip to be matched, it is redundant to search out the k nearest

key-frames for every key-frame in query video clip. For instance, for a noise key-frame,

there may be no similar key-frames in the video clip to be matched. Therefore, different

from the original kNN searching technique, a distance threshold dmax is defined for kNN

to search for each state qi in SS within the given maximum distance dmax. We name it

threshold Nearest Neighbours (thNN), whose procedure can be illustrated as algorithm

6.1.

CHAPTER 6 CASE STUDY OF VIDEO COPY DETECTION

124

Algorithm 6.1: The threshold Nearest Neighbours

Section 6.2.2 Constructing un-weighted bipartite graph

Based on the thNN approach, we can define the bipartite graph BG = <Q, SS, E>

for NN(Q, SS, dmax), where the key-frames in Q and SS are constructed as the nodes

allocated on each side of the bipartite graph respectively. For each key-frame state pair

qi and sj, the edge exists if and only if distance(qi, sj) < dmax. In other words, each

key-frame qi is only linked to its threshold neighbours. The edge set, E ك Q×SS,

actually denote thNN mapping between Q and SS, as shown in Figure 6.3:

q1 qmq3q2 q4Q:

SS:
s1 s2 s3 s4 sn-3 sn-2 sn-1 sn

Figure 6.3 Bipartite graph representation

Obviously, the number of edges related to qi is |NN(qi, SS, dmax)| = bi and the total

edges in the bipartite graph is max1
(, ,)

m

ii
NN q ss d

 . The set of mappings between Q

Input :
 qi, SS
Output :

NN(Q, SS, dmax): set of nearest neighbors of qi in SS within distance dmax
Initialization :
 NN(qi, SS, dmax) = NN(Q, SS, dmax) = null
Updating:
 For i = 1 to m and j = 1 to n
 If distance(qi, sj) < dmax

 NN(qi, SS, dmax) = NN(qi, SS, dmax)  sj

 NN(Q, SS, dmax) = {NN(Q, SS, dmax) , NN(qi, SS, dmax)}

CHAPTER 6 CASE STUDY OF VIDEO COPY DETECTION

125

and SS is {<q1, NN(q1, SS, dmax)>, < q1, NN(q1, SS, dmax)>, …, < q1, NN(q1, SS, dmax)>}. It

is a 1: M mapping bipartite graph since the number of NN(qi, SS, dmax) is not unique

(larger than 1), which means each key-frame in the query video clip has several

neighbours. Therefore, a set of bipartite graphs can be constructed according to the

mapping set. According to the concept of combination, the number of 1:1 mapping

bipartite graphs is b1×b2×…×bm. Below are several 1:1 mapping bipartite graphs

constructed based on the thNN searching.

Q:

SS:
s1 s2 s3 s4 sn-3 sn-2 sn-1 sn

q1 qmq3q2 q4

Q:

SS:
s1 s2 s3 s4 sn-3 sn-2 sn-1 sn

q1 qmq3q2 q4

Figure 6.4 1:1 mapping bipartite graphs

Section 6.2.3 Maximum Size Matching (MSM) algorithm

A 1:1 mapping, however, is not enough. The size of the 1:1 mapping (the number

of edges in the corresponding bipartite graph) is attractive to us. For instance, the one

edge mapping bipartite graph <q1, s1 (q1, s1)> is obviously not the satisfied mapping we

would like to obtain in video clip detection. In order to obtain the maximum size

mapping in the mapping set we have already obtained, the Maximum Size Matching

(MSM) algorithm [Shi2004] is employed to produce a set of 1-1 mappings between Q

and SS with the maximum size for the corresponding BG. Note that the output of MSM

in general is not unique. For instance, the two 1:1 mappings in figure 6.4 are both the

maximum mappings from figure 6.3. The typical Hungarian Algorithm [Kuh1955,

mun1957, AMO1993] is conducted for Maximum Size Matching. Firstly, several terms

related to the bipartite graph matching should be noted:

CHAPTER 6 CASE STUDY OF VIDEO COPY DETECTION

126

Definition 6.3 Matching: Given a bipartite graph G, a matching is a subgraph of

G, where any pair of edges has no common vertex. Or we can say the degree of any

vertex is no larger than 1.

Definition 6.4 Maximum Matching: is a matching that contains the largest

number of edges.

Definition 6.5 Alternating Path: is a path where the matched edges and

unmatched edges exist alternatively.

Definition 6.6: Augmenting Path: an augmenting path is a particular alternating

path that both starts from and ends at the unmatched vertices.

Algorithm 6.2: Hungarian Algorithm for Maximum Size Matching

Based on the above definitions, the Hungarian algorithm can be defined as in

algorithm 6.2:

For each given state-sequence SS, algorithm 6.2 produces a corresponding set of

1-1 matching MSM(Q, SS) between Q and SS with the maximum size. Therefore, if we

denote the set of such matching between Q and all SSj in D as MSM(Q, D), we have:

1
(,) (,)

L

jj
MSM Q D MSM Q SS


 (6-1)

Input :
 bipartite graph BG = <Q, SS, E>
Output :
 1:1 Maximum Size Matching MSM(Q, SS)
Initialization :
 MSM(Q, SS) = null
Updating:
 For i = 1 to m do
 Start from qi, searching for the augment path AP.
 MSM(Q, SS) = MSM(Q, SS)  AP

CHAPTER 6 CASE STUDY OF VIDEO COPY DETECTION

127

The remaining main problem is then to develop an appropriate similarity

measurement for searching the corresponding optimal matching.

Section 6.3 Hybrid Similarity Model

 As mentioned earlier, for a given matching MęMSM(Q, D), both temporal

similarity and non-temporal similarity should be taken into account. On one hand, the

non-temporal similarity is defined according to the Euclidean distance between each

mapping:

Section 6.3.1 Non-temporal similarity

The non-temporal similarity is measured by the total similarity which is in inverse

proportion to the Euclidean distance between each matched state pair.

= ()) ()NT i jSim 1- dis(q , s d Q (6-2)

where dis(qi, sj) denotes the Euclidean distance between each matched state pair qi and

sj (which has achieved during kNN search) in the matching M and d denotes the feature

dimension of each state. Obviously, the similarity value falls into [0, 1].

On the other hand, as the distinctive feature of time-series data, temporal similarity

needs special treatments with respect to the three measurements described in the

following three sections.

Section 6.3.2 Temporal order similarity

There may be some pairs of state-sequences with the same non-temporal similarity

but with different temporal order. Here, we shall use the idea of LCSS [VGK2002] to

measure temporal order similarity. However, in existing normal LCSS based

formalisms, the typical reordering situations inversion in time-series data has been

CHAPTER 6 CASE STUDY OF VIDEO COPY DETECTION

128

neglected. In order to catch such types of reordering, we define the temporal order

similarity as below:

max((), ()) /TOSim LCS M LCS M Q (6-3)

which takes into account both normal order and inverse order.

Section 6.3.3 Temporal alignment similarity:

In normal LCSS formalisms, in subsequence matching, unmatched states are

simply skipped regardless how many of them there are. ED [ALK1999] is an

alternative measurement that distinguishes the number of unmatched states that are

skipped. However crossover, which should be compatible since it is ubiquitous, is not

allowed in ED since it only matches in the single forward direction. Following the

approach proposed in [SSHZ2009], we define the following temporal alignment

similarity:

2 ()TASim M Q SS  (6-4)

which takes into account the number of unmatched states and accepts crossover.

Section 6.3.4 Temporal concentration similarity:

It is easy to see that the distribution of matched (or unmatched) states and the

internal temporal distance (or similarity) is ignored in SimTA. For instance, by Eq.(6-4),

sequence [1, 2, 3, 4, 5] will be taken as having the same similarity with [1, a, a, 2, 3, 4,

a, 5], [1, 2, a, 3, a, 4, a, 5] and [1, b, c, 2, 3, 4, d, 5]. In addition, the duration of various

times, over which the corresponding states are associated with, is not addressed in

(6-27). Here, we introduce a similarity measurement to govern such temporal

concentration. In what follows in this paper, we use CD and DD to denote the

Concentration similarity Degree and the Discrete similarity Degree:

CHAPTER 6 CASE STUDY OF VIDEO COPY DETECTION

129

1
2 1

() (() ())
i

i t
i t

CD Dur CMS Dur CMS Dur CMS
 

   (6-5)

(() ())i i
i

DD Dur CUS Dur CUS  (6-6)

where CMSi and CUSi are defined as ―Continuous Matched Subsequences‖ and

―Continuous ←nmatched Subsequence‖, respectively, in descending ordered with

respect to the length of these subsequences; and Dur(CMS) and Dur(CUS) denote the

list of the duration of each continuous subsequence in CMS and CUS, respectively.

represents the internal temporal distance with respect to each adjacent continuous

matched and unmatched subsequences. In fact, if CUSi = [st, …, sp]

1

1

1 1

(,) 1

= (,) ()

((,) (,)) 2

p

p i ii t

p

t i ii t

p

t i p i ii t

dis s s CUS if t

dis s s CUS if p length SS

dis s s dis s s CUS else







 

 

 








 (6-7)

In order to reduce the computing complexity, we replace st-1 and sp+1 by their

corresponding query states in Q since the Euclidean distance in Eq.(6-2) between each

state in Q and a state in SS has been achieved in the kNN search stage.

The temporal concentration similarity can be defined as:

SimTC = (CD - DD)/|Q| (6-8)

Section 6.3.5 Hybrid Similarity Model

Normally, the overall similarity can be simply defined as the average of individual

similarities. However, as we have argued earlier, the individual similarity

measurements introduced in this paper have various features. In fact, while the

non-temporal similarity and the temporal similarity may be treated in parallel, the three

temporal similarities are progressive one after the other. Therefore, it is not appropriate

CHAPTER 6 CASE STUDY OF VIDEO COPY DETECTION

130

to simply accumulate all of them together. In what follows, we use a hybrid approach to

combine the four similarity measurements.

Step 1: reorder MSM(Q, D) as MSM(Q, D)‘ by SimTO, SimTA, and SimTC:

Firstly, reorder it by the SimTO; then for the matchings with the same SimTO,

reorder them by SimTA; analogously, reorder by SimTC if there some matchings with the

same SimTA exist.

Step 2: Integrate temporal similarity; get the integrated temporal similarity SimTS =

Adjust(SimTO). For those ȝ = j-i+1 matchings [ε‟i, …, ε‟j] with the same SimTO, evenly

stretch their similarities into [SimTO + ı/β, SimTO - ı/β] where ı denotes the adjust

operator defined as below:

1 1

1

1

()/3 1,

= /2 1

/2

i j

j

i

TO TO

TO

TO

Sim Sim if i j x

Sim if i

Sim if j x



 



 





   

 




 (6-9)

Step 3: Overall similarity; reorder MSM(Q, D)‘ as MSM(Q, D)‘‘ in terms of

overall similarity Sim, which is defined as the average of the non-temporal similarity

and integrated temporal similarity:

Sim = (SimNT + SimTS)/2 (6-10)

Section 6.4 Experimental Results

The proposed method was evaluated using a real-life video database that consisted of

6 classes of video clip including news, basketball sports, education, scene, animation and

MTV, each of which is in MPEG-1format with frame rate of 30 fps and with average

duration of 2.9 minutes. For each key-frame, the 64-dimensional color histogram is

extracted as the corresponding feature vector which has been normalized into [0, 1]

afterwards. The detailed information on the video clip database is reported in table 6.2.

CHAPTER 6 CASE STUDY OF VIDEO COPY DETECTION

131

Table 6.2 Video clip database structure

database Duration(hours) Num of clips Num of key-frames
news 5.5 90 4560

basketball 4.4 120 2359
education 3.9 80 3096

scene 3.2 100 2547
animation 7.6 120 5213

MTV 7.5 150 6864
TOTAL 32.1 660 24639

Section 6.4.1 Set up

The database consists of 660 video clip state-sequences with average length of

37.3hrs for each, including 6 different classes (100 examples each): In order to avoid the

influence of segmenting error to the proposed similarity model, we shall use the original

database in the form of individual 660 key-frame sequences as the training data. Several

query sets are reconstructed as following:

Original Query Set (OQS): which consists of 180 state-sequences (the first 30

state-sequences from each class);

Reordered Query Set (RQS): each state-sequence of this set is in Į percent reordered

(in inverse order while Į=1) from the corresponding state-sequence in OQS;

Shortened Query Set (SQS): each state-sequence is with length of (1- ȕ) × (number

of key-frames), by deleting ȕ × (number of key-frames) states evenly, from the

beginning and from the end of the corresponding state-sequence in OQS;

Noised Query Set (NQS): each state-sequence of this set is obtained by means of

adding a Gaussian noise to each state-sequence in OQS.

For each query state-sequence, by means of following the procedure presented in

section 6.2, we obtain a set of optional matching in the training database, and according to

the hybrid similarity model proposed in section 6.3, we then calculate the overall

CHAPTER 6 CASE STUDY OF VIDEO COPY DETECTION

132

similarity respectively. The precision is defined as the ratio of the number of

state-sequences with the same class as the query state-sequence out of the first 100

optimal matching in MSM(Q, D)‘‘. We focus on the performance of our similarity model

compared with that of [SSHZ2009] (named as ―Shen‖), which is just simply defined by

the average of its individual similarity measurements. Meanwhile, another two models

which employ ED and LCSS as temporal similarity have been tested respectively.

Section 6.4.2 Effectiveness of dmax

Figure 6.5 shows the precision using the OQS dataset with different dmax in thNN

search. We can see that there is no distinct influence of dmax within [0, 0.3]. In order to

reduce the complexity of our matching system, we default dmax = 0.3 if not specified.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.6

0.7

0.8

0.9

dmax

P
re

ci
si

o
n


Hybrid

Shen
ED

LCS

Figure 6.5 Precision of OQS against dmax

Section 6.4.3 Effectiveness of Į

Figure 6.6 shows the precision on the RQS dataset against Į. In order to reveal the

performance of the progressive temporal similarity measurement we proposed in this

paper, we omit the non-temporal similarity in each method. From the figure we can see

that, in our method, the precision has an approximate quadratic distribution with respect to

Į, which means it can better detect the reordered state-sequences compared to the other

approaches.

CHAPTER 6 CASE STUDY OF VIDEO COPY DETECTION

133

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9



P
re

ci
si

o
n


Hybrid

Shen
ED

LCSS

Figure 6.6 Precision of RQS against Į

Section 6.4.4 Effectiveness of ȕ

To evaluate the effect of ȕ, we formed the SQS dataset by deleting ȕ*60 states in

different positions: evenly, from the beginning and the end. Figure 6.7 shows the matching

results against different ȕ. Generally speaking, our method is more robust than others no

matter whether the state-sequences are shortened evenly, from the beginning or from the

end. The precision drops much more slowly in our method especially for ȕଲ[0.1, 0.5]. In

addition, according to our statistic, the query set shortened from the beginning has a

slightly higher precision than the other two sets shortened evenly and at the end in our

similarity model. Generally speaking, the position (where being shortened) does not affect

the precision very much in any similarity model.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1



P
re

ci
si

o
n


Hybrid

Shen
ED

LCSS

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1



P
re

ci
si

o
n


Hybrid

Shen
ED

LCSS

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1



P
re

ci
si

on


Hybrid

Shen
ED

LCSS

(a) Evenly (b) From the beginning (c) From the end

Figure 6.7 Precision of SQS against ȕ

CHAPTER 6 CASE STUDY OF VIDEO COPY DETECTION

134

Section 6.4.5 Robustness

Figure 6.8 shows the results of data seeded with Gaussian noise with different means

([0, 2]) and variances ([0.1, 1]). Visually, our method has higher precision and smaller

fluctuation. Table 6.7 below shows the average mean and standard deviation (STD) of

each subfigure in Figure 6.8.

0
0.5

1
1.5

2

0
0.25

0.5
0.75

1
0

0.25

0.5

0.75

1

mean

Hybrid

variance

pr
ec

is
io

n

0
0.5

1
1.5

2

0
0.25

0.5
0.75

1
0

0.25

0.5

0.75

1

mean

Shen

variance

pr
ec

is
io

n

0
0.5

1
1.5

2

0
0.25

0.5
0.75

1
0

0.25

0.5

0.75

1

mean

ED

variance

pr
ec

is
io

n

0
0.5

1
1.5

2

0
0.25

0.5
0.75

1
0

0.25

0.5

0.75

1

mean

LCSS

variance

pr
ec

is
io

n

Figure 6.8 Precision with Gaussian noise against mean and variance

Table 6.3 Statistic of the precision of noised query set

 Hybrid Shen ED LCSS
Mean (%) 77.69 70.25 66.72 58.28

STD 0.0624 0.0735 0.0809 0.1228

In summary, the hybrid similarity model has a satisfactory performance on video

copy detection. Furthermore, it can handle the reorder edition in video clips and is

robust to the noise. Since the similarity factors have just been combined linearly, it

would be worthwhile developing a non-linear combination in the future.

CHAPTER 7 CONCLUSION AND FUTURE WORK

135

CHAPTER 7 CONCLUSION AND

FUTURE WORK

Section 7.1 Conclusion

To sum up, this thesis has designed a general framework for state-sequence

matching particularly with the formal characterization of time-series and state-sequence

and a general similarity measurement. In addition, two cases of state-based temporal

pattern recognition have been investigated and explored.

The evolution of the representation of time-series and conventional similarity

measurements have been reviewed in detail. The relevant problems have been pointed

out as motivation of this thesis: the general framework with the formal characterization

of time-series and state-sequence as well as the general similarity measurement.

The main findings with respect to the research issues listed in section 1.2 are

summarized as following:

1). A formal characterization of time-series and state-sequences has been

presented for both complete and incomplete situations, where the time-series is

formalized as a tetrad (T, R, Tdur, Tgap) that denotes the temporal order of

time-elements, the temporal relationship between time-elements, the temporal

duration of each time-element and the temporal gap between adjacent

time-elements respectively. It is powerful enough to describe the

state-sequences with both non-temporal information and rich temporal

information.

2). The General Similarity Measurement (GSM) has been designed for

state-sequence matching. It takes into account both non-temporal and rich

temporal aspects, including temporal order, as well as temporal duration and

CHAPTER 7 CONCLUSION AND FUTURE WORK

136

temporal gap. The versatile property of the proposed GSM has been verified

by the means of deducing the conventional similarity measurements as its

special cases. Experimental results on 6 benchmark datasets have

demonstrated that it can address the most general problems in matching

time-series data with rich temporal information. When specified as a

real-penalty similarity measurement, GSM can distinguish the distance caused

by various states in the same operation and filter out noise that may push the

distance at an abnormal level if specified as a binary-value similarity

measurement. In particular, a new LCS-based similarity measurement named

Optimal Temporal Common Subsequence (OTCS) has been proposed as the

special case of GSM. In OTCS, the continuous duplicated states are counted as

the same state with different temporal duration. The advantage of OTCS has

been verified by both the sample evolution and the experiments on the 6

benchmark datasets.

3). The basketball zone-defence detection system has been investigated as a case

study of state-based temporal pattern recognition. On one hand, we have

extended the Laplacian Matrix-based algorithm to take account of the effects

from zoom and single defender‘s translation in zone-defence graph matching.

A set of character-angle based features was proposed to describe the

zone-defence graph. It can describe the structure relationship between

defender-lines for basketball zone-defence, and has a robust performance in

both simulation and real-life applications especially when disturbance exists.

4). The video copy detection system has been investigated as another case study

of state-based temporal pattern recognition. The state-sequence matching

problem has been represented by bipartite graph matching problem. A hybrid

similarity model addressing both non-temporal and temporal relationship

between state-sequences has been proposed, where the non-temporal similarity

has been defined in form of Euclidean distance, whilst the temporal similarity

has been constructed with temporal order similarity, temporal alignment

CHAPTER 7 CONCLUSION AND FUTURE WORK

137

similarity and temporal concentration similarity. The experimental results on

the real-life video database have demonstrated that the proposed model is

robust to states alignment with various numbers and different values, as well

as various reordering including inversion and crossover.

Section 7.2 Future Work Discussion

In the General Similarity Measurement (GSM) as well as the special Optimal

Temporal Common Subsequence (OTCS) case, the parameter (the values of weights)

selection is a vital and arduous task. How to automatically select the optimal values for

the weights remains one a research task for the future. Furthermore, more intelligent

computation of the temporal durance difference and temporal gap difference also

presents interesting future work. In addition, in order to be applied to large scale

databases, it is very important to adopt proper pruning strategies to improve efficiency,

which will also be part of our future work.

In basketball zone-defence detection, the extended Laplacian Matrix-based

algorithm only takes account of the effects from zoom and single defender‘s translation

in zone-defence graph matching. However, the effect from rotation is ubiquitous in

zone-defence graph matching. As an area of future work, it would be worthwhile to

take account of the effects from rotation in basketball zone-defence detection.

Furthermore, the basketball database is still small in our experiments. It would be

necessary to expand the size of the dataset to further explore both the non-temporal and

temporal relationships between state-sequences of basketball zone-defence, and

therefore to obtain the best defence and attacking strategy. In addition, both the

extended Laplacian Matrix-based algorithm and the Character-Angle based feature

have been tested on basketball zone-defence videos. Therefore, as future work, they

may be tested on other team sports games such as football, volleyball, and so on.

In the hybrid similarity model, the non-temporal similarity and temporal similarity

including temporal order similarity, temporal alignment similarity and temporal

CHAPTER 7 CONCLUSION AND FUTURE WORK

138

concentration similarity have been combined by means of linear accumulation, which is

a simple but inappropriate method of aspect combination. With respect to future work,

it would be interesting to explore more appropriate combination strategies. Meanwhile,

it is hoped that this model can provide a steady usage with regards to larger time-series

databases and real-life applications such as Content-based Video Retrieval (CBVR),

which may also be an area for future work.

REFERENCE

139

REFERENCE:

[All1984] J. Allen: ―Towards a General Theory of Action and Time‖. Artificial

Intelligence, 23, 1984, pp: 123-154.

[ALK1999] D. Adjeroh, M. Lee and I. King: ―A distance measure for video

sequences‖. Computer Vision and Image Understanding, 75(1-2),

1999, pp: 25-45.

[ABCB2003] J. Assfalg, M. Bertini, C. Colombo, A. Bimbo and W. Nunziati:

―Semantic annotation of soccer videos: automatic highlights

identification‖. Computer Vision and Image Understanding, 92(2-3),

2003, pp: 285-305.

[AFS1993] R. Agrawal, C. Faloutsos and A. Swami: ―Efficient similarity search

in sequence databases‖. In Proceedings of the 4th International

Conference on Foundations of Data Organization and Algorithms

(FODO‘9γ), Springer Press, Chicago, Illinios, USA, Oct. 13-15, 1993,

pp: 69-84.

[AH1989] J. F. Allen and P. J. Hayes: ―Moments and Points in an Interval-based

Temporal-based Logic‖. Computational Intelligence, 5(4), 1989, pp:

225-238.

[ALK1999] D. A. Adjeroh, M. C. Lee, and I. King: ―A distance measure for video

sequences‖. Computer Vision and Image Understanding, 75 (1-2),

1999, pp: 25–45.

[AMO1993] R. Ahuja, T. Magnanti and J. Orlin: ―Network Flows‖. Prentice Hall,

1993

REFERENCE

140

[APPK2008] V. Athitsos, P. Papapetrou, M. Potamias, G. Kollios, and D.

Gunopulos: ―Approximate Embedding-Based Subsequence Matching

of time-series‖. In Proceedings of the ACM SIGMOD International

Conference on Management of Data (SIGMOD‘08), Vancouver, BC,

Canada, Jun. 9–12, 2008, pp: 365-378.

[AS1995] R. Agrawal and R. Srikant: ―Mining Sequential Patterns‖. In

Proceedings of the 11th International Conference on Data Engineering,

Taipei, Taiwan, March 6-10, 1995, pp: 3-14.

[Bel1957] R. Bellman: ―Dynamic Programming‖. Princeton University Press,

Princeton, NJ, 1957.

[Bru1972] B. C. Bruce: "A Model for Temporal References and Application in a

Question Answering Program". Artificial Intelligence, 3, 1972, pp:

1-25.

[Ben1983] J. V. Benthem: ―The Logic of Time‖. Kluwer Academic, Dordrech,

1983.

[Bee1992] P. V. Beek: ―Reasoning About Qualitative Temporal Information‖.

Artificial Intelligence, 58, 1992, pp: 297-326.

[BABST2007] A. Bagdanov, M. Bertini, A. Bimbo, G. Serra and C. Torniai:

―Semantic annotation and retrieval of video events using multimedia

ontologies‖. In Proceedings of 1st IEEE International Conference on

Semantic Computing (ICSC‘07), Irvine, California, Sep. 17-19 2007,

pp: 713-720.

[BC1996] D. J. Berndt and J. Clifford: ―Finding patterns in time series: a

dynamic programming approach‖. Advances in Knowledge Discovery

and Data Mining, AAAI/MIT Press, Menlo Park, CA. 1996, pp:

REFERENCE

141

229-248.

[BCB1999] G. Baldi, C. Colombo, A. Bimbo: ―A compact and retrieval-oriented

video representation using mosaics‖. In Proceedings of 3rd

International Conference on Visual Information Systems (VISual‘99),

Springer Lecture Notes on Computer Science, Amsterdam, The

Netherlands, June 2-4, 1999, pp: 171–178.

[BHR2000] L. Bergroth, H. Hakonen and T. Raita: ―A Survey of Longest

Common Subsequence Algorithms‖. In Proceedings of 7th IEEE

International Symposium on String Processing and Information

Retrieval (SPIRE‘00), A Coruña, Spain, Sep. 27-29, 1999, pp: 39–48.

[BKK1999] N. Babaguchi, Y. Kawai and T. Kitahashi: ―Event Based Video

Indexing by Intermodal Collaboration‖. In Proceedings of 1st

International Workshop on Multimedia Intelligent Storage and

Retrieval Management (MISRM'99) in conjunction with ACM

Multimedia Conference 1999, Orlando, Oct. 30th, 1999, pp: 1-9.

[BKSS1990] N. Beckmann, H. Kriegel, R. Schneider and B. Seeger: ―The r*-tree:

An efficient and robust access method for points and rectangles‖. In

Proceedings of the International Conference on Management of Data

(SIGMOD‘99), ACM Press, Atlantic City, NJ, May 23-25, 1990, pp:

322-331.

[CHTH2005] S. Chin, C. Huang, C. Tang, C. Hung: ―An Application Based on

Spatial-Relationship to Basketball Defensive Strategies‖. Embedded

and Ubiquitous Computing (EUC) Workshops, Nagasaki, Japan, Dec

8-9, 2005, pp: 180–188.

