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ABSTRACT 

Time-series and state-sequences are ubiquitous patterns in temporal logic and are 

widely used to present temporal data in data mining. Generally speaking, there are three 

known choices for the time primitive: points, intervals, points and intervals. In this 

thesis, a formal characterization of time-series and state-sequences is presented for both 

complete and incomplete situations, where a state-sequence is defined as a list of 

sequential data validated on the corresponding time-series. In addition, subsequence 

matching is addressed to associate the state-sequences, where both non-temporal 

aspects as well as rich temporal aspects including temporal order, temporal duration 

and temporal gap should be taken into account.  

Firstly, based on the typed point based time-elements and time-series, a formal 

characterization of time-series and state-sequences is introduced for both complete and 

incomplete situations, where a state-sequence is defined as a list of sequential data 

validated on the corresponding time-series. A time-series is formalized as a tetrad (T, R, 

Tdur, Tgap), which denotes: the temporal order of time-elements; the temporal relationship 

between time-elements; the temporal duration of each time-element and the temporal gap 

between each adjacent pair of time-elements respectively.  

Secondly, benefiting from the formal characterization of time-series and 

state-sequences, a general similarity measurement (GSM) that takes into account both 

non-temporal and rich temporal information, including temporal order as well as temporal 

duration and temporal gap, is introduced for subsequence matching. This measurement is 

general enough to subsume most of the popular existing measurements as special cases. In 

particular, a new conception of temporal common subsequence is proposed. Furthermore, 

a new LCS-based algorithm named Optimal Temporal Common Subsequence (OTCS), 

which takes into account rich temporal information, is designed. The experimental results 

on 6 benchmark datasets demonstrate the effectiveness and robustness of GSM and its 

new case OTCS. Compared with binary-value distance measurements, GSM can 
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distinguish between the distance caused by different states in the same operation; 

compared with the real-penalty distance measurements, it can filter out the noise that may 

push the similarity into abnormal levels. 

Finally, two case studies are investigated for temporal pattern recognition: 

basketball zone-defence detection and video copy detection.  

In the case of basketball zone-defence detection, the computational technique and 

algorithm for detecting zone-defence patterns from basketball videos is introduced, 

where the Laplacian Matrix-based algorithm is extended to take into account the effects 

from zoom and single defender‘s translation in zone-defence graph matching and a set 

of character-angle based features was proposed to describe the zone-defence graph. The 

experimental results show that the approach explored is useful in helping the coach of 

the defensive side check whether the players are keeping to the correct zone-defence 

strategy, as well as detecting the strategy of the opponent side. It can describe the 

structure relationship between defender-lines for basketball zone-defence, and has a 

robust performance in both simulation and real-life applications, especially when 

disturbances exist. 

In the case of video copy detection, a framework for subsequence matching is 

introduced. A hybrid similarity framework addressing both non-temporal and temporal 

relationships between state-sequences, represented by bipartite graphs, is proposed. The 

experimental results using real-life video databases demonstrated that the proposed 

similarity framework is robust to states alignment with different numbers and different 

values, and various reordering including inversion and crossover. 
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CHAPTER 1. INTRODUCTION  

Section 1.1 The Motivation: Temporal Pattern Recognition  

A term temporal pattern can be defined as a collection of states (events) that exist 

along some timeline. For instance, a temporal pattern could be a sequence of actions 

comprising of eating, walking, taking a shower and then going to sleep. 

Temporal pattern recognition is the process of matching two temporal patterns 

with respect to the temporal properties. 

Section 1.1.1 Characterization of Time-series and State-sequences 

The notion of time is ubiquitous and vital in modelling natural phenomena and 

human activities. Time-series and state-sequences are important patterns in data mining 

and have attracted a lot of interest among researchers [BC1996, DGM1997, FRM1994, 

KP1998, YJF1998]. 

However, in most of the proposed formalisms, the fundamental time theories on 

which time-series and state-sequences are based are not usually explicitly specified. 

Time-series and sequences are simply expressed as lists in the form of t1, t2, …. tn, or as 

sequences of collections of observations, and so on, where formal characterizations with 

respect to the temporal basis are neglected, leaving some critical issues unaddressed. For 

example: 

 What sort of objects do these t1, t2, … and tn belong to? In other words, are 

they time points, time intervals, or simply some absolute values from the set of real 

numbers or integers? 
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 What are the temporal order relationships between t1, t2, … and tn, and/or 

between the sequence of collections? Are they well-ordered according to ordinal 

number sequenes, or are they relatively ordered by means of relations such as 

―Before‖, ―Meets‖, ―During‖, and so on? 

 What are the associations between time-series/state-sequences and 

non-temporal data that represent various states of the world of discourse? 

Therefore, a formal characterization of time-series and state-sequences is 

required. 

Section 1.1.2 State-sequence Matching with Rich Temporal Aspects 

The typical temporal pattern recognition is actually the state-sequence 

matching problem. State-sequence matching can be divided into two categories: 

whole matching (matching the state-sequences with the same length) and 

subsequence matching (match the state-sequences with different length). Obviously, 

the whole matching problem is in fact a special case of subsequence matching, 

which has been widely researched for many years. In this thesis, without losing 

generality, subsequence matching is the focus for the state-sequence matching 

problem. One of the most active and essential research topics in state-sequence 

matching is the similarity measurement. For general treatment, a versatile 

similarity measurement should be able to deal with both non-temporal similarity 

and temporal similarity for any two given state-sequences, where: 

(1) Non-temporal similarity  denotes the similarity between those states 

appearing in two given state-sequences according to the collection of state 

elements in the sets, ignoring any temporal issues. For instance in figure 1.1, there 

is no temporal information in the two state-sequences A1 = {a, b, c, e, d} and A2 = 

{a, b, b, d, d, d, e, g}. The only similarity we can identify is that both of them 

contain the state {a, b, d, e}. 
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Figure 1.1  Non-temporal set in state-sequence 

(2) Temporal similarity  consists of 3 aspects: 

i. Temporal Order:  

 The temporal relation along the same time axis as shown in figure 1.2 

and figure 1.3 where the axis denotes the temporal order. This issue has 

been well dealt with in most existing subsequence matching algorithms 

built through dynamic programming.  

ii.  Temporal Duration:  

 The duration of each state. For instance, as shown in figure 1.2 where 

each column block denotes a single unit time interval, the two 

state-sequences, B1 and B2, have different temporal duration assignment 

functions Tdur1 = [1, 1, 1, 1] and Tdur2 = [1, 2, 3, 4] , respectively. 

 The overall duration of continuous duplications of states. For instance, 

as shown in figure 1.2, for state-sequences B1 and B3,  the common 

subsequence ‗abcd‘ has different overall durations, Tdur1 = [1, 1, 1, 1] 

and Tdur3 = [2, 3, 4, 3], even if the duration of each unit state is identical 

to 1. This is because of the duplications of those unit states. 

 

 B3 

a 

b 

c 

d 

Tdur3 

 B2 

3 4 2 

Tdur2 4 3 2 1 

B1 

Tdur11 1    1 1 1 

3 

Figure 1.2  Various Temporal Durations in State-sequences 
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iii.   Temporal Gap:  

 The time element between two adjacent states as shown in figure 1.3. 

For the state-sequence ‗abcd‘, C1 and C2, C3 have different temporal gap 

values between ab, bc and cd, with Tgap1 = [2, 2, 2], Tgap2 = [1, 2, 3] and 

Tgap3 = [1, 1, 3] respectively. 

          

 

Therefore, a general similarity measurement that takes into account both the 

non-temporal aspects and the rich temporal aspects is required. 

Section 1.1.3 Similarity Measurement for State-sequence Matching 

Plenty of similarity measurements have been developed in past decades. On one 

hand, from the point of view of similarity strategy, subsequence matching can be 

classified into two categories:  

 Edit Distance-based measurements: match the state-sequences with least 

operations. Edit Distance (ED) [Lev1965] (also known as Levenshtein 

Distance) is an innovative distance measurement that has been widely and 

actively investigated and extended upon by many researchers. ED measures 

the distance between two state-sequences according to the number of 

operations (such as insertion, deletion and substitution) required to transform 

one state-sequence to the other. What follows are some representatives: 

[WF1973] developed an efficient ED with O(mn) time complexity by 

C3 

1 

Tgap1  2  2 2 
C2 

1 1 
Tgap3 

Tgap2 

1 

1 2 3 

3 

a 

b 

c 

d 

C1 

Figure 1.3  Various Temporal gap in state-sequences 
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employing dynamic programming algorithm [Bel1957]. Dynamic Time 

Warping (DTW) [SC1978] allowed time warping such as stretching and 

shrinking by duplicating the previous state during matching, and was followed 

by variants such as PDTW [SC1978], SPRING method [SFY2007] and 

EDTW [APPK2008], and so on. [CN2004] developed the Edit Distance on 

Real Sequence (EDR). Subsequently, [COO2005] developed the Edit distance 

with Real Penalty (ERP), which takes the real penalty as the cost of each 

operation. Distinguishing from DTW, it adds a gap instead of duplicating the 

previous state while aligning two state-sequences.  [MM2008a] extended ED 

(EDD) to take into account the different costs for different states in the 

operation and subsequently developed its Multi-Resolution for EDD (MREDD) 

in [MM2008b]. They distinguish the different unmatched states by adding a 

frequency function to the basic ED. Highlighting that none of the above 

measurements takes into account Temporal Gap difference during matching, 

[Mar2008] produced an elastic measurement, named Time-Warped Edit 

Distance (TWED), which takes into account the Temporal Gap difference in 

terms of the temporal index of states.  

 LCS-based measurements: match the state-sequence according to the presence 

of common subsequences. The most successful measurement is the longest 

common subsequences (LCSS) [DGM1997]. The basic idea is to find the 

longest common sequence in all the sequences along the same temporal order. 

Several algorithms based on the original LCS have been proposed. Some 

representative variants of these are: Time-warped LCS (T-WLCS) [GS2004], 

which counts continuously duplicated common states in the spirit of the 

Dynamic Time Warping (DTW) [SC1978] algorithm; Compacted LCS (CLCS) 

[KC2005], where only the common subsequence, the continuous length of 

which is longer than the specified threshold, (th) is counted; All Common 

Subsequence (ACS) [Wan2007] which measures the similarity by means of 

counting the number of all common subsequences (including empty string in 
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actual algorithm) and taking the strategy that the more common subsequences 

a pair of state-sequences have, the more similar they are. 

However, most of these existing similarity measurements characterize temporal 

similarity in terms of only the temporal order over the state-sequences, whilst other 

important temporal characters such as the temporal duration of each state itself and the 

temporal gap between two adjacent states have been neglected. The only noted 

exception is TWED, which addresses temporal gap similarity in terms of the simple 

temporal index of states, whilst temporal duration of states is not dealt with at all. 

According to the formal theory of time-series and state-sequences, a general matching 

measurement should take into account all of the temporal aspects illustrated above. All 

the existing measurements can be regarded as special cases of a General Similarity 

Measurement. Therefore, designing a general similarity measurement for 

state-sequence matching is a vital and attractive focus of my research. 

On the other hand, with respect the ways in which the cost function is specified, 

similarity measurements can be classified into two alternative categories: (a) 

binary-value distance models, where the cost functions take binary value (0/1) as 

matching cost that is not sensitive to noise since they treat the noise and unmatched 

states with the same cost (1) and (b) real-penalty distance models, in which the cost 

functions take real difference as matching cost. Generally speaking, binary-value 

models are more robust since they are not sensitive to the outliers and noise but the 

real-penalty models are more rational since, in comparing with the logic binary values 0 

and 1, the real distance refines the distance. The real-penalty distance models 

demonstrably outperform binary-value distance models. However, real-penalty distance 

models are much more sensitive to noise since the real difference between noise and 

non-noise states may push the overall distance to an abnormal degree.  

For instance, take two state-sequences [a1, a2, c0, b1] and [a3, a4, b0, b4], as shown 

in figure 1.4, and suppose the distance between a0, a9, b0, b9, c0, c9 is 10 sequentially, 

whilst two states are matched if they start with the same character (i.e. a1 matches a3). 



CHAPTER 1 INTRODUCTION 

7 

The matching cost during the two state-sequences can be calculated as 0 + 0 + 1 + 0 = 1, 

whilst in binary-value measurements it is calculated as 2 + 2 + 10 + 3 = 17. If we keep 

the characters the same and change the subscription of any state (s) in S2, the matching 

cost will remain the same for binary-value measurements. This means the 

state-sequences with different subscriptions will not be distinguished in binary-value 

measurements, whilst real-penalty measurements will generate different matching costs. 

For example, the matching cost between [a1, a2, c0, b1] and [a0, a3, b0, b2] is 13, which 

is smaller than that between [a1, a2, c0, b1] and [a3, a4, b0, b4]. However, if noise exists 

(change b0 into $ which is 100 units away from c9), the matching cost in binary-value 

measurements remains 1, whilst it becomes 117 in real-penalty measurements. 

0   2

a1 a2 c0 b1

a3 a4 b0 b4

0   2 0   31   10

$

S1

S2

  a0    a9    b0    b9      c0    c9                  $  

10 10 100

 

Figure 1.4  Temporal differences between two example state-sequences with 

binary-value model and real-penalty model 

Therefore, the similarity measurement should be as reasonable as real-penalty 

measurements and also robust in the face of the noise. 

Section 1.2 Objective: A General State-Based Framework for 

Temporal Pattern Recognition 

This thesis aims to achieve the following tightly associated research goals: 

1). A formal characterization of time-series and state-sequence: based on the 

typed point-based intervals, a formal characterization of time-series and 

state-sequence is required to describe the objects of time elements and states, 

the temporal relationships between them and the associations between 
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time-series/sequences and non-temporal data. 

2). A general similarity measurement for subsequence matching: based on the 

formal characterization of time-series and state-sequence, it is necessary to 

design a general similarity measurement (GSM) to take into account both 

non-temporal and rich temporal aspects. The measurement should be able to 

tackle temporal order, temporal duration and temporal gap, and also be 

versatile enough to subsume most of the existing representative similarity 

measurements as special cases.  

3). Investigation of basketball zone-defence detection: as a case study of temporal 

pattern recognition, the basketball zone-defence detection will be investigated 

to explore the structural relationship between the defenders.   

4). Investigation of video copy detection: as will be demonstrated in another case 

study of temporal pattern recognition, it is important to design a model that is 

robust when faced with the re-ordering editing and noise which is ubiquitous 

in video clips. Furthermore, it is also necessary to design an accurate 

measurement to distinguish the possible video clips with identical similarity to 

the query video clip. 

Section 1.3 Outline of the Main Contributions 

In order to meet the goals outlined above, the following work has been carried out: 

1). Based on the typed point based time-elements and time-series, a formal 

characterization of time-series and state-sequences was consummated with 

respect to the three temporal aspects including temporal order, temporal 

duration and temporal gap. 

2). Based on the formal characterization of time-series and state-sequence, a 

general similarity measurement tackling both non-temporal and rich temporal 
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similarity was designed for state-sequence matching. It is versatile enough to 

subsume most of the existing representative similarity measurements. 

Experimental results on 6 benchmark datasets demonstrate that GSM can 

tackle the most general problems in matching time-series data with rich 

temporal information. In particular, a new LCS-based similarity measurement 

named the Optimal Temporal Common Subsequence (OTCS) has been 

proposed, where a new concept of common subsequence named ‗temporal 

common subsequence‘ is proposed to describe the rich temporal similarity. In 

addition, it can release non-uniqueness problems and abnormal output 

problems in conventional LCS-based similarity measurement. 

3). As a case-study of temporal pattern recognition, a system to detect the 

zone-defence strategy in basketball videos was investigated, where the 

detecting task was transferred into graph matching problem. An improved 

Laplacian Matrix-based graph matching algorithm was designed for basketball 

zone-defence detection. Meanwhile, due to the computational complexity of 

graph matching algorithms, an efficient feature descriptor, named 

Character-Angle based feature descriptor, was designed for zone-defence 

graphs.   

4). As another case of temporal pattern recognition, a hybrid state-sequence 

matching framework was designed for video copy detection, where both the 

non-temporal and temporal similarities were taken into account. The 

non-temporal similarity was defined in the form of Euclidean distance whilst 

the temporal similarity was constructed with temporal order similarity, 

temporal alignment similarity and temporal concentration similarity. 

Section 1.4 Thesis Structure 

The rest of this thesis is organized as follow: 
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Chapter 2 is a comprehensive review of the representations of time-series and 

state-sequence as well as the popular existing measurements for state-sequence 

matching based on the typed point based time-elements and time-series. A formal 

characterizations of time-series and state-sequences in introduced for both complete and 

incomplete situations, where a state-sequence is defined as a list of sequential data 

validated on the corresponding time-series. While a state-sequence is formalized as the 

triple domain U = S × D × G, where: S ؿ Rd denotes d-dimensional domain of 

non-temporal data ordered in consequential (that is, ―Meets or Before‖) temporal order 

and D, G ؿ R denote the domains of temporal duration and temporal gap respectively. In 

addition, the framework of the general similarity measurement is addressed to associate 

state-sequence matching, where both the non-temporal aspects and temporal aspects 

including temporal order, temporal duration and temporal gap should be taken into 

account. 

In chapter 3, based on the general similarity measurement, a new conception of 

temporal common subsequence is first proposed, and then a new LCS-based algorithm 

named Optimal Temporal Common Subsequence (OTCS) that takes into account rich 

temporal information (including temporal order, temporal duration and temporal gap) 

between state-sequences is finally designed and tested on news video retrieval. The 

experimental results demonstrate the effectiveness and robustness of the new algorithm. 

In chapter 4, a general similarity measurement (GSM), which takes into account both 

non-temporal and rich temporal information, including temporal order, as well as temporal 

gap and duration, is introduced for subsequence matching. Benefitting from a formal 

characterization of time-series and state-sequences, this measurement is general enough to 

subsume most of the popular existing measurements as special cases. In particular, 

compared with the binary-value similarity measurements, the GSM can distinguish the 

difference caused by various states in the same operation, whilst, compared with the 

real-penalty similarity measurements, it can also filter out the noise which may lead the 

similarity into a abnormal level. 
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In chapter 5, the basketball zone-defence detection is investigated as a case study 

of temporal pattern recognition. The Laplacian Matrix-based algorithm is extended to 

take account of the effects from zoom and single defender‘s translation in zone-defence 

graph matching. Furthermore, a set of character-angle based features are proposed to 

describe the structure relationship between defender-lines in the zone-defence graphs. 

Experimental results demonstrate the robust performance in both simulation and 

real-life applications, especially when disturbance exists. 

In Chapter 6, video copy detection is investigated as another case study. A hybrid 

framework addressing both non-temporal and temporal relationships between 

state-sequences, which are represented by bipartite graphs, is proposed. The experimental 

results using real-life news video database demonstrate that the proposed similarity model 

is robust when faced with states alignment with different numbers and different values, 

and various reordering including inversion and crossover. 

Finally, a summary of conclusion and recommendations for future work is 

presented in chapter 7. 

There are also six appendices for this thesis. These are six of my published papers 

tightly associated with this research.
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CHAPTER 2. LITERATURE REVIEW  

Focusing on the two objectives of this thesis, a detailed review of related works 

will be presented in this chapter. First, we shall elaborate on the evolution of 

representations of primitive time and time-series, followed by the conventional existing 

measurements for state-sequence matching.  

Section 2.1 The ontology of primitive time  

There has been a longstanding debate in the literature on the issue of which sorts 

of objects should be taken as the time primitive. Commonsense, on one the hand, 

denotes that points are needed for both theoretical and practical modelling of temporal 

phenomena. For instance, it is intuitive and convenient to associate punctual events, 

such as ―The database was updated at 0:00 midnight‖ etc., with instantaneous points 

rather than durative intervals. On the other hand, intervals also seem to be needed for 

representing temporal phenomena that take up time with positive duration, e.g., ―He ran 

γ hours yesterday morning‖. 

Generally speaking, there are three known objects that may be taken as the time 

primitive: 

 points, i.e., instants of time with no duration; 

 intervals, i.e., periods of time with positive duration; 

 both points and intervals 

Section 2.1.1 Point-based Time Structure 

The so-called point-based time structure was first proposed by Bruce [Bru1972]: a 

typical time structure based on points only as primitive is an ordering (P, ), where P is 

a set of points, and  is a relation that (partially or totally) orders P. In point-based 



CHAPTER 2. LITERATURE REVIEW 

13 

systems, intervals may be defined as derived temporal objects, either as sets of points 

[DGM1997], or as ordered pairs of points [Gal1990, S1987, YJF1998].  

Problems 

Point-based time structure provides an efficient indexing method for temporal 

systems, but may suffer from the requirement that precise time values for all temporal 

data need to be available. Generally speaking, in many AI systems, temporal 

knowledge can be uncertain and incomplete. For instance, we may only know that 

event A happened before event B, without knowing their precise starting and finishing 

time, or what happened between them. Incomplete relative temporal knowledge such as 

this is typically derived from humans, where complete and absolute temporal 

information is rarely available and remembered for knowledge representation and 

reasoning. 

It has been argued by some researchers that defining intervals as objects derived 

from points may lead to the so-called Dividing Instant Problem [AH1989, Bru1972, 

Lad1987], which is in fact an ancient historical puzzle encountered when attempting to 

represent what happens at the boundary point that divides two successive intervals. For 

instance, consider the fire example cited in [Ben1983]: 

A fire that had been burning was later burnt out. 

Intuitively, we can assume the two states, i.e., ―The fire was burning‖ and ―The fire 

was not burning‖ hold true throughout two successive point-based intervals, say <p1, 

p> and <p, p2>, respectively. The question then becomes: ―Was the fire burning or not 

burning at point p?‖ This, in terms of the open or closed nature of the involved 

point-based intervals, turns out to be the question of which of the two successive 

intervals, i.e., <p1, p> and <p, p2>, is closed/open at the dividing point p? Virtually, 

there are four possible cases: 

(a) The fire was burning rather than not burning at p; 
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(b) The fire was not burning rather than burning at p; 

(c) The fire was both burning and not burning at p; 

(d) The fire was neither burning nor was it not burning at p. 

While both (c) and (d) are absurd, since they violate the Law of Contradiction and 

the Law of Excluded Third [Ben1983] respectively, the choice between (a) and (b) must 

be arbitrary and artificial. In fact, since we have no better reason, from the point of 

view of philosophy, for saying that the fire was burning than for saying that it was not 

burning at the dividing-instant, such an arbitrary approach has been criticized as 

unjustifiable and hence unsatisfactory [Ben1983, All1984, Gal1990, Vil1994]. 

Section 2.1.2 Interval-based Time Structure 

The point-based structure of time has been challenged by many researchers who 

believe that time intervals are more suited for representing commonsense temporal 

knowledge, notably in the domain of linguistics and artificial intelligence. It is argued 

that intervals should be taken as the temporal primitive, where points may be 

constructed with a subsidiary status, e.g., as ―maximal nests" of intervals that share a 

common intersection, or as "meeting places" of intervals [Bee1992, BC1996, Lad1987, 

Vil1994]. For instance, Allen‘s temporal theory [All1984, AH1989] is a representative 

example of the interval-based approach, which posits a set of intervals as the primitive 

temporal entities. Over the time intervals, Allen introduces thirteen temporal relations, 

including ―Equal‖, ―Before‖, ―After‖, ―Meets‖, ―Met-by‖, ―Overlaps‖, 

―Overlapped-by‖, ―Starts‖, ―Starts-by‖, ―During‖, ―Contains‖, ―Finishes‖ and 

―Finished-by‖, which can be derived from the single immediate predecessor relation 

―Meets‖ [BC1996]. 

As Allen claims in his paper [All1984], the interval-based approach avoids the 

annoying question of whether or not a given point is part of, or a member of a given 

interval, and therefore can successfully overcome/bypass puzzles such as the Dividing 
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Instant Problem. Allen's contention is that nothing can be true at a point, for a point is 

not an entity at which things happen or are true. However, as Galton [Gal1990] shows 

in his critical examination of Allen's interval logic [All1984], a theory of time based 

only on intervals is inadequate for reasoning correctly about continuous change. 

Furthermore, instantaneous phenomena do exist in the real world and therefore make 

points necessary for general temporal reference. For instance, consider the following 

scenario: 

A ball was thrown into the air from the east to the west. 

By common sense, the state that the ball was at the east of and below its apex was 

immediately followed by the state that the ball was at its apex, and which, in turn, was 

immediately followed by the state that the ball was at the west of and below the apex. 

Also, the time by which the ball was at its apex – neither at the east of the apex nor at 

the west of the apex, should be a point with zero duration, rather than any interval or 

moment [AH1989], no matter how small it might be. In fact, during the process of the 

motion of the ball, the velocity of the ball became zero only at the time point when the 

ball was at its apex. 

Problems 

The interval-based time structure was proposed based on Allen‘s interval theory. 

However, it has been argued in [Gal1990] that Allen‘s interval theory lacks clarity in 

semantics and completeness. In addition, the corresponding matching algorithm 

proposed in [JAS2002] lacks in theoretical foundation. Therefore, a new matching 

algorithm that still uses the interval-based time structure is required. 

Section 2.1.3 Point and Interval-based Time Structure 

For the sake of general treatments, we shall take the time theory proposed 

previously in [MK1994] as the temporal basis, in which both points and intervals are 
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addressed as temporal primitives on an equal footing: points do not have to be defined 

as limits of intervals and intervals do not have to be constructed out of points. 

 The time theory, T, takes a nonempty sort, T, of primitive time elements, with a 

primitive order relation ‗Meets‘ over time elements, and a function ‗Dur‘ from time 

elements to non-negative real numbers. The basic set of axioms concerning the triad (T, 

Meets, Dur) is given as below: 

 (A1). t1,t2,t3,t4(Meets(t1, t2)  Meets(t1, t3)  Meets(t4, t2)  Meets(t4, t3)) 

That is, if a time element meets two other time elements, then any time element that 

meets one of these two must also meet the other. This axiom is actually based on the 

intuition that the ―place‖ where two time elements meet is unique and closely associated 

with the time elements [AH1989]. 

 (A2). tt1,t2(Meets(t1, t)  Meets(t, t2)) 

That is, each time element has at least one immediate predecessor, as well as at least 

one immediate successor. 

 (A3).t1,t2,t3,t4(Meets(t1, t2)  Meets(t3, t4)  

 Meets(t1, t4)  t'(Meets(t1, t')  Meets(t', t4))  t''(Meets(t3, t'')  Meets(t'', t2))) 

where  stands for ―exclusive OR‖. That is, any two meeting places are either identical 

or there is at least a time element standing between the two meeting places if they are not 

identical. 

 (A4).t1,t2,t3,t4(Meets(t3, t1)  Meets(t1, t4)  Meets(t3, t2)  Meets(t2, t4))  t1 = t2) 

That is, the time element between any two meeting places is unique. 

 N.B. In this thesis, for any two adjacent time elements, that is to say two time 

elements t1 and t2 such that Meets(t1, t2), we shall simply use t1  t2 to denote their ordered 
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union. The existence of such an ordered union of any two adjacent time elements is 

guaranteed by axioms A2 and A3, whilst its uniqueness is guaranteed by axiom A4. 

 (A5).t1,t2(Meets(t1, t2)  Dur(t1) > 0  Dur(t2) > 0) 

That is to say, time elements with zero duration cannot meet each other. 

 (A6).t1,t2(Meets(t1, t2)   Dur(t1  t2) = Dur(t1) + Dur(t2)) 

Thus, the ―ordered union‖ operation over time elements is consistent with the 

conventional ―addition‖ operation over the duration assignment function, i.e., ‗Dur‘.  

 N.B. In the time theory T introduced here, we adopt the following results of real 

number theory: 

(r1) The set of real numbers is totally ordered by the less-than-or-equal-to relation „≤‟, 

where „>„ is the „bigger than‖ relation, that is, not(≤). 

(r2) „+‟ is the conventional addition operator over (non-negative) real numbers. 

In terms of the ‗Meets‘ relation, other exclusive order relations over time elements 

can be derived as below: 

 Equal(t1, t2)  t‟,t‟‟(Meets(t‟, t1)  Meets(t‟, t2)  Meets(t1, t‟‟)  Meets(t2, t‟‟)) 

 Before(t1, t2)  t(Meets(t1, t)  Meets(t, t2)) 

 Overlaps(t1, t2)  t,t3,t4(t1 = t3  t  t2 = t  t4) 

 Starts(t1, t2)  t(t2 = t1  t) 

 During(t1, t2)  t3,t4(t2 = t3  t1  t4) 

 Finishes(t1, t2)  t(t2 = t  t1) 
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 After(t1, t2)  Before(t2, t1) 

 Overlapped-by(t1, t2)  Overlaps(t2, t1) 

 Started-by(t1, t2)  Starts(t2, t1) 

 Contains(t1, t2)  During(t2, t1) 

 Finished-by(t1, t2)  Finishes(t2, t1), 

 Met-by(t1, t2)  Meets(t2, t1) 

On one hand, the completeness of the 13 possible exclusive order relations (the 

above 12 plus Meets) between any two time elements can be simply characterized by a 

single axiom as below: 

 t1,t2(Equal(t1, t2)  Before(t1, t2)  After(t1, t2)  Meets(t1, t2)  Met-by(t1, t2) 

   Overlaps(t1, t2)  Overlapped-by(t1, t2)  Starts(t1, t2)  Started-by(t1, t2) 

   During(t1, t2)  Contains(t1, t2)  Finishes(t1, t2)  Finished-by(t1, t2)) 

On the other hand, the exclusiveness of these 13 order relations needs to be 

characterized by 78 axioms of the following form: 

  t1,t2(Relation1(t1, t2)  Relation2(t1, t2)) 

where Relation1 and Relation2 are two distinct relations from the above 13 relations. 

 N.B. In the above, 78 is the combinational number 2
13C  = 13!/2!11!. 

 For convenience of expression, we shall extend Allen‘s non-exclusive relation ‘In‗, 

which is defined for intervals alone [All1984], to accommodate both time intervals and 

points, and in addition, to introduce another temporal relation, ‘Part‗, as below: 
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  In(t1, t2)  Starts(t1, t2)  During(t1, t2)  Finishes(t1, t2) 

  Part(t1, t2)  Equal(t1, t2)  In(t1, t2) 

Problems 

The point & interval-based time structure seems to be general and efficient enough 

for temporal representation. However, the following two issues still exist and solving 

them is a motivation of this thesis.   

1) The fundamental temporal theory of the point & interval-based time 

structure is the temporal theory of Ma and Knight in [MK1994, MK1996]. 

However, only temporal order and temporal relationship is specified. The 

other temporal aspects such as temporal duration and temporal gap were 

neglected. 

2) Only the basic temporal representation is illustrated whilst the 

corresponding matching algorithm, especially with respect to the rich 

temporal aspects, is required. 

Section 2.2 The notion of time and time-series 

Data mining is the process of finding trends and patterns in data [Gro1999]. 

Generally speaking, data mining requires some historical knowledge about the internal 

temporal relationships of certain patterns such as those in Decision Support, Diagnosis 

and Explanation, Forecasting/Prediction, Planning/Scheduling, and History 

Reconstruction, etc. In particular, time-series and state-sequences are important patterns 

in data mining and have attracted the interest of many researchers [BC1996, DGM1997, 

FRM1994, KP1998, YJF1998]. 
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Section 2.2.1 The notion of time 

1) What is time?  

Even today we still cannot define ―time‖ as we define any real thing. We 

can measure time, yet do not know what time is, although we hang "time" on 

the wall or on the wrist. According to Einstein's theory of relativity, we know 

that time can be extended or shortened. That is why the physicists set the time 

simply as a sequence of events and mark them with time, such as the person's 

birthday or the shelf life of food. 

2) Is time like a river flow, or with intermittency as a replacement? 

Unfortunately, no theory or experiment has confirmed that time is flowing 

in a continuous manner or like every frame in a movie screen, giving a 

continuous picture of intermittency. Research on the continuity and the 

intermittency of time is ubiquitous and vital in modelling natural phenomena 

and human activities. 

Now we are back to the "continuity" of time. The strange thing is that it 

can approach a continuous or intermittent flow, yet the smallest calculable time 

interval is the same as "Planck time". In short, time is a continuous tape, and 

physicists regard it as an interlocking, non-continuous necklace.  

3) For everyone, is time passing in the same way? 

Einstein's theory suggests that the answer is no. In fact, the same as space, 

time is also relative. What does ―relative‖ mean in this context? That is, in order 

to completely and unambiguously describe an event, this event should be placed 

in a reference system. For example, if I meet someone at the end of the road, 

then the "end" might just be the beginning of another person‘s road. If I add "at 

the end of the road behind the plaza," then the event "meet" is accurate. If I said 
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10 years later, then I must point out to which reference system 10 years has 

passed. Obviously, in everyday life there is no need to be detailed. However, 

detail is vital in time-series analysis. 

Section 2.2.2 The notion of time-series and state-sequence 

A time-series is a chronological series of observations made. In accordance with 

different phenomena or problems studied, one can obtain all kinds of time-series. For 

example, some economists observe fluctuations in the price index; a meteorologist 

studies the rainfall in some location and electrical engineers study electronic receiver's 

internal noise. All of them will observe a string of data measured by some unit of 

measurement. The natural order is the chronological order of appearance of data in the 

time-series. The typical essential characteristic of time-series is the dependency 

between adjacent observations. This dependence has great practical significance. 

Time-series analysis is addressed in the techniques of this dependence analysis. The 

new method of prediction of time-series data not only provides a effective prediction 

method for time-series data produced from for example the national economy, 

agriculture, biology, meteorology, hydrology and other fields, but also enables 

researchers to exercise math skills and programming techniques. 

Broadly speaking, a state is the way something is with respect to its main attributes. 

A state-sequence is defined as a list of states together with corresponding time-series. 

In order to analyze time-series and state-sequences, formalism is required. 

However, in most proposed formalisms, the fundamental time theories upon which 

time-series and state-sequences are built up are usually not explicitly specified. 

Time-series and sequences are simply expressed as lists in the form of t1, t2, …. tn, or as 

sequences of collection of observations, and so on, where formal characterizations with 

respect to the temporal basis are neglected, leaving some critical issues unaddressed. For 

example: 
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 What sorts of objects are t1, t2 …and tn? In other word, what sorts of objects 

should be taken as the time primitive? Are they time points, time intervals, or simply 

some absolute values from the real numbers, integers, or the clock? 

 What are the temporal order relationships between t1, t2…and tn, and/or 

between the sequence of collections? Are they simply well-ordered as according to 

natural numbers, or might they be relatively ordered by means of relations such as 

―Before‖, ―Meets‖, ―During‖, and so on? 

 What are the associations between time-series/state-sequences and 

non-temporal data that represent various states of the world in discourse? 

Section 2.3 LCS-Based Subsequence Matching  

The Longest Common Subsequence (LCS) is a typical similarity measurement for 

subsequence matching. Recently, a group of LCS-like measurements were proposed for 

subsequence matching. Given two state-sequences X = [x1, …, xm] and Y = [y1, …, yn], 

several algorithms based on the original LCS have been proposed to match these two 

state-sequences. Some representative variants of these are: (i) Compacted LCS (CLCS) 

[KC2005] where only the common subsequences, the continuous length of which is 

longer than the specified threshold (th), is counted; (ii) All Common Subsequence 

(ACS) [Wan2007] which measures the similarity by means of counting the number of 

all common subsequences (including empty strings) and taking the strategy that the 

more common subsequences a pair of state-sequences have, the more similar they are; 

and (iii) Time-Warped LCS (T-WLCS) [GS2004], which counts continuously 

duplicated common states in the spirit of the Dynamic Time Warping (DTW) [SC1978] 

algorithm. Each of these is discussed in further detail in the following four 

sub-sections. 

Section 2.3.1 Original Longest Common Subsequence (LCS)  

The basic idea of the original LCS algorithm [BHR2000] is to find the longest 
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subsequence common to two state-sequences (X and Y) along the same temporal order. 

Then the length of the common subsequence is counted as the similarity between the 

two given state-sequences. We shall now explain the solution of LCS in what follows. 

Suppose the current state pair is xi and yj, a table with size of (m+1) × (n+1) is 

designed to store the process of LCS computation. An empty state is added in front of 

each state-sequence. The procedure of finding the longest common subsequence can be 

illustrated by the following 3 rules: 

1) Setup rule: i = 0 or j = 0 

In this case, we are comparing the empty state with another state-sequence. 

Obviously, the common state between an empty state-sequence and any state-sequence 

is the empty state as well. Therefore, LCS(X0, Yj) = LCS(Xi, Y0) = φ. 

2) Matching rule: x i = yj 

In this case, the two state-sequences match each other by ending in the same state. 

Shorten each state-sequence by removing states xi and yj from state-sequences X and Y 

respectively. The longest common subsequence would be the LCS of the shortened 

sequences appended by the removed state (xi or yj). In terms of prefixes: 

LCS(Xi, Yj) = (LCS( Xi-1, Yj-1);  xi) or (LCS( Xi-1, Yj-1);  yj)    (2-1) 

where Xi and Yj indicates the substring [x1, x2, …, xi] and [y1, y2, …, yj] for 1  i  m, 1 
 j  n, the semicolon indicates that the following element, xi, is appended to the 
sequence. 

3) Unmatching rule xi  yj  

In this case, X and Y do not end in the same state. Then the LCS of X and Y is the 

longer of the two sequences LCS(Xi, Yj-1) and LCS(Xi-1, Yj). 

ĀDynamic programming can be thought of as being the reverse of recursion. 

Recursion is a top-down mechanism – we take a problem, split it up, and solve the 
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smaller problems that are created. Dynamic programming is a bottom-up mechanism- 

we solve all possible small problems and then combine them to obtain solutions for 

bigger problems. The reason that this may be better is that, using recursion, it is 

possible that we may solve a small subproblem many times. Using dynamic 

programming, we solve it once.”1 

According to the above, the recursive function of LCS can be defined as follows: 

Definition 2-1: the longest common subsequence of given state-sequences X = 

[x1, …, xm] and Y = [y1, …, yn] is: 

1 1

1 1

0 0

( , ) (( , ), )

( ( , ), ( , ))

i j i j j i j

i j i j i j

if i or j

LCS X Y LCS X Y x if x y

longer LCS X Y LCS X Y if x y



 

 

  
 
     

(2-2) 

where 0≤ i ≤ m, 0 ≤ j ≤ n. 

In order to measure the similarity between two state-sequences, the length of LCS 

is defined as below: 

Definition 2-2: the length of the LCS of two given state-sequences X and Y is: 

1 1

1 1

0 0 0

'( , ) '( , ) 1

max( ( , ), ( , ))

i j i j i j

i j i j i j

if i or j

LCS X Y LCS X Y if x y

LCS X Y LCS X Y if x y

 

 

  
  
 

     (2-3) 

The original LCS is designed for 1-dimention state-sequences. In order to cope 

with multi-dimension situations, [VHGK2003] extended the original LCS to 

2-dimention situations: 

                                                 
1 http://www.ics.uci.edu/~dan/class/161/notes/6/Dynamic.html 
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, 1 1

,

, 1 , 1

0 0 0

( , ) 1
( , )

max( ( , ), ( , ))

i j ik jk

i j

i j i j

if i or j

LCSS X Y if x y for all k
LCSS X Y

and j i

LCSS X Y LCSS X Y otherwise

 
 

   




 

 

 


  
 

 

  

(2-4) 

where the constant  and  denote the controller in space and time respectively.   

Example evolution: 

For the given state-sequence X = [abcd] and Y = [adcbd], the procedure of the 

longest common subsequence is illustrated next. Assuming that the LCS function starts 

with zero, two empty states are inserted as prefixes of two state-sequences respectively. 

X0 = x0 = Y0 = y0 = Ø is placed as shown in table 2.1 with the size 4×5, where LCS(Xi, Yj) 

denotes the longest common subsequence between Xi and Yj, and the arrow directs to 

the source cell of current longest common subsequence, for example ĸĹ indicates the 

current cell LCS(Xi, Yj) is generated by longer(LCS(Xi, Yj-1), LCS(Xi-1, Yj)) from 

Eq.(2-2).  

Table 2.1 LCS subsequence table 

LCS(X, Y) Ø a d c b d 
Ø Ø Ø Ø Ø Ø Ø 

a Ø  a ĸ a ĸ a ĸ a ĸ a 

b Ø Ĺ a ĸĹ a ĸĹ a  ab ĸ ab 
c Ø Ĺ a Ĺ a  ac ĸĹ ac/ab ĸĹ ac/ab 
d Ø Ĺ a  ad ĸĹac/ad ĸĹ ac/ad   acd/abd 

The LCS table is designed to store the step of LCS calculation between X and Y 

placed in the first column and the first row while LCS(Xi, Yj) indicates the longest 

common subsequence of Xi and Yj.  

LCS(X0, Yj) is always Ø for j = 0, 1, …, n since the longest common sequence 

between the empty sequence and any other sequence is considered as empty. Likewise, 

LCS(Xi, Y0) = Ø for i = 0, 1, …, m (setup rule).  
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LCS(X1, Y1) is indicated by states ‗a‘ (x1) and ‗a‘ (y1). According to the matching 

rule, LCS(X1, Y1) = (LCS(X0, Y0), ‗a‘) = ‗Øa‘, simplified as ‗a‘. 

LCS(X1, Y2) is indicated by states ‗a‘ (x1) and ‗d‘ (y2). According to the 

unmatching rule, LCS(X1, Y2) = longer (LCS(X1, Y1), LCS(X0, Y2)) = longer(‗a‘, ‗Ø‘) = 

‗a‘. 

LCS(X1, Y3) is indicated by states ‗a‘ (x1) and ‗c‘ (y3). Unmatching rule, LCS(X1, 

Y3) = longer (LCS(X1, Y2), LCS(X0, Y3)) = longer(‗a‘, ‗Ø‘) = ‗a‘. 

LCS(X1, Y4) is indicated by states ‗a‘ (x1) and ‗b‘ (y4). Unmatching rule, LCS(X1, 

Y4) = longer (LCS(X1, Y3), LCS(X0, Y4)) = longer(‗a‘, ‗Ø‘) = ‗a‘. 

LCS(X1, Y5) is indicated by states ‗a‘ (x1) and ‗d‘ (y5). Unmatching rule, LCS(X1, 

Y5) = longer (LCS(X1, Y4), LCS(X0, Y5)) = longer(‗a‘, ‗Ø‘) = ‗a‘. 

Analogously, the rest of the table can be filled. The corresponding length of LCS is 

stored in the table 2.2. 

Table 2.2 LCS length table 

δCS‟(X, Y) Ø a d c b d 
Ø 0 0 0 0 0 0 

a 0  1  1  1  1  1 

b 0  1  1  1  2  2 
c 0  1  1  2  2  2 
d 0  1  2  2  2  3 

Problem of LCS 

In order to visually demonstrate the performance of LCS-based measurements, five 

state-sequences are defined as follows: S1 = [abcd], S2 = [aaaaabc], S3 = [aabbccdd], S4 

= [aaebbfccgdd] and S5 = [aaaabbb]. According to Eq.(2-3), the similarity table can be 

obtained as follows: 
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Table 2.3 LCS‘ table between five example state-sequences 

Similarity S1 S2 S3 S4 S5 

LCS’ 

S1 4 3 4 4 2 
S2 3 7 4 4 5 
S3 4 4 8 8 4 
S4 4 4 8 11 4 
S5 2 5 4 4 7 

“Non-uniqueness” problem˖different state-sequences have the same similarity to 

the query state-sequence. For instance, for a given three state-sequence pairs (S1, S1), 

(S1, S3) and (S1, S4) with the same longest common subsequence ‗abcd‘, we shall get 

LCS‘(S1, S1) = LCS‘(S1, S3) = LCS‘(S1, S4) = 4, which means S1 has the same similarity 

to S3 and S4 as well as to S1 itself, whereas in real-life application the measurement 

should distinguish the similarity as clear as possible. 

“Unreasonable problem”: some other abnormal or unreasonable results occur 

when continuously duplicated common states exist frequently in state-sequences. For 

example, LCS‘(S2, S5) > LCS‘(S2, S3). The reason is that the continuously duplicated 

common states are counted without distinguishing from the non-duplicated common 

states. However, according to the definition of temporal common subsequences, the 

similarity degree between S3 and S2 should in fact be higher than that between S5 and 

S2. 

Section 2.3.2 Compacted LCS (CLCS)  

In contrast to the original LCS, in Compacted LCS (CLCS) [KC2005] only the 

common subsequence, the continuous length of which is longer than the specified 

threshold (th), is counted. The procedure for CLCS is as the following 4 steps: 

Step 1: calculate the Matching Matrix. Without lose of generality, assume that X is the 

query state-sequence and Y denotes one of the state-sequences in the database. The 

Matching Matrix is defined as: for i=1, β, … m. 
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1,
( )

0,

if i th state is matched
m i

if i th state is unmatched

  


             (2-5) 

In fact, the length of the original LCS can be obtained by computing 
1

( )
n

i

m i

 .   

Step 2: the length of continuously matched subsequence: 

( 1) ( ), ( ) 1
( )

( ) ( ) 0

LC i m i if m i
LC i

m i if m i

   


            (2-6) 

Step 3: the length of continuously matched subsequence separated by unmatched 

subsequence: for i=1, β, … n-1  

( ), ( 1) 0
( )

0, ( 1) 1

LC i if m i
SLC i

if m i

   
 

                (2-7) 

In this situation, the length of LCS can be repressed by 
1

( )
n

i

SLC i

  

Step 4: calculate the compacted-LCS (CLCS) where only the length of continuous 

matched common subsequence is longer than the threshold (th) is counted: 

1

( ) ( ), ( )
( , ) ( )

( ) 0, ( )

n

i

MLC i SLC i if SLC i th
CLCS X Y MLC i

MLC i if SLC i th

   
 

       (2-8) 

where ,0 1th k n k    . 

