30 research outputs found

    Uso combinado del LIDAR y medidas hiperspectrales para la teledetección de la fluorescencia y el perfil vertical del dosel

    Full text link
    Revista oficial de la Asociación Española de Teledetección[EN] We report the development of a new LIDAR system (LASVEG) for airborne remote sensing of chlorophyll fluorescence (ChlF) and vertical profile of canopies. By combining laser-induced fluorescence (LIF), sun-induced fluorescence (SIF) and canopy height distribution, the new instrument will allow the simultaneous assessment of gross primary production (GPP), photosynthesis efficiency and above ground carbon stocks. Technical issues of the fluorescence LIDAR development are discussed and expected performances are presented.[ES] Se presenta el desarrollo de un nuevo sistema LIDAR (LASVEG) para la teledetección aerotransportada de la fluorescencia de la clorofila (ChlF) y el perfil vertical del dosel. Mediante la combinación de la fluorescencia inducida por láser (LIF), la fluorescencia inducida por el sol (SIF) y la distribución de la altura del dosel, el nuevo instrumento permitirá la evaluación simultánea de la producción primaria bruta (GPP), la eficiencia de la fotosíntesis y las reservas de carbono por encima del nivel del suelo. Se discuten cuestiones técnicas del desarrollo del LIDAR fluorescencia y se presentan las prestaciones previstasThis instrument is developed in the framework of the CALSIF project with the support of the French national agency ANR and the French space agency CNES.Ounis, A.; Bach, J.; Mahjoub, A.; Daumard, F.; Moya, I.; Goulas, Y. (2016). Combined use of LIDAR and hyperspectral measurements for remote sensing of fluorescence and vertical profile of canopies. Revista de Teledetección. (Special Issue):87-94. doi:10.4995/raet.2015.3982.SWORD8794Special Issu

    Characterising maize and intercropped maize spectral signatures for cropping pattern classification

    Get PDF
    Intercropping – the planting of more than one crop in the same plot of land – is a prevalent agricultural management practice which can be used for risk reduction. Despite its widespread use, intercropping is not commonly reported in agricultural statistics, resulting to very limited spatially disaggregated information about its prevalence. Remote sensing-based approaches to detect and estimate the area of cropping patterns like intercropping require good understanding of the spectral response of (intercropped) crops at different crop growth phases. This study integrates field surveys, farmer interviews and temporal Sentinel-2 data from four crop growth phases and the post-harvest period of maize and intercropped maize (imaize). The goal is to identify the optimal crop growth phases, spectral regions and vegetation indices (VIs) that can accurately discriminate the two cropping patterns. We computed p-values for the spectral bands using Mann-Whitney U test and identified critical crop growth phases. Classification of maize and imaize cropping patterns was performed using random forest classifier. Our spectral analysis revealed effective discrimination between maize and imaize cropping patterns during the vegetative (in all spectral bands) and flowering-yield phases (in Blue, Green, Red, RE704, RE783, NIR833, NIR865). The most suitable VIs contained red-edge and near-infrared spectal bands. Utilizing spectral data and VIs from vegetative and flowering-yield phases, we achieved optimal discrimination during the vegetative phase (user’s accuracy of 100 % and producer’s accuracy of 100 %). However, accuracy decreased during the flowering yield phase (overall accuracy of 87 % for all spectral bands). The highest classification results using all spectral bands at the flowering yield phase resulted in 80 % producer’s accuracy for maize and 100 % for imaize. This study illustrates the utility of temporal Sentinel-2 spectral data for identifying the critical crop growth phase, spectral regions and VIs for cropping patterns classification, particularly for intercropping

    Remote Sensing for Precision Agriculture: Sentinel-2 Improved Features and Applications

    Get PDF
    The use of satellites to monitor crops and support their management is gathering increasing attention. The improved temporal, spatial, and spectral resolution of the European Space Agency (ESA) launched Sentinel-2 A + B twin platform is paving the way to their popularization in precision agriculture. Besides the Sentinel-2 A + B constellation technical features the open-access nature of the information they generate, and the available support software are a significant improvement for agricultural monitoring. This paper was motivated by the challenges faced by researchers and agrarian institutions entering this field; it aims to frame remote sensing principles and Sentinel-2 applications in agriculture. Thus, we reviewed the features and uses of Sentinel-2 in precision agriculture, including abiotic and biotic stress detection, and agricultural management. We also compared the panoply of satellites currently in use for land remote sensing that are relevant for agriculture to the Sentinel-2 A + B constellation features. Contrasted with previous satellite image systems, the Sentinel-2 A + B twin platform has dramatically increased the capabilities for agricultural monitoring and crop management worldwide. Regarding crop stress monitoring, Sentinel-2 capacities for abiotic and biotic stresses detection represent a great step forward in many ways though not without its limitations; therefore, combinations of field data and different remote sensing techniques may still be needed. We conclude that Sentinel-2 has a wide range of useful applications in agriculture, yet still with room for further improvements. Current and future ways that Sentinel-2 can be utilized are also discusse

