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ABSTRACT
Satellite images are widely used for crop yield estimation, but their coarse
spatial resolution means that they often fail to provide detailed information
at the eld scale. Recently, a new generation of high-resolution satellites
and CubeSat platforms has been launched. In this study, satellite data
sources including PlanetScope and Sentinel-2 were combined with
topographic and climatic variables, and the improvement in wheat yield
estimation was evaluated. Wheat yield data from a combine harvester
were used to train and validate a yield estimation model based on
random forest regression. Nine vegetation indices (NDVI, GNDVI, MSAVI2,
MTVI2, MTCI, reNDVI, SAVI, EVI and WDVI) and spectral bands were
tested. During the model training, the Sentinel-2 data realized a slightly
higher estimation accuracy than the PlanetScope data. However,
combining environmental data with the PlanetScope data realized
the highest estimation accuracy. For the validated models, adding the
topographic and climatic datasets to the satellite data sources improved
the estimation accuracy, and the results were slightly better with the
Sentinel-2 data than with the PlanetScope data. Observation data of
the milk and dough stages provided the highest estimation accuracy of
the wheat yield at 210–225 days after sowing.
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1. Introduction

Wheat is a major food source and the world’s fth-largest crop by consumption (Igrejas and
Branlard 2020). In 2017, wheat was cultivated over an area of more than 220 million ha, and 757
million tons was produced, which is third after maize and rice among cereals. Early prediction
of the crop yield is becoming increasingly important owing to the inconsistent conditions around
the world to ensure food security and farmers’ revenue (Rosegrant and Cline 2003; Ittersum 2016;
Balogh and Novák 2020). The creation of site-specic management strategies can be aided by the
identication of yield-limiting variables for reliable yield estimation. Thus, obtaining a high-
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resolution estimation of the crop yield prior to the harvest is a key crop management tool to ensure
agricultural, environmental, and socioeconomic sustainability.

Earth observation (EO) refers to satellite-based technologies that are used to collect information
on Earth. Such technologies can be used to track crop development and yields, which can help guide
the development of site-specic management techniques for smart farming (Hunt et al. 2019). Sev-
eral EO systems have been developed to monitor crops and estimate crop yields, such as the
Advanced Very High-Resolution Radiometer (AVHRR) and Moderate Resolution Imaging Spec-
troradiometer. However, the coarse spatial resolution means that such data often fail to provide
details at the eld scale.

Recently, satellites have been launched that can facilitate improved estimation accuracy of the
crop yield. Various optical sensors have been explored for their potential application to estimating
crop yields. Sentinel-2 was launched in 2015 by the European Space Agency, and the spatial and
spectral resolutions of its images support the monitoring of vegetation in various growth stages
and provide new opportunities for yield estimation and crop monitoring. In addition, CubeSat con-
stellations such as the commercially available PlanetScope now oer data with a high combination
of temporal and spatial resolutions.

Several studies have considered using high-resolution satellite imagery to estimate the wheat
yield at the eld scale. Hunt et al. (2019) used Sentinel-2 and random forest regression (RFR) to
successfully estimate the wheat yield in the United Kingdom at a resolution of 10 m. They found
that images obtained in June provided an accurate estimation of the yield and that collecting Sen-
tinel-2 data during the growing season improved the estimation accuracy. Their results indicated
that the estimation accuracy could be further improved by combining the satellite imagery with
environmental data. Zhao et al. (2020) combined Sentinel-2 data and a crop model to estimate
the wheat yield in northeastern Australia. They considered potential vegetation indices (VIs) related
to the canopy structure and chlorophyl derived from the Sentinel-2 images. Their results showed
that the red edge chlorophyl index (CI) (R2 = 0.76, root mean square error (RMSE) = 0.88 t/ha)
and optimized soil-adjusted vegetation index (OSAVI) (R2 = 0.74, RMSE = 0.91 t/ha) provided
the best estimation accuracy. In addition, the estimation accuracy increased when both structural
and chlorophyl indices were combined (R2 = 0.91 and RMSE = 0.54 t/ha).