Example evolution: 

For the same five state-sequence: S1 = [abcd], S2 = [aaaaabc], S3 = [aabbccdd], S4 

= [aaebbfccgdd] and S5 = [aaaabbb]. The examples of CLCS are calculated in table 

2.4:  
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Table 2.4 Example evolution of CLCS length 

(a) CLCS(S1, S1) table 

CLCS(S1, S1) Ø a b c d 
Ø 0 0 0 0 0 
a 0 0 0 0 0 
b 0 0 0 0 0 
c 0 0 0 1 1 
d 0 0 0 1 2 

(b) CLCS(S1, S2) table 

CLCS(S1, S2) Ø a a a a a b c 
Ø 0 0 0 0 0 0 0 0 
a 0 0 0 0 0 0 0 0 
b 0 0 0 0 0 0 0 0 
c 0 0 0 0 0 0 0 3 
d 0 0 0 0 0 0 0 3 

(c) CLCS(S1, S3) table 

CLCS(S1, S3) Ø a a b b c c d d 
Ø Ø 0 0 0 0 0 0 0 0 
a 0 1 1 1 1 1 1 1 1 
b 0 1 1 2 2 2 2 2 2 
c 0 1 1 2 2 3 3 3 3 
d 0 1 1 2 2 3 3 4 4 

(d) CLCS(S1, S4) table 

CLCS(S1, S4) Ø a a e b b f c c g d d 
Ø Ø 0 0 0 0 0 0 0 0 0 0 0 
a 0 0 0 0 0 0 0 0 0 0 0 0 
b 0 0 0 0 0 0 0 0 0 0 0 0 
c 0 0 0 0 0 0 0 0 0 0 0 0 
d 0 0 0 0 0 0 0 0 0 0 0 0 

(e) CLCS(S1, S5) table 

CLCS(S1, S5) Ø a a a a b b b 
Ø Ø 0 0 0 0 0 0 0 
a 0 0 0 0 0 0 0 0 
b 0 0 0 0 0 0 0 0 
c 0 0 0 0 0 0 0 0 
d 0 0 0 0 0 0 0 0 
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Problem of CLCS: 

“Non-uniqueness” problem˖this problem is ubiquitous in CLCS as shown in the 

tables, where CLCS(S1, S3)= CLCS(S1, S4)= CLCS(S2, S4)= CLCS(S3, S4)= CLCS(S5, S4) 

= 0. The non-uniqueness problem must be more serious than the original LCS since the 

threshold smoothes the difference of the two state-sequences: the length of continuous 

matched states will be smoothed to be the same level (0) if it varies from 1 to th-1. 

“Unreasonable problem”: one will also get the unreasonable phenomenon 

CLCS(S2, S5) > CLCS(S2, S3). The reason is that the matched states ―c‖ are separated 

and the length is 1, which is smaller than the threshold th=2. 

Particularly, CLCS is very fluctuant since the continuity of matched common 

subsequences may be destroyed easily by the unmatched states (for example, resulting 

as CLCS(S4, S1) = CLCS(S4, S2) = CLCS(S4, S3) = CLCS(S4, S5) = 0) or by the 

continuously duplicated common states (for example., resulting as CLCS(C1, C3) = 0), 

which in turn means that for real applications, it will be very sensitive to noise which 

will be taken as unmatched states in state-sequence matching. 

Table 2.5 CLCS table between five example state-sequences 

Similarity S1 S2 S3 S4 S5 

CLCS 
(th=2) 

S1 4 3 0 0 2 
S2 3 7 3 0 5 
S3 0 3 8 0 4 
S4 0 0 0 11 0 
S5 2 5 8 0 7 

Section 2.3.3 All Common Subsequence (ACS)  

From above LCS-like measurements, we can see that only the longest common 

subsequence may not be sufficient to distinguish the difference (similarity) between 

state-sequences. It is necessary therefore to explore the information in the second 

longest common subsequence, the third longest common subsequence and so on. 
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Different from the CLCS, which discards the short continuously matched subsequence, 

the All Common Subsequence (ACS) [Wan2007] takes into account the information of 

the second, third, … longest subsequences by counting the number of all common 

subsequences.  For instance, let us take the three state-sequences {A, B, C} = {cbabca, 

bcabac, abcade}. Obviously, LCS(A, B) = {caba} and LCS(A, C) = {abca}, therefore, 

LCS‘(A, B) = LCS‘(A, C) = 4, which means we cannot distinguish the state-sequence B 

and C when comparied to A. The set of all common subsequences of A and B is 

(ignoring the empty sequence): {a, aa, ab, aba, abc, ac, b, ba, baa, bab, baba, babc, 

bac, bb, bba, bbc, bc, bca, c, ca, caa, cab, caba, cabc, cac, cb, cba, cbac, cbc, cc}. The 

set of all common subsequences of A and C is: {a, aa, ab, aba, abc, abca, ac, aca, b, 

ba, bc, bca, c, ca}. ACS(A, B) = 31, ACS(A, C) = 15, suggesting that state-sequence B 

is more similar to state-sequence A than to state-sequence C. 

Theorem 2.1. Given two state-sequences, X = (x1, … , xm) and Y = (y1, …, yn). N(i, 

j) denotes the number of common subsequences of (x1, … , xi) and (y1, …, yj), i.e., the 

prefixes of sequences X and Y of lengths i and j. Then: 

1 0

( , ) ( 1, 1) 2,

( 1, ) ( , 1) ( 1, 1),

i j

i j

if i or j

N i j N i j if x y

N i j N i j N i j if x y

 
    


      

ˈ

      (2-9) 

Consequently ACS(X, Y) = N(m, n). 

Proof: Let A(i-1, j-1) be the set of all common subsequences between (x1, … , xi-1) 

and (y1, …, yj-1). So N(i-1, j-1)=|A(i-1, j-1)|. If xi = yj, then A(i, j) = A(iѸ1, jѸ1)ĤA(iѸ1, j

Ѹ1)xi. where A(iѸ1,  jѸ1)xi = {axi | a A(i-1,  j-1)}. Therefore N(i, j) = N(iѸ1, jѸ1)

×2. If xi  yj, then some new common subsequences may be added to A(i, jѸ1) or A(iѸ1,  

j) on top of A(iѸ1,  jѸ1). Therefore, A(i, j) = A(i, jѸ1)ĤA(i Ѹ1, j)ѸA(i Ѹ1, jѸ1). 

Consequently we have N(i, j) = N(i, jѸ1)+N(iѸ1, j)ѸN(iѸ1, jѸ1). 
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Algorithm 2.1:   Calculation of all common subsequence 

Input: Two sequences X and Y. 

Output: The number of all common subsequences ACS(X, Y). 

for i = 0 to |X| do N(i, 0) = 1 

for j = 0 to |Y| do N(0, j) = 1 

for i = 1 to |X| do 

for j = 1 to |Y| do 

if xi = yj then 

N(i, j) = N(iѸ1, jѸ1) × 2 

else  

N(i, j) =N(iѸ1, j) + N(i, jѸ1) Ѹ N(iѸ1, jѸ1) 

end 

end 

ACS(X, Y) = N(|X|, |Y|) 

End 

 

Example evolution: 

For the same five state-sequences: S1 = [abcd], S2 = [aaaaabc], S3 = [aabbccdd], S4 

= [aaebbfccgdd] and S5 = [aaaabbb]. Examples of ACS calculation are evaluated in the 

following tables.  

Table 2.6 Example evolution of ACS 

(a) ACS(S1, S1) table 

ACS(S1, S1) Ø a b c d 
Ø 0 0 0 0 0 
a 0 1 1 1 1 
b 0 1 3 3 3 
c 0 1 3 7 7 
d 0 1 3 7 15 
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(b) ACS(S1, S2) table 

ACS(S1, S2) Ø a a a a a b c 
Ø 0 0 0 0 0 0 0 0 
a 0 1 1 1 1 1 1 1 
b 0 1 1 1 1 1 3 3 
c 0 1 1 1 1 1 3 7 
d 0 1 1 1 1 1 3 7 

(c) ACS(S1, S3) table 

ACS(S1, S3) Ø a a b b c c d d 
Ø 0 0 0 0 0 0 0 0 0 
a 0 1 1 1 1 1 1 1 1 
b 0 1 1 3 3 3 3 3 3 
c 0 1 1 3 3 7 7 7 7 
d 0 1 1 3 3 7 7 15 15 

(d) ACS(S1, S4) table 

ACS(S1, S4) Ø a a e b b f c c g d d 
Ø 0 0 0 0 0 0 0 0 0 0 0 0 
a 0 1 1 1 1 1 1 1 1 1 1 1 
b 0 1 1 1 3 3 3 3 3 3 3 3 
c 0 1 1 1 3 3 2 3 7 7 7 7 
d 0 1 1 1 3 3 2 7 7 7 15 15 

(e) ACS(S1, S5) table 

ACS(S1, S5) Ø a a a a b b b 
Ø 0 0 0 0 0 0 0 0 
a 0 1 1 1 1 1 1 1 
b 0 1 1 1 1 3 3 3 
c 0 1 1 1 1 3 3 3 
d 0 1 1 1 1 3 3 3 

Problem: 

 “Non-uniqueness” problem: this problem is ubiquitous in ACS as well. One will 

get ACS(S1, S1)=ACS(S1, S3)= ACS(S1, S4)=16. 

“Unreasonable” problem: the unreasonable phenomenon ACS(S2, S5) > ACS(S2, 

S3) still exists. In particular, in ACS, the similarity becomes extremely large (such as S3 

and S4) when continuously duplicated common states exist frequently in 



CHAPTER 2. LITERATURE REVIEW 

34 

state-sequences and this will therefore underestimate the high similarity between S3 and 

S1. 

Table 2.7 ACS table between five example state-sequences 

Similarity S1 S2 S3 S4 S5 

ACS 

S1 15 7 15 15 3 
S2 7 127 15 15 31 
S3 15 15 255 255 15 
S4 15 15 255 2047 15 
S5 3 31 15 15 127 

 

Section 2.3.4 Time-Warped LCS (T-WLCS) 

If we consider two state-sequences ‗aabbcc‘ and ‗abc‘, the output of 

LCS‘(‗aabbcc‘, ‗abc‘) would be γ since LCS(‗aabbcc‘, ‗abc‘) = ‗abc‘. What about 

‗adbecf‘ and ‗abc‘? The output of LCS‘(‗adbecf‘, ‗abc‘) would also be γ since 

LCS(‗adbecf‘, ‗abc‘) = ‗abc‘ as well. However, considering that in the first pair 

(‗aabbcc‘ and ‗abc‘), ‗aabbcc‘ is just the extension version of ‗abc‘, which should be 

considered as more similar to the second pair (‗adbecf‘ and ‗abc‘). The main reason is 

that in the first pair, the unmatched states (‗a‘, ‗b‘, ‗c‘) are regarded and discarded in 

the same way as that in the second pair (‗d‘, ‗e‘, ‗f‘) in LCS. In the spirit of the 

Dynamic Time Warping (DTW) [SC1978] algorithm, the Time-Warped LCS 

(T-WLCS)[GS2004] was proposed. The recurrence formula for T-WLCS is: 

1 1

1 1

1 1

0 0 0

max[ ( , ), ( , ), , 0

( , ) ( , )] 1

max[ ( , ), ( , )] , 0

i j i j

i j i j i j

i j i j

i j

if i or j

T WLCS X Y T WLCS X Y if i j

T WLCS X Y T WLCS X Y and x y

T WLCS X Y T WLCS X Y if i j

and x y

 

 

 

  

   
    


  




(2-10) 

where T-WLCS(Xi, Yj)  denotes the maximum length of a time warped common 

subsequence (we name the common subsequence plus the continuously duplicated 
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common subsequences as time warped common subsequence, distinguishing from the 

traditional conception of common subsequence in the original LCS). The length of 

longest time-warped common subsequence can be read in T-WLCS(Xm, Yn).  

Example evolution: 

For the same five state-sequences: S1 = [abcd], S2 = [aaaaabc], S3 = [aabbccdd], S4 

= [aaebbfccgdd] and S5 = [aaaabbb]. The examples of T-WLCS calculation is 

evaluated in the following tables:  

Table 2.8  Example evolution of T-WLCS 

(a) T-WLCS (S1, S1) table 

T-WLCS(S1, S1) Ø a b c d 
Ø 0 0 0 0 0 
a 0 1 1 1 1 
b 0 1 2 2 2 
c 0 1 2 3 3 
d 0 1 2 3 4 

(b) T-WLCS (S1, S2) table 

T-WLCS(S1, S2) Ø a a a a a b c 
Ø 0 0 0 0 0 0 0 0 
a 0 1 2 3 4 5 5 5 
b 0 1 2 3 4 5 6 6 
c 0 1 2 3 4 5 6 7 
d 0 1 2 3 4 5 6 7 

 

(c) T-WLCS (S1, S3) table 

T-WLCS(S1, S3) Ø a a b b c c d d 
Ø 0 0 0 0 0 0 0 0 0 
a 0 1 2 2 2 2 2 2 2 
b 0 1 2 3 4 4 4 4 4 
c 0 1 2 3 4 5 6 6 6 
d 0 1 2 3 4 5 6 7 8 
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(d) T-WLCS (S1, S4) table 

T-WLCS(S1, S4) Ø a a e b b f c c g d d 
Ø 0 0 0 0 0 0 0 0 0 0 0 0 
a 0 1 2 2 2 2 2 2 2 2 2 2 
b 0 1 2 2 3 4 4 4 4 4 4 4 
c 0 1 2 2 3 4 4 5 6 6 6 6 
d 0 1 2 2 3 4 4 5 6 6 7 8 

(e) T-WLCS (S1, S5) table 

T-WLCS(S1, S5) Ø a a a a b b b 
Ø 0 0 0 0 0 0 0 0 
a 0 1 2 3 4 4 4 4 
b 0 1 2 3 4 5 6 7 
c 0 1 2 3 4 5 6 7 
d 0 1 2 3 4 5 6 7 

Problem: 

For the same five state-sequences: S1 = [abcd], S2 = [aaaaabc], S3 = [aabbccdd], 

S4 = [aaebbfccgdd] and S5 = [aaaabbb].  

“Non-uniqueness” problem: this problem is ubiquitous in T-WLCS as well. One 

will get T-WLCS(S1, S3)= T-WLCS(S1, S4)=8 and T-WLCS(S1, S2)= T-WLCS(S1, 

S5)=8. 

“Unreasonable” problem: the unreasonable phenomenon T-WLCS(S2, S5) > 

T-WLCS(S2, S3) still exists. Even T-WLCS cannot guarantee that the query 

state-sequence has the highest similarity with itself: for instance, T-WLCS(S1, S1) < 

T-WLCS(S1, S2), T-WLCS(S1, S3), T-WLCS(S1, S4), T-WLCS(S1, S5), which means the 

state-sequence S1 has least similarity to itself comparing with the other state-sequences 

S2, S3, S4
, S5. Such a problem becomes absurd if, for instance, we have S2‘ = 

‗aaaaaaaaaaaa‘, which will lead to T-WLCS(S1,S2‘) = 1β due to the unreasonable 

treatment of continuously duplicated common states. 
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Table 2.9  T-WLCS table between five example state-sequences 

Similarity S1 S2 S3 S4 S5 

T-WLCS 

S1 4 7 8 8 7 
S2 7 11 10 10 11 
S3 8 10 12 12 9 
S4 8 10 12 15 9 
S5 7 11 9 9 12 

 

Section 2.4 ED-Based Subsequence Matching  

The Edit Distance is a popular measurement for subsequence matching besides the 

longest common subsequence-based measurements. Various distance models based on 

Edit Distance have been developed over the past half century for state-sequence 

matching, including: Dynamic Time Warping (DTW) [SC1978]; Edit Distance 

[Lev1965] and its variants such as Edit Distance on Real Sequence (EDR) [CN2004]; 

Edit Distance with Real Penalty (ERP) [COO2005] and Time Warp Edit Distance 

(TWED) [Mar2008] etc. However, most of these existing distance models characterize 

temporal distance only in terms of the temporal order over the state-sequences, whereas 

other important temporal features such as the temporal gap between two adjacent states, 

and the temporal duration of each state itself have been neglected.  

Section 2.4.1 Original Edit Distance (OED) 

The edit distance between two state-sequences is defined as the cost of 

transforming one state-sequence into the other state-sequence using operations such as 

substitution, deletion, insertion, transposition and so on. Four examples are 

demonstrated as follows for transforming one word into another one. 

1) ―night‖ ―light‖: substitute ―n‖ in ―night‖ with ―l‖, obtain ―light‖ 

2) ―knight‖  ―night‖: delete ―k‖ at the beginning of ―knight‖, obtain ―night‖ 
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3) ―discover‖  ―discovery‖: insert ―y‖ into the end of ―discover‖, obtain 

―discovery‖ 

4) ―quiet‖  ―quite‖: transpose ―et‖ in ―quiet‖ into ―te‖, obtain ―quite‖ 

From the examples, we can also conclude that the deletion operation and insertion 

operation are reciprocally inversed: we can also transform ―night‖ into ―knight‖ by 

inserting ―k‖ into the front of ―night‖ or transform ―discovery‖ into ―discover‖ by 

deleting the last character ―y‖ of ―discovery‖. 

 There are many algorithms to calculate the Edit Distance, including: Hamming 

Distance, Levenshtein Distance, Damerau-Levenshtein Distance, Jaro-Winkler 

Distance and ←kkonen‘s Algorithm. The Levenshtein Distance, which is named after 

Vladimir Levenshtein from 1965, is a widely used specification of the Edit Distance 

that calculates the minimum number of operations of substitution, deletion and 

insertion. In most applications, Edit Distance is referred to as Levenshtein Distance. 

Therefore, we shall refer to the Levenshtein Distance as the original Edit Distance if 

not specified.  

For the two state-sequences X and Y, the edit distance between them can be 

defined as the following recursion: 

Definition 2.3: the Edit Distance of given state-sequences X and Y is 

1 1

1 1

1 1

0

0

( , ) ( , )

min( ( , ), ( , ),

( , ))+1

i j i j i j

i j i j

i j i j

j if i

i if j

ED X Y ED X Y if x y

ED X Y ED X Y

ED X Y if x y

 

 

 





 


        

(2-11) 

Therefore, the Edit Distance (ED) between X and Y can be read as ED(Xm, Yn). What 

follows are further explanations of the recursion: the problem can be summarized as 

transforming Xi into Yj using a minimum operations ED(Xi, Yj). The procedure of edit 

distance can be illustrated as: 
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1) Setup rule: i = 0 or j = 0 

 i=0 and j=0: the number of operations to transform one empty 

state-sequence into another empty state-sequence is zero.  

 i0 and j=0: the length of the first state-sequence is non-zero. The 

operations transforming Xi into Y0 is deleting i states in the first 

state-sequence Xi. 

 i=0 and j0: the length of the second state-sequence is non-zero. The 

operations transforming X0 into Yj is inserting j states in the first 

state-sequence Xi. 

In general, we can conclude that ED(X0, Yj) = j and ED(Xi, Y0) = i. Typically, ED(X0, Y0) 

=0. 

2) Matching rule: x i = yj (i  0 and j  0) 

In this case, the current two states match each other.  Suppose the number of 

operations required to transform Xi-1 into Yj-1 is ED(Xi-1, Yj-1), so that no additional 

operations are required to transform Xi into Yj. Therefore, ED(Xi, Yj) = ED(Xi-1, Yj-1). 

3) Unmatching rule: xi  yj (i  0 and j  0) 

In this case, the current two states are not matched. There are three ways to 

transform the first state-sequence into the second state-sequence: 

 Substitution: if we can transform Xi into Yj by exchanging xi for yj, and the 

number of operations required to transform Xi-1 to Yj-1 is ED(Xi-1, Yj-1), 

then the total number of operations is ED(Xi-1, Yj-1) + 1. 

 Deletion: if we can transform Xi into Yj by removing xi at the end of Xi, 

and the number of operations required to transform Xi-1 to Yj is ED(Xi-1, Yj), 

then the total number of operations is ED(Xi-1, Yj) + 1. 
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 Insertion: if we can transform Xi into Yj by adding yj at the end of Xi, and 

the number of operations required to transform Xi to Yj-1 is ED(Xi, Yj-1), 

then the total number of operations is ED(Xi, Yj-1) + 1. 

Therefore, the number of operations required to transform Xi into Yj is obviously 

the minimum of the above three sub-cases: ED(Xi, Yj) = min(ED(Xi, Yj-1) + 1, ED(Xi-1, 

Yj) + 1, ED(Xi-1, Yj-1)+1) = min(ED(Xi, Yj-1), ED(Xi-1, Yj), ED(Xi-1, Yj-1)) + 1. In view of 

the above analysis, the following conclusion can be reached for the original ED: 

 The non-temporal distance is not considered. 

 For the temporal distance, only the temporal order is considered in terms of 

Dynamic Programming. 

 It is a binary-value distance model. Therefore, it is not sensitive to outliers and 

noise, and therefore arguably. 

Section 2.4.2 Edit Distance on Real sequence (EDR) 

The original Edit Distance was designed for string sequence matching where states 

are presented in the form of characters. However, in many real-life applications, states 

are not characters. Therefore, more practical distance measurements are required. The 

Edit Distance on Real Sequence, as an important extension of original Edit Distance, 

has been shown to be effective with respect to real-life state-sequence matching. 

Distinguishing the character states in the original Edit Distance, the multi-dimensional 

state is referred to as a state vector. The matching between two multi-dimensional 

real-life states is first defined: 

Definition 2.4.  d-dimensional state vectors xi and yj from two state-sequence X 

and Y are matched if and only if |xit -yjt|   for all 1 t  d, where  is the matching 

threshold. 

Definition 2.5. For two given state-sequence Xm and Yn, the Edit Distance on Real 

sequence (EDR) between them is defined as the following recursion: 
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1 1

1 1

0

0=
min{ ( ) subcost, 0,

( ) 1, ( ) 1} 0

i j

i j

i j i j

j if i

i if jEDR(X ,Y )
EDR X ,Y i and
EDR X ,Y EDR X ,Y j

 

 


 

 
      

(2-12) 

where subcost = 0 if xi and yj are matched and subcost = 1 if xi and yj are unmatched. 

The procedure of edit distance on real sequence can be illustrated as: 

1) Setup rule: i = 0 or j = 0 

Analogous to the original Edit Distance, we can conclude that EDR(X0, Yj) = j and 

EDR(Xi, Y0) = i. Typically, EDR(X0, Y0) =0. 

2) Edition rule: i  0 and j  0 

We also consider the three ways to transform the first state-sequence into the 

second state-sequence: 

 Substitution: In this case, we first need to justify whether the current two states 

match each other or not. if we can transform Xi into Yj by exchanging xi for yj, 

and the number of operations required to transform Xi-1 to Yj-1 is EDR(Xi-1, Yj-1), 

then the total number of operations is EDR(Xi-1, Yj-1) + subcost, where the 

subcost is specified in following two sub-cases: 

 | xit -yjt |   for all 1 t  d: the current two state vectors are matched. 

According to the definition, subcost = 0, which means no additional 

operation is required to transform Xi into Yj.  

 | xit -yjt | >  for some 1 t  d: the current two state vectors are unmatched. 

According to the definition, subcost = 1, which means the substitution 

operation is required to transform Xi into Yj. 
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 Deletion: if we can transform Xi into Yj by removing xi at the end of Xi, and the 

number of operations required to transform Xi-1 to Yj is EDR(Xi-1, Yj), then the 

total number of operations is EDR(Xi-1, Yj) + 1. 

 Insertion: if we can transform Xi into Yj by adding yj at the end of Xi, and the 

number of operations required to transform Xi to Yj-1 is EDR(Xi, Yj-1), then the 

total number of operations is EDR(Xi, Yj-1) + 1. 

Therefore, the number of operations required to transform Xi into Yj is obviously 

the minimum of the above three sub-cases: EDR(Xi, Yj) = min(EDR(Xi, Yj-1) + subcost, 

EDR(Xi-1, Yj) + 1, EDR(Xi-1, Yj-1)+1). 

 The non-temporal distance is not considered. 

 For the temporal distance, only the temporal order is considered in terms of the 

Dynamic Programming. 

 It is a binary-value distance model. Therefore, it is not sensitive to the outliers 

and noise, and therefore not realistic. 

Section 2.4.3 Edit distance with Real Penalty (ERP)  

As a binary-value model, EDR is robust for the outliers and noise but not realistic 

since the distance between two states is not refined. Edit distance with Real Penalty 

(ERP) was proposed as another important extension of the original Edit Distance from 

the point of view of real penalty, where the real distance between two states was 

counted instead of a simple 0 or 1 being given. The ERP copes with the local time 

shifting in terms of adding a gap g. for example, X = [1, 2], Y = [1, 3, 6], X may be 

aligned into [1, 2, g] for alignment purposes. Therefore, the cost of an insertion 

operation (or a deletion operation if swaping X and Y) can be regarded as the real 

distance between the current state (‗6‘ in Y) and the gap g (normally specified as zero). 
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( , )

i j

ERP i j i

j

x y substitution

dist x y x g deletion

g y inseartion

 
 


                    

(2-13) 

The recursion of Edit distance with Real Penalty can be defined as: 

1

1

1 1

1

1

0

0

= min{ ( ) ( , ),

( ) ( , ),

( ) ( , )}

j

j

i

i

i j i j ERP i j

i j ERP i

i j ERP j

y g if i

x g if j

ERP(X ,Y ) ERP X ,Y dist x y

ERP X ,Y dist x g otherwise

ERP X ,Y dist g y

 





  

  
 
 
 




   

(2-14) 

The procedure of Edit distance with Real Penalty can be illustrated as: 

1) Setup rule: i = 0 or j = 0 

 i=0 and j=0: the cost to transform one empty state-sequence into another 

empty state-sequence is zero.  

 i0 and j=0: the length of the first state-sequence is non-zero. The 

operations transforming Xi into Y0 is deleting i states in the first 

state-sequence Xi. Therefore the cost is the sum of the real distance 

between the first i states and the gap g. 

 i=0 and j0: the length of the second state-sequence is non-zero. The 

operations transforming X0 into Yj is inserting j states into the first 

state-sequence Xi. Therefore the cost is the sum of the real distance 

between the first j states and the gap g. 

In general, we can conclude that ERP(X0, Yj) = 
1

j

jy g  and ERP(Xi, Y0) = 

1

i

ix g . Typically, ERP(X0, Y0) =0. 
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2) Edition rule: i  0 and j  0 

There are three ways to transform the first state-sequence into the second 

state-sequence: 

 Substitution: different from the EDR, we do not need to justify whether the 

current two states match each other or not. Since the real distance between the 

two current states reflects the matching cost of substitution. If we can 

transform Xi into Yj by exchanging xi for yj, and the real cost of operations 

required to transform Xi-1 to Yj-1 is ERP(Xi-1, Yj-1), then the total cost of 

operations is ERP(Xi-1, Yj-1) + distERP(xi, yj), where distERP(xi, yj) = | xi - yj | 

denotes the substitution cost between xi and yj. 

 Deletion: if we can transform Xi into Yj by removing xi at the end of Xi, and the 

real cost of operations required to transform Xi-1 to Yj is ERP(Xi-1, Yj), then the 

total cost of operations is ERP(Xi-1, Yj) + distERP(xi, g), where distERP(xi, g) = | 

xi - g | denotes the deletion cost of xi. 

 Insertion: if we can transform Xi into Yj by adding yj at the end of Xi, and the 

real cost of operations required to transform Xi to Yj-1 is ERP(Xi, Yj-1), then the 

total cost of operations is ERP(Xi, Yj-1) + distERP(g, yj), where distERP(g, yj) = | g 

- yj | denotes the insertion cost of yj. 

Therefore, the number of operations required to transform Xi into Yj is obviously 

the minimum of the above three sub-cases: ERP(Xi, Yj) = min(ERP(Xi-1, Yj-1) + 

distERP(xi, yj), ERP(Xi-1, Yj) + distERP(xi, g), ERP(Xi, Yj-1) + distERP(g, yj)). 

 The non-temporal distance is not considered. 

 For the temporal distance, only the temporal order is considered in terms of the 

Dynamic Programming. 

 It is a real-penalty distance model. Therefore, it is realistic, but not sensitive to 

the outliers and noise. 
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Section 2.4.4 Dynamic Time Warping (DTW)  

Dynamic Time Warping (DTW), as the most important variant of original Edit 

Distance, is defined as a real-penalty distance model. Different from the previous 

real-penalty distance model (ERP), Dynamic Time Warping (DTW) copes with the 

time shifting by duplicating the previous state. For instance, using the same example as 

demonstrated in ERP: X = [1, 2], Y = [1, 3, 6], X may be aligned into [1, 2, 2] for 

alignment purpose in DTW. Therefore, the cost of the insertion operation (or deletion 

operation if swap X and Y) can be regarded as the real distance between the current 

state (‗6‘ in Y) and the duplicated state (‗β‘ in X). 

1 1

1 1

0 0

0 0
=

( , ) min{ ( ),

( ), ( )}

i j
DTW i j i j

i j i j

if i j

if i or j
DTW(X ,Y )

dist x y DTW X ,Y

DTW X ,Y DTW X ,Y otherwise

 

 

 

  
 

     

(2-15)

 

where the distDTW(xi, yj) is normally specified as the Lp Norm. For instance, distDTW(xi, 

yj) = | xi - yj | for L1 Norm and distDTW(xi, yj) = 2 2( )i jx y  for L2 Norm. The procedure 

of Dynamic Time Warping can be illustrated as:  

1) Setup rule: i = 0 or j = 0 

 i=0 and j=0: the cost of transforming one empty state-sequence into 

another empty state-sequence is zero. Therefore, DTW(X0, Y0) = 0. 

 i=0 or j=0: DTW(X0, Yj) = DTW(Xi, Y0) = ∞. The cost of transforming one 

empty state-sequence into another non-empty state-sequence is infinite. 

2) Edition rule: i  0 and j  0 

There are three ways to transform the first state-sequence into the second 

state-sequence: 
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 Substitution: similar to the ERP, the real distance between the two current 

states reflects the matching cost of substitution. If we can transform Xi into Yj 

by exchanging xi for yj, and the real cost of operations required to transform 

Xi-1 to Yj-1 is DTW(Xi-1, Yj-1), then the total cost of operations is DTW(Xi-1, Yj-1) 

+ distDTW(xi, yj), where distDTW(xi, yj) = distLp(xi, yj) denotes Lp Norm distance 

between the current two states xi and yj. 

 Deletion: if we can transform Xi into Yj by removing xi at the end of Xi, 

according to the spirit of DTW, the state yj will be duplicated for alignment 

purpose. Suppose the real cost of operations required to transform Xi-1 to Yj is 

DTW(Xi-1, Yj), then the total cost of operations is DTW(Xi-1, Yj) + distDTW(xi, 

yj), where distDTW(xi, yj) respects the real cost between the current state xi and 

the duplicated state yj. 

 Insertion: if we can transform Xi into Yj by adding yj at the end of Xi, opposite 

to the deletion operation, the state xi will be duplicated for alignment purposes. 

Suppose the real cost of the operations required to transform Xi to Yj-1 is 

DTW(Xi, Yj-1), then the total cost of operations is DTW(Xi, Yj-1) + distDTW(xi, 

yj), where distDTW(xi, yj) respects the real cost between duplicated state xi and 

the current state yj. 

Therefore, the number of operations required to transform Xi into Yj is obviously 

the minimum of the above three sub-cases: DTW(Xi, Yj) = min(DTW(Xi-1, Yj-1) + 

distDTW(xi, yj), DTW(Xi-1, Yj) + distDTW(xi, yj), + DTW(Xi, Yj-1) + distDTW(xi, yj)) = 

distDTW(xi, yj) + min(DTW(Xi-1, Yj-1), DTW(Xi-1, Yj), DTW(Xi, Yj-1)). 

 The non-temporal distance is not considered. 

 For the temporal distance, only the temporal order is considered in terms of the 

Dynamic Programming. 

 It is a real-penalty distance model. Therefore, it is realistic, but not sensitive to 

the outliers and noise. 
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Section 2.4.5 Time Warped Edit Distance (TWED) 

In distance models explored so far, including the original ED, EDR, ERP and 

DTW, only the temporal order is taken into account in terms of dynamic programming. 

Marteau [Mar 2008] produced an elastic model named Time Warped Edit Distance 

(TWED), which takes into account the temporal gap difference in terms of the temporal 

index of states where time-series and sequences are expressed as lists (timestamps) in 

the form of t1, t2, …. tn,. 

First, two domains S and T are defined for the binary Xm = [x1, …, xm] = [(s1, 

is
t ), …, (sm, 

ms
t )]  S×T, where S  Rd

 denotes the d dimensional space state vector 

and T R denotes the strictly increasing time-stamp variable. Therefore, for xi = (si, 
is

t ) 

and xj = (sj, 
jst ), 

is
t >

jst whenever i > j. denotes the null sample. For the current two 

states xi and yj, the operations of substitution, deletion and insertion can be defined as 

( )

( )

( )

i j

i

j

x y substitution

x deletion

y insertion

 

 
                 

(2-16) 

where  denotes the arbitrary cost function. The recursion is defined as 

1 1

1

1

0 0

0 0

= min{ ( ) ( ),

( ) ( ),

( ) ( )}

i j i j i j

i j i

i j j

if i j

if i or j

TWED(X ,Y ) TWED X ,Y x y

TWED X ,Y x otherwise

TWED X ,Y y

 





  

  
  
  
       

(2-17) 

In order to specify the cost function of the three operations (substitution, deletion 

and insertion), the graphical paradigm is introduced. For the convenience of illustration, 

the 1D time-series (as shown in y-axis) against the time-stamp (as shown in x-axis) is 

constructed for two state-sequences X and Y. The three operations transforming X into Y 

can be explained in terms of the graphical edit paradigm, as shown in the figure that 
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shortly follows (analogously, the current states are xi = (si, 
is

t ) and yj = (qj, 
jqt )):  

 Substitution: as shown in figure 2.1 (a), the substitution operation for the two 

current two states consists of adjusting xi to yj and adjusting xi-1 to yj-1 between 

two state-sequences. Suppose the matching cost of Xi-1 and Yj-1 is 

TWED(Xi-1,Yj-1), therefore the additional cost for substitution is dist(xi, yj) and 

dist(xi-1, yj-1). Defining xi as a binary in TWED, dist(xi, yj) sequentially consists 

of dist(si, qj) and dist(
is

t , 
jqt ). Therefore, (xiyj) = dist(si, qj) + dist(si-1, qj-1) 

+ dist(
is

t , 
jqt )+ dist(

1ist 
, 

1jqt 
). 

 Deletion: as shown in figure 2.1 (b), the deletion operation consists of 

adjusting xi to xi-1 in the first state-sequence. No additional adjustment is 

required in the second state-sequence. Suppose the matching cost of Xi-1 and Yj 

is TWED(Xi-1,Yj), then the additional cost for insertion is dist(xi, xi-1). Defining 

xi as a binary in TWED, dist(xi, xi-1) sequentially consists of dist(si, si-1) and 

dist(
is

t , 
1ist 
). Therefore, (xi ) = dist(si, si-1) + dist(

is
t , 

1ist 
). 

 Insertion: as shown in figure 2.1 (c), the insertion operation consists of 

adjusting xi to xi-1 in the first state-sequence. No additional adjustment is 

required in the second state-sequence. Suppose the matching cost of Xi and Yj-1 

is TWED(Xi, Yj-1), then the additional cost for insertion is dist(yj, yj-1). Defining 

yj as a binary in TWED, dist(yj, yj-1) sequentially consists of dist(qj, qj-1) and 

dist(
jqt , 

1jqt 
). Therefore, (yj) = dist(qj, qj-1) + dist(

jqt , 
1jqt 
). 
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Figure 2.1  Graphical paradigm of TWED for edit cost function 

This provides the basis for the TWED distance: 

1 1

1

1

( ) ( , ) ( , ),

( ) ( , ) ,

( ) ( , ) ,

i j i j i j

i i i

j j j

x y dist x y dist x y substitution

x dist x x deletion

y dist y y insertion





 





   

   

   

      (2-18) 

In summary, based on the literature review of the representation of primitive time 

and the conventional existing measurements for state-sequence matching, it can be 

noted that, firstly, the time structure in terms of both point and interval is the most 

reasonable to represent time-series, although it is necessary to formalize the 

characterization of time-series and state-sequence with respect to the rich temporal 

aspects including temporal order, temporal duration and temporal gap. Secondly, it is 

neccesary to design a new similarity measurement in order to conqure the main 

problems in the conventional existing measurements for state-sequence matching. 

Therefore, the general similarity measurement based on the formal characterization of 

time-series and state-sequence will be presentd in Chapter 3. 
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CHAPTER 3 GENERAL FRAMEWORK 

OF STATE-SEQUENCE MATCHING 

Based on the review of the representation of time-series and state-sequences, as well 

as the existing similarity measurements for state-sequence matching, a general framework 

for state-sequence matching will be proposed. First, the formal characterization of 

time-series and state-sequences will be presented based on typed point-based intervals. 

Then, the general similarity measurement is designed to take into account both the 

non-temporal aspects and rich temporal aspects. 

Section 3.1 Formal Characterization of Time-series and 

State-sequences 

As mentioned in the introduction to this thesis, in most of the literature in the domain 

of data mining, the fundamental time theories upon which time-series and sequences are 

built up are not usually explicitly specified. Therefore, the formal characterizations with 

respect to the temporal basis were neglected. In this section, we shall present a formal 

characterization of time-series and state-sequences. 

Section 3.1.1 Typed Point-based Time-elements and Time-series 

In a system based solely on intervals as primitive, like that of Allen‘s interval 

temporal theory [All1984], or a system based on both points and intervals like that of Ma 

and Knight [MK1994], an ―immediately before‖ relation can be directly expressed by the 

―Meets‖ relation. 

N.B. The intuitive meaning of Meets(t1, t2) is that, on the one hand,  t1 and t2 do not 

overlap each other (i.e., they do not have any part in common, not even a point); on the 

other hand, there is not any other time object standing between them.  
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For the sake of allowing the expression of both absolute time values and relative 

temporal relations, in this thesis, time-elements are defined as typed point-based 

intervals as shown in [MH2006]. The two different approaches to the treatment of 

intervals, i.e., taking intervals as primitive or as derived objects constructed out of 

primitive points, are actually reducible to logically equivalent expressions under some 

requisite interpretations. In fact, in a system based solely on points as primitives, say 

(P, ), as the derived objects, an interval can be defined as a typed (left-open & 

right-open, left-closed & right-open, left-open & right-closed, left-closed & 

right-closed) subset of the set of primitive points, which must be in one of the following 

four forms [GS1999]: 

(p1, p2) = {p pRp1pp2

[p1, p2) =p | pRp1pp2

(p1, p2] =p | pRp1pp2

[p1, p2] =p | pR p1p p2

In the above, R stands for the set of real numbers, and real numbers p and q are called 

the left-bound and right-bound of time-element t, respectively. The absolute values for the 

left and/or right bounds of some time-elements might be unknown. In this case, real 

number variables may be used for expressing relative relations to other time-elements (see 

later). If the left-bound and right-bound of time-element t are the same, t is called a time 

point; otherwise it is called a time interval. Without confusion, time-element [p, p] is taken 

as identical to point p. Also, if a time-element is not specified as open or closed at its left 

(right) bound (that is, the left (right) type of the time-element is unknown), we shall use 

―<‖ (or ―>‖) instead of ―(‖ and ―[‖ (or ―)‖ and ―]‖) as for its left (or right) bracket. In 

addition, the temporal duration of a time-element t, Tdur(t), and the temporal gap between 

two adjacent elements t1and t2, Tgap (t1, t2) can be defined as below: 

t = <p, q>  Tdur(t) = q – p 

t1 = <p1, q1> , t2 = <p2, q2> Tgap (t1, t2) = |p2 – q1| 
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Following Allen‘s terminology [All1984], we shall use ―Meets‖ to denote the 

immediate predecessor order relation over time-elements, which can be formally defined 

as: 

Meets(t1, t2)  p1,p,p2R(t1 = (p1, p)  t2 = [p, p2) 

 t1 = [p1, p)  t2 = [p, p2))  t1 = (p1, p)  t2 = [p, p2] 

 t1 = [p1, p)  t2 = [p, p2]  t1 = (p1, p]  t2 = (p, p2) 

 t1 = [p1, p]  t2 = (p, p2)  t1 = (p1, p]  t2 = (p, p2] 

 t1 = [p1, p]  t2 = (p, p2]) 

It is easy to see that the intuitive meaning of Meets(t1, t2) is that, on the one hand,  

time-elements t1 and t2 do not overlap each other (i.e. they do not have any part in 

common, not even a point); on the other hand, there is no other time-element standing 

between them.  

Analogous to the 13 relations introduced by Allen for intervals [All1984], there are 

30 exclusive temporal order relations over time-elements including both time points and 

time intervals, which can be classified into the following 4 groups: 

 Relations that relate points to points: 

{Equal, Before, After} 

 Relations that relate points to intervals: 

{Before, After, Meets, Met_by, Starts, During. Finishes} 

 Relations that relate intervals to points: 

{Before, After, Meets, Met_by, Started_by, Contains, Finished_by} 

 Relations that relate intervals to intervals: 

{Equal, Before, After, Meets, Met_by, Overlaps, Overlapped_by, Starts, 

Started_by, During, Contains, Finishes, Finished_by} 
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We shall use a tetrad (T, R, D, G) to express the temporal reference of a given 

collection of temporal propositions, where: 

 T = {t1, …, tn} is a finite set of time elements, expressing the knowledge 

(possibly incomplete) of what time elements are involved with respect to the 

given collection of propositions; 

 R = {R(ij) | R(ij) = r(ij)1  …   r(ij)
m(ij), 1 ≤ i, j ≤ n; i ≠ j} is a collection of 

disjunctions of temporal relations over T, expressing the knowledge (possibly 

incomplete) as to how the time elements in T are related to each other. Here, r(ij)
k 

is one of the possible temporal relations as classified above. 

 D is a collection of duration assignments (possibly incomplete) to every time 

element in T. 

 G is the collection of temporal gap assignments to each adjacent pair of time 

elements in T. 

The definition of these derived temporal order relations in terms of the single relation 

Meets is straightforward. For example:  

Before(t1, t2)  tT(Meets(t1, t)  Meets(t, t2)) 

Based on such a time theory, a time-series Tn can be defined as a vector of 

time-elements temporally ordered one after another [MBZ2008]. Formally, a general 

time-series is defined in terms of the following schema: 

GTS3.1) Tn = [t1, …, tn] = [<p1, q1>, …, <pn, qn>] 

GTS3.2) R = [Meets(ti, ti+1)Before(ti, ti+1) ], for all i = 1, …, n-1 

GTS3.3) Tdur = [Tdur(ti) ]= [qi – pi ], for some i where 1≤ i ≤ n. 

GTS3.4) Tgap = [Tgap(ti, ti+1)] = [pi+1 – qi ].for some i where 1≤ i ≤ n-1. 
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Generally speaking, a time-series may be incomplete in various ways. For example, 

if the relation between tj and tj+1 is ―Before‖ rather than ―Meets‖, it means that the 

knowledge about the time-element(s) between tj and tj+1 is not available. In addition, if 

Tdur(tk) is missing for some k, it means that duration knowledge as for time-element tk is 

unknown. Correspondingly, a complete time-series is defined in terms of the schema as 

below: 

CTS3.1) T = [t1, …, tn] = [<p1, q1>, …, <pn, qn>] 

CTS3.2) R = [Meets(ti, ti+1)], for all i = 1, …, n-1]. 

CTS3.3) Tdur = [Tdur(ti) ]= [qi – pi], for all i = 1, …, n. 

CTS3.4) Tgap = [Tgap(ti, ti+1) = 0], for all i = 1, …, n-1. 

Section 3.1.2 States and State-sequences  

The validation of data is usually dependent on time. For instance, $1000 (account 

balance) can be valid before and on 1 January 2003 but become invalid afterwards. We 

shall use ―fluents‖ to represent Boolean-valued, time-varying data, and denote proposition 

―fluent f holds true over time t‖ by formula Holds(f, t) : 

(F1) (f, t)  t1(Part(t1, t)  Holds(f, t1)) 

That is, if fluent f holds true over a time-element t, then f holds true over any part of 

t. 

(F2) t1(Part(t1, t)   t2 (Part(t2, t1)  Holds(f, t2)))  Holds(f, t) 

That is, if any part of time t contains a part of itself over which fluent f holds true, 

then f holds true over t. Here, 

 Part(t1, t)  Equal(t1, t)  Starts(t1, t)  During(t1, t)  Finishes(t1, t) 

(F3) Holds(f1, t)  Holds(f2, t)  Holds(f1  f2, t) 
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That is, if fluent f1 or fluent f2 holds true over time t, then at least one of them holds 

true over time t. 

(F4) Holds(not(f), t)  t1(Part(t1, t)  Holds(f, t1)) 

That is, the negation of fluent f holds true over time t if and only if fluent f does not 

hold true over any part of t. 

(F5)Holds(f, t1) ޔ Holds(f, t2) ޔ Meets(t1, t2)  Holds(f, t1t2) 

That is, if fluent f holds true over two time-elements t1 and t2 that meet each other, 

then f holds over the ordered-union of t1 and t2. 

A state is defined as a collection of fluents. Following the approach proposed in 

[MBZ2008], we shall use Belongs(f, s) to denote that fluent f that belongs to the collection 

of fluents representing state s. For the reason of simple expression, if f1, …, fm are all the 

fluents that belong to state s, we shall represent s as <f1, …, fm>. Also, without confusion, 

we shall use formula Holds(s, t) to denote that s is the state of the world with respect to 

time t, provided that: 

(F6) s1 = s2  f (Belongs(f, s1)  Belongs(f, s2)) 

That is, a state s holds true over time t if and only if every fluent in the s holds true 

over time t. 

Consequently, a state-sequence S is defined as a list of states together with its 

corresponding time-series Tn. A general state-sequence is defined in terms of the schema 

as below: 

GSS1) Sn = [s1, …, sn] 

GSS2) H = [Holds(si, ti)], for all i = 1, …, n, where [t1, …, tn] is a time-series. 
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Correspondingly, a state-sequence is defined as complete if and only if the 

corresponding time-series is complete. 

