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Bayesian Dynamic Linear Models for Estimation of

Phenological Events from Remote Sensing Data

Abstract

Estimating the timing of the occurrence of events that characterize growth cycles in vege-
tation from time series of remote sensing data is desirable for a wide area of applications. For
example, the timings of plant life cycle events are very sensitive to weather conditions, and are
often used to assess the impacts of changes in weather and climate. Likewise, understanding
crop phenology can have a large impact on agricultural strategies. To study phenology using
remote sensing data, the timings of annual phenological events must be estimated from noisy
time series that may have many missing values. Many current state-of-the-art methods consist
of smoothing time series and estimating events as features of smoothed curves. A shortcom-
ing of many of these methods is that they do not easily handle missing values and require
imputation as a pre-processing step. In addition, while some currently used methods may be
extendable to allow for temporal uncertainty quantification, uncertainty intervals are not usu-
ally provided with phenological event estimates. We propose methodology utilizing Bayesian
dynamic linear models to estimate the timing of key phenological events from remote sens-
ing data with uncertainty intervals. We illustrate the methodology on weekly vegetation index
data from 2003 to 2007 over a region of southern India, focusing on estimating the timing of
start of season (SOS) and peak of greenness (POG). Additionally, we present methods utilizing
the Bayesian formulation and MCMC simulation of the model to estimate the probability that

more than one growing season occurred in a given year.
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1 Introduction

Plant phenology is the study of variation in recurring biological cycles in vegetation defined
by the occurrence of key life cycle events, such as bud-burst, first flowering, and leaf fall (http:
//www.usanpn.org/). The timings of life cycle events are sensitive to changes in weather and
climate, and can therefore be used as key indicators of the effects of climate change. As climate is
a regional or global process, this requires historical characterization of vegetation life cycles on a
large scale. Additionally, crop phenology can be used to monitor crop yield, growing conditions,
etc. and could therefore play a large role in optimizing agricultural practices (Duncan et al.|2015).
However, events such as bud-burst or first flowering can only be observed using in sifu (ground)
observations, and consequently, studies of long-term phenology from ground observations cannot
feasibly be conducted on a global scale. Fortunately, many vegetation types have life cycles marked
by recurring changes that are reflected in properties of the Earth’s surface (for example, changes
in photosynthetic activity). These can often be identified as changes in the reflectance of the land
surface and can therefore be measured using remote sensing data acquired by satellites (Hanes et al.
2014). The study of the timing of recurring seasonal changes in surface vegetation, as measured
by remote sensing is called land surface phenology (LSP).

Imaging instruments housed on satellites are used to repeatedly collect data on spectral re-
flectance of the Earth’s surface over time, resulting in time series of satellite sensor imagery.
The most common sources of these data are the Advanced Very High Resolution Radiometer
(AVHRR), SPOT-VEGETATION (SPT-VGT), Moderate-Resolution Imaging Spectroradiometer
(MODIS) and MEdium Resolution Imaging Spectrometer (MERIS) (De Beurs and Henebry|2010;
Duncan et al.[2015). A measure of vegetation is usually characterized by vegetation indices (we
will refer to these throughout the manuscript as VIs), which are scientifically derived as functions
of observed reflectance from various spectral bands (Duncan et al.2015). Commonly used VIs in-
clude the red edge position, the Normalized Difference Vegetation Index (NDVI), and the MERIS
Terrestrial Chlorophyll Index (MTCI). However, a major challenge in utilizing satellite sensor data

is that reflectance from the Earth’s surface is often not perfectly measured by the imaging instru-
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ment due to factors such as cloud cover, atmospheric interference and soil background. Because
of this, satellite sensor data and derived VIs are often noisy and have many missing values.

Additionally, remote sensing data is constrained to the spatial resolution of the satellite sensors
and therefore does not directly provide information about ground based, species level phenology
such as first flowering or bud-burst. Consequently, land surface phenology requires that key LSP
metrics (or phenological events) characterizing vegetation life cycles be defined and identified from
time series of VIs. Examples of phenological events of interest are: timing of onset of greenness
or start of season, timing of peak greenness or maximal growth, timing of end of senescence or
end of season, and duration of the growing season (De Beurs and Henebry|2010).

Therefore, special attention has been given to developing methods for scientifically accurate
identification of phenological events from noisy time series of satellite derived VIs. Such methods
include setting thresholds on VIs, derivative based largest increase/decrease in VI, moving aver-
ages, and smoothing based model fitting methods (De Beurs and Henebry 2010). Threshold and
derivative based methods on raw VIs cannot easily handle multiple growth cycles, nor do they
have probabilistic error structures which makes uncertainty assessment infeasible (De Beurs and
Henebry|2010; |Zhang et al. 2003).

In this work, we approach the problem by identifying a model for the time series of VIs rep-
resenting the underlying seasonal growth cycles. An important feature of this approach is that it
yields a smooth curve which can be used to identify phenological events based on rules defining
the events as features of the smoothed time series (e.g. local minima and maxima (Jeganathan
et al. 2010b; Dash et al.[2010)), thresholds (Prasad and Hegde||1986), and derivative based methods
(De Beurs and Henebry 2010), among others). There are currently no universally agreed upon
rules to identify phenological events from smoothed VI time series.