[CN2004] L. Chen and R. Ng: ―On the Marriage of LP-Norm and Edit Distance‖.

REFERENCE

142

In Proceedings of the International Conference on Very Large Data

Bases, Toronto, Canada, Aug. 29 – Sep.3, 2004, pp: 792-801.

[COO2005] L. Chen, M.T. Ozsu and V. Oria, ―Robust and Fast Similarity Search

for Moving Object Trajectories‖. In Proceedings of the 24th

International Conference on Management of Data (SIGMOD‘05),

Baltimore, Maryland, USA, Jun. 13-16, 2005, pp: 491-502.

[CZKA1996] Y. L. Chang, W. Zeng, I. Kamel and R. Alonso: ―Integrated Image

and Speech Analysis for Content-based Video Indexing‖. In

Proceedings of the 3rd IEEE International Conference on Multimedia

Computing and Systems (ICMCS‘96), Hiroshima, Japan, Jun. 17-23,

1996, pp: 03-06.

[DGM1997] G. Das, D. Gunopulos and H. Mannila: ―Finding similar time series‖.

In Proceedings of 1st the European Symposium on Principles of Data

Mining and Knowledge Discovery from Databases (ECML-PKDD),

Trondheim, Norway, Jun 24-27, 1997, pp: 88-100.

[EBMM2003] A. A. Efros, A. C. Berg, G. Mori and J. Malik: ―Recognizing action at

a distance‖, In Proceedings of 9th IEEE International Conference on

Computer Vision (ICCV‘0γ), Nice, France, Oct. 13-16, 2003, vol. 2,

pp: 726–733.

[FM2008] M. M. Fuad and P. F. Marteau: ―The Multi-resolution Extended Edit

Distance Metric‖. In Proceedings of 3rd International ICST

Conference on Scalable Information Systems, Vico Equense, Italy,

Jun. 4–6, 2008, pp: 1-6.

[FRM1994] C. Faloutsos, M. Ranganathan & Y. Manolopoulos: ―Fast

subsequence matching in time-series databases‖. In Proceedings of

REFERENCE

143

the ACM SIGMOD International Conference on Management of Data,

Minneapolis, Minneapolis, Minnesota, USA, May 25-27, 1994, pp:

419-429.

[Gal1990] A. Galton: ―A Critical Examination of Allen's Theory of Action and

Time‖. Artificial Intelligence, 42, 1990, pp: 159-188.

[Gro1999] R. Groth: ―Data Mining: Building Competitive Advantage‖.

Prentice-Hall Inc., 1999.

[GS1999] V. Guralnik and J. Srivastava: ―Event detection from time series data‖.

In Proceedings of the 5th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining (KDD‘99), San Diego, CA,

Aug 15-18, 1999, pp: 33-42.

[GS2004] A. Gao, H. Siegelmann: ―Time-Warped Longest Common

Subsequence Algorithm for Music Retrieval‖. In Proceedings of the

5th International Conference on Music Information Retrieval

(ISMIR‘04), Barcelona, Spain, Oct. 10-14, 2004.

[GSC1995] Y. H. Gong, L. T. Sin, C. H. Chuan et al.: ―Automatic Parsing of TV

Soccer Programs‖. In Proceedings of IEEE International Conference

on Multimedia Computing and Systems (ICMCS‘95), 1995, pp:

167-174.

[HR2007] Q. Hua, Y. Rui: ―Optimizing Multi-Graph Learning Towards A

Unified Video Annotation Scheme‖. In Proceedings of the ACM

International Conference on Multimedia (ACM MM ‘07), Augsburg,

Germany, Sep. 24 -29, 2007, pp: 17-26.

[JAS2002] M. D. Jaere, A. Aamodt and P. Skalle: ―Representing Temporal

Knowledge for Case-Based Prediction‖. In Proceedings of the 6th

REFERENCE

144

European Conference on Advances in Case-Based Reasoning

(ECCBR‘02), Aberdeen, Scotland, UK, Sep 4-7, Vol. 2416, 2002, pp:

174 - 188.

[KC2005] Y. Kim and T. Chua: ―Retrieval of News ↑ideo ←sing ↑ideo

Sequence Matching‖. In Proceedings of the 11th International

Conference on Multimedia Modelling (MMM‘05), IEEE Press,

Melbourne, Australia, Jan. 12-14, 2005, pp: 68 – 75.

[KP1998] E. Keogh and M. Pazzani: ―An enhanced representation of time series

which allows fast and accurate classification, clustering and relevance

feedback‖. In Proceedings of the 4th International Conference on

Knowledge Discovery and Data Mining, New York, USA, Aug 27-31,

1998, pp: 239-241.

[KP2000] E. Keogh and M. Pazzani: ―Scaling up dynamic time warping for data

mining applications‖. In Proceedings of the 6th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining,

Boston, MA, USA, Aug. 20-23, 2000, pp: 285-289.

[Kuh1955] H. W. Kuhn: ―The Hungarian Method for the assignment problem‖.

Naval Research Logistics Quarterly, 1955, Vol.2, pp: 83-97.

[Lev1965] V. I. Levenshtein: ―Binary Codes Capable of Correcting Deletions,

Insertions, and Reversals‖. Soviet Physics Doklady, 1965, Vol.10,

No.8, pp: 845-848.

[Lad1987] P. Ladkin: ―Models of axioms for time intervals‖. In Proceedings of

the 6th National Conference on Artificial Intelligence (AAAI‘87),

Seattle, Washington, USA, Jul. 13–17, 1987, pp: 234-239.

[LTWB2005] D. Liang, Q. Tong, N. Wang, W. Bao and L. Qu: ―A Laplacian Matrix

REFERENCE

145

Based Algorithm for Image Matching‖. Computer Engineering and

Applications, 2005, Vol. 41(36), pp: 31-38.

[LWH2003] Y. Luo, T. D. Wu, J. N. Hwang: ―Object-based analysis and

interpretation of human motion in sports video sequences by dynamic

Bayesian networks‖. Computer Vision and Image Understanding -

Special isssue on video retrieval and summarization, 2003, Vol. 92

(2-3), pp: 196–216.

[LXYC2006] S. Liu, M. Xu, H. Yi, L. Chia and D. Rajan: ―Multimodal Semantic

Analysis and Annotation for Basketball Video‖ EURASIP Journal on

Applied Signal Processing, 2006, pp: 1-13.

[Mar2008] P. F. Marteau: ―Time Warp Edit Distances with Stiffness Adjustment

for Time Series Matching‖. IEEE Transaction on Pattern Analysis and

Machine Intelligence, 2009, Vol.31 (2), pp: 306-318.

[MBG2008] B. Marco, A. Bimbo and S. Giuseppe: ―Video Event Annotation using

Ontologies with Temporal Reasoning‖. In Proceedings of 4th Italian

Research Conference on Digital Library Systems (IRCDL), Padova,

Italy, Jan. 24-25, 2008, pp: 24-25.

[MBZ2008] J. Ma, R. Bie, G. Zhao: ―An ontological Characterization of

Time-series and State-sequences for Data Mining‖. In Proceedings of

the 5th International Conference on Fuzzy Systems and Knowledge

Discovery (FSKD), Jinan, China, Oct. 18-20, 2008, pp: 325-329.

[MH2006] J. Ma and P. Hayes, ―Primitive Intervals ↑s Point-Based Intervals:

Rivals or Allies?‖ The Computer Journal, 2006, Vol.49 (1), pp: 32-41.

[MK1994] J. Ma and B. Knight: ―A General Temporal Theory‖. The Computer

Journal, 1994, Vol.37 (2), pp: 114-123.

REFERENCE

146

[MM2008a] M. M. Muhammad and P. F. Marteau: ―The Extended Edit Distance

Metric‖. The 6th International Workshop on Content-Based

Multimedia Indexing (CBMI), London, UK, Jun. 18-20, 2008, pp

242-248.

[MM2008b] F. M. Muhammad and P. F. Marteau: ―The Multi-resolution Extended

Edit Distance Metric‖. The 3rd International ICST Conference on

Scalable Information Systems, Vico Equense, Italy, Jun. 4-6, 2008, pp:

1-6.

[Mun1957] J. Munkres: ―Algorithms for the Assignment and Transportation

Problems‖. Journal of the Society of Industrial and Applied

Mathematics, 1957, Vol.5 (1), pp: 32-38.

[MWH2002] Y. -S. Moon, K. -Y. Whang, and W. S. Han: ―General Match A

Subsequence Matching Method in Time-Series Databases Based on

Generalized Windows‖. Proceedings of the ACM SIGMOD

international conference on Management of data (SIGMOD‘0β),

Madison, Wisconsin, USA, Jun. 4-6, 2002, pp: 382-393.

[MWL2001] Y.-S. Moon, K.-Y. Whang, and W.-K. Loh. ―Duality-based

subsequence matching in time-series databases‖. In Proceedings of

the 17th International Conference on Data Engineering (ICDE‘01),

Apr. 2-6, 2001, Heidelberg, Germany, pp: 263-272.

[MZH2007] J. Ma, G. Zhao, E. Hancock: ―A Navigation-based Algorithm for

Matching Scenario Patterns‖. In Proceedings of International

Conference on Artificial Intelligence and Pattern Recognition

(AIPR‘07), Orlando, Florida, USA, Jul.9-12, 2007, pp: 151-157.

[NSG2001] S. Nepal, U. Srinivasan and G. Reynolds: ―Automatic detection of

REFERENCE

147

goal segments in basketball videos‖. In Proceedings of the 9th ACM

International Conference on Multimedia (M←LTIMEDIA‘01), Ottawa,

Canada, Sep. 30 – Oct. 5, 2001, pp: 261-269.

[PKKV2009] M. Perse, M. Kristan, S. Kovacic, G.Vuckovic and J. Pers: ―A

trajectory-based analysis of coordinated team activity in a basketball

game‖. Computer Vision and Image Understanding, 2009, Vol.113

(5), pp: 612-621.

[PVS2001] H. Pan, B. P. Van and M. I. Sezan: ―Detection of slowmotion replay

segments in sports video for highlights generation‖. In Proceedings of

the IEEE International Conference on Acoustics, Speech and Signal

Processing, 2001, Vol.3, pp: 1649-1652.

[RGA2000] Y. Rui, A. Gupta and A. Acero: ―Automatically Extracting Highlights

for TV Baseball Programs‖. In Proceedings of the 8th ACM

International Conference on Multimedia, Los Angeles, CA, USA, Oct.

30 - Nov. 3, 2000, pp: 105-115.

[SC1978] H. Sakoe, and S. Chiba: ―Dynamic programming algorithm

optimization for spoken word recognition”, IEEE Transactions on

Acoustics, Speech and Signal Processing, 26 (1), 1978, pp. 43- 49.

[Shi2004] D. Shier: ―Matchings and assignments‖. In Handbook of Graph

Theory, J. L. Gross and J. Yellen, Eds. CRC Press, 2004, pp:

1103–1116.

[SFY2007] Y. Sakurai, C, Faloutsos and M. Yamamuro: ―Stream monitoring

under the time warping distance‖. IEEE βγrd International Conference

on Knowledge and Data Engineering, Istanbul, Turkey, Apr.17-20,

2007, pp: 1046-1055.

REFERENCE

148

[SHSZ2008] J. Shao, Z. Huang, H. Shen, X. Zhou, E. Lim and Y. Li: ―Batch

nearest neighbour search for video retrieval‖. IEEE Transactions on

Multimedia, 2008, Vol.10 (3), pp: 409-420.

[SSHZ2009] H. Shen, J. Shao, Z, Huang and X. Zhou: ―Effective and Efficient

Query Processing for Video Subsequence Identification‖. IEEE

Transactions on Knowledge and Data Engineering, 2009, Vol.21 (3),

pp: 321-334.

[TSKR2000] Y. P. Tan, D. D. Saur, S. R. Kulkarni and P. J. Ramadge: ―Rapid

estimation of camera motion from compressed video with application

to video annotation‖. IEEE Transactions on Circuits and Systems for

Video Technology (CSVT), 2000, Vol. CSVT-10, pp: 133-146.

[UFF2005] R. Urtasun, D. J. Fleet and P. Fua: ―Monocular 3d tracking of the golf

swing‖. IEEE Computer Society Conference on Computer Vision and

Pattern Recognition (C↑PR‘05), San Diego, CA, USA, Jun. 20-26

2005, vol. 2, pp: 932–938.

[Vil1994] L. Vila: ―A survey on temporal Reasoning in Artificial Intelligence‖,

AI Communication, 1994, Vol.7, pp: 4-28.

[VGK2002] M. Vlachos, D. Gunopulos and G. Kollios: ―Discovering similar

multidimensional trajectories‖. In Proceedings of the 18th

International Conference on Data Engineering (ICDE‘0β), San Jose,

CA, USA, Feb 26-Mar 1, 2002, pp: 673–684.

[VHGK2003] M. Vlachos, M. Hadjieleftheriou, D. Gunopulos, and E.J. Keogh,

―Indexing Multi-Dimensional Time-Series with Support for Multiple

Distance Measures‖. In Proceedings of ACM Special Interest Group

Knowledge Discovery and Data Mining (SIGKDD‘0γ), Washington,

REFERENCE

149

DC, USA, Aug. 24 – 27, 2003, pp: 216-225.

[Wan2007] H. Wang, ―All Common Subsequences‖. In Proceedings of 20th

International Joint Conference on Artificial Intelligence (IJCAI‘07),

Hyderabad, India, Jan. 6-12, 2007, pp: 635-640.

[WSZ2004] H. Wu, B. Salzberg, and D. Zhang: ―Online Event-Driven

Subsequence Matching over Financial Data Streams‖. In Proceedings

of International Conference Management of Data (SIGMOD‘04),

ACM Press, Paris, France, Jun. 13-18, 2004, pp: 23-34.

[Xu2001] P. Xu: ―Algorithms and systems for segmentation and structure

analysis in soccer video‖. In Proceedings of IEEE International

Conference on Multimedia and Expo (ICME‘01), Tokyo, Japan, Aug.

22-25, 2001, pp: 184–187.

[XC2004] H. Xu and T. Chua: ―The fusion of audio-visual features and external

knowledge for event detection in team sports video‖. In Proceedings

of the 6th ACM SIGMM International workshop on Multimedia

Information Retrieval (MIR‘04), New York, NY, USA, Oct.15-16,

2004, pp: 127-134.

[XDC2004] M. Xu, L. Duan, J. Cai, L.Chia, C. Xu and Q. Tian: ―HMM-Based

Audio Keyword Generation‖. In Proceedings of the 5th Pacific Rim

Conference on Multimedia (PCM‘04), Tokyo, Japan, Nov.30-Dec.3,

2004, pp: 566-574.

[YJF1998] B. Yi , H. Jagadish and C. Faloutsos: ―Efficient retrieval of similar

time sequences under time warping‖. In Proceedings of the 14th

International Conference on Data Engineering (ICDE‘98), Orlando,

FL, USA, Feb. 23-27, 1998, pp: 201-208.

REFERENCE

150

[YX2003] H. J. Ye, G. Y. Xu: ―Fast search in large database using vector

quantization‖. In Proceedings of International Conference on Image

and ↑ideo Retrieval (CI↑R‘03), Berlin: Springer-Verlag,

Urbana-Champaign, IL, USA, Jul. 24-25, 2003, pp: 477-487.

[ZMLP2009] A. Zheng, J. Ma, B. Luo and M. Petridis: ―Temporal Pattern

Recognition in Basketball Video Clips‖. In Proceedings of 5th

International Conference on Computer and Information Science

(ICIS‘09), Shanghai, China, Jun. 1-3, 2009, pp: 416"-421.

[ZMPT2009] A. Zheng, J. Ma, M. Petridis, J. Tang and B. Luo: ―A Robust

Approach to Subsequence Matching‖. Studies in Computational

Intelligence (SCI), 2009, Vol.253, pp: 39-49.

[ZS2003] Y. Zhu and D. Shasha: ―Warping indexes with envelope transforms

for query by humming‖. In Proceedings of International Conference

on Management of Data (SIGMOD‘03), ACM Press, San Diego,

California, USA, Jun.9-12, 2003, pp: 181–192.

APPEDIX A TEMPORAL PATTERN RECOGNITION IN VIDEO CLIPS DETECTION

151

Temporal Pattern Recognition in Video Clips Detection

Aihua Zheng1,2 Jixin Ma2 Bin Luo1 Sulan Zhai1 Jin Tang1

1Anhui University, People‟s Republic of China
2The University of Greenwich, United Kingdom
{a.zheng, j.ma}@gre.ac.uk luobin@ahu.edu.cn

Abstract

Temporal representation and reasoning plays an
important role in Data Mining and Knowledge Discovery,
particularly, in mining and recognizing patterns with rich
temporal information. Based on a formal characterization
of time-series and state-sequences, this paper presents the
computational technique and algorithm for matching
state-based temporal patterns. As a case study of real-life
applications, zone-defence pattern recognition in
basketball games is specially examined as an illustrating
example. Experimental results demonstrate that it
provides a formal and comprehensive temporal ontology
for research and applications in video events detection.

Key words: algorithm, temporal pattern recognition,
basketball zone-defence.

1. Introduction

Data mining is the process of finding trends and patterns

in data [4]. Generally speaking, data mining requires some
historical knowledge as for the internal temporal
relationships of certain patterns. Therefore, temporal
representation and reasoning is essential and ubiquitous for
data mining and knowledge discovery. In fact, recognizing
temporal patterns actually plays an important role in many
applications such as prediction, forecast, explanation,
diagnosis, history reconstruction, decision making, and so
on, where the history of situations in terms of time-series of
states is more vital than distinct states/processes or
actions/events. For instance, in the area of medical
information systems, a patient‘s medical history is
obviously very important: to prescribe the right treatment,
the doctor needs to analysis not only the patient‘s current
state, but also his/her previous health situations, including:
How long has the patient been ill? Did the patient have the
same problem or relevant disease
previously? Has the patient had some treatment already

This research is supported in part by National Nature Science

Foundation of China (No. 60772122)

before seeing the doctor? Has the patient been allergic to
any drugs in the past? Also, in weather forecast, to provide
correct and accurate prediction, weather experts need to
know not only the current weather parameters summarized
as temperature, air pressure, precipitation amount, wind
speed and residual snow/ice amount, but also the weather
histories in terms of time-series of weather parameters over
some certain prior periods, such as: How long did the heat
wave last? Was there lightning before or during the rain?
Did snow melt then refreeze? And so on. Similarly, in
basketball games, to find correct zone-defence strategy
detection, we need to know not only the current positions of
each defender, but also their previous positions and
movements, etc.

It has been noted that, time-series and sequences are
important patterns in data mining and have attracted a lot of
researchers‘ interests [γ, 8, 9, 11, 13]. However, in most of
those proposed formalisms, the fundamental time theories
based on which time-series and sequences are formed up are
usually not explicitly specified, where time-series and
sequences are simply expressed as lists in the form of
well-ordered indexes or as sequences of collection of
observations, and so on. The formal characterizations with
respect to the temporal basis are neglected, leaving some
critical issues unaddressed.

 In what follows in this paper, the formalism for
formalizing time-series and state-sequences is briefly
introduced in section 2. Based on this formalism, section 3
presents the computational technique and algorithm for
matching state-based temporal patterns, illustrated by a
real-life case study. Experimental results are provided,
analyzed and evaluated in section 4, demonstrating the
efficiency of the proposed technique and algorithm. Finally,
section 5 provides a brief summary and concludes the
paper.

2. The formalism

For general treatment, in this paper, we shall adopt the

general time theory proposed in [10] as the temporal basis.
The time theory takes a nonempty set of primitive time
elements, with an immediate predecessor relation, Meets,

APPEDIX A TEMPORAL PATTERN RECOGNITION IN VIDEO CLIPS DETECTION

152

over time elements, and a duration assignment function,
Dur, from time elements to non-negative real numbers. If
Dur(t) = 0, then t is called a point; otherwise, that is
Dur(t) > 0, t is called an interval (detailed characterization
of such a time theory is given in [10]).

Analogous to the 13 relations introduced by Allen for
intervals [1,2], there are 30 exclusive temporal order
relations over time elements including both time points and
time intervals, which can be classified into the following 4
groups:
 Relations which relate points to points:

{Equal, Before, After}
 Relations which relate points to intervals:

{Before, After, Meets, Met_by, Starts, During.
Finishes}

 Relations which relate intervals to points:
{Before, After, Meets, Met_by, Started_by, Contains,

Finished_by}
 Relations which relate intervals to intervals:

{Equal, Before, After, Meets, Met_by, Overlaps,
Overlapped_by, Starts, Started_by, During, Contains,
Finishes, Finished_by}

Based the above time theory, a time-series ts is defined
as a vector of time-elements temporally ordered one after
another [9]. Formally, a general time-series is characterized
in terms of the following schema:
GTS1) ts = [t1, …, tn];
GTS2) Meets(tj, tj+1)  Before(tj, tj+1),

for all j = 1, …, n-1;
GTS3) Dur(tk) = dk,

for some k where 1≤ k ≤ n and di is a
non-negative real number.

N.B. : Before(t1, t2) t(Meets(t1, t)  Meets(t, t2))
Generally speaking, a time-series may be incomplete in

various ways. For example, if the relation between tj and tj+1
is ―Before‖ rather than ―Meets‖, it means that the knowledge
about the time-element(s) between tj and tj+1 is not available.
In addition, if Dur(tk) = dk is missing for some k, it means
that duration knowledge as for time-element tk is unknown.
Correspondingly, a complete time-series is defined in terms
of the schema as below:
CTS1) ts = [t1, …, tn];
CTS2) Meets(tj, tj+1), for all j = 1, …, n-1;
CTS3) Duration(ti) = di,

for all i = 1, …, n, where di is a non-negative real
number.
The validation of data is usually dependent on time. For

instance, $1000 (Account Balance) can be valid before and
on 1 January 2003 but become invalid afterwards. We shall
use fluents to represent Boolean-valued, time-varying data,
and denote statement ―fluent f holds true over time t‖ by
formula Holds(f, t):

(F1) (f, t)  t1(Part(t1, t)  Holds(f, t1))
That is, if fluent f holds true over a time element t, then f

holds true over any part of t.

(F2) t1(Part(t1, t)  t2(Part(t2, t1)  Holds(f, t2)))
  Holds(f, t)
That is, if any part of time t contains a part of itself over

which fluent f holds true, then f holds true over t.
Here, Part(t1, t2) is the shorthand writing of Equal(t1, t) 

Starts(t1, t)  During(t1, t)  Finishes(t1, t).
(F3) Holds(f1, t)  Holds(f2, t)  Holds(f1  f2, t)
That is, if fluent f1 holds true over time t or fluent f2 holds

true over time t, then at least one of them holds true over time
t.

(F4) Holds(not(f), t)  t1(Part(t1, t)  Holds(f, t1))
That is, the negation of fluent f holds true over time t if

and only if fluent f does not hold true over any part of t.
(F5) Holds(f, t1)  Holds(f, t2)Meets(t1, t2)
  Holds(f, t1t2)
That is, if fluent f holds true over two time elements t1

and t2 that meets each other, then f holds over the
ordered-union [10] of t1 and t2.

A state is defined as a collection of fluents. Following the
approach proposed in [12], we shall use Belongs(f, s) to
denote that fluent f belongs to the collection of fluent
representing state s.

For the reason of simple expression, if f1, …, fm are all the
fluents that belong to state s, we shall represent s as <f1, …,
fm>. Also, without confusion, we shall use formula Holds(s, t)
to denote that s is the state of the world with respect to time t,
provided that:

(F6) s = < f1, …, fm>
 Holds(s, t)  Holds(f1, t) Holds(fm, t)
That is, a state s holds true over time t if and only if every

fluent in the s holds true over time t.
A state-sequence ss is defined as a list of states together

with its corresponding time-series ts [9]. A general
state-sequence is defined in terms of the schema as below:
GSS1) ss = [s1, …, sn];
GSS2) Holds(si, ti),

for all i = 1, …, n, where [t1, …, tn] is a time-series.
 Finally, a state-sequence is defined as complete if and

only if the corresponding time-series is complete.

3. States-based basketball zone-defence

pattern recognition

As a popular worldwide sport game, basketball has led

to various research interests, including basketball video
retrieval, shot segmentation, event or highlight detection,
semantic annotation, etc. In what follows in this paper, we
shall focus on the so-called zone-defence pattern matching
(or zone-defence strategy detection) as a real-life case study
of states-based temporal pattern recognition.

 3.1. Zone-defence state and graph

APPEDIX A TEMPORAL PATTERN RECOGNITION IN VIDEO CLIPS DETECTION

153

Zone-defence is a very common defence strategy in
basketball. In particular, zone-defence uses basic principles
to force opponents either in full-court, three-quarter-court,
or half-court areas in order to upset their offense [6].
Comparing with man-to-man defence, zone pressure
defence requires each defender guard his zone consistently.
Fig.1 shows the ordinary positions of 5 defenders in 1-3-1
zone-defence:

Fig.1. 5 defenders’ positions in 1-3-1 zone-defence

Firstly, we premise that: 1) The defenders have adjusted
to their best defensive positions at the moment when the
ball is just to be passed or dribbled; 2) As the zone-defence
strategy is to defence the offensive opponent to attack into
interior playfield, we only consider the states when the ball
is in the midfield, the wing and the corner.

According to these two premises, a basketball
zone-defence video clip is structured by zone-defence states
or so-called state-sequence̟SS = [S1, …, Sn], and
Holds(Si,ti) for i = 1, …, n, where [t1, …, tn] is a time-series
of the moments referred in premise 1).

Following the conventional notations in graph theory,
we represent a zone-defence graph as G = <VG, EG>, where
VG and EG denote the set of the vertices (defenders‘
position) and the set of edges respectively, and EG  VG×
VG. In particular, here, |VG| = 5. The position of each
defender is denoted by the horizontal and vertical
coordinates of the corresponding vertex.

Obviously, each state Si has its corresponding graph Gi,
where i = 1, …, n. In addition, we shall use the following
vector [ball1, …, balln] to record the ball‘s position of each
state, where ballię{midfield, wing, conner} for i = 1, …, n.