According to the basic set of axioms with respect to the point and interval based 

time-series theory [MH2006], for any two adjacent time elements t1 and t2 such that 

Meets(t1, t2), we can denote the ordered union of t1 and t2 as t1  t2. If Holds(s, t1), 

Holds(s, t2) , we have: 

Holds(s, t1  t2) 

Tdur(t1  t2) = Tdur(t1) + Tdur(t2) 

That is, the ―ordered union‖ operation over time elements is consistent with the 

conventional ―addition‖ operation over the duration assignment function, i.e., ‗Tdur‘. 

Section 3.2 State-based Subsequence matching  

Subsequence matching is one of the most significant associations between 

state-sequences. First, we should note the differences between ―substring‖ and 

―subsequence‖ which are often cited in computer science and mathematics. The notion of 

string is always regarded as a synonym for sequence, however, substring is different from 

subsequence. 

 Substring: A substring of a string (sequence) 1... nS s s can be represented 

as 1
ˆ ...i m iS s s  , where 0 i and m i n  , which denotes the consecutive 

part of the string S. 

 Subsequence: a subsequence of a sequence (string) 1... nS s s  can be 

represented as 
1

ˆ ...
mi iS s s where 1 21 ... mi i i n      or we can say the 

subsequence is exacted from a sequence along the same temporal order.  
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From the above definition, we can see that a substring of a string must be a 

subsequence of the string, rather than vice versa. For example, ―ABCD‖ is a substring as 

well as a subsequence of ―ABCDEFG‖, however, ―ABD‖, which is a subsequence of 

―ABCDEFG‖, is not a substring of  ―ABCDEFG‖. 

Section 3.2.1 Formal Characterization of State-sequence Matching 

The notion of state is fundamental for many state-based applications; a state 

represents a static snapshot of the world of discourse, while the dynamic historical 

scenarios of the world can be characterized in terms of temporally ordered 

state-sequences. Generally speaking, a state-sequence presents a sequence of data, 

measured and/or spaced typically at successive times, which can be either points or 

intervals. State-sequence matching is a popular research topic in state-based systems and 

has been applied in various areas such as financial data analysis [WSZ2004], audio 

recognition [ZS2003], visual information retrieval [SSHZ2009], etc. Normally, 

state-sequence matching can be divided into two categories: whole matching [AFS1993, 

BKSS1990] (i.e., all state-sequences have the same length) and subsequence matching 

[AFS1993, MWL2001] (i.e., state-sequences have various lengths). Obviously, the whole 

matching problem is in fact a special case of the subsequence matching problem.  

Followed by the formal tetrad characterization of state-sequence, the two 

state-sequences Xm and Yn to be matched can be defined as:  

GSSX1) Xm = [x1, …, xm] 

GSSX2) H = [Holds(xi, ti)], for all i = 1, …, m,  

where [t1, …, tm] is a time-series:  

GTSX1) Tm= [t1, …, tm] = [<p1, q1>, …, <pm, qm>] 

GTSX2) R= [Meets(ti, ti+1)Before(ti, ti+1)], for all i = 1, …, m-1 

GTSX3) [ ] [ ( )] [ ]dur i dur i i iT d T t q p    , for all i = 1, …, m. 

GTSX4) 1 1[ ] [ ( , )] [ ]gap i gap i i i iT g T t t p q      for all i = 1, …, m-1and 0 0g  . 
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Analogously: 

GSSY1) Yn = [y1, …, yn] 

GSSY2) H‘ = [Holds(yj, '
jt )], for all j = 1, …, n,  

where [ ' '
1,..., nt t ] is a time-series:  

GTSY1) ' ' '

1
[ ,..., ]

n n
T t t = [ ' ' ' '

1 1, ,..., ,n np q p q    ] 

GTSY2) ' ' ' ' '

1 1[ ( , ) ( , )]j j j jR Meets t t Before t t   for all j = 1, …, n-1 

GTSY3) ' ' ' ' '[ ] [ ( )] [ ]dur j dur j j jT d T t q p    , for all j = 1, …, n. 

GTSY4) ' ' ' ' ' '
1 1[ ] [ ( , )] [ ]gap j gap j j j jT g T t t p q      for j = 1, …, n-1and '

0 0g  . 

Based on the tetrad representation of time-series and state-sequences, 3 temporal 

aspects should be taken into account: (i) Temporal Order (also known as temporal 

shifting tolerance, which has been taken into account by most ED-based similarity 

measurement approaches in the spirit of dynamic programming) (ii) Temporal Duration 

and (iii) the Temporal Gap, since they will vary the meanings of the state-sequences. 

For instance, the story (state-sequence) I (as SI shown in Figure 3.1): ―I ate for half an 

hour. After 1 hour, I walked out for β hours and then took a shower for half an hour‖.  

 

Figure 3.1  Temporal illustration of the three stories 

The time-series can be described as below: 

GSSI1) SI= [s1, s2, s3] 

GSSI2) Holds(si,  ti), for all i = 1, 2, 3. 

SI 

SII 

SIII  

0.5 

eat 

walk 

shower 
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Where s1, s2, s3 denote actions (states) ―eat‖, ―walk‖ and ―shower‖ respectively and 

[t1, t2, t3] is its corresponding time-series described as a tetrad: 

GTSI = (T, R, Tdur,Tgap) with 

GTSI1) T = [t1, t2, t3] 

GTSI2) R = [Before(t1, t2), Meets(t2, t3)] 

GTSI3) Tdur = [Tdur(t1)=0.5, Tdur(t2)=2, Tdur(t3)=0.5] 

GTSI4) Tgap = [Tgap(t1, t2), Tgap(t2, t3)]= [p21 – p12, p31 – p22] = [t12, 0] 

And its corresponding complete description is (t12 denotes the time-element 

standing between t1 and t2) CTSI = (T, R, Tdur,Tgap) with: 

CTSI1) T = [t1, t12, t2, t3] 

CTSI2) R = [Meets (t1, t12), Meets (t12, t2), Meets(t2, t3)] 

CTSI3) Tdur = [Tdur(t1)=0.5, Tdur(t12)=1, Tdur(t2)=2, Tdur(t3)=0.5] 

CTSI4) Tgap = [Tgap(t1, t2), Tgap(t2, t12), Tgap(t2, t3)]= [0, 0, 0]  

Let us think about story II as SII shown in Figure 3.1: ―I ate for half an hour. Then 

walked out for β hours and then took a shower for half an hour‖.  

Obviously, the three states (events) have the same temporal order (t1, t2, t3) in 

these two stories (state-sequences). However, the lengths of temporal gap standing 

between ―ate‖ and ―walked out‖ are different in the two stories (1 hour in story I and 0 

in story II). In addition, for story III (as SIII  shown in Figure 3.1): ―I ate for half an hour. 

After 1 hour, I walked out for 5 hours and then took a shower for half an hour‖, where 

the lengths of the temporal gaps between each adjacent state pair are the same as those 

in story I. However, the duration of the state ―walked out‖ is various. The statement ―I 

walked out for 5 hours‖ in story III might be abnormal. 
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Section 3.2.2 General Framework for State-sequence Matching 

Based on the formal characterization of time-series and state-sequences, the 

general similarity measurement with respect to the non-temporal information and the 

rich temporal information for two given state-sequences is defined as: 

( , ) ( , ) ( , )
m n ntem ntem m n tem tem m n

GSM X Y w Dis X Y w Dis X Y               (3-1) 

where ( , )
ntem m n

Dis X Y and ( , )
tem m n

Dis X Y denote the non-temporal distance and temporal 

distance, respectively with the corresponding weight
ntem

w and
tem

w . 

Section 3.2.2.1 Non-temporal Matching 

Non-temporal matching means common elemental state matching of the 

state-sequences Xm and Yn, due to the fact that the elemental state appearing in the 

state-sequences are not actually ordered by their index, which in turn means the 

state-sequences are actually regarded as sets of states. It is a combinational problem to 

pair the two state-sequences in the first place. In general, for m ≥ n, there are mPrn = 

m!/(m-n)! ways of pairing Xm and Yn. Let Pr denote the set of all possible ordered 

vectors formed by selecting, in order, n random elemental states from Xm. It seems 

reasonable to take the pairing which gives the minimal overall distance. Hence, in this 

thesis, we shall define the non-temporal distance between Xm and Yn as: 

( , ) ( , )ntem m n pr Pr ntem nDis X Y min dis pr Y                    (3-2)
                 

where 2

1 1

( , ) ( , ) /
n n

ntem n jpr jpr j j ipr
j i

dis pr Y w dis pr y w
 

   , pr = [pr1, …, prn] and. 

Section 3.2.2.2 Temporal Matching 

Based on the triad representation of state-sequences, the temporal measurement 

between two given state-sequences Xm with Yn with respect to the 3 temporal aspects is 
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defined recursively as below: 

1

1

1 1

( , ) ( )

( , ) min ( , ) ( )

( , ) ( )

tem m n del m

tem m n tem m n ins n

tem m n sub m n

Dis X Y W Cost x

Dis X Y Dis X Y W Cost y

Dis X Y W Cost x y








 

 
  
  

       (3-3)  

where m, n ≥ 1, ( )mCost x   , ( )nCost y and ( )m nCost x y denote the cost 

function for edit operations deletion,  insertion and substitution, respectively, and 

{ , , }( ) ( ),i i i Tord Tdur TgapCost a b w Cost a b              (3-4) 

and( ) {( ),( ),( )}m n m nya b x x y      . 

The initialization is set as below: 

0 0

0

0

( , ) 0

( , ) 1

( , ) , 1

tem

tem j

tem i

Dis X Y

Dis X Y for j

Dis X Y for i



  

  

ˈ                      (3-5) 

Section 3.2.3 General Definition of Cost Function 

The cost function is a significant issue in similarity measurement. We have 

currently two categories: binary-value cost functions which are not sensitive to noise 

and real-penalty models which are more reasonable for real-life application but 

sensitive to noise since the operation cost with respect to a noise becomes much larger 

than normal states and will take the total cost into a much higher level. For instance, 4
1A  

= [1, 2, 3, 4], 4
1B  = [1, 2, 5, 4], 4

1C = [1, 2, 6, 4], 4
1D = [1, 2, 1000, 4] (for the sake of 

convenience, we only consider the cost function of temporal order since the cost 

functions for temporal gap and temporal duration can be evaluated analogously). 

Assume that the states in any two state-sequences will be matched bi-objectively along a 

corresponding temporal order. Then in the binary-value models, CostTord( 4
1A , 4

1B ) = Cost-

Tord{(1,1), (2,2), (3,5), (4,4)}= CostTord{0, 0, 1, 0}=1, CostTord( 4
1A , 4

1D ) CostTord{(1,1), 

(2,2), (3,1000), (4,4)} = CostTord{0, 0, 1, 0}=1. So CostTord( 4
1A , 4

1B ) = CostTord( 4
1A , 4

1D ) 
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which in turn means it is not sensitive to the noise (1000 in 4
1D ) since the cost between 

all the unmatched state pairs (may include noise) is calculated as 1. Analogously, Cost-

Tord( 4
1A , 4

1B ) = CostTord( 4
1A , 4

1C ) = 1 which means it cannot distinguish the various values 

(s3 = 5 in 4
1B  while 6 in 4

1C ) in the domain of the states. In order to make up for this 

deficiency, the real-penalty cost function emerges, where the real distance between 

state pairs instead of the binary value (0/1) is accumulated. For instance, with respect to 

the real-penalty cost function, CostTord( 4
1A , 4

1B ) =CostTord{(1,1), (2,2), (3,5), (4,4)}= 

CostTord{0, 0, 2, 0} = 2 and CostTord( 4
1A , 4

1D ) CostTord{(1,1), (2,2), (3,6), (4,4)} = Cost-

Tord{0, 0, 3, 0} = 3 (here the simplest one-dimension LP distance is employed for the 

real distance between each state pair). So CostTord( 4
1A , 4

1B ) < CostTord( 4
1A , 4

1C ). Obviously, 

it is more reasonable than the binary-value cost function. However, CostTord( 4
1A , 4

1D ) 

CostTord{(1,1), (2,2), (3,1000), (4,4)} = CostTord{0, 0, 997, 0}=997 ب CostTord( 4
1A , 4

1B ), 

even though they have just got one unmatched state pair, which means it is very 

sensitive to noise since the operation on state ―1000‖ (with insertion, deletion or 

substitution) is much more expensive. Therefore, the problem of how to filter out the 

noise, or decrease its influence, should be taken into account in a real-penalty cost 

function. Unfortunately, none of the existing real-penalty distance models have 

considered it. 

To filter out the noise or decrease its influence, a cost function is defined as: 

{ , , }

( ) ( )
( )

i i ii

for all i Tord Tgap Tdur

w Cost a b if Cost a b
Cost a b

elsec




    
  





       (3-6)  

Where , { , , }i ja b x y  and c is a constant usually set to 0 (to filter out the noise) or the 

maximum cost that we have currently got (release the influence of the noise). 

As for subsequence matching, insertion (or deletion) is required to align the two 
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state-sequences to be matched. It is important especially using the real-penalty cost 

function since the way of insertion (or deletion) will vary the cost value during 

matching. Reviewing the typical three real-penalty distance models ERP, DTW and 

TWED, the main difference is: when insertion (or deletion) is required to align 

state-sequence mX and nY , ERP inserts a constant g (usually 0) into mX while DTW 

duplicates the previous state inmX and TWED duplicates the previous state innY in terms 

of the graphical editor paradigm [12]. For instance, mX = [1, 2], nY = [1, 3, 6], mX  

may be aligned into [1, 2, _ ], [1, 2, 2] and [1, 2, 3] in ERP, DTW and TWED 

respectively. These different disposals will result in various costs for the insertion, 

deletion and substitution operations. We shall inherit the spirit of EDR and leave the 

task of how to adjust the importance of different operations to their corresponding 

weight
delW ,

insW and
subW . Therefore, the cost functions of GSM are defined as below: 

(0, )

( ) ( ,0)

( , )

Lp i i

Tord i j Lp j j

Lp i j

dist y if x

Cost x y dist x if y

dist x y else





 
  



                 (3-7) 

'' '

'''

'''

,

,

,

(0 ) 0

( ) ( 0) 0

( )

Lp j i

Tdur i j Lp i j

Lp i j

dist d

dist d

dist d

if d

Cost x y d if

d else

 
  



                 (3-8) 

'
1 1

'
1 1

'
1 1

,

,

,

(0 ) 0

( ) ( 0) 0

( )

Lp j i

Tgap i j Lp i j

Lp i j

dist g g

dist g g

dist g g

if

Cost x y if

else

 

 

 




  

         

        (3-9) 

Where i = 1, …, m, j = 1, …, n. 

In summary, the aspects considered in GSM compared with existing similarity 

measurements are exhibited in Table 3.1. GSM is the only similarity measurement that 

accounts for both the non-temporal aspects and rich temporal aspects. Meanwhile, it is 

also a reasonable real-penalty-style measurement and robust to noise. 



CHAPTER 3 GENERAL SIMILARITY MEASUREMENT FOR STATE-BASED 
SEQUENCE MATCHING 

64 

Table 3.1 The aspects considered in similarity measurements 

  Aspects 
Model 

Non- 
temporal 

Temporal Difference Cost Function 
Temporal  

Order 
Temporal  
Duration  

Temporal 
Gap  

Anti- 
noise 

Real Penalty 

LCSS       
CLCS       
ACS       

T-WLCS       
OED       
EDR       
DTW       
ERP       

TWED       
GSM       

All the non-temporal and temporal distances have been taken into account (as 

shown in table 3.2): 

Table 3.2 General similarity measurement 

Distance Aspects Consideration 

Non-temporal Aspect  Formula (3-2) 

Temporal Aspect 
Temporal Order Formula (3-7) 
Temporal Gap Formula (3-8) 

Temporal Duration Formula (3-9) 

Cost Function 
Anti-noise Formula (3-6) 

Real Penalty Formula (3-6) 

In summary, a formal characterization of time-series and state-sequence has been 

presented based on the typed point based interval. Benefitting from the formal 

consideration of temporal aspects (temporal order, temporal duration and temporal 

gap), a general similarity measurement named as GSM, which covers both 

non-temporal and all the three temporal aspects, has been designed for general 

state-sequence matching. In the next chapter, we shall demonstrate the generality of 

proposed GSM and examine the validity and effectiveness for state-sequence matching.
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CHAPTER 4 GENERALIZATION AND 

APPLICATION OF GSM 

Since the GSM proposed in chapter 3 addresses both the non-temporal aspects and 

all the 3 temporal aspects, it is versatile enough to subsume other existing similarity 

measurements in the literature of sequence matching. In fact, most of those existing 

measurements can be taken as special cases of GSM by means of specifying the 

non-temporal and temporal weights, and the cost functions, correspondingly. 

Meanwhile, to demonstrate the performance of the proposed GSM, experiments were 

conducted on 6 benchmark datasets. 

Section 4.1 The Generalization of GSM 

In this section, we shall analyse the powerful expressive ability of GSM by 

deducing the conventional existing measurements as its special cases. 

Section 4.1.1 Original ED Special Case 

Set the following restriction: 

1) wntem = 0, wtem = 1 

2) Wdel  = Wins = Wsub = 1 

3) wTord  = wTgap = wTdur = 0 

4) CostTord(xi, φ)  = CostTord(φ,yj ) = 1, CostTord(xi,yj) = (xi,yj) with 

0
( , )

1

i jED
Trod i j

if x y
Cost x y

else

  


 

Then we will get the recursion formulation of OED: 
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1

1

1 1

( , ) 1

( , ) min ( , ) 1

( , ) ( , )

i j

i j i j

ED
i j Tord i j

ED X Y

ED X Y ED X Y

ED X Y Cost x y





 

 
 




           (4-1) 

which in turn means in OED: 

1) Only the temporal order aspect has been accounted for 

2) The three operations have the same status 

3) No temporal gap or duration difference is taken into account 

4) The cost function is binary-value 

 

Section 4.1.2 EDR Special Case 

Set the following restriction: 

1) wntem = 0, wtem = 1 

2) Wdel  = Wins = Wsub = 1 

3) wTord  =1, wTgap = wTdur = 0 

4) CostTord(xi, φ)  = CostTord(φ,yj)= 1, CostTord(xi, yj) = EDR
TrodCost (xi, yj) with 

0 ( , )
( , )

1

LP i jEDR
Trod i j

if d x y
Cost x y

else

  


  

where ( , )LP i jd x y denotes the LP-Norm distance between xi and yj. Then we will get the 

formulation of EDR: 

1

1

1 1

( , ) 1

( , ) min ( , ) 1

( , ) ( , )

i j

i j i j

EDR
i j Tord i j

EDR X Y

EDR X Y EDR X Y

EDR X Y Cost x y





 

 
 




              (4-2) 
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Similar to the basic ED, the cost function is binary value (0/1). In contrast, in order to 

be applied to real life data, EDR relaxes the matching equality by parameter since the 

strict equality in ED is limited to symbol (or string) matching.  

 

Section 4.1.3 DTW Special Case 

In the formula of GDM, set the following restriction: 

1) wntem = 0, wtem = 1 

2) Wdel  = Wins = Wsub = 1 

3) wTord  =1, wTgap = wTdur = 0 

4) CostTord(xi,φ)  = CostTord(φ, yj) = CostTord(xi, yj) = dLP(xi, yj)  

Then we will get the formulation of DTW: 

1

1

1 1

( , )

( , ) ( , ) min ( , )

( , )

i j

i j LP i j i j

i j

DTW X Y

DTW X Y d x y DTW X Y

DTW X Y





 




  



           (4-3)  

Comparing with the binary-value models like basic ED and EDR, DTW is a 

real-penalty model which takes real cost (computed with LP-Norm) for each operation 

and it duplicates the previous state when inserting or deleting. 

Section 4.1.4 ERP Special Case 

Set the following restriction: 

1) wntem = 0, wtem = 1 

2) Wdel  = Wins = Wsub = 1 

3) wTord  =1, wTgap = wTdur = 0 

4) CostTord(xi,φ) = dLP(xi, g), CostTord(φ,yj) = dLP(g, yj),  

CostTord(xi, yj) = dLP(xi, yj)  
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Then we will get the formulation of ERP: 

1

1

1 1

( , ) ( , )

( , ) min ( , ) ( , )

( , ) ( , )

i j LP i

i j i j LP j

i j LP i j

ERP X Y d x g

ERP X Y ERP X Y d g y

ERP X Y d x y





 

 


 
 

            (4-4) 

   Distinguishing from DTW, ERP adds a constant g (usually set to 0) instead of 

duplicating the previous state when inserting or deleting. 

 

Section 4.1.5 TWED Special Case 

Set the following restriction: 

1) wntem = 0, wtem = 1 

2) Wdel  = Wins = Wsub = 1 

3) wTord  =1, wTgap = v,  wTdur = 0 

4) 

1 1

1 1

( , ) ( , ) ( , )

( , ) ( , ) ( , )

( , ) ( , ) ( , )

( ( , )

TWED TWED
i Tord i i Tgap i i

TWED TWED
j Tord j j Tgap j j

TWED TWED
i j Tord i j Tord i j

TWED
Tgap i j

Cost x Cost x x v Cost x x

Cost y Cost y y v Cost y y

Cost x y Cost x y Cost x y

v Cost x y Co

 

 
 

 

    
    


  
  1 1( , ))TWED

Tgap i jst x y 

 

with  
( , ) ( , )

( , ) ( , )

TWED
Tord i j LP i j

TWED
Tgap i j LP

Cost a b d a b

Cost a b d i j

 



 

 for 1 1 1 1( , ) {( , ),( , ),( , ),( , )}i j i i j j i j i ja b x x y y x y x y     

Then we will get the formulation of TWED 

1

1

1 1

( , ) ( , )

( , ) min ( , ) ( , )

( , ) ( , )

i j i

i j i j j

i j i j

TWED X Y Cost x

TWED X Y TWED X Y Cost y

TWED X Y Cost x y








 

 


 
 

         (4-5) 

In TWED, the temporal gap difference is counted, but no duration difference has 

been taken into account. Meanwhile, based on the timestamp theory, the index value of 

the states are used to compute the temporal gap distance, where, for the corresponding 
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the tetrad (T, R, Tdur, Tgap) and triad (T‟, R‟, '

dur
T , '

gap
T ) we have: 

For time-series Tm = [t1, …, tm] and state-sequences Xm = [x1, …, xm] with H = 

[Holds(xi, ti)], for all i = 1, …, m: 

1) Tm= [1, β, …, m] = [<1, 1>, [<2, 2>, …, <m, m>] 

2) R = [Before(ti, ti+1)], for all i = 1, …, m-1 

3) [ ] [ ] [0,...,0]dur i i iT d q p    , for all i = 1, …, m. 

4) 1[ ] [ ] [1,1,...,1]gap i i iT g p q     for all i = 1, …, m-1and 0 0g  . 

And for time-series ' ' '

1
[ ,..., ]

n n
T t t  and state-sequences Yn = [y1, …, yn] with H‘ = 

[Holds(yj, 
'
jt )], for all j = 1, …, n: 

1) '

n
T  = [1, β, …, n] = [<1, 1>, [<2, 2>, …, <n, n>] 

2) ' ' '

1[ ( , )]j jR Before t t for all j = 1, …, n-1 

3) ' ' ' '[ ] [ ] [0,...,0]dur j j jT d q p    , for all j = 1, …, n. 

4) ' ' ' '
1[ ] [ ] [1,1,...1]gap j j jT g p q     for j = 1, …, n-1and '

0 0g  . 

Section 4.1.6 LCSS Special Case 

Distinguishing from other models, LCSS considers the matched states to describe 

the similarity (inverse to the distance used in ED based models). So the min is replaced 

by max in LCSS and the initialization should be changed into a minimum value 0 

correspondingly. The multi-dimensional LCSS uses  to control the matching in time 

that can be regarded as the temporal gap range when duration function equals to 0 and 

the temporal relationship between each two adjacent states is only ―before‖. N.B. the 

temporal gap is just used to restrict the matching range in time. No cost on temporal 

gap difference is counted (set 3)). 

In LCSS, 

1) wntem = 0, wtem = 1 



 CHAPTER 4 GENERALIZATION AND APPLICATION OF GSM 

70 

2) Wdel  = Wins =0, Wsub = 1 

3) wTord  =1, wTgap = wTdur = 0  

4) ( , ) ( , )=0Tord i Tord jCost x Cost y  , , ,( ) ( )LCSS
Tord i j i jTordCost x y Cost x y  

Then we will get the formulation of LCSS: 

1

1

1 1

0 0 0

( , )
( , ) max

( , )

( , ) ( , )

i j

i j
i j

LCSS
i j Tord i j

if i or j

LCSS X Y
LCSS X Y

LCSS X Y

LCSS X Y Cost x y





 

 



 

 

            (4-7) 

where: 

( , )
1

( , )( , )

0

Tord i j

LCSS
Tgap i jTord i j

Cost x y
if

Cost x yCost x y

else





 


 



                    (4-8) 

Where, İ and į are employed to control the matching in space and time. 

Section 4.1.7 CLCS Special Case 

As reviewed in chapter 2, CLCS is the further disposal of LCSS; therefore it has 

the same setting as LCSS. 

1) wntem = 0, wtem = 1 

2) Wdel  = Wins =0, Wsub = 1 

3) wTord  =1, wTgap = wTdur = 0  

4) ( , ) ( , )=0Tord i Tord jCost x Cost y  , , ,( ) ( )CLCS
Tord i j i jTordCost x y Cost x y  

Despite the length of the longest common subsequence, the real common 

subsequence is also recorded according to formula (2-2), and then the CLCS can be 

calculated with formulas (2-5) to (2-8). 



 CHAPTER 4 GENERALIZATION AND APPLICATION OF GSM 

71 

Section 4.1.8 ACS Special Case 

Similar to LCSS, we set: 

1) wntem = 0, wtem = 1 

2) Wdel  = Wins =0, Wsub = 1 

3) wTord  =1, wTgap = wTdur = 0  

4) ( , ) ( , )=0Tord i Tord jCost x Cost y  , , ,( ) ( )ACS
Tord i j i jTordCost x y Cost x y  

When substituting the first 3 settings into formula (3-1) to (3-4), we can get: 

1 1 ,( , ) ( , ) ( )ACS
i j i j Tord i jACS X Y ACS X Y Cost x y            (4-9) 

with: 

1 1

1 1

1 1

,

( , )

( ) ( , ) ( , )

2 ( , )

i j i j

ACS
Tord i j i j i j

i j i j

ACS X Y if x y

Cost x y ACS X Y ACS X Y

ACS X Y if x y

 

 

 

 
 
  
      

(4-10) 

Therefore: 

1 1

1 1

1 1

( , ) 2

( , ) ( , ) ( , )

( , )

i j i j

i j i j i j

i j i j

ACS X Y if x y

ACS X Y ACS X Y ACS X Y

ACS X Y if x y

 

 

 

  
 
  
      

(4-11) 

Section 4.1.9 T-WLCS Special Case 

As a LCS-based similarity measurement, the first three settings of the T-WLCS 

special case are the same as those in the LCSS special case but with different cost 

functions in the fourth setting which can be listed as: 

1) wntem = 0, wtem = 1 

2) Wdel  = Wins =0, Wsub = 1 
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3) wTord  =1, wTgap = wTdur = 0  

4) ( , ) ( , )=0Tord i Tord jCost x Cost y  , , ,( ) ( )T WLCS
Tord i j i jTordCost x y Cost x y  

We can define the formula of T-WLCS as: 

1

1

1 1 ,

( , )

( , ) max ( , )

( , ) ( )

i j

i j i j

T WLCS
i j Tord i j

T WLCS X Y

T WLCS X Y T WLCS X Y

T WLCS X Y Cost x y






 

 
  


 

    

(4-12) 

with: 

,
1

( )
0

i jT WLCS
Tord i j

i j

if x y
Cost x y

if x y


  



        

(4-13) 

Therefore: 

1 1

1 1

1 1

max[ ( , ), ( , ),

( , ) ( , )] 1

max[ ( , ), ( , )]

i j i j i j

i j i j

i j i j i j

T WLCS X Y T WLCS X Y if x y

T WLCS X Y T WLCS X Y

T WLCS X Y T WLCS X Y if x y

 

 

 

      


  

(4-14) 

Section 4.2 The Optimal Temporal Common Subsequence 

In this section, so as to distinguish from the concept of common subsequence in 

conventional LCS, we define the temporal common subsequence of two 

state-sequences as the common subsequence where each state is different from its 

neighbour(s) (predecessor and successor): 

Section 4.2.1 Definition of OTCS 

Definition 4.1: Given two state-sequences, X=[x1, x2, …, xm] and Y=[y1, y2,…, yn], 

with time series TX=[tx1, tx2, …, txm] and TY=[ty1, ty2,…, tyn], temporal common 

subsequence is defined as: 

TCS(X, Y) = {[s1, s2,…, st] | s1, s2,…, st {x1, x2, …, xm} { y1, y2,…, yn } and 0 < 



 CHAPTER 4 GENERALIZATION AND APPLICATION OF GSM 

73 

ts1 <  ts2 < … <  tst < min(m, n) and sj ≠ sj+1 for j = 1,…,t-1. 

That is to say, there are no continuous duplications of states in temporal common 

subsequence. Let us return to the examples in figure 1.2 and figure 1.3 in chapter 1: For 

instance, the longest common subsequence of B3 and Cγ is ‗aabbbcd‘, while the 

temporal common subsequence of B3 and Cγ is ‗abcd‘.  Correspondingly, the Optimal 

Temporal Common Subsequence (OTCS) is the one with the highest overall similarity 

integrated by the length of temporal common subsequence, the temporal duration 

difference and temporal gap difference, noted as OTCSL, OTCSD and OTCSG 

respectively. 

Section 4.2.2 The Two Properties of OTCS 

The task is how to solve the OTCS problem for two arbitrary sequences, X and Y. 

First, let us explore the properties of the OTCS function: suppose the current 

state-sequences to be matched is [x1, …, xi-1,  xi] and [y1, …, yj-1, yj] 

1) Matching rules:  xi = yj  

In this case, the current states are matched. In order to detect whether the 

matched states are the continuous duplicated states in the two state-sequences 

respectively, four situations should be considered: 

i) Both of them are continuous duplicated states: xi-1 = yj-1 = xi = yj 

According to the definition of OTCS, to find the temporal common 

subsequence, shorten each state-sequence by deleting the current state. The 

OTCS of the shortened state-sequences is equal to the OTCS of the current 

state-sequences since the continuously duplicated common state(s) will be 

regarded as the same temporal common state with different temporal 

durations in each state-sequence. This means OTCS(Xi, Yj) = OTCSL(Xi−1, 

Yj−1). For example: X = ‗aaaabb‘, Y = ‗aaeebbb‘, xi-1 = yj-1 = xi = yj = ‗b‘, 
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OTCS(‗aaaabb‘, ‗aaeebbb‘) = OTCS(‗aaaab‘, ‗aaeebb‘) = ‗ab‘. 

ii)  Neither of the current states is the continuously duplicated state, but have 

the same predecessor:
 
xi-1 = yj-1  xi = yj  

In this case, the currently matched states can be regarded as the new 

temporal common state. So, shortening each state-sequence by deleting the 

current state, the OTCS of current state-sequences is equal to the OTCS of 

the shortened state-sequences appending the currently matched state. 

OTCS(Xi, Yj) = (OTCSL(Xi−1, Yj−1), xi ) or (OTCSL(Xi−1, Yj−1), yj ). For 

example: X = ‗aaaabbc‘, Y = ‗aaeebbbc‘, ‗b‘ = xi-1 = yj-1  xi = yj = ‗c‘, 

OTCS(‗aaaabbc‘, ‗aaeebbbc‘) = (OTCS(‗aaaabb‘, ‗aaeebbb‘), ‗c‘) = 

‗abc‘ 

iii)  Either of the current states is the continuously duplicated states and 

obviously the two current states have different predecessors: (xi-1  yj-1) & 

(either xi-1 or yj-1= xi = yj).  

There are two sub-cases in this case: xi-1 = xi = yj  or  yj-1= xi = yj, if 

xi-1 = xi = yj, which means xi is the continuously duplicated state, so shorten 

X by deleting xi and the OTCS between the current X and Y is equal to the 

OTCS between the shortened X and current Y: OTCS(Xi, Yj) = OTCS(Xi−1, 

Yj). For example: X = ‗aaaabb‘, Y = ‗aaeeb‘, OTCS(‗aaaabb‘, ‗aaeeb‘) = 

OTCS(‗aaaab‘, ‗aaeeb‘) = ‗ab‘; else, yj-1= xi = yj, which means yj is the 

continuously duplicated state. In the same manner, shorten Y by deleting yj 

and the OTCS between current X and Y is equal to the OTCS between the 

current X and shortened Y: OTCS(Xi, Yj) = OTCS(Xi, Yj−1). for example: X 

= ‗aaaab‘, Y = ‗aaeebbb‘, OTCS(‗aaaab‘, ‗aaeebbb‘) = OTCS(‗aaaab‘, 

‗aaeebb‘) = OTCS(‗aaaab‘, ‗aaeeb‘) = ‗ab‘. To summarize the two 

sub-cases, the OTCS can be calculated as: OTCSL(Xi, Yj) = 

max(OTCSL(Xi−1, Yj), OTCSL(Xi, Yj−1)). 
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iv) Neither of the current states is the continuously duplicated state and have 

different predecessors: xi-1  yj-1  xi = yj  

In this case, the currently matched states can be regarded as the new 

temporal common state. So, after shortening each state-sequence by 

deleting the current state, the OTCS of the current state-sequences is equal 

to the OTCS of the shortened state-sequences appending the currently 

matched state. OTCS(Xi, Yj) = (OTCSL(Xi−1, Yj−1), xi ) or (OTCSL(Xi−1, 

Yj−1), yj ). For example: X = ‗aaaabbc‘, Y = ‗aaeebbbfffc‘, xi-1 = ‗b‘  yj-1 = 

‗f‘  xi = yj = ‗c‘, OTCS(‗aaaabbc‘, ‗aaeebbbfffc‘) = (OTCS(‗aaaabb‘, 

‗aaeebbbfff‘), ‗c‘) = ‗abc‘. 

2) Unmatching rules:  xi  yj 

This means the current states are not matched, and then the OTCS of X 

and Y is equal to the longer of OTCS(Xi,Yj-1) and LCS(Xi-1,Yj).  To explain the 

procedure, we shall demonstrate it by dividing the situation into two cases: 

i) The predecessor of the current state in the first state-sequence matches the 

current state in the second state-sequence: xi-1 = yj. For example, X= 

‗aaaabbc‘, Y= ‗aaeebbb‘, xi-1 = yj = ‗b‘, therefore, OTCS(Xi, Yj) = 

OTCS(Xi-1, Yj) 

ii)  The predecessor of the current state in the second state-sequence matches 

the current state in the first state-sequence: xi = yj-1. For example, Xi= 

‗aaaabb‘, Yj= ‗aaeebbbc‘, xi = yj-1 = ‗b‘, therefore, OTCS(Xi, Yj) = OTCS(Xi, 

Yj-1) 

To summarize the two cases in the second property, OTCS(Xi, Yj) = 

longer(OTCS(Xi-1, Yj), OTCS(Xi, Yj-1)). 
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Section 4.2.3 The Length of The OTCS by Dynamic Programming 

According to the two properties of OTCS, the algorithm calculating the length of 

the optimal temporal common subsequence between state-sequences Xi and Yj for all 1 

≤ i ≤ m and 1 ≤ j ≤ n can be illustrated as algorithm 4.1, where the length of OTCS will 

be stored in OTCSL(i, j) and OTCSL(m, n) returns the length of OTCS of X and Y. 

Algorithm 4.1:  The length of the OTCS  

 

 In algorithm 4.1, the continuously duplicated states are not re-counted as new 

common states in any state-sequence. For example, for the same five state-sequence: S1 

= [abcd], S2 = [aaaaabc], S3 = [aabbccdd], S4 = [aaebbfccgdd] and S5 = [aaaabbb], the 

OTCS length is illustrated as table 4.1. For reasons of simple illustration, the temporal 

duration of each state is set as 1 and the temporal gap between each pair of adjacent 

states is set as 0 if they are identical, or 1 if they are different.  

Input: two state-sequences Xm and Yn. 
Output: the length of the longest temporal common subsequences OTCSL(Xm, Yn). 

1) Initiation :  x0 = y0 = null 
for  i = 0 : m:  OTCSL(i, 0) = 0  
for  j = 0 : n:  OTCSL(0, j) = 0 

2)  Recursion: 
          for i = 1: m 
           for  j = 1 : n 
              if  xi = yj # matched 
        case 1:  xi-1 = yj-1 = xi = yj  

               OTCSL(i, j) = OTCSL(i − 1, j − 1)  
         case 2:  xi-1 = yj-1  xi = yj  
               OTCSL(i, j) = OTCSL(i − 1, j − 1) + 1 
            case 3: (xi-1  yj-1) & (either xi-1 or yj-1= xi = yj)  
                      OTCSL(i, j) = max(OTCSL(i−1, j), OTCSL(i, j−1)) 

                  case 4: xi-1  yj-1  xi = yj  
               OTCSL(i, j) = OTCSL(i − 1, j − 1) + 1 

              else  xi  yj # unmatched 
OTCSL(i, j) = max(OTCSL(i−1, j), OTCSL(i, j−1)) 

     3) Accomplishment 
           OTCSL(Xm, Yn) = OTCSL(m, n) 



 CHAPTER 4 GENERALIZATION AND APPLICATION OF GSM 

77 

Table 4.1  OTCS length table 

OTCSL Ø a a e b b f c c g d d 

Ø 0 0 0 0 0 0 0 0 0 0 0 0 

a 0 1 1 1 1 1 1 1 1 1 1 1 

a 0 1 1 1 1 1 1 1 1 1 1 1 

b 0 1 1 1 2 2 2 2 2 2 2 2 

b 0 1 1 1 2 2 2 2 2 2 2 2 

b 0 1 1 1 2 2 2 2 2 2 2 2 

c 0 1 1 1 2 2 2 3 3 3 3 3 

d 0 1 1 1 2 2 2 3 3 3 4 4 

 

From table 4.1, we can see that the duplicated continuous states are regarded as once 

matching which means they are not re-counted as the length of common subsequence. 

For instance, OTCSL(‗a‘,‘a‘) = OTCSL(‗aa‘,‘aa‘) = 1, OTCSL(‗aab‘,‘aaeb‘) = 

OTCSL(‗aabbb‘,‘aaebb‘) = β. Meanwhile, it is necessary to take into account the 

various duplicated continuous states besides the length (number) of common 

subsequence. In OTCS, the various duplications will be counted with various temporal 

durations correspondingly. 

Section 4.2.4 The Temporal Duration and Temporal Gap by Backtracking 

The distinguishing character of OTCS is that besides the length of the optimal 

common subsequence based on the definition 4.1, the temporal duration and temporal gap 

are also taken into account. In order to compute the differences of temporal duration and 

temporal gap, a backtracking technique is developed as shown in Algorithm 4.2: 
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Algorithm 4.2:  Track back of OTCS 

 

During the procedure of backtracking, we simultaneously record ( , )k k kInd f l  

and ' ' '( , )k k kInd f l as the first and the last index of the k-th common state 

between mX and nY , where k = 1, …, L = OTCSL( mX , nY ), ,k kf l א [1, m] and ' ',k kf l א [1, 

n]. According to the typed point-based intervals, the temporal duration 

difference ( , )D m nOTCS X Y and temporal gap difference ( , )G m nOTCS X Y  are calculated as 

below: 

' '
' '

1

( , ) ( ) ( )
k k k k

L

D m n l f l f

k

OTCS X Y q p q p


                    (4-9) 

 
' '

1 1

' '

2

0 1
( , )

( ) ( )
k k k k

L
G m n

f l f l

k

if k
OTCS X Y

p q p q else
 




 

  


             (4-10) 

Finally, the overall similarity with respect to the temporal order, temporal duration 

Function backTrack(OTCSL[0..m,0..n], X[1..m], Y[1..n], i, j) 
If  i=0 or j=0 

return ― ‖ 
Else if  X(i)=Y(j) 
        if  X(i-1)= Y(j-1) 
               return  backTrack(OTCSL, X, Y, i-1, j-1) 
         else % X(i-1)≠ Y(j-1) 
            if   X(i-1)= X(i) or Y(j-1)= Y(j)%one of the predecessor is equal to 

current state 
                if  OTCSL(i-1,j) > OTCSL(i,j-1) 
                    return  backTrack(OTCSL, X, Y, i-1, j) 
                else 
                    return  backTrack(OTCSL, X, Y, i, j-1) 
            else %none of the predecessor is equal to current state 
                return  backTrack(OTCSL, X, Y, i-1, j-1) + X[i] 
     else% X(i)≠Y(j)  
            if  OTCSL(i-1,j) > OTCSL(i,j-1) 
                return  backTrack(OTCSL, X, Y, i-1, j);  
            else 
                return  backTrack(OTCSL, X, Y, i, j-1);  
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and temporal gap is defined as: 

( , ) ( , )

( , ) ( , )
m n Tord L m n

Tdur D m n Tgap G m n

OTCS X Y w OTCS X Y

w OTCS X Y w OTCS X Y

 

   
        (4-11) 

Example evolution: 

First, let us show an example of OTCS. Figure 4.1 presents the OTCS table for 

state-sequences X=[aabbccdddd] and Y=[bbaaeebbbfccccedd], where the elements in 

the table denote the length of the OTCS obtained by the algorithm and the first and the 

last indices of the temporal common states are circled in red and green respectively. For 

instance, for the first common state ‗a‘, (1,2)kInd  , ' (3,4)kInd  , which means it 

starts from the first state and ends at the second state in the first state-sequence X, 

whilst it starts from the third state and ends by the forth state in the second 

state-sequence Y.  

a a b b c c d d d d
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Figure 4.1  OTCS table and OTCS path with OTCS =abcd 



 CHAPTER 4 GENERALIZATION AND APPLICATION OF GSM 

80 

For the same five state-sequences: S1 = [abcd], S2 = [aaaaabc], S3 = [aabbccdd], S4 

= [aaebbfccgdd] and S5 = [aaaabbb]. The examples of OTCS calculation are evaluated 

in the following five tables in table 4.2. In order to clearly see the difference from the 

point of view of temporal order, temporal duration and temporal gap individually, the 

result of OTCS is shown by a triad that denotes the OTCSL, OTCSD and OTCSG 

respectively. From which we can see that we can distinguish the common subsequence 

with the same length by further comparison of the differences of temporal duration and 

temporal gap. 

Table 4.2  Example evolution of OTCS 

(a) OTCS(S1, S1) table 

OTCS(S1, S1) Ø a b c d 

Ø [0,0,0] [0,0,0] [0,0,0] [0,0,0] [0,0,0] 
a [0,0,0] [1,0,0] [1,0,0] [1,0,0] [1,0,0] 
b [0,0,0] [1,0,0] [2,0,0] [2,0,0] [2,0,0] 
c [0,0,0] [1,0,0] [2,0,0] [3,0,0] [3,0,0] 
d [0,0,0] [1,0,0] [2,0,0] [3,0,0] [4,0,0] 

(b) OTCS(S1, S2) table 

OTCS(S1, S2) Ø a a a a a b c 

Ø [0,0,0] [0,0,0] [0,0,0] [0,0,0] [0,0,0] [0,0,0] [0,0,0] [0,0,0] 
a [0,0,0] [1,0,0] [1,1,0] [1,2,0] [1,3,0] [1,4,0] [1,4,0] [1,4,0] 
b [0,0,0] [1,0,0] [1,1,0] [1,2,0] [1,3,0] [1,4,0] [2,4,0] [2,4,0] 
c [0,0,0] [1,0,0] [1,1,0] [1,2,0] [1,3,0] [1,4,0] [2,4,0] [3,4,0] 
d [0,0,0] [1,0,0] [2,1,0] [2,2,0] [2,3,0] [2,4,0] [2,4,0] [3, 4, 0] 

(c) OTCS(S1, S3) table 

OTCS(S1, S3) Ø a a b b c c d d 

Ø [0,0,0] [0,0,0] [0,0,0] [0,0,0] [0,0,0] [0,0,0] [0,0,0] [0,0,0] [0,0,0] 

a [0,0,0] [1,0,0] [1,1,0] [1,1,0] [1,1,0] [1,1,0] [1,1,0] [1,1,0] [1,1,0] 
b [0,0,0] [1,0,0] [1,1,0] [2,1,0] [2,2,0] [2,2,0] [2,3,0] [2,3,0] [2,3,0] 
c [0,0,0] [1,0,0] [1,1,0] [2,1,0] [2,2,0] [3,2,0] [3,3,0] [3,3,0] [3,3,0] 
d [0,0,0] [1,0,0] [1,1,0] [2,1,0] [2,2,0] [3,2,0] [3,3,0] [4,3,0] [4,4,0] 
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(d) OTCS(S1, S4) table 

OTCS(S1,S4) Ø a a e b b f c c g d d 

 
Ø 

[0, 
0, 
0] 

[0, 
0, 
0] 

[0, 
0, 
0] 

[0, 
0, 
0] 

[0, 
0, 
0] 

[0, 
0, 
0] 

[0, 
0, 
0] 

[0, 
0, 
0] 

[0, 
0, 
0] 

[0, 
0, 
0] 

[0, 
0, 
0] 

[0, 
0, 
0] 

 
a 

[0, 
0, 
0] 

[1, 
0, 
0] 

[1, 
1, 
0] 

[1, 
1, 
0] 

[1, 
1, 
0] 

[1, 
1, 
0] 

[1, 
1, 
0] 

[1, 
1, 
0] 

[1, 
1, 
0] 

[1, 
1, 
0] 

[1, 
1, 
0] 

[1, 
1, 
0] 

 
b 

[0, 
0, 
0] 

[1, 
0, 
0] 

[1, 
1, 
0] 

[1, 
1, 
0] 

[2, 
1, 
2] 

[2, 
2, 
2] 

[2, 
2, 
2] 

[2, 
2, 
2] 

[2, 
3, 
2] 

[2, 
3, 
2] 

[2, 
3, 
2] 

[2, 
3, 
2] 

 
c 

[0, 
0, 
0] 

[1, 
0, 
0] 

[1, 
1, 
0] 

[1, 
1, 
0] 

[2, 
1, 
2] 

[2, 
2, 
2] 

[2, 
2, 
2] 

[3, 
2, 
4] 

[3, 
3, 
4] 

[3, 
3, 
4] 

[3, 
3, 
4] 

[3, 
3, 
4] 

 
d 

[0, 
0, 
0] 

[1, 
0, 
0] 

[1, 
1, 
0] 

[1, 
1, 
0] 

[2, 
1, 
2] 

[2, 
2, 
2] 

[2, 
2, 
2] 

[3, 
2, 
4] 

[3, 
3, 
4] 

[3, 
3, 
4] 

[4, 
3, 
6] 

[4, 
4, 
6] 

(e) OTCS(S1, S5) table 

OTCS(S1, S5) Ø a a a a b b b 
Ø [0,0,0] [0,0,0] [0,0,0] [0,0,0] [0,0,0] [0,0,0] [0,0,0] [0,0,0] 
a [0,0,0] [1,0,0] [1,1,0] [1,2,0] [1,3,0] [1,3,0] [1,3,0] [1,3,0] 
b [0,0,0] [1,0,0] [1,1,0] [1,2,0] [1,3,0] [2,3,0] [2,4,0] [2,5,0] 
c [0,0,0] [1,0,0] [1,1,0] [1,2,0] [1,3,0] [2,3,0] [2,4,0] [2,5,0] 
d [0,0,0] [1,0,0] [1,1,0] [1,2,0] [1,3,0] [2,3,0] [2,4,0] [2,5,0] 

 

Table 4.3 shows the matching results between each pair of state-sequences of the 

given five state-sequences. For instance, the length of the optimal common 

subsequence is identical between (S1, S1), (S1, S3) and (S1, S4) with OTCSL(S
1, S1) = 

OTCSL(S1, S3) = OTCSL(S1, S4) = 4. However, S1 will be taken as the most similar 

state-sequence to S1 itself since OTCSD(S1, S1) = 0 < OTCSD(S1, S3) or OTCSD(S1, S4) 

and OTCSG(S1, S1) = 0 < OTCSG(S1, S3) or OTCSG(S1, S4) which means S1 has less 

temporal duration difference and temporal gap difference to S1 itself than to S3 or S4. 

