144,890 research outputs found

    The impact of cellular characteristics on the evolution of shape homeostasis

    Full text link
    The importance of individual cells in a developing multicellular organism is well known but precisely how the individual cellular characteristics of those cells collectively drive the emergence of robust, homeostatic structures is less well understood. For example cell communication via a diffusible factor allows for information to travel across large distances within the population, and cell polarisation makes it possible to form structures with a particular orientation, but how do these processes interact to produce a more robust and regulated structure? In this study we investigate the ability of cells with different cellular characteristics to grow and maintain homeostatic structures. We do this in the context of an individual-based model where cell behaviour is driven by an intra-cellular network that determines the cell phenotype. More precisely, we investigated evolution with 96 different permutations of our model, where cell motility, cell death, long-range growth factor (LGF), short-range growth factor (SGF) and cell polarisation were either present or absent. The results show that LGF has the largest positive impact on the fitness of the evolved solutions. SGF and polarisation also contribute, but all other capabilities essentially increase the search space, effectively making it more difficult to achieve a solution. By perturbing the evolved solutions, we found that they are highly robust to both mutations and wounding. In addition, we observed that by evolving solutions in more unstable environments they produce structures that were more robust and adaptive. In conclusion, our results suggest that robust collective behaviour is most likely to evolve when cells are endowed with long range communication, cell polarisation, and selection pressure from an unstable environment

    Complex Networks from Simple Rewrite Systems

    Full text link
    Complex networks are all around us, and they can be generated by simple mechanisms. Understanding what kinds of networks can be produced by following simple rules is therefore of great importance. We investigate this issue by studying the dynamics of extremely simple systems where are `writer' moves around a network, and modifies it in a way that depends upon the writer's surroundings. Each vertex in the network has three edges incident upon it, which are colored red, blue and green. This edge coloring is done to provide a way for the writer to orient its movement. We explore the dynamics of a space of 3888 of these `colored trinet automata' systems. We find a large variety of behaviour, ranging from the very simple to the very complex. We also discover simple rules that generate forms which are remarkably similar to a wide range of natural objects. We study our systems using simulations (with appropriate visualization techniques) and analyze selected rules mathematically. We arrive at an empirical classification scheme which reveals a lot about the kinds of dynamics and networks that can be generated by these systems

    Evolving Ensemble Fuzzy Classifier

    Full text link
    The concept of ensemble learning offers a promising avenue in learning from data streams under complex environments because it addresses the bias and variance dilemma better than its single model counterpart and features a reconfigurable structure, which is well suited to the given context. While various extensions of ensemble learning for mining non-stationary data streams can be found in the literature, most of them are crafted under a static base classifier and revisits preceding samples in the sliding window for a retraining step. This feature causes computationally prohibitive complexity and is not flexible enough to cope with rapidly changing environments. Their complexities are often demanding because it involves a large collection of offline classifiers due to the absence of structural complexities reduction mechanisms and lack of an online feature selection mechanism. A novel evolving ensemble classifier, namely Parsimonious Ensemble pENsemble, is proposed in this paper. pENsemble differs from existing architectures in the fact that it is built upon an evolving classifier from data streams, termed Parsimonious Classifier pClass. pENsemble is equipped by an ensemble pruning mechanism, which estimates a localized generalization error of a base classifier. A dynamic online feature selection scenario is integrated into the pENsemble. This method allows for dynamic selection and deselection of input features on the fly. pENsemble adopts a dynamic ensemble structure to output a final classification decision where it features a novel drift detection scenario to grow the ensemble structure. The efficacy of the pENsemble has been numerically demonstrated through rigorous numerical studies with dynamic and evolving data streams where it delivers the most encouraging performance in attaining a tradeoff between accuracy and complexity.Comment: this paper has been published by IEEE Transactions on Fuzzy System

    An Incremental Construction of Deep Neuro Fuzzy System for Continual Learning of Non-stationary Data Streams