3.2. Standard zone-defence graph database

Zone-defence can be divided into various formations,

including 2-3, 1-3-1, 1-2-2, 3-2, 2-2-1, 2-1-2 and 1-2-1-1
zone-defence strategies, where the first three have been
noted as the most common ones employed in actual
basketball games. In this paper, we shall focus on the first

three formations.
In the first place, we shall formulate the standard

zone-defence graph database according to two famous
basketball coaching web sides [5, 6]. For instance, a typical
2-3 zone-defence clip (state-sequence) for the ball from the
state of setting-up in the midfield to the state of passing or
dribbling to the wing and then to the corner can be
presented in terms of the following 3 graphs as shown in
Fig.2 (the star marks denote the 5 defenders and the circle
denotes the ball):

(a) setting-up in the midfield

(b) passing or dribbling to the wing

(c) passing or dribbling to the corner

Fig.2. A sample clip (3 states) of 2-3 zone-defence

Table 1 below shows the number of our standard
zone-defence graph database of different zone-defence
strategies obtained from the two web sites [5, 6].

Table 1. The number of standard zone graphs

zone-defence

2-3

1-3-1

1-2-2

APPEDIX A TEMPORAL PATTERN RECOGNITION IN VIDEO CLIPS DETECTION

154

ball‘s position

midfield 4 3 2
wing 4 12 7
corner 6 6 2
totally 14 21 11

In order to reduce human‘s subjective error, we invited

10 professional basketball coaches to enter the standard
zone-defence graphs for our system. For each vertex of any
graph, we assign the average of the 10 entered values (with
respect to horizontal and vertical coordinates) to it.

3.3. LM-based state matching algorithm

As mentioned above, each zone state has its

corresponding zone graph. Therefore, state matching can be
transformed into the corresponding graph matching. In this
section, we shall extend the Laplacian matrix-based
algorithm proposed in [7] for matching zone graphs. The
original algorithm proposed in [7] is demonstrated to be
precise in matching image pairs; however, on one hand, it is
invariant with respect to zoom, and on the other hand, it is
very sensitive to the translation of single vertex. The main
process of the extended algorithm is expounded as
following:

1) Formulating the distance Laplacian Matrices for
zone graph G and H:

2

2
()

l (, , , 1,...,5)

() []
G Gi j

ik
k i

V V
i j

M
ij

i j k i j

L G l




 

  


  
 

 (1)

2

2
()

l (, , , 1,...,5)

() []
H Hi j

ik
k i

V V
i j

M
ij

i j k i j

L H l




 

  


  
 

 (2)

Here, we take M as the diagonal line length of the
half-court playfield.

Obviously, in addition to the spatial distance (SD)
relationships as characterized by formula (1) and (2), the
spatial direction (SD‘) relationships between defenders also
play an indispensable role. Hence, additional direction
Laplacian Matrices with respect to the direction
relationships are formulated as:

2

2

'
ik

,
()

' '

l (, , , 1,2,...,5)

() []
G Gi j

k i

R V V
i j

ij

i j k i j

L G l 



 

  


  
 

˄ ˅

 (3)

2

2

'
ik

,
()

' '

l (, , , 1,2,...,5)

() []
H Hi j

k i

R V V
i j

ij

i j k i j

L H l 



 

  


  
 

˄ ˅

 (4)

where (,)
i jG GR V V denotes the direction relationship

between
iGV and

jGV :

[0,]
(,) argcos()

G Gj i

i j

j i

V V

G G

G G

x x
R V V

V V





 (5)

N.B.: Single vertex translation has less effect on the
direction Laplacian Matrices than the distance Laplacian
Matrices.

2) Computing the Singular Value Decomposition (SVD)
for each Laplacian Matrix respectively:

1 5() { ,..., } TL G Udiag U  (6)

1 5() { ,..., } TL H Vdiag V  (7)

1 5

' ' ' '() { ,..., }() TL G U diag U ' (8)

1 5

' ' ' '() { ,..., }() TL H V diag V ' (9)

3) Sign adjusting [7] ↑ and ↑‘ into ↑a and Vb.
4) Constructing the matching distance between ith vertex

in G and jth vertex in H:

2 2 2 T
a a() 2 U (V)i j i j

ij i j i j i jP U V          (10)
2' ' ' T() 2[1 2() ()]i j i j

ij b bP U V U V    (11)

N.B.: Here, Eigen-values are added to take into account
of the effects from distance zoom. This is different from the
algorithm proposed in [7].

5) Defining the matching relationship matrix:

 T T
a aC = UV = [U (V)] = [C]i j

ij (12)
' T T '

b b C = UV = [U (V)] = [C]i j
ij (13)

6) Computing the matching distance of each vertex in G,
with respect to its relationships to the vertices in H :
, , , (1,2,...,5)i j k t  :

, max() max()

max ,kt
i

ij ij it ij kjP if C C C C

P else
MD

   


 (14)

'
'

'

, max() max()

max ,i
ij ij it ij kj

kt

P if C C C C

P else
MD

  
 


 (15)

7) Computing the compound matching distance between
graph G and H:

5

1

(,) i
i

Dis G H MD


 (16)

5
' '

1

(,) i
i

Dis G H MD


 (17)

Finally, the global matching distance between
graphG andH is defined by:

' '(,) (,) (,)D G H Dis G H Dis G H   (18)

where ' 1   .

As illustrated by the experimental results shown later in
this paper, by taking 0.75  and ' 0.25  , the algorithm

demonstrates an outstanding performance.

3.4. Zone-defence state-sequence matching algorithm

APPEDIX A TEMPORAL PATTERN RECOGNITION IN VIDEO CLIPS DETECTION

155

As mentioned earlier in the paper, a test basketball video

clip can be denoted by a state-sequence [S1
test, …, Sm

test],
which in turn can be expressed as a graph-sequence
[G1

test, …, Gm
test], and the corresponding ball positions

[ball1
test, …, ballmtest]. We shall match each test graph with

the graphs in the standard zone-defence graph database.
Zone-defence state-sequence matching algorithm is

given as below.
Firstly, we match the test graph-sequence with standard

2-3 zone graph-sequences
23

23 23 23
1[,...,]nG G G in terms of the

following procedure:
Step 1:
For each , 1,2,...,test test

iG G i m  , compute the distances

between test
iG and graphs with the same ball position

as test
iG in standard 2-3 zone graph database, in terms of the

graph matching algorithm presented in section 3.3:
23 23(,) []
j

test
i z ijD G G D (19)

where 23

zj

test
iball ball ,

23{1,2,..., }jz n , 231,2,..., pj n n  ,

and pn is the number of the graphs with the same ball

position as test
iG in 2-3 zone graph database.

Step 2:
Search the most similar graph compared withtest

iG in 2-3

zone graph database.
23 23 23, argmin([])

j i
i z i ij

j
SG G j D  (20)

Step 3:
Computing the similarity degree between the test

state-sequence and 2-3 zone state-sequences:

23 23 23
test

1

min([])
j i

m

z ij
i

Sim w D


 (21)

where 23

j i
zw denotes the weight of graph 23

j i
zG in 2-3

zone graph database, which are obtained from our coaches
as well.

Secondly, in terms of the same procedure, we define the
similarity degree between the test state-sequence and 1-3-1
zone state-sequences as:

131 131 131
test

1

min([])
j i

m

z ij
i

Sim w D


 (22)

Thirdly, we define the similarity degree between the test
state-sequence and 1-2-2 zone state-sequences in the same
manner as:

122 122 122
test

1

min([])
j i

m

z ij
i

Sim w D


 (23)

Finally, the zone-defence formation pattern of the test
zone-defence video is defined as:

23 131 122
test test testargmax(, ,)testZ Sim Sim Sim (24)

In summary, the flow chart of basketball zone-defence
matching system can be shown as Fig. 3:

Fig.3. The flow chart of zone-defence matching system

As illustrated in Fig.3, in the first place, the test
state-sequence is transformed into the corresponding
graph-sequence, which is then matched with the graphs in
the standard zone graph database. The compositive
similarity degrees with each standard zone are then
obtained according to the graph-sequence that is the most
similar one compared with the test graph-sequence, which
in turn, provide matching results to confirm which
zone-defence formation does the test state-sequence belong
to.

4. Experimental results

We tested our system with both simulated zone-defence

data and real-life basketball zone-defence video data. For
each zone-defence formation, with simulated data, we
formulated 20 clips (state-sequences) provided by the
professional coaches. Also, we have collected the real
basketball zone-defence videos lasting about 1 hour,
including 112 clips containing 3 to 8 states. The detected
zone-defence video clips were manually decomposed into
state-sequences and then represented by corresponding
graphs. In addition, the normalization of the viewing angle
of the camera and object-extracting has not been addressed
in this paper. Table 2 shows the numbers of test clips and
states in detail:

Table 2. The number structure of test data

 zone total clips total states
 2-3 52 286

testZ

1-2-2
 zone

1-3-1
 zone

test
1G test

2G test
mG

 2-3
 zone

23
mSG 131

mSG
131
2SG

131
1SG

122
1SG

122
2SG

122
mSG

23
testSim 131

testSim
122
testSim

 test
graphs

 standard
 zone
 graphs

 the most
 similar
 graphs

 test
states

matching
 result

23
2SG

23
1SG

 similarity
 degrees

test
mS test

2S test
1S

APPEDIX A TEMPORAL PATTERN RECOGNITION IN VIDEO CLIPS DETECTION

156

real 1-3-1 31 221
1-2-2 29 169

simulated

2-3 20 145
1-3-1 20 161
1-2-2 20 128

Firstly, we give an example of the matching (global)

distances between a given test state-sequence and 3
standard zones. The second row are the corresponding
graphs of the test state-sequence with 3 states as shown in
the first row, where the rest rows are the most similar graph
compared with each test graph in 2-3, 1-3-1, and 1-2-2
zone-defence strategies, as appearing in the row order. It is
clear to see that the most similar zone-defence formation
compared with the test state-sequence is the 2-3
zone-defence pattern, which agrees with the matching result
from our algorithm.

test(1)

D=0.49797

D=2.04

D=1.1107

test(2)

D=0.087146

D=0.4005

D=0.955

test(3)

D=0.28318

D=0.50064

D=1.0579

Fig.4. An example of basketball zone-defence video
clip recognition

Table 3 below shows the matching precise for each
zone-defence pattern. It indicates that the matching
algorithm (SDD‘) proposed here, which takes into account
of both spatial distance and spatial direction relationships,
outperforms SD or SD‘ that only address spatial distance or
spatial direction relationships, respectively.

Table 3. Matching precise for each zone-defence pattern

test data zone
precision (%) average

precision SD SD‘ SDD‘

real

2-3 74.6 69.8 82.7 75.7
1-3-1 65.9 63.1 77.4 68.8
1-2-2 80.3 70.7 86.2 79.0

simulated

2-3 82 80 85 82.3
1-3-1 91 89 95 91.6
1-2-2 79 81 85 81.6

average precise: 78.8 75.6 85.2

5. Conclusions and future work

Based on a formal characterization of time-series and

state-sequences, we have introduced the computational
technique and algorithm for detecting zone-defence patterns
from basketball videos. The experimental results show that
it is useful in helping the coach of the defence side to check
whether the players play in a right zone-defence strategy, as
well as the coach of the offensive side to detect the strategy
of the opponent. Specially, we have extended the Laplacian
Matrix-based algorithm to take account of the effects from
zoom and single defender‘s translation in zone-defence
graph matching. As the future work, we shall take account
of the effects from rotation and expand the test dataset to
explore the relationships between sequences of basketball
zone-defence in order to obtain the best strategy. In addition,
we shall test the method in other team-work sport games
such as football, volleyball, and so on.

6. References

[1] Allen J. ―Towards a General Theory of Action and
Time‖, Artificial Intelligence, 23, 1984, pp:123-154.

[2] Allen J. F. and Hayes P. J. "Moments and Points in an
Interval-based Temporal-based Logic", Computational
Intelligence, 5(4), 1989, pp:225-238.

[3] Athitsos V, Papapetrou P, Potamias Ms, Kollios G, &
Gunopulos D. ―Approximate Embedding-Based
Subsequence Matching of Time Series‖, In
proceedings of the ACM International Conference on
Management of Data (SIGMOD) , Vancouver, BC, Jun
9-12, 2008, pp:365-378.

[4] Chakrabartir S. Data Mining: Know It All. Elsevier
Science Ltd. 2008.

[5] http://www.coachesclipboard.net.
[6] http://www.guidetocoachingbasketball.com.
[7] Liang D, Tong Q, Wang N, Bao W and Qu L. ―A

Laplacian Matrix Based Algorithm for Image
Matching‖, Computer Engineering and Applications,
2005, 41(36): pp:31-38.

[8] Li X, Han J. ―Mining Approximate Top-K Subspace
Anomalies in Multi-dimensional Time-series data‖, In
Proceedings of the 33rd international conference on
Very large data bases, Vienna, Austria, Sep 23-27,
2007, pp: 447-458.

[9] Ma J, Bie R, Zhao G. ―An ontological Characterization
of Time-series and State-sequences for Data Mining‖,

APPEDIX A TEMPORAL PATTERN RECOGNITION IN VIDEO CLIPS DETECTION

157

in Proceedings of the 5th International Conference on
Fuzzy Systems and Knowledge Discovery, Jinan
Shandong, Oct 18-20, 2008, pp:325-329.

[10] Ma J & Knight B. "A General Temporal Theory", The
Computer Journal, 37(2), 1994, pp:114-123.

[11] Moon Y, Whang K, & Han W. ―General match: a
subsequence matching method in time-series databases
based on generalized windows‖, In Proceedings of the
2002 ACM SIGMOD international conference on
Management of data, Madison, Wisconsin, Jun 3-6,
2002, pp:382-393.

[12] Shanahan M. ―A Circumscriptive Calculus of Events‖,
Artificial Intelligence, 77, 1995, pp:29-384.

[13] Yankov D, Keogh E, Medina J, Chiu B, & Zordan V.
―Detecting Time Series Motifs under ←niform Scaling‖.
In Proceedings of the 13th ACM SIGKDD
international conference on knowledge discovery and
data mining. San Jose, California, Aug 12-15, 2007, pp:
844-853.

APPENDIX B REASONING ABOUT UNCERTAIN AND INCOMPLETE TEMPORAL
KNOWLEDGE

158

Reasoning about Uncertain and Incomplete Temporal Knowledge

Jixin Ma1 Aihua Zheng1,2 Brian Knight1 Miltos Petridis1 Bin Luo2

1The University of Greenwich, Greenwich, London, SE10 9LS, United Kingdom
2Anhui University, People‟s Republic of China

{j.ma; a.zheng, b.knight; m.petridis}@gre.ac.uk luobin@ahu.edu.cn

Abstract

Absolute-time-stamping of temporal data provides an
efficient indexing method for temporal information
systems, but suffers from the requirement that precise
time values for all temporal data need to be available.
Temporal knowledge in many Artificial Intelligence
systems can be uncertain due to the unavailability of
complete and absolute temporal information. This paper
introduces an inferential framework for reasoning about
uncertain and incomplete temporal knowledge: the
uncertainty is formalised in terms of temporal relations
jointed by disjunctive connectives, while the
incompleteness is due to the lacking of full temporal
information. A graphical representation which allows
expression of such uncertain and incomplete temporal
knowledge is introduced, and based on which, the system
can deliver a verdict to the question if a given set of
statements is temporally consistent or not, and provide
understandable logical inferences by linear programming
and contradiction reasoning.

1. Introduction

The representation and manipulation of natural human
understanding of temporal phenomena is a fundamental
field of study in Computer Science, which aims both to
emulate human thinking, and to use the methods of
human intelligence to underpin engineering solutions. In
particular, many Artificial Intelligence systems need to
deal with the representation and reasoning about time in
modeling natural phenomena and intelligent human
activities. It has been noted that absolute-time-stamping
of temporal data provides an efficient indexing method
for temporal systems, but suffers from the requirement
that precise time values for all temporal data need to be
available. Generally speaking, in the domain of Artificial

This research is supported in part by National Nature Science
Foundation of China (No. 60772122)

Intelligence, temporal knowledge can be uncertain and
incomplete. For instances:
(a) Temporal references may be only relative (e.g.,

―during the time when the officer was in his office‖,
―after 9 o‘clock‖, etc., which refer to times that are
known only by their relative temporal relations to
other temporal reference), rather than being absolute
(e.g., ―8 pm on the 8th of August β008‖, ―the last
week of August β008‖, which refer to times with
absolute values);

(b) Temporal duration may be only relative (e.g., ―less
than 6 hours‖, ―more than 1β years but less than 15
years‖, etc., which refer to some uncertain amount of
temporal granularity), rather than being absolute
(e.g., ―γ1 minutes‖, ―18 hours‖, etc., which refer to
some certain amount of temporal granularity);

(c) We may only know event E1 occurred ―Before‖ event
E2 without knowing their precise starting and
finishing time, or what happened between E1 and E2.

Incomplete relative temporal knowledge such as these is
typically derived from humans, where complete and
absolute temporal information is rarely available and
remembered for knowledge representation and reasoning.
Allen‘s interval-based time theory [1] is a representative
example of temporal systems addressing relative temporal
relations including ―Meets‖, ―Met_by‖, ―Equal‖, ―Before‖,
―After‖, ―Overlaps‖, ―Overlapped_by‖, ―Starts‖,
―Starts_by‖, ―During‖, ―Contains‖, ―Finishes‖ and
―Finished_by‖. It has been claimed in the literature that
time intervals are more suited for expression of common
sense temporal knowledge, especially in the domain of
linguistics and artificial intelligence. In addition,
approaches like that of Allen [1,2] that treat intervals as
primitive temporal elements can successfully
overcome/bypass puzzles like the Dividing Instant Problem
[1,4,5,10,11], which is in fact an ancient historical puzzle
encountered when attempting to represent what happens at
the boundary point that divides two successive intervals.
However, as Galton shows in his critical examination of
Allen's interval logic [5], a theory of time based only on

APPENDIX B REASONING ABOUT UNCERTAIN AND INCOMPLETE TEMPORAL
KNOWLEDGE

159

intervals is not adequate for reasoning correctly about
continuous change. In fact, many common sense situations
suggest the need for including time points in the temporal
ontology as an entity different from intervals. For instance,
it is intuitive and convenient to say that instantaneous
events such as ―The database was updated at 00:00am‖ [6],
―The light was automatically switched on at 8:00pm‖ [1],
and so on, occur at time points rather than intervals (no
matter how small they are). Therefore, for general
treatments, it is appropriate to include both points and
intervals as primitives in the underlying time model, for
making temporal reference to instantaneous phenomena
with zero duration, and periodic phenomena which last for
some positive duration, respectively.

The objective of this paper is to present a framework to
assist representing and reasoning about uncertain and
incomplete knowledge. In section 2, a time theory based on
both points and intervals as the temporal primitive is
introduced. Section 3 presents a graphical representation for
uncertain and incomplete temporal knowledge. The
necessary and sufficient condition for the consistency of a
temporal reference is discussed in section 4. Finally, section
5 concludes the paper.

2. The time theory

In this paper, we shall simply adopt the general time

theory proposed in [8], which takes a nonempty set, T, of
primitive time elements, with an immediate predecessor
relation, Meets, over time elements, and a duration
assignment function, Dur, from time elements to
non-negative real numbers. If Dur(t) = 0, then t is called a
point; otherwise, that is Dur(t) >0, t is called an interval.
The basic set of axioms concerning the triad (T, Meets, Dur)
is given as below [8]:

T1. t1,t2,t3,t4(Meets(t1, t2)  Meets(t1, t3)  Meets(t4,
t2)

 Meets(t4, t3))
That is, if a time element meets two other time elements,

then any time element that meets one of these two must also
meets the other. This axiom is actually based on the
intuition that the ―place‖ where two time elements meet is
unique and closely associated with the time elements [3].

T2. tt1,t2(Meets(t1, t)  Meets(t, t2))
That is, each time element has at least one immediate

predecessor, as well as at least one immediate successor.
T3. t1,t2,t3,t4(Meets(t1, t2)  Meets(t3, t4)
 Meets(t1, t4)

 t'(Meets(t1, t')  Meets(t', t4))
 t''(Meets(t3, t'')  Meets(t'', t2)))

where  stands for ―exclusive or‖. That is, any two
meeting places are either identical or there is at least a time
element standing between the two meeting places if they are

not identical.
T4. t1,t2,t3,t4(Meets(t3, t1)  Meets(t1, t4)  Meets(t3,

t2)  Meets(t2, t4))  t1 = t2)
That is, the time element between any two meeting

places is unique.
N.B. For any two adjacent time elements, that is time

elements t1 and t2 such that Meets(t1, t2), we shall use t1  t2
to denote their ordered union. The existence of such an
ordered union of any two adjacent time elements is
guaranteed by axioms T2 and T3, while its uniqueness is
guaranteed by axiom T4.

T5. t1,t2(Meets(t1, t2)  Dur(t1) > 0  Dur(t2) > 0)
That is, time elements with zero duration cannot meet

each other.
T6. t1,t2(Meets(t1, t2)  Dur(t1  t2) = Dur(t1) +

Dur(t2))
That is, the ―ordered union‖ operation over time

elements is consistent with the conventional ―addition‖
operation over the duration assignment function, i.e., Dur.

Analogous to the 13 relations introduced by Allen for
intervals [1,2], there are 30 exclusive temporal relations
over time elements including both time points and time
intervals, which can be derived from the single Meets order
relation and classified into the following 4 groups:
 Relations relating an interval to an interval:

G0 =
{Equal, Before, After, Meets, Met_by, Overlaps,

Overlapped_by, Starts, Started_by, During, Contains,
Finishes, Finished_by}

 Relations relating a point to a point:
G1 =

{Equal, Before, After}
 Relations relating a point to an interval:

G2 =
{Before, After, Meets, Met_by, Starts, During,

Finishes}
 Relations relating an interval to a point:

G3 =
{Before, After, Meets, Met_by, Started_by,

Contains, Finished_by}
As emphasized in the introduction, in the domain of

Artificial Intelligence, temporal knowledge can be uncertain
and incomplete. First of all, for a given pair of time
elements t1 and t2, it may be unknown which of the 30
possible temporal relations as classified in section 2
certainly holds between t1 and t2. We shall formalize this
uncertain temporal knowledge in term of temporal relations
jointed by disjunctive connectives. In this paper, we shall
use a triad (T, R, D) to express the temporal reference of a
given collection of temporal propositions, where:

 T = {t1, …, tn} is a finite set of time elements,
expressing the knowledge (possibly
incomplete) of what time elements are

APPENDIX B REASONING ABOUT UNCERTAIN AND INCOMPLETE TEMPORAL
KNOWLEDGE

160

involved with respect to the given collection
of propositions;

 R = {R(ij)} | R(ij) = r(ij)1  …  r(ij)
m(ij), 1 ≤ i,

j ≤ n; i ≠ j} is a collection of disjunctions of
temporal relations over T, expressing the
knowledge (possibly incomplete) as how the
time elements in T are related to each other.
Here, r(ij)k is one of the possible temporal
relations as classified in section 2.

 D is a collection of duration assignments
(possibly incomplete) to time elements in T.

Generally speaking, if t1 and t2 are two time elements
(specially, time intervals), we know that precisely one of
the temporal predicates in G0 must apply for t1 and t2.
Hence for rG0:

 ¬r(t1, t2)  r1(t1, t2)  r2(t1, t2)  ...  r12(t1, t2)
where {r1, r2, ...,r12}  {r} = G0. Hence, to prove r(t1, t2),

we need to show that ri(t1, t2) is inconsistent for i = 1, …, 1β.
For instance, we may prove Before(t1, t2) by means of
showing that, when applying to t1 and t2, Equal, After,
Meets, Met_by, Overlaps, Overlapped_by, Starts,
Started_by, During, Contains, Finishes and Finished_by are
all inconsistent with the system. The task of checking the
consistency of temporal knowledge shall be deal with later
in the paper.

In addition, if it is known that t1 and t2 are two points,
then G0 can be deduced to G1, and in the case where it is
known that t1 is a point and t2 is an interval, then G0 can be
deduced to G2; similarly, if it is known that t1 is an interval
and t2 is a point, then G0 can be deduced to G3.

3. Graphical representations

A temporal reference (T, R, D) can be graphically

expressed in terms of a directed graph, in which each time
element of T is represented as a node, and the collection of
disjunctions of temporal relations relating time element ti and
time element tj is expressed as a directed arc from node ti to
node tj which is correspondingly labeled with R(ij)}, for some i
and j, where 1 ≤ i, j ≤ n; i ≠ j; the duration assignments of D
are denoted as bricked numbers correspondingly attached to
the nodes.

For instance, consider temporal reference (T, R, D),
where

T = {t 1, t2, t3, t4, t5, t6, t7, t8};
R = {Meets(t1,t2)Starts(t1,t2), Meets(t1,t3), Meets(t2, t5),

 Meets(t2,t6)Finishes(t2,t6),
 Meets(t3,t4)Overlaps(t3,t4),
 Meets(t4,t7), Meets(t5,t8),
 Meets(t6,t7)Starts(t6,t7)During(t6,t7),

 Meets(t7,t8)Overlaps(t7, t8)}
D = {Dur(t2)=1, Dur(t4)=0.5, Dur(t6)=0, Dur(t8)=0.3}
The graphical representation of temporal reference (T, R,

D) is shown in Figure 1:

Figure 1. Graph representation of (T, R, D)

For the convenience of expression, in this paper, if
R = {R(ij)} | R(ij) = r(ij)1  …  r(ij)

m(ij), 1 ≤ i, j ≤ n; i ≠ j}
we shall define:

|R| = ∏|R(ij) | = ∏m(ij), for all i, j appearing in R. That is,
|R(ij) | denote the number of temporal relations jointed in R(ij)
by disjunctive connectives.

Therefore, the graph of a given temporal reference can
be split up into |R| graphs with no disjunctions, each of
which expresses a possible case (T, Rk, D) with respect to
the temporal reference addressed, k = 1, …, |R|. For
example, the graph shown in Figure 1 can be split up into
48 (that is, 2x1x1x2x2x1x1x3x2) no-disjunction graphs.

In general, the temporal order relation between two time
elements can be any one of those 30 as classified in section 2.
However, as shown in [8], analogous to Allen and Hayes‘s
approach [3], all the temporal can be defined as derived
relations in terms of the single ―Meets‖ relation. In fact, such
definitions are straightforward. For example, ―Before‖ can be
defined as:

 Before(t1, t2)  t(Meets(t1, t)  Meets(t, t2))
Therefore, for any possible case of (T, R, D), that is, (T,

Rk, D) (k = 1, …, |R|), we can express Rk as a collection of
Meets relations only, denoted as Mk, and obtain the
corresponding triad (T, Mk, D) which has no disjunctions
involved. Figure 2 below presents the corresponding graph
representation of one of such no-disjunction and Meets-only
graphs.