Furthermore, S3 seems closer to S1 than S4 with less difference in temporal gap but the 

same length of optimal common subsequence and the same difference in temporal 
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duration. Thus, the similarity between S1 and S1 to S5 can be ordered as: OTCS(S1, S1) > 

OTCS(S1, S3) > OTCS(S1, S4) > OTCS(S1, S2) > OTCS(S1, S5), which is reasonable. 

Table 4.3 OTCS table between S1
 to S5 

Similarity S1 S2 S3 S4 S5 

OTCS 

S1 [4, 0, 0] [3, 4, 0] [4, 4, 0] [4, 4, 6] [2, 5, 0] 
S2 [3, 4, 0] [3, 0, 0] [3, 5, 0] [3, 5, 4] [2, 3, 0] 
S3 [4, 4, 0] [3, 5, 0] [4, 0, 0] [4, 0, 6] [2, 3, 0] 
S4 [4, 4, 6] [3, 5, 4] [4, 0, 6] [7, 0, 0] [2, 3, 2] 
S5 [2, 5, 0] [2, 3, 0] [2, 3, 0] [2, 3, 2] [2, 0, 0] 

 

Section 4.3 Experimental Results of Application of GSM 

Section 4.3.1 Experiment Databases 

To demonstrate the performance of the proposed GSM as well as OTCS, 

experiments were conducted on 6 benchmark datasets as elaborated in Table 4.4.  

Table 4.4 Description of 6 benchmark datasets. 

Dataset Sample Dimension Class 

AT&T face 1 400 1024 40 

USPS2 9298 256 10 

MNIST 3 1000 784 10 

COIL204 1440 1024 20 

Isolet15 1560 617 26 

BinAlpha6 1014 320 26 

                                                 
1 http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html  
2 http://www.gaussianprocess.org/gpml/data/ 

3 http://yann.lecun.com/exdb/mnist/ 

4 http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php 

5 http://archive.ics.uci.edu/ml/datasets/ISOLET 

6 http://yann.lecun.com/exdb/mnist/ 

http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
http://www.gaussianprocess.org/gpml/data/
http://yann.lecun.com/exdb/mnist/
http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php
http://archive.ics.uci.edu/ml/datasets/ISOLET
http://yann.lecun.com/exdb/mnist/


 CHAPTER 4 GENERALIZATION AND APPLICATION OF GSM 

83 

 AT&T Faces Dataset contains 400 different images of 40 distinct subjects with 10 

images per subject. For some subjects, the images were taken at different times, 

varying the lighting, facial expression and facial details (glasses/no glasses). All 

images were taken against a dark homogeneous background with the subjects in an 

upright, frontal, position. We reshape each image into one vector. 

 USPS Dataset is a handwritten digit database, 500 images (50 images for every 

digit) were selected for the reported experiments. 

 MNIST Dataset is a handwritten digit database. Each image is centered (according 

to the center of mass of the pixel intensities) on a 28×28 grid. In our experiments, 

we randomly chose 1000 images (i.e. each digit has 100 images). We reshaped 

each image into one vector. 

 COIL20 Dataset contains 20 objects. Each image of the same object is taken at 5 

degrees intervals as the object is rotated on a turntable, consequently each object 

has 72 images associated with it. The size of each image is 32×32 pixels, with 256 

grey levels per pixel. Each image is represented by a 1024 dimensional vector. 

 Isolet1 Spoken Letter Recognition Dataset generated by 150 subjects announcing 

the name of each letter of the alphabet twice. The speakers are grouped into sets of 

30 speakers each, and are referred to as isolet1, isolet2, isolet3, isolet4, and isolet5. 

The features include spectral coefficients, contour features, sonorant features, 

pre-sonorant features, and post-sonorant features. In our experiment, we utilized 

subset isolet1 only. 

 BinAlpha  Dataset containing 26 hand-written alphabets. We selected 30 images 

for every alphabet. We reshaped each image into one vector. 

Section 4.3.2 Construction of Temporal Duration and Temporal Gap  

In order to demonstrate the effectiveness of our measurement, and to avoid 

destroying the well organised structure of the original data sets, we construct 10 

different distributions for temporal duration and temporal gap. For each class of the 6 
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benchmark datasets, the distributions of the temporal duration and temporal gap were 

selected randomly from the following 10 distributions. Figure 4.2 shows one example 

for each of the 10 distributions of duration.  

1) Normal distribution with mean 0.5 and standard deviation 1; 

2) Quadratic distribution: y = x(2+i/10); 

3) Constant distribution: y = i/100; 

4) Negative quadratic distribution: y = (1-x)(2+i/10); 

5) Circle distribution: (2+ /10)1 iy x  ; 

6) Power distribution: 1/(2+ /10)iy x ; 

7) Cosine distribution: 1 1
2 400 2=-( + )sin(2 )+iy x ; 

8) Sine distribution: 1 1
2 400 2=( + )sin(2 )+iy x ;  

9) Step function:
400

400

1 50i

i

i
y

else

  


;  

10) Quadratic distribution: 21
50 2 200=(4- ) ( - ) +i iy x ;  
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Figure 4.2  Distribution examples of temporal duration and temporal gap 
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Section 4.3.3 Contribution of Temporal Aspects in GSM 

A K-means a clustering experiment was conducted to explore the weight 

contribution of temporal order, temporal duration and temporal gap. In order to highlight 

the contribution of temporal aspects, we first set 0ntemw  , 1temw  . The clustering 

accuracies against temporal duration and temporal gap on 6 datasets are reported in 

figure 4.3 and figure 4.4. We set the weight of temporal order 1Tordw  , while the 

temporal duration and temporal gapTdurw and
Tgapw were varied as {1/256, 1/64, 1/16, 1/4, 

1, 4, 16, 64}. Generally speaking, the temporal order contributes more significance than 

temporal duration and temporal gap. The temporal duration plays a slightly more 

significant role than temporal gap. The first 3 optimal weights for temporal duration 

and temporal gap are selected to construct the optimal combination of the temporal 

duration and temporal gap, and the clustering accuracies, are shown in figure 4.5 where 

the red circles denote the highest clustering accuracies and the corresponding weight 

combination is set as the final weight for temporal duration and temporal gap of the 

GSM on each dataset. 

  

Figure 4.3  Weights contribution of temporal duration  
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Figure 4.4  Weights contribution of temporal gap 
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Figure 4.5  Optimal combination of temporal duration and temporal gap 

    

Section 4.3.4 Comparison of GSM with Binary-value Measurements 

In order to compare the performance of GSM with binary-value measurements OED, 

EDR, LCSS, CLCS, T-WLCS and ACS, the GSM was refined as OTCS with wntem 
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varying from {10-4, 10-3, …104} and the optimal wntem that led to the best performance, 

while temporal duration and temporal gap were set as the optimal weight combination as 

shown in figure 4.5 ( 1Tordw  ).  Figure 4.6 shows an example of the clustering results 

on the MNIST dataset with OTCS compared to other binary-value measurements. The 

dimension was reduced to 2-dimension by PCA dimensionality reduction in order to 

plot the clustering results. From this we can see that OTCS has the best clustering 

results since the centroids are the most consistent to the data distribution. 
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Figure 4.6  An example of clustering results on 2-d MNIST dataset 

Table 4.5 shows the clustering accuracy of each dataset. Generally speaking, 

compared with the other reputable binary-value measurements, OTCS outperforms all of 

them with highest clustering accuracy, especially on the BinAlpha dataset. 

Table 4.5 Clustering accuracy comparison of Binary-value measurements 

Dataset 
 

 Measurement 

AT&T 
face 

USPS MNIST COIL20 Isolet1 BinAlpha 

OED 65.39 60.50 54.95 59.84 65.85 68.96 
EDR 76.92 66.87 66.31 61.28 70.49 71.32 
LCSS 74.57 66.25 52.96 53.74 60.37 56.44 
CLCS 60.23 57.64 50.35 51.87 55.24 53.49 
ACS 75.84 73.85 55.66 60.55 64.85 60.55 

T-WLCS 72.59 70.17 58.23 66.62 66.36 61.21 
OTCS 78.36 76.41 66.35 69.20 75.58 72.66 

 

Section 4.3.5 Comparison of GSM with Real-penalty Measurements 

In comparison to real-penalty measurements such as ERP, DTW and TWED, the 

main advantage of GSM is that it is not sensitive to noise. In order to demonstrate the 

soundness of GSM, the noised datasets have been reconstructed by meanings of adding 

Gaussian noise with different means ([0, 0.β,…, β]) and variances ([0.1, 0.β,…, 1]) to 

each dataset. Table 4.6 below shows the average mean and standard deviation (STD) of 

the retrieval precision on each noised dataset, which statistically demonstrates the 
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soundness of GSM with higher precision (mean) and smaller fluctuation (STD). Figure 

4.7 illustrates the retrieval precision on the MNIST dataset in detail with respect to various 

mean and variance of Gaussian noise, which verifies the effectiveness of GSM visually.  

Table 4.6  Statistic of the retrieval precision of noised dataset 

Dataset 
Statistic 

AT&T 
face 

USPS MNIST COIL20 Isolet1 BinAlpha 

ERP 
Mean 63.71 65.60 59.48 61.53 74.66 71.25 
STD 0.1249 0.1391 0.1742 0.2519 0.1285 0.1595 

DTW 
Mean 73.37 72.29 65.79 73.11 78.51 74.29 
STD 0.1932 0.1128 0.1890 0.1438 0.0891 0.1032 

TWED 
Mean 79.95 75.30 68.80 72.96 79.38 76.90 
STD 0.0993 0.1025 0.1359 0.1235 0.0940 0.0895 

GSM 
Mean 85.65 80.54 74.82 78.44 84.19 82.84 
STD 0.0632 0.0738 0.1022 0.0983 0.0593 0.738 
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Figure 4.7  Retrieval precision of GSM on MNIST against Gaussian noise 
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Section 4.3.6 Capability to Handle Rich Temporal Aspects 

In order to demonstrate the capability of GSM to handle rich temporal aspects, a 

classification experiment was conducted on each dataset where a leave-one-out 

mechanism was employed. Half of each dataset was chosen as the training data while 

the rest was taken as the test data. Table 4.7 shows the classification precision with 

different combinations of temporal aspects. From this we can see that the GSM can 

address most matching tasks involved in time-series and state-sequence data, especially 

with different temporal matching requirements.  

Table 4.7  Classification precision with combinations of distance aspects 

Dataset 
Aspects 

AT&T 
face 

USPS MNIST COIL20 Isolet1 BinAlpha 

Tord 87.50 90.69 85.40 87.08 89.23 86.00 
Tdur 91.00 86.56 82.20 88.75 90.13 87.18 
Tgap 88.50 87.12 83.80 88.47 89.87 87.77 

Tord+Tdur 89.50 89.61 86.80 89.86 92.69 90.73 
Tord +Tgap 90.50 91.44 89.20 89.72 93.21 89.15 
Tdur + Tgap 87.50 90.77 86.60 89.86 92.82 90.34 

Tord+Tgap+Tdur 94.00 93.53 89.80 91.81 94.23 92.90 

In summary, the generalization of the proposed GSM has been explored first, 

which demonstrates that the conventional existing measurements can be regarded as 

special cases of our GSM. Particularly, the new LCS-based measurement named OTCS 

has been proposed, followed by its detail algorithms and the example evolution. The 

experimental results of the proposed GSM and the particular OTCS on 6 benchmark 

datasets have verified the performance for state-sequence matching. State-sequence 

matching is quite ubiquitous in real-life. So the next chapter will present two interesting 

investigations/case studies. 
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CHAPTER 5 CASE STUDY OF 

BASKETBALL ZONE-DEFENCE 

DETECTION 

State-based temporal pattern recognition, the procedure for matching temporal 

pattern of time-series and state-sequences (also known as state-sequence matching), is a 

popular activity in real-life such as financial data analysis, audio recognition, visual 

information retrieval, etc. It has played a very important role in data mining, 

particularly with respect to temporal information. In the following two chapters, we 

shall investigate two video-based cases for temporal pattern recognition: basketball 

zone-defence detection in chapter 5 and video copy detection in chapter 6. The model 

of each case will be designed, and then novel strategies will be proposed to address the 

typical problems in each case.   

Section 5.1 Formal Characterization and Basketball 

Zone-defence Detection 

Based on the formal characterization of time-series and state-sequence, the formal 

characterization of our particular case, basketball zone-defence detection, will be 

presented in this section. 

Section 5.1.1 Formal Characterization of Video Database  

With the development and progress in information age, multimedia information, 

especially video information, is becoming an active and topical research object, which 

includes video retrieval, video structural representation, video annotation and so on.  

Videos can be organized at different levels for various research purposes. In this thesis, 

videos are organised in terms of clips as shown in figure 5.1. Each video, which 
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presents an entire story that to be analyzed/ studied, can be firstly divided into 

sequential video clips (each of which is actually constructed by sequential frames). 

Then, the sequential key-frames are obtained by specific key-frame extraction 

algorithm to represent the corresponding video clips. Therefore, the task of video 

analysis can actually be transformed into the problem of exploring the knowledge 

between key-frame sequences, where a feature vector is extracted from each 

corresponding key-frame. 

Video 
database

Video1 

Video2 

Videod 

Video set Clip set

Clip1 

Clip2 

Clipn 

I1

I2

In

Key-frame set
 

Figure 5.1 Video database organization 

Therefore, the formal temporal characterization of video database based on the 

tetrad time-series and state-sequence can be described as follows: 

GSSI1) I= [I1, …, In] 

GSSI2) H = [Holds(Ii, ti)], for all i = 1, …, n,  

where [t1, …, tn] is a time-series:  

GTSI1) Tn= [t1, …, tn] = [<p1, q1>, …, <pn, qn>] 

GTSI2) R= [Meets(ti, ti+1)Before(ti, ti+1)], for all i = 1, …, n-1 

GTSI3) [ ] [ ( )] [ ]dur i dur i i iT d T t q p    , for all i = 1, …, n. 

GTSI4) 1 1[ ] [ ( , )] [ ]gap i gap i i i iT g T t t p q      for all i = 1, …, m-1and 0 0g  . 

Specifically:  
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 Tn= [t1, …, tn] = [<p1, q1>, …, <pn, qn>] expresses the knowledge time elements 

involved with respect to the given collection of video clip. <pi, qi> denotes the 

start time and end time of the ith video clip. 

 R= [Meets(ti, ti+1)Before(ti, ti+1)] is the collection of disjunctions of temporal 

relations over Tn, expressing the possible temporal relationship between each pair 

of adjacent key-frames (also the corresponding states) where ―Meets(ti, ti+1)‖ for 

complete time-series and ―Before(ti, ti+1)‖ for incomplete time-series. 

 [ ] [ ( )] [ ]dur i dur i i iT d T t q p    is the collection of temporal duration assignments 

(possibly incomplete) to every time element in Tn, which is actually the duration 

of the ith video clip. 

 1 1[ ] [ ( , )] [ ]gap i gap i i i iT g T t t p q     is the collection of temporal gap assignments 

to each adjacent pair in time element Tn, which is actually the possible interval 

between each pair of adjacent key-frames. 

From the tetrad characterization of the video database, we can see that the video 

pattern recognition follows the GSM (or the proposed OTCS), which is flexible enough 

to handle the situations with various temporal aspects. In this chapter, the video of 

basketball zone-defence will be studied and the zone-defence detection system with 

particular structure relationship will be explored. 

Section 5.1.2 Basketball Zone-defence  

As a case study of state-sequence matching, zone-defence detection in basketball 

videos is investigated in this chapter. Different from images, videos contain rich 

temporal information. Therefore, we focus our case study on video patterns. Broadly 

speaking, video pattern recognition aims to search out similar video(s) to match a query 

video.  Video clip detection is an important task that has been widely researched 

[BABST2007, HR2007 and MBG2008].  
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Zone-defence detection is important in basketball games. On one hand, a coach 

needs to lay out the zone-defence strategy and check whether the team is playing in the 

right strategy or not all the time; at the same time, the coach also needs to know which 

zone-defence strategy the defenders are adopting. 

Basketball zone-defence is a defensive strategy whereby each ―zone defender‖ is 

responsible for guarding an area on the court (or "zone"), and any offensive player that 

comes into that area.  Figure 5.2 shows the ordinary positions of 5 defenders in 1-3-1 

zone defence. Zone defenders move their positions on the court according to where the 

ball moves. Zone-defence can disrupt the opponent‘s offensive plan by means of 

protecting the paint area and forcing the opponent to shoot from outside.  In addition, 

changing defences from man-to-man to various zones can make the offense 

off-balanced and confused. 

 

Figure 5.2  Defenders‘ positions in 1-3-1 zone press 

For instance, a typical round attacking in a 1-3-1 zone-defence clip can be 

represented by the frames showing in figure 5.3 where the yellow circles, the blue 

squares and the red dot denote the defenders, the offenders and the ball respectively. 

The arrows with solid lines show how the defenders generally move in the zone, while 

the arrows with dotted lines denote the direction of passing the ball, and the arrows 

with the curved lines denote the direction of dribbling the ball. 
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Diagram A shows the basic formation of the setup. Diagram B shows player 

movements as the ball crosses the half-court. If the ball is passed to the corner, the 

formation changes into diagram C. Similarly, the following diagrams (D-J) show the 

way on which the formation adjusts when the ball is moved. 

 

Figure 5.3  A typical round attacking in 1-3-1 zone-defence clip 

Section 5.1.3 Graphic Representation of Basketball Zone-defence  

In basketball zone-defence video, each clip represents a certain round of offense 

(or defence) and is denoted as a list of images, or the so-called key-frames sequence: I 

= [I1, …, In], which consists of the key-frames extracted one per 2 seconds from the 

Diagram A Diagram B Diagram C 

Diagram D Diagram E Diagram F 

Diagram G Diagram H Diagram I 
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clip. We premise that:  

(1) The defenders have adjusted to their best defensive positions at the moment 

when the ball is about to be passed or dribbled;  

(2) Since the zone-defence strategy is to defend against the offensive opponent 

attacking into the interior playfield, we only consider the key-frames when the ball is in 

the midfield, the wing and the corner as key-frames. 

According to these two premises, a basketball zone-defence video clip is 

structured by zone-defence states or so-called state-sequence˖SS = [S1, …, Sn], and 

Holds(Si, ti) for i = 1, …, n, where [t1, …, tn] is a time-series of the moments referred to 

the premise (1).  

Each key-frame Ii (i = 1, …, n) can be described by its corresponding six-note 

graph Gi structured by the 5 defenders‘ positions (horizontal and vertical coordinates) 

plus the ball‘s position. Following the conventional notations in graph theory, we 

represent a zone-defence graph as G = <V, E>, where V and E denote the set of notes 

(defenders‘ positions) and the set of edges respectively, and E  V×V. In particular, 

here |V| = 6. The position of each note is denoted by the horizontal and vertical 

coordinates of the corresponding vertex. Assuming V = {Vb, V1, V2, V3, V4, V5} , it is 

presented in ascending ordered by Euclidean distance to the ball (Vb).  

Obviously, each state Si has its corresponding graph Gi, where i = 1, …, n. In 

addition, we shall use the following vector [ball1, …, balln] to record the ball‘s position 

of each state, where balliא {midfield, wing, conner} for i = 1, …, n. 

Zone-defence can be divided into various kinds of zone-defence strategies, 

including 2-3, 1-3-1, 1-2-2, 3-2, 2-2-1, 2-1-2 and 1-2-1-1 strategies. The first three 

strategies, which have been noted as the most typical ones employed in actual 

basketball games, are focused upon in this thesis. 
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Section 5.1.4 System of Basketball Zone-defence Detection  

Figure 5.4 shows the flow chart of the basketball zone-defence detection system. 

Each test zone-defence video clip is decomposed into a sequence of key-frames. Each 

key-frame is represented by a zone-defence graph as mentioned above and matched 

with the graphs in the standard zone graph database. The global distance from each 

standard zone is then obtained according to the graph-sequence that is the most similar 

(has the smallest distance) to the test graph-sequence, which in turn, provides matching 

results to confirm which zone-defence strategy the test key-frame sequence belongs to. 

I1

Im

G1

Gm

2-3

1-2-2

1-3-1

D2-3

D1-3-1

D1-2-2

Ztest

key frames test graphs
zone graph 
database

the most 
similar graphs

global 
distance

detecting 
result  

Figure 5.4  The flow chart of basketball zone-defence detection system 

The detail procedure of basketball zone-defence detection is shown as follows: 

Firstly, compute the distance between test clip and standard 2-3 zone-defence 

strategy. 

Step 1: For each key frame Ii, i = 1, β, …, m, compute the distances between 

its corresponding zone-defence graph Gi and graphs with the same ball position 

as Gi in the standard 2-3 zone graph database: 

23 23( )=[ ]
ji z ijD G ,G d                         (5-1) 
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where 23

j

test

i zball ball ,
23{1,2,..., }jz n ,

231,2,..., pj n n  , and
pn is the number 

of the graphs with the same ball position astest

iG in 2-3 zone graph database.. 

Step 2: Determine the distance between Gi (1  i  m) and 2-3 zone-defence 

strategy. The one with the smallest distance is the most similar graph to Gi: 

23 23argmin([ ])i ij
j

D d                     (5-2)  

Step 3: Compute the global distance between the test clip and the 2-3 

zone-defence strategy example. The sum of the smallest distances to each 

key-frame in the test zone-defence clip is calculated as the global distance: 

23 23

test iGD D                        (5-3)  

Secondly, using the above three steps, we can define the global distance between 

the test clip and the 1-3-1 zone-defence strategy examples as: 

131 131

test iGD D                       (5-4) 

Thirdly, we can define the global distance between the test clip and the 1-2-2 

zone-defence strategy example in the same manner as: 

122 122

test iGD D                      (5-5)  

Finally, the zone-defence strategy with the smallest global distance is regarded as 

the strategy that the test clip belongs to. The zone-defence strategy pattern of the test 

zone-defence video clip is calculated as: 

23 131 122

{23,131,122}

argmin ( , , )test

test test test
z

Z GD GD GD


                (5-6) 
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From the flowchart, we can see the step 1 is one of the most important techniques 

in the basketball zone-defence detection. How can we measure the similarity between 

the zone-defence graphs? The graph matching approach is the natural solution. 

Therefore, the Laplacian Matrix based graph matching algorithm is introduced for the 

basketball zone-defence detection in the next section.   

Section 5.2 LM -based state matching algorithm  

As mentioned above, each zone state has its corresponding zone graph. Therefore, 

state matching can be transformed into the corresponding graph matching. In this 

section, we shall extend the Laplacian matrix-based algorithm proposed in 

[LTWB2005] for matching zone graphs. The original algorithm proposed in 

[LTWB2005] is demonstrated to be precise in matching image pairs; however, on one 

hand, it is invariant with respect to zoom, and on the other hand, it is very sensitive to 

the translation of single vertex. The main process of the Laplacian matrix-based 

algorithm proposed in [LTWB2005] is expounded as follows: 

Algorithm 5.1:  Laplacian matrix-based graph matching  

1) Formulate the Laplacian distance Matrices for zone graph G and H: 

2
2 ( )

( ) [ ]
( , {1,..., }), , 1,...,5

i jG G

ij

ik
k i

V V M i j
L G l

l i j k n i j


    
   



      (5-7) 

2
2 ( )

( ) [ ]
( , {1,..., }), , 1,...,5

i jH H

ij

ik
k i

V V M i j
L H l

l i j k n i j


    
   



      (5-8) 

Here, we take M as the diagonal line length of the half-court playfield. 

Obviously, Laplacian Matrix L(G) and L(H) have following properties: positive, 
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semi-definite, the multiplicity of eigenvalue 0 is 1, and the corresponding eigen 

vector is with all 1 elements. 

2) Compute the Singular Value Decomposition (SVD) for each Laplacian Matrix 

respectively:  

1 5( ) { ,..., } TL G U diag U                      (5-9)  

       1 5( ) { ,..., } TL H V diag V                     (5-10)  

where 1 1 0n n     ... and 1 1 0n n     ... denote the singular values 

of L(G) and L(H), 1 2{ , ,..., }nU U U U and 1 2{ , ,..., }nV V V V aren n orthogonal matrices, 

( 1,2,..., )iU i n and ( 1,2,..., )iV i n are column vectors of U and V.  

3) Sign adjusting [LTWB2005] V and intoV . 

The decomposition of L(H) is slight different from that of L(G). The smaller the 

distance between Vi and Ui, the better. The detail measurement is: fixing the Ui, the Vi 

is adjusted and marked asiV .  

1,2, ,

i i i i i

i

i

V if V U V U
V

V else i n

     
   

                 (5-11) 

Where the i th row vectors of U andV reflect the features of i th vertices 
(characteristic points) of G and H respectively, marking as iU and iV .  

4) Construct the matching distance. Thinking that: 

( )( ) 2[1 ( ) ]i j i j i j T i j T
ijD = U V U V U V U V                  (5-12) 
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So, the bigger( )i j TU V is, the smaller the distance betweeniU and iV is, which 

means the higher the possibility of matching the ith vertex of G and the jth vertex 
of H. 

5) Define the matching relationship matrix: 

[ ( ) ] [ ]T i T
ijC UV U V C                    (5-13)  

Cij reflects the matching relationship of vertices (characteristic points) between 

graph G and H. The ith vertex of G matches the jth vertex of H if  Cij is the biggest 

element in both its columns and rows. 

6) Compute the matching distance of each vertex in G, with respect to its 

relationships to the vertices in H: , , , (1,2,..., )i j k t n  : 

, max( ) max( )

max ,

ij ij it ij kj

i

kt

D if C C C C
MD

D else

    


        (5-14) 

7) Compute the compound matching distance between graph G and H: 

1

( , )
n

i
i

Dis G H MD


                       (5-15) 

Obviously, n = 5 in basketball zone-defence graphs.  

Note that in basketball zone-defence, in addition to the Spatial Distance (SD) 

relationships as characterized by formula (5.7) and (5.8), the Spatial Direction (SD‘) 

relationships between defenders also plays an indispensable role. Hence, additional 

direction Laplacian Matrices with respect to the direction relationships are formulated 

as:  
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2 2

' '

'

( ) ( )

( ) [ ]
( , {1,..., }), , 1,...,5

i jG G

ij

ik
k i

R V V i j

L G l
l i j k n i j





  


  
   



     (5-16) 

2 2

' '

'

( ) ( )

( ) [ ]
( , {1,..., }), , 1,...,5

i jH H

ij

ik
k i

R V V i j

L H l
l i j k n i j





  


  
   



     (5-17) 

where ( )
i jG GR V V and ( )

i jH HR V V denotes the direction relationships between 

vertex pairs (
iGV ,

jGV ) and (
iHV ,

jHV ) respectively: 

[0, ]
( , ) argcos( )

G Gj i

i j

j i

V V

G G

G G

x x
R V V

V V





                  (5-18) 

[0, ]
( , ) argcos( )

H Hj i

i j

j i

V V

H H

H H

x x
R V V

V V





                  

(5-19) 

N.B.: Single vertex translation has less effect on the direction Laplacian 

Matrices (as formulated in Eq.(5.16) and Eq.(5.17)) than the distance Laplacian 

Matrices. 

With the same procedure as step 2) to step 6) as illustrated in the above, we can 

obtain the spatial direction distance between graph G and H: ' '

1

( , )
n

i
i

Dis G H MD


  

Finally, the global matching distance between graph G and H is defined by: 

' '( , ) ( , ) ( , )D G H Dis G H Dis G H                  (5-20) 

Where denotes the weight of the spatial distance in the global distance. The 

experimental results of the extended Laplacian Matrix-based graph matching algorithm 
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taking into account both spatial distance and spatial direction will be tested and 

demonstrated on basketball zone-defence detection system in section 5.1.5.   

Section 5.3 Structure-based Feature Extraction  

Graphical representation has been investigated for zone-defence detection. Graph 

matching (GM) algorithms and their improved variants have been well applied to match 

graph patterns [ZMLP2009 and MZH2007]. However, the efficiency and accuracy of 

most graph matching algorithms depends very much on the tested graphs constructed 

according to the expectation or artificial criteria, rather than real-life applications 

[ZMLP2009], which in turn means most graph matching algorithms are sensitive to 

outliers or local bias such as the translation of subprime notes in the graph. 

[CHTH2005] proposed a Spatial-Relationship (SR) based approach to describe the 

position relationship between defenders. However, this relies on the accuracy of 

identification of each defender, which is hardly achievable.  

As we know, the defence-lines and the structure relationship between 

defence-lines play a crucial role in team sports such as basketball, football, volleyball 

and so on. The analysis of the structure relationship between defence-lines is very 

necessary and significant in basketball zone-defence. Therefore, in this thesis, a 

structure-based feature is proposed to describe the structure relationship between 

defence-lines.  

Different zone-defence strategies have a different number and type of 

defence-lines in basketball, For instance, there are two defence-lines in the 2-3 

zone-defence strategy. Generally, the 2 defenders in the front line construct the first 

defence-line and the remaining 3 defenders are viewed as the second defence-line. 

Different zone-defence strategies have their own typical defence-lines. For instance, the 

typical defence-line of the 2-3 zone defence strategy is the second defence-line. We 

shall define the structure-based features to describe the structure relationship between 

defence-lines. The angle formed by the typical defence-line in each zone-defence 
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strategy is named the Character-Angle (CA), the definition of which is crucial to the 

extraction of the other structure features. Therefore, the 10 dimensional feature vector 

will be defined to describe the basketball zone-defence graphs in the following three 

subsections. 

Section 5.3.1 Structure-based Features in 2-3 Zone-defence  

In the standard 2-3 zone-defence strategy, normally we define the 2 defenders 

closest to the ball as the first defence-line and the remaining 3 defenders as the second 

defence-line, which is defined as the 2-3 character line. The angle formed from the 2-3 

character line is defined as the ―2-3 character-angle‖ and denoted in shorthand by 

writing CA23: the angle constructed by the pink lines as shown in figure 5.5. One of the 

two supplementary angles formed by the character-lines that face the ball is regarded as 

the character-angle, similarly hereinafter for the 1-3-1 and 1-2-2 zone-defences.  

There are two folds regarding the definition of CA23: 

 

(a) a general example     (b) counter example 1      (c) counter example 2        

Figure 5.5  Zone graph examples in 2-3 zone-defence 

(1) Which 3 notes construct CA23? 

Normally, CA23 is composed of the 3 defenders furthest from the ball. However, in 

some zone graphs, CA23 may not be exactly constructed by the 3 defenders furthest 

from the ball by common sense from human understanding of zone-defence strategies. 

˄Vl  ˅

˄Vr  ˅

˄Vv  ˅

V6 

V7 
Vb 

V1 

  V2 

V3 

V4 V5 

V1 

V1 

    V2 

    V2 

V3 

V4 
 V5 

V3 

V4 

 V5 

 Vb 

 Vb  
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For instance, in Figure 5.5 (b), assume that V = {Vb, V1, V2, V3, V4, V5} has been 

ascendingly ordered by the distance to the ball (Vb) and V3 and V2 have the 

approximately same distance to the ball. For the reason of neatness, the layout of the 5 

offenders is ignored. Obviously, the CA23 should be constructed by V2, V4 and V5 

(marked as the angle constructed by the blue line), which is more reasonable according 

to common sense than that constructed by the furthest 3 notes (V3, V4 and V5). 

 In other word, if the difference between the distances from the third and forth 

furthest notes to the ball is smaller than a given threshold, then the one forming a larger 

angle with the segment constructed by the farthest two notes will be taken to form the 

character line. The algorithm is described as follows: 

Algorithm 5.2:  Notes determination to construct CA23 

 

where =0.05 (the distance of diagonal of half-court is normalized to 1), CN23 

denotes the set of notes constructing CA23 and ( , )X YZ represents the angle between 

note X and segment YZ which is defined as: 

( , )
else

XYZ XY XZ
X YZ

XZY

   


                 (5-21) 

(2) Which one is the vertex of CA23? 

For the reason of simple description, without losing generality, we assume CN23 = 

{V3, V4, V5}, as shown in Figure 5.5(c), and arrange {V3, V4, V5} into {Vl, Vv, Vr} in 

clockwise order with respect to the ball, where l, v, r {3, 4, 5}. In general, node Vv is 

If 2 3 2 4 5 3 4 5( )&( ( , ) ( , ))b bVV VV V VV V VV     

23 2 4 5{ , , }CN V V V  

Else   23 3 4 5{ , , }CN V V V  
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then taken as the vertex of CA23 while Vl, Vr, which denote the left node and the right 

node respectively, are the end-points of CA23. However, if Angle < Vv, Vb, Vl > (or 

Angle <Vv, Vb, Vr>) is smaller than a given threshold, and |VlVb| < |VvVb| (or |VrVb| < 

|VvVb|) then Vl (or Vr) will be re-taken as the vertex of CA23. For instance, in Figure 

5.5(c), CN23 = {V3, V4, V5}. Assume that V4, V5 and V3 are in the clockwise order with 

respect to the ball. V3 should be defined to be the vertex of CA23, which is more 

reasonable than regarding V5 as the vertex of CA23. The algorithm is described as 

follows: 

Algorithm 5.3:  Character angle detection of 2-3 zone-defence 

 

where = /12   and we appoint CA23 as the obtuse angle if its vertex is biased towards 

the ball compared with its two end points. 

The first 4 structure features with respect to CA23 are correspondingly defined as 

below (As for the general example illustrated in figure 5.5(a), 
1 2VV is the first 

defence-line and V3, V4, V5 is the second defence-line, and V6, V7 are the midpoints 

of 3 5VV , 1 2VV respectively): 

I. 23 3 4 5CA VVV : Character-Angle of 2-3 zone-defence. 

As explained earlier, this angle characterises the defenders‘ positions on the 

character line of 2-3 zone-defence. 

If ( )&( )l b v l b v bVVV VV VV    

 23 v l rCA VVV  

 Else  if ( )&( )r b v r b v bVVV VV VV    

            23 v r lCA VVV  

       Else   23 l v rCA VVV  
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II.  23 7 6 3 5( , )FSA VV VV : Angle formed by the first and the second 

defence-lines. 

where ( , )XY ZW denotes the acute angle formed by segmentXY and 

segmentZW and similarly hereinafter. It characterises the structural relationship 

between the first and the second defence-lines. 

III.  
23 4 6 3 5( , )BCA VV VV : the bias of the CA23. 

which is an angle that presents the bias of the vertex on second defence-lines of 2-3 

zone-defence. 

IV.  23 1 2 3 5 1 2 3 5( )RFSA VV VV VV VV ˅ ˄ ˈ : restricted FSA23. 

which denotes the restricted angle of the first and the second defence-lines of the 2-3 

zone-defence. The shorter 1 2VV is in comparison to 3 5VV , the less effect the angle of 

segment 1 2VV and segment 3 5VV  has to zone graphs. So, it is reasonable to take into 

account a coefficient to the angle. 

Section 5.3.2 Structure-based Features in 1-3-1 Zone-defence 

In 1-3-1 zone-defence, the nearest defender to the ball represents the first 

defence-line. The second defence-line is constructed by 3 defenders, presenting the 

basic character of the 1-3-1 zone-defence, which is defined as the 1-3-1 character line. 

The angle formed from the 1-3-1 character line is defined as the ―1-3-1 

character-angle‖ and denoted as CA131. The key point here is to define the vertex and 

two end points of CA131. 
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    (a) CA23 < ʌ            (b) CA23 > ʌ   case 1     (c) CA23 > ʌ  case 2 

Figure 5.6  Zone graph examples in 1-3-1 zone-defence 

Based on CA23, as defined above, there are two cases to define CA131: (Here, we 

also use V1, V2, V3, V4 and V5 to denote the 5 defenders, and assume V1 is the nearest 

defender to the ball, 23 3 5 4CA VVV in Figure 5.6(a) and 23 4 3 5CA VVV in Figure 

5.6(b) and (c) marked as the blue lines). If the corresponding CA23 is smaller than ʌ (as 

shown in Figure 5.6(a)), then CA131 has the same two end-points (V3 and V4) as that of 

CA23, and the vertex of CA131 is the node (V2) from the remaining 3 that is neither the 

closest to the ball nor the vertex of CA23. Otherwise (as shown in Figure 5.6(b) and (c)), 

CA131 will have the same vertex as that of CA23 (V3), and the node (V2) which is neither 

on the 2-3 character line nor the closest to the ball will be taken as one of the two 

end-points of CA131, and then the other end-point is one of the two end-points of CA23 

(V4) which will ensure that CA131 divides the remaining two nodes into each side of the 

1-3-1 character line respectively. The detection algorithm is expounded below: 

Algorithm 5.4:  Character angle detection of 1-3-1 zone-defence 

 

If 23 3 5 4CA VVV    

       131 3 2 4CA VVV  

Else 23 4 3 5CA VVV    

      131 2 3 4CA VVV  

V6 

 Vb  
 Vb  

 Vb  

 V1   V1   V1  

 V2  

 V3  

 V4  

 V5  

 V2   V2  

 V3   V3  

 V4   V5   V4   V5  
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In continuation from the first 4 features with respect to CA23, the next 3 features 

with respect to CA131 are defined below (as for the general example illustrated in Figure 

5.6(a), and assumes V6 is the midpoint of segment3 4VV ): 

V. 131 3 2 4CA VVV : Character-Angle of 1-3-1 zone-defence, which 

characterises the defenders‘ positions on the character line of the 1-3-1 

zone-defence analogously. 

VI.  131 1 6 3 4( , )FSA VV VV : Acute angle formed by the first and the second 

defence-lines, which characterises the structure relationship between the first and 

the second defence-lines of the 1-3-1 zone-defence. 

VII.  131 5 6 3 4( , )STA VV VV : Acute angle formed by the second and the third 

defence-lines, which characterises the structure relationship between the second 

and the third defence-lines of 1-3-1 zone-defence. 

Section 5.3.3 Structure-based Features in 1-2-2 Zone-defence  

In the 1-2-2 zone-defence, the defender closest to the ball forms the first 

defence-line. As per the examples shown in figure 5.7, assume that V1 is the closest 

defender; the CA131 is 4 2 3VVV in figure 5.7(a) and (b) marked as the pink dotted line 

and the pink solid line, while 2 4 3VVV in figure 5.7(c) marked as pink dotted lines. If 

CA131 ≥  (Figure 5.7(a) and (b)), the vertex of CA131 (V2) and the nearer one (V3) to 

the first defence-line (V1) of the two end-points of CA131 construct the second 

defence-line ( 2 3VV marked as the pink solid line); the remaining two defenders define 

the third defence-line (4 5VV marked as the blue line). Otherwise (Figure 5.7(c)), the two 

end-points of CA131 define the second defence-line (2 3VV marked as the pink solid line) 

and the rest two defenders define the third defence-line (4 5VV marked as the blue line). 
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The first and the second defence-lines present the basic character of 1-2-2 

zone-defence. The angle formed from the 1-2-β character line is defined as ―1-2-2 

character-angle‖ ( 2 1 3VVV marked as the yellow lines) and denoted as CA122.    

 

(a) CA131  ≥  ʌ case 1     (b) CA131  ≥  ʌ case 2       (c) CA131  <  ʌ 

Figure 5.7  Zone graph examples in 1-2-2 zone-defence 

The algorithm is described as follows (CA122, SDL122 and TDL122 denote the 

Character Angle, the second defence-line and the third defence-line of 1-2-2 

zone-defence, respectively): 

Algorithm 5.5:  Character angle detection of 1-2-2 zone-defence 

 

Following the first 4 features with respect to CA23 and the 3 features with respect 

to CA131, the last 3 features with respect to CA122 are defined as below (assume that 

122 2 1 3CA VVV  , 122 2 3SDL VV and 122 4 5TDL VV , V6 and V7 are the midpoints of 

segment 4 5VV and segment2 3VV respectively as shown in Figure 5. 6(a)): 

If C131 = 4 2 3VVV    

        1 3 1 4VV VV  

        122 2 1 3CA VVV , 122 2 3SDL VV , 122 4 5TDL VV  

Else 

     122 3 1 4CA VVV , 122 3 4SDL VV , 122 2 5TDL VV  

V6 V7 

 Vb  

 Vb  
 Vb  

 V1  

 V1  

 V1   V2  

 V2  

 V2  
 V3  

 V4  
 V3  

 V3  

 V4  

 V5   V5  

 V4  

 V5  
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VIII.  122 1 2 1 3 1 2 1 3 2 1 3(min( , ) max( , ))RCA VV VV VV VV VVV    

Here, we add a coefficient to take into account the effect from the movement of 

node V1 along the circle formed from V1, V2 and V3. 

IX.  122 2 3 4 5 2 3 4 5( ) ( , )RSTA VV VV VV VV   

RSTA122 is with respect to the restricted angle of segment2 3VV and 

segment 4 5VV and reflects the structure relationship between the second and the third 

defence-lines of 1-2-2 zone-defence. 

X. 122 6 7 2 3( , )BST VV VV  

which reflects the bias between the second and the third defence-lines of 1-2-2 

zone-defence. 

The feature vector is constructed by the above 10 features with respect to the three 

typical zone-defence strategies: 

f = {CA23, FSA23, BCA23, RFSA23, CA131, FSA131, STA131, RCA122, RSTA122, BST122} 

The feature vector is not only listed by the 10 components one by one, but also has 

internal relationships. The features of one typical zone-defence also reflect the structure 

relationship of the other typical zone-defences. 

According to the structure-based features extracted above, the test basketball 

zone-defence video clip with n key-frames (or zone-defence graphs) can be represented 

by a 10n  feature matrix 1 2{ , ,..., }'clip nF f f f  and a ball‘s position vector 

1 2{ , ,..., }clip nball ball ball ball , where 1 2 10{ , ,..., }i i i if f f f  and iball  denotes the 

feature vector and the ball‘s position of the ith key-frame of the detected clip 
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respectively. Analogously, the 3 standard zone-defence databases are represented by 3 

corresponding feature matrices with their respective ball position vectors. For instance, 

the standard 2-3 zone-defence database is represented by 23 23 23
23 1 2 14{ , ,..., }'F f f f  

and 23 23 23
23 1 2 14{ , ,..., }ball ball ball ball . The distance between two zone-defence graphs 

can be expressed by: 

23 23( , ) ( , ) [ ]
ji z ijD G H ED f f d 

                   
(5-22)               

 Section 5.4 Experimental Results 

Section 5.4.1 Experimental Setup 

A standard zone-defence graph database of the 3 typical zone-defence strategies 

(2-3, 1-3-1 and 1-2-2 zone-defence) was constructed and populated with graph data 

corresponding to some of the pictures illustrated on two basketball coaching web 

sides8. 

Table 5.1 below shows the detailed number of zone-defence graphs collected as 

standard zone-defence graphs for each strategy in different ball position. Analogously, 

only the key-frames when the ball is in the midfield, the wing and the corner are 

considered. 

Table 5.1 The number of standard zone-defence graphs 

     Zone-defence  
Ball’s position 

2-3 1-3-1 1-2-2 

Midfield 4 3 2 
Wing 4 12 7 

Corner 6 6 2 
Totally 14 21 11 

                                                 
8 http://www.coachesclipboard.net; http://www.guidetocoachingbasketball.com 

http://www.coachesclipboard.net/
http://www.guidetocoachingbasketball.com/
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The metric position detection of defenders and the ball is implemented similarly as 

in [ABCB2003]: The ball‘s position, which is either in the midfield, in the wing, or in 

the corner, is obtained from its motion described in terms of camera motion, which in 

turn, is captured by image motion estimation algorithm [BCB1999]. As for the 

defenders‘ positions, in the first place, the defending and offensive sides are 

distinguished by the colour difference of sportswear; template matching and projective 

transformation are then implemented to determine the metric position of defenders 

[ABCB2003]. 