In addition to providing a good representation of the growth cycles, smoothing methods should
1) be sufficiently flexible to allow for inter-annual variability in seasons, and 2) allow for multiple
growth cycles due to double or triple cropping agriculture, multiple rainy seasons, etc. (De Beurs
and Henebry|2010; Zhang et al.[2003). Various methods have been used by applied scientists to

smooth remote sensing data for phenological event estimation. For example, the U.S. Geological



Survey (USGS) methodology for studying land surface phenology utilizes a least squares moving
window approach on NDVI data which requires fitting a regression line within the window at each
time point. These regression lines are then averaged at each time point to construct a smooth curve
from which to identify various phenological events (http://phenology.cr.usgs.gov/).
Studies utilizing discrete Fourier transforms that retain only a sufficient number of harmonics to
smooth the time series and to allow for multiple growing seasons per year have also become in-
creasingly popular (Jeganathan et al. 2010alb; Dash et al.|[2010; |Atkinson et al.| 2012} Geerken
et al. 2005; |Geerken 2009). In this approach, inter-annual flexibility is only possible by applying
the Fourier transform separately to yearly intervals of data. Other common smoothing methods
in the applied literature utilize Savitzy-Golay filters, piecewise fitting using local functions, and
wavelet transforms, among others (Jonsson and Eklundh|2004; Zhang et al.|2003; O’Connor et al.
2012; Kandasamy and Fernandes 2015} |Atkinson et al. 2012} Tan et al. 2011} Sakamoto et al.
2005; Duncan et al.|2015). It is important to note that none of these approaches provide a natu-
ral environment for quantifying the uncertainty associated with event identification. This can be
problematic, as the timings of phenological events estimated from remote sensing data are then
incorporated like data observed without error in environmental and agricultural studies.

An additional, major challenge in phenological event estimation arises when the VI time se-
ries exhibit more than one growth cycle per year. One of the driving motivations of land surface
phenology is to characterize phenology in areas where ground observations are not available, and
as such the “true” number of growing seasons that should be exhibited is also not available. At
the spatial resolution of the satellite, land cover information is generally too coarse to provide a
reasonable indication of the expected number of growing seasons (e.g. natural vegetation versus
predominantly agriculture). Additionally, deforestation and changes in agricultural practices may
change the number of growing seasons present in a region from one year to the next. Most smooth-
ing based methodologies currently employed are flexible enough to model more than one peak, but
determination of when a minor peak is a true secondary (or tertiary) growth cycle (as opposed
to noise, a rainy season, etc.) is difficult. Identification of secondary growing seasons generally

requires the specification of scientifically driven, but relatively ad hoc, conditions that must be sat-
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isfied, such as a minimal change in minimum and maximum growth in a season (see for example
Dash et al. (2010) and Vrieling et al. (2011}; 2013)).

In this manuscript, we present a new method for smoothing and phenological event estimation
utilizing a Bayesian dynamic linear modeling framework, aimed at addressing some of the current
challenges in characterizing phenology from remote sensing data. We provide a formal approach to
model seasonal growth in vegetation by incorporating dynamic Fourier harmonic terms, allowing
seasonality to vary smoothly across years, unlike the simpler harmonic models fitted separately by
year in Jeganathan et al. (2010a; 2010b), Atkinson et al. (2012) and Dash et al. (2010). Utilizing
a single model for the entire time domain, allowing for seasonality to vary across years by incor-
porating temporal dependence, and the ability to apply the method universally across regions with
vastly varying phenological structure are some of the major advantages offered by our proposed
approach. Additionally, the estimation procedures of dynamic linear models can naturally handle
missing values, eliminating the pre-processing data imputation step required by many of the current
methodologies. Lastly, we introduce a novel approach to determine the number of growing seasons
in a given year and assess temporal uncertainty in phenological events by using a fully Bayesian
formulation and MCMC simulation of the model. In Section [5| we discuss potential extensions
of our method to simultaneously fitting a space-time dynamic model across all locations, building
on substantial literature in this field, such as Cressie and Wikle (2011), Banerjee et al.| (2014),
Gamerman (2010), and \Gelfand and Banerjee (2017), including discussing some challenges in our
application area such as potentially abrupt land-use changes and non-stationarity both in space and
in time. Our primary goal in this manuscript is estimating and quantifying temporal uncertainty
in location-specific timings of phenological events, with emphasis on events occurring in time.
For this reason we have concentrated on the temporal structure, recognizing that substantial open

questions remain in fully taking spatial structure into account.

2 Data

The VI used in this work is the MERIS Terrestrial Chlorophyll Index (MTCI), which is derived

from spectral reflectance captured by the MERIS satellite. The index is considered to be directly



related to a measure of canopy chlorophyll content and was designed to have limited sensitivity
to atmospheric effects and soil background interference (Dash and Curran 2004, 2007). Dash,
Jeganathan and Atkinson have undertaken several studies utilizing MTCI to study phenology over
India, which also motivates this work (Dash et al.2010; |Jeganathan et al. 2010a,b; |Atkinson et al.
2012).

We considered 8-day temporal composites of the MTCI level-3 product over the southern tip
of India. The data span the period 2003-2007 and are available on a regular grid at 4.6 km spatial
resolution. We consider a subregion of the data corresponding to a 50x50 lattice containing 2163
“non-sea” grid cells. The temporal resolution of the data gives 46 layers of MTCI each year,
resulting in time series of length 7" = 230 at each spatial grid cell. The data can be downloaded
from the NERC Earth Observation Data Centre website (www.neodc.rl.ac.uk/). Each of
the 2163 non-sea time series contains missing values, ranging from ~ 1.7% to ~ 17.9% missing,
with some locations exhibiting periods of as long as 7 consecutive missing composites.

In addition to the MTCI data, the GLC2000 land cover product is used to identify a main
type of vegetation for each spatial location. The GLC2000 land cover product was derived us-
ing data from the SPOT-4 Vegetation Sensor (Agrawal et al.[2003)), and can be downloaded from
the European Commission’s Joint Research Centre (JRC) website (http://forobs. jrc.ec.
europa.eu/products/glc2000/products.php). The region considered covers a di-
verse range of vegetation types. The land cover of the eastern half is primarily agricultural, and
the western half is mainly natural vegetation. Figure 1| presents the data from two predominantly
natural vegetation locations: (a) corresponds to a primarily Tropical Evergreen land cover location
with fairly regular seasonality, while (b) is primarily an area of Tropical Semievergreen and ex-
hibits inter-annual variability in seasonal structure. These two locations will be used to illustrate

the proposed methodology throughout the paper.
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3 Methodology

3.1 Dynamic Linear Models

Dynamic linear models (DLMs) (see, for example, West and Harrison (1999)) are a large, flex-
ible class of non-stationary time series models. They are flexible in that they allow an interpretable
decomposition of the series into terms of trend and seasonality, handle missing values, and permit
forecasting as well as retrospective analysis of the temporal dynamics. An important advantage
of the DLM approach for our application is that it provides a natural environment for uncertainty
quantification of identified phenological events.