Meets

t7

t5 t8

t4

Meets t2 t6
Meets

Meets

Meets

Meets

Meets t1 t3
Meets

(0.3)

(0)

 Meets

1)

(0.5)

(1)

Meets

t7

t5 t8

t4

Meets
v Finished_by

t2 t6
Meets v During

v Starts

Meets

Meets

Meets
v Overlaps

Meets t1 t3
Meets v Overlaps

(0.3)

(0)

Meets
v Starts

1)

(0.5)

(0
5)

APPENDIX B REASONING ABOUT UNCERTAIN AND INCOMPLETE TEMPORAL
KNOWLEDGE

161

Figure 2. A no-disjunction and Meets-only graph
4. Temporal consistency checking

For a given temporal reference (T, R, D), we say it is

temporal consistent if there is at least one of the corresponding
no-disjunction and Meets-only cases (T, M, D) is consistent.

4.1 Checking the temporal consistency

In order to develop the consistency checking mechanism

for a non-disjunction and Meets-only temporal reference (T,
M, D), we shall introduce a graphical representation of (T, M,
D) in terms of a directed and partially weighted graph [7]
transformed from the corresponding graph of (T, M, D) as
show in section 3. In such a graph, time elements are denoted
as arcs rather than nodes, and the single Meets relation
between time elements ti and tj is denoted by the node
structure where Meets(ti, tj) is represented by ti being an in-arc
and tj being out-arc to a common node, respectively. For time
elements with known duration, the corresponding arcs are
weighted by their durations respectively. For example, the
transformed graph of Figure 2 is shown as Figure 3:

t1 t2 (1)

t7 t3

t6 (0)

t5 t8 (0.3)

t4 (0.5)

Figure 3. Graph representation of (T, M, D)

The necessary and sufficient condition for the
consistency of a general temporal reference, (T, M, D), can
be given as below:
1) For each simple circuit in the graph of (T, M, D), the

directed sum of weights is zero;
2) For any two adjacent time elements, the directed sum

of weights is bigger than zero.
Here, condition 1) guarantees that there exists a valid

duration assignment function Dur to the time elements in T
agreeing upon D; and condition 2) ensures that no two time
points meet each other, that is between any two time points,
there is an interval standing between them [8].

The consistency checking for a temporal reference with
duration constraints involves searching for simple circuits,
and constructing a numerical constraint for each circuit. The
existence of a solution(s) to this set of constraints implies
the consistency of the system, and each solution gives a
possible case for the corresponding temporal scenario that
can subsume the addressed temporal reference. Hence, the
consistency checker for a random temporal reference is in

fact a linear programming problem.
In fact, in the graph presented in Figure 3, there are two

simple circuits as shown in Figure 4.

t2 (1)

t3

t4 (0.5)

t6 (0)

 t7 t6(0)

t5

Figure 4. The two simple circuits

Setting the directed sum of weights in each of these two
circuits as 0, we get 2 independent constraints:

Dur(t2) + Dur(t6) = Dur(t3) + Dur(t4)
Dur(t5) = Dur(t6) + Dur(t7)
We can easily find a solution, for instance: Dur(t3) = 0.5,

Dur(t5) = Dur(t7) = 1. Actually, the duration assignment to
t5 and t7 can be any positive real number, provided that
Dur(t5) = Dur(t7).

In some special cases where only relative temporal
knowledge are addressed, that is there is no duration
constraint involved, temporal reference (T, M, D) is
reduced to a pair (T, M) and the consistency checking can
be reformulated in a simpler form. In fact, (T, M) is
consistent if and only if:
1)' There are no nodes with at least one point in-arc and

at least one point out-arc;
2)' The associated reduced graph is acyclic, where the

associated reduced graph is formed by means of
removing every point arc in the graph of (T, D), and
merging any two nodes connected by the point arc.

Here, again, condition 1)' preserves that no two time
points meet each other, while condition 2)' preserves that
time points are not decomposable, and excludes any circular
time structure.

For example, consider a relative temporal reference (T,
M), where

T = {t 1, t2, t3, t4, t5, t6}
M = {Meets(t1, t2), Meets(t1, t3), Meets(t2, t6),

 Meets(t3, t4), Meets(t4, t5), Meets(t5, t6)}
The graphical representation of temporal reference (T,

M) is shown in Figure5:

t1 t2 t6

t4

t3
t5

Figure 5. Graph representation of (T, M)

APPENDIX B REASONING ABOUT UNCERTAIN AND INCOMPLETE TEMPORAL
KNOWLEDGE

162

If t2 is not known to be a time point, then the
corresponding graph shown in Figure 5 is acyclic, and
hence the temporal reference is consistent.

However, if t2 is stated to be a point, then the graph in
Figure 5 is reduced to the graph as shown in Figure 6.

t1 t6

t5
t3

t4

Figure 6. The reduced graph

In the reduced graph in Figure 6, there is a cycle, i.e., t3
-> t4 -> t5 -> t3. Therefore the temporal reference is
inconsistent.

Now, further investigations are needed to deduce logical
inferences from both temporal consistent cases and
temporal inconsistent cases.

4.2 Deducing Inferences in consistent cases

As mentioned in section 4.1, the consistency checking

for a general temporal reference is in fact a linear
programming problem, where each solution to the linear
programming problem gives a possible case for the
corresponding temporal scenario that can subsume the
addressed temporal reference. In the case where the
temporal reference is consistent, there exists at least one
solution to the linear programming problem. Of course, if
the solution(s) is unique, we can use this solution construct
the corresponding complete temporal reference which is
also unique.

However, in general cases where a verdict that the
temporal reference is consistent has been reached, there
may be more than one, or even an infinite number of
solutions to the corresponding linear programming. This
may be due to various forms of incompleteness of the
corresponding temporal reference, e.g., some referencing
time elements may be missing, the duration of some time
elements may be unknown, and so on. Therefore, we can
only construct the possible complete scenarios which can
subsume the addressed temporal reference.

In this case, we can at least find the minimal model(s)
among these complete scenarios by means of defining and
calculating the similarity degree between the complete
temporal references and the original partial temporal
reference.

Since each temporal reference can be expressed as a
directed and partially weighted graph, the problem of
matching temporal references can be transformed into
conventional graph matching.

4.3 Deducing inferences in inconsistent cases

In the case where a verdict that the temporal reference is

inconsistent has been reached, we can simply analyse and
identify the linear equations which make the corresponding
linear programming unsolvable, which, in turn, will identify
which part(s) of the temporal reference actually leads to the
inconsistency.

4.4 An illustrating example

In As an example, consider the situation where two

persons, Peter and Jack, are suspected of committing a
murder during the daytime. In court, Jack and Peter gave
the following statements, respectively:
 Peter‘s statements:

I got home with Jack before 1pm. We had our lunch,
and when Jack left I put on a video. The video lasts 2 hours.
Before it finished, Robert arrived. When the video finished
we went to the train station and waited until Jack came at 4
pm.
 Jack‘s statements:

Peter and me went to his home and arrived there before
1pm. When we finished our lunch there, Peter put on a
video, and I left and went to the supermarket. I stayed there
for between 1 and 2 hours. Then I drove to my home to
collect some mail. It takes between 1.5 to 2 hours to reach
my home, and about the same to the train station. I arrived
at the train station at 4 pm.
 In addition, being a witness, Robert made these

statements:
I left home at β pm and went to Peter‘s house. He was

playing a video, and we waited till it finished. Then we
went together to the train station and waited for Jack. Jack
got to the train station at 4pm.

The temporal reference of the above temporal
information involves the following time elements:
 i1: the time (interval) over which Peter and Jack went

to Peter‘s home;
 1pm: the time (point) before which they arrived at

Peter‘s home;
 i2: the time (interval) over which Peter and Jack had

lunch;
 i3: the time (interval) over which Peter played the

video (Dur(i3) = 2);
 i4: the time (interval) over which Jack went to the

supermarket;

APPENDIX B REASONING ABOUT UNCERTAIN AND INCOMPLETE TEMPORAL
KNOWLEDGE

163

 p1: the time (point) when Robert arrived at Peter‘s
house;

 i5: the time (interval) over which Peter and Robert
went to the train station;

 i6: the time (interval) over which Peter and Robert
waited for Jack at the train station;

 4pm: the time (point) when Jack arrived at the train
station;

 i7: the time (interval) over which Jack stayed in the
supermarket (1<Dur(i7)< 2);

 i8: the time (interval) over which Jack drove to his
home (1.5<Dur(i8)< 2);

 i9: the time (interval) over which Jack collected some
post from his home;

 i10: the time (interval) over which Jack drove to the
train station (1.5<Dur(i10)<2);

 2pm:the time (point) when Robert left home;
 i11: the time (interval) over which Robert went to

Peter's house;
 i12: the time (interval) over which Peter and Robert

watched the video together;
 i13, i14, ..., i27: some extra relative time elements

which are used for expressing the correspondingly
relative duration knowledge, e.g., with i19, i20, i21, i22,
and Dur(i19) = 1.5 and Dur(i21) = 2, we can express
that 1.5 < Dur(i8) < 2 (Picture 3)

The graphical representation of the corresponding
temporal reference for the above legal statements can be
shown as Figure 7 as below:

Figure 7. (T, M, D) of the legal statements

From Figure 7, we see that there are three time elements
(i.e., two intervals, i11 and i12, and one points, p1) standing
between 2pm and 4pm. Since each interval has a positive
duration and each point has a non-negative duration, we can
infer that:

Dur(i5) + Dur(i6) < 2
In addition, since Dur(i3) = 2, hence

Dur(i3) + Dur(i5) + Dur(i6) < 2 + 2 = 4
However,

Dur(i4) + Dur(i7) + Dur(i8) + Dur(i9) + Dur(i10)
> 0 + 1 + 1.5 + 0 + 1.5 = 4

Therefore, for the simple circuit, i.e., i3, i5, i6, i10, i9, i8, i7,
i4, as shown below in Figure 8, there does not exist any
duration assignment over T such that

 Dur(i3) + Dur(i5) + Dur(i6)
= Dur(i4) + Dur(i7) + Dur(i8) + Dur(i9) + Dur(i10)

In other words, there is no solution to the following
linear equation:

Dur(i3) + Dur(i5) + Dur(i6)  Dur(i4)  Dur(i7) 
Dur(i8)  Dur(i9)  Dur(i10) = 0

Figure 8. A simple circuit in the legal statements

Hence, the temporal reference shown in Figure 7 is
inconsistent, and therefore we can directly confirm that
some statements are untrue.

Suppose the video can be checked that it did actually
last for two hours, we can confirm that there must be some
falsity in either Robert's or Jack's statements. If it can be
proved that Robert did leave home at 2 pm, then Jack must
have lied in making his statements. Otherwise, to convince
the jury that his statements are true, Jack must prove that
Robert left home at some time before β o‘clock in the
afternoon.

5. Conclusions

In this paper, we introduced an inferential framework

for temporal representation and temporal reasoning. It
allows expression of both absolute and relative temporal
knowledge, and provides graphical representation of
temporal references in terms of directed and partially
weighted/labelled graphs. Based on the temporal reference
of a given scenario with partial temporal information, the
framework can check if it is temporally consistent or
inconsistent, and derive the corresponding logical
inferences. The benefit of this approach is that the
inferential framework has powerful analytic abilities, and
its analysis is amenable to human scrutiny.

APPENDIX B REASONING ABOUT UNCERTAIN AND INCOMPLETE TEMPORAL
KNOWLEDGE

164

6. References

[1] Allen, J.: Maintaining knowledge about temporal intervals,
Communications of the ACM, 26 (11), 832-843, (1983).

[2] Allen, J.: Towards a General Theory of Action and Time,
Artificial Intelligence, 23, 123-154 (1984).

[3] Allen, J., Hayes, P.: Moments and Points in an
Interval-based Temporal-based Logic, Computational
Intelligence, 5, 225-238 (1989).

[4] van Benthem, J.: The Logic of Time, Kluwer Academic,
Dordrech (1983).

[5] Galton, A.: Critical Examination of Allen's Theory of
Action and Time, Artificial Intelligence, 42, 159-188
(1990).

[6] Jensen, J., Clifford, J., Gadia, S., Segev, A., Snodgrass, R.:
A Glossary of Temporal Database Concepts, SIGMOD
RECORD, 21(3), 35-43 (1992).

[7] Knight, B., Ma, J.: A General Temporal Model Supporting
Duration Reasoning, Artificial Intelligence Communication,
5(2), 75-84 (1992).

[8] Ma, J., Knight, B.: A General Temporal Theory, the
Computer Journal, 37(2), 114-123 (1994).

[9] Ma, J., Knight, B.: A Reified Temporal Logic, the
Computer Journal, 39(9), 800-807 (1996).

[10] Ma, J., Knight, B.: Representing The Dividing Instant, the
Computer Journal, 46(2), 213-222 (2003).

[11] Vila, L.: A Survey on Temporal Reasoning in Artificial
Intelligence, AI Communication, 7(1), 4-28 (1994).

APPENDIX C STRUCTURE BASED FEATURE EXTRACTION IN
BASKETBALL ZONE-DEFENCE STRATEGIES

165

STRUCTURE BASED FEATURE EXTRACTION IN BASKETBALL
ZONE-DEFENCE STRATEGIES9

AIHUA ZHENG1,2
JIXIN MA 1

MILTOS PETRIDIS1
JIN TANG2
BIN LUO2

1School of Computing and Mathematical Sciences,
 the University of Greenwich, Old Royal Naval College, Park Row,

London, SE10 9TZ, United Kingdom

2The Key Laboratory of Intelligent Computing & Signal Processing, Ministry of Education,
 Anhui University, No.3 Feixi Road,
Hefei, People‟s Republic of China

{a.zheng, j.ma, m.petridis}@gre.ac.uk, ahhftang@gmail.com, luobin@ahu.edu.cn

This paper proposes a framework for structure-based feature extraction in basketball zone-defence
strategies. Firstly, a graphical representation for key-frames extracted from zone-defence video clips
is introduced, where each key-frame is expressed in terms of a zone-defence graph, representing the
positions of defenders and the ball. Secondly, defence-lines are defined and extracted from
zone-defence graphs for each zone-defence strategy, based on which, a 10-dimentional feature vector
with respect to the defence-lines is introduced to characterize the structure relationships. Experiments
have been conducted for basketball zone-defence strategy detection on both simulated and real-life
basketball zone-defence video database, which demonstrate the validation and practicability of such a
structure based feature characterization, and, in particular, its robustness with respect to the
disturbance of local transformation of subprime nodes in the graphs.

Keywords: Feature extraction; Graphical representation; Structure relationship; Video clip detection;
Basketball zone-defence.

1. Introduction

Video detection is one of the hottest research topics in Content-based Video Retrieval and
attracted more and more attentions. [Qi et al. 2007] proposed optimized multi-graph-based
semi-supervised learning (OMG-SSL) algorithm in a regularization and optimization
framework. A temporal reasoning method was proposed for events annotation in news video
in [Marco et al. 2008]. As a popular worldwide media, sport video has become an
increasingly important and active research area in video/image processing and pattern
recognition including feature extraction, shot segmentation, event or highlight detection, and
semantic annotation and so on. [Gong et al. 1995] presented an automatic system for parsing
TV soccer program by domain knowledge, feature analysis and model matching techniques.
[Babaguchi et al. 1999] Proposed an event based video indexing for football games achieved
by the idea of intermodal collaboration which takes into account of the semantic dependency

9 This research is supported in part by National Nature Science Foundation of China (No. 60772122).

mailto:m.petridis
mailto:luobin@ahu.edu.cn

APPENDIX C STRUCTURE BASED FEATURE EXTRACTION IN
BASKETBALL ZONE-DEFENCE STRATEGIES

166

between multimodal information streams including visual, auditory and text. [Chang et al.
1996] extracted the information in soccer video by an integrate speech understanding and
image analysis algorithms. [Rui et al. 2000] presented a highlights extraction approach for
baseball games on set-top devices in noisy environment. [Xu et al. 2001] proposed a
grass-area-ratio based algorithm for soccer video segmentation. [Pan et al. 2001] proposed
an automatic event detection and sports program summarization method based on detecting
slow motion replay segments. [Efros et al. 2003] proposed a new motion descriptor to
recognize human actions at a distance in soccer based on smoothed and aggregated optical
flow measurements over a spatio-temporal volume centred on a moving figure. [Luo et al.
2003] presented object-based analysis and interpretation for baseball video based on
automatic video object extraction, video object abstraction, and semantic event modelling.
[Urtasun et al. 2005] presented a novel motion tracking approach in golf. [Bagdanov et al.
2007] proposed the multimedia ontology for soccer video detection.

A number of approaches have been proposed for basketball video analysis, including
shot classification, scene recognition and event detection. [Tan et al. 2000] presented a
camera motion based annotation and classification tool using the low-level information
available directly from MPEG compressed basketball videos. [Nepal et al. 2001] proposed a
goal detecting method in basketball videos by combining feature extraction techniques with domain
specific knowledge. [Zhou et al. 2000] proposed a supervised rule based basketball video
classification system after investigating the use of video content analysis and feature extraction
and clustering. [Kim et al. 2002] proposed a semantic information extracting mechanism
for basketball video sequence using audio and video features. [Xu et al. 2004] proposed an
audio keywords generating approach for basketball video based on low-level audio
features and applied audio keywords together with heuristic rules to event detection. [Kim
et al. 2005] presented a summarization method for basketball videos. [Perse et al. 2009]
proposed trajectory-based approach to the automatic recognition of complex multi-player
behavior in a basketball game.

However, few of them focused on zone-defence detection, which is essential and
crucial in basketball games. On one hand, the defensive coach needs to layout the
zone-defence strategy and check whether the team is playing in the right strategy or not all
the time; on the other hand, the offensive coach also needs to know which zone-defence
strategy the defenders are adopting.

Zone-defence is a common strategy adopted in basketball games. It is different from
man-to-man defence in that, instead of guarding a particular player, each zone defender is
responsible for guarding an area on the court (or "zone") and any offensive player that
comes into that area. Zone defenders move their position on the court according to where
the ball moves. Zone-defence can disrupt the opponent‘s offensive plan by means of
protecting the paint area and forcing the opponent to shoot from outside. In addition,
changing defences from man-to-man to various can make the offense off-balance and
confused.

In particular, feature extraction is one of the most significant tasks plays a basic and
essential role in Zone-defence detection. The original approach is the common features such
as color, texture and shape. It‘s noted that they are not competent due to the distinct structure
character in zone-defence strategies. Graphic representation has been investigated for
zone-defence detection. Graph matching (GM) algorithms and their improved variants have
been well applied to match graph patterns [Zheng et al. 2009 and Ma et al. 2007]. However,
the efficiency and accuracy of most graph matching algorithms depend very much on the
tested graphs constructed according to the expectation or artificial criteria, rather than
real-life applications [Zheng et al. 2009], which in turn means most graph matching
algorithms are sensitive to the outliers or local bias such as the translation of subprime notes

APPENDIX C STRUCTURE BASED FEATURE EXTRACTION IN
BASKETBALL ZONE-DEFENCE STRATEGIES

167

in the graph. [Chin et al. 2005] proposed a Spatial-Relationship (SR) based approach to
describe the position relationship between defenders. However, it relies on the accuracy of
identification of each defender, which is hardly achievable.

Generally speaking, the defence-lines and the structure relationship between
defence-lines play a crucial role in team sports, such as basketball, football, volleyball and
so on. Therefore, analysing the structure relationship between defence-lines plays an
important role in basketball zone-defence strategy detection. Therefore, in this paper, a
structure-based feature descriptor in terms of a 10-dimentional feature vector is proposed
for zone-defence strategy. The basic idea is to describe the distinct structure relationship
between defence-lines based on the graphical representation of key-frames.

In what follows in this paper, the graphical representation of key-frames in basketball
zone-defence videos is introduced in section 2. Section 3 elaborates the structure-based
feature extraction in basketball zone-defence graphs and the corresponding algorithms.
Based on the extracted structure features, section 4 designs the actual algorithm for the
overall basketball zone-defence detection system. Experimental results are provided,
analyzed and evaluated in section 5, demonstrating the good performance of proposed
feature descriptor. Finally, section 6 provides a brief summary and concludes the paper.

2. Graphical Representation in Basketball Zone-defence Video

Videos can be organized at different levels for various research purposes. In this paper,
basketball videos are organised in terms of clips. Each clip represents a certain round of
offense (or defence) and is denoted as a list of images, or the so-called key-frames
sequence̟I = [I1, …, In], which consists of the key-frames extracted one per 2 seconds from
the clip. We premise that:

(1) The defenders have adjusted to their best defensive positions at the moment when
the ball is just to be passed or dribbled;

(2) As the zone-defence strategy is to defence the offensive opponent to attack into
interior playfield, we only consider the key-frames when the ball is in the midfield, the
wing and the corner as key-frames.

The metric position detection of defenders and the ball is implemented similarly as in
[Assfalg et al. 2003]: The ball‘s position, which is either in the midfield, in the wing, or in
the corner, is obtained from its motion described in terms of camera motion, which in turn,
is captured by image motion estimation algorithm [Baldi et al. 1999]. As for defenders
position, in the first place, the defend side and offensive side are distinguished by the
colour difference of sportswear; template matching and projective transformation are then
implemented to determine the metric position of defenders [Assfalg et al. 2003].

 Each key-frame Ii (i = 1, …, n) can be described by its corresponding six-note graph Gi
structured by the 5 defenders‘ position (horizontal and vertical coordinates) plus the ball‘s
position. Following the conventional notations in graph theory, we represent a
zone-defence graph as G = <V, E>, where V and E denote the set of the notes (defenders‘
position) and the set of edges respectively, and E  V×V. In particular, here, |V| = 6.
Assuming V = {Vb, V1, V2, V3, V4, V5} has been ascending ordered by the Euclidean
distance to the ball (Vb).

Zone-defence can be divided into various strategies, including 2-3, 1-3-1, 1-2-2, 3-2,
2-2-1, 2-1-2 and 1-2-1-1 zone-defence strategies, where the first three strategies, which
have been noted as the most typical ones employed in actual basketball games, are focused
in our paper.

APPENDIX C STRUCTURE BASED FEATURE EXTRACTION IN
BASKETBALL ZONE-DEFENCE STRATEGIES

168

A standard zone-defence graph database of these 3 typical zone-defence strategies (2-3,
1-3-1 and 1-2-2 zone-defence) is constructed and populated with graph data corresponding
to some of the pictures illustrated on two basketball coaching web sides. For instance, a
typical round of 2-3 zone-defence can be expressed as Fig. 1 where 5 squares and the circle
denote the 5 defenders and the ball respectively.

 (a) seting up (b) ball on the wing (c) trapping the corner

 (d) denying pass from corner to wing (e) defending high post (f) ball reversal, opposite post out

Fig.1 A typical round of 2-3 zone-defence strategy

Table 1. The number of standard zone-defence graphs

 Zone-defence
Ball’s position

2-3 1-3-1 1-2-2

Midfield 4 3 2
Wing 4 12 7

Corner 6 6 2
Totally 14 21 11

Table 1 below shows the detailed number of zone-defence graphs we have currently

collected as standard zone-defence graphs for each strategy in different ball‘s position.
Analogously, only the three typical zone-defence strategies and only the key-frames when
the ball is in the midfield, the wing and the corner are considered.

Fig.2 shows the flow chart of basketball zone-defence detection system. For each test
zone-defence video clip, it is decomposed into a sequence of key-frames. Each key-frame
is represented by a zone-defence graph as mentioned above and matched with the graphs in
the standard zone graph database. The global distance with each standard zone are then
obtained according to the graph-sequence that is the most similar one (has the smallest
distance) to the test graph-sequence, which in turn, provide matching results to confirm
which zone-defence strategy does the test key-frame sequence belong to.

It is worth pointing out that, in the framework presented in this paper, zone-defence
key-frames are transferred into zone-defence graphs by means of graphical representation.
However, instead of using conventional graph matching algorithms, a structure-based

APPENDIX C STRUCTURE BASED FEATURE EXTRACTION IN
BASKETBALL ZONE-DEFENCE STRATEGIES

169

feature extraction algorithm, which will be discussed in detail in next section, is proposed
to measure the similarity between zone-defence graphs.

Fig.2 The flow chart of basketball zone-defence detection system

3. Structure-based Feature Extraction in Basketball Zone-defence Strategies

Different zone-defence strategy has different number and type of defence-lines in
basketball, For instance, there are two defence-lines in 2-3 zone-defence strategy.
Generally, we define that the 2 defenders in the front line construct the first defence-line
and the rest 3 defenders construct the second defence-line. In addition, different
zone-defence strategy, as what it‘s named, has its own typical defence-line. For instance,
the typical defence-line of 2-3 zone defence strategy is the second defence-line. We shall
define the structure-based features to describe the structure relationship between
defence-lines. The angle formed by the typical defence-line in each zone-defence strategy
is named corresponding character-angle, the definition of which is crucial to the extraction
of the other structure features.

3.1. Structure-based Features in 2-3 Zone-defence Strategy

In standard 2-3 zone-defence strategy, normally, we define that the 2 defenders closest
to the ball construct the first defence-line; and the rest 3 defenders construct the second
defence-line which is defined as the 2-3 character line. The angle formed from the 2-3
character line is defined as ―2-3 character-angle‖ and denoted by shorthand writing as
CA23. There are two folds regarding the definition of CA23:

1
testI

test
mI

2
testI

key
frames

1
testG

2
testG

test
mG

test
graphs

2-3
zone

1-3-1
zone

1-2-2
zone

zone graph
database

23
mD

 23
1D

the most
similar graphs

23
testGD

131
testGD

122
testGD

global
distance

 Ztest

detecting
result

131
mD

 131
1D

122
mD

 122
1D

APPENDIX C STRUCTURE BASED FEATURE EXTRACTION IN
BASKETBALL ZONE-DEFENCE STRATEGIES

170

 (a) a counterexample (b) another counterexample (c) a general example

Fig.3 Zone graph examples in 2-3 zone-defence

(1) Which 3 notes construct CA23?
Normally, CA23 is composed of the 3 defenders farthest from the ball. However, in

some zone graphs, CA23 may not exactly be constructed by the 3 defenders farthest from
the ball by common sense from human understanding of zone-defence strategies. For
instance, in Fig.3 (a), assume that V = {Vb, V1, V2, V3, V4, V5} has been ascending ordered
by the distance to the ball (Vb) and V3 and V2 have an approximately same distance to the
ball. Obviously, the CA23 should be constructed by V2, V4 and V5, which is more
reasonable according to common sense than that constructed by the farthest 3 notes (V3, V4
and V5).