    Full text link
    Existing FNNs are mostly developed under a shallow network configuration having lower generalization power than those of deep structures. This paper proposes a novel self-organizing deep FNN, namely DEVFNN. Fuzzy rules can be automatically extracted from data streams or removed if they play limited role during their lifespan. The structure of the network can be deepened on demand by stacking additional layers using a drift detection method which not only detects the covariate drift, variations of input space, but also accurately identifies the real drift, dynamic changes of both feature space and target space. DEVFNN is developed under the stacked generalization principle via the feature augmentation concept where a recently developed algorithm, namely gClass, drives the hidden layer. It is equipped by an automatic feature selection method which controls activation and deactivation of input attributes to induce varying subsets of input features. A deep network simplification procedure is put forward using the concept of hidden layer merging to prevent uncontrollable growth of dimensionality of input space due to the nature of feature augmentation approach in building a deep network structure. DEVFNN works in the sample-wise fashion and is compatible for data stream applications. The efficacy of DEVFNN has been thoroughly evaluated using seven datasets with non-stationary properties under the prequential test-then-train protocol. It has been compared with four popular continual learning algorithms and its shallow counterpart where DEVFNN demonstrates improvement of classification accuracy. Moreover, it is also shown that the concept drift detection method is an effective tool to control the depth of network structure while the hidden layer merging scenario is capable of simplifying the network complexity of a deep network with negligible compromise of generalization performance.Comment: This paper has been published in IEEE Transactions on Fuzzy System

    Dynamics of directed graphs: the world-wide Web

    Full text link
    We introduce and simulate a growth model of the world-wide Web based on the dynamics of outgoing links that is motivated by the conduct of the agents in the real Web to update outgoing links (re)directing them towards constantly changing selected nodes. Emergent statistical correlation between the distributions of outgoing and incoming links is a key feature of the dynamics of the Web. The growth phase is characterized by temporal fractal structures which are manifested in the hierarchical organization of links. We obtain quantitative agreement with the recent empirical data in the real Web for the distributions of in- and out-links and for the size of connected component. In a fully grown network of NN nodes we study the structure of connected clusters of nodes that are accessible along outgoing links from a randomly selected node. The distributions of size and depth of the connected clusters with a giant component exhibit supercritical behavior. By decreasing the control parameter---average fraction β\beta of updated and added links per time step---towards βc(N)<10\beta_c(N) < 10% the Web can resume a critical structure with no giant component in it. We find a different universality class when the updates of links are not allowed, i.e., for β≡0\beta \equiv 0, corresponding to the network of science citations.Comment: Revtex, 4 PostScript figures, small changes in the tex

    Born to learn: The inspiration, progress, and future of evolved plastic artificial neural networks

    Get PDF
    Biological plastic neural networks are systems of extraordinary computational capabilities shaped by evolution, development, and lifetime learning. The interplay of these elements leads to the emergence of adaptive behavior and intelligence. Inspired by such intricate natural phenomena, Evolved Plastic Artificial Neural Networks (EPANNs) use simulated evolution in-silico to breed plastic neural networks with a large variety of dynamics, architectures, and plasticity rules: these artificial systems are composed of inputs, outputs, and plastic components that change in response to experiences in an environment. These systems may autonomously discover novel adaptive algorithms, and lead to hypotheses on the emergence of biological adaptation. EPANNs have seen considerable progress over the last two decades. Current scientific and technological advances in artificial neural networks are now setting the conditions for radically new approaches and results. In particular, the limitations of hand-designed networks could be overcome by more flexible and innovative solutions. This paper brings together a variety of inspiring ideas that define the field of EPANNs. The main methods and results are reviewed. Finally, new opportunities and developments are presented

    Applications of Biological Cell Models in Robotics

    Full text link
    In this paper I present some of the most representative biological models applied to robotics. In particular, this work represents a survey of some models inspired, or making use of concepts, by gene regulatory networks (GRNs): these networks describe the complex interactions that affect gene expression and, consequently, cell behaviour
    • …
    corecore