    Remote Sensing for Precision Agriculture: Sentinel-2 Improved Features and Applications

    Get PDF
    The use of satellites to monitor crops and support their management is gathering increasing attention. The improved temporal, spatial, and spectral resolution of the European Space Agency (ESA) launched Sentinel-2 A + B twin platform is paving the way to their popularization in precision agriculture. Besides the Sentinel-2 A + B constellation technical features the open-access nature of the information they generate, and the available support software are a significant improvement for agricultural monitoring. This paper was motivated by the challenges faced by researchers and agrarian institutions entering this field; it aims to frame remote sensing principles and Sentinel-2 applications in agriculture. Thus, we reviewed the features and uses of Sentinel-2 in precision agriculture, including abiotic and biotic stress detection, and agricultural management. We also compared the panoply of satellites currently in use for land remote sensing that are relevant for agriculture to the Sentinel-2 A + B constellation features. Contrasted with previous satellite image systems, the Sentinel-2 A + B twin platform has dramatically increased the capabilities for agricultural monitoring and crop management worldwide. Regarding crop stress monitoring, Sentinel-2 capacities for abiotic and biotic stresses detection represent a great step forward in many ways though not without its limitations; therefore, combinations of field data and different remote sensing techniques may still be needed. We conclude that Sentinel-2 has a wide range of useful applications in agriculture, yet still with room for further improvements. Current and future ways that Sentinel-2 can be utilized are also discussed.This research was funded by the Spanish projects AGL2016-76527-R and IRUEC PCIN-2017-063 from the Ministerio de Economía y Competividad (MINECO, Spain) and by the support of Catalan Institution for Research and Advanced Studies (ICREA, Generalitat de Catalunya, Spain), through the ICREA Academia Program

    Monitoring the incidence of Xylella fastidiosa infection in olive orchards using ground-based evaluations, airborne imaging spectroscopy and Sentinel-2 time series through 3-D radiative transfer modelling

    Get PDF
    Outbreaks of Xylella fastidiosa (Xf) in Europe generate considerable economic and environmental damage, and this plant pest continues to spread. Detecting and monitoring the spatio-temporal dynamics of the disease symptoms caused by Xf at a large scale is key to curtailing its expansion and mitigating its impacts. Here, we combined 3-D radiative transfer modelling (3D-RTM), which accounts for the seasonal background variations, with passive optical satellite data to assess the spatio-temporal dynamics of Xf infections in olive orchards. We developed a 3D-RTM approach to predict Xf infection incidence in olive orchards, integrating airborne hyperspectral imagery and freely available Sentinel-2 satellite data with radiative transfer modelling and field observations. Sentinel-2A time series data collected over a two-year period were used to assess the temporal trends in Xf-infected olive orchards in the Apulia region of southern Italy. Hyperspectral images spanning the same two-year period were used for validation, along with field surveys; their high resolution also enabled the extraction of soil spectrum variations required by the 3D-RTM to account for canopy background effect. Temporal changes were validated with more than 3000 trees from 16 orchards covering a range of disease severity (DS) and disease incidence (DI) levels. Among the wide range of structural and physiological vegetation indices evaluated from Sentinel-2 imagery, the temporal variation of the Atmospherically Resistant Vegetation Index (ARVI) and Optimized Soil-Adjusted Vegetation Index (OSAVI) showed superior performance for DS and DI estimation (r2VALUES>0.7, p < 0.001). When seasonal understory changes were accounted for using modelling methods, the error of DI prediction was reduced 3-fold. Thus, we conclude that the retrieval of DI through model inversion and Sentinel-2 imagery can form the basis for operational vegetation damage monitoring worldwide. Our study highlight the value of interpreting temporal variations in model retrievals to detect anomalies in vegetation health.Data collection was partially supported by the European Union's Horizon 2020 research and innovation programme through grant agreements POnTE (635646) and XF-ACTORS (727987). A. Hornero was supported by research fellowship DTC GEO 29 “Detection of global photosynthesis and forest health from space” from the Science Doctoral Training Centre (Swansea University, UK). The authors would also like to thank QuantaLab-IAS-CSIC (Spain) for laboratory assistance and the support provided during the airborne campaigns and image processing. B. Landa, C. Camino, M. Montes-Borrego, M. Morelli, M. Saponari and L. Susca are acknowledged for their support during the field campaigns, as well as IPSP-CNR and Dipartimento di Scienze del Suolo (Università di Bari, Italy) as host institutions

    How nitrogen and phosphorus availability change water use efficiency in a Mediterranean savanna ecosystem