Jeong et al. (2016) evaluated the eectiveness of RFR at estimating the yield of staple crops.
Among various machine-learning (ML) techniques, random forest has been shown to be well suited
to estimating crop yields (Rehfeldt et al. 2012; Singh, Sihag, and Singh 2017; Han et al. 2020; Maya
Gopal and Bhargavi 2019). Despite the availability of Sentinel-2 and CubeSat data, their eciency
has not fully explored and compared, and further research is necessary. Only a few studies have
focused on estimating the wheat yield based on satellite data and measurements from global posi-
tioning system (GPS) combine harvesters. Manivasagam et al. (2021) combined Sentinel-2 and Pla-
netScope image data with the Simple Algorithm for Yield Estimate Crop Model, which they applied
to estimating the wheat yield in Israel. Their results indicated that the leaf area index (LAI) derived
from both PlanetScope and Sentinel-2 data provided a higher yield estimation accuracy (RMSE =
69 g/m2) than that of LAI derived from Sentinel-2 alone (RMSE = 88 g/m2). However, no studies
have directly assessed the potential of Sentinel-2 and PlanetScope image data at estimating the
wheat yield at the eld scale with combine harvesters. This paper demonstrates a new method of
integrating wheat grain yield, global positioning systems, combine harvester data, climate, topo-
graphic variables, and high spatial–temporal resolution of satellite imagery.

In this study, we evaluated the eectiveness of PlanetScope and Sentinel-2 image data at wheat
yield estimation and the inuence of environmental variables on the estimation accuracy. The next-
generation instrument PlanetScope SuperDove (PSB.SD) with eight spectral bands was used for the
rst time for wheat yield estimation. Seven wheat elds were monitored with PlanetScope and Sen-
tinel-2, and four VIs were derived to describe the phenological stages in 2020–2021. Dierent com-
binations of the satellite data, VIs, and environmental data (e.g. topography and climate) were
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applied to an RFR model, and the yield estimation accuracy was evaluated. The study was designed
to answer four key questions:

(1) How do the spatial and temporal resolutions of PlanetScope and Sentinel-2 aect the yield esti-
mation accuracy?

(2) Does the addition of VIs contribute extra information to the estimation model?
(3) How does combining the PlanetScope and Sentinel-2 data with environmental data aect the

estimation accuracy?
(4) Which phenological stage and VI provide an accurate estimation of the wheat yield?

2. Materials and methods

2.1. Study area

The elds considered in this study are located in Mezhegyes experimental farm, Mezhegyes Town,
Békés County, of southeast Hungary (46°19′ N, 20°49′ E), which is near the Romanian border
(Figure 1). The town has a population of 4950 people and a total administrative area of 15544
ha. Four elds were chosen for analysis. Two elds were used to train the model, and the other
two were used for validation. Wheat is the most widely grown crop and accounts for 1223 ha of
the total area of the farm. The average eld size is 30 ha with a maximum of 100 ha. The main
soil type is chernozem, which is suitable for growing crops owing to the high levels of lime particu-
larly cereals and oilseeds. In 2021, the average annual rainfall was 645 mm (428.9 mm in-crop). The
average annual temperature in the study area ranges from 7.8°C to 11.1°C.

2.2. Field data

The ground truth data on the wheat yield were obtained between June 29 and July 24, 2021, by using
a John Deere W650i combine harvester equipped with a GPS and yield monitoring system. Wheat