The system has been tested using both simulated and real basketball zone-defence 

video clips. We formulated 40 clips (key-frame sequences) provided by the 

professional coaches and collected about 1 hour of real basketball zone-defence video, 

including 112 clips containing 3 to 8 key-frames each as listed in Table 5.2. 

Table 5.2 The number structure of test data 

 Zone-defence 
strategy 

Total clips Total key-frames 

 
Simulated 

2-3 20 
60 

145 
1-3-1 20 161 
1-2-2 20 128 

 
Real-life 

2-3 52 
112 

286 
1-3-1 31 221 
1-2-2 29 169 

Section 5.4.2 LM-based Basketball Zone-defence Detection 

First, we give an example of the matching (global) distances between a given test 

state-sequence and 3 standard zones as shown in figure 5.8, where: the second row is 

the corresponding graphs of the test state-sequence with 3 states as shown in the first 

row; the remaining rows are the most similar graph compared with each test graph in 

2-3, 1-3-1, and 1-2-2 zone-defence strategies, as appearing in the row order. From 

figure 5.8, it can clearly be seen that the most similar zone-defence formation in 
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comparison to the test state-sequence is the 2-3 zone-defence pattern, which agrees 

with the matching result from our algorithm.  

 

Figure 5.8  An example of basketball zone-defence video clip recognition 

Table 5.3 below shows the matching precision for each zone-defence pattern. It 

indicates that the matching algorithm (SDD‘) proposed here, which takes into account 

both spatial distance and spatial direction relationships, outperforms SD or SD‘, whichh 

only address spatial distance or spatial direction relationships, respectively. In 

particular, the weights of SD is 0.75 (ȝ=0.75), which means the weight of SD‘ in SDD‘ 

is 0.25 in Eq. (5.20), leading to the optimal results. 

From the table 5.3 we can see: 

1) The LM-based graph matching algorithm is effective for zone-defence graphs 

which can lead the average precision from 68.8% to 91.6%;  

test(1) 

D=0.49797 

D=2.04 

D=1.1107 

test(2) 

D=0.087146 

D=0.4005 

D=0.955 

test(3) 

D=0.28318 

D=0.50064 

D=1.0579 
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2) In LM-based graph matching schema, the Spatial Distance is more significant 

than the Spatial Direction. In fact, the precision of SD (78.8%) is higher than 

that of SD‘ (75.6%), where the setting of the weights of SD (0.75) and SD‘ 

(0.25) leads to the optimal results for SDD‘. 

3) Both the Spatial Distance and the Spatial Direction should be taken into 

account. In fact, the average precision of SDD‘ (85.β%) is higher than either 

the precision with SD (78.8%) or the precision with SD‘ (75.6%).  

Table 5.3 Matching precise for each zone-defence pattern 

Test data Zone Precision (%) Average 
precision SD SD‘ SDD‘ 

 
Real 

2-3 74.6 69.8 82.7 75.7 
1-3-1 65.9 63.1 77.4 68.8 
1-2-2 80.3 70.7 86.2 79.0 

 
Simulated 

2-3 82 80 85 82.3 
1-3-1 91 89 95 91.6 
1-2-2 79 81 85 81.6 

Average precision: 78.8 75.6 85.2  

 

Section 5.4.3 CA-based Basketball Zone-defence Detection 

The CA-based algorithm is the first work that focuses on feature description of 

basketball zone-defence graphs. There are few systems focused on basketball 

zone-defence detection. Here, we compare the proposed CA-based algorithm with the 

LM-based algorithm in section 5.2 and SR-based algorithm [CHTH2005].  

Table 5.4 reports the detection result of each algorithm based on both simulated 

and real-life data. Here detection results of ―Correct MPD (Metric Position Detection)‖ 

are the results detected on the test clips with correct MPD. It‘s clear that the CA-based 

algorithm has the highest efficiency, especially with regard to correct MPD. 
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Table 5.4 Detection result of 3 algorithms based on different data 

Database Video clips Correct  MPD 
 Results Test Detected Test Detected 
Simulated 

data 
SR  

40 
35  

38 
34 

LM 36 35 
CA 37 37 

Real-life 
data 

SR  
112 

70  
91 

69 
LM 78 74 
CA 91 85 

 

Figure 5.9 and figure 5.10 show the detecting precision and detecting complexity 

of the proposed CA-based algorithm compared with the other two algorithms in both 

simulated data and real-life data on each zone-defence. With respect to the 

computational complexity of the flow chart of system shown in figure 5.4, the overall 

time complexity Tall = Tin + Tf + Tm + Tout where Tin, Tf, Tm, Tout denote the time for 

input, feature extracting, zone matching and output respectively. In order to emphasize 

the effectiveness of different matching algorithms, the input and output time, which are 

the same in the system with different matching approaches, were ignored. This means 

only Tf + Tm were reported in figure 5.10.  It is clear that the CA-based detecting 

method has higher detecting precision than the SR-based and LM-based algorithms in 

both simulated and real-life data. In comparison with LM-based graph matching 

algorithm, benefiting from use of the simple similarity strategy (Euclidian Distance), 

both SR-based and CA-based approaches have less computational complexity 

    

(a)  Simulated data           (b) Real-life data 

Figure 5.9  Detecting precision comparison with different methods 
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(a)  Simulated data           (b) Real-life data 

Figure 5.10  Detecting complexities comparison with different methods 

It is frequent for defenders to have some translational motion compared with the 

standard position in standard zone graphs. So the translational motion of the farthest 

defence-line from the ball in each zone-defence graph, which is regarded to have least 

influence to the global strategy, is added to the test video clip as a disturbance to test 

the robust of proposed approach. For each note V on the farthest defence-line in each 

zone-defence, we add the disturbance as: 

' (cos +sin )V V d                         (5-23) 

where d denotes the movement distance of note V to V‘ and Ȗ denotes the angle 

between d and the x-axis (the mid-field line) as shown in Figure 5.11. Figure 5.12 

shows the efficiency in each zone-defence with different disturbance. 

dsinȖ

V
dcosȖ

d

V’

Ȗ

 

Figure 5.11  Disturbance of the nodes on the farthest defence-line 
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(a) Simulated data               (b) Real-life data 

Figure 5.12  Precision influence with disturbance in each method 

The precision comes down with growing disturbance in every method. But in the 

CA-based method, it drops much slower than the other two and still has a tolerable 

performance even with a high disturbance, which demonstrates that the CA-based 

method is robust for the detecting system.
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CHAPTER 6 CASE STUDY OF VIDEO 

COPY DETECTION 

A video clip is constructed by a well-ordered sequence of frames (images). Due to 

the rapid increase of multimedia and the shortage of storage, in many real applications, 

the video databases are represented in terms of the sequence of high-dimensional 

feature vectors, which consists of the popular low-level features including color 

distribution, texture structure, shape configure, spectral character and so on. Therefore, 

the video clip matching problem can be transferred into a feature sequence matching 

problem. 

Section 6.1 Problem Definition of Video Copy Detection  

Video copy detection, also named video subsequence identification or video 

subsequence matching, is very significant for copyright authorization in commercial 

society where we would like to identify whether the current video clip is simply 

transformed from another video clip. Especially in TV commerce, it is essential to 

clarify the original TV shows from varies TV channels. Generally speaking, there are 

two categories of video copy detection: video watermarking and content-based video 

copy detection. First of all, it is essential to distinguish their conceptions. 

Video watermarking: Video watermarking can be understood as the technique that 

permanently "embeds" the identifiable signal(s) or pattern(s) into the host video, to 

protect the copyright of digital video products. The main difference of watermarking is 

that we cannot detect the originality of a product if it has not been ―watermarked‖ or 

―embedded‖.   

Video copy detection: Video copy detection can be considered as the procedure to 

detect whether a query video clip has been re-edited (such as crossover, deleting, 
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inserting) or visual transformed (such as reformatted, resolved, brightened, ect.) 

compared to some original one. It‘s a typical subsequence matching problem. 

Previously, various similarity models based on Euclidean distance [AFS1993] have 

been proposed for subsequence matching, one efficient category being the sliding 

window based algorithms [FRM1994, MWL2001, MWH2002]. However, most models 

are very brittle; even a slight misalignment in time axis and the time-consuming 

problem would limit their application to large databases. Subsequently, many 

successful measurements such as Longest Common Sequence (LCS) [VGK2002], Edit 

distance [ALK1999], Dynamic time warping (DTW) [SC1978] and their variants 

emerged as required. LCS is directed at finding the longest common sequence in all the 

sequences (two in our case) along the same temporal order. It can skip some states that 

include noise but ignores how many and which kind of states it skips.  ED calculates 

the similarity between two state-sequences by the number of operations such as 

insertion, deletion and substitution required to transform one to the other. However, 

reordering operations such as crossover and backward, which are very common in 

time-series data, are not allowed. DTW is robust to time warping such as stretching and 

shrinking (which means with different durations of each state), followed by variants 

such as PDTW [KP2000], SPRING method [SFY2007], EDTW [APPK2008]. 

However, they are very sensitive to noise, since each state will be matched including 

the noise. 

Therefore, the objective of this chapter is to present an efficient framework for 

subsequence matching based on a bipartite graph representation and to propose a hybrid 

similarity model, while taking into account both spatial and temporal similarity with 

high tolerance in inversion, crossover and noise (noises). 

Based on the above explanation, the formal definition of video copy detection can 

be defined as follows: 
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Definition 6.1: Video copy detection. Let Q = [q1, q2, …, qm] be the query video 

state-sequence and SS = [s1, s2, …, sn] be the video state-sequence in the video database, 

where m, n denote the length of video sequence Q and SS respectively and qi = (qi1,…, 

qid) and sj = (sj1,…, sjd) denote the d-dimensional feature vectors for the corresponding 

frames. The task of video copy detection is to detect a subsequence S = [sk1, sk2, …, skt] 

in SS, where 1  k1 < kβ < …. < kt  n, which is most similar to the query video 

sequence Q. 

 

(a) Key frame sequence one 

 

(b) Key frame sequence two 

Figure 6.1  Key frame sequences from the same video scenario with difference 

temporal order 
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Generally, the typical subsequence matching technique is directed at detecting 

similar sequences along the strictly same temporal order. In fact, the restrictive 

temporal order always ruins the task of video copy detection since the copy video may 

derive from an existing video by different ordering. For instance, Figure 6.1 illustrates 

such a scenario from ―Fox Business‖. 

If we compare the two sequences in figure 6.1 according to the strict temporal 

order, there will be low similarity between the corresponding frame pairs. However, the 

two sequences contain the same content since they are from the same video scenario. 

Therefore, for video copy detection, the similarity between sequences with different 

temporal edition (eg. reorder) needs to be considered. 

Section 6.2 Bipartite Graphical Representation  

While the video clip is organized as a key-frame sequence, the video copy 

detection problem can actually be transformed into the bipartite graph matching 

problem with particular temporal measurement. We shall systematically introduce the 

procedure of transforming subsequence matching into the bipartite graph matching 

problem in this section.  

Definition 6.2, bipartite graph: In graph theory, a bipartite graph <X, Y, E> is a 

graph where the vertices can be classified into two disjoint sets X and Y. The pair of 

vertices connected by each edge are in X and Y separately. Figure 6.2 shows an 

example of a bipartite graph. 

X

Y

  x1               x2                        x3                        x4                        x5

   y1                y2                         y3                        y4                     

 

Figure 6.2  An example of bipartite graph 
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Table 6.1 Notations used in this section 

Notation Definition 
Q = [q1, q2,…, qm] Query state-sequence 
SS = [s1,s2,…, sn] A state-sequence in database 
D = [SS1,…, SSL] The database with L state-sequences 
NN(qi, SS, dmax) Set of nearest neighbours of qi in SS 
NN(Q, SS, dmax) Set of nearest neighbours of all qi in Q in SS 
BG = <Q, SS, E> Bipartite graph between Q and SS 

MSM(Q, SS) The set of MSM between Q and SS 
MSM(Q, D) The set of MSM between Q and all SSj in D 

M A normal matching in MSM(Q, D) 

M  An inverse-ordered matching of M 

The list of notations that will be used in this section is given in Table 6.1. The 

procedure can be briefly described as following: 

Section 6. 2.1 Searching the similar pairs by thNN 

For the query video clip Q and one of the video clips in the database, as shown in 

figure 6.2, the first task is searching the similar key-frame pairs between two key-frame 

sequences. Due to the repeating or re-referring phenomenon of video clips, for each 

key-frame in a query video clip, there may be several similar key-frames in the 

database. Therefore, a kNN (k Nearest Neighbours) approach is adopted. Given a query 

key-frame, the idea of kNN is to search out the k nearest key-frames in the video 

sequence to be matched. Considering that some key-frames may have few similar 

key-frames in the video clip to be matched, it is redundant to search out the k nearest 

key-frames for every key-frame in query video clip. For instance, for a noise key-frame, 

there may be no similar key-frames in the video clip to be matched. Therefore, different 

from the original kNN searching technique, a distance threshold dmax is defined for kNN 

to search for each state qi in SS within the given maximum distance dmax. We name it 

threshold Nearest Neighbours (thNN), whose procedure can be illustrated as algorithm 

6.1. 
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Algorithm 6.1:  The threshold Nearest Neighbours 

 

Section 6.2.2 Constructing un-weighted bipartite graph 

Based on the thNN approach, we can define the bipartite graph BG = <Q, SS, E> 

for NN(Q, SS, dmax), where the key-frames in Q and SS are constructed as the nodes 

allocated on each side of the bipartite graph respectively. For each key-frame state pair 

qi and sj, the edge exists if and only if distance(qi, sj) < dmax. In other words, each 

key-frame qi is only linked to its threshold neighbours. The edge set,  E ك Q×SS, 

actually denote thNN mapping between Q and SS, as shown in Figure 6.3: 

q1 qmq3q2 q4Q:

SS:
s1 s2 s3 s4 sn-3 sn-2 sn-1 sn  

Figure 6.3  Bipartite graph representation 

Obviously, the number of edges related to qi is |NN(qi, SS, dmax)| = bi and the total 

edges in the bipartite graph is max1
( , , )

m

ii
NN q ss d

 . The set of mappings between Q 

Input : 
 qi, SS 
Output : 

NN(Q, SS, dmax): set of nearest neighbors of qi in SS within distance dmax 
Initialization : 
 NN(qi, SS, dmax) = NN(Q, SS, dmax) = null 
Updating: 
 For i = 1 to m and j = 1 to n 
   If  distance(qi, sj) < dmax 

    NN(qi, SS, dmax) = NN(qi, SS, dmax)  sj 

   
 NN(Q, SS, dmax) = {NN(Q, SS, dmax) , NN(qi, SS, dmax)} 
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and SS is {<q1, NN(q1, SS, dmax)>, < q1, NN(q1, SS, dmax)>, …, < q1, NN(q1, SS, dmax)>}. It 

is a 1: M mapping bipartite graph since the number of NN(qi, SS, dmax) is not unique 

(larger than 1), which means each key-frame in the query video clip has several 

neighbours. Therefore, a set of bipartite graphs can be constructed according to the 

mapping set. According to the concept of combination, the number of 1:1 mapping 

bipartite graphs is b1×b2×…×bm. Below are several 1:1 mapping bipartite graphs 

constructed based on the thNN searching. 

Q:

SS:
s1 s2 s3 s4 sn-3 sn-2 sn-1 sn

q1 qmq3q2 q4

Q:

SS:
s1 s2 s3 s4 sn-3 sn-2 sn-1 sn

q1 qmq3q2 q4

 

Figure 6.4  1:1 mapping bipartite graphs 

Section 6.2.3 Maximum Size Matching (MSM) algorithm 

A 1:1 mapping, however, is not enough. The size of the 1:1 mapping (the number 

of edges in the corresponding bipartite graph) is attractive to us. For instance, the one 

edge mapping bipartite graph <q1, s1 (q1, s1)> is obviously not the satisfied mapping we 

would like to obtain in video clip detection. In order to obtain the maximum size 

mapping in the mapping set we have already obtained, the Maximum Size Matching 

(MSM) algorithm [Shi2004] is employed to produce a set of 1-1 mappings between Q 

and SS with the maximum size for the corresponding BG. Note that the output of MSM 

in general is not unique. For instance, the two 1:1 mappings in figure 6.4 are both the 

maximum mappings from figure 6.3. The typical Hungarian Algorithm [Kuh1955, 

mun1957, AMO1993] is conducted for Maximum Size Matching. Firstly, several terms 

related to the bipartite graph matching should be noted: 
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Definition 6.3 Matching: Given a bipartite graph G, a matching is a subgraph of 

G, where any pair of edges has no common vertex. Or we can say the degree of any 

vertex is no larger than 1. 

Definition 6.4 Maximum Matching: is a matching that contains the largest 

number of edges. 

Definition 6.5 Alternating Path: is a path where the matched edges and 

unmatched edges exist alternatively. 

Definition 6.6: Augmenting Path: an augmenting path is a particular alternating 

path that both starts from and ends at the unmatched vertices. 

Algorithm 6.2:  Hungarian Algorithm for Maximum Size Matching 

 

Based on the above definitions, the Hungarian algorithm can be defined as in 

algorithm 6.2: 

For each given state-sequence SS, algorithm 6.2 produces a corresponding set of 

1-1 matching MSM(Q, SS) between Q and SS with the maximum size. Therefore, if we 

denote the set of such matching between Q and all SSj in D as MSM(Q, D), we have: 

1
( , ) ( , )

L

jj
MSM Q D MSM Q SS


                   (6-1) 

Input :  
 bipartite graph BG = <Q, SS, E> 
Output :  
 1:1 Maximum Size Matching MSM(Q, SS) 
Initialization :  
 MSM(Q, SS) = null 
Updating: 
 For i = 1 to m do 
  Start from qi, searching for the augment path AP. 
       MSM(Q, SS) = MSM(Q, SS)  AP 
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The remaining main problem is then to develop an appropriate similarity 

measurement for searching the corresponding optimal matching. 

Section 6.3 Hybrid Similarity Model 

 As mentioned earlier, for a given matching MęMSM(Q, D), both temporal 

similarity and non-temporal similarity should be taken into account. On one hand, the 

non-temporal similarity is defined according to the Euclidean distance between each 

mapping:  

Section 6.3.1 Non-temporal similarity  

The non-temporal similarity is measured by the total similarity which is in inverse 

proportion to the Euclidean distance between each matched state pair. 

= ( )) ( )NT i jSim 1- dis(q , s d Q                    (6-2) 

where dis(qi, sj) denotes the Euclidean distance between each matched state pair qi and 

sj (which has achieved during kNN search) in the matching M and d denotes the feature 

dimension of each state. Obviously, the similarity value falls into [0, 1]. 

On the other hand, as the distinctive feature of time-series data, temporal similarity 

needs special treatments with respect to the three measurements described in the 

following three sections. 

Section 6.3.2 Temporal order similarity  

There may be some pairs of state-sequences with the same non-temporal similarity 

but with different temporal order. Here, we shall use the idea of LCSS [VGK2002] to 

measure temporal order similarity. However, in existing normal LCSS based 

formalisms, the typical reordering situations inversion in time-series data has been 
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neglected. In order to catch such types of reordering, we define the temporal order 

similarity as below: 

max( ( ), ( )) /TOSim LCS M LCS M Q                   (6-3) 

which takes into account both normal order and inverse order. 

Section 6.3.3 Temporal alignment similarity:  

In normal LCSS formalisms, in subsequence matching, unmatched states are 

simply skipped regardless how many of them there are. ED [ALK1999] is an 

alternative measurement that distinguishes the number of unmatched states that are 

skipped. However crossover, which should be compatible since it is ubiquitous, is not 

allowed in ED since it only matches in the single forward direction. Following the 

approach proposed in [SSHZ2009], we define the following temporal alignment 

similarity: 

2 ( )TASim M Q SS                         (6-4) 

which takes into account the number of unmatched states and accepts crossover. 

Section 6.3.4 Temporal concentration similarity:  

It is easy to see that the distribution of matched (or unmatched) states and the 

internal temporal distance (or similarity) is ignored in SimTA. For instance, by Eq.(6-4), 

sequence [1, 2, 3, 4, 5] will be taken as having the same similarity with [1, a, a, 2, 3, 4, 

a, 5], [1, 2, a, 3, a, 4, a, 5] and [1, b, c, 2, 3, 4, d, 5]. In addition, the duration of various 

times, over which the corresponding states are associated with, is not addressed in 

(6-27). Here, we introduce a similarity measurement to govern such temporal 

concentration. In what follows in this paper, we use CD and DD to denote the 

Concentration similarity Degree and the Discrete similarity Degree: 
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1
2 1

( ) ( ( ) ( ))
i

i t
i t

CD Dur CMS Dur CMS Dur CMS
 

            (6-5) 

( ( ) ( ))i i
i

DD Dur CUS Dur CUS                  (6-6) 

where CMSi and CUSi are defined as ―Continuous Matched Subsequences‖ and 

―Continuous ←nmatched Subsequence‖, respectively, in descending ordered with 

respect to the length of these subsequences; and Dur(CMS) and Dur(CUS) denote the 

list of the duration of each continuous subsequence in CMS and CUS, respectively.  

represents the internal temporal distance with respect to each adjacent continuous 

matched and unmatched subsequences. In fact, if CUSi = [st, …, sp]  

1

1

1 1

( , ) 1

= ( , ) ( )

( ( , ) ( , )) 2

p

p i ii t

p

t i ii t

p

t i p i ii t

dis s s CUS if t

dis s s CUS if p length SS

dis s s dis s s CUS else







 

 

 








             (6-7) 

In order to reduce the computing complexity, we replace st-1 and sp+1 by their 

corresponding query states in Q since the Euclidean distance in Eq.(6-2) between each 

state in Q and a state in SS has been achieved in the kNN search stage. 

The temporal concentration similarity can be defined as: 

SimTC = (CD - DD)/|Q|                      (6-8) 

Section 6.3.5 Hybrid Similarity Model 

Normally, the overall similarity can be simply defined as the average of individual 

similarities. However, as we have argued earlier, the individual similarity 

measurements introduced in this paper have various features. In fact, while the 

non-temporal similarity and the temporal similarity may be treated in parallel, the three 

temporal similarities are progressive one after the other. Therefore, it is not appropriate 
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to simply accumulate all of them together. In what follows, we use a hybrid approach to 

combine the four similarity measurements. 

Step 1: reorder MSM(Q, D) as MSM(Q, D)‘ by SimTO, SimTA, and SimTC: 

Firstly, reorder it by the SimTO; then for the matchings with the same SimTO, 

reorder them by SimTA; analogously, reorder by SimTC if there some matchings with the 

same SimTA exist. 

Step 2: Integrate temporal similarity; get the integrated temporal similarity SimTS = 

Adjust(SimTO). For those ȝ = j-i+1 matchings [ε‟i, …, ε‟j] with the same SimTO, evenly 

stretch their similarities into [SimTO + ı/β, SimTO - ı/β] where ı denotes the adjust 

operator defined as below: 

1 1

1

1

( )/3 1,

= /2 1

/2

i j

j

i

TO TO

TO

TO

Sim Sim if i j x

Sim if i

Sim if j x



 



 





   

 




           (6-9) 

Step 3: Overall similarity; reorder MSM(Q, D)‘ as MSM(Q, D)‘‘ in terms of 

overall similarity Sim, which is defined as the average of the non-temporal similarity 

and integrated temporal similarity: 

Sim = (SimNT + SimTS)/2                  (6-10) 

Section 6.4 Experimental Results 

The proposed method was evaluated using a real-life video database that consisted of 

6 classes of video clip including news, basketball sports, education, scene, animation and 

MTV, each of which is in MPEG-1format with frame rate of 30 fps and with average 

duration of 2.9 minutes. For each key-frame, the 64-dimensional color histogram is 

extracted as the corresponding feature vector which has been normalized into [0, 1] 

afterwards. The detailed information on the video clip database is reported in table 6.2. 
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Table 6.2  Video clip database structure 

database Duration(hours) Num of clips Num of key-frames 
news 5.5 90 4560 

basketball 4.4 120 2359 
education 3.9 80 3096 

scene 3.2 100 2547 
animation 7.6 120 5213 

MTV 7.5 150 6864 
TOTAL 32.1 660 24639 

Section 6.4.1 Set up 

The database consists of 660 video clip state-sequences with average length of 

37.3hrs for each, including 6 different classes (100 examples each): In order to avoid the 

influence of segmenting error to the proposed similarity model, we shall use the original 

database in the form of individual 660 key-frame sequences as the training data. Several 

query sets are reconstructed as following: 

Original Query Set (OQS): which consists of 180 state-sequences (the first 30 

state-sequences from each class); 

Reordered Query Set (RQS): each state-sequence of this set is in Į percent reordered 

(in inverse order while Į=1) from the corresponding state-sequence in OQS; 

Shortened Query Set (SQS): each state-sequence is with length of (1- ȕ) × (number 

of key-frames), by deleting ȕ × (number of key-frames) states evenly, from the 

beginning and from the end of the corresponding state-sequence in OQS;  

Noised Query Set (NQS): each state-sequence of this set is obtained by means of 

adding a Gaussian noise to each state-sequence in OQS. 

For each query state-sequence, by means of following the procedure presented in 

section 6.2, we obtain a set of optional matching in the training database, and according to 

the hybrid similarity model proposed in section 6.3, we then calculate the overall 
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similarity respectively. The precision is defined as the ratio of the number of 

state-sequences with the same class as the query state-sequence out of the first 100 

optimal matching in MSM(Q, D)‘‘. We focus on the performance of our similarity model 

compared with that of [SSHZ2009] (named as ―Shen‖), which is just simply defined by 

the average of its individual similarity measurements. Meanwhile, another two models 

which employ ED and LCSS as temporal similarity have been tested respectively. 

Section 6.4.2 Effectiveness of dmax 

Figure 6.5 shows the precision using the OQS dataset with different dmax in thNN 

search. We can see that there is no distinct influence of dmax within [0, 0.3]. In order to 

reduce the complexity of our matching system, we default dmax = 0.3 if not specified.  
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Figure 6.5  Precision of OQS against dmax   

Section 6.4.3 Effectiveness of Į 

Figure 6.6 shows the precision on the RQS dataset against Į. In order to reveal the 

performance of the progressive temporal similarity measurement we proposed in this 

paper, we omit the non-temporal similarity in each method. From the figure we can see 

that, in our method, the precision has an approximate quadratic distribution with respect to 

Į, which means it can better detect the reordered state-sequences compared to the other 

approaches.  
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Figure 6.6  Precision of RQS against Į 

Section 6.4.4 Effectiveness of ȕ 

To evaluate the effect of ȕ, we formed the SQS dataset by deleting ȕ*60 states in 

different positions: evenly, from the beginning and the end. Figure 6.7 shows the matching 

results against different ȕ. Generally speaking, our method is more robust than others no 

matter whether the state-sequences are shortened evenly, from the beginning or from the 

end. The precision drops much more slowly in our method especially for ȕଲ[0.1, 0.5]. In 

addition, according to our statistic, the query set shortened from the beginning has a 

slightly higher precision than the other two sets shortened evenly and at the end in our 

similarity model. Generally speaking, the position (where being shortened) does not affect 

the precision very much in any similarity model. 
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Figure 6.7  Precision of SQS against ȕ 
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Section 6.4.5 Robustness 

Figure 6.8 shows the results of data seeded with Gaussian noise with different means 

([0, 2]) and variances ([0.1, 1]). Visually, our method has higher precision and smaller 

fluctuation. Table 6.7 below shows the average mean and standard deviation (STD) of 

each subfigure in Figure 6.8. 
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Figure 6.8  Precision with Gaussian noise against mean and variance 

Table 6.3  Statistic of the precision of noised query set 

 Hybrid Shen ED LCSS 
Mean (%) 77.69  70.25  66.72  58.28  

STD 0.0624  0.0735  0.0809  0.1228  

In summary, the hybrid similarity model has a satisfactory performance on video 

copy detection. Furthermore, it can handle the reorder edition in video clips and is 

robust to the noise. Since the similarity factors have just been combined linearly, it 

would be worthwhile developing a non-linear combination in the future. 
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CHAPTER 7 CONCLUSION AND 

FUTURE WORK 

Section 7.1 Conclusion 

To sum up, this thesis has designed a general framework for state-sequence 

matching particularly with the formal characterization of time-series and state-sequence 

and a general similarity measurement. In addition, two cases of state-based temporal 

pattern recognition have been investigated and explored.  

The evolution of the representation of time-series and conventional similarity 

measurements have been reviewed in detail. The relevant problems have been pointed 

out as motivation of this thesis: the general framework with the formal characterization 

of time-series and state-sequence as well as the general similarity measurement. 

The main findings with respect to the research issues listed in section 1.2 are 

summarized as following: 

1). A formal characterization of time-series and state-sequences has been 

presented for both complete and incomplete situations, where the time-series is 

formalized as a tetrad (T, R, Tdur, Tgap) that denotes the temporal order of 

time-elements, the temporal relationship between time-elements, the temporal 

duration of each time-element and the temporal gap between adjacent 

time-elements respectively. It is powerful enough to describe the 

state-sequences with both non-temporal information and rich temporal 

information. 

2). The General Similarity Measurement (GSM) has been designed for 

state-sequence matching. It takes into account both non-temporal and rich 

temporal aspects, including temporal order, as well as temporal duration and 
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temporal gap. The versatile property of the proposed GSM has been verified 

by the means of deducing the conventional similarity measurements as its 

special cases. Experimental results on 6 benchmark datasets have 

demonstrated that it can address the most general problems in matching 

time-series data with rich temporal information. When specified as a 

real-penalty similarity measurement, GSM can distinguish the distance caused 

by various states in the same operation and filter out noise that may push the 

distance at an abnormal level if specified as a binary-value similarity 

measurement. In particular, a new LCS-based similarity measurement named 

Optimal Temporal Common Subsequence (OTCS) has been proposed as the 

special case of GSM. In OTCS, the continuous duplicated states are counted as 

the same state with different temporal duration. The advantage of OTCS has 

been verified by both the sample evolution and the experiments on the 6 

benchmark datasets. 

3). The basketball zone-defence detection system has been investigated as a case 

study of state-based temporal pattern recognition. On one hand, we have 

extended the Laplacian Matrix-based algorithm to take account of the effects 

from zoom and single defender‘s translation in zone-defence graph matching. 

A set of character-angle based features was proposed to describe the 

zone-defence graph. It can describe the structure relationship between 

defender-lines for basketball zone-defence, and has a robust performance in 

both simulation and real-life applications especially when disturbance exists. 

4). The video copy detection system has been investigated as another case study 

of state-based temporal pattern recognition. The state-sequence matching 

problem has been represented by bipartite graph matching problem. A hybrid 

similarity model addressing both non-temporal and temporal relationship 

between state-sequences has been proposed, where the non-temporal similarity 

has been defined in form of Euclidean distance, whilst the temporal similarity 

has been constructed with temporal order similarity, temporal alignment 
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similarity and temporal concentration similarity. The experimental results on 

the real-life video database have demonstrated that the proposed model is 

robust to states alignment with various numbers and different values, as well 

as various reordering including inversion and crossover.  

Section 7.2 Future Work Discussion 

In the General Similarity Measurement (GSM) as well as the special Optimal 

Temporal Common Subsequence (OTCS) case, the parameter (the values of weights) 

selection is a vital and arduous task. How to automatically select the optimal values for 

the weights remains one a research task for the future. Furthermore, more intelligent 

computation of the temporal durance difference and temporal gap difference also 

presents interesting future work. In addition, in order to be applied to large scale 

databases, it is very important to adopt proper pruning strategies to improve efficiency, 

which will also be part of our future work. 

In basketball zone-defence detection, the extended Laplacian Matrix-based 

algorithm only takes account of the effects from zoom and single defender‘s translation 

in zone-defence graph matching. However, the effect from rotation is ubiquitous in 

zone-defence graph matching. As an area of future work, it would be worthwhile to 

take account of the effects from rotation in basketball zone-defence detection. 

Furthermore, the basketball database is still small in our experiments. It would be 

necessary to expand the size of the dataset to further explore both the non-temporal and 

temporal relationships between state-sequences of basketball zone-defence, and 

therefore to obtain the best defence and attacking strategy. In addition, both the 

extended Laplacian Matrix-based algorithm and the Character-Angle based feature 

have been tested on basketball zone-defence videos. Therefore, as future work, they 

may be tested on other team sports games such as football, volleyball, and so on. 

In the hybrid similarity model, the non-temporal similarity and temporal similarity 

including temporal order similarity, temporal alignment similarity and temporal 
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concentration similarity have been combined by means of linear accumulation, which is 

a simple but inappropriate method of aspect combination. With respect to future work, 

it would be interesting to explore more appropriate combination strategies. Meanwhile, 

it is hoped that this model can provide a steady usage with regards to larger time-series 

databases and real-life applications such as Content-based Video Retrieval (CBVR), 

which may also be an area for future work. 
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Abstract 

Temporal representation and reasoning plays an 
important role in Data Mining and Knowledge Discovery, 
particularly, in mining and recognizing patterns with rich 
temporal information. Based on a formal characterization 
of time-series and state-sequences, this paper presents the 
computational technique and algorithm for matching 
state-based temporal patterns. As a case study of real-life 
applications, zone-defence pattern recognition in 
basketball games is specially examined as an illustrating 
example. Experimental results demonstrate that it 
provides a formal and comprehensive temporal ontology 
for research and applications in video events detection. 

Key words: algorithm, temporal pattern recognition, 
basketball zone-defence.  

 
1. Introduction 
 
Data mining is the process of finding trends and patterns 

in data [4]. Generally speaking, data mining requires some 
historical knowledge as for the internal temporal 
relationships of certain patterns. Therefore, temporal 
representation and reasoning is essential and ubiquitous for 
data mining and knowledge discovery. In fact, recognizing 
temporal patterns actually plays an important role in many 
applications such as prediction, forecast, explanation, 
diagnosis, history reconstruction, decision making, and so 
on, where the history of situations in terms of time-series of 
states is more vital than distinct states/processes or 
actions/events. For instance, in the area of medical 
information systems, a patient‘s medical history is 
obviously very important: to prescribe the right treatment, 
the doctor needs to analysis not only the patient‘s current 
state, but also his/her previous health situations, including: 
How long has the patient been ill? Did the patient have the 
same problem or relevant disease 
previously?  Has the patient had some treatment already  

 
This research is supported in part by National Nature Science 

Foundation of China (No. 60772122) 

before seeing the doctor? Has the patient been allergic to 
any drugs in the past? Also, in weather forecast, to provide 
correct and accurate prediction, weather experts need to 
know not only the current weather parameters summarized 
as temperature, air pressure, precipitation amount, wind 
speed and residual snow/ice amount, but also the weather 
histories in terms of time-series of weather parameters over 
some certain prior periods, such as: How long did the heat 
wave last? Was there lightning before or during the rain? 
Did snow melt then refreeze? And so on. Similarly, in 
basketball games, to find correct zone-defence strategy 
detection, we need to know not only the current positions of 
each defender, but also their previous positions and 
movements, etc. 

It has been noted that, time-series and sequences are 
important patterns in data mining and have attracted a lot of 
researchers‘ interests [γ, 8, 9, 11, 13]. However, in most of 
those proposed formalisms, the fundamental time theories 
based on which time-series and sequences are formed up are 
usually not explicitly specified, where time-series and 
sequences are simply expressed as lists in the form of 
well-ordered indexes or as sequences of collection of 
observations, and so on. The formal characterizations with 
respect to the temporal basis are neglected, leaving some 
critical issues unaddressed. 

 In what follows in this paper, the formalism for 
formalizing time-series and state-sequences is briefly 
introduced in section 2. Based on this formalism, section 3 
presents the computational technique and algorithm for 
matching state-based temporal patterns, illustrated by a 
real-life case study. Experimental results are provided, 
analyzed and evaluated in section 4, demonstrating the 
efficiency of the proposed technique and algorithm. Finally, 
section 5 provides a brief summary and concludes the 
paper. 

 
2. The formalism 
 
For general treatment, in this paper, we shall adopt the 

general time theory proposed in [10] as the temporal basis. 
The time theory takes a nonempty set of primitive time 
elements, with an immediate predecessor relation, Meets, 
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over time elements, and a duration assignment function, 
Dur, from time elements to non-negative real numbers. If 
Dur(t) = 0, then t is called a point; otherwise, that is 
Dur(t) > 0, t is called an interval (detailed characterization 
of such a time theory is given in [10]). 

Analogous to the 13 relations introduced by Allen for 
intervals [1,2], there are 30 exclusive temporal order 
relations over time elements including both time points and 
time intervals, which can be classified into the following 4 
groups: 
 Relations which relate points to points: 

{Equal, Before, After} 
 Relations which relate points to intervals: 

{Before, After, Meets, Met_by, Starts, During. 
Finishes} 

 Relations which relate intervals to points: 
{Before, After, Meets, Met_by, Started_by, Contains, 

Finished_by} 
 Relations which relate intervals to intervals: 

{Equal, Before, After, Meets, Met_by, Overlaps, 
Overlapped_by, Starts, Started_by, During, Contains, 
Finishes, Finished_by} 

Based the above time theory, a time-series ts is defined 
as a vector of time-elements temporally ordered one after 
another [9]. Formally, a general time-series is characterized 
in terms of the following schema: 
GTS1) ts = [t1, …, tn]; 
GTS2) Meets(tj, tj+1)  Before(tj, tj+1),  

for all j = 1, …, n-1; 
GTS3) Dur(tk) = dk, 

for some k where 1≤ k ≤ n and di is a 
non-negative real number. 

N.B. : Before(t1, t2) t(Meets(t1, t)  Meets(t, t2)) 
Generally speaking, a time-series may be incomplete in 

various ways. For example, if the relation between tj and tj+1 
is ―Before‖ rather than ―Meets‖, it means that the knowledge 
about the time-element(s) between tj and tj+1 is not available. 
In addition, if Dur(tk) = dk is missing for some k, it means 
that duration knowledge as for time-element tk is unknown. 
Correspondingly, a complete time-series is defined in terms 
of the schema as below: 
CTS1) ts = [t1, …, tn]; 
CTS2) Meets(tj, tj+1), for all j = 1, …, n-1; 
CTS3) Duration(ti) = di, 

for all i = 1, …, n, where di is a non-negative real 
number. 
The validation of data is usually dependent on time. For 

instance, $1000 (Account Balance) can be valid before and 
on 1 January 2003 but become invalid afterwards. We shall 
use fluents to represent Boolean-valued, time-varying data, 
and denote statement ―fluent f holds true over time t‖ by 
formula Holds(f, t): 

(F1) (f, t)  t1(Part(t1, t)  Holds(f, t1)) 
That is, if fluent f holds true over a time element t, then f 

holds true over any part of t. 

(F2) t1(Part(t1, t)  t2(Part(t2, t1)  Holds(f, t2))) 
   Holds(f, t) 
That is, if any part of time t contains a part of itself over 

which fluent f holds true, then f holds true over t. 
Here, Part(t1, t2) is the shorthand writing of Equal(t1, t)  

Starts(t1, t)  During(t1, t)  Finishes(t1, t). 
(F3) Holds(f1, t)  Holds(f2, t)  Holds(f1  f2, t) 
That is, if fluent f1 holds true over time t or fluent f2 holds 

true over time t, then at least one of them holds true over time 
t. 

(F4) Holds(not(f), t)  t1(Part(t1, t)  Holds(f, t1)) 
That is, the negation of fluent f holds true over time t if 

and only if fluent f does not hold true over any part of t. 
(F5) Holds(f, t1)  Holds(f, t2)Meets(t1, t2) 
   Holds(f, t1t2) 
That is, if fluent f holds true over two time elements t1 

and t2 that meets each other, then f holds over the 
ordered-union [10] of t1 and t2. 

A state is defined as a collection of fluents. Following the 
approach proposed in [12], we shall use Belongs(f, s) to 
denote that fluent f belongs to the collection of fluent 
representing state s. 

For the reason of simple expression, if f1, …, fm are all the 
fluents that belong to state s, we shall represent s as <f1, …, 
fm>. Also, without confusion, we shall use formula Holds(s, t) 
to denote that s is the state of the world with respect to time t, 
provided that: 

(F6) s = < f1, …, fm>
 Holds(s, t)  Holds(f1, t) Holds(fm, t) 
That is, a state s holds true over time t if and only if every 

fluent in the s holds true over time t.  
A state-sequence ss is defined as a list of states together 

with its corresponding time-series ts [9]. A general 
state-sequence is defined in terms of the schema as below: 
GSS1) ss = [s1, …, sn]; 
GSS2) Holds(si, ti),  

for all i = 1, …, n, where [t1, …, tn] is a time-series. 
 Finally, a state-sequence is defined as complete if and 

only if the corresponding time-series is complete. 
 
3. States-based basketball zone-defence 

pattern recognition 
 
As a popular worldwide sport game, basketball has led 

to various research interests, including basketball video 
retrieval, shot segmentation, event or highlight detection, 
semantic annotation, etc. In what follows in this paper, we 
shall focus on the so-called zone-defence pattern matching 
(or zone-defence strategy detection) as a real-life case study 
of states-based temporal pattern recognition. 

 
 
 
 3.1. Zone-defence state and graph 
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Zone-defence is a very common defence strategy in 
basketball. In particular, zone-defence uses basic principles 
to force opponents either in full-court, three-quarter-court, 
or half-court areas in order to upset their offense [6]. 
Comparing with man-to-man defence, zone pressure 
defence requires each defender guard his zone consistently. 
Fig.1 shows the ordinary positions of 5 defenders in 1-3-1 
zone-defence: 

 
Fig.1. 5 defenders’ positions in 1-3-1 zone-defence 

Firstly, we premise that: 1) The defenders have adjusted 
to their best defensive positions at the moment when the 
ball is just to be passed or dribbled; 2) As the zone-defence 
strategy is to defence the offensive opponent to attack into 
interior playfield, we only consider the states when the ball 
is in the midfield, the wing and the corner.  

According to these two premises, a basketball 
zone-defence video clip is structured by zone-defence states 
or so-called state-sequence̟SS = [S1, …, Sn], and 
Holds(Si,ti) for i = 1, …, n, where [t1, …, tn] is a time-series 
of the moments referred in premise 1).  

Following the conventional notations in graph theory, 
we represent a zone-defence graph as G = <VG, EG>, where 
VG and EG denote the set of the vertices (defenders‘ 
position) and the set of edges respectively, and EG  VG×
VG. In particular, here, |VG| = 5. The position of each 
defender is denoted by the horizontal and vertical 
coordinates of the corresponding vertex. 

Obviously, each state Si has its corresponding graph Gi, 
where i = 1, …, n. In addition, we shall use the following 
vector [ball1, …, balln] to record the ball‘s position of each 
state, where ballię{midfield, wing, conner} for i = 1, …, n. 

 
3.2. Standard zone-defence graph database 
 
Zone-defence can be divided into various formations, 

including 2-3, 1-3-1, 1-2-2, 3-2, 2-2-1, 2-1-2 and 1-2-1-1 
zone-defence strategies,  where the first three have been 
noted as the most common ones employed in actual 
basketball games. In this paper, we shall focus on the first 

three formations.  
In the first place, we shall formulate the standard 

zone-defence graph database according to two famous 
basketball coaching web sides [5, 6]. For instance, a typical 
2-3 zone-defence clip (state-sequence) for the ball from the 
state of setting-up in the midfield to the state of passing or 
dribbling to the wing and then to the corner can be 
presented in terms of the following 3 graphs as shown in 
Fig.2 (the star marks denote the 5 defenders and the circle 
denotes the ball): 

 
(a) setting-up in the midfield 

 

 
(b) passing or dribbling to the wing 

 
(c) passing or dribbling to the corner 

Fig.2. A sample clip (3 states) of 2-3 zone-defence  

Table 1 below shows the number of our standard 
zone-defence graph database of different zone-defence 
strategies obtained from the two web sites [5, 6]. 

Table 1. The number of standard zone graphs 

     
zone-defence 

 

 
2-3 

 
1-3-1 

 
1-2-2 



APPEDIX A  TEMPORAL PATTERN RECOGNITION IN VIDEO CLIPS DETECTION 
 

154 

ball‘s position 

midfield 4 3 2 
wing 4 12 7 
corner 6 6 2 
totally 14 21 11 

 
In order to reduce human‘s subjective error, we invited 

10 professional basketball coaches to enter the standard 
zone-defence graphs for our system. For each vertex of any 
graph, we assign the average of the 10 entered values (with 
respect to horizontal and vertical coordinates) to it.  

 
3.3. LM-based state matching algorithm  
 
As mentioned above, each zone state has its 

corresponding zone graph. Therefore, state matching can be 
transformed into the corresponding graph matching. In this 
section, we shall extend the Laplacian matrix-based 
algorithm proposed in [7] for matching zone graphs. The 
original algorithm proposed in [7] is demonstrated to be 
precise in matching image pairs; however, on one hand, it is 
invariant with respect to zoom, and on the other hand, it is 
very sensitive to the translation of single vertex. The main 
process of the extended algorithm is expounded as 
following: 

1) Formulating  the distance Laplacian Matrices for 
zone graph G and H: 

2

2
( )

l ( , , , 1,...,5)

( ) [ ]
G Gi j

ik
k i

V V
i j

M
ij

i j k i j

L G l




 

  


  
 

          (1) 

2

2
( )

l ( , , , 1,...,5)

( ) [ ]
H Hi j

ik
k i

V V
i j

M
ij

i j k i j

L H l




 

  


  
 

           (2) 

Here, we take M as the diagonal line length of the 
half-court playfield. 

