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ABSTRACT

ABSTRACT

Time-series and state-sequences are ubiquitous patterns in temporal logic and are
widely used to present temporal data in data mining. Generally speaking, there are three
known choices for the time primitive: points, intervals, points and intervals. In this
thesis, a formal characterization of time-series and state-sequepecesented for both
complete and incomplete situations, where a state-sequerdefined as a list of
sequential data validad on the corresponding time-series. In addition, subsequence
matching is addressed to associate the state-sequences, where both non-temporal
aspects as well as rich temporal aspects including temporal order, temporal duration

and temporal gap should be taken into account.

Firstly, based on the typed point bas@detelements andirhe-series, a formal
characterization of time-series and state-sequences is introduced for bothteand!
incomplete situations, where a state-sequeaaceefined as a list of sequential data
validaied on the corresponding time-series. A time-seisdermalized as a tetrad (T, R
Taun Tgap), Which denots: the temporal order of time-elements; the tempataitionship
between time-elements; the temporal duration o ¢éate-element and the temporal gap

between each adjacent pair of time-elements ragphct

Secondly, benefiting from the formal characterizati@h time-series and
state-sequencesa general similarity measureme{@SM) that takes into account both
nontemporal and rich temporal information, includignporal order as well as temporal
duration and temporal gais introduced for subsequence matching. This measneis
general enough to subsume most of the popular existinguneeaents as special cases. In
particular,a new conception of temporal common subsequepeoposed. Furthermore,
a new LCS-based algorithm named Optimal Temporahi@on Subsequence (OTCS),
which takes into account rich temporal informatimngesigned. The experimental results
on 6 benchmark datasets demonstrate the effecéisemed robustness of GSM and its

new case OTCS. Compared with binary-value distammasurements, GSM can
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distinguish between the distance caused by diffestgites in the same operation
compared with the real-penalty distance measuremeotmn filter out the noise that may

push the similarity into abnormal legel

Finally, two case studies are investigated for temporal pattern recognition:

basketball zone-defence detection and video copy detection.

In the case of basketball zone-defence detection, the computational technique and
algorithm for detecting zone-defence patterns from basketball videwdroduced,
where the Laplacian Matrix-based algorithm is extended to take into account the effects
from zoom and single defender’s translation in zone-defence graph matching and a set
of character-angle based features was proposed to describe the zone-defence graph. The
experimental results show that the approach explored is useful in helping the coach of
the defensive side check whether the players are keeping to the correct zone-defence
strategy, as well as detecting the strategy of the opponent side. It can describe the
structure relationship between defender-lines for basketball zone-defence, and has a
robust performance in both simulation and real-life applications, especially when

disturbances exist.

In the case of video copy detection, a framework for subsequenchimgyas
introduced. A hybrid similarity framework addressibgth non-temporal and temporal
relationships between state-sequences, representbgbartite graphsis proposed. The
experimental results using real-life video databademonstrated that the proposed
similarity framework is robust to states alignmenthwdifferent numbers and different

values, and various reordering including inversaod crossover.
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CHAPTER 1 INTRODUCTION

CHAPTER 1. INTRODUCTION

Section 1.1 The Motivation: Temporal Pattern Recognition

A term temporal pattern can be defined as a collection of states (events) that exist
along some timeline. For instance, a temporal pattern could be a sequence of actions

comprising of eating, walking, taking a shower and then going to sleep.

Temporal pattern recognition is the process of matching two temporal patterns

with respect to the temporal properties.
Section 1.1.1 Characterization of Time-series and State-sequences

The notion of time is ubiquitous and vital in modelling natural phenomena and
human activities. Time-series and state-sequences are important patterns in data mining
and have attracted a lot of interest among researchers [BC1996, DGM198T9%R
KP1998, YJF1993].

However, in most of the proposed formalisms, the forefdal time theories on
which time-series and state-sequences are basedoarasually explicitly specified.
Time-series and sequences are simply expressestaglithe form ofif to, .... t, Or as
sequences of collections of observations, and sevbare formal characterizations with
respect to the temporal basis are neglected, lgaome critical issues unaddressed. For

example:

® \What sort of objects do thesgtp, ... and t, belong to? In other words, are
they time points, time intervals, or simply someddlite values from the set of real

numbers or integers?
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® \What are the temporal order relationships betweet, t... and t,, and/or
between the sequence of collections? Are they ovdbred according to ordinal
number sequenes, or are they relatively ordered bgnsmef relations such as

“Before”, “Meets”, “During”, and so on?

® What are the associations between time-series/state-sequences and

non-temporal data that represent various states of the world of discourse?

Therefore, a formal characterization of time-series and state-sequences is

required.

Section 1.1.2 State-sequence Matching with Rich Temporal Aspects

The typical temporal pattern recognition is actually the state-sequence
matching problem. State-sequence matching can be divided into two categories:
whole matching (matching the state-sequences with the same length) and
subsequence matching (match the state-sequences with different length). Obviously,
the whole matching problem is in fact a special case of subsequence matching,
which has been widely researched for many years. In this thesis, without losing
generality, subsequence matching is the focus for the state-sequence matching
problem. One of the most active and essential research topics in state-eequenc
matching is the similarity measurement. For general treatment, a versatile
similarity measurement should be able to deal with both non-temporal similarity

and temporal similarity for any two given state-sequences, where:

(1) Non-temporal similarity denotes the similarity between those states
appearing in two given state-sequences according to the collection of state
elements in the sets, ignoring any temporal issues. For instance in figure 1.1, there
is no temporal information in the two state-sequences &, b, c, e, d} and A=
{a, b, b, d, d, d, e, g}. The only similarity we can identify is that both of them

contain the state {a, b, d, e}.
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A A;

Figure 1.1 Non-temporal set in state-sequence

(2) Temporal similarity consists of 3 aspexct

i. Temporal Order

o The temporal relation along the same time axis as shown in figure 1.2
and figure 1.3 where the axis denotes the temporal order. This issue has
been well dealt with in most existing subsequence matching algorithms

built through dynamic programming.

i. Temporal Duration

o The duration of each state. For instance, as shown in figure 1.2 where
each column block denotes a single unit time interval, the two
state-sequences; Bnd B, have different temporal duration assignment

functions Ty =1[1, 1, 1, 1] and i =[1, 2, 3, 4] , respectively.

o The overall duration of continuous duplications of states. For instance,
as shown in figure 1.2, for state-sequencesaBd B, the common
subsequencébcd’ has different overall durations, ql,1 = [1, 1, 1, 1]
and Ty = [2, 3 4, 3], even if the duration of each unit state is identical

to 1. This is because of the duplications of those unit states.

I >
Tdurl]_ 1H 1! 1! EZ
B
S = g}
dur2q 2 3 4 .d
Bs

Figure 1.2 Various Temporal Durations in State-sequenc
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ii. Temporal Gap

« The time element between two adjacent states as shown in figure 1.3.
For the stateequence ‘abcd’, C; and G, C; have different temporal gap
values between ab, bc and cd, wia,T= [2, 2, 2], Tap2= [1, 2, 3] and

Tgaps=[1, 1, 3] respectively.

Toat 2 2 2 ma
G Ob
Tap2 1; ﬂ—Z Y3 Bc
G g III m 5 md
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Figure 1.3 Various Temporal gap in state-sequence

Therefore, a general similarity measurement that takes into account both the

non-temporal aspects and the rich temporal aspects is required.

Section 1.1.3 Similarity Measurement for State-sequence Matching

Plenty of similarity measurements have been developed in past decades. On one
hand, from the point of view of similarity strategy, subsequence matching can be

classified into two categories:

o Edit Distance-based measurements: match the state-sequences with least
operations. Edit Distance (ED) [Lev1965] (also known as Levenshtein
Distance) is an innovative distance measurement that has been widely and
actively investigated and extended upon by many researchers. ED measures
the distance between two state-sequences according to the number of
operations (such as insertion, deletion and substijutexjuired to transform
one state-sequence to the other. What follows are some representatives:

[WF1973] developed an efficient ED with @) time complexity by
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employing dynamic programming algorithm [Bel1957]. Dynamic Time
Warping (DTW) [SC197B allowed time warping such as stretching and
shrinking by duplicating the previous state during matchamgd,was followed

by variants such as PDTW [SC1978], SPRING method [SFY2007] and
EDTW [APPK2008], and so on. [CN2004] developed the Edit Distance on
Real Sequence (EDR). Subsequently, [CO0O2005] developed the Edit distance
with Real Penalty (ERP), which takes the real penalty as the cost of each
operation. Distinguishing from DTW, it adds a gap instead of duplicating the
previous state while aligning two state-sequences. [MM2008a] extended ED
(EDD) to take into account the different costs for different states in the
operation and subsequently developed its Multi-Resolution for EDD (MREDD)
in [MM2008b]. They distinguish the different unmatched states by adding a
frequency function to the basic ED. Highlighting that none of the above
measurements takes into account Temporal Gap difference during matching,
[Mar2008] produced an elastic measurement, named Time-Warped Edit
Distance (TWED), which takes into account the Temporal Gap difference in

terms of the temporal index of states.

LCS-based measurements: match the state-sequence according to the presence
of common subsequences. The most successful measurement is the longest
common subsequences (LCSS) [DGM1997]. The basic idea is to find the
longest common sequence in all the sequences along the same temporal order.
Several algorithms based on the original LCS have been proposed. Some
representative variants of these are: Time-warped LCS (T-WLCS) [GS2004],
which counts continuously duplicated common states in the spirit of the
Dynamic Time Warping (DTW) [SC1978] algorithm; Compacted LCS (CLCS)
[KC2005], where only the common subsequence, the continuous length of
which is longer than the specified thresholth) (s counted; All Common
Subsequence (ACS) [Wan2007] which measures the similarity by means of

counting the number of all common subsequences (including empty string in
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actual algorithm) and taking the strategy that the more common subsequences

a pair of state-sequences have, the more similar they are.

However, most of these existing similarity measurements characterize temporal
similarity in terms of only the temporal order over the state-sequences, whilst other
important temporal characters such as the temporal duration of each state itself and the
temporal gap between two adjacent states have been neglected. The only noted
exception is TWED, which addresses temporal gap similarity in terms of the simple
temporal index of states, whilst temporal duration of states is not dealt with at all.
According to the formal theory of time-series and state-sequences, a general matching
measurement should take into account all of the temporal aspects illustrated above. All
the existing measurements can be regarded as special cases of a General Similarity
Measurement. Therefore, designing a general similarity measurement for

state-sequence matchingaisital and attractive focus of my research.

On the other hand, with respect the ways in which the cost function is specified,
similarity measurements can be classified into two alternative categqags
binary-value distance models, where the cost functions take binary value (0/1) as
matching cost that is not sensitive to noise since they treat the noise and unmatched
states with the same cost (1) and (b) real-penalty distance models, in which the cost
functions take real difference as matching cost. Generally speaking, binary-value
models are more robust since they are not sensitive to the outliers and noise but the
real-penalty models are more rational since, in comparing with the logic binary Qalues
and 1, the real distance refines the distance. The real-penalty distance models
demonstrably outperform binary-value distance models. However, real-penalty distance
models are much more sensitive to noise since the real difference between noise and

non-noise states may push the overall distance to an abnormal degree.

For instance, take two state-sequencesdacy, bi] and [&, as, by, by], as shown
in figure 1.4, and suppose the distance betweermyaby, b, ¢, & is 10 sequentially,

whilst two states are matched if they start with the same charactern (matehes g.
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The matching cost during the two state-sequences can be calculatedas0+0+ 1+ 0 =1,
whilst in binary-value measurements it is calculated as 2 + 2 + 10 + 3 = 17. Hepe k

the characters the same and change the subscription of any state,($hénn&tching

cost will remain the same for binary-value measurements. This means the
state-sequences with different subscriptions will not be distinguished in binary-value
measurements, whilst real-penalty measurements will generate different matching costs.
For example, the matching cost between & ¢, by] and [a, as, o, by] is 13, which

is smaller than that betweem[a ¢, ] and [a&, as, by, by]. However, if noise exists
(change pinto $ which is 100 units away from)cthe matching cost in binary-value

measurements remains 1, whilst it becomes 117 in real-penalty measurements.

2] & Co by | S
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Figure 1.4 Temporal differences between two example state-sequences with

binary-value model and real-penalty model

Therefore, the similarity measurement should be as reasonable as real-penalty

measurements and also robust in the face of the noise.

Section 1.2 Objective: A General State-Based Framework for

Temporal Pattern Recognition

This thesis aims to achieve the following tightly associated research goals:

1). A formal characterization ofime-series and state-sequence: based on the
typed point-based intervals, a formal characterizationtimie-series and
state-sequence is required to describe the objects of time elements and states,

the temporal relationships between them and the associations between
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2).

3).

4).

time-series/sequences and non-temporal data.

A general similarity measurement for subsequence matching: based on the
formal characterization of time-series and state-sequence, it is necessary to
design a general similarity measurement (GSM) to take into account both
non-temporal and rich temporal aspects. The measurement should be able to
tackle temporal order, temporal duration and temporal gap, and also be
versatile enough to subsume most of the existing representative similarity

measurements as special cases.

Investigation of basketball zone-defence detection: as a case study of temporal
pattern recognition, the basketball zone-defence detection will be investigated

to explore the structural relationship between the defenders.

Investigation of video copy detection: as will be demonstrated in another case
study of temporal pattern recognition, it is important to design a model that is
robust when faced with the re-ordering editing and noise which is ubiquitous
in video clips. Furthermore, it is also necessary to design an accurate
measurement to distinguish the possible video clips with identical similarity to

the query video clip.

Section 1.3 Outline of the Main Contributions

In order to meet the goals outlined above, the following work has been carried out:

1).

2).

Based on the typed point based time-elements and time-series, a formal
characterization of time-series and state-sequences was consummated with
respect to the three temporal aspects including temporal order, temporal

duration and temporal gap.

Based on the formal characterization of time-series and state-sequence, a
general similarity measurement tackling both non-temporal and rich temporal

8
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similarity was designed for state-sequence matching. It is versatile enough to
subsume most of the existing representative similarity measurements.
Experimental results on 6 benchmark datasets demonstrate that GSM can
tackle the most general problems in matching time-series data with rich
temporal information. In particular, a new LCS-based similarity measurement
named the Optimal Temporal Common Subsequence (OTCS) has been
proposed, where aew concept of common subsequence named ‘temporal
common subsequence’ is proposed to describe the rich temporal similarity. In
addition, it can release non-uniqueness problems and abnormal output

problems in conventional LCS-based similarity measurement.

3). As a case-study of temporal pattern recognition, a system to detect the
zone-defence strategy in basketball videos was investigated, where the
detecting task was transferred into graph matching probRmimproved
Laplacian Matrix-based graph matching algorithm was designed for basketball
zone-defence detection. Meanwhile, due to the computational complexity of
graph matching algorithms, an efficient feature descriptor, named
Character-Angle based feature descriptor, was designed for zone-defence

graphs.

4). As another case of temporal pattern recognition, a hybrid state-sequence
matching frameworkvas designed for video copy detection, where both the
non-temporal and temporal similarities were taken into account. The
non-temporal similarity was defined the form of Euclidean distance whilst
the temporal similarity was constructed with temporal order similarity,

temporal alignment similarity and temporal concentration similarity.

Section 1.4 Thesis Structure

The rest of this thesis is organized as follow:
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Chapter 2 is a comprehensive review of the representations of time-series and
state-sequence as well as the popular existing measurements for state-sequence
matching based on the typed point based time-elements and time-series. A formal
characterizations dfme-series and state-sequences in introduced for both complete and
incomplete situations, where a state-sequence fisedeas a list of sequential data
validaied on the corresponding time-series. While a stateisace is formalized as the
triple domain U= S x D x G, where: & R denotes d-dimensional domain of
nontemporal data ordered in consequential (that is, “Meets or Before”) temporal order
and D G c R denote the domains of temporal duration and teahgap respectively. In
addition, the framework of the general similaritgasurement is addressed to associate
state-sequence matching, where both the non-teinpspects and temporal aspect
including temporal order, temporal duration and geral gap should be taken into

account.

In chapte 3, based on the general similarity measuremamew conception of
temporal common subsequence is first proposed ttamd a new LCS-based algorithm
named Optimal Temporal Common Subsequence (OTGH)takes into account rich
temporal information (including temporal order, f@ral duration and temporal gap)
between state-sequences is finally designed artddtes1 news video retrieval. The

experimental results demonstrate the effectivenassabustness of the new algorithm.

In chapter 4, a general similarity measurement (GSM), wiaikes into account both
nontemporal and rich temporal information, includtegnporal order, as well as temporal
gap and durationis introduced for subsequence matching. Benefittimmgnfa formal
characterization of time-series and state-sequetiiesneasurement is general enough to
subsume most of the popular existing measuremetspacial cases. In particular,
compared with the binary-value similarity measuretagthe GSM can distinguish the
difference caused by various states in the sameatoper whilst, compared with the
real-penalty similarity measurements, it can allerfout the noise which may lead the

similarity into a abnormal level.

10
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In chapter 5, the basketball zone-defence detection is investigated as a case study
of temporal pattern recognition. The Laplacian Matrix-based algorithm is extended to
take account othe effects from zoom and single defender’s translation in zone-defence
graph matching. Furthermore, a set of character-angle based features are proposed to
describe the structure relationship between defender-lines in the zone-defence graphs.
Experimental results demonstrate the robust performance in both simulation and

real-life applications, especially when disturbance exists.

In Chapter 6, video copy detection is investigated as another case study. A hybrid
framework addressing both non-temporal and tempamgationships between
state-sequences, which are represented by bipgudipds, is proposed. The experimental
results using real-life news video database demairgihat the proposed similarity model
is robust when faced with states alignment wittied#nt numbers and different values,

and various reordering including inversion and soeer.

Finally, a summary of conclusion and recommendations for future wsrk

presented in chapter 7.

There are also six appendices for this thesis. These are six of my published papers

tightly associated with this research.

11
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CHAPTER 2. LITERATURE REVIEW

Focusing on the two objectives of this thesis, a detailed review of related works
will be presented in this chapter. First, we shall elaborate on the evolution of
representations of primitive time and time-series, followed by the conventional existing

measurements for state-sequence matching.
Section 2.1 The ontology of primitive time

There has been a longstanding debate in the literature on the issue of which sorts
of objects should be taken as the time primitive. Commonsense, on one the hand,
denotes that points are needed for both theoretical and practical modelling of temporal
phenomena. For instance, it is intuitive and convenient to associate punctual events,
such as “The database was updated at 0:00 midnight” etc., with instantaneous points
rather than durative intervals. On the other hand, intervals also seem to be needed for
representing temporal phenomena that take up time with positive duration, e.g., “He ran

3 hours yesterday morning”.

Generally speaking, there are three known objects that may be taken as the time
primitive:
® points, i.e., instants of time with no duration;
® intervals, i.e., periods of time with positive duration;

® Dboth points and intervals
Section 2.1.1 Point-based Time Structure

The so-called point-based time structure was first proposed by Bruce [Brul972]: a
typical time structure based on points only as primitive is an orderirng),(Rhere P is

a set of points, and is a relation that (partially or totally) orders P. In point-based

12
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systems, intervals may be defined as derived temporal objects, either as sets of points

[DGM1997], or as ordered pairs of points [Gal1990, S1987, YJF1998].

Problems

Point-based time structure provides an efficient indexing method for temporal
systems, but may suffer from the requirement that precise time values for all temporal
data need to be available. Generally speaking, in many Al systems, temporal
knowledge can be uncertain and incomplete. For instance, we may only know that
event A happened before event B, without knowing their precise starting and finishing
time, or what happened between them. Incomplete relative temporal knowledge such as
this is typically derived from humans, where complete and absolute temporal
information is rarely available and remembered for knowledge representation and

reasoning.

It has been argued by some researchers that defining intervals as objects derived
from points may lead to the so-called Dividing Instant Problem [AH1989, Bryl1972
Lad1987], which is in fact an ancient historical puzzle encountered when attempting to
represent what happens at the boundary point that divides two successive irervals.

instance, consider the fire example cited in [Ben1983]:

Afire that had been burning was later burnt out.

Intuitively, we ca assume the two states, i.e., “The fire was burning” and “The fire
was not burning” hold true throughout two successive point-based intervals, say <p
p> and <p, p>, respectively. The question then becont®gas the fire burning or not
burning at point P’ This, in terms of the open or closed nature of the involved
point-based intervals, turns out to be the question of which of the two successive
intervals, i.e., <p p> and <p, p, is closed/open at the dividing point p? Virtually,

there are four possible cases:

(a) The fire was burning rather than not burning at p;

13
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(b) The fire was not burning rather than burning at p;

(c) The fire was both burning and not burning at p;

(d) The fire was neither burning nor was it not burning at p.

While both (c) and (d) are absurd, since they violate the Law of Contradiction and
the Law of Excluded Third [Ben1983] respectively, the choice between (a) and (b) must
be arbitrary and artificial. In fact, since we have no better reason, from the point of
view of philosophy, for saying that the fire was burning than for saying that it was not
burning at the dividing-instant, such an arbitrary approach has been criticized as

unjustifiable and hence unsatisfactory [Ben1983, All1984, Gal1990, Vil1994].

Section 2.1.2 Interval-based Time Structure

The point-based structure of time has been challenged by many researchers who
believe that time intervals are more suited for representing commonsense temporal
knowledge, notably in the domain of linguistics and artificial intelligence. It is argued
that intervals should be taken as the temporal primitive, where points may be
constructed with a subsidiary status, e.g., as “maximal nests" of intervals that share a
common intersection, or as "meeting places" of intervals [Bee1992, BC1996, Lad1987,
Vil1994]. For instance, Allen’s temporal theory [All1984, AH1989] is a representative
example of the interval-based approach, which posits a set of intervals as the primitive
temporal entities. Over the time intervals, Allen introduces thirteen temporal relations,
including “Equal”, “Before”, “After”, “Meets”, “Met-by”, “Overlaps”,
“Overlapped-by”, “Starts”, “Starts-by”, “During”, “Contains”, “Finishes” and
“Finished-by”, which can be derived from the single immediate predecessor relation

“Meets” [BC1994.

As Allen claims in his paper [All1984], the interval-based approach avoids the
annoying question of whether or not a given point is part of, or a member of a given

interval, and therefore can successfully overcome/bypass puzzles such as the Dividing

14



CHAPTER 2. LITERATURE REVIEW

Instant Problem. Allen's contention is that nothing can be true at a point, for a point is
not an entity at which things happen or are true. However, as Galton [Gal1990] shows
in his critical examination of Allen's interval logic [All1984], a theory of time based
only on intervals is inadequate for reasoning correctly about continuous change.
Furthermore, instantaneous phenomena do exist in the real world and therefore make
points necessary for general temporal reference. For instance, consider the ¢pllowin

scenario:

A ball was thrown into the air from the east to the west.

By common sense, the state that the ball was at the east of and below its apex was
immediately followed by the state that the ball was at its apex, and which, in turn, was
immediately followed by the state that the ball was at the west of and below the apex.
Also, the time by which the ball was at its apeRreither at the east of the apex nor at
the west of the apex, should be a point with zero duration, rather than any interval or
moment [AH1989], no matter how small it might be. In fact, during the process of the
motion of the ball, the velocity of the ball became zero only at the time point when the

ball was at its apex.

Problems

The interval-based time structureasaproposed based on Allen’s interval theory.
However, it has been argued in [GallP@ht Allen’s interval theory lacks clarity in
semantics and completeness. In addition, the corresponding matching algorithm
proposed in [JAS2002] lackim theoretical foundation. Therefore, a new matching

algorithm that still uses the interval-based time structure is required.

Section 2.1.3 Point and Interval-based Time Structure

For the sake of general treatments, we shall take the time theory proposed

previously in [MK1994] as the temporal basis, in which both points and intervals are

15
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addressed as temporal primitives on an equal footing: points do not have to be defined

as limits of intervals and intervals do not have to be constructed out of points.

The time theory, T, takes a nonempty sort, T, of primitive time elements, with a
primitive order relation ‘Meets’ over time elements, and a function ‘Dur’ from time
elements to non-negative real numbers. The basic set of axioms concerning the triad (T,

Meets, Dur) is given as below:

(Al). Vi, b, t3,(Meets(i, ) A Meets(i, t3) A Meets(i, t) = Meets(}, t3))

That is, if a time element meets two other timenelits, then any time element that
meets one of these two must also meet the othés. aliom is actually based on the

intuition that the “place” where two time elements meet is unique and closely associated

with the time elements [AH1989].

(A2). Vi3t t(Meets(t, t) A Meets(t, 1))

That is, each time element has at least one immeedradecessor, as well as at least

one immediate successor.

(A3).V1y, b, t3,14(Meets(t, t) A Meets(t, ty) =

Meets(t, tz) V 3t'(Meets(i, t) A Meets(t', §)) V 3t"(Meets(s, t") A Meets(t", 4)))

whereV stands for “exclusive OR”. That is, any two meeting places are either identical
or there is at least a time element standing betweetwo meeting places if they are not

identical.

(A4).Vty, b t3,14(Meets(t, t1) A Meets(t, t) A Meets(t, ) A Meets(, ) = t1 =1t)

That is, the time element between any two meetiaggsl is unique.

N.B. In this thesis, for any two adjacent time edats, that is to say two time

elements;itand ¢ such that Meets(tt;), we shall simply use ® t, to denote their ordered

16
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union. The existence of such an ordered union of tary adjacent time elements is

guaranteed by axioms A2 and A3, whilst its uniguergegaaranteed by axiom A4.

(A5).Vty,i(Meets(t, t;) = Dur(ty)) > 0v Dur(t) > 0)

That is to say, time elements with zero duratiamoa meet each other.

(AB).Vty,i(Meets(t, t2)) = Dur(ty @ tp) = Dur(t) + Dur(k))

Thus, the “ordered union” operation over time eclements is consistent with the

conventional “addition” operation over the duration assignment function, i.e., ‘Dur’.

N.B. In the time theory T introduced here, we adihe following results of real

number theory:

(r1)The set of real numbers is totally ordered by the less-ahamgual-to relatiorn<’,

where >“is the bigger than” relation, that is, not(<).

(r2) +’ is the conventional addition operator over (nogatize) real numbers.

In terms of the ‘Meets’ relation, other exclusive order relations over time elements

can be derived as below:

Equal(t, o) < 31"t (Meets(’, t1) A Meets(’, t2) A Meets(t, ) A Meets(t, 7))

Before(i, ty) < Jt(Meets(i, t) A Meets(ity))

Overlaps(}, o) < Ittt =t @ tA L=t D )

Starts(t, t) < 3t =t, D 1)

During(t, t2) < a4t =t D t1 ® ty)

Finishes({, t;) < t(t, =t D ty)

17



CHAPTER 2. LITERATURE REVIEW

After(ty, to) < Before(t, t1)

Overlapped-by(t t;) <> Overlaps(, ;)

Started-by(t, t;) < Starts(t, t;)

Contains(, t;) < During(b, t;)

Finished-by(, t,) < Finishes(, ty),

Met-by(t, t;) < Meets(}, t1)

On one hand, the completeness of the 13 possible exclusive order relations (the
above 12 plus Meets) between any two time elements can be simply characterized by a

single axiom as below:

Vi t(Equal(t, t) v Before(t, t) v After(ty, o) v Meets(i, t) v Met-by(t, t)

v Overlaps(t, t;) v Overlapped-byft t;) v Starts(t, t-) v Started-by(, t)

v During(t, t2) v Contains(, ;) v Finishes(t, t,) v Finished-by(, t,))

On the other hand, the exclusiveness of these 13 order relations needs to be

characterized by 78 axioms of the following form:

Vi, b(—Relationl(t, to) v —Relation2(t, t))

where Relationl and Relation2 are two distinct relations from the above 13 relations.

N.B. In the above, 78 is the combinational numigy = 13!/2111!.

For convenience of expression, we shall extend Allen’s non-exclusive relation ’In°,
which is defined for intervals alone [All1984], to accommodate both time intervals and

points, and in addition, to introduce another temporal relation, ’Part‘, as below:
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In(ty, t) < Starts(t, to) v During(t, to) v Finishes(, to)

Part(i, tz) = Equal(i, tz) \Y% |n(t1, tz)

Problems

The point & interval-based time structure seems to be general and efficient enough

for temporal representation. However, the following two issues still exist and solving

them is a motivation of this thesis.

1)

2)

The fundamental temporal theory of the point & interval-based time
structure is the temporal theory of Ma and Knight in [MK1994, MK1996].
However, only temporal order and temporal relationship is specified. The
other temporal aspects such as temporal duration and temporal gap were

neglected.

Only the basic temporal representation is illustrated whilst the
corresponding matching algorithm, especially with respect to the rich

temporal aspectss required.

Section 2.2 The notion of time and time-series

Data mining is the process of finding trends and patterns in data [Gro1999]

Generally speaking, data mining requires some historical knowledge about the internal

temporal relationships of certain patterns such as those in Decision Support, Diagnosis

and

Explanation, Forecasting/Prediction, Planning/Scheduling, and History

Reconstruction, etc. In particulamie-series and state-sequences are important patterns

in data mining and have attracted the interest of many researchers [BC1996, DGM1997,

FRM1994, KP1998, YJF1998].
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Section 2.2.1 The notion of time

1)

2)

3)

What is time?

Even today we still cannalefine “time” as we define any real thing. We
can measure time, yet do not know what time is, although we hang "time" on
the wall or on the wrist. According to Einstein's theory of relativity, we know
that time can be extended or shortened. That is why the physicists set the time
simply as a sequence of events and mark them with time, such as the person's

birthday or the shelf life of food.

Is time like a river flow, or with intermittery as a replacement?

Unfortunately, no theory or experiment has confirmed that time is flowing
in a continuous manner or like every frame in a movie screen, giving a
continuous picture of intermittency. Research on the continuity and the
intermittency of time is ubiquitous and vital in modelling natural phenomena

and human activities.

Now we are back to the "continuity” of time. The strange thing is that it
can approach a continuous or intermittent flow, yet the smallest calculable time
interval is the same as "Planck time". In short, time is a continuous tape, and

physicists regard it as an interlocking, non-continuous necklace.

For everyone, is time passing in the same way?

Einstein's theory suggests that the answer is no. In fact, the same as space,
time is also relative. What dsérelativeé’ mean in this context? That is, in order
to completéy and unambiguols describe an event, this event should be placed
in a reference system. For example, if | meet someone at the end of the road,
then the "end" might just be the beginningandther person’s road. If | add "at

the end of the road behind the plaza,” then the event "nsesmtcurate. If | said
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10 years later, then | must point out to which reference system 10 years has
passed. Obviously, in everyday life there is no need to be detailed. However,

detail is vital in time-series analysis.

Section 2.2.2 The notion of time-series and state-sequence

A time-series is a chronological series of observations made. In accordance with
different phenomena or problems studied, one can obtain all kinds of time-series. For
example, some economists observe fluctuations in the price index; a meteorologist
studies the rainfall in some location and electrical engineers study electronic receiver's
internal noise. All of them will observe a string of data measured by some unit of
measurement. The natural order is the chronological order of appearance of data in the
time-series. The typical essential characteristic of time-series is the dependency
between adjacent observations. This dependence has great practical significance.
Time-series analysis is addressed in the techniques of this dependence analysis. The
new method of prediction of time-series data not only provadefective prediction
method for time-series data produced from for example the national economy,
agriculture, biology, meteorology, hydrology and other fields, but also enables

researchers to exercise math skills and programming techniques.

Broadly speakinga stateis the way something is with respect to its main attributes.

A state-sequence is defined as a list of states togettecaviesponding time-series.

In order to analyze time-series and state-sequences, formalism is required.
However, in most proposed formalisms, the fundamental time theories upon which
time-series and state-sequences are hupltare usually not explicitly specified.
Time-series and sequences are simply expressestamlithe form ofif t, .... t,, or as
sequences of collection of observations, and savbere formal characterizations with
respect to the temporal basis are neglected, lgaome critical issues unaddressed. For

example:
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® \What sorts of objects arg t; ...and t,? In other word, what sorts of objects
should be taken as the time primitive? Are they time points, time ifggorasimply
some absolute values from the real numbers, irgegethe clock?

® \What are the temporal order relationships betweety.t.and t,, and/or
between the sequence of collections? Are they simplrordered as according to
natural numbers, or might they be relatively orddbgdmeans of relations such as
“Before”, “Meets”, “During”, and so on?

® What are the associations between time-series/staigences and

nontemporal data that represent various states oigrkl in discourse?

Section 2.3 LCS-Base&ubsequence Matching

The Longest Common Subsequence (LCS) is a typical similarity measurement for
subsequence matching. Recently, a group of LCS-like measurements were proposed for
subsequence matching. Given two state-sequences X =.[Xy and Y= [\, ..., V],
several algorithms based on the original LCS have been proposed to match these two
state-sequences. Some representative variants of these are: (i) Compacted LCS (CLCS)
[KC2005] where only the common subsequences, the continuous length of which is
longer than the specified thresholth)( is counted; (i) Al Common Subsequence
(ACS) [Wan2007] which measures the similarity by means of counting the number of
all common subsequences (including empty strings) and taking the strategy that the
more common subsequences a pair of state-sequences have, the more similar they are;
and (iii) Time-Warped LCS (T-WLCS) [GS2004], which counts continuously
duplicated common states in the spirit of the Dynamic Time Warping (DTW) [SC1978
algorithm. Each of these is discussed in further detail in the following four

sub-sections.

Section 2.3.1 Original Longest Common Subsequence (LCS)

The basic idea of the original LCS algorithm [BHR2000] is to find the longest
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subsequence common to two state-sequences (X and Y) along the same temporal order.
Then the length of the common subsequence is counted as the similarity between the

two given state-sequences. We shall now explain the solution of LCS in what follows.
Suppose the current state pasr x and y, a table with size of (m+1)< (n+1) is

designed to store the process of LCS computation. An empty state is added in front of
each state-sequence. The procedure of finding the longest common subsequence can be

illustrated by the following 3 rules:
1) Setuprule:i=0orj=0

In this case, we are comparing the empty state with another state-sequence.
Obviously, the common state between an empty state-sequence and any state-sequence

is the empty state as well. Therefore, LCSM) = LCS(X, Yo) = ¢.

2) Matching rule: x; = y;

In this case, the two state-sequences match each other by ending in the same state.
Shorten each state-sequence by removing stagesly from state-sequences X and Y
respectively. The longest common subsequence would be the LCS of the shortened

sequences appended by the removed stade ¥X. In terms of prefixes:

LCS(%, ¥) = (LCK X1, Y %) of (LCH Xen, V) ¥)  (2-1)

where Xand Yindicates the substring{x%, ..., x] and [\, y», ..., yj] for1<i<m, 1
<) < n, the semicolon indicates that the following elemeptjsxappended to the
sequence.

3) Unmatching rule x; =y,

In this case, X and Y do not end in the same state. Then the LCS of Xand Y is the

longer of the two sequences LC§(¥1) and LCS(Xy, Y)).

“Dynamic programming can be thought of as being the reverse of recursion.

Recursion is a top-down mechanisnwe take a problem, split it up, and solve the
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smaller problems that are created. Dynamic programming is a bottom-up mechanism-
we solve all possible small problems and then combine them to obtain solutions for
bigger problems. The reason that this may be better is that, using recursion, it is
possible that we may solve a small subproblem many times. Using dynamic

programming, we solve it oncé.
According to the above, the recursive function of LCS can be defined as follows:

Definition 2-1: the longest common subsequence of given state-sequerrses X

[X1, ..., Xml @nd Y=\, ..., ¥n] is:

@ ifi=0o0rj=0
LCS(X,¥;) =14 LCS((% ;.Y )% ) ifx =y, (2-2)
longer( LCK X, Y,), LCS X, Y)) ifx=y

where 0<i<m, 0<j<n.

In order to measure the similarity between two state-sequences, the length of LCS

is defined as below:

Definition 2-2: the length of the LCS of two given state-sequences X asid Y

0 ifi =00r j =0
LCS'(X,Y)=¢LCS'(X,,Y ;)+1 if X, =y, (2-3)
max(LCS (X, Y, JLCS (X, ¥ ) if x =y,

The original LCS is designed for 1-dimention state-sequences. In order to cope
with multi-dimension situations, [VHGK2003] extended the original LCS to

2-dimention situations:

' http:/www.ics.uci.edu/~dan/class/161/notes/6/Dynartiid.h
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0 ifi=00rj=0
LCS Y )+1 if -v. |<e forallk
Less, (X, y)=] C58 Ot Y X~ (2-4)
and| j-i<¢&
max(LCSS,, (X .Y, ),LCSS, (X,.Y)) otherwis:

where the constartande denote the controller in space and time respectively.

Example evolution:

For the given state-sequence X = [abcd] are [ddcbd], the procedure of the
longest common subsequence is illustrated next. Assuming that the LCS function starts
with zero, two empty states are inserted as prefixes of two state-sequences respectively.
Xo=% =Yo=Yo=@is placed as shown in table 2.1 with the size 4x5, where LOE(X
denotes the longest common subsequence betwesmdX, and the arrow directs to
the source cell of current longest common subsequence, for exantpiedicates the
current cell LCS(X Y;) is generated by longer(LCS(XY.1), LCS(X1, Y;)) from
Eq.(2-2).

Table 2.1 LCS subsequence table

LCS(X Y) %] a d C b d
1] (%] 1] 1] 1] 1] 1]
a g | a —a —a —a —a
b @ ta | «ta| «ta | Nab —ab
c %] Ta ta |\ ac <7 ac/ab | <1 ac/ab
d @ ta |Nad |<«<fac/ad| <71 ac/ad | ™ acd/abd

The LCS table is designed to store the step of LCS calculation between X and Y
placed in the first column and the first row while LCS(X) indicates the longest

common subsequence ofafd Y.

LCS(X, Y)) is always @ for =0, 1, ..., n since the longest common sequence
between the empty sequence and any other sequence is considered as empty. Likewise,

LCS(X, Yo) =@ fori=0, 1, ..., m(setup rule).
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LCS(X, Y1) is indicated by states ‘@’ (X1) and ‘@’ (y1). According to the matching
rule, LCS(%, Y1) = (LCS(%, Yo), ‘@) = ‘@a’, simplified as ‘a’.

LCS(X, Y2) is indicated by states ‘@’ () and ‘d’ (y.). According to the
unmatching rule, LCS@(Y,) = longer (LCS(X Y1), LCS(X%, Y2)) = longer(‘a’, ‘@’) =

‘a’.

LCS(X, Ys) is indicated by states ‘@’ (X;) and ‘C’ (ya). Unmatching rule, LCS(X
Y3) = longer (LCS(X, Y2), LCS(%, Y3)) = longer(‘a’, ‘@) = ‘a’.

LCS(X, Ya) is indicated by states ‘@’ (x1) and ‘b’ (ys). Unmatching rule, LCS(X
Ys) = longer (LCS(X, Ya), LCS(%, Ya)) = longer(‘a’, ‘@) = ‘a’.

LCS(X, Ys) is indicated by states ‘@’ (x1) and ‘d’” (ys). Unmatching rule, LCS(X
Ys) = longer (LCS(X, Ya), LCS(%, Ys)) = longer(‘a’, ‘@) = ‘a’.

Analogously, the rest of the table can be filled. The corresponding length of LCS is

stored in the table 2.2.

Table 2.2  LCS length table

LCS'(X, Y) 1] a d Cc b d
@ 0 0 0 0 0 0
a 0 |N1 |<«1 |<«1 |<«<1 | «1
b 0 M MM [D2 [ «2
c 0 MM N2 [ M [ M
d 0 AL [SN2 [ M2 [ M2 [N

Problem of LCS

In order to visually demonstrate the performance of LCS-based measurements, five
state-sequences are defined as foltd@is: [abcd], $ = [aaaaabc],*S= [aabbccdd], 5
= [aaebbfccgdd] and®$ [aaaabbb]. According to Eq.(2-3), the similarity table can be

obtained as follows:
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Table 2.3 LCS’ table between five example state-sequences

Similarity st 53 s st S
4
4
8
11
4

LCS’

Uy AL Q| R,

NI~ WS
bbb~ |NW
MO0
N A R OTDN

“Non-uniqueness” problem: different state-sequences have the same similarity to
the query state-sequence. For instanceafgiven three state-sequence pair§ &),
(S, S) and (8, S with the same longest common subsequence ‘abed’, we shall get
LCS’ (S, $)=LCS’ (S, S) =LCS’(S, S) = 4, which means'$as the same similarity
to $ and $ as well as to Sitself, whereas in real-life application the measurement

should distinguish the similarity as clear as possible.

“Unreasonable problem”:. some other abnormal or unreasonable results occur
when continuously duplicated common states exist frequently in state-sequences. For
example, LCS (S, ) > LCS (S, S). The reason is that the continuously duplicated
common states are counted without distinguishing from the non-duplicated common
states. However, according to the definition of temporal common subsequences, the

similarity degree between® @nd $ should in fact be higher than that betweéra®i
g.