Figure 1. Study site. The RGB true color composite image was acquired by PlanetScope on June 28, 2021.
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seeds were sown in November and harvested in July. The average wheat yield was ∼4.5–5 t/ha, and
the maximum yield was ∼10 t/ha. After the monitoring data were collected, they were ltered, edi-
ted, and converted to yield maps. The process of cleaning inaccurate grain yield includes determin-
ing combine delay times and removing ‘overlapping’ data, especially near the end of rows. In QGIS,
all GPS crop yield points obtained from the combine harvester were uploaded as shapeles. As the
information was organized in attribute tables, it was easier to process and lter. First, zero and near-
zero yield points were removed from the attribute table. Second, using the combine harvester’s
header, we selected homogeneous yield points with the same distance and swath width. Sub-
sequently, the edge of the elds was buered to avoid mixed pixels. The raw yield maps were
exported as shapeles (.shp), which can be manipulated in a geographic information system. Com-
mercial yield monitoring systems are prone to enormous errors typically caused by the incorrect
calibration of multiple machines, incorrect setting of the header height and cut width, and incorrect
adjustment of the speed and travel distance (Kharel et al. 2019; Matcham et al. 2022). Data points
that did not have x and y GPS coordinates were deleted. Finally, the point vector layer was con-
verted in QGIS to a raster grid by using inverse distance weighted interpolation to pixel sizes of
3 and 10 m to match the spatial resolutions of PlanetScope and Sentinel-2, respectively.

2.3. Remote sensing data

2.3.1. Planetscope
We downloaded 72 cloud-free PlanetScope (PS) level-3 surface reectance products collected
between November 2020 and July 2021 from the Planet Explorer website (https://www.planet.
com/explorer/ accessed on August 25, 2022). The spectral data were obtained from PSB.SD,
which has eight spectral bands (i.e. red edge, red, green, green I, yellow, blue, coastal blue, and
near-infrared) with a pixel size of 3 m and near-daily global time revisit. The orthorectied product
was corrected in terms of geometry, radiometry, and cartography for surface reection and was pro-
jected to a UTM/WGS84 cartographic map (Planet Team 2017). The images were harmonized with
Sentinel-2 to ensure consistent radiometry. We performed it during the ordering of PS scenes
through the ‘harmonize’ imagery option available in Planet Explorer. There are three generations
of Doves operated by Planet (Dove Classics, Dove-R, SuperDove) with varying spectral responses.
Using the ‘harmonize’ option provides data that is approximately the same spectral response as Sen-
tinel-2. Harmonization is applied to all Doves and allows all sensors to be consistent and compatible
with each other. The rst coastal blue band was eliminated. Finally, the VIs and phenological stages
were derived by stacking the PS bands together as layers. Table 1 lists the PS data used in this study.

2.3.2. Sentinel-2
We downloaded 25 cloud-free Sentinel-2 (S2) level-2A satellite images from the Copernicus Open
Access Hub website (https://scihub.copernicus.eu/dhus/#/home accessed on 5 September 2022)
covering the study period. A level-2A product provides images of the bottom of atmosphere reec-
tance and covers the visible and near-infrared spectral ranges derived from associated level-1C data-
sets. S2 A and B are equipped with multispectral instruments that provide advanced crop

Table 1. Description of PS data used in this study.

Bands Central Wavelength (nm) Spatial Resolution (m)

Band 2 - Blue 490 (50) 3
Band 3 - Green I 531 (36) 3
Band 4 - Green 565 (36) 3
Band 5 - Yellow 610 (20) 3
Band 6 - Red 665 (31) 3
Band 7 - Red Edge 705 (15) 3
Band 8 - NIR 865 (40) 3

850 N. FARMONOV ET AL.



monitoring at the eld, regional, and global scales with various spatial resolutions (10, 20, and 60 m)
(Vijayasekaran 2019). Bands with resolutions of 20 and 60 m were resampled to 10 m by using near-
est-neighbor interpolation in the Sentinel Applications Platform (SNAP) version 8.0 (https://step.
esa.int accessed on 1 September, 2021) to ensure that all channels were concatenated with aligned
pixels. All bands were stacked as layers into one le to produce a time series of S2 images. Table 2
explains the S2 bands that were used in this study.