 In other word, if the difference between the distances from the third and forth farthest
notes to the ball is smaller than a given threshold, then the one forming a larger angle with
the segment constructed by the farthest two notes will be taken to form the character line.
The algorithm is described as following:

 If
2 3 2 4 5 3 4 5()&((,) (,))b bVV VV V VV V VV   

23 2 4 5{ , , }CN V V V

Else

23 3 4 5{ , , }CN V V V

End.

where =0.05 (the distance of diagonal of half-court is normalized to 1), CN23 denotes
the set of notes constructing CA23 and (,)X YZ represents the angle between note X and

segment YZ which is defined as:

,
(,)

, else

XYZ XY XZ
X YZ

XZY

   


 (1)

(2) Which one is the vertex of CA23?
For the reason of simple description, without losing the generality, we assume CN23 =

{V 3, V4, V5}, as shown in Fig.3(b) and arrange {V3, V4, V5} into {V l, Vv, Vr} in clockwise
order with respect to the ball, where l, v, r {3, 4, 5}. In general, node Vv is then taken as
the vertex of CA23 while Vl, Vr are the end-points of CA23. However, if Angle<Vv, Vb, Vl>
(or Angle<Vv, Vb, Vr>) is smaller than a given threshold, and |VlVb|<|VvVb| (or
|VrVb|<|VvVb|) then Vl (or Vr) will be re-taken as the vertex of CA23. For instance, in Fig.2,
CN23 = {V 3, V4, V5}. Assume that V4, V5 and V3 are in the clockwise order with respect to
the ball. V3 should be defined to be the vertex of CA23, which is more reasonable than
regarding V5 as the vertex of CA23. The algorithm is described as following:

APPENDIX C STRUCTURE BASED FEATURE EXTRACTION IN
BASKETBALL ZONE-DEFENCE STRATEGIES

171

If ()&()l b v l b v bVVV VV VV  

23 v l rCA VVV

 Else
 If ()&()r b v r b v bVVV VV VV  

23 v r lCA VVV

 Else

23 l v rCA VVV

End
End

where = /12  and we appoint CA23 as the obtuse angle if its vertex is biased towards
the ball compared with its two end points.

The first 4 structure features with respect to CA23 are correspondingly defined as below

(As for a general example illustrated in Fig.3(c), 1 2VV is the first defence-line and V3, V4,

V5 construct the second defence-line, and V6, V7 are the midpoints of

3 5VV , 1 2VV respectively):

I.
23 3 4 5CA VVV : Character-Angle of 2-3 zone-defence.

As explained earlier, this angle characterises the defenders‘ positions on the
character line of 2-3 zone-defence.

II. 23 7 6 3 5(,)FSA VV VV : Angle formed by the first and the second defence-lines.

where (,)XY ZW denotes the angle formed by segmentXY and segmentZW that is

no bigger than ʌ/β. It characterises the structure relationship between the first and the
second defence-lines.

III. 23 4 6 3 5(,)BCA VV VV : the bias of the CA23.

which is an angle presents the bias of the vertex on second defence-lines of 2-3
zone-defence.
IV.

23 1 2 3 5 1 2 3 5()RFSA VV VV VV VV ˅ ˄ ˈ : restricted FSA23.

which denotes the restricted angle of the first and the second defence-lines of 2-3

zone-defence. The shorter of1 2VV comparing with 3 5VV , the angle of segment1 2VV and

segment 3 5VV has less effect to zone graphs. So it‘s reasonable to take into account a

coefficient to the angle.

3.2. Structure-based Features in 1-3-1 Zone-defence Strategy

In 1-3-1 zone-defence, the defender nearest to the ball constructs the first defence-line.
The second defence-line is constructed by 3 defenders, presenting the basic character of
1-3-1 zone-defence, which is defined as the 1-3-1 character line. The angle formed from
the 1-3-1 character line is defined as ―1-3-1 character-angle‖ and denoted as CA131. The
key point here is to define the vertex and two end points of CA131.

APPENDIX C STRUCTURE BASED FEATURE EXTRACTION IN
BASKETBALL ZONE-DEFENCE STRATEGIES

172

 (a) CA23 < ʌ (b) CA23 > ʌ case 1 (c) CA23 > ʌ case 2

Fig.4 Zone graph examples in 1-3-1 zone-defence

Based on CA23 as what we have extracted, there are two cases to define CA131: (Here,
we also use V1, V2, V3, V4 and V5 to denote the 5 defenders, and assume V1 is the nearest
defender to the ball,

23 3 5 4CA VVV in Fig.4(a) and
23 4 3 5CA VVV in Fig.4(b) and (c)). If

the corresponding CA23 is smaller than ʌ (as shown in Fig.4(a)), then CA131 has the same
two end-points (V3 and V5) as that of CA23, and the vertex of CA131 is the node (V2) from
the rest 3 which is neither the closest to the ball nor the vertex of CA23; otherwise (as
shown in Fig.4(b) and (c)), CA131 will have the same vertex as that of CA23, and the node
which is neither on the 2-3 character line and nor the closest to the ball will be taken as
one of the two end-points of CA131 where the other end-point is one of the two end-points
of CA23 which will ensure that CA131 divides the rest two nodes sit on each side of the
1-3-1 character line, respectively.

The detection algorithm is expounded below:

If
23 3 5 4CA VVV  

131 3 2 4CA VVV

Else
23 4 3 5CA VVV  

 case 1:
1 2 3 4()V area VVV

131 2 3 4CA VVV

 case 2:
1 2 3 5()V area VVV

1 3 1 2 3C A V V V

 End
 End

Where,

2 3 4()area VVV ,
2 3 5()area VVV and

4 3 5()area VVV denote 3 plane areas divided by the

beam
3 2VV ,

3 4VV and
3 5VV . Obviously,

1V cannot belong to
4 3 5()area VVV .

The next 3 features with respect to CA131 are defined below (As for a general example

illustrated in Fig.4(a) and assume V6 is the midpoint of segment3 4VV):

V.
131 3 2 4CA VVV : Character-Angle of 1-3-1 zone-defence.

which characterises the defenders‘ positions on the character line of 1-3-1
zone-defence analogously.

VI. 131 1 6 3 4(,)FSA VV VV : Angle formed by the first and the second defence-lines.

which characterises the structure relationship between the first and the second

APPENDIX C STRUCTURE BASED FEATURE EXTRACTION IN
BASKETBALL ZONE-DEFENCE STRATEGIES

173

defence-lines of 1-3-1 zone-defence.

VII. 131 5 6 3 4(,)STA VV VV : Angle formed by the second and the third defence-lines.

which characterises the structure relationship between the second and the third
defence-lines of 1-3-1 zone-defence.

3.3. Structure-based Features in 1-2-2 Zone-defence Strategy

In 1-2-2 zone-defence, the defender closest to the ball forms the first defence-line. As
the examples shown in Fig.5, assume that V1 is the closest defender;

4 2 3VVV is the CA131.

If
4 2 3VVV is equal or larger than ʌ (Fig.5(a) and (b)), the vertex of CA131 and the nearer one

to the first defence-line of the two end-points of CA131 construct the second defence-line;
the rest two defenders construct the third defence-line. Otherwise (Fig.5(c)), the two
end-points of CA131 construct the second defence-line and the rest two defenders construct
the third defence-line. The first and the second defence-lines present the basic character of
1-2-2 zone-defence, which define the 1-2-2 character line. The angle formed from the 1-2-2
character line is defined as ―1-2-2 character-angle‖ and denoted as CA122.

(a) CA131 ≥ ʌ case 1 (b) CA131 ≥ ʌ case 2 (c) CA131 < ʌ

Fig.5 Zone graph examples in 1-2-2 zone-defence

The algorithm is described as following (CA122, SDL122 and TDL122 denote the
Character Angle, the second defence-line and the third defence-line of 1-2-2 zone-defence,
respectively):

If
4 2 3VVV  

 case 1: 1 3 1 4VV VV

122 2 1 3CA VVV , 122 2 3SDL VV , 122 4 5TDL VV

 case 2: 1 3 1 4VV VV

122 2 1 4CA VVV , 122 2 4SDL VV , 122 3 5TDL VV

 End
 Else

122 3 1 4CA VVV , 122 3 4SDL VV , 122 2 5TDL VV

 End

APPENDIX C STRUCTURE BASED FEATURE EXTRACTION IN
BASKETBALL ZONE-DEFENCE STRATEGIES

174

The last 3 features with respect to CA122 are defined as below (assume

that
122 2 1 3CA VVV , 122 2 3SDL VV and 122 4 5TDL VV , V6 and V7 are the midpoints of

segment 4 5VV and segment2 3VV respectively as shown in Fig. 5(a)):

VIII. 122 1 2 1 3 1 2 1 3 2 1 3(min(,) max(,))RCA VV VV VV VV VVV  .

Here, we add a coefficient to take into account the effect from the movement of node
V1 along the circle formed from V1, V2 and V3.
IX.

122 2 3 4 5 2 3 4 5() (,)RSTA VV VV VV VV  .

It‘s with respect to the restricted angle of segment 2 3VV and segment4 5VV and reflects

the structure relationship between the second and the third defence-lines of 1-2-2
zone-defence.

X. 122 6 7 2 3(,)BST VV VV .

which reflects the bias between the second and the third defence-lines of 1-2-2
zone-defence.

The feature vector is constructed by the above 10 features with respect to those 3
typical zone-defence strategies:

f = {CA 23, FSA23, BCA23, RFSA23, CA131, FSA131, STA131, RCA122, RSTA122, BST122}
The feature vector is not only listed by the 10 components one by one, but also has

internal relationships. The features of one typical zone-defence also reflect the structures
relationship in other typical zone-defences.

4. Video Detection System of Basketball Zone-defence Strategy

According to the structure-based features extracted above, the test basketball
zone-defence video clip with n key-frames (that is, n zone-defence graphs) can be
represented by a 10n feature matrix

1 2{ , ,..., }'clip nF f f f and a ball‘s position vector

1 2{ , ,..., }clip nball ball ball ball , where
1 2 10{ , ,..., }i i i if f f f and

iball denotes the feature

vector and the ball‘s position of the ith key-frame of the detected clip respectively.
Analogously, the 3 standard zone-defence databases are represented by 3 corresponding
feature matrices with their ball‘s position vectors respectively. For instance, the standard
2-3 zone-defence database is represented by 23 23 23

23 1 2 14{ , ,..., }'F f f f and
23 23 23

23 1 2 14{ , ,..., }ball ball ball ball .

Firstly, compute the similarity between test clip and standard 2-3 zone-defence
strategy.

Step 1: For each
i clipf F , compute the Euclidean Distance(which has been

experimented that performs better than other two famous distances Mahalanobis
distance and Manhattan distance in our case) between

if and each feature vector with

the same ball position as
if in standard 2-3 zone graph database:

 23 23(,) []
ji z ijED f f d (2)

where 23

ji zball ball , {1,2,...,14}jz  ,
231,2,..., pj n n  , and pn is the number of the

graphs with the same ball position astest
iG in 2-3 zone graph database.

Step 2: Determine the distance between
if and 2-3 zone-defence strategy.

http://en.wikipedia.org/wiki/Mahalanobis_distance
http://en.wikipedia.org/wiki/Mahalanobis_distance
http://en.wikipedia.org/wiki/Manhattan_distance

APPENDIX C STRUCTURE BASED FEATURE EXTRACTION IN
BASKETBALL ZONE-DEFENCE STRATEGIES

175

 23 23argmin([])i ij
j

D d (3)

Step 3: Compute the global distance between the test clip and 2-3 zone-defence
strategy:

 23 23
test iGD D (4)

Secondly, in terms of the same procedure, we define the global distance between the
test clip and 1-3-1 zone-defence strategy as:

131 131
test iGD D (5)

(5)
Thirdly, we define the global distance between the test clip and 1-2-2 zone-defence

strategy in the same manner as:

 1 2 2 1
t e s t iG D D (6)

Finally, the zone-defence strategy pattern of the test zone-defence video clip is defined
as:

23 131 122
test test testargmin(, ,)testZ GD GD GD (7)

5. Experimental Results

The system has been tested with both simulated and real basketball zone-defence videos.
Firstly, we formulated 40 simulated zone-defence video clips (key-frame sequences),
where the scenario and the defenders‘ position of each video clip were constructed by the
professional coaches according to their rich experience. We also collected about 1 hour of
the real basketball zone-defence videos, including 112 clips containing 3 to 8 key-frames
each as listed in Table 2. According to the detection system illustrated in Fig 2, each clip
denotes once defence with a particular zone-defence strategy.

Table 2. The number structure of test data

 Zone-defence strategy Total clips Total key-frames

Simulated
2-3 20

40
145

1-3-1 20 161
1-2-2 20 128

Real-life

2-3 52
112

286
1-3-1 31 221
1-2-2 29 169

There are few systems focused on feature description of basketball zone-defence graphs.

Here, we compare the algorithm proposed in this paper with LM-based algorithm [Zheng et
al. 2009] and SR-based algorithm [Chin et al. 2005]. Table 3 below reports the detection
result of each algorithm on both simulated and real-life data. Here detection results of
―Correct MPD (Metric Position Detection)‖ are the results detected on the test clips with
correct MPD. Generally speaking, the detected rate in simulated data is higher than that in
real-life data for each approach. In particular, compared with the other approaches, as
shown in Table 3, the structure feature (SF) based algorithm can detect more video clips in
both simulated data and real-life data. This is due to the fact that the structure feature (SF)
based algorithm takes into account of the structure relationship between defenders where it
is neglected or inadequately dealt with in other algorithms. The results are more satisfied
with regard to correct MPD since the correct MPD of defenders may lead much more likely
to the correct detecting results.

APPENDIX C STRUCTURE BASED FEATURE EXTRACTION IN
BASKETBALL ZONE-DEFENCE STRATEGIES

176

Table 3. Detection result of 3 algorithms on different data

Database Video clips Correct MPD
 Results Test Detected Test Detected
Simulated data SR

40
35

38
34

LM 36 35
SF 37 37

Real-life data

SR
112

70
91

69
LM 78 74
SF 91 85

Fig.6 shows the detecting precision comparing with the other two algorithms in both

simulated data and real-life data on each zone-defence. From Fig.6, one can see that the
SF-based detecting method has the highest detecting precision in both simulated and
real-life data, where the SR-based approach performs worst due to its inadequate dealing
with the structure relationship between defenders.

 (a) Simulated data (b) Real-life data

Fig.6 Detecting precision for each zone-defence pattern with different methods

It‘s frequent for defenders to have some translational motion comparing with the
standard position in standard zone graphs. So the translational motion of the farthest
defence-line from the ball in each zone-defence graph, which is regarded to have least
influence to the global strategy, is added to the test video clip as a disturbance to test the
robust of proposed approach. For each note V on the farthest defence-line in each
zone-defence, we add the disturbance as:

' (cos sin)V V      (8)

where denotes the movement distance of note V to ↑‘ and denotes the angle

between and the x-axis (the mid-field line) as shown in Fig.7.

Fig.7 Disturbance of the node on the farthest defence-line

Fig.8 shows the efficiency in each zone-defence with different disturbance. In order to

V
Įcosȕ

↑‘

Įsinȕ

ȕ

Į

APPENDIX C STRUCTURE BASED FEATURE EXTRACTION IN
BASKETBALL ZONE-DEFENCE STRATEGIES

177

eliminate the interference of the error from position detection, the statistics were calculated
on the data with correct MPD.

-0.12 -0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1 0.12
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1



P
re

ci
si

o
n


SF

LM

SP

-0.12 -0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1 0.12
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1



P
re

ci
si

o
n


SF

LM

SP

 (a) Simulated data (b) Real-life data

Fig.8 Precision influence with disturbance in each method

The precision comes down with growing disturbance in every method. But the
SF-based method drops much slower than the other two and still has a tolerable
performance even with a high disturbance, which demonstrates that the SF-based method is
robust for the detecting system.

6. Conclusions and Future Work

In this paper, a structure-based feature descriptor describing the structure relationships
between defence-lines has been proposed for video clip detection in basketball
zone-defence. Comparing with other methods, the structure-based feature descriptor has a
robust performance in both simulation and real-life applications especially when
disturbance exists. It is reasonable and validly to describe the structure relationship
between defenders in basketball zone-defence strategies. It is robust for the disturbance
deriving from translational motion of defenders on subprime defence-lines.

For the future work, we shall extend the approach proposed in this paper to other
team-work sports such as football, volleyball, etc., to describe the corresponding structure
relationships. It is crucial to develop the corresponding metric position detection algorithms
on zone-defence graphs which are very influential in the detection system. In addition, it
seems reasonable and realistic to adopt clustering approaches and algorithms to develop
generalized method(s) for various kinds of both existing and possible future zone-defence
strategies. This remains also as future work.

References

Assfalg J., et al. (2003): Semantic annotation of soccer videos: automatic highlights identification.
Computer Vision and Image Understanding, 92(2-3), pp:285-305.

Bagdanov A., et al. (2007): Semantic annotation and retrieval of video events using multimedia
ontologies, Proc. of International Conference on Semantic Computing (ICSC), Irvine,
California, pp:713-720.

Baldi G., Colombo C, Bimbo A. (1999): A compact and retrieval-oriented video representation
using mosaics, Proc. of 3rd International Conference on Visual Information Systems VISual99,
Springer Lecture Notes on Computer Science, Amsterdam, The Netherlands, pp:171–178.

APPENDIX C STRUCTURE BASED FEATURE EXTRACTION IN
BASKETBALL ZONE-DEFENCE STRATEGIES

178

Babaguchi N., Kawai Y., Kitahashi T. (1999): Event Based Video Indexing by Intermodal
Collaboration, Proc. First International Workshop on Multimedia Intelligent Storage and
Retrieval Management (MISRM'99) in conjunction with ACM Multimedia Conference 1999,
Orlando, pp:1-9.

Chang Y.L., et al. (1996): Integrated Image and Speech Analysis for Content-based Video Indexing,
In IEEE Conf. On Multimedia Systems and Computing, pp:0306.

Chin S., et al. (2005): An Application Based on Spatial-Relationship to Basketball Defensive
Strategies, Embedded and Ubiquitous Computing (EUC) Workshops, Nagasaki, Japan, Dec
8-9, pp:180–188.

Efros A.A., et al. (2003): Recognizing action at a distance, Ninth IEEE International Conference on
Computer Vision (ICCV), Nice, France, vol. 2, pp: 726–733.

Gong Y., et al. (1995): Automatic Parsing of TV Soccer Programs, In IEEE Conf on Multimedia
Computing and Systems, p.167.

Hua Q., Rui Y. (2007): Optimizing Multi-Graph Learning Towards A Unified Video Annotation
Scheme, Proc. of the ACM International Conference on Multimedia (ACM MM), Augsburg,
Bavaria, pp:17-26.

Liu S., et al. (2006): Multimodal Semantic Analysis and Annotation for Basketball Video,
EURASIP Journal on Applied Signal Processing, pp:1–13.

Luo Y., Tzong-Der W., Jenq-Neng H. (2003): Object-based analysis and interpretation of human
motion in sports video sequences by dynamic Bayesian networks, Computer Vision and Image
Understanding 92 (2–3), pp:196–216.

Ma J., Zhao G., Hancock E. (2007): A Navigation-based Algorithm for Matching Scenario Patterns.
Proceedings of International Conference on Artificial Intelligence and Pattern
Recognition(AIPR-07), Orlando, Florida, pp:151-157.

Marco B, Bimbo A, Giuseppe S. (2008): Video Event Annotation using Ontologies with Temporal
Reasoning, Proc. of 4th Italian Research Conference on Digital Library Systems (IRCDL),
Padova, Italy, pp:24-25.

Nepal S., et al. (2001): Automatic detection of goal segments in basketball videos. In Proc. ACM
Multimedia, Ottawa, Canada, pp:261-269.

Pan H., Van B. P., Sezan M.I. (2001): Detection of slowmotion replay segments in sports video for
highlights generation, Proceedings of the IEEE International Conference on Acoustics, Speech
and Signal Processing, vol. 3, pp:1649-1652.

Perse M, et al. (2009): A trajectory-based analysis of coordinated team activity in a basketball
game. Computer Vision and Image Understanding, Volume 113, Issue 5 pp612-621

Rui Y., Gupta A., Acero A. (2000): Automatically Extracting Highlights for TV Baseball Programs,
Proceeding ACM Multimedia, p105-115.

Tan Y. P., et al. (2000): Rapid estimation of camera motion from compressed video with
application to video annotation. IEEE Trans. CSVT, vol. CSVT-10, pp:133-146.

Urtasun R., Fleet D.J., Fua P. (2005): Monocular 3d tracking of the golf swing. IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, vol. 2, June, pp: 932–938.

Xu H. and Chua T. (2004): The fusion of audio-visual features and external knowledge for event
detection in team sports video, Proceedings of the 6th ACM SIGMM international workshop on
Multimedia information retrieval, New York, NY, USA, pp:127-134.

Xu M., et al. (2004): HMM-Based Audio Keyword Generation, In Proc. PCM, Tokyo, Japan,
pp:566-574.

Xu P., et al. (2001): Algorithms and systems for segmentation and structure analysis in soccer
video. IEEE International Conference on Multimedia and Expo (ICME), Tokyo, Japan, pp:
184–187.

Zheng A., et al. (2009): Temporal Pattern Recognition in Basketball Video Clips. Proc. of 5th
International Conference on Computer and Information Science, Shanghai, China,
pp:416-421.

APPENDIX D A ROBUST APPROACH TO SUBSEQUENCE
MATCHING

179

A Robust Approach to Subsequence Matching

Aihua Zheng
1,2

, Jixin Ma
2
, Miltos Petridis

2
 , Jin Tang

1
, Bin Luo

1

1 Anhui University, Hefei, 230039, People’s Republic of China
2 The University of Greenwich, Greenwich, London, SE10 9LS, United Kingdom

E-mail: {a.zheng, j.ma, m.petridis}@gre.ac.uk, ahhftang@gmail.com, luobin@ahu.edu.cn

Summary. In terms of a general time theory which addresses time-elements as typed

point-based intervals, a formal characterization of time-series and state-sequences is

introduced. Based on this framework, the subsequence matching problem is specially

tackled by means of being transferred into bipartite graph matching problem. Then a hybrid

similarity model with high tolerance of inversion, crossover and noise is proposed for

matching the corresponding bipartite graphs involving both temporal and non-temporal

measurements. Experimental results on reconstructed time-series data from UCI KDD

Archive demonstrate that such an approach is more effective comparing with the traditional

similarity model based algorithms, promising robust techniques for lager time-series

databases and real-life applications such as Content-based Video Retrieval (CBVR), etc.

1 Introduction

Time-series are typical patterns in date mining and knowledge discovery, particularly, in

statistics, signal processing as well as other areas including rule discovery, prediction,

detection, clustering and classification, and so on. Generally speaking, a time series

presents a sequence of data, measured and/or spaced typically at successive times, which

can be either points or intervals.

The notion of state is fundamental for many state-based applications, which represents

the static snapshot of the world in discourse, while the dynamic historical scenarios of the

world can be characterized in terms of temporally ordered state-sequences. State-sequence

matching has been noticed as a popular research topic in time-series data which has

attracted a lot of researchers’ interests. In particular, how to find out the most similar
patterns for the query state-sequence in time-series data is an essential work for many real

life state-based applications. Normally, state-sequence matching can be divided into two

categories: whole matching [2, 4] (each10 sequence has the same length) and subsequence

matching [10, 13] (with various lengths). Obviously, the whole matching problem is in fact

a special case of the subsequence matching which we shall tackle in this paper.

One of the popular topics in subsequence matching is the similarity model between

state-sequences. Specially, temporal similarity between state-sequences plays a vital role,

where three aspects regarding the temporal information of state-sequences need to be

This research is supported in part by National Nature Science Foundation of China (No. 60772122)

APPENDIX D A ROBUST APPROACH TO SUBSEQUENCE
MATCHING

180

addressed: (1) The “before/after” relations over the states which decide how

state-sequences are temporally ordered; (2) The temporal distances between pairs of

consecutive states; and (3) The duration of various times over which the corresponding

states are associated with.

Various similarity models based on Euclidean distance, have been specially introduced

for subsequence matching, [2]. An efficient category of these is the so-call sliding window

based algorithms [9, 10]. However, most of them are very brittle even with slight

misalignment in time axis and the time-consuming problem limits their application on large

database. Subsequently, some successful models such as Dynamic time warping (DTW)

[6], Longest Common Sequence (LCSS) [15], Edit distance [1] and their variants have been

proposed. DTW is robust to time warping such as stretching and shrinking. However, no

states will be skipped including noise. LCSS can skip some states including outliers but

ignores how many states it skips. ED takes into account of the number being skipped,

however, which kind of states being skipped is ignored. And common reordering such as

crossover or backward is not allowed.

 In addition, in most of proposed formalisms and models, the fundamental time theories

based on which time-series and state-sequences are formed up are usually not explicitly

specified. Time-series are simply expressed as lists in the form of t1, t2, …., tn, or as

sequences of collection of data, and so on, where formal characterizations with respect to

the temporal basis have been neglected.

The objective of this paper is to present a robust framework for matching subsequence

patterns. As the fundamental formalism, a formal characterization of time-series and

state-sequence is introduced in section 2, A bipartite graph representation for subsequence

matching is presented in section 3. Section 4 introduces a hybrid similarity model which

integrates both non-temporal similarity and temporal similarity. Experimental results on

UCI time-series data are provided, analyzed and evaluated in section 5. Finally, section 6

provides a brief summary and concludes the paper with the prospects for future work.

2 Time-elements, time-series and state-sequences

For general treatments, in this paper, we shall define time-elements as typed point-based

intervals, allowing expression of both absolute time values and relative temporal relations

[7]. We shall use R to denote the set of real numbers, and T, the set of time-elements. Each

time-element t is defined as a typed (left-open & right-open, left-closed & right-open,

left-open & right-closed, left-closed & right-closed) subset of the set of real numbers R.