Section 2.3.2 Compacted LCS (CLCS)

In contrast to the original LCS, in Compacted LCS (CLCS) [KC2005] dmy t
common subsequence, the continuous length of wisiclonger than the specified

threshold th), is counted. The procedure for CLC&sthe following 4 steps:

Step 1: calculate the Matching Matrix. Withoutdéof generality, assume that Xis the

guery state-sequence and Y denotes one of thesstgiences in the database. The

Matching Matrix is defined as: forl, 2, ... m.
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|1, ifi —th state is matched
m(i) = (2-5)

0, ifi —th state is unmatche

In fact, the length of the original LCS can be obtained by compuﬁﬁgq(i) .

i=1

Step 2: the length of continuously matched subsequence:

{LCG—D+mGLﬁnW)=1
LC(i) = (2-6)

m(i) if m@)=0

Step 3: the length of continuously matched subsequence separated by unmatched

subsequence: fori, 2, ... n-1

, ?ca) ifm@+1)=0
SLC(i) = (2-7)
0, ifm@+1)=1

In this situation, the length of LCS can be repressediysLC(i)

i=1

Step 4: calculate the compacted-LCS (CLCS) where only the length of continuous

matched common subsequence is longer than the threghalksl ¢ounted:

QESKWziMKﬁ)MLm:&Cm’”$£®>m o9
= MLC (i) =0, if SLC () <th

whereth=k-n,0< k< 1.
Example evolution:

For the same five state-sequence=$abcd], = [aaaaabc], 5= [aabbccdd], ©
= [aaebbfccgdd] and®S- [aaaabbb]. The examples of CLCS are calculated in table
2.4
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Table 2.4 Example evolution of CLCS length

(a) CLCS(S, S) table

CLCS(S, 9)

a

%)

(b) CLCS(S, S) table

a

a

%)

CLCS(S, S

(c) CLCS(S, S table

a

a

)

CLCS(S, S)

(d) CLCS(S, S table

a

a

CLCS(S, S) | @

(e) CLCS(S, S) table

a

a

%)

CLCS(S, 9)
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Problem of CLCS:

“Non-uniqueness” problem: this problem is ubiquitous in CLCS as shown in the
tables, where CLCS{SS)= CLCS(S, S)= CLCS(S, S)= CLCS(S, Sh=CLCS(S, )
= 0. The non-uniqueness problem must be more serious than the original LCS since the
threshold smoothes the difference of the two state-sequences: the length of continuous

matched states will be smoothed to be the same level (0) if it varies froth-1.to

“Unreasonable problem”:. one will also get the unreasonable phenomenon
CLCS(S, S) > CLCS(S, S). The reason is that the matched stété'sare separated
and the length is 1, which is smaller than the threstinsig.

Particularly, CLCS is very fluctuant since the continuity of matched common
subsequences may be destroyed easily by the unmatched states (for example, resulting
as CLCS(§ S) = cLCS(S, &) = CcLCS(S, S) = CLCS(S, S) = 0) or by the
continuously duplicated common states (for example., resulting as CLGSJG 0),
which in turn means that for real applications, it will be very sensitive to noise which

will be taken as unmatched states in state-sequence matching.

Table 2.5 CLCS table between five example state-sequences

Similarity st S s st S
st 4 3 0 0 2

s? 3 7 3 0 5

erzs) s 0 3 8 0 4
- s 0 0 0 11 0
S 2 5 8 0 7

Section 2.3.3 All Common Subsequence (ACS)

From above LCS-like measurements, we can see that only the longest common
subsequence may not be sufficient to distinguish the difference (similarity) between
state-sequences. It is necessary therefore to explore the information in the second

longest common subsequence, the third longest common subsequence and so on.
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Different from the CLCS, which discards the short continuously matched subsequence,
the All Common Subsequence (ACS) [Wan2007] takes into account the information of
the second, third, ... longest subsequences by counting the number of all common
subsequences. For instance, let us take the three state-sequences {A, B, C} = {cbabca,
bcabac, abcade}. Obviously, LCS(A B) = {caba} and LCS(A, C) = {abca}, therefore
LCS’(A B)=LCS’(A C) = 4, which means we cannot distinguish the state-sequence B
and C when compard to A The set of all common subsequences of A and B is
(ignoring the empty sequence): {a, aa, ab, aba, abc, ac, b, ba, babalbabbabc,

bac, bb, bba, bbc, bc, bcace, caa, cab, caba, cabc, cal, cba, cbac, cbcc. The

set of all common subsequences of A and C is: {a, aa, ab, aba, abc, abca, ac, aca, b
ba, bc, bca, @al. ACS(A B) = 31, ACS(A C) = 15, suggesting that state-sequence B

is more similatto state-sequence Athan to state-sequence C.

Theorem 2.1 Given two state-sequences, X %, (X. , Xm) and Y = (y, ..., Yn). N(,
j) denotes the number of common subsequences,of (xx) and (Y, ..., ¥), i.e., the

prefixes of sequences Xand Y of lengtlasd j. Then:

1, ifiorj=0
NG, j)=NE-1j -1)x 2, if X, =y, (2-9)
NG-Lj)+N§.j-1)-Ni{(-1 -1),ifx, =,

Consequently ACS(X, Y) = N(m,)n

Proof: Let A(i-1, J-1) be the set of all common subsequences betwgen (%.1)
and (Y, --., Y1) So N(i-1, j-1)=|A(-1, j-1)|. If x=Y;, then A, j) = A(F1, fF1)UA(-1, |
—1)%. where Ait+l, j1)x ={ax |Vae Ali-1, j1)}. Therefore N(i, j) = N1, j-1)
X 2. If x #y;, then some new common subsequences may be added td AGr A1,
]) on top of A(rl, j1). Therefore, A, j) = A(l, T1))UA(-1, )-Al—-1, |-1).
Consequently we have N(i, j) = N#4)+N(@-1, jy-N(@i-1, j-1).
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Algorithm 2.1:  Calculation of all common subsequence

Input: Two sequences Xand Y.

Output: The number of all common subsequences AC3(X, Y

fori=0to |X doN(i,0) =1
forj=0to |Y|do N(O, ) =1
fori=1to |X do
forj=1to |Y] do
if i =y; then
N@G, j) = N(i-1, 1) X 2
else
N@, j) =N(@—1, j) + N(i, 1) — N(@—-1, j-1)
end
end

ACS(X, Y) = N(X|, M)
End

Example evolution:

For the same five state-sequenc®s= [abcd], 8= [aaaaabc], 5= [aabbccdd], ©
= [aaebbfccgdd] and®$ [aaaabbb]. Examples of ACS calculation ewaluated in the

following tables.

Table 2.6 Example evolution of ACS

(a) ACS(S, S) table

ACSES,S) || al| b |c|d
% 0|0 0 |O0]O
a ol 1] 1 |1]1
b 0| 1] 3 |3]3
C 0 1 3 7 7
d 0| 1] 3 |7]15
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(b) ACS(S, ) table

ACSS,S) || a|alalalal|b]|c
%) ojojo0o|jo0o|0|0]O0]O
a 0 1 1 1 1 1 1 1
b 0 1 1 1 1 1 3 3
C 0 1 1 1 1 1 3 7
d 0 1 1 1 1 1 3 7
(c) ACS(S, S) table
ACSS,S) |@| ala|b|b|c| c | d]|d
1] 0 0 0 0 0 0 0 0 0
a 0 1 1 1 1 1 1 1 1
b o, 11, 3| 3|3 3 3 3
c 0 1 1 3 3 7 7 7 7
d 0 1 1 3 3 7 7 15 | 15
(d) ACS(S, ) table
ACS(S, &) g | a a e b b f C C g d d
(%] 0 0 0 0 0 0 0 0 0 0 0 0
a 0 1 1 1 1 1 1 1 1 1 1 1
b 0 1 1 1 3 3 3 3 3 3 3 3
C 0 1 1 1 3 3 2 3 7 7 7 7
d 0 1 1 1 3 3 2 7 7 7 15 | 15
(e) ACS(S, S) table
ACS(S, $) @ | a a a a b b b
%] ojojo0o|joO0|0O0|0]O0]O
a 0 1 1 1 1 1 1 1
b 0| 1] 1 1 13|33
c 0| 1] 1 1 11333
d 0 1 1 1 1 3 3 3
Problem:

“Non-uniqueness” problem: this problem is ubiquitous in ACS as well. One will

get ACS($, $)=ACS(S, S)= ACS(S, S)=16.

“Unreasonable” problem: the unreasonable phenomenon AGS& > ACS(S,
S still exists. In particular, in ACS, the similarity becomes extremely large (such as S

and $) when continuously duplicated common states exist frequently in
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state-sequences and this will therefore underestimate the high similarity befeeeh S

s

Table 2.7 ACS table between five example state-sequences

Similarity st 53 s st S
gt 15 7 15 15 3
g 7 127 15 15 31

ACS s 15 15 255 255 15
st 15 15 255 2047 15
S 3 31 15 15 127

Section 2.3.4 Time-Warped LCET-WLCS)

If we consider two stateequences ‘aabbct and ‘abc, the output of
LCS’(‘aabbct, ‘abc) would be 3 since LCS(‘aabbce, ‘abc) = ‘abc. What about
‘adbect and ‘abc? The output of LCS’(‘adbecf, ‘abc) would also be 3 since
LCS(‘adbect, ‘abc) = ‘abc as well. However, considering that in the first pair
(‘aabbct and ‘abc), ‘aabbcct is just the extension version of ‘abc, which should be
considerecasmore similar to the second pair (‘adbect and ‘abc). The main reason is
thatin the first pair, the unmatched states (‘@’, ‘b’, ‘c’) are regarded and discarded in
the same way as that in the second pair (‘d’, ‘€’, ‘f’) in LCS. In the spirit of the
Dynamic Time Warping (DTW) [SC1978] algorithm, the Time-Warped LCS
(T-WLCS)[GS2004] was proposethe recurrence formula for T-WLCS is:

0 ifi=00rj=0
max[T —“WLCS(X,,Y, ;)T -WLCS(X_,.Y ), ifi j > O
T-WLCS(X,Y,)={T -WLCS(X ,,Y ,)]+1 and x= y (2-10)
max[T —“WLCS(X,,Y, ), T -WLCS(X_,.Y )] ifi j >0

and x= y

where T-WLCS(X Y;) denotes the maximum length aftime warped common

subsequence (we name the common subsequence plus the continuously duplicated
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common subsequences as time warped common subsequence, distinguishing from the
traditional conception of common subsequence in the original LCS). The length of

longest time-warped common subsequence can be read in T-W, (X
Example evolution:

For the same five state-sequenc@s- [abcd], 8= [aaaaabc], 3= [aabbccdd],
= [aaebbfccgdd] and °S= [aaaabbb]. The examples of T-WLCS calculation is

evaluated in the following tables:

Table 2.8 Example evolution of T-WLCS
(a) T-WLCS (S, S) table

TWLCSES,S) | D | a| b | c | d
% o|lo|] 0O |0]O
a o] 1| 1 |11
b o|l1] 2 | 2] 2
c o/ 1| 2 |3]3
d 0| 1| 2 | 3] 4

(b) T-WLCS (S, S) table

TWLCS(S,S) |@| a|a|la|al|al|b]|c
(%] 0| 0 0 0 0 0 0 0
a 0 1 2 3 4 5 5 5
b oO| 1| 2| 3| 4|5 | 6|6
c o|1|2|3|4|5|6/|7
d o|1|2|3|4|5|6/|7
(c) T-WLCS (S, S table
T-WLCS(S,S) | D | a a b b c c d d
%] 0| 0 0 0 0 0 0 0 0
a 0 1 2 2 2 2 2 2 2
b 0 1 2 3 4 4 4 4 4
C 0 1 2 3 4 5 6 6 6
d 0 1 2 3 4 5 6 7 8
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(d) T-WLCS (S, S table

TWLCS(S,S)| @ | a | a| e | b|b| f|c| c| g]|d]|d
% ololo|lo|loOoO|O|O|]O|]O| O] |O]oO
a o1 |2 2|2 |2|2]|2]|2|2]|2]2
b ol 1|2 |2 |3 |44 4] 4| 4| 4] 4
c o|1| 2|2 |3|4|4|5| 6|6 | 6|6
d o|1| 2|2 |3|4|4|5| 6|6 | 7] 8

(e) T-WLCS (S, S) table
TWLCSS,S) |@| a| a|la|a|b|b|ob
% o/lo0o|l0|0|O0O|O]O]oO
a O| 1|2 |3 |4 | 4| 4]|4
b ol 1|2 |3 |4|5]|6]7
c ol 1|2 |3 |4|5]|6]7
d ol 1|2 |3 |4|5]|6]7

Problem:

For the same five state-sequenc®s= [abcd], $ = [aaaaabc], 5= [aabbccdd],
S' = [aaebbfccgdd] andS [aaaabbb].

“Non-uniqueness”’ problem: this problem is ubiquitous in T-WLCS as well. One
will get T-WLCS(S, )= T-WLCS(S, S)=8 and T-WLCS(5 )= T-WLCS(S,
S)=8.

“Unreasonable” problem: the unreasonable phenomenon T-WLGS(S) >
T-WLCS(S, S) still exists. Even T-WLCS cannot guarantee that the query
state-sequence has the highest similarity with itself: for instance, T-WECS(S
T-WLCS(S, S), T-WLCS(S, S), T-WLCS(S, S), T-WLCS(S, S), which means the
state-sequence' 8as least similarity to itself comparing with the other state-sequences
&, S, S S. Such a problem becomes absurd if, for instance, we have= S
‘aaaaaaaaaagavhich will lead to T-WLCS(S,$’) = 12 due to the unreasonable

treatment of continuously duplicated common states.
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Table 2.9 T-WLCS table between five example state-sequences

Similarity st 53 s st S

gt 4 7 8 8 7

g 7 11 10 10 11

T-WLCS | S 8 10 12 12 9
st 8 10 12 15 9

S 7 11 9 9 12

Section 2.4ED-Based Subsequence Matching

The Edit Distance is a popular measurement for subsequence matching besides the
longest common subsequence-based measurements. Various distance models based on
Edit Distance have been developed over the past half century for state-sequence
matching, including: Dynamic Time Warping (DTW) [SC197&dit Distance
[Lev1965] and its variants such as Edit Distance on Real Sequence (EDR) [CN2004];
Edit Distance with Real Penalty (PR[CO02005] and Time Warp Edit Distance
(TWED) [Mar2008] etc. However, most of these existing distance models characterize
temporal distance only in terms of the temporal order over the state-sequenceaswhere
other important temporal features suchtestemporal gap between two adjacent states,

and the temporal duration of each state itself have been neglected.
Section 2.4.1 Original Edit Distance (OED)

The edit distance between two state-sequences is defined as the cost of
transforming one state-sequence into the other state-sequence using operations such as
substitution, deletion, insertion, transposition and so on. Four examples are
demonstrated as follows for transforming one word into another one.

1) “night’-> “light”: substitute “n” in “night” with “I”, obtain “light”

2) “knight” = “night”: delete “K” at the beginning of “knight’, obtain “night”
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3) “discovel’ > “discovery: insert “y” into the end of “discover’, obtain

“discovery
4) “quiet’ > “quite’: transpose “et’ in “quiet’ into “t€”, obtain “quite’

From the examples, we can also conclude that the deletion operation and insertion
operation are reciprodgl inversed we can also transform “night” into “knight’ by
inserting “K” into the front of “night” or transform “discovery into “discovei’ by

deleting tke last character “y” of “discovery.

There are many algorithms to calculate the Edit Distance, including: Hamming
Distance, Levenshtein Distance, Damerau-Levenshtein Distance, Jaro-Winkler
Distance and Ukkonen’s Algorithm. The Levenshtein Distance, which is named after
Vladimir Levenshtein from 1965, is a widely used specification of the Edit Distance
that calculats the minimum number of operations of substitution, deletion and
insertion. In most applications, Edit Distance is referred to as Levenshtein Distance.
Therefore, we shall refer to the Levenshtein Distance as the original Edit Distance if

not specified.

For the two state-sequences X and Y, the edit distance between them can be

defined as the following recursion:

Definition 2.3: the Edit Distance of given state-sequences X aisd Y

j ifi =0
i if j =0
ED(Xi’Yj): ED(Xi—l’Yj ) if X, =Y, (2-11)

min(ED(X,.Y,_,).ED (X, Y, ),
ED(X Y, ))+L  ifx 2y,

Therefore, the Edit Distance (ED) between X and Y can be read as,EBJXWhat
follows are further explanations of the recursion: the problem can be summarized as
transforming Xinto ¥, using a minimum operations EQ(Xj). The procedure of edit

distance can be illustrated as:
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1) Setuprule:i=0orj=0

» i=0 and j=0: the number of operations to transform one empty

state-sequence into another empty state-sequence is zero.

> i#0 and j=0: the length of the first state-sequence is non-zero. The
operations transforming ;Xinto Y, is deleting i states in the first

state-sequenceg.X

» i=0 and #0: the length of the second state-sequence is non-zero. The
operations transformingpinto Y, is inserting j states in the first

state-sequence.X

In general, we can conclude that ER(X) = j and ED(X Yo) = i. Typically, ED(>%, Yo)
=0.

2) Matching rule: x; =y (i #0 and j=0)

In this case, the current two states match each other. Suppose the number of
operations required to transform..Xinto Y.1 is ED(%41, Y1), so that no additional

operations are required to transformrXo Y. Therefore, ED(XY]) = ED(X.1, Y;-1).
3) Unmatching rule: x; #y; (i #0 and j=0)

In this case, the current two states are not matched. There are three ways to

transform the first state-sequence into the second state-sequence:

B Substitution: if we can transform Kto Y, by exchanging;¥or y;, and the
number of operations required to transform X0 Y. is ED(X1, Y1),
then the total number of operations is EQ(X;.1) + 1.

B Deletion: if we can transform;Xnto Y, by removing xat the end of X
and the number of operations required to transforpteXy is ED(X.1, Y)),

then the total number of operations is ERQY;) + 1.
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B Insertion: if we can transform; ¥ato Y by adding yat the end of Xand
the number of operations required to transforntaXY., is ED(X, Y1),

then the total number of operations is ER{) + 1.

Therefore, the number of operations required to transfarmtX'Y, is obviously
the minimum of the above three sub-cases: ED{X= min(ED(X, Y;1) + 1, ED(X4,
Y)) + 1, ED(X1, Yj1)+1) = min(ED(X Y1), ED(X.1, Yj), ED(X.1, Yj1)) + 1. In view of

the above analysis, the following conclusion can be reached for the original ED:

® The non-temporal distance is not considered.

® For the temporal distance, only the temporal order is considered in terms of
Dynamic Programming.

® |t is a binary-value distance model. Therefore, it is not sensitive to outliers and

noise, and therefore arguably.

Section 2.4.2 Edit Distance on Real sequence (EDR)

The original Edit Distance was designed for string sequence matching where states
are presented in the form of characters. However, in many real-life applications, states
are not characters. Therefore, more practical distance measurements are required. The
Edit Distance on Real Sequence, as an important extension of original Edit Distance,
has been shown to be effective with respect to real-life state-sequence matching.
Distinguishing the character states in the original Edit Distance, the multi-dimensional
state is referred to as a state vector. The matching between two multi-dimensional

real-life states is first defined:

Definition 2.4. d-dimensional state vectorsand y from two state-sequence X
and Y are matched if and only ifi || < € for all 1< t < d, where¢ is the matching

threshold.

Definition 2.5. For two given state-sequencg 2nhd Y, the Edit Distance on Real

sequence (EDR) between them is defined as the following recursion:

40



CHAPTER 2. LITERATURE REVIEW

j ifi =0
EDR(X .Y, )=1" =0 = (2-12)
min{EDR X, ,Y_,) +subcost, i# Oand

EDR(X_,,Y)+LEDR(X Y )+3  j#0

where subcost = 0 ifixand y are matched and subcost = 1;ifard y are unmatched.

The procedure of edit distance on real sequence can be illustrated as:
1) Setuprule:i=0orj=0

Analogous to the original Edit Distance, we can conclude that ERQR)X j and

EDR(X, Yo) = i. Typically, EDR(%, Yo) =0.

2) Editionrule: i #0 andj=0

We also consider the three ways to transform the first state-sequence into the

second state-sequence:

» Substitution: In this case, we first need to justify whether the current two states
match each other or not. if we can transfornino Y, by exchangingixXor y;,
and the number of operations required to transforptaY.; is EDR(X1, Yj-1),
then the total number of operations is EDR(XY.1) + subcost, where the

subcost is specified in following two sub-cases:

B | x -yi| < eforall < t < d: the current two state vectors are matched.
According to the definition, subcost = 0, which means no additional

operation is required to transformiXto Y,.

B | X -Y¢|> efor some X t < d: the current two state vectors are unmatched.
According to the definition, subcost = 1, which means the substitution

operation is required to transformikto Y.

41



CHAPTER 2. LITERATURE REVIEW

> Deletion: if we can transform;Xto Y, by removing xat the end of Xand the
number of operations required to transform ¥ Y is EDR(X1, Y;), then the
total number of operations is EDRXY;) + 1.

> Insertion: if we can transform; ¥hto ¥ by adding yat the end of Xand the
number of operations required to transforptoXY., is EDR(X, Y;.1), then the

total number of operations is EDR(X.1) + 1.

Therefore, the number of operations required to transformtX Y, is obviously
the minimum of the above three sub-cases: ERR{X= min(EDR(X Y1) + subcost,

EDR(X4, Y) + 1, EDR(f1, ¥1)+1).

® The non-temporal distance is not considered.

® Forthe temporal distance, only the temporal order is considered in terms of the
Dynamic Programming.

® |t is a binary-value distance model. Therefore, it is not sensitive to the outliers

and noise, and therefore not realistic.

Section 2.4.3 Edit distance with Real Penalty (ERP)

As a binary-value model, EDR is robust for the outliers and noise but not realistic
since the distance between two states is not refined. Edit distance with Real Penalty
(ERP) was proposed as another important extension of the original Edit Distance from
the point of view of real penalty, where the real distance between two states was
counted instead ad simple 0 or 1 being given. The ERP copes with the local time
shifting in terms of adding a gap g. for example, X =[1, 2], Y = [1, 3, 6], X may be
aligned into [1, 2, g] for alignment purposes. Therefore, the cosinohsertion
operation (ora deletion operation if swaping X and Y) can be regarded as the real

distance between the current state (‘6” in Y) and the gap g (normally specified as zero).
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‘)g -, ‘ substitutior
disteee(X, ¥;) =1]%— 9 deletion (2-13)

lg- | inseartion

The recursion of Edit distance with Real Penalty can be defined as:

Sy
2x-d fj =0
ERP(X .Y ={min{ ERR X, ,Y,) + dists( ¥ Y). (2-14)
ERP( X, ,Y)+ distee( X 9, otherwis
ERP( X ,Y )+ distg-( g ¥)}

The procedure of Edit distance with Real Penalty can be illustrated as:

1) Setuprule:i=0orj=0

>

i=0 and j=0: the cost to transform one empty state-sequence into another

empty state-sequence is zero.

iz0 and j=0: the length of the first state-sequence is non-zero. The
operations transforming jXinto Y, is deleting i states in the first
state-sequence;.XTherefore the cost is the sum of the real distance

between the first i states and the gap g.

i=0 and #O0: the length of the second state-sequence is non-zero. The
operations transforming oXinto ¥ is inserting j states io the first
state-sequence.XTherefore the cost is the sum of the real distance

between the first j states and the gap g.

In general, we can conclude that ERE (%) = le‘yj —g‘ and ERP(X Yo) =

> -

g|. Typically, ERP(¥, Yo) =0.
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2) Edition rule: i #0 andj=0

There are three ways to transform the first state-sequence into the second

State-sequence:

» Substitution: different from the EDR, we do not need to justify whether the
current two states match each other or not. Since the real distance between the
two current states reflects the matching cost of substitution. If we can
transform Xinto Y, by exchanging ixfor y;, and the real cost of operations
required to transform X to Y. is ERP(Xi, Y1), then the total cost of
operations is ERP{X Y..1) + diskre(X;, ¥), where distre(X, V) = | % - ¥ |

denotes the substitution cost betwegarnd y.

> Deletion: if we can transform;Xato Y, by removing xat the end of Xand the
real cost of operations required to transform % Y, is ERP(Xy, Y;), then the
total cost of operations is ERREXY)) + diskre(X, g), where disike(X, 9) = |
X - g | denotes the deletion cost pf x

> Insertion: if we can transform; ¥to ¥ by adding yat the end of Xand the
real cost of operations required to transformaxy,_; is ERP(X Yj.1), then the
total cost of operations is ERR(X.1) + diskrA0, ¥;), Where distre(g, ¥) = | 9

- ¥, | denotes the insertion cost gf y

Therefore, the number of operations required to transfarmtX Y, is obviously

the minimum of the above three sub-cases: ERP{X = min(ERP(Xi, Y1) +
distere(Xi, 1), ERP(X4, Yj) + diskrd(X, 9), ERP(X Yj.1) + diskrd(g, ¥)).

® The non-temporal distance is not considered.

® For the temporal distance, only the temporal order is considered in terms of the
Dynamic Programming.

® |t is a real-penalty distance model. Therefore, it is realistic, but not sensitive to

the outliers and noise.
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Section 2.4.4 Dynamic Time Warping (DTW)

Dynamic Time Warping (DTW), as the most important variant of original Edit
Distance, is defined as a real-penalty distance model. Different from the previous
real-penalty distance model (ERP), Dynamic Time Warping (DTW) copes with the
time shifting by duplicating the previous state. For instance, using the same example as
demonstrated in ERP: X = [1, 2], Y = [1, 3, 6], X may be aligned into [1] 2pr2
alignment purpose in DTW. Therefore, the cost of the insertion operation (or deletion
operation if swap X and Y) can be regarded as the real distance between the current

state (‘6” in Y) and the duplicated state{ in X).

0 ifi=) =0

0 ifi=00rj=0

DTW(X.,Y )=1 . _ (2-15)
o distyny, (X, ;) +min{ DTW( X ,,Y ),

DTW(X,_,,Y,)DTW(X,,Y, )}  otherwise

where the digtrw(Xi, ¥) is normally specified as the Lp Norm. For instance pgligix,
y;)) = | % -y | for L1 Norm and digkw(Xi, ¥) = ,/(xz—yf) for L2 Norm. The procedure

of Dynamic Time Warping can be illustrated as:
1) Setuprule:i=0orj=0

» =0 and j=0: the cost of transforming one empty state-sequence into

another empty state-sequence is zero. Therefore, DJ,W{¥= 0.

> i=0 or j=0: DTW(X, Y;) = DTW(X, Yo) = . The cost of transforming one

empty state-sequence into another non-empty state-sequence is infinite.
2) Editionrule: i #0 andj=0

There are three ways to transform the first state-sequence into the second

State-sequence:
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» Substitution: similar to the ERP, the real distance between the two current
states reflects the matching cost of substitution. If we can transformoXy
by exchanging ixfor y;, and the real cost of operations required to transform
Xi-1 10 Y1 is DTW(X.1, Y;-1), then the total cost of operations is DTWA(XY,.1)
+ dishrw(X, ), where distrw(X, y;) = dist(X, y;) denotes Lp Norm distance

between the current two statesmd y.

> Deletion: if we can transform;Xnto Y by removing x at the end of X
according to the spirit of DTW, the statewill be duplicated for alignment
purpose. Suppose the real cost of operations required to transfero X is
DTW(Xi.1, Y;), then the total cost of operations is DTW(XY;) + disbrw(X,
Y;), where distrw(X, ;) respects the real cost between the current stabedx
the duplicated statg.y

> Insertion: if we can transform; Xqto Y, by adding yat the end of Xopposite
to the deletion operation, the staievkl be duplicated for alignment purposes
Suppose the real cost of the operations required to transforo X is
DTW(X, Y1), then the total cost of operations is DTW(X1) + disbrw(X,
yi), where dis§rw(Xi, ¥;) respects the real cost between duplicated statadx

the current statg.y

Therefore, the number of operations required to transfarmtX Y, is obviously
the minimum of the above three sub-cases: DTW{X = min(DTW(X.1, Y1) +
distorw(x, %), DTW(X.1, ¥) + disbrw(x, %), + DTW(X, Y1) + disbrw(x, y)) =
distorw(x, ) + MIn(DTW(X.1, Y1), DTW(X.1, ¥)), DTW(X, Y.0)).

® The non-temporal distance is not considered.

® Forthe temporal distance, only the temporal order is considered in terms of the
Dynamic Programming.

® |t is a real-penalty distance model. Therefore, it is realistic, but not sensitive to

the outliers and noise.
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Section 2.4.5 Time Warpd Edit Distance (TWED)

In distance models explored so far, including the original ED, EDR, ERP and
DTW, only the temporal order is taken into account in terms of dynamic programming.
Marteau [Mar 2008] produced an elastic model named Time Warped Edit Distance
(TWED), which takes into account the temporal gap difference in terms of the temporal
index of states where time-series and sequences are expressed as lists (timestamps) in

the form of {, b, .... t,,.

First, two domains S and T are defined for the binagy=Xx, ..., Xn] = [(S1
te), - (Sm tg )] € SXT, where Sc R'denotes the d dimensional space state vector
and & R denotes the strictly increasing time-stamp variable. Therefore, #afsx t. )
and x= (s, t,), t;>t; whenever &>j. Adenotes the null sample. For the current two

states xand y, the operations of substitution, deletion and insertion can be defined as

r(x—vy;) substitutior
I'(x > A) deletion (2-16)
L(A—>y)) insertion

wherel” denotes the arbitrary cost function. The recursion is defined as

0 ifi=)=0
0 ifi =00rj=0
TWED(X;,Y; )=4 min{TWED( X_,Y, ) +I(x —,), (2-17)

TWED(X,,Y;)+T'(x > A),  otherwise
TWED(X;,Y, ;) +T(A—vY,)}

In order to specify the cost function of the three operations (substitution, deletion
and insertion), the graphical paradigm is introduced. For the convenience of illustration,
the 1D time-series (as shown in y-axis) against the time-stamp (as shown in x-axis) is
constructed for two state-sequences X and Y. The three operations transforming Xinto Y
can be explained in terms of the graphical edit paradigm, as shown in the figure that
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shortly follows (analogously, the current states are(s, t.) and y= (g, ty ):

» Substitution: as shown in figure 2.1 (a), the substitution operation for the two
current two states consists of adjustingoxy and adjustingx to y.1 between
two state-sequences. Suppose the matching cost iof akd Y is
TWED(X.1,Y;-1), therefore the additional cost for substitution is dis§xand
dist(x.1, y-1). Defining % as a binary in TWED, dist(xy;) sequentially consists

of dist(s, g) and dist(, , ty ). Therefore'(x=>y;) = dist(s, g) + dist($1, G-1)

+distt, , t, )+ dist(t, . t, )

.
» Deletion: as shown in figure 2.1 (b), the deletion operation consists of
adjusting xto %1 in the first state-sequence. No additional adjustment is
required in the second state-sequence. Suppose the matching casarmd X
is TWED(X.1,Y;), then the additional cost for insertion is dist). Defining
X as a binary in TWED, dist(x%.1) sequentially consists of dis{(s.;) and

dist(t, , t, ). ThereforeI'(x—> A) = dist(s, s.1) + dist(;, t. ).

» Insertion: as shown in figure 2.1 (c), the insertion operation consists of
adjusting xto %1 in the first state-sequence. No additional adjustment is
required in the second state-sequence. Suppose the matching gastafyX
is TWED(X, Yi-1), then the additional cost for insertion is dist@yi). Defining
y; as a binary in TWED, dist(yy..1) sequentially consists of dist(a.1) and
dist(tqj , tqH). ThereforeI'( A 2y;) = dist(g, g-1) + dist(tqi , tqH).
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Figure 2.1 Graphical paradigm of TWED for edit cost function
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This provides the basis for the TWED distance:

T(x > y;)=dist(x, y )+ dis( x,, y ),
I'(% - A) = dist(, x,)+ 2,
[(A—>y,)=dist(y, Y ,)+4,

In summary, based on the literature review of the representation of primitive time
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and the conventional existing measurements for state-sequence matching, it can be
noted that, firstly, the time structure in terms of both point and interval is the most

reasonable to represent time-series, although it is necessary to formalize the
characterization of time-series and state-sequence with respect to the rich temporal
aspects including temporal order, temporal duration and temporal gap. Secondly, it is
neccesary to design a new similarity measurement in order to conqure the main
problems in the conventional existing measurements for state-sequence matching.
Therefore, the general similarity measurement based on the formal characterization of

time-series and state-sequence will be presentd in Chapter 3.



CHAPTER 3 GENERAL SIMILARITY MEASUREMENT FOR STATE-BASED
SEQUENCE MATCHING

CHAPTER 3 GENERAL FRAMEWORK
OF STATE-SEQUENCE MATCHING

Based on the review of the representation of tierees and state-sequences, as well
as the existing similarity measurements for statgrsece matching, a general framework
for state-sequence matching will be proposed. ,Fits¢ formal characterization of
time-series and state-sequences will be presented lomségped point-based intervals
Then, the general similarity measurement is desigoetbke into account both the

nontemporal aspects and rich temporal aspects.

Section 3.1 Formal Characterization of Time-series and

State-sequences

As mentioned in the introduction to this thesis, in nudshe literature in the domain
of data mining, the fundamental time theories uptich time-series and sequences are
built up are not usually explicitly specified. Therefore, themal characterizations with
respect to the temporal basis were negledtedhis section, we shall present a formal

characterization of time-series and state-sequences

Section 3.1.1 Typed Point-based Time-elements and Time-series

In a system based solely on intervals as primitiie; that of Allen’s interval
temporal theory [All1984], or a system based on Ipaiints and intervals like that of Ma
and Knight [MK1994], arfimmediately beforérelation can be directly expressed by the

“Meets” relation.

N.B. The intuitive meaning of Meetg(t,) is that, on the one hand,; and % do na
overlap each other (i.e., they dot have any part in common, not even a point); on the

other hand, there is not any other time objectdstanbetween them.
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For the sake of allowing the expression of both absolute time values and relative
temporal relations, in this thesis, time-elements are defined as typed point-based
intervals as shown in [MH2006]. The two different approaches to the treatment of
intervals, i.e., taking intervals as primitive or as derived objects constructed out of
primitive points, are actually reducible to logically equivalent expressions under some
requisite interpretations. In fact, in a system based solely on points as primitives, say
(P, <), as the derived objects, an interval can be defined as a typed (left-open &
right-open, left-closed & right-open, left-open & right-closed, left-closed &
right-closed) subset of the set of primitive points, which must be in one of the following
four forms [GS1999]:

(P1, P2) ={P | PERA PL<P< P2}
[P1, ) ={pIPeRAPL<P<p2}
(P, P2 = {p[PeRAPL<P<Pp2}
[P1, 2] ={pIpeRAPL<P<p2}

In the above, R stands for the set of real numbersreal numbers p and g are called
the left-bound and right-bound of time-elemenegpectively. The absolute values for the
left and/or right bounds of some time-elements igé unknown. In this case, real
number variables may be used for expressing relegladons to other time-elements (see
later). If the left-bound and right-bound of timleraent t are the same, t is called a time
point; otherwise it is called a time interval. Witlt confusion, time-element,[p] is taken
as identical to point p. Also, if a time-elemenh@ specified as open or closed at its left
(right) bound (that is, the left (right) type of thime-element is unknown), we shall use
“<” (or “>”) instead of “(” and “[” (or “)” and “]”) as for its left (or right) bracket. In
addition, the temporal duration of a time-elemef(t), and the temporal gap between

two adjacent elementgand §, Tgap (11, t2) can be defined as below:
t=<p > < Tault) =q-p

t1=<p, 01>, b= <P, > S Tgap(t, ) = |p— a4l
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Following Allen’s terminology [All1984], we shall use “Meets” to denote the
immediate predecessor order relation over time-efés) which can be formally defined

as:
Meets(i, tz) < 3p1p.ReR(lL = (P P) A t2 = [P, P2)
vi=[pLP)AL=[p p2)) vi=(pLP) At =[P pd
vi=[pLp)A=[p P vt = (oL Pl Atz = (P P2)
vt =[pL,plAt=(pp)vt=(p, Pl A= (PPl
vii=[p,pl A2 = (P p2)
It is easy to see that the intuitive meaning of tdgg t,) is that, on the one hand,
time-elements 1t and & do nat overlap each other (i.e. they dmt have any part in

common, not even a point); on the other hand, tieer® other time-element standing

between them.

Analogous to the 13 relations introduced by Allenifdervals [All1984], there are
30 exclusive temporal order relations over time-eets including both time points and

time intervals, which can be classified into thiéofeing 4 groups:
® Relations that relate points to points:
{Equal, Before, After}
® Relations that relate points to intervals:
{Before, After, Meets, Met_by, Starts, During. Fimes}
® Relations that relate intervals to points:
{Before, After, Meets, Met_by, Started_by, Contaifsished by}
® Relations that relate intervals to intervals:

{Equal, Before, After, Meets, Met by, Overlaps, @apped by, Starts,
Started_by, During, Contains, Finishes, Finished by}
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We shall use a tetrad (T, R, D, G) to express thgoeal reference of a given

collection of temporal propositions, where:

T = {t1, ..., to} is a finite set of time elements, expressing timvdedge
(possibly incomplete) of what time elements areoiwed with respect to the

given collection of propositions;

e R = {R(ij) | RO = I‘ij)l V...V r(ij)m(ij), 1 <1i,j <n;i#j} is a collection of
disjunctions of temporal relations over T, expregdine knowledge (possibly
incomplete) as to how the time elements in T deead to each other. Herd)y

is one of the possible temporal relations as dladsabove.

e D is a collection of duration assignments (possihlyomplete) to every time

elementin T.

e G is the collection of temporal gap assignmenteaoh adjacent pair of time

elementsin T.

The definition of these derived temporal order relatiortenms of the single relation

Meets is straightforward. For example
Before(t, t,) <> IteT(Meets(t, t) A Meets(ft,))

Based on such a time theory, a time-serigscdn be defined as a vector of
time-elements temporally ordered one after another [MEBBROFormally, a general

time-series is defined in terms of the following schema
GTS3.1) Th=[ty, ..., t] =[<p1, &>, .., <P, G>]
GTS3.2) R =[Meets(t t+1)vBefore(t, t+1) ], foralli=1, ...,n-1
GTS3.3)  Tyur = [Tault) ]=[qi — pi ], for some iwhere 1<i <n.

GTS3.4)  Tgap= [Tgadti, ti+1)] = [Pi+1— G ].for some iwhere 1<i <n-1.
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Generally speaking, a time-series may be incompletarious ways. For example,

if the relation between, &and {1 is “Before” rather than “Meets”, it means that the
knowledge about the time-element(s) betwgemnd {.; is not available. In addition, if
Tqu(tk) i1s missing for some k, it means that durationvidedge as for time-elementis
unknown. Correspondingly, a complete time-seriedefined in terms of the schema as

below:
CTS3.1) T=[ty, ...t =[<pwn q>, ..., <Pn, ]
CTS3.2) R=[Meets( t:1)], foralli=1,...,n-1].
CTS3.3) Tgu=[Tau(t)]=[ai—p], foralli=1,...,n.

CT334) Tgap: [Tga&t“ t|+]_) = q, fOf a” I = 1, ey n'l

Section 3.1.2 States and State-sequences

The validation of data is usually dependent on tifa. instance, $1000 (account
balance) can be valid before and on 1 January BO0®ecome invalid afterwards. We
shall usefluents’ to represent Boolean-valued, time-varying data,certe proposition

“fluent f holds true over time t” by formula Holds(f, t) :

(F1) (f t) = Vtu(Part(, t) = Holds(f t,))

That is, if fluent f holds true over a time-elemgrthen f holds true over any part of

(F2) Viu(Part(i, t) = 3 & (Part(s, ti) A Holds(f t))) = Holds(f t)

That is, if any part of time t contains a part tself over which fluent f holds true,

then f holds true over Here,

Part(t, t) < Equal(i, t) v Starts(t, t) v During(t, t) v Finishes(, t)

(F3) Holds(f, t) v Holds(p, t) = Holds(f v f, t)
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That is, if fluent f or fluent $ holds true over time t, then at least one of tihefds

true over time t.

(F4) Holds(not(f), X < Vty(Part(t, t) = —Holds(f t1))

That is, the negation of fluent f holds true owaret t if and only if fluenf does not

hold true over any part of t.

(F5)Holds(f, t) A Holds(f, t) A Meets(t, t;) = Holds(f, 1®ty)

That is, if fluent f holds true over two time-elem® t and $ that meet each other,

then f holds over the ordered-union péhd .

A state is defined as a collection of fluents. &wlhg the approach proposed in
[MBZ2008], we shall use Belongs§) to denote that fluent f that belongs to the collection
of fluents representing state s. For the reas@ingble expression, iff..., f, are all the
fluents that belong to state s, we shall represest <f, ..., . Also, without confusion,
we shall use formula Holds(g to denote that s is the state of the world wétbpect to

time t, provided that:

(F6) s =s, & Vi (Belongs(f, 8) < Belongs(f, 5))

That is, a state s holds true over time t if anly drevery fluent in the s holds true

over time t.

Consequently, a state-sequence S is defined ag ef Istates together with its
corresponding time-seridg. A general state-sequence is defined in termbetthema

as below:

GSSl) S =[s, ..., S

GSS2) H = [Holds(s, tj)], foralli=1, ..., n,where [t, ..., t;] is a time-series.
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Correspondingly, a state-sequence is defined as lemmf and only if the

corresponding time-series is complete.