Obviously, in addition to the spatial distance (SD) 
relationships as characterized by formula (1) and (2), the 
spatial direction (SD‘) relationships between defenders also 
play an indispensable role. Hence, additional direction 
Laplacian Matrices with respect to the direction 
relationships are formulated as: 
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where ( , )
i jG GR V V denotes the direction relationship 

between
iGV and

jGV : 
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N.B.: Single vertex translation has less effect on the 
direction Laplacian Matrices than the distance Laplacian 
Matrices. 

2) Computing the Singular Value Decomposition (SVD) 
for each Laplacian Matrix respectively:  

1 5( ) { ,..., } TL G Udiag U          (6) 

1 5( ) { ,..., } TL H Vdiag V           (7) 

1 5

' ' ' '( ) { ,..., }( ) TL G U diag U '   (8) 

1 5

' ' ' '( ) { ,..., }( ) TL H V diag V '   (9) 

3) Sign adjusting [7] ↑ and ↑‘ into ↑a and Vb. 
4) Constructing the matching distance between ith vertex 

in G and jth vertex in H: 
           

2 2 2 T
a a( ) 2 U (V )i j i j

ij i j i j i jP U V           (10)  
2' ' ' T( ) 2[1 2( ) ( ) ]i j i j

ij b bP U V U V       (11)  

N.B.: Here, Eigen-values are added to take into account 
of the effects from distance zoom. This is different from the 
algorithm proposed in [7]. 

5) Defining the matching relationship matrix: 

       T T
a aC = UV  = [U (V ) ] = [C ]i j

ij     (12) 
' T T '

b b C = UV  = [U (V ) ] = [C ]i j
ij     (13) 

6) Computing the matching distance of each vertex in G, 
with respect to its relationships to the vertices in H :  
, , , (1,2,...,5)i j k t  : 
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max ,kt
i
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7) Computing the compound matching distance between 
graph G and H: 

5
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i

Dis G H MD

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5
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Finally, the global matching distance between 
graphG andH is defined by: 

' '( , ) ( , ) ( , )D G H Dis G H Dis G H      (18) 

where ' 1   .  

As illustrated by the experimental results shown later in 
this paper, by taking 0.75  and ' 0.25  , the algorithm 

demonstrates an outstanding performance. 
 
3.4. Zone-defence state-sequence matching algorithm 
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As mentioned earlier in the paper, a test basketball video 

clip can be denoted by a state-sequence [S1
test, …, Sm

test], 
which in turn can be expressed as a graph-sequence 
[G1

test, …, Gm
test], and the corresponding ball positions 

[ ball1
test, …, ballmtest]. We shall match each test graph with 

the graphs in the standard zone-defence graph database. 
Zone-defence state-sequence matching algorithm is 

given as below. 
Firstly, we match the test graph-sequence with standard 

2-3 zone graph-sequences
23

23 23 23
1[ ,..., ]nG G G in terms of the 

following procedure:    
Step 1: 
For each , 1,2,...,test test

iG G i m  , compute the distances 

between test
iG and graphs with the same ball position 

as test
iG in standard 2-3 zone graph database, in terms of the 

graph matching algorithm presented in section 3.3: 
23 23( , ) [ ]
j

test
i z ijD G G D              (19) 

where 23

zj

test
iball ball ,

23{1,2,..., }jz n , 231,2,..., pj n n  , 

and pn is the number of the graphs with the same ball 

position as test
iG in 2-3 zone graph database.  

Step 2: 
Search the most similar graph compared withtest

iG in 2-3 

zone graph database.  
23 23 23, argmin([ ])

j i
i z i ij

j
SG G j D              (20) 

Step 3: 
Computing the similarity degree between the test 

state-sequence and 2-3 zone state-sequences: 

23 23 23
test

1

min([ ])
j i

m

z ij
i

Sim w D


            (21) 

where 23

j i
zw denotes the weight of graph 23

j i
zG  in  2-3 

zone graph database, which are obtained from our coaches 
as well. 

Secondly, in terms of the same procedure, we define the 
similarity degree between the test state-sequence and 1-3-1 
zone state-sequences as: 

131 131 131
test
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j i

m

z ij
i

Sim w D


           (22) 

Thirdly, we define the similarity degree between the test 
state-sequence and 1-2-2 zone state-sequences in the same 
manner as: 

122 122 122
test

1

min([ ])
j i

m

z ij
i

Sim w D


            (23) 

Finally, the zone-defence formation pattern of the test 
zone-defence video is defined as: 

23 131 122
test test testargmax( , , )testZ Sim Sim Sim       (24) 

In summary, the flow chart of basketball zone-defence 
matching system can be shown as Fig. 3: 

 

 

Fig.3. The flow chart of zone-defence matching system 

As illustrated in Fig.3, in the first place, the test 
state-sequence is transformed into the corresponding 
graph-sequence, which is then matched with the graphs in 
the standard zone graph database. The compositive 
similarity degrees with each standard zone are then 
obtained according to the graph-sequence that is the most 
similar one compared with the test graph-sequence, which 
in turn, provide matching results to confirm which 
zone-defence formation does the test state-sequence belong 
to. 

 
4. Experimental results 
 
We tested our system with both simulated zone-defence 

data and real-life basketball zone-defence video data. For 
each zone-defence formation, with simulated data, we 
formulated 20 clips (state-sequences) provided by the 
professional coaches. Also, we have collected the real 
basketball zone-defence videos lasting about 1 hour, 
including 112 clips containing 3 to 8 states. The detected 
zone-defence video clips were manually decomposed into 
state-sequences and then represented by corresponding 
graphs. In addition, the normalization of the viewing angle 
of the camera and object-extracting has not been addressed 
in this paper. Table 2 shows the numbers of test clips and 
states in detail: 

Table 2. The number structure of test data 

 zone total clips total states 
 2-3 52 286 

testZ  

1-2-2 
 zone  

1-3-1 
 zone  

test
1G  test

2G  test
mG  

 2-3 
 zone  

23
mSG  131

mSG  
131
2SG  

131
1SG  

122
1SG  

122
2SG  

122
mSG  

23
testSim  131

testSim  
122
testSim  

 test 
graphs 

 standard 
   zone 
  graphs 

 the most 
  similar  
  graphs 

 test 
states 

matching  
  result 

 

23
2SG  
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real 1-3-1 31 221 
1-2-2 29 169 

 
simulated 

2-3 20 145 
1-3-1 20 161 
1-2-2 20 128 

 
Firstly, we give an example of the matching (global) 

distances between a given test state-sequence and 3 
standard zones. The second row are the corresponding 
graphs of the test state-sequence with 3 states as shown in 
the first row, where the rest rows are the most similar graph 
compared with each test graph in 2-3,  1-3-1, and 1-2-2 
zone-defence strategies, as appearing in the row order. It is 
clear to see that the most similar zone-defence formation 
compared with the test state-sequence is the 2-3 
zone-defence pattern, which agrees with the matching result 
from our algorithm.  

 

test(1)

D=0.49797

D=2.04

D=1.1107

test(2)

D=0.087146

D=0.4005

D=0.955

test(3)

D=0.28318

D=0.50064

D=1.0579

 

Fig.4. An example of basketball zone-defence video 
clip recognition 

Table 3 below shows the matching precise for each 
zone-defence pattern. It indicates that the matching 
algorithm (SDD‘) proposed here, which takes into account 
of both spatial distance and spatial direction relationships, 
outperforms SD or SD‘ that only address spatial distance or 
spatial direction relationships, respectively. 

Table 3. Matching precise for each zone-defence pattern 

test data zone 
precision (%) average 

precision SD SD‘ SDD‘ 

 
real 

2-3 74.6 69.8 82.7 75.7 
1-3-1 65.9 63.1 77.4 68.8 
1-2-2 80.3 70.7 86.2 79.0 

 
simulated 

2-3 82 80 85 82.3 
1-3-1 91 89 95 91.6 
1-2-2 79 81 85 81.6 

average precise: 78.8 75.6 85.2  
 
5. Conclusions and future work 
 
Based on a formal characterization of time-series and 

state-sequences, we have introduced the computational 
technique and algorithm for detecting zone-defence patterns 
from basketball videos. The experimental results show that 
it is useful in helping the coach of the defence side to check 
whether the players play in a right zone-defence strategy, as 
well as the coach of the offensive side to detect the strategy 
of the opponent. Specially, we have extended the Laplacian 
Matrix-based algorithm to take account of the effects from 
zoom and single defender‘s translation in zone-defence 
graph matching. As the future work, we shall take account 
of the effects from rotation and expand the test dataset to 
explore the relationships between sequences of basketball 
zone-defence in order to obtain the best strategy. In addition, 
we shall test the method in other team-work sport games 
such as football, volleyball, and so on. 
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Abstract 
 

Absolute-time-stamping of temporal data provides an 
efficient indexing method for temporal information 
systems, but suffers from the requirement that precise 
time values for all temporal data need to be available. 
Temporal knowledge in many Artificial Intelligence 
systems can be uncertain due to the unavailability of 
complete and absolute temporal information. This paper 
introduces an inferential framework for reasoning about 
uncertain and incomplete temporal knowledge: the 
uncertainty is formalised in terms of temporal relations 
jointed by disjunctive connectives, while the 
incompleteness is due to the lacking of full temporal 
information. A graphical representation which allows 
expression of such uncertain and incomplete temporal 
knowledge is introduced, and based on which, the system 
can deliver a verdict to the question if a given set of 
statements is temporally consistent or not, and provide 
understandable logical inferences by linear programming 
and contradiction reasoning.  
 
1. Introduction 
 

The representation and manipulation of natural human 
understanding of temporal phenomena is a fundamental 
field of study in Computer Science, which aims both to 
emulate human thinking, and to use the methods of 
human intelligence to underpin engineering solutions. In 
particular, many Artificial Intelligence systems need to 
deal with the representation and reasoning about time in 
modeling natural phenomena and intelligent human 
activities. It has been noted that absolute-time-stamping 
of temporal data provides an efficient indexing method 
for temporal systems, but suffers from the requirement 
that precise time values for all temporal data need to be 
available. Generally speaking, in the domain of Artificial  
 
 
This research is supported in part by National Nature Science 
Foundation of China (No. 60772122) 

 
 
Intelligence, temporal knowledge can be uncertain and 
incomplete. For instances: 
(a) Temporal references may be only relative (e.g., 

―during the time when the officer was in his office‖, 
―after 9 o‘clock‖, etc., which refer to times that are 
known only by their relative temporal relations to 
other temporal reference), rather than being absolute 
(e.g., ―8 pm on the 8th of August β008‖, ―the last 
week of August β008‖, which refer to times with 
absolute values); 

(b) Temporal duration may be only relative (e.g., ―less 
than 6 hours‖, ―more than 1β years but less than 15 
years‖, etc., which refer to some uncertain amount of 
temporal granularity), rather than being absolute 
(e.g., ―γ1 minutes‖, ―18 hours‖, etc., which refer to 
some certain amount of temporal granularity); 

(c) We may only know event E1 occurred ―Before‖ event 
E2 without knowing their precise starting and 
finishing time, or what happened between E1 and E2. 

Incomplete relative temporal knowledge such as these is 
typically derived from humans, where complete and 
absolute temporal information is rarely available and 
remembered for knowledge representation and reasoning. 
Allen‘s interval-based time theory [1] is a representative 
example of temporal systems addressing relative temporal 
relations including ―Meets‖, ―Met_by‖, ―Equal‖, ―Before‖, 
―After‖, ―Overlaps‖, ―Overlapped_by‖, ―Starts‖, 
―Starts_by‖, ―During‖, ―Contains‖, ―Finishes‖ and 
―Finished_by‖. It has been claimed in the literature that 
time intervals are more suited for expression of common 
sense temporal knowledge, especially in the domain of 
linguistics and artificial intelligence. In addition, 
approaches like that of Allen [1,2] that treat intervals as 
primitive temporal elements can successfully 
overcome/bypass puzzles like the Dividing Instant Problem 
[1,4,5,10,11], which is in fact an ancient historical puzzle 
encountered when attempting to represent what happens at 
the boundary point that divides two successive intervals. 
However, as Galton shows in his critical examination of 
Allen's interval logic [5], a theory of time based only on 
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intervals is not adequate for reasoning correctly about 
continuous change. In fact, many common sense situations 
suggest the need for including time points in the temporal 
ontology as an entity different from intervals. For instance, 
it is intuitive and convenient to say that instantaneous 
events such as ―The database was updated at 00:00am‖ [6], 
―The light was automatically switched on at 8:00pm‖ [1], 
and so on, occur at time points rather than intervals (no 
matter how small they are). Therefore, for general 
treatments, it is appropriate to include both points and 
intervals as primitives in the underlying time model, for 
making temporal reference to instantaneous phenomena 
with zero duration, and periodic phenomena which last for 
some positive duration, respectively. 

The objective of this paper is to present a framework to 
assist representing and reasoning about uncertain and 
incomplete knowledge. In section 2, a time theory based on 
both points and intervals as the temporal primitive is 
introduced. Section 3 presents a graphical representation for 
uncertain and incomplete temporal knowledge. The 
necessary and sufficient condition for the consistency of a 
temporal reference is discussed in section 4. Finally, section 
5 concludes the paper. 

 
2. The time theory 
 
In this paper, we shall simply adopt the general time 

theory proposed in [8], which takes a nonempty set, T, of 
primitive time elements, with an immediate predecessor 
relation, Meets, over time elements, and a duration 
assignment function, Dur, from time elements to 
non-negative real numbers. If Dur(t) = 0, then t is called a 
point; otherwise, that is Dur(t) >0, t is called an interval. 
The basic set of axioms concerning the triad (T, Meets, Dur) 
is given as below [8]: 

T1. t1,t2,t3,t4(Meets(t1, t2)  Meets(t1, t3)  Meets(t4, 
t2) 

 Meets(t4, t3)) 
That is, if a time element meets two other time elements, 

then any time element that meets one of these two must also 
meets the other. This axiom is actually based on the 
intuition that the ―place‖ where two time elements meet is 
unique and closely associated with the time elements [3]. 

T2. tt1,t2(Meets(t1, t)  Meets(t, t2)) 
That is, each time element has at least one immediate 

predecessor, as well as at least one immediate successor. 
T3. t1,t2,t3,t4(Meets(t1, t2)  Meets(t3, t4) 
 Meets(t1, t4) 

 t'(Meets(t1, t')  Meets(t', t4)) 
 t''(Meets(t3, t'')  Meets(t'', t2))) 

where  stands for ―exclusive or‖. That is, any two 
meeting places are either identical or there is at least a time 
element standing between the two meeting places if they are 

not identical. 
T4. t1,t2,t3,t4(Meets(t3, t1)  Meets(t1, t4)  Meets(t3, 

t2)  Meets(t2, t4))  t1 = t2) 
That is, the time element between any two meeting 

places is unique. 
N.B. For any two adjacent time elements, that is time 

elements t1 and t2 such that Meets(t1, t2), we shall use t1  t2 
to denote their ordered union. The existence of such an 
ordered union of any two adjacent time elements is 
guaranteed by axioms T2 and T3, while its uniqueness is 
guaranteed by axiom T4. 

T5. t1,t2(Meets(t1, t2)  Dur(t1) > 0  Dur(t2) > 0) 
That is, time elements with zero duration cannot meet 

each other. 
T6. t1,t2(Meets(t1, t2)   Dur(t1  t2) = Dur(t1) + 

Dur(t2)) 
That is, the ―ordered union‖ operation over time 

elements is consistent with the conventional ―addition‖ 
operation over the duration assignment function, i.e., Dur.  

Analogous to the 13 relations introduced by Allen for 
intervals [1,2], there are 30 exclusive temporal relations 
over time elements including both time points and time 
intervals, which can be derived from the single Meets order 
relation and classified into the following 4 groups: 
 Relations relating an interval to an interval: 

G0 = 
{Equal, Before, After, Meets, Met_by, Overlaps, 

Overlapped_by, Starts, Started_by, During, Contains, 
Finishes, Finished_by} 

 Relations relating a point to a point: 
G1 = 

{Equal, Before, After} 
 Relations relating a point to an interval: 

G2 = 
{Before, After, Meets, Met_by, Starts, During, 

Finishes} 
 Relations relating an interval to a point: 

G3 = 
{Before, After, Meets, Met_by, Started_by, 

Contains, Finished_by}  
As emphasized in the introduction, in the domain of 

Artificial Intelligence, temporal knowledge can be uncertain 
and incomplete. First of all, for a given pair of time 
elements t1 and t2, it may be unknown which of the 30 
possible temporal relations as classified in section 2 
certainly holds between t1 and t2. We shall formalize this 
uncertain temporal knowledge in term of temporal relations 
jointed by disjunctive connectives. In this paper, we shall 
use a triad (T, R, D) to express the temporal reference of a 
given collection of temporal propositions, where: 

 T = {t1, …, tn} is a finite set of time elements, 
expressing the knowledge (possibly 
incomplete) of what time elements are 
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involved with respect to the given collection 
of propositions; 

 R = {R(ij)} | R(ij) = r(ij)1  …   r(ij)
m(ij), 1 ≤ i, 

j ≤ n; i ≠ j} is a collection of disjunctions of 
temporal relations over T, expressing the 
knowledge (possibly incomplete) as how the 
time elements in T are related to each other. 
Here, r(ij)k is one of the possible temporal 
relations as classified in section 2. 

 D is a collection of duration assignments 
(possibly incomplete) to time elements in T. 

Generally speaking, if t1 and t2 are two time elements 
(specially, time intervals), we know that precisely one of 
the temporal predicates in G0 must apply for t1 and t2. 
Hence for rG0: 

 ¬r(t1, t2)  r1(t1, t2)   r2(t1, t2)  ...  r12(t1, t2) 
where {r1, r2, ...,r12}  {r} = G0. Hence, to prove r(t1, t2),  

we need to show that ri(t1, t2) is inconsistent for i = 1, …, 1β. 
For instance, we may prove Before(t1, t2) by means of 
showing that, when applying to t1 and t2, Equal, After, 
Meets, Met_by, Overlaps, Overlapped_by, Starts, 
Started_by, During, Contains, Finishes and Finished_by are 
all inconsistent with the system. The task of checking the 
consistency of temporal knowledge shall be deal with later 
in the paper. 

In addition, if it is known that t1 and t2 are two points, 
then G0 can be deduced to G1, and in the case where it is 
known that t1 is a point and t2 is an interval, then G0 can be 
deduced to G2; similarly, if it is known that t1 is an interval 
and t2 is a point, then G0 can be deduced to G3. 

 
3. Graphical representations 
 
A temporal reference (T, R, D) can be graphically  

expressed in terms of a directed graph, in which each time 
element of T is represented as a node, and the collection of 
disjunctions of temporal relations relating time element ti and 
time element tj is expressed as a directed arc from node ti to 
node tj which is correspondingly labeled with R(ij)}, for some i 
and j, where 1 ≤ i, j ≤ n; i ≠ j; the duration assignments of D 
are denoted as bricked numbers correspondingly attached to 
the nodes.   

For instance, consider temporal reference (T, R, D), 
where 

T = {t 1, t2, t3, t4, t5, t6, t7, t8};  
R = {Meets(t1,t2)Starts(t1,t2), Meets(t1,t3), Meets(t2, t5), 

  Meets(t2,t6)Finishes(t2,t6), 
  Meets(t3,t4)Overlaps(t3,t4), 
  Meets(t4,t7), Meets(t5,t8), 
  Meets(t6,t7)Starts(t6,t7)During(t6,t7), 

     Meets(t7,t8)Overlaps(t7, t8)} 
D = {Dur(t2)=1, Dur(t4)=0.5, Dur(t6)=0, Dur(t8)=0.3} 
The graphical representation of temporal reference (T, R, 

D) is shown in Figure 1: 

Figure 1. Graph representation of (T, R, D) 
 
For the convenience of expression, in this paper, if 
R = {R(ij)} | R(ij) = r(ij)1  …   r(ij)

m(ij), 1 ≤ i, j ≤ n; i ≠ j} 
we shall define: 

|R| = ∏|R(ij) | = ∏m(ij), for all i, j appearing in R. That is,  
|R(ij) | denote the number of temporal relations jointed in R(ij) 
by disjunctive connectives. 

Therefore, the graph of a given temporal reference can 
be split up into |R| graphs with no disjunctions, each of 
which expresses a possible case (T, Rk, D) with respect to 
the temporal reference addressed, k = 1, …, |R|. For 
example, the graph shown in Figure 1 can be split up into 
48 (that is, 2x1x1x2x2x1x1x3x2) no-disjunction graphs.  

In general, the temporal order relation between two time 
elements can be any one of those 30 as classified in section 2. 
However, as shown in [8], analogous to Allen and Hayes‘s 
approach [3], all the temporal can be defined as derived 
relations in terms of the single ―Meets‖ relation. In fact, such 
definitions are straightforward. For example, ―Before‖ can be 
defined as: 

 Before(t1, t2)  t(Meets(t1, t)  Meets(t, t2)) 
Therefore, for any possible case of (T, R, D), that is, (T, 

Rk, D) (k = 1, …, |R|), we can express Rk as a collection of 
Meets relations only, denoted as Mk, and obtain the 
corresponding triad (T, Mk, D) which has no disjunctions 
involved. Figure 2 below presents the corresponding graph 
representation of one of such no-disjunction and Meets-only 
graphs. 
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Figure 2. A no-disjunction and Meets-only graph 
4. Temporal consistency checking  
 
For a given temporal reference (T, R, D), we say it is 

temporal consistent if there is at least one of the corresponding 
no-disjunction and Meets-only cases (T, M, D) is consistent.  

 
4.1  Checking the temporal consistency 
 
In order to develop the consistency checking mechanism 

for a non-disjunction and Meets-only temporal reference (T, 
M, D), we shall introduce a graphical representation of (T, M, 
D) in terms of a directed and partially weighted graph [7] 
transformed from the corresponding graph of (T, M, D) as 
show in section 3. In such a graph, time elements are denoted 
as arcs rather than nodes, and the single Meets relation 
between time elements ti and tj is denoted by the node 
structure where Meets(ti, tj) is represented by ti being an in-arc 
and tj being out-arc to a common node, respectively. For time 
elements with known duration, the corresponding arcs are 
weighted by their durations respectively. For example, the 
transformed graph of Figure 2 is shown as Figure 3: 

 

t1 t2 (1) 

t7  t3 

t6 (0) 

t5  t8 (0.3) 

t4 (0.5) 

 

Figure 3. Graph representation of (T, M, D) 

The necessary and sufficient condition for the 
consistency of a general temporal reference, (T, M, D), can 
be given as below: 
1) For each simple circuit in the graph of (T, M, D), the 

directed sum of weights is zero; 
2) For any two adjacent time elements, the directed sum 

of weights is bigger than zero. 
Here, condition 1) guarantees that there exists a valid 

duration assignment function Dur to the time elements in T 
agreeing upon D; and condition 2) ensures that no two time 
points meet each other, that is between any two time points, 
there is an interval standing between them [8]. 

The consistency checking for a temporal reference with 
duration constraints involves searching for simple circuits, 
and constructing a numerical constraint for each circuit. The 
existence of a solution(s) to this set of constraints implies 
the consistency of the system, and each solution gives a 
possible case for the corresponding temporal scenario that 
can subsume the addressed temporal reference. Hence, the 
consistency checker for a random temporal reference is in 

fact a linear programming problem. 
In fact, in the graph presented in Figure 3, there are two 

simple circuits as shown in Figure 4. 
 

 

 

t2 (1) 

t3 

t4 (0.5) 

t6 (0) 

 t7  t6(0) 

t5  
 

Figure 4. The two simple circuits 

Setting the directed sum of weights in each of these two 
circuits as 0, we get 2 independent constraints: 

Dur(t2) + Dur(t6) = Dur(t3) + Dur(t4) 
Dur(t5) = Dur(t6) + Dur(t7) 
We can easily find a solution, for instance: Dur(t3) = 0.5, 

Dur(t5) = Dur(t7) = 1. Actually, the duration assignment to 
t5 and t7 can be any positive real number, provided that 
Dur(t5) = Dur(t7). 

In some special cases where only relative temporal 
knowledge are addressed, that is there is no duration 
constraint involved, temporal reference (T, M, D) is 
reduced to a pair (T, M) and the consistency checking can 
be reformulated in a simpler form. In fact, (T, M) is 
consistent if and only if: 
1)' There are no nodes with at least one point in-arc and 

at least one point out-arc; 
2)' The associated reduced graph is acyclic, where the 

associated reduced graph is formed by means of 
removing every point arc in the graph of (T, D), and 
merging any two nodes connected by the point arc. 

Here, again, condition 1)' preserves that no two time 
points meet each other, while condition 2)' preserves that 
time points are not decomposable, and excludes any circular 
time structure. 

For example, consider a relative temporal reference (T, 
M), where 

T = {t 1, t2, t3, t4, t5, t6} 
M = {Meets(t1, t2), Meets(t1, t3), Meets(t2, t6), 

  Meets(t3, t4), Meets(t4, t5), Meets(t5, t6)}  
The graphical representation of temporal reference (T, 

M) is shown in Figure5: 
 

 

t1 t2 t6 

t4 

t3 
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Figure 5. Graph representation of (T, M) 
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If t2 is not known to be a time point, then the 
corresponding graph shown in Figure 5 is acyclic, and 
hence the temporal reference is consistent. 

However, if t2 is stated to be a point, then the graph in 
Figure 5 is reduced to the graph as shown in Figure 6. 

 
 

t1 t6 

t5 
t3 

t4 

 

Figure 6. The reduced graph 

In the reduced graph in Figure 6, there is a cycle, i.e., t3 
-> t4 -> t5 -> t3. Therefore the temporal reference is 
inconsistent. 

Now, further investigations are needed to deduce logical 
inferences from both temporal consistent cases and 
temporal inconsistent cases. 

 
4.2   Deducing Inferences in consistent cases 
 
As mentioned in section 4.1, the consistency checking 

for a general temporal reference is in fact a linear 
programming problem, where each solution to the linear 
programming problem gives a possible case for the 
corresponding temporal scenario that can subsume the 
addressed temporal reference. In the case where the 
temporal reference is consistent, there exists at least one 
solution to the linear programming problem. Of course, if 
the solution(s) is unique, we can use this solution construct 
the corresponding complete temporal reference which is 
also unique.  

However, in general cases where a verdict that the 
temporal reference is consistent has been reached, there 
may be more than one, or even an infinite number of 
solutions to the corresponding linear programming. This 
may be due to various forms of incompleteness of the 
corresponding temporal reference, e.g., some referencing 
time elements may be missing, the duration of some time 
elements may be unknown, and so on. Therefore, we can 
only construct the possible complete scenarios which can 
subsume the addressed temporal reference. 

In this case, we can at least find the minimal model(s) 
among these complete scenarios by means of defining and 
calculating the similarity degree between the complete 
temporal references and the original partial temporal 
reference. 

Since each temporal reference can be expressed as a 
directed and partially weighted graph, the problem of 
matching temporal references can be transformed into 
conventional graph matching. 

 
4.3   Deducing inferences in inconsistent cases 
 
In the case where a verdict that the temporal reference is 

inconsistent has been reached, we can simply analyse and 
identify the linear equations which make the corresponding 
linear programming unsolvable, which, in turn, will identify 
which part(s) of the temporal reference actually leads to the 
inconsistency. 

 
4.4   An illustrating example 
 
In As an example, consider the situation where two 

persons, Peter and Jack, are suspected of committing a 
murder during the daytime. In court, Jack and Peter gave 
the following statements, respectively: 
 Peter‘s statements: 

I got home with Jack before 1pm. We had our lunch, 
and when Jack left I put on a video. The video lasts 2 hours. 
Before it finished, Robert arrived. When the video finished 
we went to the train station and waited until Jack came at 4 
pm. 
 Jack‘s statements: 

Peter and me went to his home and arrived there before 
1pm. When we finished our lunch there, Peter put on a 
video, and I left and went to the supermarket. I stayed there 
for between 1 and 2 hours. Then I drove to my home to 
collect some mail. It takes between 1.5 to 2 hours to reach 
my home, and about the same to the train station. I arrived 
at the train station at 4 pm. 
 In addition, being a witness, Robert made these 

statements: 
I left home at β pm and went to Peter‘s house. He was 

playing a video, and we waited till it finished. Then we 
went together to the train station and waited for Jack. Jack 
got to the train station at 4pm. 

The temporal reference of the above temporal 
information involves the following time elements: 
 i1: the time (interval) over which Peter and Jack went 

to Peter‘s home; 
 1pm: the time (point) before which they arrived at 

Peter‘s home; 
 i2: the time (interval) over which Peter and Jack had 

lunch; 
 i3: the time (interval) over which Peter played the 

video (Dur(i3) = 2); 
 i4: the time (interval) over which Jack went to the 

supermarket; 
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 p1: the time (point) when Robert arrived at Peter‘s 
house; 

 i5: the time (interval) over which Peter and Robert 
went to the train station; 

 i6: the time (interval) over which Peter and Robert 
waited for Jack at the train station; 

 4pm: the time (point) when Jack arrived at the train 
station; 

 i7: the time (interval) over which Jack stayed in the 
supermarket (1<Dur(i7)< 2); 

 i8: the time (interval) over which Jack drove to his 
home (1.5<Dur(i8)< 2); 

 i9: the time (interval) over which Jack collected some 
post from his home; 

 i10: the time (interval) over which Jack drove to the 
train station (1.5<Dur(i10)<2); 

 2pm:the time (point) when Robert left home; 
 i11: the time (interval) over which Robert went to 

Peter's house; 
 i12: the time (interval) over which Peter and Robert 

watched the video together; 
 i13, i14, ..., i27: some extra relative time elements 

which are used for expressing the correspondingly 
relative duration knowledge, e.g., with i19, i20, i21, i22, 
and Dur(i19) = 1.5 and Dur(i21) = 2, we can express 
that 1.5 < Dur(i8) < 2 (Picture 3) 

The graphical representation of the corresponding 
temporal reference for the above legal statements can be 
shown as Figure 7 as below: 

 

 

Figure 7. (T, M, D) of the legal statements 

From Figure 7, we see that there are three time elements 
(i.e., two intervals, i11 and i12, and one points, p1) standing 
between 2pm and 4pm. Since each interval has a positive 
duration and each point has a non-negative duration, we can 
infer that: 

Dur(i5) + Dur(i6) < 2 
In addition, since Dur(i3) = 2, hence 

Dur(i3) + Dur(i5) + Dur(i6) < 2 + 2 = 4 
However, 

Dur(i4) + Dur(i7) + Dur(i8) + Dur(i9) + Dur(i10) 
> 0 + 1 + 1.5 + 0 + 1.5 = 4 

Therefore, for the simple circuit, i.e., i3, i5, i6, i10, i9, i8, i7, 
i4, as shown below in Figure 8, there does not exist any 
duration assignment over T such that 

   Dur(i3) + Dur(i5) + Dur(i6) 
= Dur(i4) + Dur(i7) + Dur(i8) + Dur(i9) + Dur(i10) 

In other words, there is no solution to the following 
linear equation: 

Dur(i3) + Dur(i5) + Dur(i6)  Dur(i4)  Dur(i7)  
Dur(i8)  Dur(i9)  Dur(i10) = 0 
 

 

Figure 8. A simple circuit in the legal statements 

Hence, the temporal reference shown in Figure 7 is 
inconsistent, and therefore we can directly confirm that 
some statements are untrue. 

Suppose the video can be checked that it did actually 
last for two hours, we can confirm that there must be some 
falsity in either Robert's or Jack's statements. If it can be 
proved that Robert did leave home at 2 pm, then Jack must 
have lied in making his statements. Otherwise, to convince 
the jury that his statements are true, Jack must prove that 
Robert left home at some time before β o‘clock in the 
afternoon.  

 
5. Conclusions 
 
In this paper, we introduced an inferential framework 

for temporal representation and temporal reasoning. It 
allows expression of both absolute and relative temporal 
knowledge, and provides graphical representation of 
temporal references in terms of directed and partially 
weighted/labelled graphs. Based on the temporal reference 
of a given scenario with partial temporal information, the 
framework can check if it is temporally consistent or 
inconsistent, and derive the corresponding logical 
inferences. The benefit of this approach is that the 
inferential framework has powerful analytic abilities, and 
its analysis is amenable to human scrutiny.  
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This paper proposes a framework for structure-based feature extraction in basketball zone-defence 
strategies. Firstly, a graphical representation for key-frames extracted from zone-defence video clips 
is introduced, where each key-frame is expressed in terms of a zone-defence graph, representing the 
positions of defenders and the ball. Secondly, defence-lines are defined and extracted from 
zone-defence graphs for each zone-defence strategy, based on which, a 10-dimentional feature vector 
with respect to the defence-lines is introduced to characterize the structure relationships. Experiments 
have been conducted for basketball zone-defence strategy detection on both simulated and real-life 
basketball zone-defence video database, which demonstrate the validation and practicability of such a 
structure based feature characterization, and, in particular, its robustness with respect to the 
disturbance of local transformation of subprime nodes in the graphs. 

Keywords: Feature extraction; Graphical representation; Structure relationship; Video clip detection; 
Basketball zone-defence. 

1. Introduction 

Video detection is one of the hottest research topics in Content-based Video Retrieval and 
attracted more and more attentions. [Qi et al. 2007] proposed optimized multi-graph-based 
semi-supervised learning (OMG-SSL) algorithm in a regularization and optimization 
framework. A temporal reasoning method was proposed for events annotation in news video 
in [Marco et al. 2008]. As a popular worldwide media, sport video has become an 
increasingly important and active research area in video/image processing and pattern 
recognition including feature extraction, shot segmentation, event or highlight detection, and 
semantic annotation and so on. [Gong et al. 1995] presented an automatic system for parsing 
TV soccer program by domain knowledge, feature analysis and model matching techniques. 
[Babaguchi et al. 1999] Proposed an event based video indexing for football games achieved 
by the idea of intermodal collaboration which takes into account of the semantic dependency 

                                                 
9 This research is supported in part by National Nature Science Foundation of China (No. 60772122). 
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between multimodal information streams including visual, auditory and text. [Chang et al. 
1996] extracted the information in soccer video by an integrate speech understanding and 
image analysis algorithms. [Rui et al. 2000] presented a highlights extraction approach for 
baseball games on set-top devices in noisy environment. [Xu et al. 2001] proposed a 
grass-area-ratio based algorithm for soccer video segmentation. [Pan et al.  2001] proposed 
an automatic event detection and sports program summarization method based on detecting 
slow motion replay segments. [Efros et al.  2003] proposed a new motion descriptor to 
recognize human actions at a distance in soccer based on smoothed and aggregated optical 
flow measurements over a spatio-temporal volume centred on a moving figure. [Luo et al.  
2003] presented object-based analysis and interpretation for baseball video based on 
automatic video object extraction, video object abstraction, and semantic event modelling. 
[Urtasun et al.  2005] presented a novel motion tracking approach in golf. [Bagdanov et al. 
2007] proposed the multimedia ontology for soccer video detection.  

A number of approaches have been proposed for basketball video analysis, including 
shot classification, scene recognition and event detection. [Tan et al. 2000] presented a 
camera motion based annotation and classification tool using the low-level information 
available directly from MPEG compressed basketball videos. [Nepal et al. 2001] proposed a 
goal detecting method in basketball videos by combining feature extraction techniques with domain 
specific knowledge. [Zhou et al.  2000] proposed a supervised rule based basketball video 
classification system after investigating the use of video content analysis and feature extraction 
and clustering. [Kim et al. 2002] proposed a semantic information extracting mechanism 
for basketball video sequence using audio and video features. [Xu et al. 2004] proposed an 
audio keywords generating approach for basketball video based on low-level audio 
features and applied audio keywords together with heuristic rules to event detection. [Kim 
et al.  2005] presented a summarization method for basketball videos. [Perse et al.  2009] 
proposed trajectory-based approach to the automatic recognition of complex multi-player 
behavior in a basketball game.  

However, few of them focused on zone-defence detection, which is essential and 
crucial in basketball games. On one hand, the defensive coach needs to layout the 
zone-defence strategy and check whether the team is playing in the right strategy or not all 
the time; on the other hand, the offensive coach also needs to know which zone-defence 
strategy the defenders are adopting. 

Zone-defence is a common strategy adopted in basketball games. It is different from 
man-to-man defence in that, instead of guarding a particular player, each zone defender is 
responsible for guarding an area on the court (or "zone") and any offensive player that 
comes into that area. Zone defenders move their position on the court according to where 
the ball moves. Zone-defence can disrupt the opponent‘s offensive plan by means of 
protecting the paint area and forcing the opponent to shoot from outside.  In addition, 
changing defences from man-to-man to various can make the offense off-balance and 
confused. 

In particular, feature extraction is one of the most significant tasks plays a basic and 
essential role in Zone-defence detection. The original approach is the common features such 
as color, texture and shape. It‘s noted that they are not competent due to the distinct structure 
character in zone-defence strategies. Graphic representation has been investigated for 
zone-defence detection. Graph matching (GM) algorithms and their improved variants have 
been well applied to match graph patterns [Zheng et al. 2009 and Ma et al. 2007]. However, 
the efficiency and accuracy of most graph matching algorithms depend very much on the 
tested graphs constructed according to the expectation or artificial criteria, rather than 
real-life applications [Zheng et al. 2009], which in turn means most graph matching 
algorithms are sensitive to the outliers or local bias such as the translation of subprime notes 
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in the graph. [Chin et al. 2005] proposed a Spatial-Relationship (SR) based approach to 
describe the position relationship between defenders. However, it relies on the accuracy of 
identification of each defender, which is hardly achievable.     

Generally speaking, the defence-lines and the structure relationship between 
defence-lines play a crucial role in team sports, such as basketball, football, volleyball and 
so on. Therefore, analysing the structure relationship between defence-lines plays an 
important role in basketball zone-defence strategy detection. Therefore, in this paper, a 
structure-based feature descriptor in terms of a 10-dimentional feature vector is proposed 
for zone-defence strategy. The basic idea is to describe the distinct structure relationship 
between defence-lines based on the graphical representation of key-frames. 

In what follows in this paper, the graphical representation of key-frames in basketball 
zone-defence videos is introduced in section 2. Section 3 elaborates the structure-based 
feature extraction in basketball zone-defence graphs and the corresponding algorithms. 
Based on the extracted structure features, section 4 designs the actual algorithm for the 
overall basketball zone-defence detection system. Experimental results are provided, 
analyzed and evaluated in section 5, demonstrating the good performance of proposed 
feature descriptor. Finally, section 6 provides a brief summary and concludes the paper. 

2. Graphical Representation in Basketball Zone-defence Video 

Videos can be organized at different levels for various research purposes. In this paper, 
basketball videos are organised in terms of clips. Each clip represents a certain round of 
offense (or defence) and is denoted as a list of images, or the so-called key-frames 
sequence̟I = [I1, …, In], which consists of the key-frames extracted one per 2 seconds from 
the clip. We premise that:  

(1) The defenders have adjusted to their best defensive positions at the moment when 
the ball is just to be passed or dribbled;  

(2) As the zone-defence strategy is to defence the offensive opponent to attack into 
interior playfield, we only consider the key-frames when the ball is in the midfield, the 
wing and the corner as key-frames. 

The metric position detection of defenders and the ball is implemented similarly as in 
[Assfalg et al. 2003]: The ball‘s position, which is either in the midfield, in the wing, or in 
the corner, is obtained from its motion described in terms of camera motion, which in turn, 
is captured by image motion estimation algorithm [Baldi et al. 1999]. As for defenders 
position, in the first place, the defend side and offensive side are distinguished by the 
colour difference of sportswear; template matching and projective transformation are then 
implemented to determine the metric position of defenders [Assfalg et al. 2003]. 

 Each key-frame Ii (i = 1, …, n) can be described by its corresponding six-note graph Gi 
structured by the 5 defenders‘ position (horizontal and vertical coordinates) plus the ball‘s 
position. Following the conventional notations in graph theory, we represent a 
zone-defence graph as G = <V, E>, where V and E denote the set of the notes (defenders‘ 
position) and the set of edges respectively, and E  V×V. In particular, here, |V| = 6. 
Assuming V = {Vb, V1, V2, V3, V4, V5} has been ascending ordered by the Euclidean 
distance to the ball (Vb). 

Zone-defence can be divided into various strategies, including 2-3, 1-3-1, 1-2-2, 3-2, 
2-2-1, 2-1-2 and 1-2-1-1 zone-defence strategies,  where the first three strategies, which 
have been noted as the most typical ones employed in actual basketball games, are focused 
in our paper. 
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A standard zone-defence graph database of these 3 typical zone-defence strategies (2-3, 
1-3-1 and 1-2-2 zone-defence) is constructed and populated with graph data corresponding 
to some of the pictures illustrated on two basketball coaching web sides. For instance, a 
typical round of 2-3 zone-defence can be expressed as Fig. 1 where 5 squares and the circle 
denote the 5 defenders and the ball respectively.  

 

 
            (a) seting up                     (b) ball on the wing              (c)   trapping the corner 

 
  (d) denying pass from corner to wing     (e) defending high post        (f) ball reversal, opposite post out  

Fig.1 A typical round of 2-3 zone-defence strategy 

Table 1. The number of standard zone-defence graphs 

                 Zone-defence 
Ball’s position 

2-3 1-3-1 1-2-2 

Midfield 4 3 2 
Wing 4 12 7 

Corner 6 6 2 
Totally 14 21 11 

 
Table 1 below shows the detailed number of zone-defence graphs we have currently 

collected as standard zone-defence graphs for each strategy in different ball‘s position. 
Analogously, only the three typical zone-defence strategies and only the key-frames when 
the ball is in the midfield, the wing and the corner are considered. 

Fig.2 shows the flow chart of basketball zone-defence detection system. For each test 
zone-defence video clip, it is decomposed into a sequence of key-frames. Each key-frame 
is represented by a zone-defence graph as mentioned above and matched with the graphs in 
the standard zone graph database. The global distance with each standard zone are then 
obtained according to the graph-sequence that is the most similar one (has the smallest 
distance) to the test graph-sequence, which in turn, provide matching results to confirm 
which zone-defence strategy does the test key-frame sequence belong to. 

It is worth pointing out that, in the framework presented in this paper, zone-defence 
key-frames are transferred into zone-defence graphs by means of graphical representation. 
However, instead of using conventional graph matching algorithms, a structure-based 
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feature extraction algorithm, which will be discussed in detail in next section, is proposed 
to measure the similarity between zone-defence graphs. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig.2 The flow chart of basketball zone-defence detection system 

3. Structure-based Feature Extraction in Basketball Zone-defence Strategies  

Different zone-defence strategy has different number and type of defence-lines in 
basketball, For instance, there are two defence-lines in 2-3 zone-defence strategy. 
Generally, we define that the 2 defenders in the front line construct the first defence-line 
and the rest 3 defenders construct the second defence-line. In addition, different 
zone-defence strategy, as what it‘s named, has its own typical defence-line. For instance, 
the typical defence-line of 2-3 zone defence strategy is the second defence-line. We shall 
define the structure-based features to describe the structure relationship between 
defence-lines. The angle formed by the typical defence-line in each zone-defence strategy 
is named corresponding character-angle, the definition of which is crucial to the extraction 
of the other structure features. 

3.1. Structure-based Features in 2-3 Zone-defence Strategy 

In standard 2-3 zone-defence strategy, normally, we define that the 2 defenders closest 
to the ball construct the first defence-line; and the rest 3 defenders construct the second 
defence-line which is defined as the 2-3 character line. The angle formed from the 2-3 
character line is defined as ―2-3 character-angle‖ and denoted by shorthand writing as 
CA23. There are two folds regarding the definition of CA23:  
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   (a) a counterexample             (b) another counterexample           (c) a general example 

Fig.3 Zone graph examples in 2-3 zone-defence 

(1) Which 3 notes construct CA23? 
Normally, CA23 is composed of the 3 defenders farthest from the ball. However, in 

some zone graphs, CA23 may not exactly be constructed by the 3 defenders farthest from 
the ball by common sense from human understanding of zone-defence strategies. For 
instance, in Fig.3 (a), assume that V = {Vb, V1, V2, V3, V4, V5} has been ascending ordered 
by the distance to the ball (Vb) and V3 and V2 have an approximately same distance to the 
ball. Obviously, the CA23 should be constructed by V2, V4 and V5, which is more 
reasonable according to common sense than that constructed by the farthest 3 notes (V3, V4 
and V5). 

 In other word, if the difference between the distances from the third and forth farthest 
notes to the ball is smaller than a given threshold, then the one forming a larger angle with 
the segment constructed by the farthest two notes will be taken to form the character line. 
The algorithm is described as following: 

 

 If 
2 3 2 4 5 3 4 5( )&( ( , ) ( , ))b bVV VV V VV V VV     

23 2 4 5{ , , }CN V V V  

Else  

23 3 4 5{ , , }CN V V V  

End. 
 

where =0.05 (the distance of diagonal of half-court is normalized to 1), CN23 denotes 
the set of notes constructing CA23 and ( , )X YZ represents the angle between note X and 

segment YZ which is defined as: 

,
( , )

, else

XYZ XY XZ
X YZ

XZY

   


                      (1) 

(2) Which one is the vertex of CA23? 
For the reason of simple description, without losing the generality, we assume CN23 = 

{V 3, V4, V5}, as shown in Fig.3(b) and arrange {V3, V4, V5} into {V l, Vv, Vr} in clockwise 
order with respect to the ball, where l, v, r {3, 4, 5}. In general, node Vv is then taken as 
the vertex of CA23 while Vl, Vr are the end-points of CA23. However, if Angle<Vv, Vb, Vl> 
(or Angle<Vv, Vb, Vr>) is smaller than a given threshold, and |VlVb|<|VvVb| (or 
|VrVb|<|VvVb|) then Vl (or Vr) will be re-taken as the vertex of CA23. For instance, in Fig.2, 
CN23 = {V 3, V4, V5}. Assume that V4, V5 and V3 are in the clockwise order with respect to 
the ball. V3 should be defined to be the vertex of CA23, which is more reasonable than 
regarding V5 as the vertex of CA23. The algorithm is described as following: 
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If ( )&( )l b v l b v bVVV VV VV    

23 v l rCA VVV  

 Else  
        If ( )&( )r b v r b v bVVV VV VV    

                   
23 v r lCA VVV  

         Else  
         

23 l v rCA VVV  

End 
End 
 

where = /12  and we appoint CA23 as the obtuse angle if its vertex is biased towards 
the ball compared with its two end points. 