I.e., each time-element must be in one of the following four forms:

(p1, p2) = {p pRp1pp2 [p1, p2)p | pRp1pp2
(p1, p2] p | pRp1pp2 [p1, p2]p | pR p1p p2

In the above, p1 and p2 are real numbers, which are called the left-bound and

right-bound of time-element t, respectively. The absolute values as for the left and/or right

bounds of some time-elements might be unknown. In this case, real number variables are

used for expressing relative relations to other time-elements (see later). In addition, if the

left-bound and right-bound of time-element t are the same, it is called a time point;

APPENDIX D A ROBUST APPROACH TO SUBSEQUENCE
MATCHING

181

otherwise it is called a time interval. Without confusion, time-element [p, p] is taken as

identical to point p. Also, if a time-element is not specified as open or closed at its left

(right) bound (that is, the left (right) type of the time-element is unknown), we shall use “<”
(or “>”) instead of “(” and “[” (or “)” and “]”) as for its left (or right) bracket. Also, the
duration of a time-element t, Dur(t), is defined as the difference between its left bound and

right bound. In other words:

t = <p1, p2>  Dur(t) = p2 – p1

Following Allen’s terminology [3], we shall use “Meets” to denote the immediate
predecessor order relation over time-elements, which can be formally defined as:

Meets(t1, t2)  p1,p,p2R(t1 = (p1, p)  t2 = [p, p2)  t1 = [p1, p)  t2 = [p, p2)

 t1 = (p1, p)  t2 = [p, p2]  t1 = [p1, p)  t2 = [p, p2]  t1 = (p1, p]  t2 = (p, p2)

 t1 = [p1, p]  t2 = (p, p2)  t1 = (p1, p]  t2 = (p, p2]  t1 = [p1, p]  t2 = (p, p2])

It is easy to see that the intuitive meaning of Meets(t1, t2) is that, on the one hand,

time-elements t1 and t2 don’t overlap each other (i.e., they don’t have any part in common,
not even a point); on the other hand, there is not any other time-element standing between

them.

Analogous to the 13 relations introduced by Allen for intervals [3], there are 30

exclusive temporal order relations over time-elements including both time points and time

intervals, which can be classified into the following 4 groups:

 Relations that relate points to points:

{Equal, Before, After}

 Relations that relate points to intervals:

{Before, After, Meets, Met_by, Starts, During. Finishes}

 Relations that relate intervals to points:

{Before, After, Meets, Met_by, Started_by, Contains, Finished_by}

 Relations that relate intervals to intervals:

{Equal, Before, After, Meets, Met_by, Overlaps, Overlapped_by, Starts,

 Started_by, During, Contains, Finishes, Finished_by}

The definition of these derived temporal order relations in terms of the single relation

Meets is straightforward. E.g.: Before(t1, t2)tT(Meets(t1, t)Meets(t, t2)).

Based on such a time theory, a time-series ts is defined as a vector of time-elements

temporally ordered one after another [8]. Formally, a general time-series is defined in terms

of the following schema:

GTS1) ts = [t1, …, tn]
GTS2) Meets(tj, tj+1)Before(tj, tj+1), for all j = 1, …, n-1

GTS3) Dur(tk) = dk, for some k where 1≤ k ≤ n, di is a non-negative real number.

Generally speaking, a time-series may be incomplete in various ways [7].

Correspondingly, a complete time-series is defined in terms of the schema as below:

CTS1) ts = [t1, …, tn]
CTS2) Meets(tj, tj+1), for all j = 1, …, n-1

CTS3) Dur(ti) = di, for all i = 1, …, n where di is a non-negative real number.

The validation of data is usually dependent on time. We shall use fluents to represent

Boolean-valued, time-varying data, and denote proposition “fluent f holds true over time t”
by formula Holds(f, t) [3]:

(F1) (f, t)  t1(Part(t1, t)  Holds(f, t1))

APPENDIX D A ROBUST APPROACH TO SUBSEQUENCE
MATCHING

182

That is, if fluent f holds true over a time-element t, then f holds true over any part of t.

(F2) t1(Part(t1, t)  t2(Part(t2, t1)  Holds(f, t2)))  Holds(f, t)

That is, if any part of time t contains a part of itself over which fluent f holds true, then f

holds true over t. Here, Part(t1, t)  Equal(t1, t)Starts(t1, t)During(t1, t)Finishes(t1, t).

(F3) Holds(f1, t)  Holds(f2, t)  Holds(f1  f2, t)

That is, is fluent f1 or fluent f2 holds true over time t, then at least one of them holds true

over time t.

(F4) Holds(not(f), t)  t1(Part(t1, t)  Holds(f, t1))

That is, the negation of fluent f holds true over time t if and only if fluent f does not hold

true over any part of t.

(F5) Holds(f, t1)  Holds(f, t2)Meets(t1, t2)  Holds(f, t1t2)

That is, if fluent f holds true over two time-elements t1 and t2 that meets each other, then f

holds over the ordered-union of t1 and t2.

A state is defined as a collection of fluents. Following the approach proposed in [11], we

shall use Belongs(f, s) to denote that fluent f belongs to the collection of fluent representing

state s. For the reason of simple expression, if f1, …, fm are all the fluents that belong to state s,

we shall represent s as <f1, …, fm>. Also, without confusion, we shall use formula Holds(s, t) to

denote that s is the state of the world with respect to time t, provided that:

(F6) s = < f1, …, fm> Holds(s, t)  Holds(f1, t) Holds(fm, t))
That is, a state s holds true over time t if and only if every fluent in the s holds true over

time t.

A state-sequence ss is defined as a list of states together with its corresponding time-series

ts. A general state-sequence is defined in terms of the schema as below:

GSS2.1) ss = [s1, …, sn]

GSS2.2) Holds(si, ti), for all i = 1, …, n

where [t1, …, tn] is a time-series. Correspondingly, a state-sequence is defined as

complete if and only if the corresponding time-series is complete [8].

3 Bipartite graphical representation for subsequence matching

We shall systematically introduce the procedure of transforming subsequence matching into

bipartite graph matching problem in this section.

Table 1. Notations used in this paper

Notation Definition

Q = [q1, q2,…, qm] Query state-sequence

SS = [s1,s2,…, sn] A state-sequence in database

D = [SS1,…, SSL] The database with L state-sequences

NN(qi, SS, k) Set of kNN of qi in SS

NN(Q, SS, k) Set of kNN of all qi in Q in SS

BG = <Q, SS, E> Bipartite graph between Q and SS

MSM(Q, SS) The set of MSM between Q and SS

APPENDIX D A ROBUST APPROACH TO SUBSEQUENCE
MATCHING

183

MSM(Q, D) The set of MSM between Q and all SSj in D

M A normal matching in MSM(Q, D)

M An inverse-ordered matching of M

The list of notations that will be used in this paper is given in Table 1. The procedure can

be briefly described as following:

Step 1: Employ Dynamic Query Ordering (DQO) algorithm [12] to implement kNN (k

Nearest Neighbours) search for each state qi in SS within a given maximum distance dmax.

Output the state set NN(qi, SS, k) for each state qi. NB.: |NN(qi, SS, k)|ę[0, k].

Step 2: Construct un-weighted bipartite graph BG = <Q, SS, E> for NN(Q, SS, k), EكQ

×SS is the edge set denoting kNN mapping between Q and SS, as showing in Fig.1:

q1 qmq3q2 q4

Q:

SS:
S1 S2 S3 S4 Sn-3 Sn-2 Sn-1 Sn

Fig.1 Bipartite graph representation

Step 3: Employ Maximum Size Matching (MSM) algorithm [14] to produce a set of 1-1

matching between Q and SS with the maximum size for the corresponding BG. NB.: the

output of MSM in general is not unique.

For each given state-sequence SS, the above procedure produces a corresponding set of

1-1 matching MSM(Q, SS) between Q and SS with the maximum size. Therefore, if we

denote the set of such matching between Q and all SSj in D as MSM(Q, D), we have:

1
(,) (,)

L

jj
MSM Q D MSM Q SS


 (1)

The remaining main problem is then to develop an appropriate similarity measurement

for searching the corresponding optimal matching.

4 Hybrid similarity model

As mentioned earlier, for a given a matching MęMSM(Q, D), both temporal similarity and

non-temporal similarity should be taken into account. On one hand, the non-temporal

similarity is defined according to the Euclidean distance between each mapping.

Non-temporal similarity: The non-temporal similarity is measured by the total similarity

which is in inverse proportion to the Euclidean distance between each matched state pair.

= ()) ()NT i jSim 1- dis(q , s d Q (2)

APPENDIX D A ROBUST APPROACH TO SUBSEQUENCE
MATCHING

184

where dis(qi, sj) denotes the Euclidean distance between each matched state pair qi and sj

(which has achieved during kNN search) in the matching M and d denotes the feature

dimension of each state. Obviously, the similarity value falls into [0, 1].

On the other hand, as the distinctive feature of time-series data, temporal similarity

needs special treatments with respect to the following three measurements:

Temporal order similarity: There may be some pairs of state-sequences with the same

non-temporal similarity but with different temporal order. Here, we shall use the idea of

LCSS [15] to measure temporal order similarity. However, in existing normal LCSS based

formalisms, the typical reordering situations inversion in time-series data have been

neglected. In order to catch such kind of reordering, we define the temporal order similarity

as below:

max((), ()) /TOSim LCS M LCS M Q (3)

which takes into account of both normal order and inverse order.

Temporal alignment similarity: In normal LCSS formalisms, in subsequence matching,

unmatched states are simply skipped regardless how many of them. ED [1] is an alternative

measurement distinguishing the number of unmatched states that being skipped. However,

crossover, which should be compatible since it is ubiquitous, is not allowed in ED since it

just matches in the single forward direction. Following the approach proposed in [13], we

define the following temporal alignment similarity:

2 ()TASim M Q SS  (4)

which takes into account the number of unmatched states and accepts crossover.

Temporal concentration similarity: It is easy to see that the distribution of matched (or

unmatched) states and the internal temporal distance (or similarity) is ignored in SimTA. For

instance, by (4), sequence [1, 2, 3, 4, 5] will be taken as having the same similarity with [1,

a, a, 2, 3, 4, a, 5], [1, 2, a, 3, a, 4, a, 5] and [1, b, c, 2, 3, 4, d, 5]. In addition, the duration of

various times over which the corresponding states are associated with is not addressed in

(4). Here, we introduce a similarity measurement to govern such temporal concentration. In

what follows in this paper, we use CD and DD to denote the Concentration similarity

Degree and the Discrete similarity Degree:

1
2 1

() (() ())
i

i t
i t

CD Dur CMS Dur CMS Dur CMS
 

   (5)

(() ())i i
i

DD Dur CUS Dur CUS  (6)

where CMSi and CUSi are defined as “Continuous Matched Subsequence” and
“Continuous Unmatched Subsequence”, respectively, in descending ordered with respect to
the length of these subsequences; and Dur(CMS) and Dur(CUS) denote the list of the

duration of each continuous subsequence in CMS and CUS, respectively.  represents the

internal temporal distance with respect to each adjacent continuous matched and unmatched

subsequences. In fact, if CUSi = [st, …, sp]

1

1

1 1

(,) 1

= (,) ()

((,) (,)) 2

p

p i ii t

p

t i ii t

p

t i p i ii t

dis s s CUS if t

dis s s CUS if p length SS

dis s s dis s s CUS else







 

 

 








 (7)

APPENDIX D A ROBUST APPROACH TO SUBSEQUENCE
MATCHING

185

In order to reduce the computing complexity, we replace st-1 and sp+1 by their

corresponding query states in Q since the Euclidean distance in (2) between each state in Q

and a state in SS has achieved in the kNN search stage.

The temporal concentration similarity can be defined:

SimTC = (CD - DD)/|Q| (8)

Normally, the overall similarity can be simply defined as the average of individual

similarities. However, as we have argued earlier, the individual similarity measurements

introduced in this paper have various features. In fact, while the non-temporal similarity

and the temporal similarity may be treated in parallel, the three temporal similarities are

progressive one after the other. Therefore, it is not appropriate to simply accumulate all of

them together. In what follows, we use a hybrid approach to combine the four similarity

measurements.

Hybrid similarity model:

Step 1: reorder MSM(Q, D) as MSM(Q, D)’ by SimTO, SimTA, and SimTC:

Firstly, reorder it by the SimTO; then for the matchings with the same SimTO, reorder them

by SimTA; analogously, reorder by SimTC if there exists some matchings with the same

SimTA.

Step 2: Integrate temporal similarity: get the integrated temporal similarity SimTS =

Adjust(SimTO). For those ȝ = j-i+1 matchings [M’i,…,M’j] with the same SimTO, evenly

stretch their similarities into [SimTO+ı/2, SimTO-ı/2] where ı denotes the adjust operator
defined as below:

1 1

1

1

() 3 1,

= 2 1

2

i j

j

i

TO TO

TO

TO

Sim Sim if i j x

Sim if i

Sim if j x



 



 





   

 




 (9)

Step 3: Overall similarity: reorder MSM(Q, D)’ as MSM(Q, D)’’ in terms of overall
similarity Sim which defined as the average of non-temporal similarity and integrated

temporal similarity:

Sim = (SimNT + SimTS)/2 (10)

5 Experimental Results

We experiment our method on Synthetic Control Chart Time Series in UCI KDD

(Knowledge Discovery in Databases) Archive [5]. The database consists of 600 synthetically

generated control charts state-sequences with length of 60 for each, including 6 different

classes (100 examples each): In order to avoid the influence of segmenting error to the

proposed similarity model, we shall use the original database in the form of individual 600

state-sequences with length 60 for each as the training data. Several query sets are

reconstructed as following:

Original Query Set (OQS): which consists of 60 (the first 10 state-sequences from each

class) state-sequences;

APPENDIX D A ROBUST APPROACH TO SUBSEQUENCE
MATCHING

186

Reordered Query Set (RQS): Į percent reordered (in inverse order while Į=1) to each
state-sequence in OQS;

Shortened Query Set (SQS): each state-sequence of this set is with length of (1-ȕ)*60;
Noised Query Set (NQS): add a Gaussian noise to each state-sequence in OQS.

For each query state-sequence, by means of following the procedure presented in section 3

we obtain a set of optional matching in the training database, and according to the hybrid

similarity model proposed in section 4, we then calculate the overall similarity respectively.

The precision is defined as the ratio of the number of state-sequences with the same class as the

query state-sequence out of the first 100 optimal matching in MSM(Q, D)’’. We focus on the
performance of our similarity model compared with that of [13] (shorthanded by Shen in

following figures), which is just simply defined by the average of its individual similarity

measurements. Meanwhile, another two models which employ ED and LCSS as temporal

similarity have been tested respectively.

1 6 11 16
0.5

0.6

0.7

0.8

0.9

1

k

P
re

ci
si

o
n


Hybrid

Shen
ED

LCSS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1



P
re

ci
si

o
n


Hybrid

Shen
ED

LCSS

Fig. 2 Precision of OQS against k Fig. 3 Precision of RQS against Į

Fig. 2 shows the precision of the OQS with different k in kNN search. We can see that there

is no distinct influence of k. In order to reduce the complexity of our matching system, we

default k=5 if not specified. The following 3 figures show the matching precision on different

query sets against their corresponding reconstructive parameters.

Firstly, Fig.3 shows the precision of RQS against Į, in order to reveal the performance of
the progressive temporal similarity measurement we proposed in this paper, we omit the

non-temporal similarity in each method. From which we can see, in our method, the precision

has an approximate quadratic distribution with the subject to Į, which means it can better
detect the reordered state-sequences than the others.

Then, to evaluate the effect of ȕ, we form the SQS by deleting ȕ*60 states in different
position: evenly, from the beginning and the end. Fig.4 shows the matching results against

different ȕ. Generally speaking, our method is more robust than others no matter the
state-sequences are shortened evenly, from the beginning or from the end. The precision drops

much slower in our method especially for ȕଲ[0.1, 0.5]. In addition, according to our statistic,

the query set shortened from the beginning has a slight higher precision than the other two sets

shortened evenly and at the end in our similarity model. Generally speaking, the position

(where being shortened) doesn’t affect the precision very much in any similarity model.

APPENDIX D A ROBUST APPROACH TO SUBSEQUENCE
MATCHING

187

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

P
re

ci
si

o
n

 

Hybrid
Shen
ED
LCSS

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1


P

re
ci

si
o

n


Hybrid

Shen
ED

LCSS

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1



P
re

ci
si

o
n


Hybrid

Shen
ED

LCSS

 (a) Evenly (b) From the beginning (c) From the end

Fig. 4 Precision of SQS against ȕ

Fig.5 shows the results of noised data with Gaussian noise in different mean ([0, 2]) and

variance ([0.1, 1]). Visually, our method has higher precision and smaller fluctuation. Table 2

below shows the average mean and standard deviation (STD) of each subfigure in Fig.5.

0 0.5 1 1.5 2

0
0.25

0.5
0.75
1
0

0.25

0.5

0.75

1

mean

Hybrid

variance

p
re

c
is

io
n

0 0.5 1 1.5 2

0
0.25

0.5
0.75
1
0

0.25

0.5

0.75

1

mean

Shen

variance

p
re

c
is

io
n

0 0.5 1 1.5 2

0
0.25

0.5
0.75
1
0

0.25

0.5

0.75

1

mean

ED

variance

p
re

c
is

io
n

0 0.5 1 1.5 2

0
0.25

0.5
0.75
1
0

0.25

0.5

0.75

1

mean

LCSS

variance

p
re

c
is

io
n

Fig. 5 Precision of query set with Gaussian noise against mean and variance

Table 2. Statistic of the precision of noised query set

 Hybrid Shen ED LCSS

Mean (%) 76.46 72.81 68.83 59.12

STD 0.0764 0.0878 0.0877 0.1043

6 Conclusion and future work

In this paper, based on a formal characterization of time-series and state-sequences, we

introduced a framework for subsequence matching. A hybrid similarity model addressing both

non-temporal and temporal relationship between state-sequences, which are represented by

APPENDIX D A ROBUST APPROACH TO SUBSEQUENCE
MATCHING

188

bipartite graphs, has been proposed. The experimental results on UCI time-series database

demonstrated that the proposed similarity model is robust to states alignment with different

numbers and different values, and various reordering including inversion, crossover, compared

with the LCSS and ED based similarity models. We hope this model will provide a steady

usage on lager time-series databases and real-life applications such as Content-based Video

Retrieval.

References

[1] Adjeroh D, Lee M & King I.: A distance measure for video sequences. Computer Vision and Image

Understanding. 75(1-2), 1999, pp: 25-45.

[2] Agrawal R, Faloutsos C, & Swami A.: Efficient similarity search in sequence databases. In Proc. of

the 4th Int'l Conf. on Foundations of Data Organization and Algorithms, Chicago, Illinois, USA , Oct

13-15, 1993, pp:69-84.

[3] Allen J.: Towards a General Theory of Action and Time. Artificial Intelligence 23, 1984,

pp:123-154.

[4] Beckmann N, Kriegel H, Schneider R & Seeger B.: The r*-tree: An efficient and robust access

method for points and rectangles. In Proc. of the 1990 ACM SIGMOD Int'l Conf. on Management of

Data, Atlantic City, NJ, May 23-25, 1990. pp:322-331.

[5] http://kdd.ics.uci.edu/databases/synthetic_control/synthetic_control.html

[6] Keogh E.: Exact indexing of dynamic time warping. in Proc. of the 28th Int’l Conf. on Very

Large Data Bases, Hong Kong, China, Aug20-23, 2002, pp:406–417.

[7] Ma J & Hayes P.: Primitive Intervals Vs Point-Based Intervals: Rivals Or Allies?. the Computer

Journal, 49(1), 2006, pp:32-41.

[8] Ma J, Bie R, Zhao G.: An ontological Characterization of Time-series and State-sequences for Data

Mining. Proc. of the 5th International Conference on Fuzzy Systems and Knowledge Discovery,

Jinan, Shandong, Oct 18-20, 2008, pp:325-329.

[9] Moon Y, Whang K & Han W.: General Match A Subsequence Matching Method in Time-Series

Databases Based on Generalized Windows. In Proc. of the 8th ACM SIGMOD Int'l Conf. on

Management of data, Madison, Wisconsin, USA, Jun 4-6, 2002, pp:382 - 393.

[10] Moon Y, Whang K & Loh W.: Duality-based subsequence matching in time-series databases. In

Proc. of the 17th Int'l Conf. on Data Engineering, Santa Barbara, California, May 21-24, 2001, pp:

263-272.

[11] Shanahan M.: A Circumscriptive Calculus of Events. Artificial Intelligence 77, 1995, pp:29-384.

[12] Shao J, Huang Z, Shen H, Zhou X, Lim E & Li Y.: Batch nearest neighbour search for video

retrieval. IEEE Transactions on Multimedia, 10(3), 2008, pp:409-420.

[13] Shen H, Shao J, Huang Z & Xiaofang Zhou.: Effective and Efficient Query Processing for Video

Subsequence Identification. IEEE Transactions on Knowledge and Data Engineering, 21(3), 2009,

pp:321-334.

[14] Shier D.: Matchings and assignments. in Handbook of Graph Theory, J. L. Gross and J. Yellen, Eds.

CRC Press, 2004, pp:1103–1116.

[15] Vlachos M, Gunopulos D & Kollios G.: Discovering similar multidimensional

trajectories. In Proc. of the 18th Int'l Conf. on Data Engineering, San Jose, CA,USA,

Feb 26-Mar 1 2002, pp:673–684.

APPENDIX E EFFICIENT AND EFFECTIVE STATE-BASED FRAMEWORK FOR
NEWS VIDEO RETRIVAL

189

Efficient and Effective State-based Framework for News Video Retrival
Aihua Zheng1,2, Jixin Ma1, Xiaoyi Zhou1, Bin Luo2

1The University of Greenwich, London, UK
2Anhui University, Hefei, China

{a.zheng, j.ma, x.zhou }@gre.ac.uk luobin@ahu.edu.cn

Abstract
In this paper, an efficient and effective framework is proposed for news video retrieval. Firstly, the

64-dimensional colour histogram is extracted as the feature vector. Then the pair quantizer is adopted to
transfer the news video retrieval problem into multi-dimensional string matching problem, which conduces to
the efficiency to the framework. Secondly, a new measurement named „optimal temporal common
subsequence‟, which distinguishes the difference caused by rich temporal characteristics including temporal
order, temporal duration and temporal gap, is designed to match state-sequence, followed by the point &
interval-based formal characterization of time-series and state-sequences. Thirdly, we tested the proposed
measurement on news video retrieval. The performance shows the proposed algorithm is more effective for
news video retrieval.

Keywords: state-sequence matching; optimal temporal common subsequence; news video retrieval

1. Introduction

With the development and the progress of information age, multimedia information, especially video
information, is becoming an active and hot research object including video retrieval, video structural
representation, video annotation and so on. Content-based Video Retrieval (CBVR) has attracted more and more
researchers in recent decades. Normally, video database can be organized as figure 1. Videos are stored in terms
of clips each of which contents a sequential key frames (static images) obtained by specific key frame extraction
algorithm. In order to cater for recognition or matching, feature vectors are extracted for key frames. From figure
1, we can see, the video retrieval can actually be transformed into the matching problem between feature vector
sets where feature vectors are sequential.

Figure 1. Video database organization

Different from image retrieval, the task is to search out the most similar image (key frame) set, not only the
single image. Which in turn means the temporal relationship between key frames should be highly regarded.
State-sequence matching, as an effective approach in temporal pattern recognition, has been actively researched
recently, where the key frames in videos are regarded as states in time-series.

The notion of state is fundamental for many state-based applications, which represents the static snapshot of
the world in discourse, while the dynamic historical scenarios of the world can be characterised in terms of
temporally ordered state-sequences. Generally speaking, a state-sequence presents a sequence of data, measured
and/or spaced typically at successive times, which can be either points or intervals. State-sequence matching has
been noticed as a popular research topic in state-based systems has been well applied in various areas such as

Video
Database

Clip1

Clip2

Clipm

Video set Image set

Keyframe1

Keyframe2

Keyframen

<Feature Vector>

mailto:luobin@ahu.edu.cn

APPENDIX E EFFICIENT AND EFFECTIVE STATE-BASED FRAMEWORK FOR
NEWS VIDEO RETRIVAL

190

financial data analysis [1], audio recognition [2], visual information retrieval [3], etc. Normally, state-sequence
matching can be divided into two categories: whole matching [4, 5] (i.e., all state-sequences have the same length

メand subsequence matching [3, 6] (i.e., state-sequences have various lengths). Obviously, the whole matching
problem is in fact a special case of the subsequence matching. In general, state-sequence matching needs to
accommodate three temporal features:

i. Temporal Order: the temporal relation over the states in the two given state-sequences. This issue has
been well dealt with in most existing state-sequence matching algorithms benefiting from the
dynamic programming.

ii. Temporal Duration:

 The duration of each state. For instance, as shown in Figure. 2, the two state-sequences A1 and A2, that
is ‗abcd‘, have different temporal duration assignment function Tdur1 = [1, 1, 1, 1] and Tdur2 = [1, 2,
3, 4], respectively.

 The overall duration of continuous duplications of states. For instance, as shown in Figure. 2, for
state-sequences A1 = ‗abcd‘ and A3 = ‗aabbbccccddd‘, the common subsequence ‗abcd‘ have
various overall duration, even if the duration value of each state is identical as 1.

iii. Temporal Gap: the time element standing between two adjacent states as shown in Figure. 3, where B1
and B2 = ‗abcd‘, B3 = ‗aabbbcd‘ are with different temporal gap values.

Figure 2. Various Temporal Duration in State-sequences

Figure 3. Various temporal gap in state-sequences

The Longest Common Subsequence (LCS) is a typical similarity measurement for subsequence matching.The
basic idea of the original LCS algorithm [7] is to find the longest subsequence common to two state-sequences
along the same temporal order. For instance, the longest common subsequence of Aγ and Bγ is ‗aabbbcd‘. In this
paper, distinguished from this concept of common subsequence in conventional LCS, we define the temporal
common subsequence of two state-sequences as the common subsequence where each state is different from its
neighbour(s) (predecessor and successor), that is, there are no continuous duplications of states in temporal
common subsequence. For instance, the temporal common subsequence of Aγ and Bγ is ‗abcd‘, rather than
‗aabbbcd‘. Correspondingly, the optimal temporal common subsequence (OTCS) is the one with the highest
overall similarity integrated by the length of temporal common subsequence, the temporal duration difference and
temporal gap difference (see the actual algorithm in section III).

Several algorithms based on the original LCS have been proposed. Some representative variants of these are:
Time-warped LCS (T-WLCS) [8] which counts continuously duplicated common states in the spirit of Dynamic
Time Warping (DTW) [9] algorithm; Compacted LCS (CLCS) [10] where only the common subsequence, the

B3

1

d c b b b a a

Tgap
B1 d c b a

 2 2 2

B2

1 2
Tgap

a b c d

Tgap

1

1 2 3

3

3 4
Tdur 2

d d d c c c c b b b a a

Tdur 4 3 2 1

A1

Tdur

d c b

 1 1 1 1

a b c d

3

A

a

APPENDIX E EFFICIENT AND EFFECTIVE STATE-BASED FRAMEWORK FOR
NEWS VIDEO RETRIVAL

191

continuous length of which is longer than the specified threshold (th) is counted; All Common Subsequence
(ACS) [11] which measures the similarity by means of counting the number of all common subsequences
(including empty string in actual algorithm) and taking the strategy that the more common subsequences a pair of
state-sequences have, the more similar they are.