According to the basic set of axioms with respect to the point and interval based
time-series theory [MH2006], for any two adjacent time elementnd % such that
Meets(t, t;), we can denote the ordered union pfahd $ as § @ t,.. If Holds(s ty),

Holds(s to) , we have:
Holds(s, 1 ® tp)

Tdur(tl S t2) = Tdur(tl) + Tdur(tz)

That is, the “ordered union” operation over time elements is consistent with the

conventional “addition” operation over the duration assignment function, i.e., ‘Tqy/ .

Section 3.2 State-based Subsequence matching

Subsequence matching is one of the most signifiGsdociations between
state-sequences. First, we should note the differebetween “substring” and
“subsequence” which are often cited in computer science and mathematics. The notion of
string is always regarded as a synonym for sequéeesver, substring is different from

subsequence.

® Substring:A substring of a string (sequenc®= s...§can be represented

asS=s,,...5,,, Where 0<iand m+i<n, which denotes the consecutive

part of the string S.

® Subsequence: @ubsequence of a sequence (strirg))s...§ can be

represented asS= $...$ Where 1<i, <i, <...<i,,<n or we can say the

subsequence is exacted from a sequence along tledeaporal order
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From the above definition, we can see that a Sagsiof a string must be a
subsequence of the string, rather than vice vémaexample;’ABCD” is a substring as
well as a subsequence GABCDEFG’, however,“ABD”, which is a subsequence of

“ABCDEFG’, is not a substring of “ABCDEFG".

Section 3.2.1 Formal Characterization of State-sequence Matching

The notion of state is fundamental for many stasedaapplications; a state
representsa static snapshot of the worldf discourse, while the dynamic historical
scenarios of the world can be characterized in gerof temporally ordered
state-sequences. Generally speaking, a state-segummesents a sequence of data,
measured and/or spaced typically at successive timegh can be either points or
intervals. State-sequence matchis@ popular research topic in state-based systems and
has been applied in various areas such as finadeia analysis [WSZ2004], audio
recognition [ZS2003], visual information retrieval [S&RD0Y, etc. Normally,
state-sequence matching can be divided into twegoaes: whole matching [AFS1993
BKSS1990] (i.e., all state-sequences have the sanghl and subsequence matching
[AFS1993 MWL2001] (i.e., state-sequences have various leng@bviously, the whole

matching problem is in fact a special case of thHeseguence matching problem

Followed by the formal tetrad characterization of state-sequence, the two
state-sequences,and Y, to be matched can be defined as:
GSSXL)Xm=[X1, ..., Xn]
GSSX2)H = [Holds(x, t;)], foralli=1, ..., m,
where [t, ..., ty] is a time-series
GTSXL)T= [ty ..., tr] = [<P1, G2, - .., <Pm, O]
GTSX2)R= [Meets({ ti+1)vBefore(t, ti+q)], foralli=1,...,m-1

GTSX3) Ty, =[d]=[T()] -4 ,foralli=1,....m.

GTSXM) T, =[9] =[ Tl ti t.)] < p..—q foralli=1,...,m-1land g, =0.
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Analogously:

GSSYl) Yn = [y]_, ey yn]
GSSY2H’ =[Holds(y, t;)], forallj=1,...,n,

where ...t ]is a time-series
GTSYDT, =[t,...t1=[<p,q >, ...< B,.q >]
GTSY2)R =[Meet$ {, t,)v Beforg;t t)lforallj=1,...,n-1
GTSY3) Ty, =[di] =[T(t)] H g - @ ,forallj=1, ..., n.
GTSYA) T, =[9]=[T.{t;t,)] d p,u—¢d forj=1,...,n-land g, =0.

Based on the tetrad representation of time-series and state-sequences, 3 temporal
aspects should be taken into account: (i) Temporal Order (also known as temporal
shifting tolerance, which has been taken into account by EDdbased similarity
measurement approaches in the spirit of dynamic programming) (ii) Temporal Duration
and (iii) the Temporal Gap, since they will vary the meanings of the state-sequences.

For instance, the story (state-sequence) | (&h@&wn in Figure 3)1 “I ate for half an

hour. After 1 hour, I walked out for 2 hours and then took a shower for half an hour”.

S e SEEREE IR RN
i o e e R A | B
L e L | [ I
A T A A N 1 B
s—EET T T s | showe
J O A T R A
L T O e e e L e |
S — >
::::IIIIlIIIIL_Y_]I:
0.5

Figure 3.1 Temporal illustration of the three stories

The time-series can be described as below:

GSSI1) S=[s, & s
GSSI2) Holds(s, t), foralli=1, 2, 3.
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Where s, $, $ denote actions (state®at’, “walk” and “shower” respectively and

[t1, T, t3] IS its corresponding time-series described as adtetra

GTSI = (T, R, Tur, Tgap) With
GTSI1) T=[ty, t, t3]
GTSI2) R=[Before(t, t;), Meets(t, t3)]
GTSI3)  Tyur = [Taudt)=0.5, Taudt2)=2, Taults)=0.5]
GTSI4)  Tgap= [Tgagts, &), Tgadte: t3)]= [P21— Pr2, Pa1— P22] = [t12, O]

And its corresponding complete description ig, (denotes the time-element
standing between &ind §) CTSI = (T, R, Taur, Tgap With:
CTSI1) T=[ty, tip, t, t3]
CTSI2) R=[Meets (i, t12), Meets (I, t;), Meets(t, ts3)]
CTSI3)  Taur = [Tault)=0.5, Taur(t12)=1, Taur(t2)=2, Taur(ts)=0.5]
CTSI4) Tgap= [Tgadls, ©), Tgadlo, t12), Teadtz, t3)]= [0, O, O]

Let us think about story Il ag; Shown in Figure 3:1°I ate for half an hour. Then

walked out for 2 hours and then took a shower for half an hour”.

Obviously, the three states (events) have the same temporal qrdgr §) in
these two stories (state-sequences). However, the lengths of temporal gap standing
between “ate” and “walked out” are different in the two stories (1 hour in story | and 0
in story Il). In addition, for story Il (asSshown in Figure 3)1 “I ate for half an hour.
After 1 hour, I walked out for 5 hours and then took a shower for half an hour”, where
the lengths of the temporal gaps between each adjacent state pair are the same as those
in story . However, the duration die state “walked out” is various. The statemeritl

walked out for 5 hours” in story III might be abnormal.
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Section 3.2.2 General Framework for State-sequence Matching

Based on the formal characterization of time-series and state-sequences, the
general similarity measurement with respect to the non-temporal information and the

rich temporal information for two given state-sequences is defined as:

GSM( ><m’Yn) = WntemDiS m(X rﬁYr)+W temDiS ter(x r’nY ) (3-1)

ntel

whereDis__ (X_,Y )andDis_(X_,Y )denote the non-temporal distance and temporal

em

distance, respectively with the corresponding weighanadw,

tem "

Section 3.2.2.1 Non-temporal Matching

Non-temporal matching means common elemental statdching of the
state-sequencespyXand Y, due to the fact that the elemental state appearing in the
state-sequences are not actually ordered by their index, which in turn means the
state-sequences are actually regarded as sets of states. It is a combinatbeal far
pair the two state-sequences in the first place. In general, fonpthere ar€'Pr, =
m!/(m-n)! ways of pairing X and ¥. Let Pr denote the set of all possible ordered
vectors formed by selecting, in order, n random elemental states fgortt ¥eems
reasonable to take the pairing which gives the minimal overall distance. Hence, in this

thesis, we shall define the non-temporal distance betwgamdy, as:

Disntem( X m Yn) = min pe Pldis nten( pr' Yn) (3-2)

j=1

where dis, . (pr, yn)z\/zn: w, dis,,.( pr, y)2 / i v, » Pr = [pr, ..., pra] and.
i=1

Section 3.2.2.2 Temporal Matching

Based on the triad representation of state-sequences, the temporal measurement
between two given state-sequencgswith Y, with respect to the 3 temporal aspects is
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defined recursively as below:

Disem(Xma, Yn)+WgepCoSt( Xy — @)
Disem( Xm, Yn) = MiN< DiS (X 11 Y w2 )J+W ;neCoOSt(p —> vy ) (3-3
Distem( X m-1s Yrrl) +WsuthOSt( Xp—™ yr)

where m, n> 1, Cos{( %, —>¢) , Cosi{¢ — y)and Cosi x, — ¥)denote the cost

function for edit operations deletion, insertion and substitution, respectively, and

Cost( a— t)zz W Cost a> )b ={Tord, Tdur, Tgap (3-4)

and@—> b e{( % =9, (2> vy (%= W} .
The initialization is set as below:
Distem( XO’YO) =0

Dis,(X,,Y;) =00, for j >1 (3-5)
Dis. (X, Yy) =0, fori>1

Section 3.2.3 General Definition of Cost Function

The cost function is a significant issue similarity measurementWe have
currently two categories: binary-value cost functions which are not sensitive to noise
and real-penalty models which are more reasonable for real-life application but

sensitive to noise since the operation cost with respect to a noise becomes much larger

than normal states and will take the total cost into a much higher level. For insgance,
=[1,2, 3, 4], =[1, 2,5, 4],c;=[1, 2, 6, 4],p= [1, 2, 1000, 4] (for the sake of

convenience, we only consider the cost function of temporal order since the cost
functions for temporal gap and temporal duration can be evaluated analogously).

Assume that the states in any two state-sequences will be matched bi-objectivedy along

corresponding temporal order. Then in the binary-value modelsy@&ost 8:) = Cost-
TOFd{(111)1 (212)1 (315)1 (414)}= CO$$I’d{01 Oa 1! O}=11 COSIOI’d(A{l’DIA) Cosﬁ'ord{(l,l)1

(2,2), (3,1000), (4,4)} = Cokd0, O, 1, 0}=1. So Cosbrd(A',B') = COStora( A?, D)

61



CHAPTER 3 GENERAL SIMILARITY MEASUREMENT FOR STATE-BASED
SEQUENCE MATCHING

which in turn means it is not sensitive to the noise (1008/insince the cost between

all the unmatched state pairs (may include noise) is calculated as 1. Analogously, Cost-
Tord(A*, B!) = Costord(A',c?) = 1 which means it cannot distinguish the various values
(s3=5in B while 6 in c) in the domain of the states. In order to make ugHisr

deficiency, the real-penalty cost function emerges, where the real distance between

state pairs instead of the binary value (0/1) is accumulated. For instance, with respect to

the real-penalty cost function, Ceasi(A’,B!) =Costord{(1,1), (2,2), (3,5), (4,4)}=
Costorf0, 0, 2, 0} = 2 and Cosdra( A, D) Costorg{(1,1), (2,2), (3,6), (4,4)} = Cost-
1ord{0, 0, 3, 0} = 3 (here the simplest one-dimension LP distance is employed for the
real distance between each state pair). Sor&3t,B') < Costord( A',C!'). Obviously,

it is more reasonable than the binary-value cost function. However;,&@gtp;)
Costora{(1,1), (2,2), (3,1000), (4,4)} = Cosks0, 0, 997, 0}=997>> Costord( A',B!),

even though they have just got one unmatched state pair, which means it is very
sensitive to noise ste the operation on state “1000” (with insertion, deletion or
substitution) is much more expensive. Therefore, the problem of how to filter out the
noise, or decrease its influence, should be taken into accountaal-penalty cost
function. Unfortunately, none of the existing real-penalty distance models have

considered it.

To filter out the noise or decrease its influeraeost function is defined as:

D> w-Cosf(a—> b ifCos( a> <&
Costla—> b= for all i ={Tord, Tgap Tduf (3-6)

C else
Wherea, be{ % y,# and c is a constant usually set to O (to filter out the noise) or the
maximum cost that we have currently got (release the influence of the noise).

As for subsequence matching, insertion (or deletion) is required to align the two
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state-sequences to be matched. It is important especially using the real-penalty cost

function since the way of insertion (or delejowill vary the cost value during
matching. Reviewing the typical three real-penalty distance models ERP, DTW and

TWED, the main difference is: when insertion (or deletion) is required to align

state-sequenceX  andY,, ERP inserts a constant g (usually 0) inXq while DTW
duplicates the previous stateXpand TWED duplicates the previous stat¥ in terms

of the graphical editor paradigm [12]. For instance,= [1, 2], Y= [1, 3, 6], X,

may be aligned into [1, 2, ], [1, 2, 2] and [1, 2, 3] in ERP, DTW and TWED
respectively. These different disposals will result in various costs for the insertion,
deletion and substitution operations. We shall inherit the spirit of EDR and leave the

task of how to adjust the importance of different operations to their corresponding

weightw,,,w_andw,,. Therefore, the cost functions of GSM are defined as below:

el ?

dist,,(0,y) ifx =¢
COStyy(x— ¥) =1 dis,(x,0) ify=¢ (3-7)
dist, (%, ;) else

dist,(0,d;) ifd;=0
CoStay ( X— ) =1dist,(d,0) ifd =0 (3-8)
dist,, (d;, d) else

dist, (0, gj1) if g4=0
CoStgap( X — ;) =< distip(g-1,0) if g1=0 (3-9)
dist,(g-1, g_1) else

Wherei=1,....,m,j=1, ...,n.

In summary, the aspects considered in GSM compared with existing similarity
measurements are exhibited in Table 3.1. GSM is the only similarity measurement that
accounts for both the non-temporal aspects and rich temporal aspects. Meanvghile, it i

also a reasonable real-penalty-style measurement and robust to noise.
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Table 3.1 The aspects consideredsimilarity measurements

Temporal Difference Cost Function
Non- -

Aspects temporal Temporal Temp_oral Temporal An_tl-
Model Order Duration Gap noise
LCSS v
CLCS
ACS
T-WLCS
OED
EDR
DTW
ERP
TWED
GSM v

Real Penalt

AN N NN

ANENENENENENENENEN

NEYANAN

v v v

All the non-temporal and temporal distances have been taken into account (as

shown in table 32

Table 3.2 General similarity measurement

Distance Aspects Consideration
Non-temporal Aspect Formula (3-2)
Temporal Order Formula (3-7)

Temporal Aspect Temporal Gp Formula (3-8)
Temporal Duration Formula (3-9)

Cost Function Anti-noise Formula (3-6)
Real Penalty Formula (3-6)

In summary, a formal characterization of time-series and state-sequence has been
presented based on the typed point based interval. Benefitting from the formal
consideration of temporal aspects (temporal order, temporal duration and temporal
gap), a general similarity measurement named as GSM, which covers both
non-temporal and all the three temporal aspects, has been designed for general
state-sequence matching. In the next chapter, we shall demonstrate the generality of

proposed GSM and examine the validity and effectiveness for state-sequence matching.
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CHAPTER 4 GENERALIZATION AND
APPLICATION OF GSM

Since the GSM proposed in chapter 3 addresses both the non-temporal aspects and
all the 3 temporal aspects, it is versatile enough to subsume other existing similarity
measurements in the literature of sequence matching. In fact, most of those existing
measurements can be taken as special cases of GSM by means of specifying the
non-temporal and temporal weights, and the cost functions, correspondingly.
Meanwhile, to demonstrate the performance of the proposed GSM, experiments were

conducted on 6 benchmark datasets.

Section 4.1 The Generalization of GSM

In this section, we shall analyse the powerful expressive ability of GSM by

deducing the conventional existing measurements as its special cases.
Section 4.1.1 Original ED Special Case

Set the following restriction:

1) Waem= 0, Weem =1
2) Wdel = VVinS: I/Vsub =1
3) Wrord = WTgap = WTdur = 0

4)  Costrora(xi, @) = Costrora( @,y;) =1, Costrora(xiy)) =  (xi,y;) with

0 ifx =vy.
Costioy (% ¥) = =i
1 else

Then we will get the recursion formulation of OED:
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ED(X.,,Y,)+1
ED(X,,Y,)=min{ED(X, Y ;)+1 (4-1)
ED(X,,,Y, ;) +Costr, (X, %)

which in turn means in OED:

1) Only the temporal order aspect has been accounted for
2) The three operations have the same status
3) No temporal gap or duration difference is taken into account

4) The cost function is binary-value

Section 4.1.2 EDR Special Case

Set the following restriction:

1) Watem= 0, Wiem =1
2) Wdel = VVins: I/Vsub = 1

3) WTord :17 WTgap = WTdur = 0

DR

4)  Costrora(xi, @) = Costrora( @,y,)= 1, Costrora(xi, i) = COSE. 4 (xi, ¥;) with

Costor( x Y)—{O i (.y,)<0
|

rod

else

whered (X, y;) denotes the LP-Norm distance betwegeamndy;. Then we will get the
formulation of EDR:

EDR(X,,Y)+1
EDR(X,,Y,)=min{ EDR(X Y ,)+1 (4-2)
EDR(X 4, Y, 1) +Cosfo( X, )
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Similar to the basic ED, the cost function is binary value (0/1). In contrast, in order to
be applied to real life data, EDR relaxes the matching equality by paraseaiee the

strict equality in ED is limited to symbol (or string) matching.

Section 4.1.3 DTW Special Case

In the formula oilGDM, set the following restriction:

1) Watem=0, Wiem= 1

2) Waer = Wins=Wap =1

3) Wrora =1, Wreap= Wraur =0

4)  Costrora(xi, @) = Costrora( @, y;) = Costrora(Xis ¥;) = drp(xi, 1))

Then we will get the formulation of DTW:
DTW(X.,,Y))
DTW(X,,Y;)=d, (X,y;)+minsDTW (X Y, ;) (4-3)
DTW(X,,,Y, )

Comparing with the binary-value models like basic ED and EDR, DTW is a
real-penalty model which takes real cost (computed wiNorm) for each operation

andit duplicates the previous state when inserting or deleting.
Section 4.1.4 ERP Special Case

Set the following restriction:

1) Watem= 0, Wiem =1

2) Waar = Wing= Wap =1

3) Wrora =1, Wrgap = Wraw =0

4)  Costrora(xi, )= drp(xi, g), Costrora( ©,y;) = dir(g, ¥)),

Costrora(Xiy y;) = drp(Xi, 1))
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Then we will get the formulation of ERP:

ERR( X, ¥)+ d, (X, 0
ERR( X, Y) = min{ ERA( X, Y,)+ ¢ (g y) (4-4)
ERR( Xy, Y.+ dp (X, )

Distinguishing from DTW, ERP adds a constant g (usually set to 0) instead of

duplicating the previous state when inserting or deleting.

Section 4.1.5 TWED Special Case

Set the following restriction:

1) Whatem = O: Wiem = 1
2) Wdel = VVins: I/Vsub = 1

3) WTord :13 WTgap =V, WTdur = 0

Cosi( x,4) = Cosbic”( % x,)+ v Coglr” (X %)+4

Cosi(g, y)= Costis"( yu Y)+ v Cosfs”( v Y+ 4

Cos(x, )= Costig (¥ y)+ Coghe (x Y+
v-(Cosf” (% ¥)+ Cotra (X1, ¥,1))

Costya, (3 §)= (i)

for (a,9)e{(x x»), (Y5 ¥Y) (X y)h(Xy y D}

it {Cos "0, b)=d.(a b

Then we will get the formulation of TWED
TWED(X,,,Y,)+Cost(x,9)
TWED(X;,Y;)=min<TWED(X .Y, ,)+Cost(@, Yy ) (4-5)
TWED(X,,Y, ;) +Cost(X, y)

In TWED, the temporal gap difference is counted, but no duration difference has
been taken into account. Meanwhile, based on the timestamp theory, the index value of

the states are used to compute the temporal gap distance, where, for the corresponding
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the tetrad (T, RTqur, Tgap @and triad (T, R, T,

ur !

T,.,) we have:

For time-series T, = [t, ..., ty] and state-sequences, X [Xi, ..., Xq] With H =
[Holds(x, tj)], foralli=1, ..., m:
1) To=[1,2,....,m=[<1, 1> [<2 2>, ..., <m, m>]
2) R=[Before(t, t+1)], foralli=1,...,m-1

3) Tw.=[d]=[g-p] H0,...,0],foralli=1, ..., m.

4) Teo=[0gl=[p.—d &11,..1] forali=1,...,m-land g, =0.

And for time-seriesT =[t,...,t ] and state-sequences ¥ [yi, ..., Ya] With H* =
[Holds(y, t;)], forallj=1,...,n:

1) T =[12,..,n=[<1 1> [<2 2>, ...,<n,n>]

2) R =[Befordt, f,)]foralj=1,...,n-1

3) T..=[d]=[qg- p]&0,...,0], forallj=1,...,n.

4) Teo=[0]=[p.—d] 41,1,...1] forj=1,...,n-1land g, =0.

Section 4.1.6 LCSS Special Case

Distinguishing from other models, LCSS considers the matched states to describe
the similarity (inverse to the distance used in ED based models). So the min is replaced
by max in LCSS and the initialization should be changed into a minimum value 0
correspondingly. The multi-dimensional LCSS use® control the matching in time
that can be regarded as the temporal gap range when duration function equals to 0 and
the temporakelationship between each two adjacent states is only “before”. N.B. the
temporal gap is just used to restrict the matching range in time. No cost on temporal
gap difference is counted (sg).3

In LCSS,

1) Whatem = 09 Wtem = 1
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2) Wdel = VVins :O, VVSub =1

3) Wrord :1, Wrgap = WTdur = 0
4) COS"ord( X ¢) = Cost)rd (¢1 Y)=O1 Cos‘i’ord( X M) = COS%CrgS( Pt )/)

Then we will get the formulation of LCSS:

0 ifi =0or j =0
LCSY( X, Y.,)
LCS , Y) = max 4-7
SAN=M csq %) @)
LCSH X, Y_)+ Cosks*( % y)
where:
f COS#ord( )|(’ X) <€
Costoa (% %)= Costy (%, ¥) <6 (4-8)

0 else

Where,e ando are employed to control the matching in space and time.

Section 4.1.7 CLCS Special Case

As reviewed in chapter 2, CLCS is the further disposal of LCSS; therefore it has
the same setting as LCSS.

D) Watem= 0, Wiem =1
2) Waer = Wins=0, W =1
3) WTord :17 WTgap:WTdurZO

4) COS"ord( X ¢) = COSt;er (¢1 Y)=O1 Cos"ord( X M) = Coﬁ)l_r(d:s( X )/)

Despite the length of the longest common subsequence, the real common
subsequence is also recorded according to formula (2-2), and then the CLCS can be

calculated with formulas (2-5) to (2-8).
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Section 4.1.8 ACS Special Case

Similar to LCSS, we set:

1) Wntem = O, Wtem = 1
2) Wdel = VVins :O, VVSub =1
3) Wrord :1, WTgap = WTdur = O

4) COS"ord( X ¢) = C:OSt)rd (¢1 Y)=01 Cost'ord( X M) = COS@E( X y)

When substituting the first 3 settings into formula (3-1(3td), we can get:

ACS(X,Y,)=ACS(X ,,Y ;) +CostF (x Y) (4-9)
with:
ACS( K—l'Yj—l) if X :yj
Costs(x. y) =1 ACK X, )+ ACE X, Y.,) (4-10)
—2ACS(Xi_1,Yj_1) if X; #Y,
Therefore:

ACS(X ;Y ;)x2 if x, =y,
ACS(X,,Y)=1ACS(X_,,Y)+ACS(X .Y ,) (4-11)
~ACS(X . Y,) X 2y,

Section 4.1.9 T-WLCS Special Case

As a LCS-based similarity measurement, the first three settings of the T-WLCS
special case are the same as those in the LCSS special case but with different cost
functions in the fourth setting which can be listed as:

1) Wntem = O; Wtem = 1
2) Wdel = VVinS =09 VVsub =1
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3) Wrord :1, WTgap = Wldur = 0
4)  Costoa( X #) = Costra(#, ¥)=0,Costora( X ¥) = Coski>( x )

We can define the formula of T-WLCS as:

T-WLCS(X,Y,)
T-WLCS(X,Y,)=max{T -WLCS (X_, .Y ) (4-12)
T-WLCS( X _;,Y,_)+Cosf " (X y)

ord

with:

-wLes 1 if x; =y, 3
Cos (% y)= (4-13)
0 if X £y,

Therefore:

max[T ~-WLCS(X,Y )T -WLCS(X_, .Y ), ifx =y,
T-WLCS(X,Y) = T-WLCS(X,,Y )] +1 (4-14)

max(T ~WLCS(X, .Y, )T -WLCS(X_, ¥ )] if x =y,

Section 4.2 The Optimal Temporal Common Subsequence

In this section, so as to distinguish from the concept of common subsequence in
conventional LCS, we define the temporal common subsequence of two
state-sequences as the common subsequence where each state is different from its

neighbour(s) (predecessor and successor):

Section 4.2.1 Definition of OTCS

Definition 4.1: Given two state-sequences;[X, X, ..., Xm] and ¥E[y1, Vo,..., Yl
with time seriesTX=[tx;, txz, ..., tXn] and TY=[tys, tys,..., ty,], temporal common

subsequence is defined as:

TCSOX, Y) ={[s1, ... S] | St 9., & €{X1, X, oo, Xb NV { Y1, V2., Yo} and 0 <
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t5< tg<...< ts<min(m, n)andjst s+ forj=1,... t-1.

That is to say, there are no continuous duplications of states in temporal common
subsequence. Let us return to the examples in figure 1.2 and figure 1.3 in chapter 1: For
instance, the longest common subsequence of B3 anié Gaabbbcd while the
temporal common subsequence of B3 a@dsCabcd. Correspondingly, the Optimal
Temporal Common Subsequence (OTCS) is the one with the highest overall similarity
integrated by the length of temporal common subsequence, the temporal duration
difference and temporal gap difference, noted as QJCITCS and OTCSZ

respectively.

Section 4.2.2 The Two Properties of OTCS

The task is how to solve the OTCS problem for two arbitrary sequences, X and Y.
First, let us explore the properties of the OTCS function: suppose the current

state-sequences to be matchedis.[x X.1, %] and [y, ..., Vi1, Y]

1) Matching rules: x;=Y;

In this case, the current states are matched. In order to detect whether the
matched states are the continuous duplicated states in the two state-sequences

respectively, four situations should be considered:

i) Both of them are continuous duplicated states=x/.1 = X =Y,

According to the definition of OTCS, to find the temporal common
subsequence, shorten each state-sequence by deleting the current state. The
OTCS of the shortesd state-sequences is equal to the OTCS of the current
state-sequences since the continuously duplicated common state(s) will be
regarded as the same temporal common state with different temporal
durations in each state-sequence. This means OTO§(X OTCS (Xi-4,

Yi-1). For example: X ‘aaaabh Y = ‘aaeebbh X.1 = yj.1 =X =y; = ‘b’,
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ii)

OTCS(‘aaaabh ‘aaeebbh = OTCS(‘aaaah ‘aaeebb = ‘ab'.

Neither of the current states is the continuously duplicated state, but have

the same predecessrri = Y.1 # % =Y,

In this case, the currently matched states can be regarded as the new
temporal common state. So, shortening each state-sequence by deleting the
current state, the OTCS of current state-sequences is equal to the OTCS of
the shortead state-sequences appending the currently matched state.
OTCS(X, ¥) = (OTCS(X1, %-1), % ) or (OTC$(Xi1, Y1), ¥ ). For
example: X = ‘aaaabbt Y = ‘aaeebbb¢ ‘b’ =X.1 =y = X% =y, = ‘C,
OTCS(‘aaaabbt ‘aaeebbbg = (OTCS(‘aaaabh ‘aaeebbb, ‘c’) =
‘abc

Either of the current states is the continuously duplicated states and
obviously the two current states have different predecessors: fi1) &

(either x1 or y.1= X = j).

There are two sub-cases in this case=xx =Yy; 0r Y.i=X =Y if
Xi.1 = X = Yj, which means;xs the continuously duplicated state, so shorten
X by deleting xand the OTCS between the current X and Y is equal to the
OTCS between the shorhX and current Y: OTCS(XY;) = OTCS(X4,
Y;). For example: X ‘aaaabh Y = ‘aaeeb OTCS(‘aaaabh ‘aaeeb) =
OTCS(‘aaaah ‘aaeeb) = ‘ab; else, yj.1= X =Y;, Which means jyis the
continuously duplicated state. In the same manner, shorten Y by deleting y
and the OTCS between current X and Y is equal to the OTCS between the
current X and shorted Y: OTCS(X, Y;) = OTCS(X Yj-1). for example: X
= ‘aaaah Y = ‘aaeebbh OTCS(‘aaaah ‘aaeebbh = OTCS(‘aaaah
‘aaeebbh = OTCS(‘aaaah ‘aaeeb) = ‘ab’. To summarize the two
sub-cases, the OTCS can be calculated @FCS(X, Y) =
max(OTCS(Xi-1, Y;), OTCY (X, Yj-1)).
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iv) Neither of the current states is the continuously duplicated state and have

different predecessors:pe Y1 # X =Y

In this case, the currently matched states can be regarded as the new
temporal common state. So, after shortening each state-sequence by
deleting the current state, the OTCS of the current state-sequences is equal
to the OTCS of the shorted state-sequences appending the currently
matched state. OTCS(XYj)) = (OTCS(Xi-1, Yi-1), Xi ) or (OTCSQ(Xi-1,

Y-1), ¥ ). For example: % ‘aaaabbt Y = ‘aaeebbbfffg x.1 = ‘b* # i1 =
‘% x =y = ‘¢, OTCS(‘aaaabbt ‘aaeebbbffft) = (OTCS(‘aaaabh
‘aaeebbbfff), ‘c’) = ‘abc.

2) Unmatching rules: x =y,

This means the current states are not matched, and then the OTCS of X
and Yis equal to the longer of OTCS{¥:) and LCS(X1,Y;). To explain the

procedure, we shall demonstrate it by dividing the situation into two cases:

i) The predecessor of the current state in the first state-sequence matches the
current state in the second state-sequence=xy;. For example, X
‘aaaabbg Y= ‘aaeebbh x.1 =y = ‘b’, therefore, OTCS(X;, Y;) =
OTCS(X1, ¥))

i) The predecessor of the current state in the second state-sequence matches
the current state in the first state-sequen¢es ¥.1. For example, X
‘aaaabb’, Yj= ‘aaeebbb( x; = y.1 = ‘b’ therefore, OTCS(X;, Y;j) = OTCS(X
Y1)

To summarize the two cases in the second property, OTCH{X=

longer(OTCS(X4, Y;), OTCS(X Yi-1)).
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Section 4.2.3 The Length of The OTCS by Dynamic Programming

According to the two properties of OTCS, the algorithm catmdathe length of

the optimal temporal common subsequence betwegersequences; dnd Y for all 1

<i<mand 1 <] <n can be illustrated as algorithm 4.1, where the length of OTCS will

be stored in OTGS), j) and OTCS%(m, n) returns the length of OTCS of Xand Y.

Algorithm 4.1:  The length of the OTCS

Input: two state-sequenceg Xnd Y.
Output: the length of the longest temporal common subsequences XLCH).
1) Initiation: X =Yo=null
for i=0:m: OTCS%(,0)=0
for j=0:n: OTCgO,)) =0
2) Recursion
fori=1.m
for j=1:n
if % =y, # matched
casel: Xi1=VY1 =X =Y,
OTCS(i,j) =0TCS(i—1,)j—-1)
Case2: X%1=VY1#X =Y,
OTCS(,))=0TCS(i—1,j-1)+1
case3: (%1 # Y1) & (either X1 or y.1= X = y))
OTCS (i, ) = max(OTCS3(i—1, j), OTCS(i, j—1))
cased: X1 # Y1 # X =Y
OTCS(i,j))=0TCS(i—1,j—-1)+1
else x =y # unmatched
OTCS (i, ) = max(OTCS3(i-1, j), OTCS(i, j—1))
3) Accomplishment
OTCS (Xm, Yn) = OTCS(m, n)

In algorithm 4.1, the continuously duplicated states are not re-counted as new

common states in any state-sequence. For example, for the same five state-sefjuence: S

= [abcd], $ = [aaaaabc], 5= [aabbccdd], 6= [aaebbfccgdd] and®$ [aaaabbb], the

OTCS length is illustrated as table 4.1. For reasons of simple illustration, the temporal

duration of each state is set as 1 and the temporal gap between each pair of adjacent

states is set as O if they are identical, or 1 if they are different.
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Table 4.1 OTCS length table

OTCS., | @ | a| a e b b f C C g |d|d
(] 0|00 0 0 0 0 0 0 0O 0|0
a 0|11 1 1 1 1 1 1 1 1|1
a 0|11 1 1 1 1 1 1 1 111
b 0|11 1 2 2 2 2 2 2 | 2] 2
b 0|11 1 2 2 2 2 2 2 |22
b 0|11 1 2 2 2 2 2 2 | 2] 2
c o111 2 2|2 |3 |3|3|3]3
d 0|11 1 2 2 2 3 3 3 144

From table 4.1, we can see that the duplicated continuous states are regarded as once
matching which means they are not re-counted as the length of common subsequence.
For instance, OTG®$'a’,’a’) = OTCS (‘aa’,’aa’) = 1, OTCS_(‘aab’,’aaeb’) =
OTCS (‘aabbb’,’aaebb’) = 2. Meanwhile, it is necessary to take into account the
various duplicated continuous states besides the length (number) of common
subsequence. In OTCS, the various duplications will be counted with various temporal

durations correspondingly.

Section 4.2.4 The Temporal Duration and Temporal Gap by Backtracking

The distinguishing character of OTCS is that besittee length of the optimal
common subsequence based on the definitiyrthe temporal duration and temporal gap
are also taken into account. In order to computedifierences of temporal duration and

temporal gap, a backtracking technique is devel@agezshown in Algorithm 4.2:
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Algorithm 4.2: Track back of OTCS

FunctionbackTrack(OTC{O0..m,0..n], X[1..m], Y[1..n], i, ])
If i=0 or =0
return “”
Elseif X(i)=Y(j)
if X(i-1)= Y(j-1)
return backTrack(OTCS§ X Y, i-1, j-1)
else% X(i-1)# Y(j-1)
if  X(i-1)= X(i) or Y(j-1)= Y(j) %oone of the predecessor is equ
current state
if OTCS(i-1,)) > OTCS(i,j-1)
return backTrack(OTC§ X, Y, i-1, )
else
return backTrack(OTCS X VY, i, j-1)
else%none of the predecessor is equal to current state
return backTrack(OTCS§ X, Y, i-1, j-1) + Xi]
elsé@o X(i)#Y(j)
if OTCS(i-1,)) > OTCS(i,j-1)
return backTrack(OTCS X Y, i-1, j);
else
return backTrack(OTCS X, Y, i, J-1);

During the procedure of backtracking, we simultaneously redodj = ( f,l,)
and Ind, =(f.,ly) as the first and the last index of the k-th common state
betweenX,, andy,, where k=1, ..., L = OTCS.( X,.,Y,), f.l € [1, mland f, |, € [1,

n]. According to the typed point-based intervals, the temporal duration

differenceOTCS ( X,, ¥)and temporal gap differen€ICS( X,, Y,) are calculated as

below:
OTCS (%, =Y [(a - p)-(a - p) (@9
0 ifk=1
OTCS (X ¥) =1 (4-10)

D I(P—a.)~ (R~ q.)] els

Finally, the overall similarity with respect to the temporal order, temporal duration
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and temporal gap is defined as:

OTCH X, Y) = W, ¢ OTCS( X, Y)

~W,, *OTCS( X,, Y.)— W, OTCS( X, Y) (4-11)

Example evolution:

First, let us show an example of OTCS. Figure 4.1 presents the OTCS table for
state-sequences=paabbccdddd] and=Ybbaaeebbbfccccedd], where the elements in
the table denote the length of the OTCS obtained by the algorithm and the first and the

last indices of the temporal common states are circled in red and green respectively. For
instance, for the first common state ‘a’, Ind, =(1,2), Ind, =(3,4), which means it

starts from the first state and endsthe second state in the first state-sequence X,
whilst it starts from the third state and ends by the forth state in the second

state-sequence Y.

OTCS table and OTCS path; with OTCS = abcd

d- 1 1 2 2 3 3 4 4 4
d- 1 1 2 2 3 4
e~ 1 1 2 2 3 3 3 3 3
ck 1 1 2 2 3 3 3 3 3
ck 11 2 2 3 3 3 3 3
c- 1 1 2 2 3 3 3 3 3 3
c- 1 1 2 2 (3 3 3 3 3 3
f- 1 1 2 2 2 2 2 2 2
b 1 1 2 2 2 2 2 2 2
b 1 1 27 2 2 2 2 2 2 2
b- 1 1 [(2) 2 2 2 2 2 2 2
e~ 1 1 1 1 1 1 1 1 1
el 1 11 11 11 11
al- 1)/1 11 1 1 11 11
a- (7 1 1 1 1 1 1 1 1 1
b 0 0 1 1 1 1 1 1 1 1
b- 0 0O 11 11 11 11
r r r r r r r r r r
a a b b c c d d d d

Figure 4.1 OTCS table and OTCS path with OTCS =abcd
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For the same five state-sequenc@s- [abcd], 8= [aaaaabc], 3= [aabbccdd],
= [aaebbfccgdd] and®S [aaaabbb]. The examples of OTCS calculation are evaluated
in the following five tables in table 4.2. In order to clearly see the difference from the
point of view of temporal order, temporal duration and temporal gap individually, the
result of OTCS is shown by a triad that denotes the QTCSCS and OTCS
respectively. From which we can see that we can distinguish the common subsequence
with the same length by further comparison of the differences of temporal duration and

temporal gap.
Table 4.2 Example evolution oDTCS

(@) OTCS(S, S) table

OTCS(S, S) % a b c d
%) [0,0,0] | [0,0,0]] [0,0,0] | [0,0,0]| [0,0,0]
a [0,0,0] | [1,0,0] | [1,0,0]| [1,0,0]] [1,0,0]
b [0,0,0] | [1,0,0] | [2,0,0]| [2,0,0]] [2,0,0]
c [0,0,0] | [1,0,0] | [2,0,0]] [3,0,0]] [3,0,0]
d [0,0,0] | [1,0,0] | [2,0,0]]| [3,0,0]] [4,0,0]

(b) OTCS(S, S) table

oTCcsS. S)| o a a a a a b c
% [0,0,0]| [0,0,0] | [0,0,0] | [0,0,0] | [0,0,0] | [0,0,0] | [0,0,0] | [0,0,0]
a [0,0,0]| [1,0,0] | [1,1,0] | [1,2,0] | [1,3,0] | [1,4,0] | [1,4,0] | [1,4.0]
b [0,0,0]| [1,0,0] | [1,1,0] | [1,2,0] | [1,3,0] | [1,4,0] | [2,4,0] | [2,4.0]
c [0,0,0]| [2,0,0] | [1,1,0] | [1,2,0] | [2,3,0] | [1,4,0]| [2,4,0] | [3,4,0]
d [0,0,0]]| [1,0,0] | [2.1,0] | [2,2.0] | [2.3.0] | [2,4.0] | [2.4.0] |[3, 4, O]

(c) OTCS(S, S) table

oTcs@E$, S)| o a a b b c c d d
@ [0,0,0] | [0,0,0]| [0,0,0]] [0,0,0] | [0,0,0] | [0,0,0] | [0,0,0]] [0,0,0] | [0,0,0]
a [0,0,0] | [1,0,0] | [1,1,0]| [1,1,0] | [1,1,0] | [1,1,0] | [1,1,0]| [1,1,0] | [1,1,0]
b [0,0,0] | [1,0,0]| [1,1,0] | [2,1,0] | [2,2,0] | [2,2,0]]| [2,3,0] | [2,3,0] | [2,3,0]
c [0,0,0] | [1,0,0]] [1,1,0]| [2,1,0] | [2,2,0] | [3,2,0] | [3,3,0]] [3,3,0] | [3,3,0]
d [0,0,0] | [1,0,0] | [1,1,0]| [2,1,0] | [2,2,0] | [3,2,0] | [3,3,0]| [4,3,0] | [4,4,0]
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(d) OTCS(S, S) table

otcsSs)| g | alal| e | b | b | f | c| c | g |d]d

o, [0, ][0 ] [0, | [O, | [0, | [0, [0 | [0 |[O |[O|]IO,
@ 0o,/0]0] o | oo |00/ o0/|o0/|o/lo
o] lojlo| o [ o | o] o |0 ]| 0 o |00

o, [[1, | [3, | [&, | [1, | [& | [& | [& | [3, | [1 |[3,|[28,
a o0 |1 | 1 |12 |1 |2 |1 |1 |1 |1]z1
o] lojlo| o [ o | o] o |0 | 0| o |00

o, [ | [ | [ |2 |2 |[2 | [2 | [2 | [2 |[2]][2
b 0,10 1| 1 |1 |2 |2 /|2/13/3/|S3/]|s3
o lojlol o 21|22 |22 21| 2 |21]2

o || L] L |22 | |B|B|B B3
¢ o, 0 | 1, 1, 1, 2, 2, 2, 3, 3, | 3, | 3,
O] [O]]O | O | 2] |2 | 2] | 4/]4]4/|A4]4

o, || L L |22 |2 B |B | B 4|4
d o, 0 | 1, 1, 1, 2, 2, 2, 3, 3, | 3, | 4,
O] [O]]O | O | 2] 2] |2] | 4]4]A4|6]]§6]

(e) OTCS(S, S) table

OTCS(S, S)| @ a a a a b b b
1) [0,0,0] | [0,0,0] | [0,0,0] | [0,0,0] | [0O,0,0] | [0,0,0] | [0,0,0]|[0,0,0]
a [0,0,0] | [1,0,0] | [L.1,0] | [1.2,0] | [1,3,0] | [L,3,0] | [1,3,0]| [L,3.0]
b [0,0,0] | [1,0,0] | [2,1,0] | [1,2,0] | [1,3,0] | [2,3,0] | [2,4,0] | [2,5,0]
c [0,0,0] | [1,0,0] | [2,1,0] | [1,2,0] | [1,3,0] | [2,3,0] | [2,4,0]|[2,5,0]
d [0,0,0] | [1,0,0] | [L,1,0] | [L.2,0] | [1,3.0] | [2,3,0] | [2.4.0]] [2.5.0]

Table 4.3 shows the matching results between each pair of state-sequences of the
given five state-sequences. For instance, the length of the optimal common
subsequence is identical betweeh, @), (S, S) and (3, S) with OTCS(S,, S) =
OTCS (S, S) = OTCS(S, S) = 4. However, Swill be taken as the most similar
state-sequence td i&elf since OTCH(S, S) = 0 < OTCH(S, S) or OTCH(S, S
and OTC3(S, S) = 0 < OTCS(S, S) or OTCS(S, S) which means Shas less
temporal duration difference and temporal gap difference* its&f than to $or S.
Furthermore, Sseems closer to*$han $ with less difference in temporal gap but the

same length of optimal common subsequence and the same difference in temporal
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duration. Thus, the similarity betweeh&hd $to S can be ordered as: OTC%(S) >
OTCS(S, S) > 0TCS($, S > 0TCS(S, ) > OTCS(S, S), which is reasonable.