The first 4 structure features with respect to CA23 are correspondingly defined as below 

(As for a general example illustrated in Fig.3(c), 1 2VV is the first defence-line and V3, V4, 

V5 construct the second defence-line, and V6, V7 are the midpoints of 

3 5VV , 1 2VV respectively): 

I. 
23 3 4 5CA VVV  : Character-Angle of 2-3 zone-defence. 

As explained earlier, this angle characterises the defenders‘ positions on the 
character line of 2-3 zone-defence. 

II. 23 7 6 3 5( , )FSA VV VV : Angle formed by the first and the second defence-lines. 

where ( , )XY ZW denotes the angle formed by segmentXY and segmentZW that is 

no bigger than ʌ/β. It characterises the structure relationship between the first and the 
second defence-lines. 

III.  23 4 6 3 5( , )BCA VV VV  : the bias of the CA23. 

which is an angle presents the bias of the vertex on second defence-lines of 2-3 
zone-defence. 
IV.  

23 1 2 3 5 1 2 3 5( )RFSA VV VV VV VV ˅ ˄ ˈ  : restricted FSA23. 

which denotes the restricted angle of the first and the second defence-lines of 2-3 

zone-defence. The shorter of1 2VV comparing with 3 5VV , the angle of segment1 2VV and 

segment 3 5VV has less effect to zone graphs. So it‘s reasonable to take into account a 

coefficient to the angle. 

3.2.  Structure-based Features in 1-3-1 Zone-defence Strategy 

In 1-3-1 zone-defence, the defender nearest to the ball constructs the first defence-line. 
The second defence-line is constructed by 3 defenders, presenting the basic character of 
1-3-1 zone-defence, which is defined as the 1-3-1 character line. The angle formed from 
the 1-3-1 character line is defined as ―1-3-1 character-angle‖ and denoted as CA131. The 
key point here is to define the vertex and two end points of CA131. 
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     (a) CA23 < ʌ                 (b) CA23 > ʌ   case 1               (c) CA23 > ʌ   case 2 

Fig.4  Zone graph examples in 1-3-1 zone-defence 

Based on CA23 as what we have extracted, there are two cases to define CA131: (Here, 
we also use V1, V2, V3, V4 and V5 to denote the 5 defenders, and assume V1 is the nearest 
defender to the ball,

23 3 5 4CA VVV in Fig.4(a) and 
23 4 3 5CA VVV in Fig.4(b) and (c)). If 

the corresponding CA23 is smaller than ʌ (as shown in Fig.4(a)), then CA131 has the same 
two end-points (V3 and V5) as that of CA23, and the vertex of CA131 is the node (V2) from 
the rest 3 which is neither the closest to the ball nor the vertex of CA23; otherwise (as 
shown in Fig.4(b) and (c)), CA131 will have the same vertex as that of CA23, and the node 
which is neither on the 2-3 character line and nor the closest to the ball will be taken as 
one of the two end-points of CA131 where the other end-point is one of the two end-points 
of CA23 which will ensure that CA131 divides the rest two nodes sit on each side of the 
1-3-1 character line, respectively.  

The detection algorithm is expounded below: 
 

If 
23 3 5 4CA VVV    

             
131 3 2 4CA VVV  

Else 
23 4 3 5CA VVV    

                case 1: 
1 2 3 4( )V area VVV  

                      
131 2 3 4CA VVV  

          case 2: 
1 2 3 5( )V area VVV   

                                  
1 3 1 2 3C A V V V  

            End  
         End  
 

 
Where,

2 3 4( )area VVV , 
2 3 5( )area VVV and 

4 3 5( )area VVV denote 3 plane areas divided by the 

beam
3 2VV ,

3 4VV and
3 5VV . Obviously, 

1V cannot belong to
4 3 5( )area VVV . 

The next 3 features with respect to CA131 are defined below (As for a general example 

illustrated in Fig.4(a) and assume V6 is the midpoint of segment3 4VV ): 

V. 
131 3 2 4CA VVV  : Character-Angle of 1-3-1 zone-defence. 

which characterises the defenders‘ positions on the character line of 1-3-1 
zone-defence analogously. 

VI. 131 1 6 3 4( , )FSA VV VV : Angle formed by the first and the second defence-lines. 

which characterises the structure relationship between the first and the second 
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defence-lines of 1-3-1 zone-defence. 

VII.  131 5 6 3 4( , )STA VV VV : Angle formed by the second and the third defence-lines. 

which characterises the structure relationship between the second and the third 
defence-lines of 1-3-1 zone-defence. 

3.3. Structure-based Features in 1-2-2 Zone-defence Strategy 

In 1-2-2 zone-defence, the defender closest to the ball forms the first defence-line. As 
the examples shown in Fig.5, assume that V1 is the closest defender; 

4 2 3VVV is the CA131. 

If
4 2 3VVV is equal or larger than ʌ (Fig.5(a) and (b)), the vertex of CA131 and the nearer one 

to the first defence-line of the two end-points of CA131 construct the second defence-line; 
the rest two defenders construct the third defence-line. Otherwise (Fig.5(c)), the two 
end-points of CA131 construct the second defence-line and the rest two defenders construct 
the third defence-line. The first and the second defence-lines present the basic character of 
1-2-2 zone-defence, which define the 1-2-2 character line. The angle formed from the 1-2-2 
character line is defined as ―1-2-2 character-angle‖ and denoted as CA122.    

 

      
 
(a) CA131  ≥  ʌ case 1            (b) CA131  ≥  ʌ case 2                  (c) CA131  <  ʌ                               

Fig.5 Zone graph examples in 1-2-2 zone-defence 

The algorithm is described as following (CA122, SDL122 and TDL122 denote the 
Character Angle, the second defence-line and the third defence-line of 1-2-2 zone-defence, 
respectively): 

 
 

If 
4 2 3VVV    

             case 1: 1 3 1 4VV VV  

                        
122 2 1 3CA VVV , 122 2 3SDL VV , 122 4 5TDL VV  

            case 2: 1 3 1 4VV VV  

                        
122 2 1 4CA VVV , 122 2 4SDL VV , 122 3 5TDL VV  

             End 
  Else 

            
122 3 1 4CA VVV , 122 3 4SDL VV , 122 2 5TDL VV  

  End  
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The last 3 features with respect to CA122 are defined as below (assume 

that
122 2 1 3CA VVV  , 122 2 3SDL VV and 122 4 5TDL VV  , V6 and V7 are the midpoints of 

segment 4 5VV and segment2 3VV  respectively as shown in Fig. 5(a)): 

VIII.  122 1 2 1 3 1 2 1 3 2 1 3(min( , ) max( , ))RCA VV VV VV VV VVV   . 

Here, we add a coefficient to take into account the effect from the movement of node 
V1 along the circle formed from V1, V2 and V3. 
IX.  

122 2 3 4 5 2 3 4 5( ) ( , )RSTA VV VV VV VV   . 

It‘s with respect to the restricted angle of segment 2 3VV and segment4 5VV and reflects 

the structure relationship between the second and the third defence-lines of 1-2-2 
zone-defence. 

X. 122 6 7 2 3( , )BST VV VV  . 

which reflects the bias between the second and the third defence-lines of 1-2-2 
zone-defence. 

The feature vector is constructed by the above 10 features with respect to those 3 
typical zone-defence strategies: 

f = {CA 23, FSA23, BCA23, RFSA23, CA131, FSA131, STA131, RCA122, RSTA122, BST122} 
The feature vector is not only listed by the 10 components one by one, but also has 

internal relationships. The features of one typical zone-defence also reflect the structures 
relationship in other typical zone-defences. 

4. Video Detection System of Basketball Zone-defence Strategy  

According to the structure-based features extracted above, the test basketball 
zone-defence video clip with n key-frames (that is, n zone-defence graphs) can be 
represented by a 10n  feature matrix

1 2{ , ,..., }'clip nF f f f  and a ball‘s position vector 

1 2{ , ,..., }clip nball ball ball ball , where
1 2 10{ , ,..., }i i i if f f f  and 

iball  denotes the feature 

vector and the ball‘s position of the ith key-frame of the detected clip respectively. 
Analogously, the 3 standard zone-defence databases are represented by 3 corresponding 
feature matrices with their ball‘s position vectors respectively. For instance, the standard 
2-3 zone-defence database is represented by 23 23 23

23 1 2 14{ , ,..., }'F f f f  and 
23 23 23

23 1 2 14{ , ,..., }ball ball ball ball . 

Firstly, compute the similarity between test clip and standard 2-3 zone-defence 
strategy. 

Step 1: For each
i clipf F , compute the Euclidean Distance(which has been 

experimented that performs better than other two famous distances Mahalanobis 
distance  and Manhattan distance in our case) between

if and each feature vector with 

the same ball position as
if in standard 2-3 zone graph database: 

     23 23( , ) [ ]
ji z ijED f f d                           (2) 

where 23

ji zball ball , {1,2,...,14}jz  ,
231,2,..., pj n n  , and pn is the number of the 

graphs with the same ball position astest
iG in 2-3 zone graph database. 

Step 2: Determine the distance between
if  and 2-3 zone-defence strategy.  

http://en.wikipedia.org/wiki/Mahalanobis_distance
http://en.wikipedia.org/wiki/Mahalanobis_distance
http://en.wikipedia.org/wiki/Manhattan_distance
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                        23 23argmin([ ])i ij
j

D d                          (3)                        

Step 3: Compute the global distance between the test clip and 2-3 zone-defence 
strategy: 

        23 23
test iGD D                            (4)                        

Secondly, in terms of the same procedure, we define the global distance between the 
test clip and 1-3-1 zone-defence strategy as: 

131 131
test iGD D                           (5)                        

(5) 
Thirdly, we define the global distance between the test clip and 1-2-2 zone-defence 

strategy in the same manner as: 

  1 2 2 1
t e s t iG D D                            (6)                       

Finally, the zone-defence strategy pattern of the test zone-defence video clip is defined 
as: 

23 131 122
test test testargmin( , , )testZ GD GD GD                      (7) 

5.  Experimental Results 

The system has been tested with both simulated and real basketball zone-defence videos. 
Firstly, we formulated 40 simulated zone-defence video clips (key-frame sequences), 
where the scenario and the defenders‘ position of each video clip were constructed by the 
professional coaches according to their rich experience. We also collected about 1 hour of 
the real basketball zone-defence videos, including 112 clips containing 3 to 8 key-frames 
each as listed in Table 2. According to the detection system illustrated in Fig 2, each clip 
denotes once defence with a particular zone-defence strategy.  

Table 2. The number structure of test data 

 Zone-defence strategy Total clips Total key-frames 
 

Simulated  
2-3 20  

40 
145  

1-3-1 20 161 
1-2-2 20 128 

 
Real-life 

2-3 52  
112 

286 
1-3-1 31 221 
1-2-2 29 169 

 
There are few systems focused on feature description of basketball zone-defence graphs. 

Here, we compare the algorithm proposed in this paper with LM-based algorithm [Zheng et 
al. 2009] and SR-based algorithm [Chin et al. 2005]. Table 3 below reports the detection 
result of each algorithm on both simulated and real-life data.  Here detection results of 
―Correct MPD (Metric Position Detection)‖ are the results detected on the test clips with 
correct MPD. Generally speaking, the detected rate in simulated data is higher than that in 
real-life data for each approach. In particular, compared with the other approaches, as 
shown in Table 3, the structure feature (SF) based algorithm can detect more video clips in 
both simulated data and real-life data. This is due to the fact that the structure feature (SF) 
based algorithm takes into account of the structure relationship between defenders where it 
is neglected or inadequately dealt with in other algorithms. The results are more satisfied 
with regard to correct MPD since the correct MPD of defenders may lead much more likely 
to the correct detecting results. 
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Table 3. Detection result of 3 algorithms on different data 

Database Video clips Correct  MPD 
 Results Test Detected Test Detected 
Simulated data SR  

40 
35  

38 
34 

LM 36 35 
SF 37 37 

 
Real-life data 

SR  
112 

70  
91 

69 
LM 78 74 
SF 91 85 

     
Fig.6 shows the detecting precision comparing with the other two algorithms in both 

simulated data and real-life data on each zone-defence. From Fig.6, one can see that the 
SF-based detecting method has the highest detecting precision in both simulated and 
real-life data, where the SR-based approach performs worst due to its inadequate dealing 
with the structure relationship between defenders. 

 
            (a)  Simulated data                          (b) Real-life data 

Fig.6 Detecting precision for each zone-defence pattern with different methods 

It‘s frequent for defenders to have some translational motion comparing with the 
standard position in standard zone graphs. So the translational motion of the farthest 
defence-line from the ball in each zone-defence graph, which is regarded to have least 
influence to the global strategy, is added to the test video clip as a disturbance to test the 
robust of proposed approach. For each note V on the farthest defence-line in each 
zone-defence, we add the disturbance as: 

' (cos sin )V V                              (8) 

where denotes the movement distance of note V to ↑‘ and denotes the angle 

between and the x-axis (the mid-field line) as shown in Fig.7.  

 
Fig.7 Disturbance of the node on the farthest defence-line 

Fig.8 shows the efficiency in each zone-defence with different disturbance. In order to 

V
Įcosȕ 

↑‘ 

Įsinȕ 

ȕ

Į
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eliminate the interference of the error from position detection, the statistics were calculated 
on the data with correct MPD. 
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        (a) Simulated data          (b) Real-life data 

Fig.8 Precision influence with disturbance in each method 

The precision comes down with growing disturbance in every method. But the 
SF-based method drops much slower than the other two and still has a tolerable 
performance even with a high disturbance, which demonstrates that the SF-based method is 
robust for the detecting system. 

6. Conclusions and Future Work 

In this paper, a structure-based feature descriptor describing the structure relationships 
between defence-lines has been proposed for video clip detection in basketball 
zone-defence. Comparing with other methods, the structure-based feature descriptor has a 
robust performance in both simulation and real-life applications especially when 
disturbance exists. It is reasonable and validly to describe the structure relationship 
between defenders in basketball zone-defence strategies. It is robust for the disturbance 
deriving from translational motion of defenders on subprime defence-lines.  

For the future work, we shall extend the approach proposed in this paper to other 
team-work sports such as football, volleyball, etc., to describe the corresponding structure 
relationships. It is crucial to develop the corresponding metric position detection algorithms 
on zone-defence graphs which are very influential in the detection system. In addition, it 
seems reasonable and realistic to adopt clustering approaches and algorithms to develop 
generalized method(s) for various kinds of both existing and possible future zone-defence 
strategies. This remains also as future work. 
 

References 

Assfalg J., et al.  (2003): Semantic annotation of soccer videos: automatic highlights identification. 
Computer Vision and Image Understanding, 92(2-3), pp:285-305.  

Bagdanov A., et al.  (2007): Semantic annotation and retrieval of video events using multimedia 
ontologies, Proc. of International Conference on Semantic Computing (ICSC), Irvine, 
California, pp:713-720. 

Baldi G., Colombo C, Bimbo A. (1999): A compact and retrieval-oriented video representation 
using mosaics, Proc. of 3rd International Conference on Visual Information Systems VISual99, 
Springer Lecture Notes on Computer Science, Amsterdam, The Netherlands, pp:171–178. 



APPENDIX C STRUCTURE BASED FEATURE EXTRACTION IN 
BASKETBALL ZONE-DEFENCE STRATEGIES 

178 

Babaguchi N., Kawai Y., Kitahashi T. (1999): Event Based Video Indexing by Intermodal 
Collaboration, Proc. First International Workshop on Multimedia Intelligent Storage and 
Retrieval Management (MISRM'99) in conjunction with ACM Multimedia Conference 1999, 
Orlando, pp:1-9. 

Chang Y.L., et al. (1996): Integrated Image and Speech Analysis for Content-based Video Indexing, 
In IEEE Conf. On Multimedia Systems and Computing, pp:0306. 

Chin S., et al. (2005): An Application Based on Spatial-Relationship to Basketball Defensive 
Strategies, Embedded and Ubiquitous Computing (EUC) Workshops, Nagasaki, Japan, Dec 
8-9, pp:180–188. 

Efros A.A., et al. (2003): Recognizing action at a distance, Ninth IEEE International Conference on 
Computer Vision (ICCV), Nice, France, vol. 2, pp: 726–733. 

Gong Y., et al. (1995): Automatic Parsing of TV Soccer Programs, In IEEE Conf on Multimedia 
Computing and Systems, p.167. 

Hua Q., Rui  Y. (2007): Optimizing Multi-Graph Learning Towards A Unified Video Annotation 
Scheme, Proc. of the ACM International Conference on Multimedia (ACM MM), Augsburg, 
Bavaria, pp:17-26. 

Liu S., et al.  (2006): Multimodal Semantic Analysis and Annotation for Basketball Video, 
EURASIP Journal on Applied Signal Processing, pp:1–13. 

Luo Y., Tzong-Der W., Jenq-Neng H. (2003): Object-based analysis and interpretation of human 
motion in sports video sequences by dynamic Bayesian networks, Computer Vision and Image 
Understanding 92 (2–3),  pp:196–216. 

Ma J., Zhao G., Hancock E. (2007): A Navigation-based Algorithm for Matching Scenario Patterns. 
Proceedings of International Conference on Artificial Intelligence and Pattern 
Recognition( AIPR-07), Orlando, Florida, pp:151-157. 

Marco B, Bimbo A, Giuseppe S. (2008): Video Event Annotation using Ontologies with Temporal 
Reasoning, Proc. of 4th Italian Research Conference on Digital Library Systems (IRCDL), 
Padova, Italy, pp:24-25. 

Nepal S., et al. (2001): Automatic detection of goal segments in basketball videos. In Proc. ACM 
Multimedia, Ottawa, Canada, pp:261-269.  

Pan H., Van B. P., Sezan M.I. (2001): Detection of slowmotion replay segments in sports video for 
highlights generation, Proceedings of the IEEE International Conference on Acoustics, Speech 
and Signal Processing, vol. 3, pp:1649-1652. 

Perse M, et al. (2009): A trajectory-based analysis of coordinated team activity in a basketball 
game. Computer Vision and Image Understanding, Volume 113, Issue 5 pp612-621 

Rui Y., Gupta A., Acero A. (2000): Automatically Extracting Highlights for TV Baseball Programs, 
Proceeding ACM Multimedia, p105-115. 

Tan Y. P., et al. (2000): Rapid estimation of camera motion from compressed video with 
application to video annotation. IEEE Trans. CSVT, vol. CSVT-10, pp:133-146.  

Urtasun R., Fleet D.J., Fua P. (2005): Monocular 3d tracking of the golf swing. IEEE Computer 
Society Conference on Computer Vision and Pattern Recognition, vol. 2, June, pp: 932–938. 

Xu H. and Chua T. (2004): The fusion of audio-visual features and external knowledge for event 
detection in team sports video, Proceedings of the 6th ACM SIGMM international workshop on 
Multimedia information retrieval, New York, NY, USA, pp:127-134.   

Xu M., et al. (2004): HMM-Based Audio Keyword Generation, In Proc. PCM, Tokyo, Japan, 
pp:566-574. 

Xu P., et al. (2001): Algorithms and systems for segmentation and structure analysis in soccer 
video. IEEE International Conference on Multimedia and Expo (ICME), Tokyo, Japan, pp: 
184–187. 

Zheng A., et al.   (2009): Temporal Pattern Recognition in Basketball Video Clips. Proc. of 5th 
International Conference on Computer and Information Science, Shanghai, China,  
pp:416-421. 

 

 



APPENDIX D A ROBUST APPROACH TO SUBSEQUENCE 
MATCHING 

 

179 

A Robust Approach to Subsequence Matching 

Aihua Zheng
1,2

, Jixin Ma
2
, Miltos Petridis

2
 , Jin Tang

1
, Bin Luo

1 

 
1 Anhui University, Hefei, 230039, People’s Republic of China 
2  The University of Greenwich, Greenwich, London, SE10 9LS, United Kingdom  

E-mail: {a.zheng, j.ma, m.petridis}@gre.ac.uk, ahhftang@gmail.com, luobin@ahu.edu.cn  

Summary. In terms of a general time theory which addresses time-elements as typed 

point-based intervals, a formal characterization of time-series and state-sequences is 

introduced. Based on this framework, the subsequence matching problem is specially 

tackled by means of being transferred into bipartite graph matching problem. Then a hybrid 

similarity model with high tolerance of inversion, crossover and noise is proposed for 

matching the corresponding bipartite graphs involving both temporal and non-temporal 

measurements. Experimental results on reconstructed time-series data from UCI KDD 

Archive demonstrate that such an approach is more effective comparing with the traditional 

similarity model based algorithms, promising robust techniques for lager time-series 

databases and real-life applications such as Content-based Video Retrieval (CBVR), etc.  

1 Introduction 

Time-series are typical patterns in date mining and knowledge discovery, particularly, in 

statistics, signal processing as well as other areas including rule discovery, prediction, 

detection, clustering and classification, and so on.  Generally speaking, a time series 

presents a sequence of data, measured and/or spaced typically at successive times, which 

can be either points or intervals. 

The notion of state is fundamental for many state-based applications, which represents 

the static snapshot of the world in discourse, while the dynamic historical scenarios of the 

world can be characterized in terms of temporally ordered state-sequences. State-sequence 

matching has been noticed as a popular research topic in time-series data which has 

attracted a lot of researchers’ interests. In particular, how to find out the most similar 
patterns for the query state-sequence in time-series data is an essential work for many real 

life state-based applications. Normally, state-sequence matching can be divided into two 

categories: whole matching [2, 4] (each10 sequence has the same length) and subsequence 

matching [10, 13] (with various lengths). Obviously, the whole matching problem is in fact 

a special case of the subsequence matching which we shall tackle in this paper. 

One of the popular topics in subsequence matching is the similarity model between 

state-sequences. Specially, temporal similarity between state-sequences plays a vital role, 

where three aspects regarding the temporal information of state-sequences need to be 
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addressed: (1) The “before/after” relations over the states which decide how 

state-sequences are temporally ordered; (2) The temporal distances between pairs of 

consecutive states; and (3) The duration of various times over which the corresponding 

states are associated with. 

Various similarity models based on Euclidean distance, have been specially introduced 

for subsequence matching, [2]. An efficient category of these is the so-call sliding window 

based algorithms [9, 10]. However, most of them are very brittle even with slight 

misalignment in time axis and the time-consuming problem limits their application on large 

database. Subsequently, some successful models such as Dynamic time warping (DTW) 

[6], Longest Common Sequence (LCSS) [15], Edit distance [1] and their variants have been 

proposed. DTW is robust to time warping such as stretching and shrinking. However, no 

states will be skipped including noise. LCSS can skip some states including outliers but 

ignores how many states it skips. ED takes into account of the number being skipped, 

however, which kind of states being skipped is ignored. And common reordering such as 

crossover or backward is not allowed. 

 In addition, in most of proposed formalisms and models, the fundamental time theories 

based on which time-series and state-sequences are formed up are usually not explicitly 

specified. Time-series are simply expressed as lists in the form of t1, t2, …., tn, or as 

sequences of collection of data, and so on, where formal characterizations with respect to 

the temporal basis have been neglected. 

The objective of this paper is to present a robust framework for matching subsequence 

patterns. As the fundamental formalism, a formal characterization of time-series and 

state-sequence is introduced in section 2, A bipartite graph representation for subsequence 

matching is presented in section 3. Section 4 introduces a hybrid similarity model which 

integrates both non-temporal similarity and temporal similarity. Experimental results on 

UCI time-series data are provided, analyzed and evaluated in section 5. Finally, section 6 

provides a brief summary and concludes the paper with the prospects for future work. 

2 Time-elements, time-series and state-sequences 

For general treatments, in this paper, we shall define time-elements as typed point-based 

intervals, allowing expression of both absolute time values and relative temporal relations 

[7]. We shall use R to denote the set of real numbers, and T, the set of time-elements. Each 

time-element t is defined as a typed (left-open & right-open, left-closed & right-open, 

left-open & right-closed, left-closed & right-closed) subset of the set of real numbers R. 

I.e., each time-element must be in one of the following four forms: 

(p1, p2) = {p pRp1pp2 [p1, p2)p | pRp1pp2
(p1, p2] p | pRp1pp2 [p1, p2]p | pR p1p p2 

In the above, p1 and p2 are real numbers, which are called the left-bound and 

right-bound of time-element t, respectively. The absolute values as for the left and/or right 

bounds of some time-elements might be unknown. In this case, real number variables are 

used for expressing relative relations to other time-elements (see later). In addition, if the 

left-bound and right-bound of time-element t are the same, it is called a time point; 
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otherwise it is called a time interval. Without confusion, time-element [p, p] is taken as 

identical to point p. Also, if a time-element is not specified as open or closed at its left 

(right) bound (that is, the left (right) type of the time-element is unknown), we shall use “<” 
(or “>”) instead of “(” and “[” (or “)” and “]”) as for its left (or right) bracket. Also, the 
duration of a time-element t, Dur(t), is defined as the difference between its left bound and 

right bound. In other words: 

t = <p1, p2>  Dur(t) = p2 – p1 

Following Allen’s terminology [3], we shall use “Meets” to denote the immediate 
predecessor order relation over time-elements, which can be formally defined as: 

Meets(t1, t2)  p1,p,p2R(t1 = (p1, p)  t2 = [p, p2)  t1 = [p1, p)  t2 = [p, p2) 

 t1 = (p1, p)  t2 = [p, p2]  t1 = [p1, p)  t2 = [p, p2]  t1 = (p1, p]  t2 = (p, p2) 

 t1 = [p1, p]  t2 = (p, p2)  t1 = (p1, p]  t2 = (p, p2]  t1 = [p1, p]  t2 = (p, p2]) 

It is easy to see that the intuitive meaning of Meets(t1, t2) is that, on the one hand,  

time-elements t1 and t2 don’t overlap each other (i.e., they don’t have any part in common, 
not even a point); on the other hand, there is not any other time-element standing between 

them.  

Analogous to the 13 relations introduced by Allen for intervals [3], there are 30 

exclusive temporal order relations over time-elements including both time points and time 

intervals, which can be classified into the following 4 groups: 

 Relations that relate points to points:  

{Equal, Before, After} 

 Relations that relate points to intervals: 

{Before, After, Meets, Met_by, Starts, During. Finishes} 

 Relations that relate intervals to points: 

{Before, After, Meets, Met_by, Started_by, Contains, Finished_by} 

 Relations that relate intervals to intervals: 

{Equal, Before, After, Meets, Met_by, Overlaps, Overlapped_by, Starts,  

  Started_by, During, Contains, Finishes, Finished_by} 

The definition of these derived temporal order relations in terms of the single relation 

Meets is straightforward. E.g.: Before(t1, t2)tT(Meets(t1, t)Meets(t, t2)). 

Based on such a time theory, a time-series ts is defined as a vector of time-elements 

temporally ordered one after another [8]. Formally, a general time-series is defined in terms 

of the following schema: 

GTS1) ts = [t1, …, tn] 
GTS2) Meets(tj, tj+1)Before(tj, tj+1), for all j = 1, …, n-1 

GTS3) Dur(tk) = dk, for some k where 1≤ k ≤ n, di is a non-negative real number. 

Generally speaking, a time-series may be incomplete in various ways [7]. 

Correspondingly, a complete time-series is defined in terms of the schema as below: 

CTS1) ts = [t1, …, tn] 
CTS2) Meets(tj, tj+1), for all j = 1, …, n-1 

CTS3) Dur(ti) = di, for all i = 1, …, n where di is a non-negative real number. 

The validation of data is usually dependent on time. We shall use fluents to represent 

Boolean-valued, time-varying data, and denote proposition “fluent f holds true over time t” 
by formula Holds(f, t) [3]: 

(F1) (f, t)  t1(Part(t1, t)  Holds(f, t1)) 
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That is, if fluent f holds true over a time-element t, then f holds true over any part of t. 

(F2) t1(Part(t1, t)  t2(Part(t2, t1)  Holds(f, t2)))  Holds(f, t) 

That is, if any part of time t contains a part of itself over which fluent f holds true, then f 

holds true over t. Here, Part(t1, t)  Equal(t1, t)Starts(t1, t)During(t1, t)Finishes(t1, t). 

(F3) Holds(f1, t)  Holds(f2, t)  Holds(f1  f2, t) 

That is, is fluent f1 or fluent f2 holds true over time t, then at least one of them holds true 

over time t. 

(F4) Holds(not(f), t)  t1(Part(t1, t)  Holds(f, t1)) 

That is, the negation of fluent f holds true over time t if and only if fluent f does not hold 

true over any part of t. 

(F5) Holds(f, t1)  Holds(f, t2)Meets(t1, t2)  Holds(f, t1t2) 

That is, if fluent f holds true over two time-elements t1 and t2 that meets each other, then f 

holds over the ordered-union of t1 and t2. 

A state is defined as a collection of fluents. Following the approach proposed in [11], we 

shall use Belongs(f, s) to denote that fluent f belongs to the collection of fluent representing 

state s. For the reason of simple expression, if f1, …, fm are all the fluents that belong to state s, 

we shall represent s as <f1, …, fm>. Also, without confusion, we shall use formula Holds(s, t) to 

denote that s is the state of the world with respect to time t, provided that: 

(F6) s = < f1, …, fm> Holds(s, t)  Holds(f1, t) Holds(fm, t))
That is, a state s holds true over time t if and only if every fluent in the s holds true over 

time t.  

A state-sequence ss is defined as a list of states together with its corresponding time-series 

ts. A general state-sequence is defined in terms of the schema as below: 

GSS2.1) ss = [s1, …, sn] 

GSS2.2) Holds(si, ti), for all i = 1, …, n 

where [t1, …, tn] is a time-series. Correspondingly, a state-sequence is defined as 

complete if and only if the corresponding time-series is complete [8].  

3 Bipartite graphical representation for subsequence matching 

We shall systematically introduce the procedure of transforming subsequence matching into 

bipartite graph matching problem in this section.  

Table 1. Notations used in this paper 

Notation Definition 

Q = [q1, q2,…, qm] Query state-sequence 

SS = [s1,s2,…, sn] A state-sequence in database 

D = [SS1,…, SSL] The database with L state-sequences  

NN(qi, SS, k) Set of kNN of qi in SS  

NN(Q, SS, k) Set of kNN of all qi in Q in SS 

BG = <Q, SS, E> Bipartite graph between Q and SS 

MSM(Q, SS) The set of MSM between Q and SS  
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MSM(Q, D) The set of MSM between Q and all SSj in D  

M A normal matching in MSM(Q, D) 

M  An inverse-ordered matching of M 

 

The list of notations that will be used in this paper is given in Table 1. The procedure can 

be briefly described as following: 

Step 1: Employ Dynamic Query Ordering (DQO) algorithm [12] to implement kNN (k 

Nearest Neighbours) search for each state qi in SS within a given maximum distance dmax. 

Output the state set NN(qi, SS, k) for each state qi. NB.: |NN(qi, SS, k)|ę[0, k]. 

Step 2: Construct un-weighted bipartite graph BG = <Q, SS, E> for NN(Q, SS, k), EكQ

×SS is the edge set denoting kNN mapping between Q and SS, as showing in Fig.1: 

 
q1 qmq3q2 q4

Q:

SS:
S1 S2 S3 S4 Sn-3 Sn-2 Sn-1 Sn  

Fig.1 Bipartite graph representation 

 

Step 3: Employ Maximum Size Matching (MSM) algorithm [14] to produce a set of 1-1 

matching between Q and SS with the maximum size for the corresponding BG. NB.: the 

output of MSM in general is not unique. 

For each given state-sequence SS, the above procedure produces a corresponding set of 

1-1 matching MSM(Q, SS) between Q and SS with the maximum size. Therefore, if we 

denote the set of such matching between Q and all SSj in D as MSM(Q, D), we have: 

1
( , ) ( , )

L

jj
MSM Q D MSM Q SS


                   (1) 

The remaining main problem is then to develop an appropriate similarity measurement 

for searching the corresponding optimal matching. 

4 Hybrid similarity model  

As mentioned earlier, for a given a matching MęMSM(Q, D), both temporal similarity and 

non-temporal similarity should be taken into account. On one hand, the non-temporal 

similarity is defined according to the Euclidean distance between each mapping.  

Non-temporal similarity: The non-temporal similarity is measured by the total similarity 

which is in inverse proportion to the Euclidean distance between each matched state pair. 

 

= ( )) ( )NT i jSim 1- dis(q , s d Q                    (2) 
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where dis(qi, sj) denotes the Euclidean distance between each matched state pair qi and sj 

(which has achieved during kNN search) in the matching M and d denotes the feature 

dimension of each state. Obviously, the similarity value falls into [0, 1]. 

On the other hand, as the distinctive feature of time-series data, temporal similarity 

needs special treatments with respect to the following three measurements: 

Temporal order similarity: There may be some pairs of state-sequences with the same 

non-temporal similarity but with different temporal order. Here, we shall use the idea of 

LCSS [15] to measure temporal order similarity. However, in existing normal LCSS based 

formalisms, the typical reordering situations inversion in time-series data have been 

neglected. In order to catch such kind of reordering, we define the temporal order similarity 

as below: 

max( ( ), ( )) /TOSim LCS M LCS M Q                   (3) 

which takes into account of both normal order and inverse order. 

Temporal alignment similarity: In normal LCSS formalisms, in subsequence matching, 

unmatched states are simply skipped regardless how many of them. ED [1] is an alternative 

measurement distinguishing the number of unmatched states that being skipped. However, 

crossover, which should be compatible since it is ubiquitous, is not allowed in ED since it 

just matches in the single forward direction. Following the approach proposed in [13], we 

define the following temporal alignment similarity: 

2 ( )TASim M Q SS                         (4) 

which takes into account the number of unmatched states and accepts crossover. 

Temporal concentration similarity: It is easy to see that the distribution of matched (or 

unmatched) states and the internal temporal distance (or similarity) is ignored in SimTA. For 

instance, by (4), sequence [1, 2, 3, 4, 5] will be taken as having the same similarity with [1, 

a, a, 2, 3, 4, a, 5], [1, 2, a, 3, a, 4, a, 5] and [1, b, c, 2, 3, 4, d, 5]. In addition, the duration of 

various times over which the corresponding states are associated with is not addressed in 

(4). Here, we introduce a similarity measurement to govern such temporal concentration. In 

what follows in this paper, we use CD and DD to denote the Concentration similarity 

Degree and the Discrete similarity Degree: 

1
2 1

( ) ( ( ) ( ))
i

i t
i t

CD Dur CMS Dur CMS Dur CMS
 

            (5) 

( ( ) ( ))i i
i

DD Dur CUS Dur CUS                  (6) 

where CMSi and CUSi are defined as “Continuous Matched Subsequence” and 
“Continuous Unmatched Subsequence”, respectively, in descending ordered with respect to 
the length of these subsequences; and Dur(CMS) and Dur(CUS) denote the list of the 

duration of each continuous subsequence in CMS and CUS, respectively.   represents the 

internal temporal distance with respect to each adjacent continuous matched and unmatched 

subsequences. In fact, if CUSi = [st, …, sp]  

1

1

1 1

( , ) 1

= ( , ) ( )

( ( , ) ( , )) 2

p

p i ii t

p

t i ii t

p

t i p i ii t

dis s s CUS if t

dis s s CUS if p length SS

dis s s dis s s CUS else







 

 

 








             (7) 
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In order to reduce the computing complexity, we replace st-1 and sp+1 by their 

corresponding query states in Q since the Euclidean distance in (2) between each state in Q 

and a state in SS has achieved in the kNN search stage. 

The temporal concentration similarity can be defined: 

SimTC = (CD - DD)/|Q|                           (8) 

Normally, the overall similarity can be simply defined as the average of individual 

similarities. However, as we have argued earlier, the individual similarity measurements 

introduced in this paper have various features. In fact, while the non-temporal similarity 

and the temporal similarity may be treated in parallel, the three temporal similarities are 

progressive one after the other. Therefore, it is not appropriate to simply accumulate all of 

them together. In what follows, we use a hybrid approach to combine the four similarity 

measurements. 

Hybrid similarity model: 

Step 1: reorder MSM(Q, D) as MSM(Q, D)’ by SimTO, SimTA, and SimTC: 

Firstly, reorder it by the SimTO; then for the matchings with the same SimTO, reorder them 

by SimTA; analogously, reorder by SimTC if there exists some matchings with the same 

SimTA. 

Step 2: Integrate temporal similarity: get the integrated temporal similarity SimTS = 

Adjust(SimTO). For those ȝ = j-i+1 matchings [M’i,…,M’j] with the same SimTO, evenly 

stretch their similarities into [SimTO+ı/2, SimTO-ı/2] where ı denotes the adjust operator 
defined as below: 

1 1

1

1

( ) 3 1,

= 2 1

2

i j

j

i

TO TO

TO

TO

Sim Sim if i j x

Sim if i

Sim if j x



 



 





   

 




               (9) 

Step 3: Overall similarity: reorder MSM(Q, D)’ as MSM(Q, D)’’ in terms of overall 
similarity Sim which defined as the average of non-temporal similarity and integrated 

temporal similarity: 

Sim = (SimNT + SimTS)/2                           (10) 

5 Experimental Results 

 

We experiment our method on Synthetic Control Chart Time Series in UCI KDD 

(Knowledge Discovery in Databases) Archive [5]. The database consists of 600 synthetically 

generated control charts state-sequences with length of 60 for each, including 6 different 

classes (100 examples each): In order to avoid the influence of segmenting error to the 

proposed similarity model, we shall use the original database in the form of individual 600 

state-sequences with length 60 for each as the training data. Several query sets are 

reconstructed as following: 

Original Query Set (OQS): which consists of 60 (the first 10 state-sequences from each 

class) state-sequences; 
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Reordered Query Set (RQS): Į percent reordered (in inverse order while Į=1) to each 
state-sequence in OQS; 

Shortened Query Set (SQS): each state-sequence of this set is with length of (1-ȕ)*60; 
Noised Query Set (NQS): add a Gaussian noise to each state-sequence in OQS. 

For each query state-sequence, by means of following the procedure presented in section 3 

we obtain a set of optional matching in the training database, and according to the hybrid 

similarity model proposed in section 4, we then calculate the overall similarity respectively. 

The precision is defined as the ratio of the number of state-sequences with the same class as the 

query state-sequence out of the first 100 optimal matching in MSM(Q, D)’’. We focus on the 
performance of our similarity model compared with that of [13] (shorthanded by Shen in 

following figures), which is just simply defined by the average of its individual similarity 

measurements. Meanwhile, another two models which employ ED and LCSS as temporal 

similarity have been tested respectively. 
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Fig. 2 Precision of OQS against k     Fig. 3 Precision of RQS against Į 

 

Fig. 2 shows the precision of the OQS with different k in kNN search. We can see that there 

is no distinct influence of k. In order to reduce the complexity of our matching system, we 

default k=5 if not specified. The following 3 figures show the matching precision on different 

query sets against their corresponding reconstructive parameters.  

Firstly, Fig.3 shows the precision of RQS against Į, in order to reveal the performance of 
the progressive temporal similarity measurement we proposed in this paper, we omit the 

non-temporal similarity in each method. From which we can see, in our method, the precision 

has an approximate quadratic distribution with the subject to Į, which means it can better 
detect the reordered state-sequences than the others.   

Then, to evaluate the effect of ȕ, we form the SQS by deleting ȕ*60 states in different 
position: evenly, from the beginning and the end. Fig.4 shows the matching results against 

different ȕ. Generally speaking, our method is more robust than others no matter the 
state-sequences are shortened evenly, from the beginning or from the end. The precision drops 

much slower in our method especially for ȕଲ[0.1, 0.5]. In addition, according to our statistic, 

the query set shortened from the beginning has a slight higher precision than the other two sets 

shortened evenly and at the end in our similarity model. Generally speaking, the position 

(where being shortened) doesn’t affect the precision very much in any similarity model. 
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  (a) Evenly           (b) From the beginning         (c) From the end 

Fig. 4 Precision of SQS against ȕ 

 

Fig.5 shows the results of noised data with Gaussian noise in different mean ([0, 2]) and 

variance ([0.1, 1]). Visually, our method has higher precision and smaller fluctuation. Table 2 

below shows the average mean and standard deviation (STD) of each subfigure in Fig.5. 
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Fig. 5 Precision of query set with Gaussian noise against mean and variance 

 

Table 2. Statistic of the precision of noised query set 

 

 Hybrid Shen ED LCSS 

Mean (%) 76.46 72.81 68.83 59.12 

STD 0.0764 0.0878 0.0877 0.1043 

 

6 Conclusion and future work 

In this paper, based on a formal characterization of time-series and state-sequences, we 

introduced a framework for subsequence matching. A hybrid similarity model addressing both 

non-temporal and temporal relationship between state-sequences, which are represented by 
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bipartite graphs, has been proposed. The experimental results on UCI time-series database 

demonstrated that the proposed similarity model is robust to states alignment with different 

numbers and different values, and various reordering including inversion, crossover, compared 

with the LCSS and ED based similarity models. We hope this model will provide a steady 

usage on lager time-series databases and real-life applications such as Content-based Video 

Retrieval. 
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Abstract 
In this paper, an efficient and effective framework is proposed for news video retrieval. Firstly, the 

64-dimensional colour histogram is extracted as the feature vector. Then the pair quantizer is adopted to 
transfer the news video retrieval problem into multi-dimensional string matching problem, which conduces to 
the efficiency to the framework. Secondly, a new measurement named „optimal temporal common 
subsequence‟, which distinguishes the difference caused by rich temporal characteristics including temporal 
order, temporal duration and temporal gap, is designed to match state-sequence, followed by the point & 
interval-based formal characterization of time-series and state-sequences. Thirdly, we tested the proposed 
measurement on news video retrieval. The performance shows the proposed algorithm is more effective for 
news video retrieval.  

 
Keywords: state-sequence matching; optimal temporal common subsequence; news video retrieval 

 
1. Introduction 
 

With the development and the progress of information age, multimedia information, especially video 
information, is becoming an active and hot research object including video retrieval, video structural 
representation, video annotation and so on.  Content-based Video Retrieval (CBVR) has attracted more and more 
researchers in recent decades. Normally, video database can be organized as figure 1. Videos are stored in terms 
of clips each of which contents a sequential key frames (static images) obtained by specific key frame extraction 
algorithm. In order to cater for recognition or matching, feature vectors are extracted for key frames. From figure 
1, we can see, the video retrieval can actually be transformed into the matching problem between feature vector 
sets where feature vectors are sequential.   

 

Figure 1. Video database organization 

Different from image retrieval, the task is to search out the most similar image (key frame) set, not only the 
single image. Which in turn means the temporal relationship between key frames should be highly regarded. 
State-sequence matching, as an effective approach in temporal pattern recognition, has been actively researched 
recently, where the key frames in videos are regarded as states in time-series. 

The notion of state is fundamental for many state-based applications, which represents the static snapshot of 
the world in discourse, while the dynamic historical scenarios of the world can be characterised in terms of 
temporally ordered state-sequences. Generally speaking, a state-sequence presents a sequence of data, measured 
and/or spaced typically at successive times, which can be either points or intervals. State-sequence matching has 
been noticed as a popular research topic in state-based systems has been well applied in various areas such as 
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financial data analysis [1], audio recognition [2], visual information retrieval [3], etc. Normally, state-sequence 
matching can be divided into two categories: whole matching [4, 5] (i.e., all state-sequences have the same length

メand subsequence matching [3, 6] (i.e., state-sequences have various lengths). Obviously, the whole matching 
problem is in fact a special case of the subsequence matching. In general, state-sequence matching needs to 
accommodate three temporal features: 

i. Temporal Order: the temporal relation over the states in the two given state-sequences. This issue has 
been well dealt with in most existing state-sequence matching algorithms benefiting from the 
dynamic programming.  

ii.  Temporal Duration:  

 The duration of each state. For instance, as shown in Figure. 2, the two state-sequences A1 and A2, that 
is ‗abcd‘, have different temporal duration assignment function Tdur1 = [1, 1, 1, 1] and Tdur2 = [1, 2, 
3, 4], respectively. 

 The overall duration of continuous duplications of states. For instance, as shown in Figure. 2, for 
state-sequences A1 = ‗abcd‘ and A3 = ‗aabbbccccddd‘,  the common subsequence ‗abcd‘ have 
various overall duration, even if the duration value of each state is identical  as 1.  

iii.  Temporal Gap: the time element standing between two adjacent states as shown in Figure. 3, where B1 
and B2 = ‗abcd‘, B3 = ‗aabbbcd‘ are with different temporal gap values.      

 
Figure 2.  Various Temporal Duration in State-sequences 

 
Figure 3.  Various temporal gap in state-sequences 

The Longest Common Subsequence (LCS) is a typical similarity measurement for subsequence matching.The 
basic idea of the original LCS algorithm [7] is to find the longest subsequence common to two state-sequences 
along the same temporal order. For instance, the longest common subsequence of Aγ and Bγ is ‗aabbbcd‘. In this 
paper, distinguished from this concept of common subsequence in conventional LCS, we define the temporal 
common subsequence of two state-sequences as the common subsequence where each state is different from its 
neighbour(s) (predecessor and successor), that is, there are no continuous duplications of states in temporal 
common subsequence. For instance, the temporal common subsequence of Aγ and Bγ is ‗abcd‘, rather than 
‗aabbbcd‘.  Correspondingly, the optimal temporal common subsequence (OTCS) is the one with the highest 
overall similarity integrated by the length of temporal common subsequence, the temporal duration difference and 
temporal gap difference (see the actual algorithm in section III). 

Several algorithms based on the original LCS have been proposed. Some representative variants of these are: 
Time-warped LCS (T-WLCS) [8] which counts continuously duplicated common states in the spirit of Dynamic 
Time Warping (DTW) [9] algorithm; Compacted LCS (CLCS) [10] where only the common subsequence, the 
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continuous  length of which is longer than the specified threshold (th) is counted; All Common Subsequence 
(ACS) [11] which measures the similarity by means of counting the number of all common subsequences 
(including empty string in actual algorithm) and taking the strategy that the more common subsequences a pair of 
state-sequences have, the more similar they are. 