A univariate DLM assumes that a time series, Y. = (Y; : t = 1,2,...,T), of length T, is an
observed realization of an unobserved latent process on a p-dimensional state vector, 6;, subject to
Gaussian random noise (for notational clarity, let 8,.7 = (6, : t = 1,2,...,T)). This model has

three primary components, namely the:

Observation equation : Y; = F,0, + v, vy ~ N(0,V}) (1a)
State equation : 6; = G,0,_1 + w; w; ~ N,(0, W;) (1b)
Prior on initial state : 6y ~ N,(mg, Cp) . (1c)

Equation defines how the observed data relate to the unknown (latent) state vector, with F}
a 1 x p matrix of (typically known) constants, and (v;);>; a sequence of independent observation
errors. Equation @]) defines how the state evolves from time ¢ — 1 to ¢, and is called the state,
system, or evolution equation (Petris et al. [2009). G} is a p x p matrix of (typically known)
constants, and (w;);>; is an independent sequence of random vectors, also assumed independent
of (v¢)¢>1. Lastly, (1c) specifies the prior distribution on the state parameter vector at time zero,
assumed independent of (v;);>1 and (w;);>1. We refer to (V;):>1 and (W;);>;1 as the observation
and evolution variances, respectively, both of which typically are unknown, so a fully specified
Bayesian DLM also requires specification of prior distributions on these unknown observation
and evolution variances. DLMs are more flexible than classical regression models, but are still a

naturally intuitive extension. For example, setting G, = I, and W, = 0,, reduces (laH{Ib)) to the

7



linear regression model, Y; = F;0 + v;.

In the current application, we assume that the latent state process, F;0,, t = 1,...,T, repre-
sents the true vegetation growth. Therefore, inference about linear combinations of the state vector
0.7 is of primary interest. The DLM framework permits three types of posterior inferences about
the state vector at time ¢’ from 7(6y|y,.,): filtering (when ¢ = t), forecasting (when ¢’ > 1),
and smoothing (when ' < t = T'). Of the three, smoothing is a retrospective technique used to
study the historical evolution of the system 8, using all the data available up to and including time
T', which coincides with our scientific objective of characterizing phenology from historical data.
Given (V;);>1 and (W});>1, the smoothing distributions can be determined sequentially using the
well-known Kalman recursions (Kalman!|1960).

The Bayesian framework for DLMs provides several key advantages over many of the currently
used methodologies for characterizing phenology from remote sensing data. One major strength
is the ability to easily handle missing values (see, for example, (Petris et al.2009)). The analyses
based on wavelets and Fourier transforms impute missing values as a data pre-processing step, par-
ticularly when data are missing at more than one consecutive time point. By contrast, in the Kalman
Filter, if y, is missing, it is assumed to carry no information and the filtered distribution, 7(6;|y;.),
is set to the one-step ahead predictive distribution, 7r(c9t|y1:(t_1)). The dependence structure of the
DLM allows past and future data to inform the smoothing distribution of the state process, 6,
when data are missing at time ¢, thus eliminating the need for the often arbitrary pre-processing

imputation step.
3.1.1 Bayesian reduced Fourier-form Dynamic Linear Model

We choose Bayesian reduced Fourier-form seasonal DLLMs to model the time series of satellite-
based VIs, thereby using models that are direct extensions of the currently applied Fourier trans-
form methods (Dash et al.|2010; Jeganathan et al.|[2010a,b). These Fourier-form DLMs define
states as the s/2 (s even) or (s — 1)/2 (s odd) Fourier harmonics, with s being the period of the
time series, but only retain a small subset, ¢, of these Fourier harmonics in their reduced form
(Petris et al.[2009; |West and Harrison|1999). They are well suited for our study since they provide

smooth representations of time-evolving seasonal patterns in phenology in our region where no



more than a triple cropping season is expected.

Welet Yip = (Y —Y* :t = 1,2,...,T) (where Y;* represents the raw data and Y* =
|T—1*| > e Yy for T, the set of times such that Y;* is non-missing) represent a univariate time
series of length 7" of mean centered VlIs at a single location. Note that mean and trend terms can
be easily incorporated into the model as separate components, if necessary, so for the purpose of
this work we focus solely on modeling seasonality. Minor trend or mean shifts remaining in the

data after centering may be captured by the temporal evolution in the seasonality of the DLM. We

consider a Bayesian reduced Fourier-form DLM as follows:

Y, = i St 4+ v v, ~ N(0,02) (2a)
j=1
Sji = cos(w;)Sj—1 + sin(w;) S, + wjy (2b)
S5 = —sin(w;)Sj ;1 + cos(w;) S,y +w, wig, wi ~ N (0, o2) (2¢)
0. ~ Cauchy™* (0, ¢;) (2d)
o, ~ Cauchy™ (0, ¢p) (2e)
0y ~ N,(my, C)) (2f)
fort=1,...,7T,and 7 = 1,...,q, where q is the number of harmonics and
0, = (S, 5%, -5 S, ;‘t)T is the (p = 2¢)-dimensional state vector at time ¢. The observation

(2a) and state equations are well-defined in the DLM literature (see, for example, West
and Harrison (1999)). Model is a special case of with time-invariant V, = V = az,
W, =W =02I, F, = F = [1 0 .1 0] and G; = G being a p x p block diagonal
matrix, with j** block w
G; = cos(uy) - sin(wy) for j=1,...,q=p/2, Vte{l,...,T}.
—sin(w;) cos(w;)

G; is a rotation matrix derived so that if W = 0, Sy, ..., S, are exactly the Fourier harmonics
(Sji=ajcos(tw;) + bysin(tw;)) and Sjy, . .., Sy, are the conjugate harmonics, (S}, = —a;sin(tw;) +
bjcos(tw;)), where w; = 27 /s with s being the period.