Table 4.30TCS table between ®

Similarity st S5 s s S
st | [4,0,0]|[3,4,0]| [4,4,0]]| [44,6] | [2,5,0]
S | [3,4,0]|[3,00]|[35,0]|[35,4]| [23,0]
OTCS S | [4,4,0]]|[350 ] [40,0]]| [4,0,6]| [23,0]
S | [4,4,6]| [3,5 4] | [4,0,6] | [7,0,0] | [23, 2]
S | [2,50][23,0][23,0][23,2]][20,0]

Section 4.3 Experimental Results of Application of GSM

Section 4.3.1 Experiment Databases

To demonstrate the performance of the proposed GSM as well as OTCS,

experiments were conducted 6 benchmark datasets as elaboratethble4.4.

Table 4.4Description of 6 benchmark datasets

Dataset \ Sample Dimension Class
AT&T face* 400 1024 40
uUspPs 9298 256 10
MNIST? 1000 784 10
colL20* 1440 1024 20
Isolet1® 1560 617 26
BinAlpha® 1014 320 26

http://www.cI.cam.ac.uk/research/dtq/attarchive/fatﬁntase.htn{ll

http://www.qaussianprocess.orq/qpml/dlata/

http://yann.Iecun.com/exdb/mnilst/
4 http://www.cs.columbia.edu/CAVE/soﬂware/softIib/coiI-@pl

5 http://archive.ics.uci.edu/ml/datasets/lSOL!ET

http://vann.Iecun.com/exdb/mniIst/
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e AT&T Faces Dataset contains 400 different images of 40 distingestgowith 10
images per subject. For some subjects, the images taken at different times,
varying the lighting, facial expression and facialaile (glasegno glasssy. All
images were taken against a dark homogeneous backbwith the subjects in an

upright, frontal, position. We reshape each image one vector.

e USPSDataset is a handwritten digit database, 500 imég@smages for every

digit) were selected for the reported experiments.

e MNIST Datasets a handwritten digit database. Each image isecedt(according
to the center of mass of the pixel intensities) @8&28 grid. In our experiments,
we randomly chose 1000 images (i.e. each digit Bésirhages). We reshaped

each image into one vector.

e COIL20 Dataset contains 20 objects. Each image of the shipet is taken &
degrees intervals as the object is rotated onrdatbie, consequently each object
has 72 images associated with it. The size of eaalje is 32x32 pixels, with 256

grey levels per pixel. Each image is represented1824 dimensional vector.

e Isoletl Spoken Letter Recognition Dataset generated bysibf@cts announcing
the name of each letter of the alphabet twice. The sgeakegrouped into sets of
30 speakers each, and are referred to as isoletl, ige@23, isolet4, and isolet5.
The features include spectral coefficients, contfaatures, sonorant features,
pre-sonorant features, and post-sonorant featlresur experiment, we utilized

subset isoletl only.

e BinAlpha Dataset containing 26 hand-written alphabets. @ected 30 images

for every alphabet. We reshaped each image intvecter.

Section 4.3.2 Construction of Temporal Duration and Temporal Gap

In order to demonstrate the effectiveness of our measurement, and to avoid
destroying the well organised structure of the original data sets, we construct 10

different distributions for temporal duration and temporal gap. For each class of the 6
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benchmark datasets, the distributions of the temporal duration and temporal gap were
selected randomly from the following 10 distributions. Figure 4.2 shows one example

for each of the 10 distributions of duration.
1) Normal distribution with mean 0.5 and standard deviation 1;
2) Quadratic distribution: y = x(2+i/10);
3) Constant distribution: y =i/100;

4) Negative quadratic distribution: y(2-x)(2+i/10);
5) Circle distributiony = 1— x®" ;

6) Power distributiony = x"@*"9;

7) Cosine distribution: y=-(% +45)sin(2zx )+;

8) Sine distributiony=(3 +4)sin(2rx)+;

9) Step functiony =
Voo else

10)Quadratic distributiony=(4-4; ) (-1 ) +-1;

1) Normal

2) Quadratic
3) Constant
4) Negative
5) Circle

6) Power

7) Cosine

8) Sine

9) Step

10) Quadratic

distribution—»

time-series—»

Figure 4.2 Distribution examples of temporal duration and temporal gap
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Section 4.3.3 Contribution of Temporal Aspects in GSM

A K-means a clustering experiment was conducted xploee the weight

contribution of temporal order, temporal duratiovddaemporal gap. In order to highlight

the contribution of temporal aspects, we firstvggt =0, w, =1. The clustering

tem

accuracies against temporal duration and temporal gap on 6 datasets are reported in

figure 4.3 and figure 4.4. We set the weight of temporal omder =1, while the

temporal duration and temporal gap, andw, . were varied as {1/256, 1/64, 1/16, 1/4,

1, 4, 16, 64}. Generally speaking, the temporal order contributes more significance than
temporal duration and temporal gap. The temporal duration plays a slightly more
significant role than temporal gap. The first 3 optimal weights for temporal duration
and temporal gap are selected to construct the optimal combination of the temporal
duration and temporal gap, and the clustering accuracies, are shown in figure 4.5 where
the red circles denote the highest clustering accuracies and the corresponding weight
combination is set as the final weight for temporal duration and temporal gap of the

GSM on each dataset.
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Figure 4.3 Weights contribution of temporal duration
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Figure 4.4 Weights contribution of temporal gap
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Figure 4.5 Optimal combination of temporal duration and temporal gap

Section 4.3.4 Comparison of GSM with Binary-value Measurements

In order to compare the performance of GSM with binaye measurements OED,

EDR, LCSS, CLCS, T-WLCS and ACS, the GSM was refims OTCS with Wem
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varying from{10™, 10 ...10%} and the optimal wenthat led to the best performance,

while temporal duration and temporal gap were seha optimal weight combination as

shown in figure 4.5\, ,=1). Figure 4.6 shows an example of the clustering results

ord
on the MNIST dataset with OTCS compared to other binary-value measurements. The
dimension was reduced to 2-dimension by PCA dimensionality reduction in order to

plot the clustering results. From this we can see that OTCS has the best clustering

results since the centroids are the most consistent to the data distribution.
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Figure 4.6 An example of clustering results on 2-d MNIST dataset

Table 4.5 shows the clustering accuracy of each dataseter@gn speaking,
compared with the other reputable binary-value measents, OTCS outperforms all of

them with highest clustering accuracy, especialljheBinAlpha dataset.

Table 4.5Clustering accuracy comparison of Binary-value measurements

Datase

AT&T USPS| MNIST [COIL20 | Isoletl |BinAlpha

face

Measurement

OED 65.39 | 60.50| 54.95 | 59.84 | 65.85| 68.96
EDR 76.92 | 66.87| 66.31 | 61.28 | 70.49 | 71.32
LCSS 7457 | 66.25| 52.96 | 53.74 | 60.37 56.44
CLCS 60.23 | 57.64| 50.35 | 51.87 | 55.24 | 53.49
ACS 75.84 | 73.85| 55.66 | 60.55 | 64.85| 60.55
T-WLCS 7259 | 70.17| 58.23 | 66.62 | 66.36 | 61.21
OTCS 78.36 | 76.41| 66.35 | 69.20 | 75.58 | 72.66

Section 4.3.5 Comparison of GSM with Real-penalty Measurements

In comparison to real-penalty measurements such as ERP, DTW and TWED, the
main advantage of GSM is that it is not sensitive to noise. In order to demonstrate the
soundness of GSM, the noised datasets have been reconstructed by meanings of adding
Gaussian noise with different meaii8, 0.2,..., 2]) and variances ([0.1, 0.2,..., 1]) to
eah dataset. Table 4.6 below shows the average mean and standard deviation (STD) of

the retrieval precision on each noised dataset, which statistically demonstrates the
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soundness of GSM with higher precision (mean) and smalleudtueh (STD). Figure
4.7illustrates the retrieval precision on the MNIST dataseketail with respect to various

mean and variance of Gaussian noise, which vettieeffectiveness of GSM visually.

Table 4.6 Statistic of the retrieval precision of noised dataset

—_Dataset| AT&T | |, opol MNIST |COIL20 | Isoletl BinAlpha
Statistic face

—np |Mean| 63.71] 65.60| 50.48 | 61.53 | 74.66| 7125

STD | 0.12490.1391 0.1742| 0.2519 |0.1285 0.1595

Sry  |Mean| 73.37[72.29] 65.79 | 7311 | 78.51| 74.29

STD |0.1932(0.1128 0.1890| 0.1438|0.0891] 0.1032

~wep [Mean| 79.95] 75.30| 68.80 | 72.96 | 79.38| 76.90

STD |0.09930.1025 0.1359| 0.1235 | 0.0940 0.0895

ey |Mean| 85.65| 80.54] 74.82 | 78.44 | 84.19| 82.84

STD |0.06320.0738 0.1022| 0.0983|0.0593 0.738

ERP

precision
precision

precision
precision

variance 0o “mean variance 0o “mean

Figure 4.7 Retrieval precision of GSM on MNIST against Gaussian noise
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Section 4.3.6 Capability to Handle Rich Temporal Aspects

In order to demonstrate the capability of GSM to handle rich temporal aspects, a
classification experiment was conducted on each dataset vehéeave-one-out
mechanism was employed. Half of each dataset was chosen as the training data while
the rest was taken as the test data. Table 4.7 shows the classification precision with
different combinations of temporal aspects. From this we can see that the GSM can
address most matching tasks involvedinme-series and state-sequence data, especially

with different temporal matching requirements.

Table 4.7 Classification precision with combinations of distance aspects

DaaselATAT | spaMNIST |COIL20 Isolet1BinAlpha

Aspects face
Tord 87.50/90.69 85.40 | 87.08 | 89.23| 86.00
Taur 91.00|86.56( 82.20 | 88.75 | 90.13| 87.18
Tgap 88.50(87.12| 83.80 | 88.47 | 89.87| 87.77

Tora+ Taur 89.50/89.61] 86.80 | 89.86 | 92.69| 90.73
Tord +Tgap 90.50(91.44f 89.20 | 89.72 | 93.21| 89.15
Taur + Tgap 87.50(90.77| 86.60 | 89.86 | 92.82| 90.34
Tord+ Tgagt Tawr | 94.00|193.53 89.80 | 91.81 | 94.23| 92.90

In summary, the generalization of the proposed GSM has been explored first,
which demonstrates that the conventional existing measurements can be regarded as
special cases of our GSM. Particularly, the new LCS-based measurement named OTCS
has been proposed, followed by its detail algorithms and the example evolution. The
experimental results of the proposed GSM and the particular OTCS on 6 benchmark
datasets have verified the performance for state-sequence matching. State-sequence
matching is quite ubiquitous in real-life. So the next chapter will present two interesting

investigations/case studies.
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CHAPTER 5 CASE STUDY OF
BASKETBALL ZONE-DEFENCE
DETECTION

State-based temporal pattern recognition, the procedure for matching temporal
pattern of time-series and state-sequences (also known as state-sequence mathing), is
popular activity in eatlife such as financial data analysis, audio recognition, visual
information retrieval, etc. It has played a very important role in data mining,
particularly with respect to temporal information. In the following two chapters, we
shall investigate two video-based cases for temporal pattern recognition: basketball
zone-defence detection in chapter 5 and video copy detection in chapter 6. The model
of each case will be designed, and then novel strategies will be proposed to address the

typical problems in each case.

Section 5.1 Formal Characterization and Basketball

Zone-defence Detection

Based on the formal characterization of time-series and state-sequence, the formal
characterization of our particular case, basketball zone-defence detection, will be

presented in this section.
Section 5.1.1 Formal Characterization of Video Database

With the development and progress in information age, multimedia information,
especially video information, is becoming an active and topical research object, which
includes video retrieval, video structural representation, video annotation and so on.
Videos can be organized at different levels for various research purposes. In this thesis,

videos are organised in terms of clips as shown in figure 5.1. Each video, which
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presents an entire story that to be analyzed/ studied, can be firstly divided into
sequential video clips (each of which is actually constructed by sequential frames).
Then, the sequential key-frames are obtained by specific key-frame extraction
algorithm to represent the corresponding video clips. Therefore, the task of video
analysis can actually be transformed into the problem of exploring the knowledge
between key-frame sequences, whexefeature vector is extracted from each

corresponding key-frame.

e i S o/
Video; _Clipl '—} Iy
Video, C'fpz 2

Video
database

“\ CI'ipn J:y 'ln

| R

Video set Clip set Key-frame set

Figure 5.1Video database organization

Therefore, the formal temporal characterization of video database based on the
tetrad time-series and state-sequence can be described as follows:
GSSI1) I=ly, ..., I
GSSI2) H = [Holds(l, t)], foralli=1, ..., n,
where [t, ..., t] is a time-series
GTSI1) T=1t1, ..., ta) = [<p1, 9>, ..., <Pn, O]
GTSI2) R=[Meets(t ti+1)vBefore(t, ti+1)], foralli=1, ...,n-1

GTSI3) T, =[d]=[T{D] dg-4d ,foralli=1,...,n.

GTSI4) T, =[9]=[T.(t:t)] = p.—d foralli=1,...,m-1and g,=0.

Specifically:
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o To=1[ts, ..., t]] = [<p1, q>, ..., <pn, O] expressesthe knowledge time elements
involved with respect to the given collection ofle® clip. <p g> denotes the

start time and end time of the ith video clip.

e R= [Meets(t t.1)vBefore(t, ti.1)] is the collection of disjunctions of temporal
relations over [, expressing the possible temporal relationship betwaem @air
of adjacent keyrames (also the corresponding states) where “Meets(f, ti.1)” for

complete timeseries and “Before(t, ti+1)” for incomplete time-series.

o T, =[d]=[T.{t)] 4 g— A is the collection of temporal duration assignments

(possibly incomplete) to every time element jjwhich is actually the duration

of the ith video clip.

o T..=[9]=[Tutt,)] 9 p..—qd is the collection of temporal gap assignments

to each adjacent pair in time elemenpt Which is actually the possible interval

between each pair of adjacent key-frames.

From the tetrad characterization of the video database, we can see that the video
pattern recognition follows the GSM (or the proposed OTCS), which is flexible enough
to handle the situations with various temporal aspects. In this chapter, the video of
basketball zone-defence will be studied and the zone-defence detection system with

particular structure relationship will be explored.

Section 5.1.2 Basketball Zone-defence

As a case study of state-sequence matching, zone-defence detection in basketball
videos is investigated in this chapter. Different from images, videos contain rich
temporal information. Therefore, we focus our case study on video patterns. Broadly
speaking, video pattern recognition aims to search out similar video(s) to match a query
video. Video clip detection is an important task that has been widely researched

[BABST2007, HR2007 and MBG2008].
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Zone-defence detection is important in basketball games. On one hand, a coach
needs to lay out the zone-defence strategy and check whether the team is pldngng in
right strategy or not all the time; at the same time, the coach also needs to know which

zone-defence strategy the defenders are adopting.

Basketball zone-defence is a defensive strategy whereby‘each defendé&ris
responsible for guarding an area on the court (or "zone"), and any offensive player that
comes into that area. Figure 5.2 shows the ordinary positions of 5 defenderdlin 1-3-
zone defence. Zone defenders move their positions on the court according to where the
ball moves. Zone-defencean disrupt the opponent’s offensive plan by means of
protecting the paint area and forcing the opponent to shoot from outside. In addition,
changing defences from mamHman to various zones can make the offense

off-balanced and confused.

Figure 5.2 Defenders’ positions in 1-3-1 zone press

For instance, a typical round attacking @&n1-3-1 zone-defence clip can be
represented by the frames showing in figure 5.3 where the yellow circles, the blue
squares and the red dot denote the defenders, the offenders and the ball respectively.
The arrows with solid lireshow how the defenders generally move in the zone, while
the arrows with dotted lines denote the direction of passing the ball, and the arrows

with the curved lines denote the direction of dribbling the ball.
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Diagram A shows the basic formation of the setup. Diagram B shows player
movements as the ball crosses the half-court. If the ball is passed to the corner, the
formation changes into diagram C. Similarly, the following diagrams)(Bhdw the

way on which the formation adjusts when the sthoved

Diaaram G m Diaaram H /\ Diaaram | /\

Figure 5.3 A typical round attacking in 1-3-1 zone-defence clip

Section 5.1.3 Graphic Representation of Basketball Zone-defence

In basketball zone-defence video, each clip represents a certain round of offense
(or defence) and is denoted as a list of images, or the so-called key-frames sdquence

= [l1, ..., I], which consists of the key-frames extracted one per 2 seconds from the
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clip. We premise that:

(1) The defenders have adjusted to their best defensive positions at the moment

when the ball is about to be passed or dribbled;

(2) Since the zone-defence strategy is to defend against the offensive opponent
attacking into the interior playfield, we only consider the key-frames when the ball is in

the midfield, the wing and the corner as key-frames.

According to these two premises, a basketball zone-defence video clip is
structured by zone-defence states or so-called state-sequ88ce [, ..., S, and
Holds(S, t) fori=1, ..., n, where [i, ..., t)] is a time-series of the moments referred to

the premise (1).

Each key-frame;l(i = 1, ..., n) can be described by its corresponding six-note
graph G structured by the 5 defenders’ positions (horizontal and vertical coordinates)
plus the ball’s position. Following the conventional notations in graph theory, we
represent a zone-defence graph as G = <V, E>, where V and E denotedhadies
(defenders’ positions) and the set of edges respectively, and ExV. In particular,
here |V| = 6. The position of each note is denoted by the horizontal and vertical
coordinates of the corresponding vertex. Assuming V 5 ¥, Vo, Vs, V4, Vs}, it is

presented in ascending ordered by Euclidean distance to thepall (V

Obviously, each state; 8as its corresponding graph, ®here i= 1, ..., n. In
addition, we shall use the following vector [Rall., ball,] to record the ball’s position

of each state, where ball{midfield, wing, conner} fori=1, ..., n.

Zone-defence can be divided into various kinds of zone-defence strategies
including 2-3, 1-3-1, 1-2-2, 3-2, 2-2-1, 2-1-2 and 1-2-1-1 strategies. The first three
strategies, which have been noted as the most typical ones employed in actual

basketball games, are focused upon in this thesis.
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Section 5.1.4 System of Basketball Zone-defence Detection

Figure 5.4 shows the flow chart of the basketball zone-defence detection system.

Each test zone-defence video clip is decomposed into a sequence of key-frames. Each

key-frame is represented by a zone-defence graph as mentioned above and matched

with the graphs in the standard zone graph database. The global distance from each

standard zonés then obtained according to the graph-sequence that is the most similar

(has the smallest distance) to the test graph-sequence, which in turn, provides matching

results to confirm which zone-defence strategy the test key-frame sequence tmelongs

Dl-3—1

Ztest

lm Gn,

zone grap the most global
Q(ey frame> <test grap@ <databaseb (lmllar grap} (dlstanc

detectlng
e result

Figure 5.4 The flow chart of basketball zone-defence detection system

The detail procedure of basketball zone-defence detection is shown as follows:

Firstly, compute the distance between test clip and standard 2-3 zone-defence

strategy.

Step 1: For each key framgil=1, 2, ..., m, compute the distances between

its corresponding zone-defence grapha@d graphs with the same ball position

asG; in the standard 2-3 zone graph database:

D(G .G¥)=[ ]
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whereball* = baIE3,zj efL2,...n.},j=12,..n,<n,, andn is the number

of the graphs with the same ball positioi&Sin 2-3 zone graph database..

Step 2: Determine the distance between1X i < m) and 2-3 zone-defence

strategy. The one with the smallest distance is the most similar gragh to G

D =argmin([d*]) (5-2)

Step 3: Compute the global distance between the test clip and the 2-3
zone-defence strategy example. The sum of the smallest distances to each

key-frame in the test zone-defence clip is calculated as the global distance:
GDZ =) Df (5-3)

Secondly, using the above three steps, we can define the global distance between

the test clip and the 1-3-1 zone-defence strategy examples as:
GD =Y D™ (5-4)

Thirdly, we can define the global distance between the test clip and tHe 1-2-

zone-defence strategy example in the same manner as:
GD=>.D” (5-5)

Finally, the zone-defence strategy with the smallest global distance is regarded as
the strategy that the test clip belongs to. The zone-defence strategy pattern of the test

zone-defence video clip tslculated as:

Z* = argmin GD? GD:: ,GD*) (5-6)

test ! test ? test
7={23,131,122}
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From the flowchart, we can see the step 1 is one of the most important techniques
in the basketball zone-defence detection. How can we measure the similarity between
the zone-defence graphs? The graph matching approach is the natural solution.
Therefore, the Laplacian Matrix based graph matching algorithm is introduced for the

basketball zone-defence detection in the next section.
Section 5.2_M -based state matching algorithm

As mentioned above, each zone state has its corresponding zone graph. Therefore,
state matching can be transformed into the corresponding graph matching. In this
section, we shall extend the Laplacian matrix-based algorithm proposed in
[LTWB2005] for matching zone graphs. The original algorithm proposed in
[LTWB2005] is demonstrated to be precise in matching image pairs; however, on one
hand, it is invariant with respect to zoom, and on the other hand, it is very sensitive to
the translation of single vertex. The main process of the Laplacian matrix-based

algorithm proposed in [LTWB2005] is expounded as follows:
Algorithm 5.1: Laplacian matrix-based graph matching

1) Formulate the Laplacian distance Matrices for zone graph G and H:

e vo Mz i)

LG)=[l,]= (5-7)
Sl (G=ikef..n}ij=1..5

k=i

v [ M2 =)
L(H) =11 = (5-9)

S (=ikefln)ij=1..5

ki

Here, we take M as the diagonal line length of the half-court playfield.

Obviously, Laplacian Matrix L(G) and L(H) have following properties: positive,
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semi-definite, the multiplicity of eigenvalue O is 1, and the corresponding eigen

vector is with all 1 elements.

2) Compute the Singular Value Decomposition (SVD) for each LaplacianXvatr

respectively:
L(G) =U-diag 4, ..., AJ+U" (5-9)
L(H) =V diag{y,..., 7}*V" (5-10)

wherel, >...24 , >4, =0andy,>...>y,,>y,=0denote the singular values

of L(G) and L(H), U ={U, U,,...,U }andVv ={V, V,,...V } arenx northogonal matrices,

U (i=12,..n)anaV,(i =1,2,...n )are column vectors of U and V.

3) Sign adjusting [LTWB2005] V and into.

The decomposition of L(H) is slight different from that of L(G). The smaller the

distance between; 4nd U, the better. The detail measurement is: fixing thethé \

is adjusted and marked\as

\Vi it Vv, U<V, Y|

V=" (5-11)
-V, else i=1,2,--,n

Where theith row vectors of U andreflect the features of th vertices
(characteristic points) of @nd H respectively, marking ag'andv'.

4) Construct the matching distance. Thinking that:

D=[u' -V[=' VHU' V1] =210 ¥ T ] (5-12)
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So, the biggefU' —V')" is, the smaller the distance betwedandV'is, which

means the higher the possibility of matching the ith vertex ah&the jth vertex
of H.

5) Define the matching relationship matrix:
C=UV' =[U'(V)"]1=[C] (5-13)

C; reflects the matching relationship of vertices (characteristic points) between
graph G and H. The ith vertex of G matches the jth vertex df € is the biggest

element in both its columns and rows.

6) Compute the matching distance of each vertex in G, with respect to its

relationships to the vertices in Hvi,j kt € (1,2,..n

D, if C, = \ = j
MD ={ i» If G =maxG, )AG = maxQ (5.14)

maxD,, , else

7) Compute the compound matching distance between graph G and H:
Dis(G, H)=>"MD (5-15)
i=1

Obviously, n = 5 in basketball zone-defence graphs.

Note that in basketball zone-defence, in addition to the Spatial Distance (SD)
relationships as characterized by formula (5.7) and (5.8), the Spattatiéh (SD’)
relationships between defenders also plays an indispensable role. Hence, additional
direction Laplacian Matrices with respect to the direction relationships are formulated

as:
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—R(V; Ve )? /7% ([ #])
LG)=[}]= , (5-16)
Sl (=jkefl,..n}ij=1..5

ki

~RM, -V )22 (#0)

L(H)=[I,1= >-17
H) =[] S (G=jkefl..nd)ij=1..5 &40

ki

whereR(V; Vs )and R(V, —VHJ)denotes the direction relationships between

vertex pairs Vg Vs, )and Vi ) respectively:

Xe =X,
R(V; .V, ) =argcosf——— (5-18)
: [0,7] 5, —Vs H

X "%
R(V, ,V,, )=argcos{— = (5-19)
i i [0,7] H, _VH‘ H

N.B.: Single vertex translation has less effect on the direction Laplacian
Matrices (as formulated in Eq.(5.16) and Eq.(5.17)) than the distance Laplacian

Matrices.

With the same procedure as step 2) to step 6) as illustrated in the above, we can

obtain the spatial direction distance between grapinéH: Dis (G, H) = Z MD
i=1

Finally, the global matching distance between graph G aisddefined by:
D(G, H) = uDis(G, H)+ 1 Dis(G H) (5-20)

Wherey, denotes the weight of the spatial distance in the global distance. The

experimental results of the extended Laplacian Matrix-based graph matching algorithm
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taking into account both spatial distance and spatial direction will be tested and

demonstrated on basketball zone-defence detection system in section 5.1.5.

Section 5.3 Structure-based Feature Extraction

Graphi@l representation has been investigated for zone-defence detection. Graph
matching (GM) algorithms and their improved variants have been well applied to match
graph patterns [ZMLP2009 and MZH2007]. However, the efficiency and accuracy of
most graph matching algorithms depends very much on the tested graphs constructed
according to the expectation or artificial criteria, rather than real-life apipica
[ZMLP2009], which in turn means most graph matching algorithms are sensitive to
outliers or local bias such as the translation of subprime notes in the graph.
[CHTH2005] proposed a Spatial-Relationship (SR) based approach to describe the
position relationship between defenders. However, this relies on the accuracy of

identification of each defender, which is hardly achievable.

As we know, the defence-lines and the structure relationship between
defence-lines play a crucial role in team sports such as basketball, football, volleyball
and so on. The analysis of the structure relationship between defence-lines is very
necessary and significant in basketball zone-defence. Therefore, in this thesis, a
structure-based feature is proposed to describe the structure relationship between

defence-lines.

Different zone-defence strategies have a different number and type of
defence-lines in basketball, For instance, there are two defence-lines in the 2-3
zone-defence strategy. Generally, the 2 defenders in the front line construct the first
defence-line and the remaining 3 defenders are viewed as the second defence-line.
Different zone-defence strategies have their own typical defence-lines. Focadtee
typical defence-line of the 2-3 zone defence strategy is the second defence-line. We
shall define the structure-based features to describe the structure relationship between

defence-lines. The angle formed by the typical defence-line in each zone-defence
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strategy is named the Character-Angle (CA), the definition of which is crucial to the
extraction of the other structure features. Therefore, the 10 dimensional feature vector
will be defined to describe the basketball zone-defence graphs in the following three

subsections.

Section 5.3.1 Structure-based Features in 2-3 Zone-defence

In the standard 2-3 zone-defence strategy, normally we define the 2 defenders
closest to the balisthe first defence-line and the remaining 3 defendsthe second
defence-line, which is defined as the 2-3 character line. The angle formed from the 2-3
character line is defined as tf@-3 charactersgle” and denoted in shorthand by
writing CAz3: the angle constructed by the pink lines as shown in figure 5.5. One of the
two supplementary angles formed by the character-lines that face the ball is regarded as

the character-angle, similarly hereinafter for the 1-3-1 and 1-2-2 zone-defences.

There are two folds regarding the definition of QA

(a) a general example )(bounter example 1 (c) counter example 2

Figure 5.5 Zone graph examples in 2-3 zone-defence

(1) Which 3 notes constru€A,s?

Normally, CAp3 is composed of the 3 defenders furthest from the ball. However, in
some zone graphs, GAmay not be exactly constructed by the 3 defenders furthest

from the ball by common sense from human understanding of zone-defence strategies
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For instance, in Figure 5.5 (b), assume that V 5 {M, V,, V3, V4, V5} has been
ascendinty ordered by the distance to the bally)Mand 4 and 4 have the
approximately same distance to the ball. For the reason of neatness, the layo&t of the
offenders is ignored. Obviously, tHeéA,3; should be constructed by, W, and \{
(marked as the angle constructed by the blue line), which is more reasonable according

to common sense than that constructed by the furthest 3 neté4 &vid \4).

In other word, if the difference between the distances from the third and forth
furthest notes to the ball is smaller than a given threshold, then the one forming a larger
angle with the segment constructed by the farthest two notes will be taken to form the

character line. The algorithm is described as follows:

Algorithm 5.2:  Notes determination to constrf,s

It (V, VY| < 8)&( AV VY ) > A YV, )
CNy; ={V, V,V}

Else CN,={V,V,V}

whereso=0.05(the distance of diagonal of half-court is normalized to QN3
denotes the set of notes constructing.£&nd/(X,YZ )represents the angle between
note X and segmeiZ which is defined as:
XY |>p |

_ /XYZ
Z(X,YZ)= (5-21)
IXZY else

(2) Which one is the vertex of G&

For the reason of simple description, without losing generality, we assume=CN
{V3s, V4, Vs}, as shown in Figure 5.5(c), and arrange;,{V4, Vs} into {V|, W, Vi} in

clockwise order with respect to the ball, where |, {8, 4, 5}. In general, node Ms
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then taken as the vertex of gAwhile V|, V;, which denote the left node and the right
node respectively, are the end-points of,CAdowever, if Angle <V, W, Vi> (or
Angle <\{, W, V:>) is smaller than a given threshold, an@V/jV< |[MVy| (or MV, <
IMMVu|) then VY (or ;) will be re-taken as the vertex of GA For instance, in Figure
5.5(c),CNasz = {V3, V4, V5}. Assume that Y, Vs and \4 are in the clockwise order with
respect to the ball. 3vshould be defined to be the vertex of &gAwhich is more
reasonable than regarding ¥s the vertex of CA. The algorithm is described as

follows:

Algorithm 5.3:  Character angle detection of 2-3 zone-defence

If (LVVY, <O &MV, <YV )
CA, =2V,
Else f (LVVY,<0)&WVV,|<VV )

CA,= 2NV,

Else CA, =2V,

where 6=7/12 and we appoin€A,zasthe obtuse angle if its vertex is biased towards

the ball compared with its two end points.

The first 4 structure features with respect to,¢Care correspondingly defined as
below (As for the general example illustrated iigufe 5.5(a) Vv, is the first
defence-line and 3/ V4, Vs is the second defence-line, ang, ¥; are the midpoints

of V)V, V.V, respectively):

l.  CA,=ZVYYV. Character-Angle of 2-3 zone-defence.

As explained earlier, this angle characterises the defenders’ positions on the

character line of 2-3 zone-defence.
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. FSA,=Z(VV,VY) : Angle formed by the first and the second

defence-lines.

where ~(XY,ZwW) denotes the acute angle formed by segmxwt and

segmenZTVand similarly hereinafter. It characterises the structural relationship

between the first and the second defence-lines.
. BCA,=£(VV,VY J: the bias of the CA.

which is an angle that presents the bias of the vertex on second defence-lines of 2-3

zone-defence.
IV.  RFSA,=(MV/IVV{ £ VY YV ) restricted FS.

which denotes the restricted angle of the first and the second defence-lines & the 2-

zone-defence. The short&fV, is in comparison toV,V,, the less effect the angle of

segmentV)\V, and segment/,V, has to zone graphs. Sb,is reasonable to take into

account a coefficient to the angle.

Section 5.3.2 Structure-based Features in 1-3-1 Zone-defence

In 1-3-1 zone-defence, the nearest defender to the ball represents the first
defence-line. The second defence-line is constructed by 3 defenders, presenting the
basic character of the 1-3-1 zone-defence, which is defined as the 1-3-1 cHemacter
The angle formed from the 1-3-1 character line is defined as “th8-1
character-agle” and denoted as CAj3:. The key point here is to define the vertex and

two end points of C#s;.
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Figure 5.6 Zone graph examples in 1-3-1 zone-defence

Based on CAg, as defined above, there are two cases to defing;CiMere, we

also use Y V,, V3, V4 and ¢ to denote the 5 defenders, and assumis Yhe nearest

defender to the ballCA,=2VyYV in Figure 5.6(a) andCA,=2VVY.n Figure

5.6(b) and (c) marked as the blue lines). If the corresponding iI€Amaller tham (as
shown in Figure 5.6(a)), then GA has the same two end-pointg @hd \4) as that of

CAz3, and the vertex of CA; is the node (3 from the remaining 3 #tis neither the
closest to the ball nor the vertex of gAOtherwise (as shown in Figure 5.6(b) and (c)),
CA131 will have the same vertex as that of 54Vs), and the node @Ywhich is neither

on the 2-3 character line nor the closest to the ball will be taken as one of the two
end-points of CAg;, and then the other end-point is one of the two end-points gf CA
(V4) which will ensure that C4; divides the remaining two nodes into each side of the

1-3-1 character line respectively. The detection algorithm is expounded below:

Algorithm 5.4: Character angle detection of 1-3-1 zone-defence

If CA,=2VVV <7
C’Aislz Avsvyzl
Else CA,=24VNY 27

C’Aisl = ZVZV y 4
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In continuation from the first 4 features with respect to,4 #he next 3 features

with respect to CAg; are defined below (as for the general example illustrated in Figure

5.6(a), and assumes ¥ the midpoint of segmexiy/, ):

V. CA;=4VyY,: Character-Angle of 1-3-1 zone-defence, which

characterises the defenders’ positions on the character line of the 1-3-1

zone-defence analogously.

VI.  FSA, =Z(VV,VY): Acute angle formed by the first and the second

defence-lines, which characterises the structure relationship between the first and

the second defence-lines of the 1-3-1 zone-defence.

VIl.  STA,, =Z£(VV,VY ): Acute angle formed by the second and the third

defence-lines, which characterises the structure relationship between the second

and the third defence-lines of 1-3-1 zone-defence.
Section 5.3.3 Structure-based Features in 1-2-2 Zone-defence

In the 1-2-2 zone-defence, the defender closest to the ball forms the first

defence-line. As per the examples shownigure 5.7, assume that; V6 the closest

defender; theCA31 is £V, V)V, in figure 5.7(a) and (b) marked as the pink dotted line

and the pink solid line, whil&gV,V V.in figure 5.7(c) marked as pink dotted lines. If

CA131 > = (Figure 5.7(a) and (b)), the vertex of GA(V2) and the nearer one {Mo

the first defence-line (Y of the two end-points of CA; construct the second

defence-line ‘(?\/3 marked as the pink solid line); the remaining two defenders define
the third defence-line\(d_\/5 marked as the blue line). Otherwise (Figure 5.7(c)), the two
end-points of CAg; define the second defence-liné\(, marked as the pink solid line)

and the rest two defenders define the third defence-‘h”?é5 (narked as the blue line).
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The first and the second defence-lines present the basic character af 1-2-

zone-defence. The angle formed from the A-&raracter line is defined as “1-2-2

character-agle” (£V, VYV ;marked as the yellow lines) and denoted as,2A

(@) CAiz1 > mcasel (b) CA131 > mcase 2 (€)CAp1 < =

Figure 5.7 Zone graph examples in 1-2-2 zone-defence

The algorithm is described as follow€A12,, SDLi»» and TDLy, denote the
Character Angle, the second defence-line and the third defence-line & 1-2-

zone-defence, respectivily

Algorithm 5.5:  Character angle detection of 1-2-2 zone-defence

If C131 = ZV4V2V3 >

MV <MV 4

C'Aizz = ZVZV}/ @ SD|-122 = \T\/g, TDL122 =\T)/5

Else

CAz=4VYY,, SDLy, = \E, TDL,,, =V_}/5

Following the first 4 features with respect to £Aand the 3 features with respect

to CAu3;, the last 3 features with respect to GAare defined as below (assume that

CA,,=2ZVMY. , SDL,,=V)¥,andTDL,,=VY., Vs and V} are the midpoints of

segmen‘tm and segme@ respectively as shown in Figure 5. §(a)
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VIl RCA,, = (min(vv, My J)/ maxiny |Y% vy,

Here, we add a coefficient to take into account the effect from the movement of

node \ along the circle formed from;\W, and \4.

IX. RSTA122 = (|V2V3I/|V}/EJ)4W3V\£ Q

RSTA2 is with respect to the restricted angle of segmém, and

segmenv¥,V, and reflects the structure relationship between the second and the third

defence-lines of 1-2-2 zone-defence.
X. BS—Ezz = Z(W\/?’Wii)

which reflects the bias between the second and the third defence-lines of 1-2-2

zone-defence.

The feature vector is constructed by the above 10 features with respect to the three

typical zone-defence strategies:
f={CAz, FSA3 BCAps, RFSAs CAa, FSA31, STA31, RCA2s RSTA2, BSTiog}

The feature vector is not only listed by the 10 components one by one, but also has
internal relationships. The features of one typical zone-defence also reflect the structure

relationship of the other typical zone-defences.

According to the structure-based features extracted above, the test basketball

zone-defence video clip with n key-frames (or zone-defence graphs) can be represented

by a nx10 feature matrix F, ={f, f,...f}' and a ball’s position vector

ball, ={ball, ball,..., ball} , where f, ={f,, f.,...f, ., and ball denotes the

clip

feature vector and the ball’s position of the ith key-frame of the detected clip
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respectively. Analogously, the 3 standard zone-defence databases are represented by 3

corresponding feature matrices with their respedbiail position vectors. For instance,

the standard 2-3 zone-defence database is represented Hyf> f2..., 23

andoball,, ={ball”®, ball3..., ballZ} The distance between two zone-defence graphs

can be expressed by:

D(G, H) = ED( f, f%)=[d? (5-22)

’ N
1 ZJ

Section 5.4 Experimental Results
Section 5.4.1 Experimental Setup

A standard zone-defence graph database of the 3 typical zone-defence strategies
(2-3, 1-3-1 and 1-2-2 zone-defence) was constructed and populated with graph data
corresponding to some of the pictures illustrated on two basketball coaching web

sideé.

Table 5.1 below shows the detailed number of zone-defence graphs collected as
standard zone-defence graphs for each strategy in different ball position. Analogously,

only the key-frames when the ball iis the midfield, the wing and the corner are

considered.
Table 5.1The number of standard zone-defence graphs
n.e:defence 53 1.3-1 1.2
Ball’s position

Midfield 4 3 2

Wing 4 12 7

Corner 6 6 2

Totally 14 21 11

8 http://www.coachesclipboard.rllétttp://WWW.quidetocoachinqbasketball.cbm
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The metric position detection of defenders and the ball is implemented similarly as
in [ABCB2003: The ball’s position, which is either in the midfield, in the wing, or in
the corner, is obtained from its motion described in terms of camera motion, which in
turn, is captured by image motion estimation algorithm [BCB1999]. As for the
defenders positions, in the first place, the defending and offensive sides are
distinguished by the colour difference of sportswear; template matching and projective
transformation are then implemented to determine the metric position of defenders

[ABCB2003.

The system has been tested using both simulated and real basketball zone-defence
video clips. We formulated 40 clips (key-frame sequences) provided by the
professional coaches and collected about 1 hour of real basketball zone-defence video

including 112 clips containing 3 to 8 key-frames each as listed in Table 5.2.