However, in most of these representative algorithms, many problems (see details analysed in section III) occur 
due to the neglect of richer temporal features such as temporal duration and temporal gap, etc. While time-series 
and state-sequences have been simply expressed as ordered lists t1, t2, …, tn (or s1, s2, …, sn), leaving some critical 
issues unaddressed. E.g.: 

 What a sort of objects do these t1, t2, … and tn belong to? In other word, are they time points, time 
intervals, or simply some absolute values from the real numbers, integers, or the clock? 

 What are the temporal order relationships between these t1, t2, … and tn, and/or between the sequence of 
collections? Are they simply well-ordered as the natural numbers, or they may be relatively ordered by 
means of relations such as ―Before‖, ―Meets‖, ―During‖, and so on? 

 What are the associations between time-series/ sequences and non-temporal data that represent various 
states of the world in discourse? 

The objective of this paper is to design an effective and efficient framework for news video retrieval. The 
rest of this paper is organised as below: the quantization procedure is presented in section II. The formal 
characterization of time-series and state-sequences is introduced in section III. An Optimal Temporal 
Common Subsequence (OTCS) algorithm based on a formal characterization of time-series and 
state-sequences is presented and analyzed in section IV. Experiments on news video retrieval system are 
conducted and the corresponding results are analysed in section V to demonstrate the effectiveness and 
validity of the proposed OTCS. Section VI provides a brief summary and concludes the paper with the 
prospects for future work. 
 
2. Video clip and state-sequence 

 

As mentioned in the introduction, the key frames in video clips are regarded as states in time-series, which in 
turn means the video clips are regarded as state-sequences.  In order to apply state-sequence matching algorithm 
to video clip retrieval, quantization is employed to map the sequential feature vectors into assigned character bins. 
The uniform quantization is the most common and efficient choice which can be defined as: 

, 0,1,...Step k Stepk S B k S k N  ˄ -1˅                           (1) 

 where N denotes the number of the bin. NStepS Max Min - denotes the step size and the Euclidian 

distance is employed to calculate the maximum value (Max) and the minimum value (Min) among feature vectors.  
By this quantization, most of the similar feature vectors, the distance between which is within the tolerance 
(step-size) will be quantified into the same bin. However, the similar feature vectors may be mapped into different 
bins if they are located on different sides of the cut edges ( , 1,... 1Stepk S k N  ), even though they are very 

similar to each other. 

Therefore, in this paper, we adopt the paired quantization method [10] for feature quantization. The two 
quantizers  Q1, Q2 are defined as following: 

1Q
Step k Stepk S B k S ˄ -1˅                               (2) 

2

2 2
Step StepQ

Step k Step

S S
k S B k S   ˄ -1˅                         (3) 

The feature vector will be quantified into the kth bin if it satisfies either quantizer Q1 or Q2. So it can relieve the 
problem pointed in single quantizer. 

 

3. Formal characterization of time-series and state-sequences 
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In this section, we introduce a formal characterization of time-series and state-sequences. For the sake of 

allowing expression of both absolute time values and relative temporal relations, in this paper, time-elements are 
defined as typed point-based intervals, each of which must be in one of the following four forms [12]: 

(p, q) = {r rRprq
[p, q)r | rRprq
(p, q] r | rRprq
[p, q]r | rR pr q

In the above, R stands the set of real numbers, and real numbers p and q are called the left-bound and 
right-bound of time-element t, respectively. The absolute values as for the left and/or right bounds of some 
time-elements might be unknown. In this case, real number variables are used for expressing relative relations to 
other time-elements (see later). If the left-bound and right-bound of time-element t are the same, t is called a time 
point; otherwise it is called a time interval. Without confusion, time-element [p, p] is taken as identical to point p. 
Also, if a time-element is not specified as open or closed at its left (right) bound (that is, the left (right) type of the 
time-element is unknown), we shall use ―<‖ (or ―>‖) instead of ―(‖ and ―[‖ (or ―)‖ and ―]‖) as for its left (or right) 
bracket. In addition, the temporal duration of a time-element t, Tdur(t), and the temporal gap between adjacent 
elements t1, t2, Tgap (t1, t2) can be defined as below: 

t = <p, q>  Tdur(t) = q – p 
t1 = <p1, q1> , t2 = <p2, q2> Tgap (t1, t2) = |p2 – q1| 

Following Allen‘s terminology [1γ], we shall use ―Meets‖ to denote the immediate predecessor order relation 
over time-elements, which can be formally defined as: 

Meets(t1, t2)  p1,p,p2R(t1 = (p1, p)  t2 = [p, p2) 
 t1 = [p1, p)  t2 = [p, p2))  t1 = (p1, p)  t2 = [p, p2] 
 t1 = [p1, p)  t2 = [p, p2]  t1 = (p1, p]  t2 = (p, p2) 
 t1 = [p1, p]  t2 = (p, p2)  t1 = (p1, p]  t2 = (p, p2] 

 t1 = [p1, p]  t2 = (p, p2]) 

It is easy to see that the intuitive meaning of Meets(t1, t2) is that, on the one hand,  time-elements t1 and t2 
don‘t overlap each other (i.e., they don‘t have any part in common, not even a point); on the other hand, there is 
not any other time-element standing between them.  

Analogous to the 13 relations introduced by Allen for intervals [13], there are 30 exclusive temporal order 
relations over time-elements including both time points and time intervals, which can be classified into the 
following 4 groups: 

 Relations that relate points to points: 
{Equal, Before, After} 

 Relations that relate points to intervals: 
{B efore, After, Meets, Met_by, Starts, During. Finishes} 

 Relations that relate intervals to points: 
{Before, After, Meets, Met_by, Started_by, Contains, Finished_by} 

 Relations that relate intervals to intervals: 
{Equal, Before, After, Meets, Met_by, Overlaps, Overlapped_by, Starts, Started_by, During, Contains, 

Finishes, Finished_by} 

The definition of these derived temporal order relations in terms of the single relation Meets is straightforward. 
E.g.:  

Before(t1, t2)  tT(Meets(t1, t)  Meets(t, t2)) 

Based on such a time theory, a time-series Tn can be defined as a vector of time-elements temporally ordered 
one after another [14]. Formally, a general time-series is defined in terms of the following schema: 

GTS1) Tn= [t1, …, tn] = [<p1, q1>, …, <pn, qn>] 

GTS2) Meets(ti, ti+1)Before(ti, ti+1), for all i = 1, …, n-1 
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GTS3) Tdur(ti) = qi – pi, for some i where 1≤ i ≤ n. 
GTS4) Tgap(ti, ti+1) = pi+1 – qi for some i where 1≤ i ≤ n-1. 

Generally speaking, a time-series may be incomplete in various ways. For example, if the relation between tj 
and tj+1 is ―Before‖ rather than ―Meets‖, it means that the knowledge about the time-element(s) between tj and tj+1 
is not available. In addition, if Tdur(tk) is missing for some k, it means that duration knowledge as for time-element 
tk is unknown. Correspondingly, a complete time-series is defined in terms of the schema as below: 

CTS1) Tn = [t1, …, tn] = [<p1, q1>, …, <pn, qn>] 

CTS2) Meets(ti, ti+1), for all i = 1, …, n-1. 

CTS3) Tdur(ti) = qi – pi, for all i = 1, …, n. 
CTS4) Tgap(ti, ti+1) = 0  for all i = 1, …, n-1. 

The validation of data is usually dependent on time. For instance, $1000 (account balance) can be valid before 
and on 1 January 2003 but become invalid afterwards. We shall use fluents to represent Boolean-valued, 
time-varying data, and denote proposition ―fluent f holds true over time t‖ by formula Holds(f, t) [1γ]: 

(F1) (f, t)  t1(Part(t1, t)  Holds(f, t1)) 
That is, if fluent f holds true over a time-element t, then f holds true over any part of t. 

(F2) t1(Part(t1, t)  t2(Part(t2, t1)  Holds(f, t2)))  Holds(f, t) 
That is, if any part of time t contains a part of itself over which fluent f holds true, then f holds true over t. 

Here, 
 Part(t1, t)  Equal(t1, t)  Starts(t1, t)  During(t1, t)   Finishes(t1, t) 

(F3) Holds(f1, t)  Holds(f2, t)  Holds(f1  f2, t) 
That is, is fluent f1 or fluent f2 holds true over time t, then at least one of them holds true over time t. 

(F4) Holds(not(f), t)  t1(Part(t1, t)  Holds(f, t1)) 
That is, the negation of fluent f holds true over time t if and only if fluent f does not hold true over any part of t. 

(F5) Holds(f, t1)  Holds(f, t2)Meets(t1, t2)  Holds(f, t1t2) 
That is, if fluent f holds true over two time-elements t1 and t2 that meets each other, then f holds over the 

ordered-union of t1 and t2. 

A state is defined as a collection of fluents. Following the approach proposed in [14], we shall use Belongs(f, s) 
to denote that fluent f belongs to the collection of fluent representing state s. For the reason of simple expression, 
if f 1, …, fm are all the fluents that belong to state s, we shall represent s as <f1, …, fm>. Also, without confusion, 
we shall use formula Holds(s, t) to denote that s is the state of the world with respect to time t, provided that: 

(F6) s = < f1, …, fm>Holds(s, t)  Holds(f1, t) Holds(fm, t))
That is, a state s holds true over time t if and only if every fluent in the s holds true over time t. 

Consequently, a state-sequence S is defined as a list of states together with its corresponding time-series Tn. A 
general state-sequence is defined in terms of the schema as below: 

GSS1) Sn = [s1, …, sn] 

GSS2) Holds(si, ti), for all i = 1, …, n 
where [t1, …, tn] is a time-series. 

Correspondingly, a state-sequence is defined as complete if and only if the corresponding time-series is 
complete [15]. 

According to the basic set of axioms with respect to the point & interval based time-series theory [12], for 
any two adjacent time elements t1 and t2 such that Meets(t1, t2), we can denote the ordered union of t1 and t2 as t1 
 t2 If Holds(s, t1), Holds(s, t2) , we have: 

Holds(s, t1  t2) 
Tdur(t1  t2) = Tdur(t1) + Tdur(t2) 
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That is, the ―ordered union‖ operation over time elements is consistent with the conventional ―addition‖ 
operation over the duration assignment function, i.e., ‗Tdur‘. 
 
4. The optimal temporal common subsequence 
 

For two given state-sequences
1[ ,..., ]m mS s s  and ' ' '

1[ ,..., ]n nS s s , Holds( ,i is t  ) and Holds( ' ',j js t ), 

,i i it p q   and ' ' ',j j jt p q  for i = 1, …, m and j = 1, …, n, the algorithm of the optimal temporal common 

subsequence can be illustrated as below: Firstly, the following algorithm calculates  the longest temporal 
common subsequence. 

      Input: two state-sequences mS and '
nS . 

      Output: the length of the longest temporal common 
       subsequences OTCSL( mS , '

nS ). 

     1)  Initiation:  '
0 0s s null   

                         for  i = 0 : m: OTCSL(i, 0) = 0 
            for  j = 0 : n:  OTCSL(0, j) = 0 

 2)  Recursion: 

          for i = 1: m 
           for  j = 1 : n 
                 if  '

i js s  # matched 

     case 1:  ' '
1 1i j i js s s s     

             OTCSL(i, j) = OTCSL(i − 1, j − 1)  
      case 2:  ' '

1 1i j i js s s s     

              OTCSL(i, j) = OTCSL(i − 1, j − 1) + 1 
          case 3: ' ' '

1 1 1 1( )&( )i j i j i js s either s or s s s       

                           OTCSL(i, j) = max(OTCSL(i−1, j), OTCSL(i, j−1)) 
         case 4: ' ' '

1 1 1 1( )&( )i j i j i js s neither s nor s s s       

             OTCSL(i, j) = OTCSL(i − 1, j − 1) + 1 
                else # '

i js s , unmatched 

OTCSL(i, j) = max(OTCSL(i−1, j), OTCSL(i, j−1)) 
                    end # end of if 
           end # end of j 
       end # end of i 

     3) Accomplishment 

           OTCSL( mS , '
nS ) = OTCSL(m, n) 

 

In above algorithm, the continuously duplicated states are not re-counted as new common states in any 
state-sequence. Secondly, in the same manner, we simultaneously record  ( , )k k kInd f l  and 

' ' '( , )k k kInd f l as the first and the last index of the kth common state between mS and '
nS , where k = 1, …, L = 

OTCSL( mS , '
nS ), ,k kf l א [1, m] and ' ',k kf l א [1, n]. According to the typed point-based intervals, the temporal 

duration difference '( , )D m nOTCS S S  and temporal gap difference '( , )G m nOTCS S S  are calculated as below: 

' '
' ' '

1

( , ) ( ) ( )
k k k k

L

D m n l f l f

k

OTCS S S q p q p


                             (4) 
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' '
1 1

'

' '

2

0 1
( , )

( ) ( )
k k k k

L
G m n

f l f l

k

if k
OTCS S S

p q p q else
 




 

  


                      (5) 

Finally, the overall similarity with respect to the temporal order, temporal duration and temporal gap is 
defined as: 

' '

' '

( , ) ( , )

( , ) ( , )
m n L L m n

D D m n G G m n

OTCS S S w OTCS S S

w OTCS S S w OTCS S S



 
                    (6) 

Comparing with the conventional LCS based measurements introduced in section I, the main advantage of 
OTCS is that it does deal with the difference caused by the temporal duration and the temporal gap during 
state-sequences. For example, given state-sequences C1 = [abcd], C2 = [aaaaabc], C3 = [aabbccdd], C4 = 
[aaebbfccgdd] and C5 = [aaaabbb]. For the reason of simple illustration, the temporal duration of each state is 
set as 1 and the temporal gap between each pair of adjacent states is set as 0 if they are identical or 1 if they 
are different. Table 1 reports the similarity between state-sequences measured by different algorithms. For 
OTCS, the similarity is reported in terms of a triad [OTCSL, OTCSD, OTCSG] which will be integrated with 
wL = 1 and wD = wG = 0.1. 

Table 1. Similarity Between Example State-sequences With Different Measurements 

Similarity C1 C2 C3 C4 C5 

LCS 

C1 4 3 4 4 2 

C2 3 7 4 4 5 
C3 4 4 8 8 4 
C4 4 4 8 11 4 
C5 2 5 4 4 7 

 

CLCS 
(th=2) 

C1 4 3 0 0 2 
C2 3 7 3 0 5 
C3 0 3 8 0 4 
C4 0 0 0 11 0 
C5 2 5 8 0 7 

       

ACS 

C1 16 8 16 16 4 
C2 8 128 16 16 32 
C3 16 16 256 256 16 
C4 16 16 256 2048 16 
C5 4 32 16 16 128 

 

T-WLCS 

C1 4 7 8 8 7 
C2 7 11 10 10 11 
C3 8 10 12 12 9 
C4 8 10 12 15 9 
C5 7 11 9 9 12 

 

OTCS 

C1 [4, 0, 0] [3, 4, 0] [4, 4, 0] [4, 4, 6] [2, 5, 0] 

C2 [3, 4, 0] [3, 0, 0] [3, 5, 0] [3, 5, 4] [2, 3, 0] 
C3 [4, 4, 0] [3, 5, 0] [4, 0, 0] [4, 0, 6] [2, 3, 0] 
C4 [4, 4, 6] [3, 5, 4] [4, 0, 6] [7, 0, 0] [2, 3, 2] 
C5 [2, 5, 0] [2, 3, 0] [2, 3, 0] [2, 3, 2] [2, 0, 0] 

 

The ―non-uniqueness‖ problem (different state-sequences have the same similarity to the query 
state-sequence) is ubiquitous when applying those conventional algorithms due to the lacking of dealing with 
temporal duration difference and temporal gap difference. For instance, given three state-sequence pairs (C1, 
C1), (C1, C3) and (C1, C4) with the same temporal common subsequence ‗abcd‘, we shall get Sim(C1, C1) = 
Sim(C1, C3) by using LCS and ACS, which states that the two state-sequences, C3 and C1, have the same 
similarity to C1, where in fact they have different temporal durations. Also we shall get Sim(C1, C3) = Sim(C1, 
C4) by using CLCS, LCS, ACS and T-WLCS, which states  C3 and C4 have the same similarity to C1 where 
in fact they are with different temporal gaps. The proposed OTCS in this paper is the only one that can 
distinguish the different temporal duration or temporal gap, and in fact we have OTCS(C1, C1) > OTCS(C1, 
C3) > OTCS(C1, C4).  
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In addition, some other abnormal or unreasonable results occur in those existing algorithms when 
continuously duplicated common states exist frequently in state-sequences. For example, following CLCS, 
LCS, ACS or T-WLCS, one will get Sim(C2, C5) > Sim(C2, C3). However, according to the definition of 
temporal common subsequence, the similarity degree between C3 and C2 should be in fact higher than that 
between C5 and C2. This is corrected in OTCS by reaching that OTCS(C2, C3) >  OTCS(C2, C5). 

Furthermore, in particular, CLCS is very fluctuant since the continuity of matched common subsequences 
may be destroyed easily by the unmatched states (e.g., resulting as CLCS(C4, C1) = CLCS(C4, C2) = 
CLCS(C4, C3) = CLCS(C4, C5) = 0) or by the continuously duplicated common states (e.g., resulting as 
CLCS(C1, C3) = 0).  In ACS, the similarity becomes extremely large (such as C3 and C4) when continuously 
duplicated common states exist frequently in state-sequences and will therefore underestimate the high 
similarity between C3 and C1. T-WLCS even cannot guarantee the query state-sequence has the highest 
similarity with itself: for instance, T-WLCS(C1, C1) < T-WLCS(C1, C2). Such a problem becomes absurd if, 
for instance, we have C2‘ = ‗aaaaaaaaaaaa‘, which will lead to T-WLCS(C1,C2‘) = 1β due to the unreasonable 
treatment to continuously duplicated common states. 
 
5. Experimental Results 
 

To demonstrate the performance of OTCS, we test it on a news video retrieval system. We have collected 
over 300 news video clips (state-sequences) lasting up to 5 hours as our database. The number of key-frame (state) 
of each video clip varies from 10 to 65. For each key-frame, we extract the 64-dimensional colour histogram as 
the feature vector which is then quantized by the paired quantizer introduced above where the similar key-frames 
will be quantized as the identical state. Several query sets are reconstructed:  

Original Query Set (OQS): 60 state-sequences randomly selected from the database;  
Shortened Query Set (SQS): each state-sequence of this set is with length of (1-Į%)*60 by deleting Į%*60 

states from OQS randomly;  
Lengthened Query Set (LQS): each state-sequence of this set is with length of (1+ȕ%)*60 by duplicating ȕ% 

predecessors with random position in OQS. 

 

 

 

 

  
 

 

 

Figure 4. An example of key-frame sequence in video clip database 
Figure 4 shows an example of key-frame sequence of video clip with various temporal duration and temporal 

gap. The similar key frames (key-frame 7 ~11) will be quantized as the identical state, the duration of which is 
equal to the sum of their duration. 

We compare the performance with LCS, CLCS, T-WLCS and ACS. Again for OTCS, the temporal duration of 
each key-frame is set as 1 and the temporal gap between each pair of adjacent key-frames is set as 0 if they are 
identical or 1 if they are different. We set wL = 1 and test the experiment with wD and wG varying from {1, 1/2, 
1/4, …, 1/1β8} and choose the values leading to the optimal performance.Table 2 shows the retrieval precision on 
OQS against top number (the number of the most similar video clips compared with the query video clip). 
Obviously, all similarity measurements perform better with the increase of top number, but generally speaking, 
OTCS outperforms the others. In following experiments, the top number is fixed to 8 where the precision of these 
five measurements has the largest standard deviation (std).  

 

  
  key-frame1   key-frame2    key-frame3  key-frame4   key-frame5 

 

  
  key-frame6   key-frame7   key-frame8   key-frame9   key-frame10 

 

 
 key-frame11  key-frame12  key-frame13   key-frame14  key-frame15 
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Table 2.  Retrieval precision on OQS 

   Top number 
Method 

2 4 6 8 10 12 14 MEAN 

LCS .72 .73 .76 .80 .86 .94 .98 .83 

CLCS .70 .71 .73 .73 .77 .80 .85 .76 

ACS .78 .80 .84 .90 .93 .95 .99 .88 

T-WLCS .75 .81 .81 .86 .90 .92 .98 .86 

OTCS .84 .85 .92 .93 .96 .98 .99 .92 

STD .055 .058 .074 .080 .073 .069 .056  

 
Figure 5 shows the retrieval precision on SQS and LQS. It‘s clear to see that OTCS is much more robust than 

the others since by means of adjusting the value of the weight, it can handle temporal duration difference and 
temporal gap difference caused by deletion and insertion. CLCS is most fluctuant with worst precision especially 
in LQS since insertion operation may weaken the continuity of common subsequence. LCS is robust (with 
smallest variance) but not as effective as OTCS. In addition, LCS has less influence on LQS since it can skip the 
duplicated key-frames. ACS and T-WLCS are sensitive to the insertion and deletion degree as CLCS. 
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Figure 5. Retrieval Precision on SQS against Į and LQS against ȕ 

Figure 6 shows the weight contribution of the temporal characters on different query sets. Generally 
speaking, the length of the longest temporal common subsequence contributes more significance than 
temporal duration and temporal gap on any query set. As for OQS, the temporal duration plays a 
slightly more significant role than temporal gap because of the existence of approximate adjacent 
key-frames which may be quantized as identical key-frames in video clips. For SQS, due to the 
deletion of some key-frames, the temporal gap plays a more important role than temporal duration 
while contrarily in LQS since the insertion operation generates more duplications of key-frames. 
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  (a) temporal duration                      (b) temporal gap 

Figure 6. Weights contribution of temporal characters in OTCS 

 
6. Conclusion and Future Work 
 

State-sequence matching is a very hot research topic in data mining [16]. In this paper, we have 
presented an efficient and effective state-sequence matching algorithm for news video retrieval. The 
fundamental formal representation of time-series and state-sequence is introduced in detail, based on 
which, we proposed a new concept of temporal common subsequence different from the traditional 
common subsequence. A new LCS-based algorithm named Optimal Temporal Common Subsequence 
(OTCS) which takes into account rich temporal information (including temporal order, temporal 
duration and temporal gap) between state-sequences is finally designed and tested on news video 
retrieval. The experimental results demonstrate the effectiveness and robustness of the new algorithm. 

Linear combination is the most direct method to combine the three temporal characters. However, it 
will be sensitive to the weight selection. Also, redundant calculation for the other two temporal 
characters seems to be able to be optimized, which will remain as our future work.  
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Abstract—Based on a formal characterization of time-series 
and state-sequences, a new distance measurement dealing with 
both non-temporal and temporal distances for state-sequence 
matching is proposed in this paper. In addition to formulating 
the temporal order over state-sequences, it also takes into 
account of temporal distances in terms of both the temporal 
duration of each state and the temporal gaps between 
adjacent pairs of states, which are neglected in most existing 
approaches to time-series and state-sequence matching. In 
particular, when specialized as a real-penalty-style 
measurement by means of reifying the cost functions, it is 
more flexible with regards to real-life applications than 
binary-value-style distance measurements. In addition, it is 
more robust than those existing real-penalty-style distance 
measurements since it can filter out noise during the matching 
procedure. Experimental results on reconstructed time-series 
data from UCI KDD Archive demonstrate that it can tackle 
the most general problems in matching time-series data with 
rich temporal information. 

Keywords - Pattern Recongition; Time-series; 
State-sequence Matching 

I. INTRODUCTION 

Temporal pattern recognition of time-series and 
state-sequences (also known as state-sequence matching) 
plays a very  important role in data mining and has been 
well applied in various areas such as financial data analysis, 
audio recognition, visual information retrieval, etc. One of 
the most active and essential research topics in 
state-sequence matching is the distance (or similarity) 
measurement. On one hand, for general treatment, a 
versatile distance measurement should be able to deal with 
both of the non-temporal and temporal distances for any two 
given state-sequences, where 
1) Non-temporal distance: denotes the difference 

between those states appearing in that two given 
state-sequences, ignoring any temporal issues.  

2) Temporal distance: consists of 3 characters:11 
a) Temporal Order: the temporal relation over the 

states to be matched in the two given 
state-sequences. 

                                                 
This research is supported in part by National 973 Project (No. 

2010CB327902) 

 
 
 

b) Temporal Duration: the duration of each state, 
e.g., Tdur as shown in Fig. 1.  

c) Temporal Gap: the time interval standing between 
two adjacent states, e.g., Tgap as shown in Fig. 1. 

 

 
Figure 1 Temporal Gap and Temporal Duration 

Various distance measurements have been developed 
over the past half century, for state-sequence matching, 
including Lp-Norms [5], the Longest Common Subsequence 
(LCSS) [11], Dynamic Time Warping (DTW) [6], and Edit 
Distance [7] and its variants such as Edit Distance on Real 
Sequence (EDR) [3], Edit Distance with Real Penalty (ERP) 
[4] and Time Warp Edit Distance (TWED) [10], etc. 
However, most of these existing distance measurements 
characterize temporal distance in terms of only the temporal 
order over the state-sequences, where other important 
temporal features such as temporal duration of each state 
itself and temporal gap between two adjacent states have 
been neglected. The only noted exception is TWED which 
addresses temporal gap difference in term of the temporal 
index of states while temporal duration of states is not dealt 
with at all. In addition, in all the existing distance 
measurements, time-series and state-sequences are simply 
expressed as lists (timestamps) in the form of t1, t2, …, tn (or 
s1, s2, …, sn), where the fundamental time theories based on 
which time-series and sequences are formed up are usually 
not explicitly specified. Therefore, the formal 
characterizations with respect to the temporal basis are 
neglected, leaving some critical issues unaddressed. E.g.: 
 What a sort of objects do these t1, t2, … and tn belong 

to? In other word, are they time points, time intervals, 
or simply some absolute values from the real numbers, 
integers, or the clock? 

 What are the temporal order relationships between 
these t1, t2, … and tn, and/or between the sequence of 
collections? Are they simply well-ordered as the natural 
numbers, or they may be relatively ordered by means of 
relations such as ―Before‖, ―Meets‖, ―During‖, and so 
on? 

Tdur Tgap 

state1 state2 
state3 
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 What are the associations between time-series/ 
sequences and non-temporal data that represent various 
states of the world in discourse? 

On the other hand, distance measurements can be 
classified into two categories, with respect the ways in 
which the cost function is reified: (a) binary-value-style 
distance measurements, where the cost functions take binary 
value (0/1) as matching cost which is not sensitive to noise 
since they treat the noise and unmatched states with the 
same cost (1); (b) real-penalty-style distance measurements, 
in which the cost functions take real difference as matching 
cost. In general, the real-penalty-style distance 
measurements outperform the binary-value-style distance 
measurements. However, the real-penalty-style distance 
measurements are much more sensitive to noise since the 
real difference between noise and non-noise states may lead 
the overall distance to an abnormal degree. 

The objective of this paper is to propose a new distance 
measurement (NDM) which tackles both non-temporal 
distance and temporal distance including all the three 
temporal characters as described above, as well as the 
disturbance of noise. The rest of this paper is organised as 
below: the formal characterization of time-series and 
state-sequences is introduced in section II, where our new 
distance measurement is presented in section III. The 
generality of the NDM is demonstrated in section IV by 
means of showing other existing distance measurements as 
special cases. Section V addresses the reification of the cost 
functions with respect to the 3 temporal characters. 
Experiments on reconstructed time-series data from UCI 
KDD Archive are conducted and the corresponding results 
are analysed in section VI. Section VII provides a brief 
summary and concludes the paper with the prospects for 
future work. 

II.  FORMAL CHARACTERIZATION OF TIME-SERIES AND 

STATE-SEQUENCES 

In this section, we present the formal characterization of 
time-series and state-sequences. For the sake of allowing 
expression of both absolute time values and relative 
temporal relations, in this paper, time-elements are defined 
as typed point-based intervals, each of which must be in one 
of the following four forms [9]: 

(p, q) = {r rRprq
[p, q)r | rRprq
(p, q] r | rRprq
[p, q]r | rR pr q

In the above, R stands the set of real numbers, and real 
numbers p and q are called the left-bound and right-bound 
of time-element t, respectively. The absolute values as for 
the left and/or right bounds of some time-elements might be 
unknown. In this case, real number variables are used for 
expressing relative relations to other time-elements (see 
later). If p = q, t is called a time point; otherwise it is called 
a time interval. Without confusion, time-element [p, p] is 
taken as identical to point p. Also, if a time-element is not 

specified as open or closed at its left (right) bound, we shall 
use ―<‖ (or ―>‖) as for its left (or right) bracket. In addition, 
the temporal duration of a time-element t, Tdur(t), and the 
temporal gap between adjacent elements t1, t2, Tgap (t1, t2) 
can be defined as below: 

t = <p, q>  Tdur(t) = q – p 
t1 = <p1, q1> , t2 = <p2, q2> Tgap (t1, t2) = |p2 – q1| 

Following Allen‘s terminology [1], we shall use ―Meets‖ 
to denote the immediate predecessor order relation over 
time-elements, which can be formally defined as: 
 

 Meets(t1, t2)  p,r,qR(t1 = (p, r)  t2 = [r, q) 
  t1 = [p, r)  t2 = [r, q))  t1 = (p, r)  t2 = [r, q] 
  t1 = [p, r)  t2 = [r, q]  t1 = (p, r]  t2 = (r, q) 
  t1 = [p, r]  t2 = (r, q)  t1 = (p, r]  t2 = (r, q] 
  t1 = [p, r]  t2 = (r, q]) 
It is easy to see that the intuitive meaning of Meets(t1, t2) 

is that, on the one hand,  time-elements t1 and t2 don‘t 
overlap each other (i.e., they don‘t have any part in 
common, not even a point); on the other hand, there is not 
any other time-element standing between them.  

Analogous to the 13 relations introduced by Allen for 
intervals [1], there are 30 exclusive temporal order relations 
over time-elements including both time points and time 
intervals, which can be classified into the following 4 
groups: 

 Relations that relate points to points: 
{Equal, Before, After} 

 Relations that relate points to intervals: 
{Before, After, Meets, Met_by, Starts, During. 
Finishes} 

 Relations that relate intervals to points: 
{Before, After, Meets, Met_by, Started_by, Contains, 
Finished_by} 

 Relations that relate intervals to intervals: 
{Equal, Before, After, Meets, Met_by, Overlaps, 
Overlapped_by, Starts, Started_by, During, Contains, 
Finishes, Finished_by} 

The definition of these derived temporal order relations 
in terms of the single relation Meets is straightforward. E.g.:  

Before(t1, t2)  tT(Meets(t1, t)  Meets(t, t2)) 
Based on such a time theory, a time-series Tn can be 

defined as a vector of time-elements temporally ordered one 
after another [8]. Formally, a general time-series is defined 
in terms of the following schema: 

GTS1)  Tn= [t1, …, tn] = [<p1, q1>, …, <pn, qn>] 
GTS2)  Meets(ti, ti+1)Before(ti, ti+1), for all i = 1, …, n-1 
GTS3)  Tdur(ti) = qi – pi = di, for some i where 1≤ i ≤ n. 
GTS4) Tgap(ti, ti+1) = pi+1 – qi = gi for some i where 1≤ i ≤  

n, and g0 is initialized as 0. 
Generally speaking, a time-series may be incomplete in 

various ways. For example, if the relation between ti and ti+1 
is ―Before‖ rather than ―Meets‖, it means that the 
knowledge about the time-element(s) between ti and ti+1 is 
not available. In addition, if Tdur(ti) = di is missing for some 
i, it means that duration knowledge as for time-element ti is 
unknown. 
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Correspondingly, a complete time-series is defined in 
terms of the schema as below: 

GTS1)  Tn = [t1, …, tn] = [<p1, q1>, …, <pn, qn>] 
GTS2)  Meets(ti, ti+1), for all i = 1, …, n-1. 
GTS3)  Tdur(ti) = qi – pi = di, for i = 1, …, n. 
GTS4) Tgap(ti, ti+1) = pi+1 – qi = gi for i = 1, …, n-1; and g0 

= 0. 
The validation of data is usually dependent on time. For 

instance, $1000 (account balance) can be valid before and 
on 1 January 2003 but become invalid afterwards. We shall 
use fluents to represent Boolean-valued, time-varying data, 
and denote proposition ―fluent f holds true over time t‖ by 
formula Holds(f, t) (see details in [1]).  

Consequently, a state-sequence Sn is defined as a list of 
states together with its corresponding time-series Tn. A 
general state-sequence is defined in terms of the schema as 
below: 

GTS1)  Sn = [s1, …, sn] 
GTS2)  Holds(si, ti), for all i = 1, …, n 
where [t1, …, tn] = Tn is a time-series. 
Correspondingly, a state-sequence is defined as 

complete if and only if the corresponding time-series is 
complete [8]. 

III.  NEW DISTANCE MEASUREMENT FOR FORMAL 
STATE-SEQUENCE MATCHING 

Based on the above characterization of time-series, the 
triple domain U = S×D×G is defined for state-sequences 
where: 

SଶRd: d-dimensional domain of non-temporal data 
ordered in consequential (that is, ―Meets or Before‖) 
temporal order;  

D, GଶR: the domains of temporal duration and 
temporal gap respectively. 

So the formal characterization of two given 
state-sequences can be expressed as Am = [a1, …, am] and Bn 
= [b1, …, bn] א  U where  

for i = 1, …, m,  j = 1, …, n: 
' ' ', ,i i i ia s d g S D G     and '' '' '', ,j j j jb s d g S D G    ; 

' ' '
1[ ,..., ]i i ids s s  and '' '' ''

1[ ,..., ]j j jds s s  

Holds( ' ',i is t  ) and Holds( '' '',j js t ) 
' ' ',i i it p q   and ' ' ' ' ' ',j j jt p q  ; 

' ' ' '( )i dur i i id T t q p   and '' '' '' ''( )j dur j j jd T t q p   ; 

for i = 1, …, m-1,  j = 1, …, n-1: 
' ' ' ' '

1 1( , )i gap i i i ig T t t p q    and '' '' '' '' ''
1 1( , )j gap j j j jg T t t p q     

and '''
0 0 0g g  . 

With respect to the non-temporal information and rich 
temporal information for these two state-sequences, the 
general distance measurement is defined as: 

( , ) ( , ) ( , )
m n ntem ntem m n tem tem m n

NDM A B w Dis A B w Dis A B       (1) 

where ( , )
ntem m n

Dis A B and ( , )
tem m n

Dis A B denote the 

non-temporal distance and temporal distance, respectively 
with the corresponding weightntemw and temw . 

A. Non-temporal Distance 

Non-temporal matching stands for the elemental state 
matching of the state-sequences Am and Bn, due to the fact 
that elemental state appearing in state-sequences are not 
actually ordered by their index, that is, the state-sequence is 
actually regarded as a set of states. Therefore, in the first 
place, pairing two given state-sequences involves a 
combinational permutation problem. In general, for m≥n, 
there are mPrn = m!n!/(m-n)! ways of pairing Am with Bn. 
Let Pr denote the set of all possible ordered vectors formed 
by selecting, in order, n random elemental states from Am. It 
seems reasonable to take the pairing which gives the 
minimal overall distance. Hence, in this paper, we shall 
define the non-temporal distance between Am and Bn as: 

( , ) ( , )ntem m n pr Pr ntem nDis A B min Dis pr B        (2) 

Where '' 2
1 1

( , ) ( , ) /
n n

ntem n ipr Lp j j iprj i
dis pr B w dis pr s w

 
    

pr=[pr1,…, prn]  

B. Temporal Distance 

Based on the triad representation of state-sequences, the 
temporal distance between two given state-sequences Am 
with Bn with respect to the 3 temporal characters, that is, 
temporal order, temporal gap and temporal duration, is 
defined recursively as below: 

1

1

1 1

( , ) ( )
( , ) min ( , ) ( )

( , ) ( )

tem m n del m

tem m n tem m n ins n

tem m n sub m n

Dis A B W Cost a
Dis A B Dis A B W Cost b

Dis A B W Cost a b








 

   
 

(3)  

where m, n˻ 1, ( )mCost a   , ( )nCost b and 

( )m nCost a b denote the cost function for edit operations 

deletion,  insertion and substitution, respectively, where 
{ , , }( ) ( ),i i i Tord Tdur TgapCost x y w Cost x y        (4) 

and( ) {( ),( ),( )}m n m nbx y a a b       

The initialization is set as below: 

0 0( , ) 0temDis A B  ,     

 0( , )tem jDis A B  , for j˻1           (5) 

0( , )tem iDis A B  , for i˻1 

IV.   THE GENERALITY OF NDM 

NDM proposed here addresses all the 3 temporal 
characters, including temporal order, duration and gap. In 
fact, as illustrated in Table I, most of those existing 
measurements can be taken as special cases of NDM by 
means of specifying the non-temporal and temporal weights, 
and the cost functions, correspondingly. N.B. For LCSS, 
instead of taking the minimum value, the maximum value is 
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accumulated since it counts the number of common states of 
two state-sequences instead of the cost of matching them. 

TABLE I. MEASUREMENTS SUBSUMED FROM NMD 

Measure
ment 

Settings 

ED 

0, 1ntem temw w    1del ins subW W W     
1, 0Tord Tdur Tgapw w w    

( , ) ( , )=1Tord m Tord nbCost a Cost  , 

( , ) ( , )
Tord

ED
Tord m n m nCost a b Cost a b   

EDR 

0, 1ntem temw w     1del ins subW W W     
1, 0Tord Tdur Tgapw w w    

( , ) ( , )=1Tord m Tord nCost a Cost b  , 

( , ) ( , )
Tord

EDR
Tord m n m nCost a b Cost a b  

DTW 

0, 1ntem temw w    1del ins subW W W     
1, 0Tord Tdur Tgapw w w    

( , )Tord mCost a  = ( , )Tord nCost b = ,( )
Tord m nCost a b

= ,( )
Tord

DTW
m nCost a b  

ERP 

0, 1ntem temw w    1del ins subW W W     
1, 0Tord Tdur Tgapw w w    

( , ) ( , )Tord m Lp m gCost a d a  , ( , ) ( , )Tord n Lp ngCost b d b  , 

( , ) ( , )Tord m n Lp m nCost a b d a b  

LCSS 

0, 1ntem temw w     0, 1del ins subW W W     
1, 0Tord Tdur Tgapw w w    

( , ) ( , )=0Tord m Tord nCost a Cost b  , 
, ,( ) ( )LCSS

Tord m n m nTordCost a b Cost a b    

TWED 

0, 1ntem temw w    1del ins subW W W     
1, 0,Tord Tdur Tgapw w w v  

1 1

1 1

1 1, , ,

,

( , ) ( , ) ( , )

( , ) ( , ) ( , )

( ) ( ) ( )

( ( )

TWED TWED
m m m m mTgapTord

TWED TWED
n n n n nTgapTord

TWED TWED
m n m n m nTord Tord

TWED
m nTgap

Cost a Cost a a v Cost a a

Cost b Cost b b v Cost b b

Cost a b Cost a b Cost a b

v Cost a b

 
 

 

 

 

   
    
   

  1 1,( ))TWED
m nTgapCost a b 

 

 

V.   COST FUNCTION REIFICATION 

With regards to the cost function, distance 
measurements for state-sequence matching can be grouped 
into two categories: binary-value-style distance 
measurements such as LCSS, ED and EDR, and 
real-penalty-style distance measurements such as ERP, DTW 
and TWED. As discussed in the introduction, the later 
outperform the former but are much more sensitive to noise. 

To filter out the noise or release its influence, the cost 
function in NDM is defined as below: 

For i = {Tord, Tdur, Tgap } 
( ) ( )

( )
i i i

i

w Cost x y if Cost x y
Cost x y

elsec

      


   (6) 

where ( ) {( ),( ),( )}m n m nbx y a a b      and c is a 

constant usually set either as 0 (to filter out the noise), or as 
the current maximum cost (to release the influence of the 
noise). 

The main difference among the three typical 
real-penalty-style distance measurements ERP, DTW and 
TWED is: when insertion (or deletion) is required to align 
state-sequence Am and Bn, ERP inserts a constant (usually 0) 
into Am while DTW duplicates the previous state in Am and 
TWED duplicates the previous state in Bn in terms of the 
graphical editor paradigm [10]. These different disposals 
will lead to different costs for operation insertion, deletion 
and substitution. We shall follow the approach of EDR and 
use weights

delW ,
insW and

subW  to adjust the corresponding 

operations. In fact, the cost functions of NDM are defined as 
below: 
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     (9)      

Formulae (2), and (6)-(9) accommodate non-temporal 
and all the 3 temporal distances, as well as the cost function, 
which illustrates the integrity and generality of NDM. 

VI. EXPERIMENTAL RESULTS 

A. Experiment set up 

The NDM has been tested on Synthetic Control Chart 
Time Series in UCI KDD Archive. The database consists of 
600 state-sequences with length of 60 for each, including 6 
different classes (100 samples each). Several query sets are 
reconstructed: Original Query Set (OQS): consists of 180 
(the first 30 state-sequences from each class) 
state-sequences; Shortened Query Set (SQS): each 
state-sequence is with length of (1-Į)*60 by deleting Į*60 
states evenly (EV), from the beginning (FB) and from the 
end (FE) of the corresponding state-sequence in OQS; 
Lengthened Query Set (LQS): each state-sequence is with 
length of (1+ȕ)*60 by inserting ȕ*60 states evenly (EV), 
from the beginning (FB) and from the end (FE) into the 
corresponding state-sequence in OQS; Noised Query Set 
(NQS): each state-sequence is obtained by adding a 
Gaussian noise to each state-sequence in OQS. We shall 
simply take wntem = wtem = 1 in the following experiments.  

B. Comparison with Binary-value-style Measurements  

As a real-penalty-style distance measurement, we firstly 
compare its performance with binary-value-style 
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measurements EDR and LCSS with the setting in Table I.  
The retrieval experiment is implemented with threshold 
varying from {0.1, 0.β, …, 0.9} for each measurement and 
the one which leads to the best performance has been 
chosen as the optimal threshold.  Table II shows the targets 
recall and precision on different query sets defined above, 
where the average of the results on Į, ȕଲ{0.1, 0.2, 0.3, 0.4, 
0.5} is calculated. Generally speaking, NDM is more robust 
and outperforms EDR and LCSS, benefited from its 
real-penalty-style. 

TABLE II.  RECALL AND PRECISION COMPARISON OF EDR, LCSS 
AND NDM WITH DIFFERENT QUERY DATA SET  

Data 

Measurement 
OQS 

SQS LQS 

EV FB FE EV FB FE 

Re-cal
l 

EDR 0.76 0.52 0.64 0.62 0.76 0.68 0.76 

LCSS 0.84 0.68 0.8 0.74 0.60 0.74 0.72 

NDM 0.90 0.86 0.80 0.74 0.74 0.83 0.84 

Pre-ci
sion 

EDR 0.96 0.76 0.76 0.88 0.76 0.88 0.84 

LCSS 0.95 0.76 0.85 0.64 0.64 0.88 0.98 
NDM 0.99 0.83 0.88 0.85 0.85 0.88 0.97 
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Figure 2 Precision of NQS against mean and variance  

TABLE III.  STATISTIC OF THE PRECISION OF NQS 

    
Method 
Statistic 

ERP DTW TWED NDM 

Mean (%) 64.98 75.72 78.80 85.59 
STD 0.1172 0.0841 0.0971 0.0583 

C. Comparison with Real-penalty-style Measurements 

Comparing with real-penalty-style measurements such 
as ERP, DTW, TWED, the main advantage of NDM is that 
it‘s not sensitive to noise. Fig. 2 shows the results on NQS 
with Gaussian noise in different mean ([0, 0.β,…, β]) and 
variance ([0.1, 0.β,…, 1]). The best results for wTgap = {10-4, 
10-3, 10-2, 10-1, 1, 10-1, 10-2, 10-3, 10-4} are selected. Visually, 
NDM has higher precision and smaller fluctuation. Table III 
above shows the average mean and standard deviation (STD) 

of each subfigure in Fig. 2, which statistically lists the digital 
values for the corresponding subfigures in Fig. 2.  

D. Capability to Handle Temporal Difference 

We construct different temporal duration and gap 
distribution for each class. Fig. 3 shows the examples of 6 
different distributions of duration and corresponding 
temporal gap. We set wTord = 1 and select the best result for 
wTdur and wTgap from {10-4, 10-3, 10-2, 10-1, 1, 101, 102, 103, 
104}. Table IV shows the classification error number for 
each class with different combinations of distance 
characters. From which we can see the NDM can tackle 
most matching tasks involving in time-series and 
state-sequence data, especially with different temporal 
matching requirements. 
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Figure 3 Examples of temporal duration and temporal gap 
distribution 

TABLE IV.  CLASSIFICATION ERROR NUMBER OF EACH CLASS 
WITH DIFFERENT COMBINATIONS OF DISTANCE CHARACTERS 

        Data 

Characters 
OQS 

SQS LQS 

EV FB FE EV FB FE 

Tord+Tgap 1 3 5 4 3 3 4 

Tord +Tdur 2 4 6 3 4 3 2 

Tord+Tgap+Tdur 1 4 5 5 3 4 3 

 

VII.  CONCLUSION AND FUTURE WORK 

In this paper, a new distance measurement (NDM), 
which takes into account of both non-temporal and temporal 
characters, has been introduced for subsequence matching. 
Benefiting from a formal characterization of time-series and 
state-sequences, this measurement is able to deal with 
temporal order, temporal duration and temporal gap. In 
particular, when it is specialised as a real-penalty-style 
distance measurement, it can deduce the influence of noise 
by means of using inequality filter to filter out the noise. 

In order to be applied on large scale database, it‘s very 
important to adopt proper pruning strategies, which remain 
the future work to be conducted. 
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