The variance parameter o2 controls the extent to which the seasonal structure of the model can

evolve through time. If afu = 0, model reduces to a g-harmonic regression that assumes the
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seasonal cycles do not change from year to year. When o2 > 0 the seasonality is no longer strictly
periodic and evolves in time due to the stochastic nature of the evolution equation. Therefore, a
g-harmonic reduced Fourier-form DLM is more flexible than a g-harmonic regression model.

The fully Bayesian specification of the model is completed with independent half-Cauchy pri-
ors on o, and 0, 1.e., Cauchy distributions truncated at zero. The prior specification for the param-
eters of the variance components of the DLM is particularly important in the context of modeling
satellite sensor data when it is desirable to have an automated procedure that requires little to no
tuning to implement the methods for a large number of locations. In particular, the degree to which
seasonality evolves over time (controlled by o,,) as well as the amount of noise (controlled by o)
may vary substantially across locations. Therefore, priors on variances (or standard deviations)
should aim to be (weakly) uninformative.

We choose the half-Cauchy prior on the standard deviations over the more commonly chosen
prior for Bayesian DLLMs, the conditionally conjugate inverse-gamma prior on the variances, due to
the tendency of the inverse-gamma prior to be informative when a hierarchical variance parameter
is small (see, for example, the discussion in Gelman (2006)). If a location exhibits very regular

seasonality across years (i.e. no significant changes in phenological patterns), o2 should be very

2

close to 0, relative to o2, which makes the potential informativity of the inverse-gamma prior
undesirable. We illustrate with a small simulation study, provided in Supplementary Materials, that
our choice of the half-Cauchy prior is less informative and more robust than the inverse-gamma

prior for varying magnitudes of o,.
3.1.2 MCMC Estimation

The joint posterior distribution 7 (6.7, 1 |y1.7), where ¢ = (o, 0y,), of the Bayesian DLM
is not analytically tractable, so we use Markov Chain Monte Carlo (MCMC) simulation to approx-
imate this distribution. Specifically, we use a two step Gibbs sampler to alternate draws of 0.p
and 1. A major motivation for using a two step Gibbs sampler is that, given a draw of 1), a joint
draw of 0,1 can be obtained efficiently from its full conditional distribution (7(60y.7|%, y1.7) =
(07|, y1.1) HtT:_O1 (640,11, %, y1.7)) using Forward Filtering Backward Sampling (FFBS) (Carter
and Kohn|1994; [Frihwirth-Schnatter|1994). The FFBS algorithm can be thought of as a simulation
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version of the smoothing recursions of the Kalman smoother. As a first step, the Kalman filter is
run to obtain the distribution, (0|1, y1.7) (forward filtering) and a draw of @7 is obtained from
(07|, y1.7). The algorithm then moves backward, for ¢t = 7' — 1, ..., 0 sequentially sampling
0, from the conditional distributions, 7(8;|60;.1, %, y1.7) (backward sampling). The distributions
(07|, y1.7) and w(04|0, 41, Y, y1.7), t =T — 1,...,0, are all Gaussian.

Due to the independent prior specification on o, and o, the joint full conditional posterior
distribution of ¥ is (1 |60o.7, y1.7) = 7(0¢|O0.7, Y1.7)7(0w|O0.1, Y1.7). Consequently, we obtain a
joint draw of 1 by independently sampling o, and o,,, conditional on a draw of 8.7, in the second
step of the Gibbs sampler. The full conditional distributions for o, and o,, are not analytically
tractable, so o, and o, are drawn using two independent Metropolis-Hastings (M-H) steps with
inverse-gamma (IG) proposal distributions on the transformed parameters 1,, = o2 and 7. = o2
Refer to Supplementary Materials for details of the M-H steps, including the specific form of the

IG proposal distributions used.

3.2 Summarizing Phenology

Smoothed time series of VIs are obtained as the mean structure of the observation equation
in the reduced Fourier-form DLM. For the purpose of notation, we define this quantity as SV,
t=1,...,T, where SVI, = F0, = 23:1 Sit, fort =1,...,T (i.e. the sum of harmonic terms).
SV1, is a linear function of 8.7, and therefore has a joint posterior distribution, 7(SVI,.7|y,.1),
that is approximated by applying the function to MCMC simulations of 8;.7. The time-specific
medians of a resulting set of M draws of SVI,.p are used to approximate the posterior median of
SVI,.r and credible intervals can be constructed using the appropriate empirical quantiles.

Given the approximate posterior distribution of SVI;.7-, we proceed to estimate the timing of
the phenological events of interest. The fully Bayesian specification and MCMC estimation of the
model provides the ideal medium for developing methods which address two major challenges in
phenological event identification: 1) determining the appropriate number of growing seasons to
summarize when truth is unknown, and 2) providing a measure of uncertainty for the estimated

timing of phenological events. The distributions are obtained by identifying timings from individ-
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ual posterior draws of SVI.p, as follows. For a pre-specified rule or set of conditions defining
one or more phenological events, the timing of an event of interest is defined as the ¢ corresponding
to a SVI, € SVI,.r that satisfies a pre-specified event identification rule (e.g. maxima/minima,
inflection points, etc). Using M posterior draws of SVI;.;-, we obtain M sets of timings of identi-
fied events for each year. The specific form of the identification rule we constructed for the MTCI
application is discussed in Section [3.2.3] but we emphasize here that the methods presented in the
following sections should be applicable to any rule that identifies the timing and magnitude of an

event as the time ¢ and value of SV, that satisfies the rule.
3.2.1 Identifying the Number of Growing Seasons

When the number of growing seasons or cropping cycles is unknown, scientifically motivated
conditions characterizing a secondary or tertiary growing season are usually incorporated into the
identification rule. We provide examples of such conditions within the context of our application
in Section Estimating the timings of events from posterior draws of SVI,.r carries through
uncertainty from the posterior distribution. Due to the randomness of the draws, it is possible for
one draw to satisfy the conditions for multiple growing seasons in a given year, while another draw
may not satisfy the conditions.