Table 5.2The number structure of test data

Zone-defence Total clips Total key-frames
strategy

2-3 20 145
Simulated 1-3-1 20 60 161

1-2-2 20 128

2-3 52 286
Real-life 1-3-1 31 112 221

1-2-2 29 169

Section 5.4.2 LM-based Basketball Zone-defence Detection

First, we give an example of the matching (global) distances between a given test
state-sequence and 3 standard zones as shown in figure 5.8, where: the sedsnd row
the corresponding graphs of the test state-sequence with 3 states as shown in the first
row; the remaining rows are the most similar graph compared with each test graph in
2-3, 1-3-1, and 1-2-2 zone-defence strategies, as appearing in the row order. From

figure 5.8, 1 can clearly be seen that the most similar zone-defence formation in
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comparison to the test state-sequence is the 2-3 zone-defence pattern, which agrees

with the matching result from our algorithm.
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Figure 5.8 An example of basketball zone-defence video clip recognition

Table 5.3 below shows the matching precision for each zone-defence pattern. It
indicates that the matching algorithm (8T proposed here, which takes into account
both spatial distance and spatial direction relationships, outperforms S, anlEchh
only address spatial distance or spatial direction relationships, respectively. In
particular, the weights of SD is 0.7570.75), which means the weight of SD’ in SDD’
is 0.25 in Eq. (5.20), leading to the optimal results.

From the table 5.3 we can see:
1) The LM-based graph matching algorithm is effective for zone-defence graphs

which can lead the average precision from 68.8% to 91.6%;
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2) In LM-based graph matching schema, the Spatial Distance is more significant
than the Spatial Direction. In fact, the precision of SD (78.8%) is higher than
that of SD’ (75.6%), where the setting ahe weights of SD (0.75) and SD’

(0.25) leads tohe optimal results for SDD’.

3) Both the Spatial Distance and the Spatial Direction should be taken into
account. In factthe average precision of SDD’ (85.2%) is higher than either

the precision with SD (78.8%) or the precision with SD’ (75.6%).

Table 5.3Matching precise for each zone-defence pattern

Test data Zone Precision (%) Average
SD SD’ SDD’ precision

2-3 74.6 69.8 82.7 75.7

Real 1-3-1 65.9 63.1 77.4 68.8

1-2-2 80.3 70.7 86.2 79.0

2-3 82 80 85 82.3

Simulated 1-3-1 91 89 95 91.6

1-2-2 79 81 85 81.6

Average precision: 78.8 75.6 85.2

Section 5.4.3 CA-based Basketball Zone-defence Detection

The CA-based algorithm is the first work that focuses on feature description of
basketball zone-defence graphs. There are few systems focused on basketball
zone-defence detection. Here, we compare the proposed CA-based algorithm with the

LM-based algorithm in section 5.2 and SR-based algorithm [CHTH2005].

Table 5.4 reports the detection result of each algorithm based on both simulated
and realkife data. Here detection results of “Correct MPD (Metric Position Detection)”
are the results detected on the test clips with correct MPD. It’s clear that the CA-based

algorithm has the highest efficiency, especially with regard to correct MPD.
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Table 5.4Detection result of 3 algorithms based on different data

Database Video clips Correct MPD

Results Test Detected | Test | Detected
Simulated SR 35 34
data LM 40 36 38 35
CA 37 37
Real-life SR 70 69
data LM 112 78 91 74
CA 91 85

Figure 5.9 and figure 50 show the detecting precision and detecting complexity
of the proposed CA-based algorithm congaiwith the other two algorithms in both
simulated data and real-life data on each zone-defence. With respect to the
computational complexity of the flow chart of system shown in figure 5.4, the overall
time complexity Ty = Tin+ Tt + Ty + Toue Where T, Tr, T, Tour denote the time for
input, feature extracting, zone matching and output respectively. In order to emphasize
the effectiveness of different matching algorithms, the input and output time, which are
the same in the system with different matching approaches, were ignored. This means
only T + T, were reported in figure 5.10.It is clear that theCA-based detecting
method has higér detecting precision than the SR-based and LM-based algorithms in
both simulated and real-life data. In comparison witfi-based graph matching
algorithm, benefiting from use of the simple similarity strategy (Euclidian Distance),

both SR-based and CA-based approaches have less computational complexity

100 100

90 90

80 m SR 80 — m SR

70 mLM 70 mLV

60 A 60 i i A
T T T 1 50

50

2-3 1-3-1 1-2-2 2-3 1-3-11-2-2

(a) Simulated data (b) Real-life data

Figure 5.9 Detecting precision comparison with different methods
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mSR mSR
ELM mLM
CA CA
2-3 1-3-1 1-222 2-3 1-3-1 1-2-2
(a) Simulated data (b) Real-life data

Figure 5.10 Detecting complexities comparison with different methods

It is frequent for defenders to have some translational motion cechpdh the
standard position in standard zone graphs. So the translational motion of the farthest
defence-line from the ball in each zone-defence graph, which is regarded to have leas
influence to the global strategy, is added to the test video clip as a disatrbaast
the robust of proposed approach. For each note V on the farthest defence-line in each

zone-defence, we add the disturbanas:
V' =V +d(cosy +siry (5-23)

where d denotes the movement distance of note V’tan¥ y denotes the angle
between d and the x-axis (the mid-field line) as shown in Figure 5.11. Figure 5.12

shows the efficiency in each zone-defence with different disturbance.

V/

i

d dsiny

Ve p4 T

f———> dcoy «—]

Figure 5.11 Disturbance of the nodes on the farthest defence-line
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Figure 5.12 Precision influence with disturbance in each method

The precision comes down with growing disturbance in every method. But in the
CA-based method, it drops much slower than the other two and still has a tolerable
performance even with a high disturbance, which demonstrates that the CA-based

method is robust for the detecting system.
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CHAPTER 6 CASE STUDY OF VIDEO
COPY DETECTION

A video clipis constructed by a well-ordered sequence of frames (images). Due to
the rapid increase of multimedia and the shortage of storage, in many real applications,
the video databases are represented in terms of the sequence of high-dimensional
feature vectors, which consists of the popular low-level features including color
distribution, texture structure, shape configure, spectral character and so on. Therefore,
the video clip matching problem can be transferred into a feature sequence matching

problem.
Section 6.1 Problem Definition of Video Copy Detection

Video copy detection, also named video subsequence identification or video
subsequence matching, is very significant for copyright authorization in commercial
society where we would like to identify whether the current video clip is simply
transformed from another video clip. Especially in TV commerce, it is essential to
clarify the original TV shows from varies TV channels. Generally speaking, there are
two categories of video copy detection: video watermarking and content-based video

copy detection. First of all, it is essential to distinguish their conceptions.

Video watermarking: Video watermarking can be understood as the technique that
permanently "embeds" the identifiable signal(s) or patterim¢s) the host video, to
protect the copyright of digital video products. The main difference of watermarking is
that we cannot detect the originaliy a product if it has not been “watermarked” or

“embedded”.

Video copy detection Video copy detection can be considered as the procedure to

detect whether a query video clip has been re-edited (such as crossover, deleting,

119



CHAPTER 6 CASE STUDY OF VIDEO COPY DETECTION

inserting) or visual transformed (such as reformatted, resolved, brightened, ect.)

compared to some original ori€'s a typical subsequence matching problem.

Previously, various similarity models based on Euclidean distance [AFEH998
been proposed for subsequence matching, one efficient category being the sliding
window based algorithms [FRM1994, MWL2001, MWH2002]. However, most models
are very brittle; even a slight misalignment in time axis and the time-consuming
problem would limit their applicationto large databases. Subsequently, many
successful measurements such as Longest Common Sequence (LCS) [VGK2002], Edit
distance [ALK1999], Dynamic time warping (DTW) [SC1978] and their variants
emerged as required. LCS is directed at finding the longest common sequence in all the
sequences (two in our case) along the same temporal order. It can skip some states that
include noise but ignores how many and which kind of states it skips. ED calculates
the similarity between two state-sequences by the number of operations such as
insertion, deletion and substitution required to transform one to the other. However,
reordering operations such as crossover and backward, which are very common in
time-series data, are not allowed. DTW is robust to time warping such as stretching and
shrinking (which means with different durations of each state), followed by variants
such as PDTW [KP2000], SPRING method [SFY2007], EDTW [APPK2008].
However, they are very sensitive to noise, since each state will be matched including

the noise.

Therefore, the objective of this chapter is to present an efficient framework for
subsequence matching basedadnipartite graph representation and to propose a hybrid
similarity model, while taking into account both spatial and temporal similarity with

high tolerance in inversion, crossover and noise (noises).

Based on the above explanation, the formal definition of video copy detection can

be defined as follows:
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Definition 6.1: Video copy detection. Let Q ={q, ..., On] be the query video
state-sequence a®b=[s;, $, ..., S be the video state-sequence in the video database,
where m, n denote the length of video sequence Q and SS respectively-dig, g.,
0ia) and $= (S1,..., Sa) denote the d-dimensional feature vectors for the corresponding
frames. The task of video copy detection is to detect a subsequencg, S [S, i
in SS, where K k1 < R < .... <kt < n, which is most similar to the query video

sequence Q.
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(b) Key frame sequence two

Figure 6.1 Key frame sequences from the same video scenario with difference

temporal order
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Generally, the typical subsequence matching technique is directed at detecting
similar sequences along the strictly same temporal order. In fact, the restrictive
temporal order always ruins the task of video copy detection since the copy video may
derive from an existing video by different ordering. For instance, Figure 6.1 allestr

such a scenario froffFox Business”.

If we compare the two sequences in figure 6.1 according to the strict temporal
order, there will be low similarity between the corresponding frame pairs. However, the
two sequences contain the same content since they are from the same video scenario.
Therefore, for video copy detection, the similarity between sequences with different

temporal edition (eg. reorder) needs to be considered.

Section 6.2 Bipartite Graphical Representation

While the video clip is organized as a key-frame sequence, the video copy
detection problem can actually be transformed into the bipartite graph matching
problem with particular temporal measurement. We shall systematically introduce the
procedure of transforming subsequence matching into the bipartite graph matching

problem in this section.

Definition 6.2, bipartite graph: In graph theory, a bipartite graph <X, Y, E> is a
graph where the vertices can be classified into two disjoint sets X and Y. The pair of
vertices connected by each edge are in X and Y separately. Figure 6.2 shows an

example of a bipartite graph.

Figure 6.2 An example of bipartite graph
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Table 6.1Notations used in this section

Notation Definition
Q=[m, %...., O] Query state-sequence
SS=[s1,%,. .., S A state-sequence in database
D=[SS....,SS] The database with L state-sequences
NN(q, SS dnay) Set of nearest neighbours ¢imSS
NN(Q, SS dray Set of nearest neighbours of aligQ inSS
BG =<Q,SS E> Bipartite graph between Q as$
MSM(Q, S The set of MSM between Q as%
MSM(Q, D) The set of MSM between Q and &§in D
M A normal matching in MSM(Q, D)
M An inverse-ordered matching of M

The list of notations that will be used in this section is given in Table 6.1. The

procedure can be briefly described as following:

Section 6. 2.1 Searching the similar pairs by thNN

For the query video clip Q and one of the video clips in the database, as shown in
figure 6.2, the first task is searching the similar key-frame pairs between two key-fra
sequences. Due to the repeating or re-referring phenomenon of video clips, for each
key-frame in a query video clip, there may be several similar key-frames in the
database. Therefore, &M (k Nearest Neighbos) approach is adopted. Given a query
key-frame, the idea of kNN is to search out the k nearest key-frames in the video
sequence to be matched. Considering that some key-frames may have few similar
key-frames in the video clip to be matched, it is redundant to search out the k nearest
key-frames for every key-frame in query video clip. For instance, for a noise key-frame,
there may be no similar key-frames in the video clip to be matched. Therefore, different
from the original KNN searching technique, a distance threshqldsddefined for kNN
to search for each stateig SS within the given maximum distancg.g We name it
threshold Nearest NeighboutfiN), whose procedure can be illustrated as algorithm

6.1.
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Algorithm 6.1: The threshold Nearest Neighbours

Input:

g, SS
Output:

NN(Q, SS, day: set of nearest neighbors ¢fiilg) SS within distancegx
Initialization :

NN(G), SS thay) = NN(Q, SS ey = nulll
Updating:

Fori=1ltomandj=1ton

If distance(qs) < Gnax

NN(Gi, SS dha) = NN(Gi, SS tha) U §

NN(Q, SS tray) = {NN(Q, SS dray) » NN(j, SS Cha)}

Section 6.2.2 Constructingun-weighted bipartite graph

Based on the thNN approach, we can define the bipartite @@ph <Q, SS, B
for NN(Q, SS, day, Where the key-frames in Q and SS are constructed as the nodes
allocated on each side of the bipartite graph respectively. For each key-frame state pair
g and g the edge exists if and only if distance(§) < dnax In other words, each
key-frame ¢ is only linked to its threshold neighbsuiThe edge set, E QXSS,
actually denoté¢hNN mapping between Q and SS, as shown in Figure 6.3:

. .
IS oS N /N PN
\ 7\ ¥
/ ’ \r/\ SO0 ,j/\

Q:Cll 2 Cis (314. Om

Figure 6.3 Bipartite graph representation

Obviously, the number of edges related tasd\NN(g;, SS dmay| = b and the total

edges in the bipartite graph iE21|NN(qi,ss dnax)|. The set of mappings between Q
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and SSis {<g NN(q1, SS dray>, < d1, NN(q1, SS dhay™>, ..., < 01, NN(Q1, SS dray>}. It

is a 1: M mapping bipartite graph since the numtifeNN(qi, SS dyay iS NOt unique
(larger than 1), which means each key-frame in the query video clipséasal
neighbours. Therefore, a set of bipartite graphs can be constructed according to the
mapping set. According to the concept of combination, the number of 1:1 mapping
bipartite graphs is <by<...Xby, Below are several 1:1 mapping bipartite graphs

constructed based on the thNN searching.

Q:Ell C;z ,9'3 Gz  Om

o g gt 92 Oz g4 Om
I’ ] Q e » 1’ .\. tt Q\
/ ! 7 ’ \ N \ \
2 !/ ’ \r - \,
/ 1.7 / \ »No \ N,
’ 1,’ / ' SN \ A
/ A3 /! \ S \ AN
/', //ll /’ |l ’ 4 ;", “\ “\ \\
/ ~ l’ / ‘\ ”’ - ‘\ ‘\ R
SSe ¢ ¢ & ... e & o o SSe” ¢ e o ... ® o o
S S &8 % $Hi3S2 S S S S $h3Sh2 S S

Figure 6.4 1:1 mapping bipartite graphs

Section 6.2.3 Maximum Size Matching (MSM) algorithm

A 1:1 mapping, however, is not enough. The size of the 1:1 mapping (the number
of edges in the corresponding bipartite graph) is attractive to us. For instance, the one
edge mapping bipartite graph & (01, S1)> is obviously not the satisfied mapping we
would like to obtain in video clip detection. In order to obtain the maximum size
mapping in the mapping set we have already obtained, the Maximum Size Matching
(MSM) algorithm [Shi200#is employed to produce a set of 1-1 mappings between Q
and SS with the maximum size for the correspon@@gNote that the output of MSM
in general is not unique. For instance, the two 1:1 mappings in figure 6.4 are both the
maximum mappings from figure 6.3. The typical Hungarian Algorithm [Kuh1955,

munl1957, AMO1993] is conducted for Maximum Size Matching. Firstly, several terms

related to the bipartite graph matching should be noted:
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Definition 6.3 Matching: Given a bipartite graph G, a matching is a subgraph of
G, where any pair of edges has no common vertex. Or we can saygtee dé any

vertex is no larger than 1.

Definition 6.4 Maximum Matching: is a matching that contains the largest

number of edges.

Definition 6.5 Alternating Path: is a path where the matched edges and

unmatched edges exist alternatively.

Definition 6.6: Augmenting Patit an augmenting path is a particular alternating

path that both starts from and ends at the unmatched vertices.

Algorithm 6.2: Hungarian Algorithm for Maximum Size Matching

Input:
bipartite grapBG = <Q, SS, E>
Output:
1:1 Maximum Size Matching MSM(Q, SS)
Initialization :
MSM(Q, SS) = null
Updating:
Fori=1tomdo
Start from ¢ searching for the augment pa¥h.
MSM(Q, SS) = MSM(Q, SSu AP

Based on the above definitions, the Hungarian algorithm can be defined as in

algorithm 6.2:

For each given state-sequence SS, algorithm 6.2 produces a corresponding set of
1-1 matching MSM(QSS between Q and SS with the maximum size. Therefore, if we

denote the set of such matching between Q and jat 86as MSM(Q, D), we have:

MSM(Q, D) =UJL:1 MSM(Q, SS) (6-1)
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The remaining main problem is then to develop an appropriate similarity

measurement for searching the corresponding optimal matching.
Section 6.3 Hybrid Similarity Model

As mentioned earlier, for a given matchingeMUSM(Q, D), both temporal
similarity and non-temporal similarity should be taken into account. On one hand, the

non-temporal similarity is defined according to the Euclidean distance between each

mapping:

Section 6.3.1 Non-temporal similarity

The non-temporal similarity is measured by the total similarity which is in inverse

proportion to the Euclidean distance between each matched state pair.
Simy =3 (1-dis(g . §)/ d @ (6-2)

where dis(g §) denotes the Euclidean distance between each matched stateapdir g
s (which has achieved during kNN search) in the matching M and d denotes the feature

dimension of each state. Obviously, the similarity value falls into [0, 1].

On the other hand, as the distinctive feature of time-series data, temporal similarity
needs special treatments with respect to the three measurements described in the

following three sections.

Section 6.3.2 Temporal order similarity

There may be some pairs of state-sequences with the same non-temporal similarity
but with different temporal order. Here, we shall use the idea of LCSS [VGK2002] to
measure temporal order similarity. However, in existing normal LCSS based

formalisms, the typical reordering situations inversion in time-series data has been
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neglected. In order to catch such types of reordering, we define the temporal order

similarity as below:
Sim, = max(LCS(M), LCS(M)) | Q (6-3)

which takes into account both normal order and inverse order.

Section 6.3.3 Temporal alignment similarity:

In normal LCSS formalisms, in subsequence matching, unmatched states are
simply skipped regardless how many of them there are. EDK]®Q99] is an
alternative measurement that distingeisthe number of unmatched states that are
skipped. However crossover, which should be compatible since it is ubiquitous, is not
allowed in ED since it only matches in the single forward direction. Following the
approach proposed in [SSHZ2009], we define the following temporal alignment

similarity:
Sim, =2|M|/(Q+/S9 (6-4)

which takes into account the number of unmatched states and accepts crossover.

Section 6.3.4 Temporal concentration similarity:

It is easy to see that the distribution of matched (or unmatched) states and the
internal temporal distance (or similarity) is ignored in infror instance, by Eq.(6-4),
sequence [1, 2, 3, 4, 5] will be taken as having the same similarity with [1, a, a, 2, 3, 4,
a, 5,12 43,4, 4,a, 5 and[1, b, c, 2, 3, 4, d, 5]. In addition, the duration of various
times, over which the corresponding states are associated with, is not addressed in
(6-27). Here, we introduce a similarity measurement to govern such temporal
concentration. In what follows in this paper, we SP and DD to denote the

Concentration similarity Degree and the Discrete similarity Degree:
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CD= Dur(CM§)+Z( Dur CM9) Z Duf CM9) (6-5)
DD = 2(4 Dur(CUS)/>_ Dui( CU9) (6-6)

where CM$ and CUS are defined as “Continuous Matched Subsequences’ and
“Continuous Unmatched Subsequence”, respectively, in descending ordered with

respect to the length of these subsequences; and Dur(CMS) and Dur(CUS) denote the
list of the duration of each continuous subsequence in CMS and CUS, respettively.
represents the internal temporal distance with respect to each adjacent continuous

matched and unmatched subsequences. In fact, if€<9S.. ., Sy

> " dis(s,,, 5)/| CUg  if =1
A=1%"" dis(s,, §)/| CUS  if p= length S5 (6-7)
> (dis(s,, 9)+ dig 5., 9)/2] Cys el

In order to reduce the computing complexity, we replageaad g., by their
corresponding query states in Q since the Euclidean distance in Eq.(6-2) between each

state in Q and a state 8&has been achieved in the kNN search stage.
The temporal concentration similarity can be defined
Simrc = (CD - DD)/|Q| (6-8)

Section 6.3.5 Hybrid Similarity Model

Normally, the overall similarity can be simply defined as the average of individual
similarities. However, as we have argued earlier, the individual similarity
measurements introduced in this paper have various features. In fact, while the
non-temporal similarity and the temporal similarity may be treated in parallel, the three

temporal similarities are progressive one after the other. Therefore, it is not appropriate
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to simply accumulate all of them together. In what follows, we use a hybrid approach to

combine the four similarity measurements.
Step 1: reorder MSM(Q, D) as MSM(Q) by Simyo, Simyra, and Simc:

Firstly, reorder it by the Sifs; then for the matchings with the same ®m
reorder them by Sim; analogously, reorder by Siaif there some matchings with the

same Sirf exist.

Step 2: Integrate temporal similarity; get the integrated temporal similarityg Sim
Adjust(Simo). For those: = j-i+1 matchings }/7, ..., M’j] with the same Sima, evenly
stretch their similarities into [Sikp + o/2, Sino - 6/2] where o denotes the adjust

operator defined as below:

(Simg - Simrom)/Sy if i#1,j#X
o=4Sim, [2p ifi=1 (6-9)

sim, /24 if j=x

Step 3: Overall similarity; reorder MSM(Q,)Das MSM(Q, D)’’ in terms of
overall similarity Sim, which is defined as the average of the non-temporal similarity

and integrated temporal similarity:
Sim = (Simyr + Simre)/2 (6-10)
Section 6.4 Experimental Results

The proposed method was evaluated using a realidie® database that consisted of
6 classes of video clip including news, basketfjadirts, education, scene, animation and
MTV, each of which is in MPEG-1format with frameteaof 30 fps and with average
duration of 2.9 minutes. For each key-frame, thediédensional color histogram is
extracted as the corresponding feature vector whiah been normalized into [0, 1]

afterwards. The detailed information on the vidigo @atabase is reported in table 6.2.
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Table 6.2 Video clip database structure

database |Duration(hours)|Num of clips | Num of key-frames
news 5.5 90 4560
basketball 4.4 120 2359
education 3.9 80 3096
scene 3.2 100 2547
animation 7.6 120 5213
MTV 7.5 150 6864
TOTAL 32.1 660 24639

Section 6.4.1 Set up

The database consists of06@ideo clip state-sequences with average length of
37.3hrs for each, including 6 different classe®(&Ramples each): In order to avoid the
influence of segmenting error to the proposed sintyl model, we shall use the original
database in the form of individual ®&ey-frame sequences as the training data. Several

guery sets are reconstructed as following:

Original Query Set (OQS): which consists T80 state-sequences (the firsd 3

state-sequences from each class);

Reordered Query Set (RQS): each stat@ence of this set is in a percent reordered

(in inverse order while 0=1) from the corresponding state-sequend@@S

Shortened Query Set (SQS): each state-sequence is with lengttpk(lrumber
of key-frame$, by deletingp x (number of key-frames) states evenly, from the

beginning and from the end of the corresponding state-seque®¢2Sn

Noised Query Set (NQS): each state-sequence olghiss obtained by means of

adding a Gaussian noise to each state-sequenégSn O

For each query state-sequence, by means of follotiegorocedure presented in
section 6.2, we obtain a set of optional matching in the trairataddse, and according to

the hybrid similarity model proposed in section 6.3, wentloalculate the overall
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similarity respectively. The precision is defined #® ratio of the number of
state-sequences with the same class as the queysstjuence out of the first 100
optimal matching in MSM(Q, P’. We focus on the performance of our similarity model
compared with that of [SSHZ2009] (named“&herY), which is just simply defined by
the average of its individual similarity measureitsefmMeanwhile, another two models

which employ ED and LCSS as temporal similarity hasenbtested respectively.
Section 6.4.2 Effectiveness ofgk

Figure 6.5 shows the precision using S dataset with different gy in thNN
search. We can see that there is no distinct infl@ef ¢haxwithin [0, 0.3]. In order to

reduce the complexity of our matching system, weudieta.x = 0.3if not specified.
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Figure 6.5 Precision 0f0QSagainsmax
Section 6.4.3 Effectiveness of

Figure 6.6 shows the precision on the RQS dataadist a. In order to reveal the
performance of the progressive temporal similaritgasurement we proposed in this
paper, we omit the non-temporal similarity in eacktimod. From the figure we can see
that, in our method, the precision has an approximatdrgtic distribution with respect to
a, which means it can better detect the reorderdd-stjuences compared to the other

approaches
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Section 6.4.4 Effectiveness ¢

To evaluate the effect ¢, we formed the SQS dataset by deletifitp0 states in
different positions: evenly, from the beginning dhe end. Figure 6.7 shows the matching
results against differerft Generally speaking, our method is more robust tdthars no

matter whether the state-sequences are shorteeatl efrom the beginning or from the
end. The precision drops much more slowly in ourhoetespecially fof<[0.1, 0.5]. In

addition, according to our statistic, the query siedrtened from the beginning has a
slighty higher precision than the other two sets shorteneshly and at the end in our
similarity model. Generally speaking, the positiomérne being shortened) does not affect

the precision very much in any similarity model.
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Figure 6.7 Precision of SQS against
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Section 6.4.5 Robustness

Figure 6.8 shows the results of data seeded witls€k@n noise with different means
([0, 2]) and variances ([0.1, 1]). Visually, our methaaks higher precision and smaller
fluctuation. Table6.7 below shows the average mean and standard devi&itD) of

each subfigure in Figure 6.8.
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variance 0 o0 mean variance 0o mean

Figure 6.8 Precision with Gaussian noise against mean and variance

Table 6.3 Statistic of the precision of noised query set

Hybrid Shen ED LCSS
Mean (%) 77.69 70.25 66.72 58.28
STD 0.0624 0.0735 0.0809 | 0.1228

In summary, the hybrid similarity model has a satisfactory performance on video
copy detection. Furthermore, it can handle the reorder edition in video clips and is
robust to the noise. Since the similarity factors have just been combined linearly, it

would be worthwhile developing a non-linear combination in the future.
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CHAPTER 7 CONCLUSION AND
FUTURE WORK

Section 7.1 Conclusion

To sum up, this thesis has designed a general framework for state-sequence

matching particularly with the formal characterization of time-series and state-sequence

and a general similarity measurement. In addition, two cases of state-based temporal

pattern recognition have been investigated and explored.

The evolution of the representation of time-series and conventional similarity

measurements have been reviewed in detail. The relevant problems have been pointed

out as motivation of this thesis: the general framework with the formal characterization

of time-series and state-sequence as well as the general similarity measurement.

The main findings with respect to the research issues listed in section 1.2 are

summarized as following:

1). A formal characterization of time-series and state-sequences has been

2).

presented for both complete and incomplete situations, whetensseries is
formalized as a tetrad (T, Raul, Tgap that denotes the temporal order of
time-elements, the temporal relationship between time-elements, the temporal
duration of each time-element and the temporal gap between adjacent
time-elements respectively. It is powerful enough to describe the
state-sequences with both non-temporal information and rich temporal

information.

The General Similarity Measurement (GSM) has been designed for
state-sequence matching. It takes into account both non-temporal and rich

temporal aspects, including temporal order, as well as temporal duration and
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temporal gap. The versatile property of the proposed GSM has been verified
by the means of deducing the conventional similarity measurements as its
special cases. Experimental results on 6 benchmark datasets have
demonstrated that it can address the most general problems in matching
time-series data with rich temporal information. When specified as a
real-penalty similarity measurement, GSM can distinguish the distance caused
by various states in the same operation and filter out noise that may push the
distance at an abnormal level if specified as a binary-value similarity
measurement. In particular, a new LCS-based similarity measurement named
Optimal Temporal Common Subsequence (OTCS) has been proposed as the
special case of GSM. In OTCS, the continuous duplicated states are counted as
the same state with different temporal duration. The advantage of OTCS has
been verified by both the sample evolution and the experiments on the 6

benchmark datasets.

3). The basketball zone-defence detection system has been investigated as a case
study of state-based temporal pattern recognition. On one hand, we have
extended the Laplacian Matrix-based algorithm to take account of the effects
from zoom and single defender’s translation in zone-defence graph matching.

A set of character-angle based features was proposed to describe the
zone-defence graph. It can describe the structure relationship between
defender-lines for basketball zone-defence, and has a robust performance in

both simulation and ed-life applications especially when disturbance exists.

4). The video copy detection system has been investigated as another case study
of state-based temporal pattern recognition. The state-sequence matching
problem has been represented by bipartite graph matching problem. A hybrid
similarity model addressing both non-temporal and temporal relationship
between state-sequences has been proposed, where the non-temporal similarity
has been defined in form of Euclidean distance, whilst the temporal similarity
has been constructed with temporal order similarity, temporal alignment
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similarity and temporal concentration similarity. The experimental results on
the real-life video database have demonstrated that the proposed model is
robust to states alignment with various numbers and different values, as well

asvarious reordering including inversion and crossover.

Section 7.2 Future Work Discussion

In the General Similarity Measurement (GSM) as well as the special Optimal
Temporal Common Subsequence (OTCS) case, the parameter (the values of weights)
selection is a vital and arduous task. How to automatically select the optimal values for
the weights remains one a research task for the future. Furthermore, more intelligent
computation of the temporal durance difference and temporal gap difference also
presents interesting future work. In addition, in order to be applied to large scale
databases, it is very important to adopt proper pruning strategies to improve efficiency,

which will also be part of our future work.

In basketball zone-defence detection, the extended Laplacian Matrix-based
algorithm only takeaccount of the effects from zoom and single defender’s translation
in zone-defence graph matching. However, the effect from rotation is ubiquitous in
zone-defence graph matching. As an area of future work, it would be worthwhile to
take account of the effects from rotation in basketball zone-defence detection.
Furthermore, the basketball database is still small in our experiments. It would be
necessary to expand the size of the dataset to further explore both the non-temporal and
temporal relationships between state-sequences of basketball zone-defence, and
therefore to obtain the best defence and attacking strategy. In addition, both the
extended Laplacian Matrix-based algorithm and the Character-Angle based feature
have been tested on basketball zone-defence videos. Therefore, as future work, they

may be testd on other team sports games such as football, volleyball, and so on.

In the hybrid similarity model, the non-temporal similarity and temporal similarity

including temporal order similarity, temporal alignment similarity and temporal
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concentration similarity have been combined by means of linear accumulation, which is
a simple but inappropriate method of aspect combination. With respect to future work,
it would be interesting to explore more appropriate combination strategies. Meanwhile,
it is hoped that this model can provide a steady usage with regdatigeitime-series

databases and real-life applications such as Content-based Video Retrieval (CBVR),

which may also be an area for future work.
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Temporal Pattern Recognition in Video Clips Detection
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Abstract
before seeing the doctor? Has the patient been allergic to
Tempora| representation and reasoning p|ays anany drUgS in the past? AISO, in weather forecast, to pI’OVide
important role in Data Mining and Knowledge Discovery, correct and accurate prediction, weather experts need to
particularly, in mining and recognizing patterns with rich know not only the current weather parameters summarized
temporal information. Based on a formal characterization @ temperature, air pressure, precipitation amount, wind
of time-series and state_sequenceS, this paper presents tﬁ;@eed and residual snow/ice amount, but also the weather
computational technique and algorithm for matching histories in terms of time-series of weather parameters over
state-based temporal patterns. As a case study of real-lif§0me certain prior periods, such as: How long did the heat
app”cationS, zone-defence pattern recognition in wave last? Was there ||ghtn|ng before or during the rain?
basketball games is specially examined as an illustratingPid snow melt then refreeze? And so on. Similarly, in
example. Experimental results demonstrate that it basketball games, to find correct zone-defence strategy
provides a formal and Comprehensive tempora| onto|ogydetecti0n, we need to know not Only the current pOSitionS of

for research and applications in video events detection. €ach defender, but also their previous positions and
movements, etc.

It has been noted that, time-series and sequences are
important patterns in data mining and have attracted a lot of
researchers’ interests [3, 8, 9, 11, 13]. However, in most of
those proposed formalisms, the fundamental time ig&or
based on which time-series and sequences are farmede

L . usually not explicitly specified, where time-seriemd
Data mining is the process of finding trends and patte"l.%quences are simply expressed as lists in the fifrm

in data [4]. Generally speaking, data mining requires SOMga || ordered indexes or as sequences of collectisn
historical knowledge as for the internal temporalyysenations, and so on. The formal characterizstiith

relationships of certain patterns. Therefore, tempor spect to the temporal basis are neglected, lgastme
representation and reasoning is essential and ubiquitous B?ftical issues unaddressed. ’

data mining and knowledge discovery. In fact, recognizing |, \what follows in this paper, the formalism for

temporal patterns actually plays an important role in many, ajizing  time-series and state-sequences is briefly
applications such as prediction, forecast, explanatiof,oqyced in section 2. Based on this formalism, section 3
diagnosis, history reconstruction, decision making, and SQacents the computational technique and algorithm for
on,whe.re the histo_ry of situations_in terms of time-series zzratching state-based temporal patterns, illustrated by a
sates Is more V'tal, than d's.t'nCt states/processes- Pal-life case study. Experimental results are provided,
gctlonslgvents. For Instance, , n thg area of medlcg alyzed and evaluated in section 4, demonstrating the
information systems, a patient’s medical history is  gfficiency of the proposed technique and algorithm. Finally,

obviously very important: to prescribe the right treatmentgoction 5 provides a brief summary and concludes the
the doctor needs to analysis not orllg patient’s current gaper.

state, but also his/her previous health situations, includin
How long has the patient been ill? Did the patient have the
same problem or relevant disease
previously? Has the patient had some treatmeaadly

Key words: algorithm, temporal pattern recognition,
basketball zone-defence

1. Introduction

2. The formalism

For general treatment, in this paper, we shall adopt the
This research is supported in part by National Nature Sciencddeneral time theory proposed in [10] as the temporal basis.

Foundation of China (No60772122) The time theory takes a nonempty set of primitive time

elements, with an immediate predecessor relatideets,
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over time elements, and a duration assignment function, (F2) vt,(Part(t, t) = Jt,(Part(b, ;) A Holds(f, £)))

Dur, from time elements to non-negative real numbers. If = Holds(f, 1)

Dur(t) = 0, then t is called a point; otherwise, that is That is, if any part of time t contains a part of itself over

Dur(t) > 0, t is called an interval (detailed characterizatiogyhich fluent f holds true, then f holds true over t.

of such a time theory is given ). Here, Part(t t,) is the shorthand writing of Equal(t) v
Analogous to the 13 relations introduced by Allen forstarts(t, t) v During(t, t) v Finishes(, t).

intervals [1,2], there are 30 exclusive temporal order (F3) Holds(f, t) v Holds(f, t) = Holds(f, v f, 1)

relations over time elements including both time points and Tpatis. if flu,ent{holds true over time t orﬂ,uenzt folds

time intervals, which can be classified into the following 4ye over time t, then at least one of them holds true over time
groups: t.

e Relations which relate points to points: (F4) Holds(not(f), t= Yt (Part(t, t) = —Holds(f, t))
{Equal, Before, After} _ That is, the negation of fluent f holds true over time t if
* Relations which relate points to intervals: and only if fluent f does not hold true over any part of t.

{Before, After, Meets, Met by, Starts, During. (F5) Holds(f, {) A Holds(f, t) A Meets(t, t)

Finishes} _ _ — Holds(f, 1®t,)
* Relations which relate intervals to points: _ That is, if fluent f holds true over two time elements t
_ {Before, After, Meets, Met_by, Started_by, Contains,ang 1 that meets each other, then f holds over the
Finished_by} _ _ ordered-uniorf10] of t; and .
* Relations which relate intervals to intervals: A state is defined as a collection of fluents. Following the
{Equal, Before, After, Meets, Met_by, Overlaps, anproach proposed i, we shall use Belongs(f, s) to
Overlapped_by, Starts, Started_by, During, Containgenote that fluent f belongs to the collection of fluent
Finishes, Finished_by} representing state s.
Based the above time theory, a time-series ts is defined kg the reason of simple expressionyitf., f,, are all the
as a vector of time-elements temporally ordered one aftg(ents that belong to state s, we shall represent s,as <f
another [9]. Formally, a general time-series is characterizqg% Also, without confusion, we shall use formula Holds(s, t)

in terms of the following schema: to denote that s is the state of the world with respect to time t,
GTS1) ts=|t, ..., tn); provided that:
GTS2) Meets(t, t!+1) v Before(}, t.1), (F6)s=<f, ..., =

forallj=1, ..., n-1; Holds(s, tk= Holds(f;, t) A ... A Holds(f,, 1)

GTS3) Dur(t) = d. That is, a state s holds true over time t if and only if every

for some k where 1< k < n and di IS @ fyentin the s holds true over time t.
non-negative real number. A state-sequence ss is defined as a list of states together
N.B. : Before(t, t;) < 3t(Meets(i, t) » Meets(t, 1)) with its corresponding time-series ts [9]. A general
Generally speaking, a time-series may be incomplete igtate-sequence is defined in terms of the schema as below:

various ways. For example, if the relation betweemd .. GSS1) ss=s, ..., s;

is “Before” rather than “Meets™, it means that the knowledge  G5S2)  Holds(s, 1),

about the time-element(s) betwegartd ., is not available. foralli=1, ..., n, where [i, ..., t] is a time-series.

In addition, if Dur(f) = d. is missing for some k, it means Finally, a state-sequence is defined as complete if and

that duration knowledge as for time-elemeristunknown. oy if the corresponding time-series is complete.
Correspondingly, a complete time-series is defined in terms

‘éthgi)SChtesrﬂa[tas bet'r‘jf’v: 3. States-based basketball zone-defence
- 1% .- ’ -
CTS2) Meets(, ty), forallj =1, ..., n-1; pattern recognition
CTS3) Duration(t) = d, )
for alli = 1, ..., n, where d; is a non-negative real  AS & popular worldwide sport game, basketball has led
number. to various research interests, including basketball video

The validation of data is usually dependent on time. Fggtrieval, shot segmentation, event or highlight detection,
instance, $1000 (Account Balance) can be valid before aggmantic annotation, etc. In what follows in this paper, we
on 1 January 2003 but become invalid afterwards. We shaft@!l focus on theo-called zone-defence pattern matching
use fluents to represent Boolean-valued, time-varying dattpr zone-defence strategy detection) as a real-life case study
and denote statemeffluent f holds true over time t” by of states-based temporal pattern recognition.
formula Holds(f, t):

(F1) (f, )= Vty(Part(t, t) = Holds(f, t))

That is, if fluent f holds true over a time element t, then f

holds true over any part of t. 3.1. Zone-defence state and graph
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Zone-defence is a very common defence strategy ihree formations.
basketball. In particular, zone-defence uses basic principles In the first place, we shall formulate the standard
to force opponents either in full-court, three-quarter-courizone-defence graph database according to two famous
or half-court areas in order to upset their offense [6]basketball coaching web sides [5, 6]. For instance, a typical
Comparing with marte-man defence, zone pressure2-3 zone-defence clip (state-sequence) for the ball from the
defence requires each defender guard his zone consistentiiate of setting-up in the midfield to the state of passing or
Fig.1 shows the ordinary positions of 5 defenders in11-3-dribbling to the wing and then to the corner can be
zone-defence: presented in terms of the following 3 graphs as shown in
Fig.2 (the star marks denote the 5 defenders and the circle
denotes the ball):

(a) setting-up in the midfield

Fig.1. 5 defenders’ positions in 1-3-1 zone-defence

Firstly, we premise that: 1) The defenders have adjusted
to their best defensive positions at the moment when the
ball is just to be passed or dribbled; 2) As the zone-defence
strategy is to defence the offensive opponent to attack into
interior playfield, we only consider the states when the ball

is in the midfield, the wing and the corner. /\

According to these two premises, a basketball
zone-defence video clip is structured by zone-defence states (b) passing or dribbling to the wing
or so-called state-sequenceSS = [S, ..., S,], and

Holds(S,t) fori=1, ..., n, where [t,, ..., t)] iS a timeseaies
of the moments referred in premise 1).

Following the conventional notations in graph theory,
we represent a zone-defence graph as G g €¢>, where
Vs and K denote the set of the vertices (defenders’
position) and the set of edges respectively, apd-BE/g X
V. In particular, here, | = 5. The position of each
defender is denoted by the horizontal and vertical f\
coordinates of the corresponding vertex.

Obviously, each state 8as its corresponding graph, G
where i = 1, ..., n. In addition, we shall use the following
vector [ball, ..., ball,] to record the ball’s position of each Fig.2. A sample clip (3 states) of 3-zonedefence

state, where bake {midfield, wing, conner} fori=1, ..., n.