    Get PDF
    Nutrient availability, especially of nitrogen (N) and phosphorus (P), is of major importance for every organism and at a larger scale for ecosystem functioning and productivity. Changes in nutrient availability and potential stoichiometric imbalance due to anthropogenic nitrogen deposition might lead to nutrient deficiency or alter ecosystem functioning in various ways. In this study, we present 6 years (2014–2020) of flux-, plant-, and remote sensing data from a large-scale nutrient manipulation experiment conducted in a Mediterranean savanna-type ecosystem with an emphasis on the effects of N and P treatments on ecosystem-scale water-use efficiency (WUE) and related mechanisms. Two plots were fertilized with N (NT, 16.9 Ha) and N + P (NPT, 21.5 Ha), and a third unfertilized plot served as a control (CT). Fertilization had a strong impact on leaf nutrient stoichiometry only within the herbaceous layer with increased leaf N in both fertilized treatments and increased leaf P in NPT. Following fertilization, WUE in NT and NPT increased during the peak of growing season. While gross primary productivity similarly increased in NT and NPT, transpiration and surface conductance increased more in NT than in NPT. The results show that the NPT plot with higher nutrient availability, but more balanced N:P leaf stoichiometry had the highest WUE. On average, higher N availability resulted in a 40% increased leaf area index (LAI) in both fertilized treatments in the spring. Increased LAI reduced aerodynamic conductance and thus evaporation at both fertilized plots in the spring. Despite reduced evaporation, annual evapotranspiration increased by 10% (48.6 ± 28.3 kg H2O m−2), in the NT plot, while NPT remained similar to CT (−1%, −6.7 ± 12.2 kgH2O m−2). Potential causes for increased transpiration at NT could be increased root biomass and thus higher water uptake or rhizosphere priming to increase P-mobilization through microbes. The annual net ecosystem exchange shifted from a carbon source in CT (75.0 ± 20.6 gC m−2) to carbon-neutral in both fertilized treatments [−7.0 ± 18.5 gC m−2 (NT) 0.4 ± 22.6 gC m−2 (NPT)]. Our results show, that the N:P stoichiometric imbalance, resulting from N addition (without P), increases the WUE less than the addition of N + P, due to the strong increase in transpiration at NT, which indicates the importance of a balanced N and P content for WUE

    Bayesian Dynamic Linear Models for Estimation of Phenological Events from Remote Sensing Data

    Get PDF
    Estimating the timing of the occurrence of events that characterize growth cycles in vegetation from time series of remote sensing data is desirable for a wide area of applications. For example, the timings of plant life cycle events are very sensitive to weather conditions and are often used to assess the impacts of changes in weather and climate. Likewise, understanding crop phenology can have a large impact on agricultural strategies. To study phenology using remote sensing data, the timings of annual phenological events must be estimated from noisy time series that may have many missing values. Many current state-of-the-art methods consist of smoothing time series and estimating events as features of smoothed curves. A shortcoming of many of these methods is that they do not easily handle missing values and require imputation as a preprocessing step. In addition, while some currently used methods may be extendable to allow for temporal uncertainty quantification, uncertainty intervals are not usually provided with phenological event estimates. We propose methodology utilizing Bayesian dynamic linear models to estimate the timing of key phenological events from remote sensing data with uncertainty intervals. We illustrate the methodology on weekly vegetation index data from 2003 to 2007 over a region of southern India, focusing on estimating the timing of start of season and peak of greenness. Additionally, we present methods utilizing the Bayesian formulation and MCMC simulation of the model to estimate the probability that more than one growing season occurred in a given year. Supplementary materials accompanying this paper appear online. © 2018, International Biometric Society

    Yield prediction in ryegrass with UAV-based RGB and multispectral imaging

    Get PDF
    Forage grass breeding is time-consuming and costly, with the need for special knowledge and experience to make the right decisions for future forage grass production. All measurements for decision-making require manual labor and hands-on inspections. For the yield trait, the traditional method of measurement is cutting and weighing the grass. New methods for yield prediction and measurement with Unmanned Aerial Vehicle (UAV) have been tested on different crops with good results. For perennial ryegrass (Lolium perenne L.) yield prediction has earlier been performed on plots with a flight altitude for image capturing at 20 meters and which has yielded promising results for our study. This study has been exploring different flight altitudes for ryegrass yield prediction using UAV imagery. The sensors that have been used in this study are multispectral and RGB cameras integrated in the UAVs. Our study consists of two trials with pre-selected varieties of perennial ryegrass, one with diploid varieties and one with tetraploid varieties and mixtures between diploid and tetraploid varieties, were investigated. Both trials were seeded at two different locations in Norway. Varieties were planted as rows for the first location (Vollebekk, Ås, Norway) while for the second location (Arneberg, Ilseng, Norway) the two trials were planted as both rows and plots. The dry matter yield (DMY) data were collected with traditional harvest four times for the rows, and three times for the plots. The UAV-images were collected at different flight altitudes with both multispectral and RGB cameras. The full data processing routine was conducted on the first and second cut for both locations. Multivariate regression model was applied for DMY prediction based on UAV imagery. The results correlated well with the predictions at Ås for both multispectral images as well as RGB methods of image acquisition. Our results indicated a high correlation between the actual DMY and the predicted DMY from both RGB images as well as multispectral images with a correlation coefficient on 0.92 for both, but at different assessment dates. The maximum correlation was acquired for the first cut from location Ås. For location Arneberg, the acquired images could not yield results of sufficient quality, and thus, no predictions could be made
    corecore