We utilize i = 1,..., M sets of identified timings of events from M posterior draws of SVI,.r
to estimate the probability of identifying g growing seasons in year d, p,(g), under a defined iden-
tification rule. Specifically, we estimate py(g) as the proportion of draws which returned timings

of events corresponding to g growing seasons in year d. That is,

M
1 0 .
palg) = i Z I(# of seasons identified from SVIQT in year d = g) 3)
i=1
forg = 0,1,...,G, where GG can be specified as the largest number of growing seasons that can

reasonably be expected to occur in the region. A possible decision on the number of growing

seasons estimated in year d is to choose ny = arg max p,(g). The corresponding value, pg(ng), is
g9

the estimated conditional probability of determining ny growing seasons in year d, given the chosen

identification rule. A value of p,(ng) close to one implies that the identification rule consistently

suggests a single determination for n,, while a low value of py4(n,) implies that it is difficult to
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determine ny4 under the chosen identification rule.
3.2.2 Uncertainty Quantification in Timings

By obtaining M sets of identified timings of events from M posterior simulations of SVI;.p,
point estimates of event timings and corresponding uncertainty intervals can naturally be con-
structed as means/medians and as quantile intervals, respectively, from these simulations. How-
ever, the specific subset of the M sets of event timings used depends on the determination of the

number of growing seasons. Point estimates and uncertainty intervals are obtained as follows:
1. Determine n,; using the methods in Section[3.2.1]

2. Subset the collection of M timings to retain only the M sets of events that were identified

in year d from draws where n, seasons where identified.

3. Point estimates for each event of interest are calculated as the mean or median of M tim-
ings. Corresponding (100 — «))% quantile intervals are constructed as the floor(«/2) and

Mfloor(a/2) values of M ordered timings.

Note that because for each year, d, we only retain the sets of timings obtained from draws where n,4
growing seasons were identified, p,(n4) is an indicator of the reliability of the estimates and their
associated uncertainty intervals, since lower p,(n,) values correspond to lower M ; values (fewer
draws used to estimate event timings). Small p,(n,) indicates that the number of growing seasons
cannot be conclusively determined under the given identification rule, and likewise there is less
certainty in the estimates of the events. We do not claim that the (100 — )% quantile intervals are
true credible intervals, nor do we claim they have (100 — «)% coverage probability. This is because
the intervals depend on the form of the chosen identification rule and its parameters (L and ko, in
our case, defined in[3.2.3)) as well as the decision on the number of growing seasons per year, ng.
They do, however, provide an approximation of the amount of variability in estimates of timings
of phenological events. The variability comes from three sources: uncertainty due to noise and due
to model uncertainty, and variability due to the form of the identification rule (e.g. an estimate of

the timing of the maximum in a curve that plateaus at the peak will have high uncertainty).
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3.2.3 Phenological Event Identification Rule

In this work, we focus on the estimation of the timing of two key phenological events. The
first, onset of greenness or start of season (SOS), marks the beginning of a growing season when
chlorophyll content begins to increase, and the second, peak of greenness (POG), refers to the
timing of peak growth during the growing season. Our proposed identification algorithm is an
adaptation of the methodology of Dash et al. (2010) and Jeganathan et al. (2010a; 2010b). We
define start of season as dominant valleys (local minima) and peak of greenness as dominant peaks
(local maxima). Figure [2| provides an idealized example of identifying phenological events under
this definition.

The identification rule defines multiple growing seasons by requiring that the set of SOS and
POG satisfy two conditions that aim to defend against falsely detecting growing seasons due to
minor fluctuations in seasonal structure, or due to random fluctuations in the draws of SVI;.7.
The first condition implements a minimum growing season duration, L, such that the time between
two sequential SOS (or two sequential POG) must be at least L. The second condition implements
a location dependent, minimum allowable difference in VI between neighboring SOS and POG.
Specifically, it requires that the difference in VI magnitude between an identified SOS and a POG
for a growing season must be larger than ko., where o, is the standard deviation in Equation
and £ is a constant that can be tuned to a value that suggests a reasonable number of growing
seasons per year. In practice, we used the estimated posterior mode of o, for the value of o, in our
identification rule.

The algorithm proceeds by first identifying the set of SV, that correspond to all local minima
and maxima of SVI,.r. Then, each identified minimum and maximum is iteratively checked
against its temporal neighbors to determine if the difference in magnitude between neighboring
minima and maxima is larger than ko, and if the distance between sequentially identified minima
and maxima is at least L units apart. The subset of maxima and minima that satisfy all conditions
are retained as the set of identified starts of season (minima) and peaks of greenness (maxima) for
the location. The timings of the events are the times, ¢, corresponding to the identified SVI;. For

the remainder of the paper, the notations SOS and POG will refer specifically to the timing of start
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of season and peak of greenness, respectively.

4 Application to MTCI Data

The computational effort required for analyzing remote sensing data is not trivial, since time
series can be long and methods should be scalable to large regions. Therefore, all computation-
ally intensive methods, such as MCMC and phenological event detection algorithms, were coded
in C++ and implemented in R (R Core Team| 2015) using the package Rcpp (Eddelbuettel and
Francois 2011).

We implemented the proposed methodology on 1148 locations having natural vegetation as
land cover classification (Evergreen, Semievergreen, Moist Deciduous, Dry Deciduous, Coastal
Vegetation) as specified using the GLC2000 dataset. While there are a considerable number of
agricultural locations (and phenology of agriculture is also of interest), they tend to have much
lower signal-to-noise ratios, so for the sake of illustrating the methodology they were not included
in the current analysis. We apply the Bayesian reduced Fourier-form DLM (2)) separately to each
location. In the following, we discuss the selection of the number of Fourier terms, the construc-
tion and assessment of convergence of the MCMC sampler, and we summarize the phenology for

natural vegetation types over southern India.

4.1 Selection of Fourier Terms

The choice of the ¢ harmonics to include in any Fourier based method is an important decision,
as the harmonics control the smoothness and form of the model fit. For the types of applications
considered in this paper, the ultimate objective is the estimation of phenological events from re-
mote sensing data, for which ground “truth” is not available. This makes the determination of an
appropriate ¢ more complex than simply determining the model which provides the best “fit” to
the data. For example, a model that may be considered a better fit by criteria that minimize error
may be too flexible or “wiggly” to reasonably estimate phenological events.