(c) passing or dribbling to the corner

Table 1 below shows the number of our standard
3.2. Standard zonedefence graph database zone-defence graph database of different zone-defence
strategies obtained from the two web sites [5, 6].
Zone-defence can be divided into various formations,
including 2-3, 1-3-1, 1-2-2, 3-2, 2-2-1, 2-1-2 and 1-2- Table 1.The number of standard zone graphs
zone-defence strategies, where the first three have been
noted as the most common ones employed in actual
basketball games. In this paper, we shall focus on the first

zone- nce 2-3 1-3-1 1-2-2
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all’s position betweerV, andV,, :
Ko, ~ g
midfield 4 3 2 ROV Ve ) = arg ?OSVV A (5)
wing 4 12 7 ' G G“
corner 6 6 2 N.B.: Single vertex translation has less effect on the
totally 14 21 11 direction Laplacian Matrices than the distance Laplacian
Matrices.
In order to reduce human’s subjective error, we invited 2) Computing the _Singmaf Value Dgcomposition (SVD)
10 professional basketball coaches to enter the standard for each Laplacian Matrix respectively:
zone-defence graphs for our system. For each vertex of any L(G) =Udiad 4,..., A U (6)
graph, we assign the average of the 10 entered values (with L(H) =Vdiag{y,, ..., 7V' @)
respect to horizontal and vertical coordinates) to it. : . : ,
P 'z vert inates) to | L(G) =U'diag(Z,.... A U)" ®)
3.3. LM-based state matching algorithm L(H) zv'diag{y;,m,y;}(v)T (9)

3) Sign adjusting [7] V and V’ into V,and \,.

As mentioned above, each =zone state has its4 Constructing th tching dist bet ith vert
corresponding zone graph. Therefore, state matching can be) —onstructing thé matching distance between ith vertex
in G and jth vertex in H:

transformed into the corresponding graph matching. In this
section, we shall extend the Laplacian matrix-based v - o
algorithm proposed in [7] for matching zone graphs. The P =AU -n V| =(+x)-215 U (V)" (10)
original algorithm proposed in [7] is demonstrated to be , N2 T

precise in matching image pairs; however, on one hand, it is R :H(U) -V H =21-2u0y &)1 (D)
invariant with respect to zoom, and on the other hand, it is N.B.: Here, Eigen-values are added to take into account
very sensitive to the translation of single vertex. The maiff the effects from distance zoom. This is different from the

process of the extended algorithm is expounded adgorithm proposed in [7].

following: 5) Defining the matching relationship matrix:
1) Formulating the distance Laplacian Matrices for C=uy, =[UM)=[C] (12
zone graph G and H: 2 C= U\/bT _ [U (vg V1= [C;j] (13)
LG) =11 = —‘%;/f’ | (i) 1 6) Computing the matching distance of each vertex in G,
©G)=Il;1= - @) with respect to its relationships to the vertices in H :
2l (k) Vi,jikte2,...5,
A . _ Ry, 1 G =maxG G =maxG; )
L(H)=[|ij]= BV (i#]) @ MD, = maxP, , else (14)
_gl“ (K9 MD. — R if'qj =maxG WG =max@G ) (15)
Here, we take M as the diagonal line length of the : maxR, , else

half-court playfield.

Obviously, in addition to the spatial distance (SD)
relationships as characterized by formula (1) and (2), the 5
spatial direction (SD’) relationships between defenders also Dis(G, H) = Z MD (16)
play an indispensable role. Hence, additional direction i=1

7) Computing the compound matching distance between
graph G and H:

Laplacian Matri with r h irection - 3 -
r;gt?ocnihips a?te ;::rfnulat:ad ast:espect o the drrectio Dis (G, H) = ; MD (17)
| | RO Vg)? ) Finally, t_he global matching distance between
L@G)= [|u] = ? (3) graphG andH is defined by:
Yl G=ikii=L2,.5) D(G,H) = uDis(G, H)+ 4 Dis(G H)  (18)
- wherep+ 4 =1.
. . RO Ve (%) As illustrated by the experimental results shown later in
L(H)=[l;]= 8 (4) this paper, by takingu = 0.75and. = 0.25, the algorithm
Dl (i=ikij=12...5) demonstrates an outstanding performance.

ki

where R(\; .V ) denotes the direction relationship 3.4 Zone-defence state-sequence matching algorithm
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As mentioned earlier in the paper, a test basketball video [gest| [ges] | ﬂ ﬁ
<tateg

clip can be denoted by a state-sequengE&®]S.., S,

which in turn can be expressed as a graph-sequence

[G®*% ..., G|, and the corresponding ball positions cest| G| I—>
[ baIIfeSt, .., ball,**]. We shall match each test graph with - graph:
the graphs in the standard zone-defence graph database. IS R

Zone-defence state-sequence matching algorithm is

. SR
given as below. standarc
Firstly, we match the test graph-sequence with standard zone
2-3 zone graph-sequend®¥ =[G?,..., G’]in terms of the \_ araphs)
following procedure:
Step 1: ( A
. . the mos
For eaclG® e G**i=1,2,...m, compute the distances similar
between G** and graphs with the same ball position aranhs
asG'**in standard 2-3 zone graph database, in terms of the
graph matching algorithm presented in section 3.3: similarity
test 23 2
D(G™.G)=[D] (19)

Si |
anreang
whereball® = baII23 2, efl2,..n5} j=1,2,..n, <n, }—‘—‘{ ~
, , , 2N, 31 test |:|'> matching
Z i result

andnpis the number of the graphs with the same ball

position aneStin 2-3 zone graph database. Fig.3. The flow chart of zone-defence matching system

Step 2: As illustrated in Fig.3, in the first place, the test
Search the most similar graph compared @fffin 2-3  state-sequence is transformed into the corresponding
zone graph database. graph-sequence, which is then matched with the graphs in
SE = G® j= 123 (20) the_ st_andard zone _graph database. The compositive
=G ar?mm([q D similarity degrees with each standard zone are then
Step 3: obtained according to the graph-sequence that is the most
Computing the similarity degree between the tessimilar one compared with the test graph-sequence, which
state-sequence and 2-3 zone state-sequences: in turn, provide matching results to confirm which
zone-defence formation does the test state-sequence belong
esl ZV\EB/mIn([ 23]) (21) to.

3 .
WhereV\é denotes the weight of graptgzzlf in 23 4. Experimental results

zone graph database, which are obtained from our coaches

as well. We tested our system with both simulated zone-defence
Secondly, in terms of the same procedure, we define tig&ta and real-life basketball zone-defence video data. For

similarity degree between the test state-sequence antl 1-8ach zone-defence formation, with simulated data, we

zone state-sequences as: formulated 20 clips (state-sequences) provided by the
a D professional coaches. Also, we have collected the real
et ZV\QL /mm([ D (22)  basketball zone-defenceideos lasting about 1 hour,

including 112 clips containing 3 to 8 states. The detected
one-defence video clips were manually decomposed into
-sequences and then represented by corresponding
graphs. In addition, the normalization of the viewing angle
\,\4122 /mm([ 121) (23) of the camera and object-extracting has not been addressed
in this paper. Table 2 shows the numbers of test clips and
Finally, the zone- defence formation pattern of the testtates in detail:
zone-defence video is defined as:
Z'*' = arg maxSi Sin2 ,Sin?2” (24) Table 2. The number structure of test data
In summary, the flow chart of besketball zone-defenge zone total clips total states
matching system can be shown as Fig. 3: 23 52 236

Thirdly, we define the similarity degree between the te
state-sequence and 1-2-2 zone state-sequences in the s
manner as:

ESI

ESl y
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real 1-3-1 31 221 2-3 74.6 | 69.8 | 82.7 75.7
1-2-2 29 169 real 1-3-1 | 659 | 63.1 | 774 68.8
2-3 20 145 1-2-2 | 80.3 | 70.7 | 86.2 79.0
simulated| 1-3-1 20 161 2-3 82 80 85 82.3
1-2-2 20 128 ; 1-3-1 91 89 95 91.6
simulated — > 2 79 | 8L | 85 | 816

Firstly, we give an example of the matching (global) average precise: | 78.8 | 75.6 | 85.2

distances between a given test state-sequence and 3

standard zones. The second row are the corresponding 5 conclusions and future work

graphs of the test state-sequence with 3 states as shown in

the first row, where the rest rows are the most similar graph gased on a formal characterization of time-series and
compared with each test graph in 2-3, 1-3-1, and21-2yate-sequences, we have introduced the computational
zone-defence strategies, as appearing in the row order. Itighnique and algorithm for detecting zone-defence patterns
clear to see that the most similar zone-defence formatiqfym basketball videos. The experimental results show that
compared with the test state-sequence is th& 2j s yseful in helping the coach of the defence side to check
zone-defence pattern, which agrees with the matching resyfether the players play in a right zone-defence strategy, as

from our algorithm.

i -1
test(1) test(2) test(3)
SZ N 2N,
A N
N N N
D=0.49797 D=0.087146 D=0.28318
0
N [ N
D=2.04 D=0.4005 D=0.50064
K@Q @,@) Q@fjﬁ
N N N
D=1.1107 D=0.955 D=1.0579
Y [ ey
N [ N

Fig.4. An example of basketball zone-defence video
clip recognition

Table 3 below shows the matching precise for eacH]
indicates that the matching

zone-defence pattern. It
algorithm (SDD’) proposed here, which takes into account

of both spatial distance and spatial direction relationships,

outperforms SD or SD’ that only address spatial distance or
spatial direction relationships, respectively.

Table 3.Matching precise for each zone-defence pattern

precision (%)
SD | SD’ | sDD’

average
precision

testdata| zone

well as the coach of the offensive side to detect the strategy
of the opponent. Specially, we have extended the Laplacian
Matrix-based algorithm to take account of the effects from
zoom and single defender’s translation in zone-defence
graph matching. As the future work, we shall take account
of the effects from rotation and expand the test dataset to
explore the relationships between sequences of basketball
zone-defence in order to obtain the best strategy. In addition,
we shall test the method in other team-work sport games
such as football, volleyball, and so on.
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Abstract _ _
Intelligence, temporal knowledge can be uncertain and

Absolute-time-stamping of temporal data provides an incomplete. For instances: _
efficient indexing method for temporal information (&) Temporal references may be only relative (e.g.,

systems, but suffers from the requirement that precise  “during the time when the officer was in his office”,
time values for all temporal data need to be available. ~ “after 9 o’clock”, etc., which refer to times that are
Temporal knowledge in many Artificial Intelligence known only by their relative temporal relations to

systems can be uncertain due to the unavailability of ~ Other temporal reference), rather than being absolute
complete and absolute temporal information. This paper  (€g., “8 pm on the 8th of August 2008”, “the last
introduces an inferential framework for reasoning about ~ Wweek of August 2008”, which refer to times with
uncertain and incomplete temporal knowledge: the  absolute values);

uncertainty is formalised in terms of temporal relations (b) Temporal duration may be only relative (e.g., “less

jointed by disjunctive connectives, while the than 6 hours”, “more than 12 years but less than 15
incompleteness is due to the lacking of full temporal years”, etc., which refer to some uncertain amount of
information. A graphical representation which allows temporal granularity), rather than being absolute

expression of such uncertain and incomplete temporal  (e.g. “31 minutes”, “18 hours”, etc., which refer to
knowledge is introduced, and based on which, the system  Some certain amount of temporal granularity);
can deliver a verdict to the question if a given set of () We may only know eventccurred “Before” event
statements is temporally consistent or not, and provide  Ez without knowing their precise starting and
understandable logical inferences by linear programming finishing time, or what happened betweerad E.

and contradiction reasoning. Incomplete relative temporal knowledge such as these i
typically derived from humans, where complete and
1. Introduction absolute temporal information is rarely available and

remembered for knowledge representation and reasoning.
Allen’s interval-based time theory [1] is a representative
pxample of temporal systems addressing relative temporal
relations including “Meets”, “Met_by”, “Equal”, “Before”,
“After”, “Overlaps”, “Overlapped_by”, “Starts”,
“Starts by”, “During”, “Contains”’, “Finishes” and
“Finished by”. It has been claimed in the literature that

time intervals are more suited for expression of common
sense temporal knowledge, especially in the domain of
linguistics and artificial intelligence. In addition,
approaches like that of Allen [1,2] that treat intervals as
primitive  temporal elements can successfully
overcome/bypass puzzles like the Dividing Instant Problem
[1,4,5,10,11], which is in fact an ancient historical puzzle
encountered when attempting to represent what happens at
the boundary point that divides two successive intervals.
This research is supported in part by National Nature Science However, as Galton shows in his critical examination of
Foundation of China (No60772122) Allen's interval logic [5], a theory of time based only on

The representation and manipulation of natural human
understanding of temporal phenomena is a fundamenta
field of study in Computer Science, which aims both to
emulate human thinking, and to use the methods of
human intelligence to underpin engineering solutions. In
particular, many Artificial Intelligence systems need to
deal with the representation and reasoning about time in
modeling natural phenomena and intelligent human
activities. It has been noted that absolute-time-stamping
of temporal data provides an efficient indexing method
for temporal systems, but suffers from the requirement
that precise time values for all temporal data need to be
available. Generally speaking, in the domain of il
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intervals is not adequate for reasoning correctly abourtot identical.
continuous change. In fact, many common sense situationsT4. Vit 5, t.(Meetgts, t;) A Meetsty, ;) A Meetsts,
suggest the need for including time points in the tempora)) A Meetgt,, t))) = t, = t,)
ontology as an entity different from intervals. For instance, That is, the time element between any two meeting
it is intuitive and convenient to say that instantaneouglaces is unique.
events such as “The database was updated at 00:00am” [6], N.B. For any two adjacent time elements, that is time
“The light was automatically switched on at 8:00pm” [1],  elementsitand  such that Meets(tt,), we shall uset® t,
and so on, occur at time points rather than intervals (n@ denote their ordered union. The existence of such an
matter how small they are). Therefore, for generabrdered union of any two adjacent time elements is
treatments, it is appropriate to include both points anguaranteed by axioms T2 and T3, while its uniqueness is
intervals as primitives in the underlying time model, forguaranteed by axiom T4.
making temporal reference to instantaneous phenomenats i, t,(Meetgt,, t,) = Dur(ty) > Ov Dur(t) > 0)
with zero duration, and periodic phenomena which last for That is, time elements with zero duration cannot meet
some positive duration, respectively. each other.

The objective of this paper is to present a framework to 1g Vi, b(Meetst;, t) = Dur(t, ® t,) = Dur(t) +
assist representing and reasoning about uncertain aD‘{ijr(tz))
incomplete knowledge. In section 2, a time theory based On Ty, s the “ordered union” operation over time
_bOth points an(_j intervals as the_ temporal p”m'tlve IRlements is consistent with the conventional “addition”
introduced. Section 3 presertgraphical representation for oneration over the duration assignment function, i.e., Dur.
uncertain ~and incomplete temporal knowledge. The " anajogous to the 13 relations introduced by Allen for
necessary and sufficient condition for the consistency of @ianals [1,2], there are 30 exclusive temporal relations
temporal reference is discussed in section 4. Finally, sectiqyer time elements including both time points and time

5 concludes the paper. intervals, which can be derived from the single Meets order
. relation and classified into the following 4 groups:
2. The time theory e Relations relating an interval to an interval:
GO =
In this paper, we shall simply adopt the general time {Equal, Before, After, Meets, Met_by, Overlaps,
theory proposed in [8], which takes a nonempty set, T, of Overlapped_by, Starts, Started_by, During, Contains,
primitive time elements, with an immediate predecessor Finishes, Finished_by}

relation, Meets, over time elements, and a duratiop Relations relating a point to a point:
assignment function, Dur, from time elements to g1 =

non-negative real numbers. If Dur(t) = 0, then t is called a {Equal, Before, After}

point; otherwise, that is Dur(t) >0, t is called an interval,  Relations relating a point to an interval:
The basic set of axioms concerning the triad (T, Meets, Dur) g» =

is given as below [8]: {Before, After, Meets, Met_by, Starts, During,
T1. vtl,tz,tg,h(Meets(l, tz) A Meetitl, t3) A Meet$t4, FiniSheS}

t) ¢ Relations relating an interval to a point:
= Meetgt,, t3)) G3 =
That is, if a time element meets two other time elements, {Before, After, Meets, Met_by, Started by,

then any time element that meets one of these two must also  contains, Finished yi

meets the other. This axiom is actually based on the As emphasized in the introductiom the domain of
intuition that the “place” where two time elements meet is  Artificial Intelligence, temporal knowledge can be uncertain
unique and closely associated with the time elements [3]. and incomplete. First of all, for a given pair of time
T2. VI, t(Meetdty, t) A Meets(t, 1)) elements it and , it may be unknown which of the 30
That is, each time element has at least one immedigi@ssible temporal relations as classified in section 2
predecessor, as well as at least one immediate successor.certainly holds between &nd 3. We shall formalize this

T3. Vbt t(Meets(t, t) A Meets(, t) uncertain temporal knowledge in term of temporal relations
= Meets(t, t5) jointed by disjunctive connectives. In this paper, we shall
V 3t'(Meets(t, t') A Meets(t', 1)) use a triad (T, R, D) to express the temporal reference of a
V Jt"(Meets(s, t") A Meets(t", 1)) given collection of temporal propositions, where:
where V stands for “exclusive or”. That is, any two e T={ty, ..., t;} is afinite set of time elements,
meeting places are either identical or there is at least a time expressing the  knowledge  (possibly
element standing between the two meeting places if they are incomplete) of what time elements are
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involved with respect to the given collection D) is shown in Figuré.;
of propositions; (0.5
e R={R}RO=/D v r(”)m(ij), 1<i,
j <n;i#]j} is a collection of disjunctions of
temporal relations over T, expressing the
knowledge (possibly incomplete) as how the
time elements in T are related to each other.
Here, ¥, is one of the possible temporal
relations as classified in section 2.
e D is a collection of duration assignments

Meets v During
v Starts

Meets

(possibly incomplete) to time elements in T. (0.3) v Overlaps

Generally speakingfit; and ¢ are two time elements

(specially, time intervals), we know that precisely one of Figure 1. Graph representation of (T, R, D)

the temporal predicates in GO must apply forahd .

Hence for eGO: For the convenience of expression, in this paper, if

—|r(t1, tz) [ rl(tl, tz) \% rz(tl, tz) V..V r12(tly t2) R = {R(ij)} | R(ij) = r(ij)]_ V..V r(ij)m(ij), 1< 1,_] <n;i 75_]}

where {r, 1, ...,igt U {r} = GO. Hence, to provet;, t,),  we shall define:

we need to show tha{t,, t,) is inconsistent for# 1, ..., 12. R| = [TIRY| = [Imqy. for all i, j appearing in R. That is,

For instance, we may prove Before(t;) by means of |R¥|denote the number of temporal relations jointedth R
showing that, when applying tq &ind §, Equal, After, by disjunctive connectives.
Meets, Met_by, Overlaps, Overlapped_by, Starts, Therefore, the graph of a given temporal reference can
Started_by, During, Contains, Finishes and Finished_by abe split up into |R| graphs with no disjunctions, each of
all inconsistent with the system. The task of checking th&hich expresses a possible case (I, [® with respect to
consistency of temporal knowledge shall be deal with latehe temporal reference addressed, k = 1, ..., |R|. For
in the paper. example, the graph shown in Figure 1 can be split up into
In addition, if it is known that;tand t are two points, 48 (that is, 2x1x1x2x2x1x1x3x2) no-disjunction graphs.
then GO can be deduced to G1, and in the case where it is In general, the temporal order relation between tiwe
known that { is a point and,tis an interval, then GO can be elements can be any one of those 30 as classifisgction 2.
deduced to G2; similarly, if it is known thati$ an interval However, as shown in [8], analogous to Allen and Hayes’s

and ¢ is a point, then GO can be deduced to G3. approach [3], all the temporal can be defined asvet
relations in terms of the single “Meets” relation. In fact, such
3. Graphical representations definitions are straightforward. For example, “Before” can be
defined as:
A temporal reference (T, R, D) can be graphically Befordt,, t,) < Jt(Meetsty, t) A Meets(t, 1))
expressed in terms of a directed graph, in whiath déme Therefore, for any possible case of (T, R, D). tha(T,
element of T is represented as a node, and thectioh of Ry, D) (k=1, ..., |R]), we can express R, as a colieodon of

disjunctions of temporal relations relating time ed@nt and Meets relations only, denoted as,Mand obtain the
time element;tis expressed as a directed arc from nede t corresponding triad (T, M D) which has no disjunctions
node twhich is correspondingly labeled with’R for some i involved. Figure 2 below presents the corresponding graph
and j, wherel <i,j <n;i# j; the duration assignments of D representation of one of such no-disjunction and Meets-only
are denoted as bricked numbers correspondinglghatthto  graphs.
the nodes. (0.5)
For instance, consider temporal reference (T, R, D),
where
T={ty b3, 4 & & &, t};
R = {Meets(i,t,)vStartgt,,t,), Meets(t,ts), Meets(}, ts),
Meetgt,, ts)vFinishegt,te),
Meets(t,t;)vOverlapgts,ts),
Meets(t,t;), Meets(t,ts),
Meets(t,t;)vStartgts,t;)vDuring(te,t7),
Meets(tts)vOverlapgt;, ts)}
D = {Dur(t,)=1, Dur(t)=0.5, Dur(t)=0, Dur(t)=0.3}
The graphical representation of temporal refergiiceR,
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Figure 2. A no-disjunction and Meets-only graph fact a linear programming problem.
4. Temporal consistency checking In fact, in the graph presented in Figure 3, there are two

simple circuits as shown in Figure 4.
For a given temporal reference (T, R, D), we saisit

temporal consistent if there is at least one ottireesponding t, (0.5)
no-disjunction and Meets-only cases (T, M, D) is cstasit. t — 0O t6(0
3

4.1 Checking the temporal consistency ts (0)

In order to develop the consistency checking mdshan t (1) t5
for a non-disjunction and Meets-only temporal refeee(it, : : .
M, D), we shall introduce a graphical representatié (T, M, Figure 4. The two simple circuits
D) in terms of a directed and partially weighted pdrd7] . . . )
transformed from the corresponding graph of (T, D), as . Sfattlng the dlrected_ sum of weights in gach of these two
show in section 3. In such a graph, time elemartslenoted CircuUits as 0, we get 2 independent constraints:
as arcs rather than nodes, and the single Meetsiorel Dur(ty) + Dur() = Dur(t) + Dur(t)
between time elements &and t is denoted by the node Dur(ts) = Dur(t) + Dur(t) _
structure where Meets(t) is represented byleing an in-arc We can easily find a solution, for instance: DYrt 0.5,

and f being out-arc to a common node, respectively.tifme  Pur(ls) = Dur(k) = 1. Actually, the duration assignment to
elements with known duration, the corresponding ames s and ¥ can be any positive real number, provided that
weighted by their durations respectively. For examphe DPUr(ts) = Dur(t).

transformed graph of Figure 2 is showrFigure 3: In some special cases where only relative temporal
knowledge are addressed, that is there is no duration

constraint involved, temporal reference (T, M, D) is

(0 5) reduced to a pair (T, M) and the consistency checking can
e reformulated in a simpler form. In fact, (T, is
t t; b f lated i impler fi In f (T, M) i
8 t (0) consistent if and only if:
. 6 N 1)' There are no nodes with at least one point in-arc and
t t (1) i t - t (0 3') at least one point out-arc;
' e associated reduced graph is acyclic, where the
! 2 5 8 2)' Th iated reduced graph i lic, where th

associated reduced graph is formed by means of
Figure 3. Graph representation of (T, M, D) removing every point arc in the graph of (T, D), and
merging any two nodes connected by the point arc.
The necessary and sufficient condition for the Here, again, condition 1)' preserves that no two time
consistency of a general temporal reference, (T, M, D), camints meet each other, while condition 2)' preserves that

be given as below: time points are not decomposable, and excludes any circular
1) For each simple circuit in the graph of (T, M, D), the time structure.

directed sum of weights is zero; For example, consider a relative temporal reference (T,
2) For any two adjacent time elements, the directed sumM), where

of weights is bigger than zero. T= {tu bttt}

Here, condition 1) guarantees that there exists a valid M= {Meets(t, t;), Meets(1, tz), Meets(}, 1),
duration assignment function Dur to the time elements in T Meets(§, ), Meets(§, t:), Meets(¥, t)}

agreeing upon D; and condition 2) ensures that no two time The graphical representation of temporal reference (T,
points meet each other, that is between any two time pointd) is shown in Figure5:
there is an interval standing between them [8].

The consistency checking for a temporal reference with

ts
duration constraints involves searching for simple circuits, O Q
and constructing a numerical constraint for each circuit. The t
existence of a solution(s) to this set of constraints implies t3
t " t VT

the consistency of the system, and each solution gives a
possible case for the corresponding temporal scenario that
can subsume the addressed temporal reference. Hence, the
consistency checker for a random temporal reference is in

Figure 5. Graph representation of (T, M)
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If t, is not known to be a time point, then the Since each temporal reference can be expressed as a
corresponding graph shown in Figure 5 is acyclic, andirected and partially weighted graph, the problem of
hence the temporal reference is consistent. matching temporal references can be transformed into

However, if  is stated to be a point, then the graph irconventional graph matching.

Figure 5 is reduced to the graph as shown in Figure 6.

4.3  Deducing inferences in inconsistent cases

t4

0 In the case where a verdict that the temporal reference is
inconsistent has been reached, we can simply analyse and
identify the linear equations which make the corresponding
1:3 t linear programming unsolvable, which, in turn, will identify
5 which part(s) of the temporal reference actually leads to the
. inconsistency.

v
Y

t1 t6

4.4  Anillustrating example

Figure 6. The reduced graph In As an example, consider the situation where two
persons, Peter and Jack, are suspected of committing a

In the reduced graph in Figure 6, there is a cycle, i.e., inurder during the daytime. In court, Jack and Peter gave
>t ->  -> t3. Therefore the temporal reference isthe following statements, respectively:
inconsistent. e  Peter’s statements:

Now, further investigations are needed to deduce logical | got home with Jack before 1pm. We had our lunch,
inferences from both temporal consistent cases anghd when Jack left | put on a video. The video lasts 2 hours.
temporalinconsistent cases. Before it finished, Robert arrived. When the video finished

we went to the train station and waited until Jack came at 4

4.2  Deducing Inferences in consistent cases pm.

e Jack’s statements:

As mentioned in section 4.1, the consistency checking Peter and me went to his home and arrived there before
for a general temporal reference is in fact a linealpm. When we finished our lunch there, Peter put on a
programming problem, where each solution to the lineayideo, and | left and went to the supermarket. | stayed there
programming problem gives a possible case for théor between 1 and 2 hours. Then | drove to my home to
corresponding temporal scenario that can subsume thellect some mail. It takes between 1.5 to 2 hours to reach
addressed temporal reference. In the case where th® home, and about the same to the train station. | arrived
temporal reference is consistent, there exists at least oagthe train station at 4 pm.
solution to the linear programming problem. Of course, i6 In addition, being a witness, Robert made these
the solution(s) is unique, we can use this solution construct statements:
the corresponding complete temporal reference which is T left home at 2 pm and went to Peter’s house. He was
also unique. playing a video, and we waited till it finished. Then we

However, in general cases where a verdict that thgent together to the train station and waited for Jack. Jack
temporal reference is consistent has been reached, thgg to the train station at 4pm.
may be more than one, or even an infinite number of The temporal reference of the above temporal
solutions to the corresponding linear programming. Thigformation involves the following time elements:
may be due to various forms of incompleteness of thg | : the time (interval) over which Peter and Jack went
corresponding temporal reference, e.g., some referencing o Peter’s home;

time elements may be missing, the duration of some timg 1pm: the time (point) before which they arrived at
elements may be unknown, and so on. Therefore, we can peter’s home;

only construct the possible complete scenarios which cgn i,: the time (interval) over which Peter and Jack had
subsume the addressed temporal reference. lunch:

In this case, we can at least find the minimal model(s) . . : : ;
among these complete scenarios by means of defining aeld i/gi.dg:)e(gtr::a)(lzntze)rval) over which Peter played the
calculating the similarity degree between the complete ’
temporal references and the original partial temporal
reference.

is. the time (interval) over which Jack went to the
supermarket;
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p:: the time (point) when Robert arrived at Peter’s
house;

is: the time (interval) over which Peter and Robert
went to the train station;

ie: the time (interval) over which Peter and Robert
waited for Jack at the train station;

4pm: the time (point) when Jack arrived at the train
station;

iz: the time (interval) over which Jack stayed in the
supermarket (1<Dur)< 2);

ig: the time (interval) over which Jack drove to his
home (1.5<Dur@)< 2);

ig: the time (interval) over which Jack collected some
post from his home;

i1o the time (interval) over which Jack drove to the
train station (1.5<Dur(})<2);

2pm:the time (point) when Robert left home;

i1 the time (interval) over which Robert went to
Peter's house;

i10: the time (interval) over which Peter and Robert
watched the video together;

i13, 114, ..., b7, SOMe extra relative time elements

which are used for expressing the correspondingly

relative duration knowledge, e.g., Wity iixg, i1, i22,
and Dur(ig) = 1.5 and Dur@;) = 2, we can express
that 1.5 < Dur@) < 2 (Picture 3)

The graphical

temporal reference for the above legal statements can
shown as Figure 7 as below:

(i.e., two intervals, 4 and i,, and one points,p standing
between 2pm and 4pm. Since each interval has a posi
duration and each point has a non-negative duration, we
infer that:

Dur(is) + Dur(ig) < 2
In addition, since Dur§) = 2, hence

representation of the corresponding

Dur(i3) + Dur(is) + Dur(ig) <2 +2 =4
However,
Dur(ig) + Dur(i;) + Dur(ig) + Dur(ig) + Dur(iyo)
>0+1+15+0+15=4
Therefore, for the simple circuit, i.es, is, ig, i1, Ig, Ig, i7,
iz, as shown below in Figure 8, there does not exist any
duration assignment over T such that
Dur(iz) + Dur(is) + Dur(ic)
= DUr(i4) + Dur(i7) + Dur(ig) + Dur(ig) + Dur(ilo)
In other words, there is no solution to the following
linear equation:
Dur(iz) + Dur(is) + Dur(ig) — Dur(is) — Dur(i;) —
Dur(ig) — Dur(ig) — Dur(izg) = 0O

Figure 8. A simple circuit in the legal statements

Hence, the temporal reference shown in Figure 7 is
m%onsistent, and therefore we can directly confirm that
some statements are untrue.

Suppose the video can be checked that it did actually
last for two hours, we can confirm that there must be some
falsity in either Robert's or Jack's statements. If it can be
proved that Robert did leave home at 2 pm, then Jack must
have lied in making his statements. Otherwise, to convince
the jury that his statements are true, Jack must prove that
Robert left home at some time before 2 o’clock in the
afternoon.

5. Conclusions

In this paper, we introduced an inferential framework
for temporal representation and temporal reasoning. It
allows expression of both absolute and relative temporal
knowledge, and provides graphical representation of
temporal references in terms of directed and partially
r\'/F/%ightedllabelled graphs. Based on the temporal reference
of a given scenario with partial temporal information, the
U¥8mework can check if it is temporally consistent or
C#onsistent, and derive the corresponding logical
inferences The benefit of this approach is that the
inferential framework has powerful analytic abilities, and

its analysis is amenable to human scrutiny.
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This paper proposes a framework for structure-basedréeaturaction in basketball zone-defence
strategies. Firstly, a graphical representation forfkagres extracted from zone-defence video clips
is introduced, where each key-frame is expressed nmstef a zone-defence graph, representing the
positions of defenders and the bafecondly, defence-lines are defined and extracteth fr
zone-defence graphs for each zone-defence strategy, trasehich, a 10-dimentional feature vector
with respect to the defence-lines is introduced toatttarize the structure relationships. Experiments
have been conducted for basketball zone-defenceegyraetection on both simulated and real-life
basketball zone-defence video database, which deratsthe validation and practicability of such a
structure based feature characterization, and, iticplar, its robustness with respect to the
disturbance of local transformation of subprime nodekergraphs.

Keywords: Feature extraction; Graphical represemtatstructure relationship; Video clip detection;
Basketball zone-defence.

1. Introduction

Video detection is one of the hottest research topics in Content-based Video Retrieval and
attracted more and more attentions. [Qi et al. 2007] proposed optimidgeiraph-based
semi-supervised learning (OMG-SSL) algorithm in a regularizatiod aeptimization
framework. A temporal reasoning method was proposed farts\annotation in news video
in [Marco et al. 2008]. As a popular worldwide media, sport vitkexs become an
increasingly important and active research area in video/image processingattern
recognition including feature extraction, shot segmentation, eveigldigit detection, and
semantic annotation and so on. [Gong et al. 1995] presented an autgstatit for parsing
TV soccer program by domain knowledge, feature analysis and madeting techniques.
[Babaguchi et al999]Proposed an event based video indexing for football games achieved
by the idea of intermodal collaboration which takes into account cktimantic dependency

® This research is supported in part by National Naturen8e Foundation of China (No. 60772122).
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between multimodal information streams including visual, auditory and[t@xang et al.
1996] extracted the information in soccer video by an integrate speeebstamdiing and
image analysis algorithms. [Rui et al. 2000] presented a highkttaction approach for
baseball games on set-top devices in noisy environment. [Xu et al. péfddsed a
grass-area-ratio based algorithm for soccer video segmentation. [Pan2&Cdl] proposed
an automatic event detection and sports program summarization metho@bakdcting
slow motion replay segments. [Efros et &2003] proposed a new motion descriptor to
recognize human actions at a distance in soccer based on smootlzeg@yhted optical
flow measurements over a spatio-temporal volume centred on a grfgyime. [Luo et al.
2003] presented object-based analysis and interpretation for baseball videoobased
automatic video object extraction, video object abstraction, and semanttcneveelling.
[Urtasun et al. 2005] presented a novel motion tracking approach in golf. [Bagdetnalv
2007] proposed the multimedia ontology for soccer video detection.

A number of approaches have been proposed for basketball vidgsigniacluding
shot classification, scene recognition and event detection. [Tan et al. [@@8@hted a
camera motion based annotation and classification tool using the low-levehatifmn
available directly from MPEG compressed basketball videos. [Nepal2&Q].proposed a
goal detecting method in basketball videos by combining feaktnaction techniques with domain
specific knowledge[Zhou et al. 2000] proposed a supervised rule based basketball video
classification system after investigating the use of video content analysis and édtaction
and clustering[Kim et al. 2002] proposed a semantic information extracting mesmani
for basketball video sequence using audio and video featdrest pl. 2004] proposed an
audio keywords generating approach for basketball video based on lewaegio
features and applied audio keywords together with heuristic rules todatention. [Kim
etal. 2005] presented a summarization method for basketball videos. [Perse2&QH]
proposed trajectory-based approach to the automatic recognition of compliplayer
behavior in a basketball game.

However, few of them focused on zone-defence detection, whielsisntial and
crucial in basketball games. On one hand, the defensive coach needsub they
zone-defence strategy and check whether the team is playing in thetnagggyy or not all
the time; on the other hand, the offensive coach also needs to knowzshietdefence
strategy the defenders are adopting.

Zone-defence is a common strategy adopted in basketball games. It is dfffament
manio-man defence in that, instead of guarding a particular player, each zondedégen
responsible for guarding an area on the court (or "zone") and &mysivle player that
comes into that area. Zone defenders move their position on the coudiagdo where
the ball moves. Zone-defenean disrupt the opponent’s offensive plan by means of
protecting the paint area and forcing the opponent to shoot from outtidaddition,
changing defences from mao-man to various can make the offense off-balance and
confused.

In particular, feature extraction is one of the most significant tpklys a basic and
essential role in Zone-defence detection. The original approach is the cdeahors such
as color, texture and shape. It’s noted that they are not competent due to the distinct structure
character in zone-defence strategies. Graphic representation has been investigated for
zone-defence detection. Graph matching (GM) algorithms and theirvegbr@riants have
been well applied to match graph patterns [Zheng. 089 and Ma et aR007. However,
the efficiency and accuracy of most graph matching algorithms demepdnuch on the
tested graphs constructed according to the expectation or artificial criteria, rather than
real-life applications [Zheng et .aP009], which in turn means most graph matching
algorithms are sensitive to the outliers or local bias such as the translagigmpoime notes
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in the graph. [Chin et aR005] proposed a Spatial-Relationship (SR) based approach to
describe the position relationship between defenders. However, it relies orctingcgicof
identification of each defender, which is hardly achievable.

Generally speaking, the defence-lines and the structure relationship between
defence-lines play a crucial role in team sports, such as basketball, foattbeylball and
so on. Therefore, analysing the structure relationship between defereglays an
important role in basketball zone-defence strategy detection. Therefotes ipaper, a
structure-based feature descriptor in terms of a 10-dimentional feattia Vs proposed
for zone-defence strategy. The basic idea is to describe the distinct stratatiomship
between defence-lines based on the graphical representation of key-frames.

In what follows in this paper, the graphical representation of key-frantessietball
zone-defence videos is introduced in section 2. Section 3 elaborates thersthased
feature extraction in basketball zone-defence graphs and the corriegpatgbrithms.
Based on the extracted structure features, section 4 designs the actual alfyoritten
overall basketball zone-defence detection system. Experimental results aresghrovid
analyzed and evaluated in section 5, demonstrating the good perforofapiegposed
feature descriptor. Finally, sectiorpfovides a brief summary and concludes the paper.

2. Graphical Representation in Basketball Zone-defence Video

Videos can be organized at different levels for various research purposhis paper,
basketball videos are organised in terms of clips. Each clip represents a centairof
offense (or defence) and is denoted as a list of images, osotballed ley-frames
sequencel =[l4, ..., I,], which consists of the key-frames extracted one per 2 sefromals
the clip. We premise that:

(1) The defenders have adjusted to their best defensive positions at thatmdreer
the ball is just to be passed or dribhled

(2) As the zone-defence strategy is to defence the offensive eppunattack into
interior playfield, we only consider the key-frames when the bat ihe midfield, the
wing and the corner as key-frames.

The metric position detection of defenders and the ball is implemented srrasairh
[Assfalg et al2003: The ball’s position, which is either in the midfield, in the wing, or in
the corner, is obtained from its motion described in terms of camera makimih in turn,
is captured by image motion estimation algorithm [Baldi etl@989]. As for defenders
position, in the first place, the defend side and offensive side are distied by the
colour difference of sportswear; template matching and projective traraformare then
implemented to determine the metric position of defenders [Assfalg2aG4.

Each key-frame (i=1, ..., n) can be described by its corresponding six-note graph G
structured by the 5 defenders’ position (horizontal and vertical coordinates) plus the ball’s
position. Following the conventional notations in graph theory, we regresen
zone-defence graph as G = <V, E>, where V and E denote the set of thelefeteters’
position) and the set of edges respectively, and ¥xV. In particular, here, |V| =.6
Assuming V = {M, Vi, Vo, V3, V4 Vs} has been ascending ordered by the Euclidean
distance to the ba{V,).

Zone-defence can be divided into various strategies, including 33, 1-2-2, 3-2,
2-2-1, 2-1-2 and 1-2-1-1 zone-defence strategies, where the festdtiategies, which
have been noted as the most typical ones employed in actual basketball gamessedle focu
in our paper.
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A standard zone-defence graph database of these 3 typical zone-defgagees (2-3,
1-3-1 and 1-2-2 zone-defence) is constructed and populated withdpggpcorresponding
to some of the pictures illustrated on two basketball coaching web sides. Focenstan
typical round of 2-3 zone-defence can be expressed as Fig. 1 wdwprarbs and the circle
denote the 5 defenders and the ball respectively.

(b} ba the wing (c) trapping the corner

(d) denying pass from corner to wing (e) defendiny Ipiost (f) ball reversal, opposite post out

Fig.1 A typical round of 2-3 zone-defence strategy

Table 1.The number of standard zone-defence graphs

Zone-defence

Ball’s position 23 1-3-1 1-2-2
Midfield 4 3 2
Wing 4 12 7
Corner 6 6 2
Totally 14 21 11

Table 1 below shows the detailed number of zone-defence graphaveeurrently
collected as standard zone-defeegphs for each strategy in different ball’s position.
Analogously, only the three typical zone-defence strategies and ertgyhframes when
the ball isin the midfield, the wing and the corner are considered.

Fig.2 shows the flow chart of basketball zone-defence detection systesadfotest
zone-defence video clip, it is decomposed into a sequence of key-fiaacbskey-frame
is represented by a zone-defence graph as mentioned above and matctrexlgréphs in
the standard zone graph database. The global distance with each standaré toewe ar
obtained according to the graph-sequence that is the most similar one (kasatlest
distance) to the test graph-sequence, which in turn, provide matesalgs to confirm
which zone-defence strategy does the test key-frame sequence belong to.

It is worth pointing out that, in the framework presented in thispagone-defence
key-frames are transferred into zone-defence graphs by mearspbfaal representation.
However, instead of using conventional graph matching algorithnstrueture-based
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feature extraction algorithm, which will be discussed in detail in next se@ipmpposed
to measure the similarity between zone-defence graphs.
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Fig.2 The flow chart of basketball zone-defencedn system
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3. Structure-based Feature Extraction in Basketball Zone-defence Strategies

Different zone-defence strategy has different number and type of céelieps in
basketball, For instance, there are two defence-lines in 2-3 zoneeleftrategy.
Generally, we define that the 2 defenders in the front line construct thedfience-line

and the rest 3 defenders construct the second defence-line. In addifienent
zone-defencatrategy, as what it’s named, has its own typical defence-line. For instance,

the typical defence-line of 2-3 zone defence strategy is the second défienét'd shall

define the structure-based features to describe the structure relationship between
defence-lines. The angle formed by the typical defence-line in each zonealsfexiegy

is named corresponding character-angle, the definition of which is crucia éxtfaction

of the other structure features.