However, in most of these representative algorithms, many problems (see details analysed in section III) occur
due to the neglect of richer temporal features such as temporal duration and temporal gap, etc. While time-series
and state-sequences have been simply expressed as ordered lists t1, t2, …, tn (or s1, s2, …, sn), leaving some critical
issues unaddressed. E.g.:

 What a sort of objects do these t1, t2, … and tn belong to? In other word, are they time points, time
intervals, or simply some absolute values from the real numbers, integers, or the clock?

 What are the temporal order relationships between these t1, t2, … and tn, and/or between the sequence of
collections? Are they simply well-ordered as the natural numbers, or they may be relatively ordered by
means of relations such as ―Before‖, ―Meets‖, ―During‖, and so on?

 What are the associations between time-series/ sequences and non-temporal data that represent various
states of the world in discourse?

The objective of this paper is to design an effective and efficient framework for news video retrieval. The
rest of this paper is organised as below: the quantization procedure is presented in section II. The formal
characterization of time-series and state-sequences is introduced in section III. An Optimal Temporal
Common Subsequence (OTCS) algorithm based on a formal characterization of time-series and
state-sequences is presented and analyzed in section IV. Experiments on news video retrieval system are
conducted and the corresponding results are analysed in section V to demonstrate the effectiveness and
validity of the proposed OTCS. Section VI provides a brief summary and concludes the paper with the
prospects for future work.

2. Video clip and state-sequence

As mentioned in the introduction, the key frames in video clips are regarded as states in time-series, which in
turn means the video clips are regarded as state-sequences. In order to apply state-sequence matching algorithm
to video clip retrieval, quantization is employed to map the sequential feature vectors into assigned character bins.
The uniform quantization is the most common and efficient choice which can be defined as:

, 0,1,...Step k Stepk S B k S k N  ˄ -1˅ (1)

 where N denotes the number of the bin. NStepS Max Min - denotes the step size and the Euclidian

distance is employed to calculate the maximum value (Max) and the minimum value (Min) among feature vectors.
By this quantization, most of the similar feature vectors, the distance between which is within the tolerance
(step-size) will be quantified into the same bin. However, the similar feature vectors may be mapped into different
bins if they are located on different sides of the cut edges (, 1,... 1Stepk S k N ), even though they are very

similar to each other.

Therefore, in this paper, we adopt the paired quantization method [10] for feature quantization. The two
quantizers Q1, Q2 are defined as following:

1Q
Step k Stepk S B k S ˄ -1˅ (2)

2

2 2
Step StepQ

Step k Step

S S
k S B k S   ˄ -1˅ (3)

The feature vector will be quantified into the kth bin if it satisfies either quantizer Q1 or Q2. So it can relieve the
problem pointed in single quantizer.

3. Formal characterization of time-series and state-sequences

APPENDIX E EFFICIENT AND EFFECTIVE STATE-BASED FRAMEWORK FOR
NEWS VIDEO RETRIVAL

192

In this section, we introduce a formal characterization of time-series and state-sequences. For the sake of

allowing expression of both absolute time values and relative temporal relations, in this paper, time-elements are
defined as typed point-based intervals, each of which must be in one of the following four forms [12]:

(p, q) = {r rRprq
[p, q)r | rRprq
(p, q] r | rRprq
[p, q]r | rR pr q

In the above, R stands the set of real numbers, and real numbers p and q are called the left-bound and
right-bound of time-element t, respectively. The absolute values as for the left and/or right bounds of some
time-elements might be unknown. In this case, real number variables are used for expressing relative relations to
other time-elements (see later). If the left-bound and right-bound of time-element t are the same, t is called a time
point; otherwise it is called a time interval. Without confusion, time-element [p, p] is taken as identical to point p.
Also, if a time-element is not specified as open or closed at its left (right) bound (that is, the left (right) type of the
time-element is unknown), we shall use ―<‖ (or ―>‖) instead of ―(‖ and ―[‖ (or ―)‖ and ―]‖) as for its left (or right)
bracket. In addition, the temporal duration of a time-element t, Tdur(t), and the temporal gap between adjacent
elements t1, t2, Tgap (t1, t2) can be defined as below:

t = <p, q>  Tdur(t) = q – p
t1 = <p1, q1> , t2 = <p2, q2> Tgap (t1, t2) = |p2 – q1|

Following Allen‘s terminology [1γ], we shall use ―Meets‖ to denote the immediate predecessor order relation
over time-elements, which can be formally defined as:

Meets(t1, t2)  p1,p,p2R(t1 = (p1, p)  t2 = [p, p2)
 t1 = [p1, p)  t2 = [p, p2))  t1 = (p1, p)  t2 = [p, p2]
 t1 = [p1, p)  t2 = [p, p2]  t1 = (p1, p]  t2 = (p, p2)
 t1 = [p1, p]  t2 = (p, p2)  t1 = (p1, p]  t2 = (p, p2]

 t1 = [p1, p]  t2 = (p, p2])

It is easy to see that the intuitive meaning of Meets(t1, t2) is that, on the one hand, time-elements t1 and t2
don‘t overlap each other (i.e., they don‘t have any part in common, not even a point); on the other hand, there is
not any other time-element standing between them.

Analogous to the 13 relations introduced by Allen for intervals [13], there are 30 exclusive temporal order
relations over time-elements including both time points and time intervals, which can be classified into the
following 4 groups:

 Relations that relate points to points:
{Equal, Before, After}

 Relations that relate points to intervals:
{B efore, After, Meets, Met_by, Starts, During. Finishes}

 Relations that relate intervals to points:
{Before, After, Meets, Met_by, Started_by, Contains, Finished_by}

 Relations that relate intervals to intervals:
{Equal, Before, After, Meets, Met_by, Overlaps, Overlapped_by, Starts, Started_by, During, Contains,

Finishes, Finished_by}

The definition of these derived temporal order relations in terms of the single relation Meets is straightforward.
E.g.:

Before(t1, t2)  tT(Meets(t1, t)  Meets(t, t2))

Based on such a time theory, a time-series Tn can be defined as a vector of time-elements temporally ordered
one after another [14]. Formally, a general time-series is defined in terms of the following schema:

GTS1) Tn= [t1, …, tn] = [<p1, q1>, …, <pn, qn>]

GTS2) Meets(ti, ti+1)Before(ti, ti+1), for all i = 1, …, n-1

APPENDIX E EFFICIENT AND EFFECTIVE STATE-BASED FRAMEWORK FOR
NEWS VIDEO RETRIVAL

193

GTS3) Tdur(ti) = qi – pi, for some i where 1≤ i ≤ n.
GTS4) Tgap(ti, ti+1) = pi+1 – qi for some i where 1≤ i ≤ n-1.

Generally speaking, a time-series may be incomplete in various ways. For example, if the relation between tj
and tj+1 is ―Before‖ rather than ―Meets‖, it means that the knowledge about the time-element(s) between tj and tj+1
is not available. In addition, if Tdur(tk) is missing for some k, it means that duration knowledge as for time-element
tk is unknown. Correspondingly, a complete time-series is defined in terms of the schema as below:

CTS1) Tn = [t1, …, tn] = [<p1, q1>, …, <pn, qn>]

CTS2) Meets(ti, ti+1), for all i = 1, …, n-1.

CTS3) Tdur(ti) = qi – pi, for all i = 1, …, n.
CTS4) Tgap(ti, ti+1) = 0 for all i = 1, …, n-1.

The validation of data is usually dependent on time. For instance, $1000 (account balance) can be valid before
and on 1 January 2003 but become invalid afterwards. We shall use fluents to represent Boolean-valued,
time-varying data, and denote proposition ―fluent f holds true over time t‖ by formula Holds(f, t) [1γ]:

(F1) (f, t)  t1(Part(t1, t)  Holds(f, t1))
That is, if fluent f holds true over a time-element t, then f holds true over any part of t.

(F2) t1(Part(t1, t)  t2(Part(t2, t1)  Holds(f, t2)))  Holds(f, t)
That is, if any part of time t contains a part of itself over which fluent f holds true, then f holds true over t.

Here,
 Part(t1, t)  Equal(t1, t)  Starts(t1, t)  During(t1, t)  Finishes(t1, t)

(F3) Holds(f1, t)  Holds(f2, t)  Holds(f1  f2, t)
That is, is fluent f1 or fluent f2 holds true over time t, then at least one of them holds true over time t.

(F4) Holds(not(f), t)  t1(Part(t1, t)  Holds(f, t1))
That is, the negation of fluent f holds true over time t if and only if fluent f does not hold true over any part of t.

(F5) Holds(f, t1)  Holds(f, t2)Meets(t1, t2)  Holds(f, t1t2)
That is, if fluent f holds true over two time-elements t1 and t2 that meets each other, then f holds over the

ordered-union of t1 and t2.

A state is defined as a collection of fluents. Following the approach proposed in [14], we shall use Belongs(f, s)
to denote that fluent f belongs to the collection of fluent representing state s. For the reason of simple expression,
if f 1, …, fm are all the fluents that belong to state s, we shall represent s as <f1, …, fm>. Also, without confusion,
we shall use formula Holds(s, t) to denote that s is the state of the world with respect to time t, provided that:

(F6) s = < f1, …, fm>Holds(s, t)  Holds(f1, t) Holds(fm, t))
That is, a state s holds true over time t if and only if every fluent in the s holds true over time t.

Consequently, a state-sequence S is defined as a list of states together with its corresponding time-series Tn. A
general state-sequence is defined in terms of the schema as below:

GSS1) Sn = [s1, …, sn]

GSS2) Holds(si, ti), for all i = 1, …, n
where [t1, …, tn] is a time-series.

Correspondingly, a state-sequence is defined as complete if and only if the corresponding time-series is
complete [15].

According to the basic set of axioms with respect to the point & interval based time-series theory [12], for
any two adjacent time elements t1 and t2 such that Meets(t1, t2), we can denote the ordered union of t1 and t2 as t1
 t2 If Holds(s, t1), Holds(s, t2) , we have:

Holds(s, t1  t2)
Tdur(t1  t2) = Tdur(t1) + Tdur(t2)

APPENDIX E EFFICIENT AND EFFECTIVE STATE-BASED FRAMEWORK FOR
NEWS VIDEO RETRIVAL

194

That is, the ―ordered union‖ operation over time elements is consistent with the conventional ―addition‖
operation over the duration assignment function, i.e., ‗Tdur‘.

4. The optimal temporal common subsequence

For two given state-sequences
1[,...,]m mS s s and ' ' '

1[,...,]n nS s s , Holds(,i is t) and Holds(' ',j js t),

,i i it p q  and ' ' ',j j jt p q  for i = 1, …, m and j = 1, …, n, the algorithm of the optimal temporal common

subsequence can be illustrated as below: Firstly, the following algorithm calculates the longest temporal
common subsequence.

 Input: two state-sequences mS and '
nS .

 Output: the length of the longest temporal common
 subsequences OTCSL(mS , '

nS).

 1) Initiation: '
0 0s s null 

 for i = 0 : m: OTCSL(i, 0) = 0
 for j = 0 : n: OTCSL(0, j) = 0

 2) Recursion:

 for i = 1: m
 for j = 1 : n
 if '

i js s # matched

 case 1: ' '
1 1i j i js s s s   

 OTCSL(i, j) = OTCSL(i − 1, j − 1)
 case 2: ' '

1 1i j i js s s s   

 OTCSL(i, j) = OTCSL(i − 1, j − 1) + 1
 case 3: ' ' '

1 1 1 1()&()i j i j i js s either s or s s s     

 OTCSL(i, j) = max(OTCSL(i−1, j), OTCSL(i, j−1))
 case 4: ' ' '

1 1 1 1()&()i j i j i js s neither s nor s s s     

 OTCSL(i, j) = OTCSL(i − 1, j − 1) + 1
 else # '

i js s , unmatched

OTCSL(i, j) = max(OTCSL(i−1, j), OTCSL(i, j−1))
 end # end of if
 end # end of j
 end # end of i

 3) Accomplishment

 OTCSL(mS , '
nS) = OTCSL(m, n)

In above algorithm, the continuously duplicated states are not re-counted as new common states in any
state-sequence. Secondly, in the same manner, we simultaneously record (,)k k kInd f l and

' ' '(,)k k kInd f l as the first and the last index of the kth common state between mS and '
nS , where k = 1, …, L =

OTCSL(mS , '
nS), ,k kf l א [1, m] and ' ',k kf l א [1, n]. According to the typed point-based intervals, the temporal

duration difference '(,)D m nOTCS S S and temporal gap difference '(,)G m nOTCS S S are calculated as below:

' '
' ' '

1

(,) () ()
k k k k

L

D m n l f l f

k

OTCS S S q p q p


    (4)

APPENDIX E EFFICIENT AND EFFECTIVE STATE-BASED FRAMEWORK FOR
NEWS VIDEO RETRIVAL

195

' '
1 1

'

' '

2

0 1
(,)

() ()
k k k k

L
G m n

f l f l

k

if k
OTCS S S

p q p q else
 




 

  


 (5)

Finally, the overall similarity with respect to the temporal order, temporal duration and temporal gap is
defined as:

' '

' '

(,) (,)

(,) (,)
m n L L m n

D D m n G G m n

OTCS S S w OTCS S S

w OTCS S S w OTCS S S



 
 (6)

Comparing with the conventional LCS based measurements introduced in section I, the main advantage of
OTCS is that it does deal with the difference caused by the temporal duration and the temporal gap during
state-sequences. For example, given state-sequences C1 = [abcd], C2 = [aaaaabc], C3 = [aabbccdd], C4 =
[aaebbfccgdd] and C5 = [aaaabbb]. For the reason of simple illustration, the temporal duration of each state is
set as 1 and the temporal gap between each pair of adjacent states is set as 0 if they are identical or 1 if they
are different. Table 1 reports the similarity between state-sequences measured by different algorithms. For
OTCS, the similarity is reported in terms of a triad [OTCSL, OTCSD, OTCSG] which will be integrated with
wL = 1 and wD = wG = 0.1.

Table 1. Similarity Between Example State-sequences With Different Measurements

Similarity C1 C2 C3 C4 C5

LCS

C1 4 3 4 4 2

C2 3 7 4 4 5
C3 4 4 8 8 4
C4 4 4 8 11 4
C5 2 5 4 4 7

CLCS
(th=2)

C1 4 3 0 0 2
C2 3 7 3 0 5
C3 0 3 8 0 4
C4 0 0 0 11 0
C5 2 5 8 0 7

ACS

C1 16 8 16 16 4
C2 8 128 16 16 32
C3 16 16 256 256 16
C4 16 16 256 2048 16
C5 4 32 16 16 128

T-WLCS

C1 4 7 8 8 7
C2 7 11 10 10 11
C3 8 10 12 12 9
C4 8 10 12 15 9
C5 7 11 9 9 12

OTCS

C1 [4, 0, 0] [3, 4, 0] [4, 4, 0] [4, 4, 6] [2, 5, 0]

C2 [3, 4, 0] [3, 0, 0] [3, 5, 0] [3, 5, 4] [2, 3, 0]
C3 [4, 4, 0] [3, 5, 0] [4, 0, 0] [4, 0, 6] [2, 3, 0]
C4 [4, 4, 6] [3, 5, 4] [4, 0, 6] [7, 0, 0] [2, 3, 2]
C5 [2, 5, 0] [2, 3, 0] [2, 3, 0] [2, 3, 2] [2, 0, 0]

The ―non-uniqueness‖ problem (different state-sequences have the same similarity to the query
state-sequence) is ubiquitous when applying those conventional algorithms due to the lacking of dealing with
temporal duration difference and temporal gap difference. For instance, given three state-sequence pairs (C1,
C1), (C1, C3) and (C1, C4) with the same temporal common subsequence ‗abcd‘, we shall get Sim(C1, C1) =
Sim(C1, C3) by using LCS and ACS, which states that the two state-sequences, C3 and C1, have the same
similarity to C1, where in fact they have different temporal durations. Also we shall get Sim(C1, C3) = Sim(C1,
C4) by using CLCS, LCS, ACS and T-WLCS, which states C3 and C4 have the same similarity to C1 where
in fact they are with different temporal gaps. The proposed OTCS in this paper is the only one that can
distinguish the different temporal duration or temporal gap, and in fact we have OTCS(C1, C1) > OTCS(C1,
C3) > OTCS(C1, C4).

APPENDIX E EFFICIENT AND EFFECTIVE STATE-BASED FRAMEWORK FOR
NEWS VIDEO RETRIVAL

196

In addition, some other abnormal or unreasonable results occur in those existing algorithms when
continuously duplicated common states exist frequently in state-sequences. For example, following CLCS,
LCS, ACS or T-WLCS, one will get Sim(C2, C5) > Sim(C2, C3). However, according to the definition of
temporal common subsequence, the similarity degree between C3 and C2 should be in fact higher than that
between C5 and C2. This is corrected in OTCS by reaching that OTCS(C2, C3) > OTCS(C2, C5).

Furthermore, in particular, CLCS is very fluctuant since the continuity of matched common subsequences
may be destroyed easily by the unmatched states (e.g., resulting as CLCS(C4, C1) = CLCS(C4, C2) =
CLCS(C4, C3) = CLCS(C4, C5) = 0) or by the continuously duplicated common states (e.g., resulting as
CLCS(C1, C3) = 0). In ACS, the similarity becomes extremely large (such as C3 and C4) when continuously
duplicated common states exist frequently in state-sequences and will therefore underestimate the high
similarity between C3 and C1. T-WLCS even cannot guarantee the query state-sequence has the highest
similarity with itself: for instance, T-WLCS(C1, C1) < T-WLCS(C1, C2). Such a problem becomes absurd if,
for instance, we have C2‘ = ‗aaaaaaaaaaaa‘, which will lead to T-WLCS(C1,C2‘) = 1β due to the unreasonable
treatment to continuously duplicated common states.

5. Experimental Results

To demonstrate the performance of OTCS, we test it on a news video retrieval system. We have collected
over 300 news video clips (state-sequences) lasting up to 5 hours as our database. The number of key-frame (state)
of each video clip varies from 10 to 65. For each key-frame, we extract the 64-dimensional colour histogram as
the feature vector which is then quantized by the paired quantizer introduced above where the similar key-frames
will be quantized as the identical state. Several query sets are reconstructed:

Original Query Set (OQS): 60 state-sequences randomly selected from the database;
Shortened Query Set (SQS): each state-sequence of this set is with length of (1-Į%)*60 by deleting Į%*60

states from OQS randomly;
Lengthened Query Set (LQS): each state-sequence of this set is with length of (1+ȕ%)*60 by duplicating ȕ%

predecessors with random position in OQS.

Figure 4. An example of key-frame sequence in video clip database
Figure 4 shows an example of key-frame sequence of video clip with various temporal duration and temporal

gap. The similar key frames (key-frame 7 ~11) will be quantized as the identical state, the duration of which is
equal to the sum of their duration.

We compare the performance with LCS, CLCS, T-WLCS and ACS. Again for OTCS, the temporal duration of
each key-frame is set as 1 and the temporal gap between each pair of adjacent key-frames is set as 0 if they are
identical or 1 if they are different. We set wL = 1 and test the experiment with wD and wG varying from {1, 1/2,
1/4, …, 1/1β8} and choose the values leading to the optimal performance.Table 2 shows the retrieval precision on
OQS against top number (the number of the most similar video clips compared with the query video clip).
Obviously, all similarity measurements perform better with the increase of top number, but generally speaking,
OTCS outperforms the others. In following experiments, the top number is fixed to 8 where the precision of these
five measurements has the largest standard deviation (std).

 key-frame1 key-frame2 key-frame3 key-frame4 key-frame5

 key-frame6 key-frame7 key-frame8 key-frame9 key-frame10

 key-frame11 key-frame12 key-frame13 key-frame14 key-frame15

APPENDIX E EFFICIENT AND EFFECTIVE STATE-BASED FRAMEWORK FOR
NEWS VIDEO RETRIVAL

197

Table 2. Retrieval precision on OQS

 Top number
Method

2 4 6 8 10 12 14 MEAN

LCS .72 .73 .76 .80 .86 .94 .98 .83

CLCS .70 .71 .73 .73 .77 .80 .85 .76

ACS .78 .80 .84 .90 .93 .95 .99 .88

T-WLCS .75 .81 .81 .86 .90 .92 .98 .86

OTCS .84 .85 .92 .93 .96 .98 .99 .92

STD .055 .058 .074 .080 .073 .069 .056

Figure 5 shows the retrieval precision on SQS and LQS. It‘s clear to see that OTCS is much more robust than

the others since by means of adjusting the value of the weight, it can handle temporal duration difference and
temporal gap difference caused by deletion and insertion. CLCS is most fluctuant with worst precision especially
in LQS since insertion operation may weaken the continuity of common subsequence. LCS is robust (with
smallest variance) but not as effective as OTCS. In addition, LCS has less influence on LQS since it can skip the
duplicated key-frames. ACS and T-WLCS are sensitive to the insertion and deletion degree as CLCS.

10 20 30 40 50 60 70 80 90
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95



P
re

ci
si

o
n


10 20 30 40 50 60 70 80 90
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95



P
re

ci
si

o
n


OTCS

CLCS

LCS
ACS

T-WLCS

OTCS

CLCS

LCS
ACS

T-WLCS

Figure 5. Retrieval Precision on SQS against Į and LQS against ȕ

Figure 6 shows the weight contribution of the temporal characters on different query sets. Generally
speaking, the length of the longest temporal common subsequence contributes more significance than
temporal duration and temporal gap on any query set. As for OQS, the temporal duration plays a
slightly more significant role than temporal gap because of the existence of approximate adjacent
key-frames which may be quantized as identical key-frames in video clips. For SQS, due to the
deletion of some key-frames, the temporal gap plays a more important role than temporal duration
while contrarily in LQS since the insertion operation generates more duplications of key-frames.

APPENDIX E EFFICIENT AND EFFECTIVE STATE-BASED FRAMEWORK FOR
NEWS VIDEO RETRIVAL

198

 (a) temporal duration (b) temporal gap

Figure 6. Weights contribution of temporal characters in OTCS

6. Conclusion and Future Work

State-sequence matching is a very hot research topic in data mining [16]. In this paper, we have
presented an efficient and effective state-sequence matching algorithm for news video retrieval. The
fundamental formal representation of time-series and state-sequence is introduced in detail, based on
which, we proposed a new concept of temporal common subsequence different from the traditional
common subsequence. A new LCS-based algorithm named Optimal Temporal Common Subsequence
(OTCS) which takes into account rich temporal information (including temporal order, temporal
duration and temporal gap) between state-sequences is finally designed and tested on news video
retrieval. The experimental results demonstrate the effectiveness and robustness of the new algorithm.

Linear combination is the most direct method to combine the three temporal characters. However, it
will be sensitive to the weight selection. Also, redundant calculation for the other two temporal
characters seems to be able to be optimized, which will remain as our future work.

7. References

H. Wu, B. Salzberg, and D. Zhang, ―Online Event-Driven Subsequence Matching over Financial Data

Streams‖, Proc. Int‘l Conf. Management of Data (SIGMOD 04), ACM Press, Jun. pp: 23-34, 2004.

Y. Zhu and D. Shasha, ―Warping indexes with envelope transforms for query by humming‖, In Proc. Int.
Conf. on Management of Data (SIGMOD 03), ACM Press, Jun. pp:181–192, 2003.

H. T. Shen, J. Shao, Z. Huang and X. Zhou, ―Effective and Efficient Query Processing for ↑ideo Subsequence
Identification‖. IEEE Transactions on Knowledge and Data Engineering, 21(3), pp:321-334, 2009.

R. Agrawal, C. Faloutsos and A. Swami, ―Efficient similarity search in sequence databases‖. In Proc. of the 4th
Int'l Conf. on Foundations of Data Organization and Algorithms (FODO‘9γ), Springer Press, Oct. pp:69-84,
1993.

N. Beckmann, H. Kriegel, R. Schneider and B. Seeger. ―The r*-tree: An efficient and robust access method for
points and rectangles‖. In Proc. of the Int'l Conf. on Management of Data (SIGMOD 99), ACM Press,, May.
pp:322-331, 1990.

Y. Moon, K. Whang and W. Loh, ―Duality-based subsequence matching in time-series databases‖. In Proc. of
the 17th Int'l Conf. on Data Engineering (ICDE‘01, May. pp: 263-272, 2001.

L. Bergroth and H. Hakonen and T. Raita. "A Survey of Longest Common Subsequence Algorithms". Proc.
Seventh International Symposium on String Processing and Information Retrieval (SPIRE‘00), IEEE
Press, pp:39–48.

A. Gao, H. Siegelmann, ―Time-Warped Longest Common Subsequence Algorithm for Music Retrieval‖. 5th
International Conference on Music Information Retrieval (ISMIR‘04),Oct.2004.

E. Keogh, ―Exact indexing of dynamic time warping‖, Proc. of the 28th Int‘l Conf. on Very Large Data Bases
(↑LDB‘0β), VLDB Endowment, Aug. pp:406–417, 2002.

APPENDIX E EFFICIENT AND EFFECTIVE STATE-BASED FRAMEWORK FOR
NEWS VIDEO RETRIVAL

199

Y. Kim and T. Chua, ―Retrieval of News ↑ideo ←sing ↑ideo Sequence Matching‖. Proc of the 11th Int.
Multimedia Modelling Conference (MMM‘05), IEEE Press, Jan. pp: 68 – 75, 2005.

H. Wang, ―All Common Subsequences‖, Proc. 20th Int. Joint Conf. on Artificial Intelligence (IJCAI‘07), Jan.
pp:635-640, 2007.

J. Ma & P. Hayes, ―Primitive Intervals ↑s Point-Based Intervals: Rivals Or Allies?‖, the Computer Journal, 49(1),
pp:32-41, 2006.

J. Allen. ―Towards a General Theory of Action and Time‖, Artificial Intelligence, βγ, pp:123-154, 1984.

M. Shanahan. ―A Circumscriptive Calculus of Events‖, Artificial Intelligence, 77, pp:29-384, 1995.

J. Ma, R. Bie, G. Zhao, ―An ontological Characterization of Time-series and State-sequences for Data Mining‖,
Proc. of the 5th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD‘08), IEEE
Press, Oct. pp:325-329, 2008.

Y. Peng, G. Kou, Y. Shi, and Z. Chen, ―A Descriptive Framework for the Field of Data Mining and Knowledge
Discovery‖, International Journal of Information Technology and Decision Making, 7 (4), pp6γ9 – 682,
2008.