Jeganathan et al. (2010a; 2010b) applied the discrete Fourier transform to time series of MTCI

(separately for each year) over India and found it necessary to retain the first four harmonics to
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reasonably represent seasonality in single growing season locations, while six harmonics were
necessary in double or triple season locations. We use these scientifically justified results to moti-
vate our model selection. However, reduced Fourier-form DLLMs with non-zero o, are not strictly
periodic and can provide a more flexible representation of seasonality with ¢ harmonics than a
harmonic regression, particularly in locations exhibiting clear inter-annual variability in seasonal-
ity. In many cases, the DLM can provide smoothed representations of the time series with similar
flexibility as a harmonic regression model fitted separately by year, but with fewer harmonics.

We considered DLM with ¢ = 1,...,6 for a diverse sampling of natural vegetation loca-
tions. It was computationally and practically inefficient to attempt to perform model selection for
all considered locations, so we selected a sample of locations representing various natural vegeta-
tion land cover types, as well as varied seasonal structure. We considered at most ¢ = 6 harmonics,
as we assumed that DLM (2)) should not require more harmonics to represent the scientific informa-
tion than the number found to be necessary by the scientists using the Fourier transform. The statis-
tical importance of individual harmonics S; 1.7 on SVI,.r for j = 1,..., ¢ was assessed by com-
puting the proportion of the 7" pointwise 99% credible intervals { (S97%, S59°%) ¢t = 1,...,T}

which did not contain 0 (i.e. S I (0 ¢ (8977, 5995%)) / T) . We assess overall model ade-

quacy using root mean square error (RMSE) calculated as RMSE = \/ ZtT:l(yt — SVI;)?, and
the deviance information criterion (DIC). DIC can be thought of as the Bayesian analog of Akaike
information criterion (AIC), where the number of parameters in AIC is replaced by an estimate of
the effective number of parameters in DIC (Spiegelhalter et al.[2002). Estimates of DIC, RMSE,
and the effective number of parameters for models with ¢ = 2, ..., 6 are presented in Table [I] for
six example locations ranging in degree of inter-annual variability (characterized by the estimated
posterior mode of o, from a model with ¢ = 3 parameters).

In general, we found that the sensitivity of SVI;.; to the included harmonics in the model
depended on the amount of inter-annual variability in seasonality in a location. When seasonality
evolved substantially from year to year, model fits were less sensitive to the choice of included
harmonics. The majority of considered locations of this type only suggested the use of the first

two or three harmonics. Models with two or three harmonics corresponded to low DIC values,
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see for example the values calculated for the bottom three locations included in Table |1} and the
proportion of credible intervals which did not contain O for ¢ > 3 harmonics were generally small
(< 0.2). For these locations, the DLM represents key features in the time series using fewer
harmonics than a non-dynamic model and is less prone to small fluctuations that can occur as an
artifact from including higher order harmonics in the model. Figure 3|illustrates this by comparing
the estimated posterior median SVI;.r from the ¢ = 3 DLM to the estimated mean froma ¢ = 6
harmonic regression (the latter fitted separately to each year of data).

For locations which exhibit little change in seasonality across years, the DLM provided a simi-
lar fit to a g-harmonic regression model and therefore, the choice of included harmonics had higher
influence on SVI,.. We found that, in general, the proportion of credible intervals not containing
zero was small for harmonics beyond the first three in the ¢ = 6 DLM for the majority of consid-
ered locations of this type, with a few locations suggesting the inclusion of the 4 harmonic. A
similar conclusion was drawn comparing DIC across models, where for most considered locations
the decrease in DIC from ¢ = 3 to ¢ = 4 harmonics was small (see for example the first two
locations in Table [I)). However, for a small number of considered locations, there was a moderate
decrease in DIC from ¢ = 3 to ¢ = 4 harmonics as exhibited in the third location included in Table
For these locations, we ultimately determined that it was preferable to fit a model with slightly
fewer (¢ = 3) harmonics than a larger number, as including additional harmonic terms does not
necessarily increase the flexibility of the DLM. In fact, a model with fewer harmonics will often be
more flexible than a model including higher order harmonics. This is illustrated by the fact that the
effective number of parameters may decrease, and/or RMSE may increase, when more parameters
are added to the model. In these cases, the model with a smaller number of harmonics is more
flexible since in the DLLM a larger evolution variance allows the DLM to accommodate deviations
away from a strictly periodic cycle. In Table |1} the decrease in effective number of parameters can
be seen in the first three locations from ¢ = 2 to ¢ = 3, and the fourth location illustrates that
RMSE can increase as harmonics are added to the model.

Figure 4| compares the posterior median of SVI;.; (top) and estimated timings of events and

uncertainty intervals (bottom) for models with ¢ = 2, ..., 6 applied to the two locations in Figure
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The estimated timings of events, in particular, were fairly robust to the choice of ¢, as demon-
strated by the similarity in estimates for ¢ > 2 in both locations. In summary, using the reduced
Fourier-form DLM we found that we were reasonably able to capture seasonality and estimate
SOS and POG over the majority of locations using the first ¢ = 3 harmonics. While we could have
considered further tuning the number of harmonics for each location, the decision to fit a model
with the same number of harmonics to all locations is motivated by finding a parsimonious model

that allows an automatic implementation for a large number of locations.

4.2 Convergence and Effective Size

For each natural vegetation grid cell, we estimated the reduced Fourier-form model with ¢ = 3
harmonics, s = 46, ¢; = 0.1, and ¢, = 0.1, initially running two MCMC chains, in parallel,
for 10,000 iterations. Computation time for a complete analysis (from data to phenological event
summaries) for one location took ~ 1.5 min on a 2.6 GHz Intel Core i5 processor. Convergence
of MCMC algorithm was assessed (results not shown) using trace plots and ergodic means for
a sample of locations, and by monitoring the Gelman-Rubin diagnostic for all locations since a
visual analysis of convergence for over 1,000 locations was unrealistic.