3.1. Structure-based Features in 2-3 Zone-defence Strategy

In standard 2-3 zone-defence strategy, normally, we define thatdbfei2ders closest
to the ball construct the first defence-line; and the rest 3 defenders construetdhd s
defence-line which is defined as the 2-3 character line. The angle foromadte 23
character line is defined as “2-3 charactersgle” and denoted by shorthand writing as
CA,s. There are two folds regarding the definition of SA
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(a) a counterexample (b) another teremample (c) a general example

Fig.3 Zone graph examples in 2-3 zone-defence

(1) Which 3 notes construct G4?

Normally, CAy3 is composed of the 3 defenders farthest from the ball. However, in
some zone graphs, GAmay not exactly be constructed by the 3 defenders farthest from
the ball by common sense from human understanding of zone-dedeategies.For
instance, in Fi@ (a), assume that V = {¥ Vi, V,, V3, V4, Vs} has been ascending ordered
by the distance to the ball {/and \4 and \, have an approximately same distance to the
ball. Obviously, the C& should be constructed by,VV, and \, which is more
reasonable according to common sense than that constructed by thet faribeegV;, V4
and \s).

In other word, if the difference between the distances from the dhiddforth farthest
notes to the ball is smaller than a given threshold, then the one foantéinger angle with
the segment constructed by the farthest two notes will be taken to ferahanacter line.
The algorithm is described as following:

It VNV, VY| <8)&(AV VY ) > A YV, )
CN23:{V2 V4,VQ
Else
CN23 ={V3 V4V}
End.

wheres=0.05(the distance of diagonal of half-court is normalized toCl,; denotes
the set of notes constructing gfand (X ,YZ)represents the angle between note X and
segment YZ which is defined as:
_ ZXYZ, XY |>
LX) = XY [>p | @
ZXZY, else
(2) Which one is the vertex of G4°
For the reason of simple description, without losing the generalitgsseme Ch =
{V 3, V4, Vs}, as shown in Fig.3(b) and arrange {W,, Vs} into {V |, V,, V;} in clockwise
order with respect to the ball, where |, {3, 4, 5}. In general, node Vs then taken as
the vertex of CAg while V,, V, are the end-points of GA However, if Angle<\;, V,, V,>
(or Angle<V,, V,, V,>) is smaller than a given threshold, andVPK|V,Vy (or
[ViV|<|VyVy|) then \ (or V;) will be re-taken as the vertex of GAFor instance, in Fig.2,
CNo3 = {V3, V4 V&) Assume that \, Vs and \4 are in the clockwise order with respect to
the ball. \4 should be defined to be the vertex of GAwvhich is more reasonable than
regarding \{ as the vertex of CA. The algorithm is described as following:
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It (LVVY, <O &V, | <YV )

Chy= VNV,
Else
It (LMY, <O)&(VY,| <YV )
Chy= VNV,
Else
CAz =2V,
End
End

where g=r/12and we appoint CAas the obtuse angle if its vertex is biased towards
the ball compared with its two end points.
The first 4 structure features with respect to,C#e correspondingly defined as below

(As for a general example illustrated in Fig.3(% is the first defence-line andsVV,,
Vs construct the second defence-line, ands, W; are the midpoints of
V.V, ,VV, respectively):

l. CA,=2VyVY, : Character-Angle of 2-3 zone-defence.

As explained earlier, this angle characterises the defenders’ positions on the
character line of 2-3 zone-defence.

Il. FSA, = Z(VV,VYJ): Angle formed by the first and the second defence-lines.

where/(XY,ZW ) denotes the angle formed by segmi¥itand segmer@w that is

no bigger than m/2. It characterises the structure relationship between the first and the
second defence-lines.

. BCA,=Z(V)V VY ) . the bias of th€A,,.

which is an angle presents the bias of the vertex on second defencefliRe3
zone-defence.

V. RFS'%S=(|\4V2|/|V3VJ> v/ (\/7 W ) restrictedFSAgs.
which denotes the restricted angle of the first and the second defence-liges of
zone-defence. The shorter@comparing With/a_v, the angle of segme‘vgvZ and

Segment\mhas less effect to zone graphs. So it’s reasonable to take into account a
coefficient to the angle.

3.2. Structure-based Features in 1-3-1 Zone-defence Strategy

In 1-3-1 zone-defence, the defender nearest to the ball constructsttdefirsce-line.
The second defence-line is constructed by 3 defenders, presentingstbecharacter of
1-3-1 zone-defence, which is defined as the 1-3-1 character line. Tleefammged from
the 1-31 character line is defined as “1-3-1 charactemngle” and denoted as CAj3;. The
key point herés to define the vertex and two end points of;GA

171



APPENDIX C STRUCTURE BASED FEATURE EXTRACTION IN
BASKETBALL ZONE-DEFENCE STRATEGIES

Vl

v, o W Y

(a)CAx<m (b)CAx>n  casel (c)CAxz>n case?2

Fig.4 Zone graph examples in 1-3-1 zone-defence

Based on CAy as what we have extracted, there are two cases to defing Ghere,
we also use ¥V V,, V3, V, and 4 to denote the 5 defenders, and assumis Yhe nearest
defender to the balA,, = ~VyVy ,in Fig.4(a) andCA,, = £V VY in Fig.4(b) and (c))If
the corresponding CAis smaller than © (as shown in Fig.4(a)), then GA has the same
two end-pointgV3; and &) as that of CAs, and the vertex of CA; is the nod€V,) from
the rest 3 which is neither the closest to the ball nor the vertex gf Otherwise (as
shown in Fig.4(b) and (c);A13; Will have the same vertex as that of GAand the node
which is neither on the 2-3 character line and nor the closest to theib&lewaken as
one of the two end-points of GA where the other end-point is one of the two end-points
of CA,z; which will ensure that C4; divides the rest two nodes sit on each side of the
1-3-1 character line, respectively.

The detection algorithm is expounded below:

i CA;=4LVVY <7
CA}31 = 4V3V}/ 4
Else CA,=2VVY.> 7
case 1V, earea \\4V,)
CAi31 = szvy 4
case 2:\/1 carea V\4\)
CA;FZL VY)Y

End
End

Whereareq VVV,), areq V\\})and areq \\{\))denote 3 plane areas divided by the
beamvy/, ,Vyv, andvy. . Obviously, \, cannot belong tareg \\\}\) .

The next 3 features with respect to zLare defined below (As for a general example
illustrated in Fig.4(a) and assumeg i¥ the midpoint of segme\ﬂm):
V. CA, =2VyYY, : Character-Angle of 1-3-1 zone-defence.

which characterises the defenders’ positions on the character line of 1-3-1
zone-defence analogously.

VI. FSAmzz(W;,WA): Angle formed by the first and the second defence-lines.
which characterises the structure relationship between the first and thed secon
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defence-lines of 1-3-1 zone-defence.
VII.  STA,, = Z(VVgVY )): Angle formed by the second and the third defence-lines.

which characterises the structure relationship between the second andrdhe th
defence-lines of 1-3-1 zone-defence

3.3. Structure-based Features in 1-2-2 Zone-defence Strategy

In 1-2-2 zone-defence, the defender closest to the ball forms thedfence-line. As
the examples shown in Fig.5, assume thais\the closest defenderzV,\Vy ,is the CAz;.

If £~VVy,is equal or largethan = (Fig.5(a) and (b)), the vertex of GA and the nearer one

to the first defence-line of the two end-points of ;gAconstruct the second defence-line;
the rest two defenders construct the third defence-line. Otherwise (Fig.B(e)two
end-points of CAg; construct the second defence-line and the rest two defenders construct
the third defence-line. The first and the second defence-lines preseastbeharacter of
1-2-2 zone-defence, which define the 1-2-2 character line. The amgled from the 1-2
character line is defined as “1-2-2 charactesngle” and denoted as CA ;.

Vs

Vi

\A

Ly

Oy

Vs

V4

V3

Vy

v,
w oer

Vi

Y1

O

Vi

(a)CA1;1 > mcasel (b) CA131 > mcase?2 (€)CAz1 < =

Fig.5 Zone graph examples in 1-2-2 zone-defence

The algorithm is described as following (&4 SDLj,, and TDLy,, denote the
Character Angle, the second defence-line and the third defence-lin2-Bfzbne-defenge
respectively):

AV

case 1[\/1\/3| < M/4|

CA,, = 2LVVY . SDI‘122 = \TVS’ TDL122 Z\Tys
case 2V, >y |

CA,, =2VMY SDL122 = V2V4' TDL122 =V}/5
End
Else
CA,, =2VVY SDI‘122 = V?,V4' TDL122 =Vy5
End
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The last 3 features with respect to GA are defined as below (assume
thatCA,, = ~VyV. , SDL,,=V)V,andIDL,,=V¥, , Vs and V; are the midpoints of

segmen‘tm and segmer\& respectively as shown in Fig. 5(a)):

VI RCA,, = (min(VV} VY {)/ maxiry J WV, D)Wy,

Here, we add a coefficient to take into account the effect from the movedeode
V, along the circle formed from yV,and \4.

X RSTA, = (VVI/VYDLVY VN ) -
It’s with respect to the restricted angle of segmentm and Segmer\m and reflects

the structure relationship between the second and the third defence-ling2-»f
zone-defence.
X. BST,,=Z(VV,VY) .

which reflects the bias between the second and the third defenceslinkés2-2
zone-defence.

The feature vector is constructed by the above 10 features with respecsdo3tho
typical zone-defence strategies:

f={CA23, FSAy, BCAys, RFSAs, CAuzi, FSA;, STA1, RCALs RSTA, BSTog

The feature vector is not only listed by the 10 components one dayboih also has
internal relationships. The features of one typical zone-defence also reflettutieres
relationship in other typical zone-defences.

4. Video Detection System of Basketball Zone-defence Strategy

According to the structure-based features extractedveabthe test basketball
zone-defence video clip with n key-frames (that is, n zone-defermgh®)r can be
represented by anx10 feature matri)FC,ip ={f, f,...,f} and a ball’s position vector

ball,, ={ball, ball,..., ball} , wheref ={f,, f ,....f, .} and bal| denotes the feature

vector and the ball’s position of the ith key-frame of the detected clip respectively.
Analogously, the 3 standard zone-defence databases are represented by 8nchingsp
feature matrices with their ball’s position vectors respectively. For instance, the standard
2-3 zone-defence database is represented My={f> f=..,f3} and
ball,, ={ball®, ball3%..., ball%} .

Firstly, compute the similarity between test clip and standard 2-3-defieace

strategy.
Step 1: For eachich”p, compute the Euclidean Distance(which has been

experimented that performs better than other two famous disthnces Mdig]ano
distancqz anq Manhattan distanFe in our case) betwfeand each feature vector with

the same ball position dgn standard 2-3 zone graph database:
ED(f, f 23) = [dij2 2)

i .
I Zl

Wherebani - balfayzj efl,2,..., 14} j=1,2,..n, <Ny, andnpis the number of the
graphs with the same ball positionGi%'in 2-3 zone graph database.
Step 2: Determine the distance betwgerand 2-3 zone-defence strategy.
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D= argmin([d*]) €)

Step 3: Compute the global distance between the test clip and 2-3 zeneedef
strategy:

GDtisst = z Di23 )
Secondly, in terms of the same procedure, we define the global distaneeibéhe
test clip and 1-3-1 zone-defence strategy as:

GDu =2, D" (5)
©)
Thirdly, we define the global distance between the test clip and 1-2-2dedeece
strategy in the same manner as:
GR; 5D, D° ©6)

Finally, the zone-defence strategy pattern of the test zone-defence videodelfimési
as:

Z"** =argminGDZ, GD.2, ,GD22) (7)

test ? test? test

5. Experimental Results

The system has been tested with both simulated and real basketball zoce-difeas
Firstly, we formulated 40 simulated zone-defence video clips (key-fragagiences)
where the scenario and the defenders’ position of each video clip were constructed by the
professional coaches according to their rich experience. We also collected alboutof h
the real basketball zone-defence videos, including 112 clips containing RetpfBames
eachas listed in Table 2. According to the detection system illustrated in FEgch, clip
denotes once defence with a particular zone-defence strategy.

Table 2. The number structure of test data

Zone-defence strategy Total clips Total key-frames
2-3 20 145
Simulated 1-3-1 20 40 161
1-2-2 20 128
2-3 52 286
Real-life 1-3-1 31 112 221
1-2-2 29 169

There are few systems focused on feature description of basketbatiefemee graphs.
Here, we compare the algorithm proposed in this paper with LM-basesdtlahg [Zheng et
al. 2009] and SR-based algorithm [Chin et 2005. Table 3 below reports the detection
result of each algorithm on both simulated and real-life data. Here deteesiats of
“Correct MPD (Metric Position Detectiofl)are the results detected on the test clips with
correct MPD. Generally speaking, the detected rate in simulated data is heyhé¢hnahin
real-life data for each approach. In particular, compared with the athy@noaches, as
shown in Table 3, the structure feature (SF) based algorithm can detectiden clips in
both simulated data and real-life data. This is due to the fact that the r&trigetiure (SF)
based algorithm takes into account of the structure relationship betweedetsfemere it
is neglected or inadequately dealt with in other algorithms. The results aresatisfeed
with regard to correct MPD since the correct MPD of defenders mayrieatl more likely
to the correct detecting results.
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Table 3. Detection result of 3 algorithms on differeéata

Database Video clips Correct MPD
Results Test Detected Test Detected

Simulated data SR 35 34
LM 40 36 38 35

SF 37 37

SR 70 69

Real-life data LM 112 78 91 74
SF 91 85

Fig.6 shows the detecting precision comparing with the other twoithligsrin both
simulated data and real-life data on each zone-defémoen Fig.6, one can see that the
SFkbased detecting method has the highest detecting precision in both simardated
real-life data, where the SR-based approach performs worst due tadegjirate dealing
with the structure relationship between defenders.

100
oSR i o5R
90
"y _ QL
B sF
asF
(@) Simulated data (b) Real-life data

Fig.6 Detecting precisin for each zone-defence pattern with different meshod

It’s frequent for defenders to have some translational motion comparing with the
standard position in standard zone graphs. So the translational motitwe dérthest
defence-line from the ball in each zone-defence graph, which is regardea/e least
influence to the global strategy, is added to the test video clip as a distutbaasethe
robust of proposed approach. For each note V on the fartheshceeline in each
zone-defence, we add the disturbasness:

V' =V xa(cosp - sing | (8)
whereq denotes the movement distance of note VVtoandf denotes the angle
betweenx and the x-axis (the mid-field line) as shown in Fig.7

v’

T

asinf

/
b—> acosp +——

Fig.7 Disturbance of the node on the farthest deféinee

Fig.8 shows the efficiency in each zone-defence with different déstaeb In order to
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eliminate the interference of the error from position detection, the statistiescalculated
on the data with correct MPD.

1 1
g - SE --m-SF
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Fig.8 Precision influence with disturbance in each method

The precision comes down with growing disturbance in every rdetBut the
Skbased method drops much slower than the other two and still has ableler
performance even with a high disturbance, which demonstrates ti&#-tiessed method is
robust for the detecting system.

6. Conclusions and Future Work

In this paper, a structure-based feature descriptor describing the structure shipion
between defence-lines has been proposed for video clip detectionasketball
zone-defence. Comparing with other methods, the structure-basecefdascriptor has a
robust performance in both simulation and real-life applications especietign
disturbance exists. It is reasonable and validly to describe the structure réigtions
between defenders in basketball zone-defence strategies. It is robtist fdisturbance
deriving from translational motion of defenders on subprime defenes:lin

For the future work, we shall extend the approach proposed in alpisr go other
team-work sports such as football, volleyball, etc., to describe the cordi#sgatructure
relationships. It is crucial to develop the corresponding metric position detection afggorith
on zone-defence graphs which are very influential in the deteotsiams. In addition, it
seems reasonable and realistic to adopt clustering approaches and algarittexslop
generalized method(s) for various kinds of both existing andilplesfuture zone-defence
strategies. This remains also as future work.
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Summary. In terms of a general time theory which addresses time-elements as typed
point-based intervals, a formal characterization of time-series and state-sequences is
introduced. Based on this framework, the subsequence matching problem is specially
tackled by means of being transferred into bipartite graph matching problem. Then a hybrid
similarity model with high tolerance of inversion, crossover and noise is proposed for
matching the corresponding bipartite graphs involving both temporal and non-temporal
measurements. Experimental results on reconstructed time-series data from UCI KDD
Archive demonstrate that such an approach is more effective comparing with the traditional
similarity model based algorithms, promising robust techniques for lager time-series
databases and real-life applications such as Content-based Video Retrieval (CBVR), etc.

1 Introduction

Time-series are typical patterns in date mining and knowledge discovery, particularly, in
statistics, signal processing as well as other areas including rule discovery, prediction,
detection, clustering and classification, and so on. Generally speaking, a time series
presents a sequence of data, measured and/or spaced typically at successive times, which
can be either points or intervals.

The notion of state is fundamental for many state-based applications, which represents
the static snapshot of the world in discourse, while the dynamic historical scenarios of the
world can be characterized in terms of temporally ordered state-sequences. State-sequence
matching has been noticed as a popular research topic in time-series data which has
attracted a lot of researchers’ interests. In particular, how to find out the most similar
patterns for the query state-sequence in time-series data is an essential work for many real
life state-based applications. Normally, state-sequence matching can be divided into two
categories: whole matching [2, 4] (each sequence has the same length) and subsequence
matching [10, 13] (with various lengths). Obviously, the whole matching problem is in fact
a special case of the subsequence matching which we shall tackle in this paper.

One of the popular topics in subsequence matching is the similarity model between
state-sequences. Specially, temporal similarity between state-sequences plays a vital role,
where three aspects regarding the temporal information of state-sequences need to be

This research is supported in part by National NaturenSe Foundation of China (No. 60772122)

179



APPENDIX D A ROBUST APPROACH TO SUBSEQUENCE
MATCHING

addressed: (1) The “before/after” relations over the states which decide how
state-sequences are temporally ordered; (2) The temporal distances between pairs of
consecutive states; and (3) The duration of various times over which the corresponding
states are associated with.

Various similarity models based on Euclidean distance, have been specially introduced
for subsequence matching, [2]. An efficient category of these is the so-call sliding window
based algorithms [9, 10]. However, most of them are very brittle even with slight
misalignment in time axis and the time-consuming problem limits their application on large
database. Subsequently, some successful models such as Dynamic time warping (DTW)
[6], Longest Common Sequence (LCSS) [15], Edit distance [1] and their variants have been
proposed. DTW is robust to time warping such as stretching and shrinking. However, no
states will be skipped including noise. LCSS can skip some states including outliers but
ignores how many states it skips. ED takes into account of the number being skipped,
however, which kind of states being skipped is ignored. And common reordering such as
crossover or backward is not allowed.

In addition, in most of proposed formalisms and models, the fundamental time theories
based on which time-series and state-sequences are formed up are usually not explicitly
specified. Time-series are simply expressed as lists in the form of t, tp, ...., t,, or as
sequences of collection of data, and so on, where formal characterizations with respect to
the temporal basis have been neglected.

The objective of this paper is to present a robust framework for matching subsequence
patterns. As the fundamental formalism, a formal characterization of time-series and
state-sequence is introduced in section 2, A bipartite graph representation for subsequence
matching is presented in section 3. Section 4 introduces a hybrid similarity model which
integrates both non-temporal similarity and temporal similarity. Experimental results on
UCI time-series data are provided, analyzed and evaluated in section 5. Finally, section 6
provides a brief summary and concludes the paper with the prospects for future work.

2 Time-elements, time-series and state-sequences

For general treatments, in this paper, we shall define time-elements as typed point-based
intervals, allowing expression of both absolute time values and relative temporal relations
[7]. We shall use R to denote the set of real numbers, and T, the set of time-elements. Each
time-element t is defined as a typed (left-open & right-open, left-closed & right-open,
left-open & right-closed, left-closed & right-closed) subset of the set of real numbers R.
L.e., each time-element must be in one of the following four forms:

(P, p2) ={p | PERAPI <P < P2}, [P, P2) = {p [PER A P1 <p <2}
(P, P2l = {P | PER AP1 <P <2}, [P1, P2l = {p|PER AP <P <3}

In the above, pl and p2 are real numbers, which are called the left-bound and
right-bound of time-element t, respectively. The absolute values as for the left and/or right
bounds of some time-elements might be unknown. In this case, real number variables are
used for expressing relative relations to other time-elements (see later). In addition, if the
left-bound and right-bound of time-element t are the same, it is called a time point;
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otherwise it is called a time interval. Without confusion, time-element [p, p] is taken as
identical to point p. Also, if a time-element is not specified as open or closed at its left
(right) bound (that is, the left (right) type of the time-element is unknown), we shall use “<”
(or “>”) instead of “(” and “[” (or “)” and “]”) as for its left (or right) bracket. Also, the
duration of a time-element t, Dur(t), is defined as the difference between its left bound and
right bound. In other words:

t=<py, p»> < Dur(t) =p,—pi

Following Allen’s terminology [3], we shall use “Meets” to denote the immediate
predecessor order relation over time-elements, which can be formally defined as:

Meets(t, t;) <> 3p1,p.p2€R(t = (p1, P) A, =[P, p2) v ti = [P1, P) A2 = [P, P2)
V=P, p) At =[p,p2] vt =[p1, P) Aty =[P, p2] v ti = (p1, P] A = (P, P2)
vtu=[pLplAt=(p,p2) vt =P, Pl A= (p, p2] vV ti =[p1, p] At2=(p, p2])

It is easy to see that the intuitive meaning of Meets(t, t;) is that, on the one hand,
time-elements t; and t, don’t overlap each other (i.e., they don’t have any part in common,
not even a point); on the other hand, there is not any other time-element standing between
them.

Analogous to the 13 relations introduced by Allen for intervals [3], there are 30
exclusive temporal order relations over time-elements including both time points and time
intervals, which can be classified into the following 4 groups:

® Relations that relate points to points:

{Equal, Before, After}
® Relations that relate points to intervals:
{Before, After, Meets, Met_by, Starts, During. Finishes}
® Relations that relate intervals to points:
{Before, After, Meets, Met_by, Started by, Contains, Finished by}

® Relations that relate intervals to intervals:

{Equal, Before, After, Meets, Met_by, Overlaps, Overlapped by, Starts,
Started by, During, Contains, Finishes, Finished by}

The definition of these derived temporal order relations in terms of the single relation
Meets is straightforward. E.g.: Before(t;, t,)<>3te T(Meets(t;, t)AMeets(t, t,)).

Based on such a time theory, a time-series ts is defined as a vector of time-elements
temporally ordered one after another [8]. Formally, a general time-series is defined in terms
of the following schema:

GTS1) ts=ty, ..., t,]

GTS2) Meets(t;, t;.;)vBefore(t;, tjy), forallj=1, ..., n-1

GTS3) Dur(ty) = dy, for some k where 1<k <n, d; is a non-negative real number.

Generally speaking, a time-series may be incomplete in various ways [7].
Correspondingly, a complete time-series is defined in terms of the schema as below:

CTS1) ts=1ty, ..., t]

CTS2) Meets(t;, t;sy), forallj=1, ...,n-1

CTS3) Dur(t) =d;, for alli=1, ..., n where d; is a non-negative real number.

The validation of data is usually dependent on time. We shall use fluents to represent
Boolean-valued, time-varying data, and denote proposition “fluent f holds true over time t”
by formula Holds(f, t) [3]:

(F1) (f, t) = vt (Part(t;, t) = Holds(f, t;))
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That is, if fluent f holds true over a time-element t, then f holds true over any part of t.

(F2) Vt,(Part(t;, t) = Jty(Part(ty, t;) A Holds(f, t,))) = Holds(f, t)

That is, if any part of time t contains a part of itself over which fluent f holds true, then f
holds true over t. Here, Part(t,, t) <> Equal(t,, t)vStarts(t,, t)vDuring(t,, t)vFinishes(t,, t).

(F3) Holds(f}, t) v Holds(f,, t) = Holds(f; v £, t)

That is, is fluent f; or fluent f, holds true over time t, then at least one of them holds true
over time t.

(F4) Holds(not(f), t) < Vt,(Part(t,, t) = —Holds(f, t;))

That is, the negation of fluent f holds true over time t if and only if fluent f does not hold
true over any part of't.

(F5) Holds(f, t;) A Holds(f, t;) A Meets(t, t,) = Holds(f, t;Dt,)

That is, if fluent f holds true over two time-elements t; and t, that meets each other, then f
holds over the ordered-union of t; and t,.

A state is defined as a collection of fluents. Following the approach proposed in [11], we
shall use Belongs(f, s) to denote that fluent f belongs to the collection of fluent representing
state s. For the reason of simple expression, if f, ..., f;, are all the fluents that belong to state s,
we shall represent s as <fj, ..., f,>. Also, without confusion, we shall use formula Holds(s, t) to
denote that s is the state of the world with respect to time t, provided that:

(F6) s=<f1y, ..., f,> = (Holds(s, t) < Holds(f), t) A ... A Holds(f,,, t))

That is, a state s holds true over time t if and only if every fluent in the s holds true over
time t.

A state-sequence ss is defined as a list of states together with its corresponding time-series
ts. A general state-sequence is defined in terms of the schema as below:

GSS2.1) ss=][sy, ..., Sp]

GSS2.2) Holds(s;, t;), foralli=1,...,n

where [t;, ..., t,] is a time-series. Correspondingly, a state-sequence is defined as
complete if and only if the corresponding time-series is complete [8].

3 Bipartite graphical representation for subsequence matching

We shall systematically introduce the procedure of transforming subsequence matching into
bipartite graph matching problem in this section.

Table 1. Notations used in this paper

Notation Definition

O=1[q1 92--+> qml Query state-sequence

S8 =[51,52,+ -5 Sul A state-sequence in database
D=[SS,,...,S5] The database with L state-sequences
NNMN(g;, SS, k) Set of kNN of g; in SS

NN(Q, S8, k) Set of kNN of all ¢;in Q in SS
BG=<Q, SS, E> Bipartite graph between O and SS
MSM(Q, SS) The set of MSM between Q and SS
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MSM(Q, D) The set of MSM between Q and all SS;in D
M A normal matching in MSM(Q, D)
M An inverse-ordered matching of M

The list of notations that will be used in this paper is given in Table 1. The procedure can
be briefly described as following:

Step 1: Employ Dynamic Query Ordering (DQO) algorithm [12] to implement kNN (k
Nearest Neighbours) search for each state ¢; in SS within a given maximum distance d,,,.
Output the state set NN(q;, SS, k) for each state g;. NB.: |[NM(g;, SS, k)| €0, k].

Step 2: Construct un-weighted bipartite graph BG = <Q, SS, E> for NN(Q, SS, k), EEQ
XSS is the edge set denoting kNN mapping between O and SS, as showing in Fig.1:
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Fig.1 Bipartite graph representation

Step 3: Employ Maximum Size Matching (MSM) algorithm [14] to produce a set of 1-1
matching between Q and SS with the maximum size for the corresponding BG. NB.: the
output of MSM in general is not unique.

For each given state-sequence SS, the above procedure produces a corresponding set of
1-1 matching MSM(Q, SS) between Q and SS with the maximum size. Therefore, if we
denote the set of such matching between Q and all SS; in D as MSM(Q, D), we have:

MSM(Q, D)=, MSM(Q, S$) M

The remaining main problem is then to develop an appropriate similarity measurement
for searching the corresponding optimal matching.

4 Hybrid similarity model

As mentioned earlier, for a given a matching M € MSM(Q, D), both temporal similarity and
non-temporal similarity should be taken into account. On one hand, the non-temporal
similarity is defined according to the Euclidean distance between each mapping.
Non-temporal similarity: The non-temporal similarity is measured by the total similarity
which is in inverse proportion to the Euclidean distance between each matched state pair.

simy =Y (1-dis(g.5)/(/ d @ )
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where dis(q;, s;) denotes the Euclidean distance between each matched state pair ¢;and s;
(which has achieved during kNN search) in the matching M and d denotes the feature
dimension of each state. Obviously, the similarity value falls into [0, 1].

On the other hand, as the distinctive feature of time-series data, temporal similarity
needs special treatments with respect to the following three measurements:

Temporal order similarity: There may be some pairs of state-sequences with the same
non-temporal similarity but with different temporal order. Here, we shall use the idea of
LCSS [15] to measure temporal order similarity. However, in existing normal LCSS based
formalisms, the typical reordering situations inversion in time-series data have been
neglected. In order to catch such kind of reordering, we define the temporal order similarity
as below:

Sim,, = max(LCS(M), LCS(M))1 @ A3)
which takes into account of both normal order and inverse order.

Temporal alignment similarity: In normal LCSS formalisms, in subsequence matching,
unmatched states are simply skipped regardless how many of them. ED [1] is an alternative
measurement distinguishing the number of unmatched states that being skipped. However,
crossover, which should be compatible since it is ubiquitous, is not allowed in ED since it
just matches in the single forward direction. Following the approach proposed in [13], we
define the following temporal alignment similarity:

Simy, =2|M|/(Q+|S9) )
which takes into account the number of unmatched states and accepts crossover.
Temporal concentration similarity: It is easy to see that the distribution of matched (or

unmatched) states and the internal temporal distance (or similarity) is ignored in Simy,. For
instance, by (4), sequence [1, 2, 3, 4, 5] will be taken as having the same similarity with [1,
a,a 2,3,4,a,5],[1,2,a,3,a,4,a,5]and [1, b, c, 2, 3, 4, d, 5]. In addition, the duration of
various times over which the corresponding states are associated with is not addressed in
(4). Here, we introduce a similarity measurement to govern such temporal concentration. In
what follows in this paper, we use CD and DD to denote the Concentration similarity
Degree and the Discrete similarity Degree:

CD= Dur(CM§)+Z( Dur( CMS) Z Du¢ CM3) (5)
DD = Z(ﬂﬂ Dur(CUS)/>_ Dur CU9) (6)

where CMS; and CUS; are defined as “Continuous Matched Subsequence” and
“Continuous Unmatched Subsequence”, respectively, in descending ordered with respect to
the length of these subsequences; and Dur(CMS) and Dur(CUS) denote the list of the
duration of each continuous subsequence in CMS and CUS, respectively. 1 represents the
internal temporal distance with respect to each adjacent continuous matched and unmatched
subsequences. In fact, if CUS;= [s,, ..., s,]

> dis(s,,, §)/| CUS  if =1
A=12.0 dis(s4, 9)/| CUS if p= length SS
Y (dis(sy, 9)+ di§ 5., 9)/2 CUB el

(7
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In order to reduce the computing complexity, we replace s.; and s, by their
corresponding query states in O since the Euclidean distance in (2) between each state in Q
and a state in SS has achieved in the kNN search stage.

The temporal concentration similarity can be defined:

Simrc=(CD - DD)/|Q)| ®)

Normally, the overall similarity can be simply defined as the average of individual
similarities. However, as we have argued earlier, the individual similarity measurements
introduced in this paper have various features. In fact, while the non-temporal similarity
and the temporal similarity may be treated in parallel, the three temporal similarities are
progressive one after the other. Therefore, it is not appropriate to simply accumulate all of
them together. In what follows, we use a hybrid approach to combine the four similarity
measurements.

Hybrid similarity model.

Step 1: reorder MSM(Q, D) as MSM(Q, D)’ by Simro, Simr,, and Simyc:

Firstly, reorder it by the Simzp; then for the matchings with the same Simy,, reorder them
by Simg,; analogously, reorder by Simyc if there exists some matchings with the same
SimTA.

Step 2: Integrate temporal similarity: get the integrated temporal similarity Simpg =
Adjust(Simro). For those u = j-i+1 matchings [M’;,...,M";] with the same Simzo, evenly
stretch their similarities into [Simpoto/2, Simrp-0/2] where o denotes the adjust operator
defined as below:

(Simq, — Simg ) /3u  if i#1,j=X
o=1Sim,  /2u if i=1

Simg, /2u if j=x
Step 3: Overall similarity: reorder MSM(Q, D)’ as MSM(Q, D)’ in terms of overall

similarity Sim which defined as the average of non-temporal similarity and integrated
temporal similarity:

©

Sim = (SimNT + Slst)/z (10)

5 Experimental Results

We experiment our method on Synthetic Control Chart Time Series in UCI KDD
(Knowledge Discovery in Databases) Archive [5]. The database consists of 600 synthetically
generated control charts state-sequences with length of 60 for each, including 6 different
classes (100 examples each): In order to avoid the influence of segmenting error to the
proposed similarity model, we shall use the original database in the form of individual 600
state-sequences with length 60 for each as the training data. Several query sets are
reconstructed as following:

Original Query Set (OQS): which consists of 60 (the first 10 state-sequences from each
class) state-sequences;
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Reordered Query Set (ROS): a percent reordered (in inverse order while o=1) to each
state-sequence in OQS;

Shortened Query Set (SOS): each state-sequence of this set is with length of (1-f)*60;

Noised Query Set (NQOS): add a Gaussian noise to each state-sequence in OQS.

For each query state-sequence, by means of following the procedure presented in section 3
we obtain a set of optional matching in the training database, and according to the hybrid
similarity model proposed in section 4, we then calculate the overall similarity respectively.
The precision is defined as the ratio of the number of state-sequences with the same class as the
query state-sequence out of the first 100 optimal matching in MSM(Q, D)’’. We focus on the
performance of our similarity model compared with that of [13] (shorthanded by Shen in
following figures), which is just simply defined by the average of its individual similarity
measurements. Meanwhile, another two models which employ ED and LCSS as temporal
similarity have been tested respectively.
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Fig. 2 Precision of OQS against k Fig. 3 Precision of RQS against o

Fig. 2 shows the precision of the OQS with different k in kNN search. We can see that there
is no distinct influence of k. In order to reduce the complexity of our matching system, we
default £/=5 if not specified. The following 3 figures show the matching precision on different
query sets against their corresponding reconstructive parameters.

Firstly, Fig.3 shows the precision of ROS against a, in order to reveal the performance of
the progressive temporal similarity measurement we proposed in this paper, we omit the
non-temporal similarity in each method. From which we can see, in our method, the precision
has an approximate quadratic distribution with the subject to o, which means it can better
detect the reordered state-sequences than the others.

Then, to evaluate the effect of B, we form the SOS by deleting B*60 states in different
position: evenly, from the beginning and the end. Fig.4 shows the matching results against
different . Generally speaking, our method is more robust than others no matter the
state-sequences are shortened evenly, from the beginning or from the end. The precision drops
much slower in our method especially for B&[0.1, 0.5]. In addition, according to our statistic,
the query set shortened from the beginning has a slight higher precision than the other two sets
shortened evenly and at the end in our similarity model. Generally speaking, the position
(where being shortened) doesn’t affect the precision very much in any similarity model.
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Fig. 4 Precision of SOS against 3
Fig.5 shows the results of noised data with Gaussian noise in different mean ([0, 2]) and
variance ([0.1, 1]). Visually, our method has higher precision and smaller fluctuation. Table 2

below shows the average mean and standard deviation (STD) of each subfigure in Fig.5.

Hybrid

precision
precision

precision
precision

Fig. 5 Precision of query set with Gaussian noise against mean and variance

Table 2. Statistic of the precision of noised query set

Hybrid Shen ED LCSS
Mean (%) 76.46 72.81 68.83 59.12
STD 0.0764 0.0878 0.0877 0.1043

6 Conclusion and future work

In this paper, based on a formal characterization of time-series and state-sequences, we
introduced a framework for subsequence matching. A hybrid similarity model addressing both
non-temporal and temporal relationship between state-sequences, which are represented by
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bipartite graphs, has been proposed. The experimental results on UCI time-series database
demonstrated that the proposed similarity model is robust to states alignment with different
numbers and different values, and various reordering including inversion, crossover, compared
with the LCSS and ED based similarity models. We hope this model will provide a steady
usage on lager time-series databases and real-life applications such as Content-based Video
Retrieval.
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Abstract
In this paper, an efficient and effective framework is proposed éavsrvideo retrieval. Firstly, the

64-dimensional colour histogram is extracted as the feature vector. Theraithquantizer is adopted to
transfer the news video retrieval problem into multi-dimensional striaigmng problem, which conduces to
the efficiency to the framework. Secondly, a new measurement named ‘optimal temporal common
subsequence’, which distinguishes the difference caused by rich temporal characteristicsngctachporal
order, temporal duration and temporal gap, is designed to match statense, followed by the point &
interval-based formal characterization of time-series and state-sepuerhirdly, we tested the proposed
measurement on news video retrieval. The performance shows thesptbalgorithm is more effective for
news video retrieval.

Keywords: state-sequence matching; optimal temporal common subsequencejdemnstrieval
1. Introduction

With the development and the progress of infornmatame, multimedia information, especially video
information, is becoming an active and hot reseaotlfect including video retrieval, video structural
representation, video annotation and so on. Cobsed Video Retrieval (CBVR) has attracted markraore
researchers in recent decades. Normally, videddagacan be organized as figure 1. Videos aredstorerms
of clips each of which contents a sequential kaynés (static images) obtained by specific key fraxtraation
algorithm. In order to cater for recognition or etahg, feature vectors are extracted for key frarfesm figure
1, we can see, the video retrieval can actuallyrdoesformed into the matching problem between featactor

sets where feature vectors are sequential.
Keyframg

Keyframe 1 > <Feature Vector>

Video
Databasq

| Video set | | Image set |

Figure 1. Video database organization

Different from image retrieval, the task is to seanci the most similar image (key frame) set, not onéy t
single image. Which in turn means the temporal matiip between key frames should be highly regarded.
State-sequence matching, as an effective approagmporal pattern recognition, has been activebgarched
recently, where the key frames in videos are reghadestates in time-series.

The notion of state is fundamental for many stasetaapplications, which represents the static $wd s
the world in discourse, while the dynamic historisaknarios of the world can be characterised imsenf
temporally ordered state-sequences. Generally spgak statesequence presents a sequence of data, measured
and/or spaced typically at successive times, wbishbe either points or intervals. State-sequeratehimg has
been noticed as a popular research topic in steebsystems has been well applied in various atedsas
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financial data analysis [1], audio recognition [@ikual information retrieval [3], etc. Normallytate-sequence
matching can be divided into two categories: whadgciiing [4, 5] (i.e., all state-sequences haveséime length

) and subsequence matching [3, 6] (i.e., state-segadmave various lengths). Obviously, the wholechiag)

problem is in fact a special case of the subseguematching. In general, state-sequence matchindsniee
accommodate three temporal features:

i. Temporal Order: the temporal relation over the states in the two giversstpiences. This issue has
been well dealt with in most existing state-sequence matching algorithmfitibgnom the
dynamic programming.

ii. Temporal Duration:
= The duration of each state. For instance, as slowigure. 2, the two state-sequencesaAd A, that

is ‘abed’, have different temporal duration assignment function Tgyq = [1, 1, 1, 1] and &= [1, 2,
3, 4], respectively.

= The overall duration of continuous duplicationsstdites. For instance, as shown in Figure. 2, for
state-sequences; A= ‘abcd’ and Az = ‘aabbbecceddd’, the common subsequence ‘abed’ have
various overall duration, even if the duration eatf each state is identical as 1.

iii. Temporal Gap: the time element standing between tjexewt states as shown in Figure. 3, where B
and B = ‘abcd’, Bz = ‘aabbbcd’ are with different temporal gap values.

Aa c d
Tﬁ 1§ 1
C d

Figure 3. Various temporal gap in state-sequences

The Longest Common Subsequence (LCS) is a typiodagty measurement for subsequence matching.The
basic idea of the original LCS algorithm [7] isfind the longest subsequence common to two stafieesees
along the same temporal order. For instatieelongest common subsequence of A3 and B3 is ‘aabbbced’. In this
paper, distinguished from this concept of commoassguence in conventional LCS, we define the teahpor
common subsequence of two state-sequences asntimotosubsequence where each state is differentifsom
neighbour(s) (predecessor and successor), thélidee are no continuous duplications of statesempbral
common subsequence. For instance, the temporal common subsequence of A3 and B3 is ‘abced’, rather than
‘aabbbcd’.  Correspondingly, the optimal temporal common subsequenceQ®)Tis the one with the highest
overall similarity integrated by the length of teon@l common subsequence, the temporal duratioerdifte and
temporal gap difference (see the actual algorithsection I11).

Several algorithms based on the original LCS haenltproposed. Some representative variants of #rese
Time-warped LCS (T-WLCS) [8] which counts continstyuduplicated common states in the spirit of Dynamic
Time Warping (DTW) [9] algorithm; Compacted LCS (C8) [10] where only the common subsequence, the
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continuous length of which is longer than the dptithreshold th) is counted;All Common Subsequence
(ACS) [11] which measures the similarity by means ofinting the number of all common subsequences
(including empty string in actual algorithm) and takihe strategy that the more common subsequenuzs @f
state-sequences have, the more similar they are.