APPENDIX F ORDER, DURATION AND GAP —TAKE THEM ALL

200

Order, Duration and Gap —Take Them All

Aihua Zheng, Jixin Ma, Miltos Petridis
School of Computing and Mathematical Sciences

The University of Greenwich, London, UK
{a.zheng, j.ma, m.petridis}@gre.ac.uk

Bai Xiao
Department of Computer Science

Beihang University, Beijing, China
little_point_baixiao@hotmail.com

Abstract—Based on a formal characterization of time-series
and state-sequences, a new distance measurement dealing with
both non-temporal and temporal distances for state-sequence
matching is proposed in this paper. In addition to formulating
the temporal order over state-sequences, it also takes into
account of temporal distances in terms of both the temporal
duration of each state and the temporal gaps between
adjacent pairs of states, which are neglected in most existing
approaches to time-series and state-sequence matching. In
particular, when specialized as a real-penalty-style
measurement by means of reifying the cost functions, it is
more flexible with regards to real-life applications than
binary-value-style distance measurements. In addition, it is
more robust than those existing real-penalty-style distance
measurements since it can filter out noise during the matching
procedure. Experimental results on reconstructed time-series
data from UCI KDD Archive demonstrate that it can tackle
the most general problems in matching time-series data with
rich temporal information.

Keywords - Pattern Recongition; Time-series;
State-sequence Matching

I. INTRODUCTION

Temporal pattern recognition of time-series and
state-sequences (also known as state-sequence matching)
plays a very important role in data mining and has been
well applied in various areas such as financial data analysis,
audio recognition, visual information retrieval, etc. One of
the most active and essential research topics in
state-sequence matching is the distance (or similarity)
measurement. On one hand, for general treatment, a
versatile distance measurement should be able to deal with
both of the non-temporal and temporal distances for any two
given state-sequences, where
1) Non-temporal distance: denotes the difference

between those states appearing in that two given
state-sequences, ignoring any temporal issues.

2) Temporal distance: consists of 3 characters:11
a) Temporal Order: the temporal relation over the

states to be matched in the two given
state-sequences.

This research is supported in part by National 973 Project (No.

2010CB327902)

b) Temporal Duration: the duration of each state,
e.g., Tdur as shown in Fig. 1.

c) Temporal Gap: the time interval standing between
two adjacent states, e.g., Tgap as shown in Fig. 1.

Figure 1 Temporal Gap and Temporal Duration

Various distance measurements have been developed
over the past half century, for state-sequence matching,
including Lp-Norms [5], the Longest Common Subsequence
(LCSS) [11], Dynamic Time Warping (DTW) [6], and Edit
Distance [7] and its variants such as Edit Distance on Real
Sequence (EDR) [3], Edit Distance with Real Penalty (ERP)
[4] and Time Warp Edit Distance (TWED) [10], etc.
However, most of these existing distance measurements
characterize temporal distance in terms of only the temporal
order over the state-sequences, where other important
temporal features such as temporal duration of each state
itself and temporal gap between two adjacent states have
been neglected. The only noted exception is TWED which
addresses temporal gap difference in term of the temporal
index of states while temporal duration of states is not dealt
with at all. In addition, in all the existing distance
measurements, time-series and state-sequences are simply
expressed as lists (timestamps) in the form of t1, t2, …, tn (or
s1, s2, …, sn), where the fundamental time theories based on
which time-series and sequences are formed up are usually
not explicitly specified. Therefore, the formal
characterizations with respect to the temporal basis are
neglected, leaving some critical issues unaddressed. E.g.:
 What a sort of objects do these t1, t2, … and tn belong

to? In other word, are they time points, time intervals,
or simply some absolute values from the real numbers,
integers, or the clock?

 What are the temporal order relationships between
these t1, t2, … and tn, and/or between the sequence of
collections? Are they simply well-ordered as the natural
numbers, or they may be relatively ordered by means of
relations such as ―Before‖, ―Meets‖, ―During‖, and so
on?

Tdur Tgap

state1 state2
state3

APPENDIX F ORDER, DURATION AND GAP —TAKE THEM ALL

201

 What are the associations between time-series/
sequences and non-temporal data that represent various
states of the world in discourse?

On the other hand, distance measurements can be
classified into two categories, with respect the ways in
which the cost function is reified: (a) binary-value-style
distance measurements, where the cost functions take binary
value (0/1) as matching cost which is not sensitive to noise
since they treat the noise and unmatched states with the
same cost (1); (b) real-penalty-style distance measurements,
in which the cost functions take real difference as matching
cost. In general, the real-penalty-style distance
measurements outperform the binary-value-style distance
measurements. However, the real-penalty-style distance
measurements are much more sensitive to noise since the
real difference between noise and non-noise states may lead
the overall distance to an abnormal degree.

The objective of this paper is to propose a new distance
measurement (NDM) which tackles both non-temporal
distance and temporal distance including all the three
temporal characters as described above, as well as the
disturbance of noise. The rest of this paper is organised as
below: the formal characterization of time-series and
state-sequences is introduced in section II, where our new
distance measurement is presented in section III. The
generality of the NDM is demonstrated in section IV by
means of showing other existing distance measurements as
special cases. Section V addresses the reification of the cost
functions with respect to the 3 temporal characters.
Experiments on reconstructed time-series data from UCI
KDD Archive are conducted and the corresponding results
are analysed in section VI. Section VII provides a brief
summary and concludes the paper with the prospects for
future work.

II. FORMAL CHARACTERIZATION OF TIME-SERIES AND

STATE-SEQUENCES

In this section, we present the formal characterization of
time-series and state-sequences. For the sake of allowing
expression of both absolute time values and relative
temporal relations, in this paper, time-elements are defined
as typed point-based intervals, each of which must be in one
of the following four forms [9]:

(p, q) = {r rRprq
[p, q)r | rRprq
(p, q] r | rRprq
[p, q]r | rR pr q

In the above, R stands the set of real numbers, and real
numbers p and q are called the left-bound and right-bound
of time-element t, respectively. The absolute values as for
the left and/or right bounds of some time-elements might be
unknown. In this case, real number variables are used for
expressing relative relations to other time-elements (see
later). If p = q, t is called a time point; otherwise it is called
a time interval. Without confusion, time-element [p, p] is
taken as identical to point p. Also, if a time-element is not

specified as open or closed at its left (right) bound, we shall
use ―<‖ (or ―>‖) as for its left (or right) bracket. In addition,
the temporal duration of a time-element t, Tdur(t), and the
temporal gap between adjacent elements t1, t2, Tgap (t1, t2)
can be defined as below:

t = <p, q>  Tdur(t) = q – p
t1 = <p1, q1> , t2 = <p2, q2> Tgap (t1, t2) = |p2 – q1|

Following Allen‘s terminology [1], we shall use ―Meets‖
to denote the immediate predecessor order relation over
time-elements, which can be formally defined as:

 Meets(t1, t2)  p,r,qR(t1 = (p, r)  t2 = [r, q)
  t1 = [p, r)  t2 = [r, q))  t1 = (p, r)  t2 = [r, q]
  t1 = [p, r)  t2 = [r, q]  t1 = (p, r]  t2 = (r, q)
  t1 = [p, r]  t2 = (r, q)  t1 = (p, r]  t2 = (r, q]
  t1 = [p, r]  t2 = (r, q])
It is easy to see that the intuitive meaning of Meets(t1, t2)

is that, on the one hand, time-elements t1 and t2 don‘t
overlap each other (i.e., they don‘t have any part in
common, not even a point); on the other hand, there is not
any other time-element standing between them.

Analogous to the 13 relations introduced by Allen for
intervals [1], there are 30 exclusive temporal order relations
over time-elements including both time points and time
intervals, which can be classified into the following 4
groups:

 Relations that relate points to points:
{Equal, Before, After}

 Relations that relate points to intervals:
{Before, After, Meets, Met_by, Starts, During.
Finishes}

 Relations that relate intervals to points:
{Before, After, Meets, Met_by, Started_by, Contains,
Finished_by}

 Relations that relate intervals to intervals:
{Equal, Before, After, Meets, Met_by, Overlaps,
Overlapped_by, Starts, Started_by, During, Contains,
Finishes, Finished_by}

The definition of these derived temporal order relations
in terms of the single relation Meets is straightforward. E.g.:

Before(t1, t2)  tT(Meets(t1, t)  Meets(t, t2))
Based on such a time theory, a time-series Tn can be

defined as a vector of time-elements temporally ordered one
after another [8]. Formally, a general time-series is defined
in terms of the following schema:

GTS1) Tn= [t1, …, tn] = [<p1, q1>, …, <pn, qn>]
GTS2) Meets(ti, ti+1)Before(ti, ti+1), for all i = 1, …, n-1
GTS3) Tdur(ti) = qi – pi = di, for some i where 1≤ i ≤ n.
GTS4) Tgap(ti, ti+1) = pi+1 – qi = gi for some i where 1≤ i ≤

n, and g0 is initialized as 0.
Generally speaking, a time-series may be incomplete in

various ways. For example, if the relation between ti and ti+1
is ―Before‖ rather than ―Meets‖, it means that the
knowledge about the time-element(s) between ti and ti+1 is
not available. In addition, if Tdur(ti) = di is missing for some
i, it means that duration knowledge as for time-element ti is
unknown.

APPENDIX F ORDER, DURATION AND GAP —TAKE THEM ALL

202

Correspondingly, a complete time-series is defined in
terms of the schema as below:

GTS1) Tn = [t1, …, tn] = [<p1, q1>, …, <pn, qn>]
GTS2) Meets(ti, ti+1), for all i = 1, …, n-1.
GTS3) Tdur(ti) = qi – pi = di, for i = 1, …, n.
GTS4) Tgap(ti, ti+1) = pi+1 – qi = gi for i = 1, …, n-1; and g0

= 0.
The validation of data is usually dependent on time. For

instance, $1000 (account balance) can be valid before and
on 1 January 2003 but become invalid afterwards. We shall
use fluents to represent Boolean-valued, time-varying data,
and denote proposition ―fluent f holds true over time t‖ by
formula Holds(f, t) (see details in [1]).

Consequently, a state-sequence Sn is defined as a list of
states together with its corresponding time-series Tn. A
general state-sequence is defined in terms of the schema as
below:

GTS1) Sn = [s1, …, sn]
GTS2) Holds(si, ti), for all i = 1, …, n
where [t1, …, tn] = Tn is a time-series.
Correspondingly, a state-sequence is defined as

complete if and only if the corresponding time-series is
complete [8].

III. NEW DISTANCE MEASUREMENT FOR FORMAL
STATE-SEQUENCE MATCHING

Based on the above characterization of time-series, the
triple domain U = S×D×G is defined for state-sequences
where:

SଶRd: d-dimensional domain of non-temporal data
ordered in consequential (that is, ―Meets or Before‖)
temporal order;

D, GଶR: the domains of temporal duration and
temporal gap respectively.

So the formal characterization of two given
state-sequences can be expressed as Am = [a1, …, am] and Bn
= [b1, …, bn] א U where

for i = 1, …, m, j = 1, …, n:
' ' ', ,i i i ia s d g S D G    and '' '' '', ,j j j jb s d g S D G    ;

' ' '
1[,...,]i i ids s s and '' '' ''

1[,...,]j j jds s s

Holds(' ',i is t) and Holds('' '',j js t)
' ' ',i i it p q  and ' ' ' ' ' ',j j jt p q  ;

' ' ' '()i dur i i id T t q p   and '' '' '' ''()j dur j j jd T t q p   ;

for i = 1, …, m-1, j = 1, …, n-1:
' ' ' ' '

1 1(,)i gap i i i ig T t t p q    and '' '' '' '' ''
1 1(,)j gap j j j jg T t t p q   

and '''
0 0 0g g  .

With respect to the non-temporal information and rich
temporal information for these two state-sequences, the
general distance measurement is defined as:

(,) (,) (,)
m n ntem ntem m n tem tem m n

NDM A B w Dis A B w Dis A B  (1)

where (,)
ntem m n

Dis A B and (,)
tem m n

Dis A B denote the

non-temporal distance and temporal distance, respectively
with the corresponding weightntemw and temw .

A. Non-temporal Distance

Non-temporal matching stands for the elemental state
matching of the state-sequences Am and Bn, due to the fact
that elemental state appearing in state-sequences are not
actually ordered by their index, that is, the state-sequence is
actually regarded as a set of states. Therefore, in the first
place, pairing two given state-sequences involves a
combinational permutation problem. In general, for m≥n,
there are mPrn = m!n!/(m-n)! ways of pairing Am with Bn.
Let Pr denote the set of all possible ordered vectors formed
by selecting, in order, n random elemental states from Am. It
seems reasonable to take the pairing which gives the
minimal overall distance. Hence, in this paper, we shall
define the non-temporal distance between Am and Bn as:

(,) (,)ntem m n pr Pr ntem nDis A B min Dis pr B (2)

Where '' 2
1 1

(,) (,) /
n n

ntem n ipr Lp j j iprj i
dis pr B w dis pr s w

 
  

pr=[pr1,…, prn]

B. Temporal Distance

Based on the triad representation of state-sequences, the
temporal distance between two given state-sequences Am
with Bn with respect to the 3 temporal characters, that is,
temporal order, temporal gap and temporal duration, is
defined recursively as below:

1

1

1 1

(,) ()
(,) min (,) ()

(,) ()

tem m n del m

tem m n tem m n ins n

tem m n sub m n

Dis A B W Cost a
Dis A B Dis A B W Cost b

Dis A B W Cost a b








 

   
 

(3)

where m, n˻ 1, ()mCost a  , ()nCost b and

()m nCost a b denote the cost function for edit operations

deletion, insertion and substitution, respectively, where
{ , , }() (),i i i Tord Tdur TgapCost x y w Cost x y     (4)

and() {(),(),()}m n m nbx y a a b     

The initialization is set as below:

0 0(,) 0temDis A B  ,

 0(,)tem jDis A B  , for j˻1 (5)

0(,)tem iDis A B  , for i˻1

IV. THE GENERALITY OF NDM

NDM proposed here addresses all the 3 temporal
characters, including temporal order, duration and gap. In
fact, as illustrated in Table I, most of those existing
measurements can be taken as special cases of NDM by
means of specifying the non-temporal and temporal weights,
and the cost functions, correspondingly. N.B. For LCSS,
instead of taking the minimum value, the maximum value is

APPENDIX F ORDER, DURATION AND GAP —TAKE THEM ALL

203

accumulated since it counts the number of common states of
two state-sequences instead of the cost of matching them.

TABLE I. MEASUREMENTS SUBSUMED FROM NMD

Measure
ment

Settings

ED

0, 1ntem temw w  1del ins subW W W  
1, 0Tord Tdur Tgapw w w  

(,) (,)=1Tord m Tord nbCost a Cost  ,

(,) (,)
Tord

ED
Tord m n m nCost a b Cost a b

EDR

0, 1ntem temw w  1del ins subW W W  
1, 0Tord Tdur Tgapw w w  

(,) (,)=1Tord m Tord nCost a Cost b  ,

(,) (,)
Tord

EDR
Tord m n m nCost a b Cost a b

DTW

0, 1ntem temw w  1del ins subW W W  
1, 0Tord Tdur Tgapw w w  

(,)Tord mCost a  = (,)Tord nCost b = ,()
Tord m nCost a b

= ,()
Tord

DTW
m nCost a b

ERP

0, 1ntem temw w  1del ins subW W W  
1, 0Tord Tdur Tgapw w w  

(,) (,)Tord m Lp m gCost a d a  , (,) (,)Tord n Lp ngCost b d b  ,

(,) (,)Tord m n Lp m nCost a b d a b

LCSS

0, 1ntem temw w  0, 1del ins subW W W  
1, 0Tord Tdur Tgapw w w  

(,) (,)=0Tord m Tord nCost a Cost b  ,
, ,() ()LCSS

Tord m n m nTordCost a b Cost a b

TWED

0, 1ntem temw w  1del ins subW W W  
1, 0,Tord Tdur Tgapw w w v  

1 1

1 1

1 1, , ,

,

(,) (,) (,)

(,) (,) (,)

() () ()

(()

TWED TWED
m m m m mTgapTord

TWED TWED
n n n n nTgapTord

TWED TWED
m n m n m nTord Tord

TWED
m nTgap

Cost a Cost a a v Cost a a

Cost b Cost b b v Cost b b

Cost a b Cost a b Cost a b

v Cost a b

 
 

 

 

 

   
    
   

  1 1,())TWED
m nTgapCost a b 

V. COST FUNCTION REIFICATION

With regards to the cost function, distance
measurements for state-sequence matching can be grouped
into two categories: binary-value-style distance
measurements such as LCSS, ED and EDR, and
real-penalty-style distance measurements such as ERP, DTW
and TWED. As discussed in the introduction, the later
outperform the former but are much more sensitive to noise.

To filter out the noise or release its influence, the cost
function in NDM is defined as below:

For i = {Tord, Tdur, Tgap }
() ()

()
i i i

i

w Cost x y if Cost x y
Cost x y

elsec

      


 (6)

where () {(),(),()}m n m nbx y a a b      and c is a

constant usually set either as 0 (to filter out the noise), or as
the current maximum cost (to release the influence of the
noise).

The main difference among the three typical
real-penalty-style distance measurements ERP, DTW and
TWED is: when insertion (or deletion) is required to align
state-sequence Am and Bn, ERP inserts a constant (usually 0)
into Am while DTW duplicates the previous state in Am and
TWED duplicates the previous state in Bn in terms of the
graphical editor paradigm [10]. These different disposals
will lead to different costs for operation insertion, deletion
and substitution. We shall follow the approach of EDR and
use weights

delW ,
insW and

subW to adjust the corresponding

operations. In fact, the cost functions of NDM are defined as
below:

'' '

'''

'''

(0,)
() (,0)

(,)

Lp j i

Tord i j Lp i j

Lp i j

dist s if s
Cost a b dist s if s

dist s s else




 
  


 (7)

'' '

'''

'''

,

,

,

(0) 0
() (0) 0

()

Lp j i

Tdur i j Lp i j

Lp i j

dist d

dist d

dist d

if d
Cost a b d if

d else

 
  


 (8)

'' '

11
'''

1 1
'''

1 1

,

,

,

(0) 0
() (0) 0

()

Lp ij

Tgap i j Lp i j

Lp i j

dist g

dist g

dist g g

if g
Cost a b if g

else



 

 

 
  


 (9)

Formulae (2), and (6)-(9) accommodate non-temporal
and all the 3 temporal distances, as well as the cost function,
which illustrates the integrity and generality of NDM.

VI. EXPERIMENTAL RESULTS

A. Experiment set up

The NDM has been tested on Synthetic Control Chart
Time Series in UCI KDD Archive. The database consists of
600 state-sequences with length of 60 for each, including 6
different classes (100 samples each). Several query sets are
reconstructed: Original Query Set (OQS): consists of 180
(the first 30 state-sequences from each class)
state-sequences; Shortened Query Set (SQS): each
state-sequence is with length of (1-Į)*60 by deleting Į*60
states evenly (EV), from the beginning (FB) and from the
end (FE) of the corresponding state-sequence in OQS;
Lengthened Query Set (LQS): each state-sequence is with
length of (1+ȕ)*60 by inserting ȕ*60 states evenly (EV),
from the beginning (FB) and from the end (FE) into the
corresponding state-sequence in OQS; Noised Query Set
(NQS): each state-sequence is obtained by adding a
Gaussian noise to each state-sequence in OQS. We shall
simply take wntem = wtem = 1 in the following experiments.

B. Comparison with Binary-value-style Measurements

As a real-penalty-style distance measurement, we firstly
compare its performance with binary-value-style

APPENDIX F ORDER, DURATION AND GAP —TAKE THEM ALL

204

measurements EDR and LCSS with the setting in Table I.
The retrieval experiment is implemented with threshold
varying from {0.1, 0.β, …, 0.9} for each measurement and
the one which leads to the best performance has been
chosen as the optimal threshold. Table II shows the targets
recall and precision on different query sets defined above,
where the average of the results on Į, ȕଲ{0.1, 0.2, 0.3, 0.4,
0.5} is calculated. Generally speaking, NDM is more robust
and outperforms EDR and LCSS, benefited from its
real-penalty-style.

TABLE II. RECALL AND PRECISION COMPARISON OF EDR, LCSS
AND NDM WITH DIFFERENT QUERY DATA SET

Data

Measurement
OQS

SQS LQS

EV FB FE EV FB FE

Re-cal
l

EDR 0.76 0.52 0.64 0.62 0.76 0.68 0.76

LCSS 0.84 0.68 0.8 0.74 0.60 0.74 0.72

NDM 0.90 0.86 0.80 0.74 0.74 0.83 0.84

Pre-ci
sion

EDR 0.96 0.76 0.76 0.88 0.76 0.88 0.84

LCSS 0.95 0.76 0.85 0.64 0.64 0.88 0.98
NDM 0.99 0.83 0.88 0.85 0.85 0.88 0.97

0 0.5 1 1.5 2

0
0.25

0.5
0.75
1
0

0.25

0.5

0.75

1

mean

ERP

variance

pr
ec

is
io

n

0 0.5 1 1.5 2

0
0.25

0.5
0.75
1
0

0.25

0.5

0.75

1

mean

DTW

variance

pr
ec

is
io

n

0 0.5 1 1.5 2

0
0.25

0.5
0.75
1
0

0.25

0.5

0.75

1

mean

TWED

variance

pr
ec

is
io

n

0 0.5 1 1.5 2

0
0.25

0.5
0.75
1
0

0.25

0.5

0.75

1

mean

NDM

variance

pr
ec

is
io

n

Figure 2 Precision of NQS against mean and variance

TABLE III. STATISTIC OF THE PRECISION OF NQS

Method
Statistic

ERP DTW TWED NDM

Mean (%) 64.98 75.72 78.80 85.59
STD 0.1172 0.0841 0.0971 0.0583

C. Comparison with Real-penalty-style Measurements

Comparing with real-penalty-style measurements such
as ERP, DTW, TWED, the main advantage of NDM is that
it‘s not sensitive to noise. Fig. 2 shows the results on NQS
with Gaussian noise in different mean ([0, 0.β,…, β]) and
variance ([0.1, 0.β,…, 1]). The best results for wTgap = {10-4,
10-3, 10-2, 10-1, 1, 10-1, 10-2, 10-3, 10-4} are selected. Visually,
NDM has higher precision and smaller fluctuation. Table III
above shows the average mean and standard deviation (STD)

of each subfigure in Fig. 2, which statistically lists the digital
values for the corresponding subfigures in Fig. 2.

D. Capability to Handle Temporal Difference

We construct different temporal duration and gap
distribution for each class. Fig. 3 shows the examples of 6
different distributions of duration and corresponding
temporal gap. We set wTord = 1 and select the best result for
wTdur and wTgap from {10-4, 10-3, 10-2, 10-1, 1, 101, 102, 103,
104}. Table IV shows the classification error number for
each class with different combinations of distance
characters. From which we can see the NDM can tackle
most matching tasks involving in time-series and
state-sequence data, especially with different temporal
matching requirements.

0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time-series
d

u
ra

ti
o

n


0 5 10 15 20 25 30 35 40 45 50 55 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time-series

T
em

p
o

ra
l

G
ap



Figure 3 Examples of temporal duration and temporal gap
distribution

TABLE IV. CLASSIFICATION ERROR NUMBER OF EACH CLASS
WITH DIFFERENT COMBINATIONS OF DISTANCE CHARACTERS

 Data

Characters
OQS

SQS LQS

EV FB FE EV FB FE

Tord+Tgap 1 3 5 4 3 3 4

Tord +Tdur 2 4 6 3 4 3 2

Tord+Tgap+Tdur 1 4 5 5 3 4 3

VII. CONCLUSION AND FUTURE WORK

In this paper, a new distance measurement (NDM),
which takes into account of both non-temporal and temporal
characters, has been introduced for subsequence matching.
Benefiting from a formal characterization of time-series and
state-sequences, this measurement is able to deal with
temporal order, temporal duration and temporal gap. In
particular, when it is specialised as a real-penalty-style
distance measurement, it can deduce the influence of noise
by means of using inequality filter to filter out the noise.

In order to be applied on large scale database, it‘s very
important to adopt proper pruning strategies, which remain
the future work to be conducted.

VIII. REFERENCES

Allen, J. 1984. Towards a General Theory of Action and Time. Artificial
Intelligence 23: 123-154.

Bergroth, L., Hakonen, H. and Raita, T. 2000. A Survey of Longest
Common Subsequence Algorithms. In Proceedings of the Seventh

APPENDIX F ORDER, DURATION AND GAP —TAKE THEM ALL

205

International Symposium on String Processing and Information
Retrieval, A Curuna, Spain, 39–48.

Chen, L. and Ng, R. 2004. On the Marriage of LP-Norm and Edit Distance.
In Proceedings of International Conference on Very Large Data
Bases, Toronto, Canada 792-803.

Chen, L., Ozsu, M.T. and Oria, V. 2005. Robust and Fast Similarity
Search for Moving Object Trajectories. In Proceedings of ACM
SIGMOD International Conference Management of Data, Baltimore,
Maryland, 491-502.

Faloutsos, C., Ranganathan, M. and Manolopoulos, Y. 1994. Fast
subsequence matching in time-series databases. In Proceedings of
ACM SIGMOD International Conference Management of Data,
Minnesota, United States, 419–429.

Keogh, E. and Pazzani, M. 2000. Scaling up dynamic time warping for
data mining applications. In Proceedings of the 6th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
Massachusetts, United States, 285-289.

Levenshtein, V.I. 1965. Binary Codes Capable of Correcting Deletions,
Insertions, and Reversals. Soviet Physics Doklady 10(8): 845-848.

Ma, J., Bie, R. and Zhao, G. 2008. An ontological Characterization of
Time-series and State-sequences for Data Mining. In Proceedings of the
fifth International Conference on Fuzzy Systems and Knowledge
Discovery, Shandong, China, 325-329.

Ma, J. and Hayes, P. 2006. Primitive Intervals Vs Point-Based Intervals:
Rivals Or Allies?. the Computer Journal 49(1): 32-41.

Marteau, P.F. 2008. Time Warp Edit Distances with Stiffness Adjustment
for Time Series Matching. IEEE Transaction on Pattern Analysis and
Machine Intelligence. In Press(0):1-15.

↑lachos M, Gunopulos D & Kollios G. β00β. ―Discovering similar
multidimensional trajectories‖. In Proceedings of the 18th
International Conference on Data Engineering. San Jose, CA,
673–68

206