For locations exhibiting clear variability in seasonality, the chains appeared to converge within
1,000 iterations, but in locations with little variability, the chains tended to take longer to converge
due to small values causing poor mixing in the chains of o,. For these locations, an additional
10,000 iterations were sampled in each chain, to better sample the posterior. The chains were then
thinned after burn-in to retain 4,000 samples for estimating the timings of SOS and POG. Inference
about summaries of POG and SOS are of primary interest, so autocorrelation in posterior samples
of POG and SOS calculated from M draws of SVI,.; was also investigated. The effective sample
sizes for POG and SOS were calculated using the coda package in R (Plummer et al.|[2006)), and

found to be nearly equal to M, suggesting little to no autocorrelation in samples of POG and SOS.

4.3 Summary of Findings

Several values of L and k were considered for the identification rule. We ultimately summa-

rized results using L = 8 (suggesting that the duration of a growing season must be at least ~ two
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months), and k = 3 (suggesting that difference in MTCI value between SOS and peak growth must
be at least three times more than the estimated standard deviation of the observation error). The
values were chosen based on visual assessment for the purpose of illustrating the methodology, but
could easily be tuned further given scientific information.

To determine the number of growing seasons per year, we computed the estimates of the prob-
abilities in (3) for g = 0,...,3 using 4000 draws from the posterior distribution at each natural
vegetation location. The number of POG’s identified in one year defines the number of growing

seasons, so under our rule the probability in (3)) has the specific form

M
1 .
pal9) = 37 > " I(#of POG" in year d = g) 4)
=1

Maps of the estimated probability for each location that two or more growing seasons (py(2) +
pa(3)) were identified by the algorithm for years d = 2004 - 2006 are shown in Figure [5| Inter-
estingly, the probability of identifying two or more growing seasons appeared to increase between
2004 and 2005 in the western side of the region. This change can be seen in the time series at many
locations in this area, suggesting a shift occurred in the phenology between 2004 and 2005. It is
unclear whether this change was due to anthropogenic activity or natural occurring events.
Conditional on the number of growing seasons per year, point estimates of POG and SOS
were calculated as the median timing of the ¢ = 1,..., M} posterior values of POG?, SOS® for
each year, d, and uncertainty in the estimates is expressed using 90% quantile intervals. Figure [0
presents posterior median estimates and 95% credible intervals for SV1;.7, as well as point esti-
mates and corresponding uncertainty intervals of identified SOS and POG for the two locations in
Figure |1} Estimates and uncertainty for SOS in terms of days for these two locations are given in
Table 2] A composite is represented in dates as 8-day intervals beginning January 1 (e.g. Com-
posite number 1 corresponds to January 1-8). The Evergreen location is an example of a location
exhibiting very little inter-annual variability, with consistent estimates of SOS from 2003-2007,
while the Semievergreen location shows much more variable estimates and changes in the number
of growing seasons across years. Two seasons were identified in 2003 and 2004, while only one

growing season is identified in 2005-2007. Uncertainty in POG estimates increase dramatically
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in 2005-2007 as the seasonal structures become plateau-like, making POG difficult to identify
precisely.

Averaging across estimates obtained from implementing the methodology on each included
location, first SOS in 2005 averaged 5.7 days earlier than in 2004, but in 2006 averaged 9.8 days
later than in 2005. These differences are not outside the estimated uncertainty in estimates of SOS
and POG, however. The majority of SOS estimates in 2004-2006 had interval widths ranging from
16 to 80 days and the majority of estimated POG had interval widths ranging from 24 to 160 days.
Note that since the temporal unit of the data is an 8-day composite, the smallest possible interval
width is 8 days. In general, SOS was more precisely estimated than POG. Approximately 80%
of estimated SOS had a 90% interval width of 48 days or less, while only about 65% of POG

estimates had intervals with widths at least that small.

5 Conclusions and Future Work

The approach presented in this paper based on a Bayesian analysis of DLMs provides a natural
environment to model and extract phenological patterns from time series of satellite derived VI
data, and is a flexible extension of currently applied methods. The methodology is also extendable
to other types of satellite sensor data, when the objective is to characterize growth cycles or features
of growth cycles. The recursive estimation procedures of Bayesian DLMs using the Kalman Filter
and FFBS easily handle missing values, even when data are missing for sequential time points. This
eliminates the need to preprocess and impute missing values, and incorporates time dependence to
better inform the distribution of states at times when data are missing. Using MCMC simulation
of the model, we developed methods to assess the number of growing seasons per year using
estimated probabilities and additionally were able to provide uncertainty intervals with estimates
of the timings of phenological events, which is novel in this area to our knowledge.

The model utilized in this paper can be extended to allow for more complex modeling. We
have assumed a lack of systematic long term trend across years; a constant evolution of both the
state and observation equations (by imposing constant V' = ¢2 and constant W = ¢2I); and all

harmonics included in the model evolve with the same variance, o2. The first assumption can be
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easily relaxed by adding a either a time-varying or constant mean/trend component to the model.
Relaxing the assumption of constant V' to time-varying V; may be beneficial since time series of
MTCI data seem to exhibit higher variability, or noise, around POG, with inter-annual changes
in the magnitude of this variation, particularly in locations with a marked shift in the phenology.
This suggests possible dynamic evolution of the observation equation variance. Investigating more
flexible specifications of W} is also of interest.