However, in most of these representative algorithmany problems (see details analysed in sectipodtur
due to the neglect of richer temporal features sisctemporal duration and temporal gap, etc. Winile-series
and state-sequences have been simply expressatbssddistst t,, ..., t, (0Or &, S, ..., sn), leaving some critical
issues unaddressed. E.g.:

e What a sort of objects do these , ... and t, belong to? In other word, are they time points.etim
intervals, or simply some absolute values from #a mumbers, integers, or the clock?

e What are the temporal order relationships betweeseth, t,, ... and t,, and/or between the sequence of
collections? Are they simply well-ordered as theuratnumbers, or they may be relatively ordered by
means of relations such as “Before”, “Meets”, “During”, and so on?

¢ What are the associations between time-series/ sequences and nadtdatpahat represent various
states of the world in discourse?

The objective of this paper is to design an effective and efficient frarkefaonews video retrieval. The
rest of this paper is organised as below: the quantization proceduresented in section Il. The formal
characterization of time-series and state-sequences is introduced in sectidm IOptimal Temporal
Common Subsequence (OTCS) algorithm based on a formal characterization esfeties and
state-sequences is presented and analyzed in section IV. Experonenévs video retrieval system are
conducted and the corresponding results are analysed in section V to demdhstretfectiveness and
validity of the proposed OTCS. Section VI provides a brief summary andluaes the paper with the
prospects for future work.

2. Video clip and state-sequence

As mentioned in the introduction, the key framesi@eo clips are regarded as states in time-sesiBigh in
turn means the video clips are regarded as stgteesees. In order to apply state-sequence matelgogthm
to video clip retrieval, quantization is employedtiap the sequential feature vectors into assighardhcter bins.
The uniform quantization is the most common aniiefit choice which can be defined as:

(K=1)+Sg < B, < ke Sgy k=0,1,...N (1)

where N denotes the number of the b, =| Max Miri|/N denotes the step size and the Euclidian

distance is employed to calculate the maximum v@ax) and the minimum valu#/fn) among feature vectors.
By this quantization, most of the similar featurectees, the distance between which is within the &olee
(step-size) will be quantified into the same biowdver, the similar feature vectors may be mappexddifferent
bins if they are located on different sides of tié edges k-S,,,, k=1,..N— 1), even though they are very

similar to each other.

Therefore, in this paper, we adopt the paired deatitn method [10] for feature quantization. Theotw
quantizers @ Q@ are defined as following:

(K185, < BY < ke Sy, )
S
(k=1)eSg, + SS‘Z‘*" <BX <k saep+—§e" (3)

The feature vector will be quantified into the kih if it satisfies either quantizer;@r Q.. So it can relieve the
problem pointed in single quantizer.

3. Formal characterization of time-series and state-sequences
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In this section, we introduce a formal charact¢ioraof time-series and state-sequences. For tke sh
allowing expression of both absolute time values i@hative temporal relations, in this paper, tietements are
defined as typed point-based intervals, each oflwhiust be in one of the following four forms [12]:

(P,a)={rlreRAp <r< q}
[P, g)={r|reRAp <r<q}
(p,gl=1{r|[reRAp <r<g;
[p, g]={r|reRAp <r<qg}

In the above, R stands the set of real numbers,residnumbers p and g are called the left-bound and
right-bound of time-element t, respectively. Theddlte values as for the left and/or right boundssomfme
time-elements might be unknown. In this case, realbmr variables are used for expressing relatiwagiogls to
other time-elements (see later). If the left-bound aght-bound of time-element t are the samecailed a time
point; otherwise it is called a time interval. Withaonfusion, time-element [p, p] is taken as idetio point p.
Also, if a time-element is not specified as openlosed at its left (right) bound (that is, the Igiht) type of the
time-element is unknown), we shall use “<” (or “>") instead of “(”” and “[” (or ) and “]”) as for its left (or right)
bracket. In addition, the temporal duration ofragtielement t, Tdur(t), and the temporal gap betveetacent
elements t,, Tgap (i, t)) can be defined as below:

t=<p, P> Tadt) =q-p
t=<p, &>, b= <P, > STgap(t, &) = [ — G

Following Allen’s terminology [13], we shall use “Meets” to denote the immediate predecessor order relation
over time-elements, which can be formally defined as:

Meets(l, t) < FpuP.ReR(t = (P P)A & = [P, )

vi=[pL P)AL=[p, R) vu= (oL P)AL= [P pl

vi=[pL P)AL=[P, Rl vt = (P plAL= (D, R)

vt =L PIAL= (P ) v i = (PL PlA L= (P, R
vti=[p, PIA L= (P, B)

It is easy to see that the intuitive meaning of teige t,) is that, on the one hand, time-elemeptnd $
don’t overlap each other (i.e., they don’t have any part in common, not even a point); on the other hand, there is
not any other time-element standing between them.

Analogous to the 13 relations introduced by Allen ifitervals [13], there are 30 exclusive tempanaler
relations over time-elements including both timengmiand time intervals, which can be classified itite
following 4 groups:

® Relations that relate points to points:
{Equal, Before, After}
® Relations that relate points to intervals:
{B efore, After, Meets, Met_by, Starts, During. Firish
® Relations that relate intervals to points:
{Before, After, Meets, Met_by, Started by, Contaifgished_by}
® Relations that relate intervals to intervals:
{Equal, Before, After, Meets, Met_by, Overlaps, @apped_by, Starts, Started by, During, Contains,
Finishes, Finished_by}

The definition of these derived temporal ordertiefss in terms of the single relation Meets isigtrdiorward.
E.g.

Before(t, ) < dte T(Meets(t, t) A Meets(t, 1))

Based on such a time theory, a time-serigsah be defined as a vector of time-elements teripanaered
one after another [14]. Formally, a general timeesds defined in terms of the following schema:

GTSDT\=ty, ..., ta] = [<Pw, &>, - .., <Pn» ]
GTS2)Meets(t, t.,)vBefore(t, t.,), foralli=1, ..., n-1
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GTS3) Taqult) = g — p;, for some i where 1<i<n.
GTS4) Tgadti, t41) = Pe1 — G for some i where 1<i<n-1.

Generally speaking, a time-series may be incomjrletarious ways. For example, if the relation betwge
and .4 is “Before” rather than “Meets”, it means that the knowledge about the time-element(s) betweenand f,
is not available. In addition, ifsf(t) is missing for some k, it means that durationvidedge as for time-element
t is unknown. Correspondingly, a complete time-sagalefined in terms of the schema as below:

CTSHTa=[ts, ..., to] = [<P1, &>, ..., <pn, &]

CTS2)Meets(t, t.y), foralli=1, ..., n-1.

CTS3)Tault) =q—p, foralli=1, ..., n.

CTS4)Tgadti, t1) =0 foralli=1,...,n-1.

The validation of data is usually dependent on tifwg instance, $1000 (account balance) can bé kafore

and on 1 January 2003 but become invalid afterwaids shall use fluents to represent Boolean-valued,
time-varying data, and dengisoposition “fluent f holds true over time t” by formula Holds(f, t) [13]:

(F1) (f, )= Vty(Part(t, t) = Holds(f, ©))
That is, if fluent f holds true over a time-elemgrhen f holds true over any part of t.

(F2) vty(Part(t, t) = 3t(Part(h, ;) A Holds(f, £))) = Holds(f, t)
That is, if any part of time t contains a part tself over which fluent f holds true, then f holalse over t.

Here,
Part(t, t) < Equal(t, t) v Starts(t, t) v During(t, t)v  Finishes(t, t)

(F3) Holds(f, t) v Holds(, t) = Holds(f, v f,, 1)
That is, is fluentfor fluent § holds true over time t, then at least one of theids true over time t.

(F4) Holds(not(f), tx= Vty(Part(t, t) = —Holds(f, t))
That is, the negation of fluent f holds true owemett if and only if fluent f does not hold trueemany part of t.

(F5) Holds(f, 1) A Holds(f, t) A Meets(i, t,) = Holds(f, t®ty)
That is, if fluent f holds true over two time-elertel and § that meets each other, then f holds over the
ordered-union ofitand .

A state is defined as a collection of fluents. &wlhg the approach proposed I, we shall use Belongs(f, s)
to denote that fluent f belongs to the collectibfient representing state s. For the reasonropla expression,
if f4, ..., f, are all the fluents that belong to state s, wédl sharesent s as sf..., f,>. Also, without confusion,
we shall use formula Holds(s, t) to denote thatthe state of the world with respect to time ¢vated that:

(F6) s = <f, ..., fr> = (Holds(s, tk= Holds(f, t) A ... A Holds(f, t))
That is, a state s holds true over time t if anlgt drevery fluent in the s holds true over time t.

Consequently, a state-sequence S is defined sisdd $itates together with its corresponding tiregesT,. A
general state-sequence is defined in terms ofcthensa as below:

GSS1)S,=[ss ..., 1]

GSS2)Holds(s, t), foralli=1,...,n
where [t, ..., t] is a time-series.

Correspondingly, a state-sequence is defined agpletenif and only if the corresponding time-seriss i
complete 15].

According to the basic set of axioms with respect to the point & interval baseddines theory [12], for
any two adjacent time elementsahd $ such that Meets(tt,), we can denote the ordered union,cdind ¢ as t

@ t, If Holds(s, t), Holds(s, 4) , we have:

Holds(s, 1 @ ty)
Taults ® 1) = Taudts) + Taudtz)
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That is, the “ordered union” operation over time elements is consistent with the conventional “addition”
operation over the duration assignment function, i.e., ‘Tgy’ .

4. The optimal temporal common subsequence

For two given state-sequencgs=[s,...,s,] and S =[s,..., 4], Holds(s.t ) and Holds§;,§ ),
t=<p,q> andtj=<p;,q >fori=1,..,mandj=1, ..., n, the algorithm of the optimal temporal common

subsequence can be illustrated as below: Firstly, the following algorittumlatas the longest temporal
common subsequence.

Input: two state-sequencegands, .

Output: the length of the longest temporal common
subsequences OT(S,,S,)-

1) Initiation: § == null
for i=0:m:OTCE0)=0
for j=0:n: OTG%0,j)=0
2) Recursion:
fori=1. m
for j=1:n
if s=39 #matched
casel: s;=3,=85=§
OTCgi,j))=0TCS(i—-1,j—-1)
case2: §,=9,# 5= §
OTCHi, j))=0TCS(i—-1,j-1)+1
case 3: (s, # S.)&(eithers ors= ;s |85
OTGSE, j) = max(OTCS(i—1, j), OTCS(i, j—1))
case 4:(s, # 5,) &( neither,s nors=; s ;)¢
OTCgi,j)=0TCS(i—-1,j-1)+1
else #s # 5, unmatched
OTCS(i, j) = max(OTCS3(i—1, j), OTCS(i, j—1))
end # end of if

end # end of
end # end of i

3) Accomplishment
OTCS(s,,s,) = OTCS(m, n)

In above algorithm, the continuously duplicated states are not re-countesvammon states in any
state-sequence. Secondly, in the same manner, we simultaneouskd recimd, =(f.,l,) and

Ind, = (f,,l;) as the first and the last index of the kth common state betwgegends,, where k=1, ..., L =
OTCS(s,.s,), folc€[1, m] and f,,l;€ [1, n]. According to the typed point-based intervals, tdraporal
duration differenc©TCS (S, S) and temporal gap differen@TCS (S, S) are calculated as below:

oTCS (S, $)=§|( a- p-(a 9 @)
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0 ifk=1

OTCS(S. Q)= (5)

2lp—a.)-(p. - ) else

Finally, the overall similarity with respect to the temporal order, temporal doratim temporal gap is

defined as:
OTCH g, Q)= w OTCH 5 ¥ )
-W,cOTC{(§, Q- w OTCH 5 3

Comparing with the conventional LCS based measurements introdusedtion |, the main advantage of
OTCS is that it does deal with the difference causedhe temporal duration and the temporal gap during
state-sequences. For example, given state-sequencesdbcd], G = [aaaaabc], £= [aabbccdd], €=
[aaebbfccgdd] and &= [aaaabbb]. For the reason of simple illustration, the temporatidarof each state is
set as 1 and the temporal gap between each pair of adjacent states isik#ieasdde identical or 1 if they
are different. Table 1 reports the similarity between state-sequences mdaguidierent algorithms. For
OTCS, the similarity is reported in terms of a triad [OTCOTCS,, OTCS;] which will be integrated with
w,=1and w =wg=0.1.

Table 1. Similarity Between Example State-sequences With Different Measurements

Slmllarlty C; C, Cs Cy Cs
Cy 4 3 4 4 2
C.| 3 7 4 4 5
Les  [cs 4 4 8 8 4
C.| 4 4 8 11 4
G| 2 5 4 4 7
C.| 4 3 0 0 2
C.| 3 7 3 0 5
s |Gl 0 3 8 0 2
C.| 0 0 0 11 0
Cs| 2 5 8 0 7
Ci| 16 8 16 16 4
C.| 8 128 16 16 32
ACS |[Cs| 16 16 256 256 16
C.| 16 16 256 | 2048 16
G| 4 32 16 16 128
C.| 4 7 8 8 7
C.| 7 11 10 10 11
TWLCS [Cs| 8 10 12 12 9
C.| 8 10 12 15 9
G| 7 11 9 9 12
Ci|[4,0,0]|[34,0] | [440] | [446]]|[250
C; | [3.4.0][[3.0.0][[350]][354]][23.0]
OTCS G, | [4,4,01] [3,50] | [4.0,0] | [40,6]| [23,0]
Cs|[4,4,6)][354][[406]](7,00][2372
Cs | 2,50 [ [2,3,0] [ [2,3,01 2,3, 2| [2,0,0]

The “non-uniqueness” problem (different state-sequences have the same similarity to the query
state-sequence) is ubiquitous when applying those conventional algoditients the lacking of dealing with
temporal duration difference and temporal gap difference. For instanee, three state-sequence pairs, (C
Cy), (C, G and (G, C,) with the same temporal common subsequénbed’, we shall get Sim(¢ C,)) =
Sim(C,, G;) by using LCS and ACS, which states that the two state-sequencarsd @, have the same
similarity to G, where in fact they have different temporal durations. Also we shaBig€C,, C;) = Sim(G,

C,) by using CLCS, LCS, ACS and T-WLCS, which stateg a@ G have the same similarity to; @here

in fact they are with different temporal gaps. The proposed OTCSismp#per is the only one that can
distinguish the different temporal duration or temporal gap, and in factawe @TCS(g C;) > OTCS(G,
C3) > OTCS(G, Cy).
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In addition, some other abnormal or unreasonable results occur ia thasting algorithms when
continuously duplicated common states exist frequently in state-sequéncesxample, following CLCS,
LCS, ACS or T-WLCS, one will get SimgCCs) > Sim(G, C;). However, according to the definition of
temporal common subsequence, the similarity degree betweamdC5 should be in fact higher than that
between gand G. This is corrected in OTCS by reaching that OTGS(G) > OTCS(G, Cs).

Furthermore, in particular, CLCS is very fluctuant since the continuityatthed common subsequences
may be destroyed easily by the unmatched states (e.g., resulting as GLC3(E CLCS(G, G) =
CLCS(G, C;) = CLCS(G, GCs) = 0) or by the continuously duplicated common states (e.g., rep@tn
CLCS(G, C3) =0). In ACS, the similarity becomes extremely large (suchsan@ G) when continuously
duplicated common states exist frequently in state-sequences and will thevefterestimate the high
similarity between ¢ and G. T-WLCS even cannot guarantee the query stejaence has the highest
similarity with itself: for instance, T-WLCS({C C,) < T-WLCS(G, C,). Such a problem becomes absurd if,
for instance, we have,C= ‘aaaaaaaaaaaa’, which will lead to T-WLCS(C,,C,’) = 12 due to the unreasonable
treatment to continuously duplicated common states.

5. Experimental Results

To demonstrate the performance of OTCS, we test it on a news eitiesal system. We have collected
over 300 news video clips (state-sequences) lasfirtg 5 hours as our database. The number ofrkeyef (state)
of each video clip varies from 10 to 65. For eael-kame, we extract the 64-dimensional colour gistm as
the feature vector which is then quantized by theegguantizer introduced above where the similar kaynfes
will be quantized as the identical state. Sevanalysets are reconstructed:

Original Query Set (OQSKO state-sequences randomly selected from the database

Shortened Query Set (SQS): each state-sequenbés afet is with length of (&%)*60 by deleting a%*60
states from OQS randomly;

Lengthened Query Set (LQS): each state-sequence ofttissagth length of (1$%)*60 by duplicating %
predecessors with random positiorGQS

key-framel key—frame )

key-frame6  key-frame7 key-frame8 key-frame9 key-framel0

kev-framell kev. kev-frahekev-frame15

Figure 4. An example of key-frame sequence in video clip database
Figure 4 shows an example of key-frame sequencedeb\ilip with various temporal duration and temporal
gap. The similar key frames (key-frame 7 ~11) willcheantized as the identical state, the duratiowroth is
equal to the sum of their duration.

We compare the performance with LCS, CLCS, T-WLCSAG8. Again for OTCS, the temporal duration of
each keyframe is set as 1 and the temporal gap between each pair of adjacent keyidfrsehas 0 if they are
identical or 1 if they are different. We sat w1l and test the experiment with and w; varying from {1, 1/2,
1/4, ..., 1/128} and choose the values leading to the optimal performance.Table 2 shows the retrieval precision on
OQS against top number (the number of the most aimildeo clips compared with the query video clip).
Obviously, all similarity measurements perform hettéth the increase of top number, but generallyakpey,
OTCS outperforms the others. In following experirsettte top number is fixed to 8 where the precisibimese
five measurements has the largest standard dev{atin
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Table 2. Retrieval precision on OQS

number 2 4 6 8 10 12 14 | MEAN
Method

LCS 72| 73| .76 | .80 | 86 | .94 | .98 .83
CLCS g0 71| .73 | .73 | .77 | .80 | .85 .76
ACS 78| 80| 84| 90| 93| 95| .99 .88
T-WLCS 75| .81 | 81| 86 | .90 | .92 | .98 .86
OTCS 84| 8 | 92| 93| 96 | 98 | .99 .92

STD .055| .058| .074| .080 | .073 | .069 | .056

Figure 5 shows the retrieval precision on SQS and LQS. It’s clear to see that OTCS is much more robust than
the others since by means of adjusting the valubefveight, it can handle temporal duration diffee and
temporal gap difference caused by deletion andtinoee CLCS is most fluctuant with worst precisiopesially
in LQS since insertion operation may weaken theigoiy of common subsequence. LCS is robust (with
smallest variance) but not as effective as OTC&dttition, LCS has less influence on LQS since it can skip the
duplicated key-frames. ACS and T-WLCS are sensitivegdanttertion and deletion degree as CLCS.
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Figure 5. Retrieval Precision on SQS against a and LQS against 8

Figure 6 shows the weight contribution of the temgdaharacters on different query sets. Generally
speaking, the length of the longest temporal comsunsequence contributes more significance than
temporal duration and temporal gap on any query Astfor OQS, the temporal duration plays a
slightly more significant role than temporal gapchase of the existence of approximate adjacent
key-frames which may be quantized as identical keyes in video clips. For SQS, due to the
deletion of some key-frames, the temporal gap playsore important role than temporal duration
while contrarily in LQS since the insertion opeoatigenerates more duplications of key-frames.
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Figure 6. Weights contribution of temporal characters in OTCS

6. Conclusion and Future Work

State-sequence matching is a very hot researclt topdata mining [16]. In this paper, we have
presented an efficient and effective state-sequenatching algorithm for news video retrieval. The
fundamental formal representation of time-seried atate-sequence is introduced in detail, based on
which, we proposed a new concept of temporal commupsequence different from the traditional
common subsequence. A new L®Ssed algorithm named Optimal Temporal Common Subsece
(OTCS) which takes into account rich temporal imi@tion (including temporal order, temporal
duration and temporal gap) between state-sequeiscéimally designed and tested on news video
retrieval. The experimental results demonstratedtiectiveness and robustness of the new algorithm.

Linear combination is the most direct method to bome the three temporal characters. However, it
will be sensitive to the weight selection. Also,doedant calculation for the other two temporal
characters seems to be able to be optimized, whittiremain as our future work.
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Abstract—Based on a formal characterization of time-series
and state-sequences, a new distance measurement dealing with
both non-temporal and temporal distances for state-sequence
matching is proposed in this paper. In addition to formulating
the temporal order over state-sequences, it also takes into
account of temporal distances in terms of both the temporal
duration of each state and the temporal gaps between
adjacent pairs of states, which are neglected in most existing
approaches to time-series and state-sequence matching. In
particular, when specialized as a real-penalty-style
measurement by means of reifying the cost functions, it is
more flexible with regards to real-life applications than
binary-value-style distance measurements. In addition, it is
more robust than those existing real-penalty-style distance
measurements sincé can filter out noise during the matching
procedure. Experimental results on reconstructed time-series
data from UCI KDD Archive demonstrate that it can tackle
the most general problems in matching time-series data with
rich temporal information.
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State-sequence Matching

Recongition; Time-series;

I. INTRODUCTION

Temporal pattern recognition of time-series and

Bai Xiao
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Beihang University, Beijing, China
little_point_baixiao@hotmail.com

b) Temporal Duration: the duration of each state,
e.d., Tour as shown in Fig. 1.

c) Temporal Gap: the time interval standing between
two adjacent states, e.gg,Jas shown in Fig. 1.

Td r Tgap
—{1 1 I
statg state statg

Figure 1 Temporal Gap and Temporal Duration

Various distance measurements have been developed
over the past half century, for state-sequence matching,
including Lp-Norms [5], the Longest Common Subsequence
(LCSS) [L1], Dynamic Time Warping (DTW) [6], and Edit
Distance [7] and its variants such as Edit Distance on Real
Sequence (EDR) [3], Edit Distance with Real Penalty (ERP)
[4] and Time Warp Edit Distance (TWED)1(Q], etc.
However, most of these existing distance measurements
characterize temporal distance in terms of only the temporal
order over the state-sequences, where other important
temporal features such as temporal duration of each state
itself and temporal gap between two adjacent states have
been neglected. The only noted exception is TWED which

state-sequences (also known as state-sequence matchingjfdresses temporal gap difference in term of the temporal

plays a very important role in data mining and has beenindex of states while temporal duration of states is not dealt
well applied in various areas such as financial data analysiswith at all. In additon, in all the existing distance

audio recognition, visual information retrieval, etc. One of
the most active and essential research topics in
state-sequence matching is the distance (or similarity)

measurements, time-series and state-sequences are simply
expressed as lists (timestamps) in the form,d,t..., t, (or
S, S, ..., Sn), Where the fundamental time theories based on

measurement. On one hand, for general treatment, ayhich time-series and sequences are formed up are usually

versatile distance measurement should be able to deal withhgt

explicitly  specified. = Therefore, the formal

both of the non-temporal and temporal distances for any twocharacterizations with respect to the temporal basis are

given state-sequences, where

1) Non-temporal distance: denotes the difference

between those states appearing in that two given

state-sequences, ignoring any temporal issues.

Temporal distance: consists of 3 characiers:

a) Temporal Order: the temporal relation over the
states to be matched in the two given
state-sequences.

2)

This research is supported in part by National 973eEtro(No.
2010CB327902)

neglected, leaving some critical issues unaddressed. E.g.:
What a sort of objects do theset, ... and t, belong

to? In other word, are they time points, time intervals,
or simply some absolute values from the real numbers,
integers, or the clock?

What are the temporal order relationships between
these {, 1, ... and t,, and/or between the sequence of
collections? Are they simply well-ordered as the natural
numbers, or they may be relatively ordered by means of
relations such as “Before”, “Meets”, “During”, and so

on?
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e What are the associations between time-series/specified as open or closed at its left (right) bound, we shall
sequences and non-temporal data that represent variousse “<” (or “>") as for its left (or right) bracket. In addition,
states of the world in discourse? the temporal duration of a time-element §,(f), and the
On the other hand, distance measurements can bdemporal gap between adjacent elemeptsyt Tgap (t1, B)

classified into two categories, with respect the ways in can be defined as below:

which the cost function is reified: (a) binary-value-style t=<p,g>= Tau() =g-p

distance measurements, where the cost functions take binary = <p, >, b= <P > STgap(ts, b) = [ — il

value (0/1) as matching cost which is not sensitive to noise  Following Allen’s terminology [1], we shall use “Meets”

since they treat the noise and unmatched states with th@o denote the immediate predecessor order relation over

same cost (1); (b) real-penalty-style distance measurementsime-elements, which can be formally defined as:

in which the cost functions take real difference as matching

cost. In general, the real'—penalty—style di;tance Meets(t, ) < 3p,r,geR(t = (0, ) A L =1, Q)

measurements outperform the binary-value-style distance _ _ _ -

measurements. However, the real- - [ VaEP DAL= A)vE= (P, )AL= ]

. , penalty-style distance _ _ _ _

measurements are much more sensitive to noise since the ¥ 1= P 0AL=[ndAlvE=(p.]AL=(r q)

real difference between noise and non-noise states may lead Vu =[P dAL=Favu=@,1AL=(,d]

the overall distance to an abnormal degree. v=[pir=(d) _

The objective of this paper is to propose a new distan It is easy to see that the intuitive meaning of Megts]t
measurement (NDM) which tackles both non-temporal iS that, on the one hand, time-elementsand § don’t
distance and temporal distance including all the threeoverlap ecach other (ie., they don’t have any part in
temporal characters as described above, as well as th€0ommon, not even a point); on the other hand, there is not
disturbance of noise. The rest of this paper is organised agny other time-element standing between them.
below: the formal characterization of time-series and = Analogous to the 13 relations introduced by Allen for
state-sequences is introduced in section I, where our newntervals [1], there are 30 exclusive temporal order relations
distance measurement is presented in section Ill. Theover time-elements including both time points and time
generality of the NDM is demonstrated in section IV by intervals, which can be classified into the following 4
means of showing other existing distance measurements agroups: _ .
special cases. Section V addresses the reification of the cost ® Relations that relate points to points:

functions with respect to the 3 temporal characters. {Equal, Before, After}

Experiments on reconstructed time-series data from UCI e Relations that relate points to intervals:

KDD Archive are conducted and the corresponding results {Before, After, Meets, Met_by, Starts, During.

are analysed in section VI. Section VII provides a brief Finishes}

summary and concludes the paper with the prosdects e Relations that relate intervals to points:

future work. {Before, After, Meets, Met_by, Started_by, Contains
Finished_by}

¢ Relations that relate intervals to intervals:
{Equal, Before, After, Meets, Met by, Overlaps,
Overlapped_by, Starts, Started_by, During, Contains
) ) L Finishes, Finished_by}
__In this section, we present the formal characterization of e definition of these derived temporal order relations
time-series and state-sequences. For the sake of allowing, iormg of the single relation Meets is straightforward. E.g.:
expression of both absolute time values and relative Before(t, b) < JteT(Meets(t, 1) A Meets(t, )
temporal relations, in this paper, time-elements are defined Based on su’cﬁ a time theory, 'a time-serigéca'n be

g?t%f?cﬂIg\(/)\;irr:t-t)fiaf?olrr]r:](asr\[lgls’ each of which must be in 0N§yeineq as a vector of time-elements temporally ordered one
9 after another [8]. Formally, a general time-series is defined

Il. FORMAL CHARACTERIZATION OF TIME-SERIES AND
STATE-SEQUENCES

(P, @) ={rlreRAp <r< q; in terms of the following schema:
[p,@)={r|reRap <r<q; GTS1) T=[ty, ..., t] = [<Pw, &>, ..., <P G>]
(p, a]={r|reRap <r<qj} GTS2) Mees(, t.1)vBefore(}, t.y), foralli=1, ..., n-1
[p,g]={r|reRAp <r<qg} GTS3) Tault) =g —p = d, for some i where 1<i<n.
In the above, R stands the set of real humbers, and real GTS4)Tgaft, ta1) = Pea — G = g for some i where 1< i <
numbers p and g are called the left-bound and right-bound n, and gis initialized as 0.

of time-element t, respectively. The absolute values as for Generally speaking, a time-series may be incomplete in

the left and/or right bounds of some time-elements might be, 51ious ways. For example, if the relation betweemd £,

unknown. In this case, real number variables are used foriS “Before” rather than “Meets”, it means that the

expressing relative relations to other time-elements (Seeknowledge about the time-element(s) betweeand ., is
later). If p = q, tis called a time point; otherwise it is called (ot gyailable. In addition, if Tt) = d is missing for some

a time interval. Without confusion, time-element [p, p] is j it means that duration knowledge as for time-elemeat t
taken as identical to point p. Also, if a time-element is not \;nknown.
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Correspondingly, a complete time-series is defined in where Dis, (A,B,) and Dis,(A,B,) denote the
terms of the schema as below:
GTS1) To=1[ty, ..., t] = [<Pw &>, -+ -, <Pn ]
GTS2) Meets(t t.q), foralli=1, ..., n-1.
GTS3) Tau{t)=g-p=d,fori=1,...,n. _
GTSH)Tgadti, te1) =pur— G =gfori=1,...,n-1; and g A Non-temporal Distance
=0

e . ) Non-temporal matching stands for the elemental state
The validation of data is usually dependent on time. For matching of the state-sequences @nd B, due to the fact
instance, $1000 (account balance) can be valid before anghat elemental state appearing in state-sequences are not
on 1 January 2003 but become invalid afterwards. We shallactyally ordered by their index, that is, the state-sequence is
use fluents to represent Boolean-valued, time-varying data.actyally regarded as a set of states. Therefore, in the first

non-temporal distance and temporal distance, respectively
with the corresponding weighte,andw,,.

and denote proposition “ﬂuent_ f holds true over time t” by place, pairing two given state-sequences involves a
formula Holds(f, t) (see details in [1]). _ combinational permutation problem. In general, fornm
Consequently, a state-sequengeisSdefined as a list of  there are™Pr, = min!/(m-n)! ways of pairing A with B
states together with its corresponding time-sefigs A Let Pr denote the set of all possible ordered vectors formed
general state-sequence is defined in terms ofdhensa as by selecting, in order, n random elemental states frggritA
below: seems reasonable to take the pairing which gives the
GTS1) S\=sp, ..., il minimal overall distance. Hence, in this paper, we shall
GTS2) Holds(g t), foralli=1,...,n define the non-temporal distance betwegrefd B, as:
where [t, ..., t)] = T, is a time-series. DiS,em( Ay B,)=min . Dis . (pr, B) (2)

Correspondingly, a state-sequence is defined as - - -
complete if and only if the corresponding time-series is Where dis _ (pr, Bn):\/zj:1 w,, dis ( pr, S /\/Zi:1 W,
complete [8]. pr=[pr or]

- Ioeees

1. NEW DISTANCE MEASUREMENT FORFORMAL B. Temporal Distance

STATE-SEQUENCEMATCHING Based on the triad representation of state-sequences, the

Based he ab h o i ees temporal distance between two given state-sequenges A
_ Based on the above characterization of time-seties, iy B with respect to the 3 temporal characters, that is,
triple domain U = XD XG is defined for state-sequences temporal order, temporal gap and temporal duration, is

where: ) _ _ _ defined recursively as below:

SCR" d-dimensional domain of non-temporal data DiSen(An1, Bn)+WesCOSY 3, —> ¢)
ordered in consequential (that is, “Meets or Before™) Disem( Am Bn):min{DistemgAm,BM§+WingCOSt - b) (3)
tempOI’al Ol’der; Dls{em A‘mly Bw1)+WsulfCOS1( an—> b”)

D, GCR: the domains of temporal duration and where m, n>= 1, Cos(a—>¢) , Cos(¢— h) and

temporal gap respectively. o _ Cosi( g — h)denote the cost function for edit operations
So the formal characterization of two given

state-sequences can be expressedias[Ay, ..., a,] and B, deletion, insertion and substitution, respectively, where
=[by, ...,b] € Uwhere Cosi(x—> Y= w- Cos( %> ¥i=(Tord Tdur Tgap ~ (4)
orizh..m J=b..n _ aNd(x— y) {(an — A, (4 >, (30— b}
3= d, g>< & D € and b =<5, d;, g >e S D G The initialization is set as below:
s =[%v--al ands; =[g,- & ] Dis, (A, B;)=0,
Holds(s,t ) and Holdsé;. t) Dis,,(A,B) =, for j=1 (5)
t=<p,qd> and t; =<p;,q >; Dis, (A, B,) ==, fori=1
d =T, (t)=q- pandd, =T, (t)=q - g’
fori=1,...m1, j=1,...,nL IV.  THE GENERALITY OFNDM

g :Tgap(t'utiﬁ) =Pa—dq andglj. :-[:gap(tlj'tlle) = p}l+1_ q
and g, =g, =0. NDM proposed here addresses all the 3 temporal
With respect to the non-temporal information and rich characters, including temporal order, duration and gap. In
temporal information for these two state-sequences, thefact, as illustrated in Table I, most of those existing
general distance measurement is defined as: measurements can be taken as special cases of NDM by
NDM(A ,B)=w_Dis (A B)+w DPis (A ,B) (1) means of specifying the non-temporal and temporal weights,
and the cost functions, correspondingy.B. For LCSS,
instead of taking the minimum value, the maximum value is

nter
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accumulated since it counts the number of common states ofvhere (x s y) e{(a, —>¢),(¢ —>b),(a.— B} and ¢ is a

two state-sequences instead of the cost of matching them.

TABLE I. MEASUREMENTS SUBSUMEFROMNMD

Measure Settings
ment
Wnlem = O’Wtem: 1 Vvdel :Vvins :Wsub: 1
ED V\4'ord :1'WTdur = WTgap: 0
Cost‘ord( &)= Co%rd@jx bn)=L,
Cost.q(a, = Cost( 2 §
Wnlem = O’Wtem: 1 Vvdel :Vvins :Wsub: 1
EDR V\4'ord :1'WTdur = WTgap: 0
Cost'ord( &)= Co%rd(!]ﬁy b:]-:
Cost,(a, b= Cost'(a §
Wmem = O’Wtem= 1 VVdel :Vvins :Wsubz 1
V\4'ord :1’ WTdur = WTgap: 0
DTW — —
COStora ( @n #) = COSto (4, B) = Cost,, (& R)
=CosP™(a, b)
Wntem = O’Wtem: 1 Vvdel :Vvins :Wsub: 1
V\lrord :1’ WTdur = WTgap: 0
ERP
CoStoa( @ d)= do( 0) +  COStoa(s, )= dp(a, B) |
Costoa(an D= do( & b
Wntem = O’Wtem: 1 Vvdel :Vvins = O’Wsub: 1
LCSS V\4'ord =1’WTdur = WTgap= O
COS%M( aﬂr¢) = COS‘M(% D:O’
Costug(a B)= Cosf( A b
Wmem = O’W(em: 1 Vvdel :Vvins :Wsub: 1
V\ll'ord :l' WTdur = O’WTgaP: v
TWED Cos(&,4)= Costi®( & Au)+ v CO¥E°( v na)+4
Cos{(¢, )= Cosfis®( hu, B+ v CoBe>( b, p+1
Cos(a, k)= Coff°( @ H+ COo¥E°( .2 D+
V- (CoSfE2(3,, ) +COSELER( 3.1, b))
V. COSTFUNCTION REIFICATION
With regards to the cost function,

constant usually set either as O (to filter out the noise), or as
the current maximum cost (to release the influence of the
noise).

The main difference among the three typical
real-penalty-style distance measurements ERP, DTW and
TWED is: when insertion (or deletion) is required to align
state-sequencegfand B, ERP inserts a constant (usually 0)
into A, while DTW duplicates the previous state ip And
TWED duplicates the previous state ip B terms of the
graphical editor paradigml{]. These different disposals
will lead to different costs for operation insertjateletion
and substitution. We shall follow the approach of EDR and
use weightgy, W andw,, to adjust the corresponding
operations. In fact, the cost functions of NDM are defined as
below:

dist,(0,5) ifs=¢

COStoa(a—> b)=1 dist(50) it =g 0
dist,(s, 3) else
dist,,(0,d;) ifd =0 8
Costy, (a—> Bh)=1dist,( ¢0) ifd =0 (8)
dist, (di, d)) else
dist, (0, gj4) ifgis=0
COSteap(@—> ) =4 distip(G1,0) if G4 =0 ©)

disty, (g1, g1) €lse
Formulae (2), and (6)-(9) accommodaterstemporal
and all the 3 temporal distances, as well as the cost function,
which illustrates the integrity and generality of NDM.

VI. EXPERIMENTAL RESULTS

A Experiment set up

The NDM has been testath Synthetic Control Chart
Time Series in UCI KDD Archive. The database consists of
600 state-sequences with length of 60 for each, including 6
different classes (100 samples each). Several pats are
reconstructed: Original Query Set (OQS): consistsl&d
(the first 30 state-sequences from each class)
state-sequences; Shortened Query Set (SQS): each
state-sequence is with length of 60 by deleting o*60
states evenly (EV), from the beginning (FB) and from the

distance end (FE) of the corresponding state-sequence in OQS;

measurements for state-sequence matching can be groupgdngthened Query Set (LQS): each state-sequence is with

into

measurements such as LCSS, ED and EDR,
real-penalty-style distance measurements such asERN,

two  categories:  binary-value-style

distance |ength of (1+)*60 by insertingB*60 states evenly (EV),
andfrom the beginning (FB) and from the end (FE) inte th

corresponding state-sequence in OQS; Noised Query Set

outperform the former but are much more sensitivedise.

Gaussian noise to each state-sequence in OQS. We shall

To filter out the noise or release its influence, the cost simply take Wem= Wem= 1 in the following experiments.
function in NDM is defined as below:
For i={Tora Taun Tgap}

else

Cos{ x> »z{ZW.-Cost( x>y ifCost( x> y<o& (6)

B. Comparison with Binary-value-style Measurements

As a real-penalty-style distance measurement, we firstly
compare its performance with binary-value-style
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measurements EDR and LCSS with the setting in Table I.of each subfigure ifrig. 2, which statistically lists the digital

The retrieval experiment is implemented with threshold values for the corresponding subfiguregig. 2.

varying from {0.1, 0.2, ..., 0.9} for each measurement and

the one which leads to the best performance has beenD. Capability to Handle Temporal Difference

chosen as the optimal threshold. Table Il shows the sarget . )

recall and precision on different query sets defined above, . We construct different temporal duration and gap

where the average of thesoéts on o, B<{0.1, 0.2, 0.3, 0.4, d!stnbutlon 'for_eac.:h class. Fig. 3 shows the examples_of 6

0.5} is calculated. Generally speaking, NDM is more robust different - distributions of duration and corresponding

and outperforms EDR and LCSS, benefited from its temporal gap. We Setﬂ‘_’f{’: 13andzsele£:t the best result for

real-penalty-style. Wiy and Weq, from {10 10°, 10% 107, 1, 16, 10, 10,
10%. Table IV shows the classification error number for

TABLE II. RECALL AND PRECISIONCOMPARISON OFEDR,LCSS each class with different combinations of distance

AND NDM WITH DIFFERENTQUERY DATA SET characters. From which we can see the NDM can tackle

most matching tasks involving in time-series and

Pald ns SQS LOS state-sequence data, especially with different temporal
Measure £ EV FB FE | EV | FB FE

matching requirements.
EDR | 0.76 | 0.52 | 0.64 | 0.62 | 0.76 | 0.68| 0.76 .

Re]ca' LCSS| 0.84 | 068 | 0.8 | 0.74| 060| 0.74| 0.72
NDM | 0.90 | 0.86 | 0.80 | 0.74 | 0.74 | 0.83 | 0.84
|EDR | 0.96 | 0.76 | 0.76 | 0.88 | 0.76 | 0.88 | 0.84

Pre-ci

LCSS| 095 | 0.76 | 0.85| 0.64 | 0.64| 0.88 | 0.98
NDM | 099 | 0.83 | 0.88 | 0.85| 0.85| 0.88| 0.97

sion

Figure 3 Examples of temporal duration and temporal gap
distribution

TABLE IV. CLASSIFICATION ERRORNUMBER OFEACH CLASS
WITH DIFFERENTCOMBINATIONS OF DISTANCE CHARACTERS

precision
precision

Data 008 SOS LOS
Characters EV FB FE | EV | FB | FE
ToratTgap 1 3 5 4 3 3 4
Tora +Tdur 2 4 6 3 4 3 2
ToratTgaptTaur 1 4 5 5 3 4 3

precision
precision

VIlI. CONCLUSION AND FUTURE WORK

variance 0 0 ““Mean
In this paper, a new distance measurement (NDM),
Figure2  Precision of NQS against mean and variance which takes into account of both non-temporal and temporal
characters, has been introduced for subsequence matching.
TABLE Ill.  STATISTIC OF THE PRECISIONOFNQS Benefiting from a formal characterization of time-series and
state-sequences, this measurement is able to deal with
Moth ERP DTW TWED NDM temporal order, t_emporal d_urgition and temporal gap. In
Statistic particular, when it is specialised as a real-penalty-style
Mean (%) 64.98 7572 78.80 85.59 distance measurement, it can deduce the influence of noise
STD 01172 0.0841 00971 | 00583 by means of using inequality filter to filter out the noise.
In order to be applied on large scale database, it’s very
C. Comparison with Real-penalty-style Measurements important to adopt proper pruning strategies, which remain

the future work to be conducted.
Comparing with real-penalty-style measurements such
as ERP, DTW, TWED, the main advantage of NDM is that

it’s not sensitive to noise. Fig. 2 shows the results on NQS VIIl. - REFERENCES
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