In this work, we have only considered the temporal dependence in the VIs. This approach is
massively scalable through embarrassingly parallel computing, making it feasible to create global
scale products summarizing the historical evolution of life cycles in vegetated land surfaces. A
future direction of this work is to construct a model that incorporates the spatial dependence be-
tween locations. While we do not expect that a fully spatio-temporal model will substantially
affect the point estimates of the event timings, it may reduce the uncertainty in these estimates.
Specific types of models that may be considered include the spatio-temporal dynamic models of
Gamerman (2010), [Cressie and Wikle| (2011), Banerjee et al. (2014), and |Geltand and Banerjee
(2017). Several of these rely on basis function approximations for dimension reduction, with sub-
sequent modeling of the basis function coefficients. In phenology, challenges include potentially
abrupt land-use differences (with associated phenology differences) both spatially and over time,
contributing to substantial space-time non-stationarity. We had static land-use data (a snap-shot
in time), however MTCI time series provide evidence of temporal land-use changes in some lo-
cations. The latter are reflected in individual locations’ temporal trajectories, but possibly not in
their spatial neighbors’ trajectories. Due to the spatial land-use complexities, and our primary
goal being to identify the timing of phenological events (not spatial prediction), we used only the
location-specific temporal trajectory of the MTCI data for each location’s SOS and POG timing
estimates. In the future, dynamic land-use could be incorporated in the model as an explanatory
variable in a mixture-type space-time mean structure, and in a non-stationary spatial covariance
structure (Schmidt et al.|(2011)), although at substantially increased computational cost. We con-
tinue to study land-use change estimation in a complementary project. While we concentrated on

temporal uncertainty only in this paper, we recognize the importance of spatial structure in un-
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certainty assessment, and the need for continued work to address the complexities of space-time

non-stationarity in phenology.
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(b) Tropical Semievergreen
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Figure 1: Time series of MTCI for two sample pixels. (a) is an example of a location exhibiting

little change in seasonality, while (b) shows inter-annual variability in seasonality over time.
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Figure 2: Example representation of idealistic identification of onsets and peaks of greenness

from smoothed time series of satellite sensor data. The algorithm should be able to distinguish

between a secondary growing season (exhibited in the agricultural series) and a residual peak due

to fluctuations in the time series (like the secondary peak in the natural vegetation series.)
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Location Metric q=2 qg=3 q=14 q=>5 q==6
Moist DIC | -147.86 -165.23 -167.31 -167.22 -162.78
Deciduous RMSE 2.79 2.93 2.96 2.97 2.96
0w = 0.0025 | Eff. Params 49.06 19.30 24.45 23.92 27.50
Coastal DIC | -136.53 -152.06 -153.31 -153.23 -151.89
Vegetation RMSE 3.21 3.20 3.17 3.22 3.20
0w = 0.0027 | Eff. Params 31.66 23.02 21.56 24.46 27.10
Tropical DIC | -157.34 -176.95 -193.35 -194.89 -191.81
Evergreen RMSE 5.95 591 5.88 5.88 5.89
0 = 0.004 Eff. Params 16.69 12.88 17.30 24.08 23.67
Moist DIC | -72.76 -65.23 -45.08 -21.53 17.36
Deciduous RMSE 2.74 2.74 2.77 2.75 2.75
0w = 0.032 Eff. Params 46.73 50.63 50.88 50.45 33.40
Tropical DIC | -217.46 -214.63 -213.87 -205.48 -194.74
Semievergreen RMSE 4.06 4.02 4.09 4.11 4.10
0y = 0.032 Eff. Params 60.60 61.74 65.44 70.90 75.06
Tropical DIC | -270.12 -270.65 -267.47 -259.85 -249.62
Semievergreen RMSE 1.39 1.34 1.34 1.32 1.31
0w = 0.036 Eff. Params 68.23 74.59 76.11 80.52 86.86

Table 1: Deviance Information Criterion (DIC) , root mean squared error (RMSE) and effective
number of parameters (Eff. Param) calculated for models with ¢ = 2, ..., 6 included harmonics
for six example locations. Three locations (top) correspond to time series where there is very
little inter-annual variability, quantified by estimated o,, from the model with ¢ = 3 parameters.
The other three locations (bottom) have relatively large estimated o,, from the ¢ = 3 model,
representing time series with substantial temporal variability. The two locations highlighted in

bold are the two locations used throughout the manuscript to illustrate the methodology.
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Figure 3: Smoothed curves are compared from a ¢ = 3 reduced Fourier-form DLM (dashed) and
a ¢ = 6 harmonic regression fit separately to each year (solid). The curves have similar forms, but

the non-dynamic model exhibits undesirable artifacts from the higher order harmonics, (e.g. year

2005).
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Figure 4: Plots (a)-(b) show posterior median estimates of SVI,.; for DLMs with ¢ = 2,...,6 for
the two locations in Figure[T] respectively. Plots (c)-(d) show the estimates of POG and SOS with
uncertainty interval widths shown as horizontal bars, for each of the six models. Only two years

(2004 - 2005) are shown for clarity.
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Figure 5: Maps of the probability of identifying more than one growing season for years 2004 -

2006, estimated for each considered natural vegetation location.
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Figure 6: Example of phenological variable estimation for the two sample locations in Figure [I]
Posterior median estimates of SVI,.; (dashed) with 95% credible intervals (dotted) are plotted.
The vertical black lines represent the posterior median estimates of POG and SOS, with the width
of their respective 90% intervals visualized with vertical rectangles (grey). Plot (a) illustrates a lo-
cation with one growing season identified per year, while plot (b) shows a location with substantial

inter-annual seasonal variability.
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(a) Evergreen

(b) Semievergreen

Year | Estimate Interval Estimate Interval
2003 [ Jul 12-19 Jul 04 - Aug 04 Jun 10 - 17 May 17 - Jul 03
Dec 03 - 10 Nov 17 - Jan 03
2004 | Jul 11-18 Jun25-Jul 26 | Jul 27 - Aug03 Jul 11 - Aug 03
Oct 31 -Nov 07 Oct 23 - Nov 23
2005 | Jul04 - 11  Jun 26 - Jul 27 Nov 01 - 08 Oct 16 - Nov 24
2006 | Jul 12-19  Jun 04 - Jul 27 Nov 17 - 24 Jul 28 - Dec 02
2007 | Jul 12-19  Jun 04 - Jul 27 Oct 16 - 23 Aug 05 - Nov 16

Table 2: Posterior estimates, 90% intervals and interval widths for POG in days for years 2003

- 2007 for the two locations in Figure [6] Posterior estimates are listed as the 8-days correspond-

ing to estimated composite number, and intervals are converted to days by listing the first day

corresponding to the lower bound composite and the last day of the upper bound composite.
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