2.4. Vegetation indices

Table 3 lists the nine VIs used in this study, which has been used in previous studies to estimate the
wheat yield (Han et al. 2020; Segarra, Luis Araus, andKefauver 2022; Zhao et al. 2020). The normalized
dierence vegetation index (NDVI) (Tucker 1979) and green normalized dierence vegetation index
(GNDVI) (Gitelson, Kaufman, and Merzlyak 1996) are widely used to determine the amounts of
water and nitrogen taken up by crops (Tucker 1979; Shanahan et al. 2001; Jackson 2004). Gitelson,
Kaufman, and Merzlyak (1996) developed the GNDVI to address saturation issues observed with
NDVI for some vegetation types in later growth stages. Soil adjusted vegetation index (SAVI) and
the modied soil-adjusted vegetation index (MSAVI2) is used in the early stages of crop growth to
track emerging seedlings. It reduces the impact of bare soil, so it is ideal for early growth stages such
as crop emergence, for monitoring crops that do not cover the soil even in the most advanced growth
stage, and forwoody crops (Qi et al. 1994). Themodied triangular vegetation index (MTVI2) is nearly
equivalent to MTVI but is considered a better estimator of green LAI. It accounts for the soil back-
ground signature while retaining sensitivity to LAI and robustness against the inuence of chlorophyl
(Haboudane 2004). The MERIS terrestrial chlorophyl index (MTCI) can be used in precision agricul-
ture because it ismore sensitive to high chlorophyl content (Dash andCurran 2007). Red edge normal-
ized dierence vegetation index (reNDVI) measures the sensitivity of canopy foliage, gap fraction, and
senescence to altering its red edge (Gitelson and Merzlyak 1994). Enhanced vegetation index (EVI) is
eective to mitigate saturation because it takes into account some atmospheric conditions and canopy
background noise, particularly in areas with dense vegetation. Weighted dierence vegetation index
(WDVI) is suitable for the correction of soil background and is very sensitive to atmospheric variations.

The crop phenology is dynamic during the growing season (Ruml and Vulic 2005). Twice a
month, the four wheat elds were observed for changes in phenology, and the transition dates
were recorded. The eld measurements and satellite-derived spectral reectance patterns were com-
pared. NDVI, GNDVI, MSAVI2, MTVI2, MTCI, reNDVI, SAVI, EVI and WDVI and were ana-
lyzed to identify phenological patterns. MTVI2 was used to measure and assess the leaf
chlorophyl content at the canopy scale owing to its insensitivity to the LAI. All satellite images
were used to extract time series of the VIs. The BBCH-scale was used to distinguish the phenolo-
gical development and growth stages of the wheat, as described in Table 6 (Lancashire et al. 1991).
Points were obtained by using the random points inside the polygon tool in QGIS 3.16. The values

Table 2. Description of S2 bands used in this study.

Bands Central Wavelength (nm) Spatial Resolution (m)

Band 2 - Blue 490 nm 10 m
Band 3 - Green 560 nm 10 m
Band 4 - Red 665 nm 10 m
Band 5 - Vegetation red edge 705 nm 20 m
Band 6 - Vegetation red edge 740 nm 20 m
Band 7 - Vegetation red edge 783 nm 20 m
Band 8 - NIR 842 nm 10 m
Band 8A - Narrow NIR 865 nm 20 m
Band 11 - SWIR 1610 nm 20 m
Band 12 - SWIR 2190 nm 20 m
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of the VIs were extracted from the wheat elds by using the point sampling tool and open-source
plugin in QGIS to determine the crop phenology and transition dates. The 85 points that were gen-
erated randomly in QGIS for each multi-temporal VIs inside wheat eld boundaries were then aver-
aged and distributed over the wheat growth stages to create phenological phases. The crop ages in
the satellite images were calculated according to days after sowing (DAS).

2.5. Environmental data

2.5.1. Climatic variables
Monthly (1/24°, 4 km) gridded TerraClimate datasets for the total precipitation (mm) and maximum
temperature (°C) were downloaded from the Google Earth Engine cloud platform (Abatzoglou et al.
2018). TerraClimate incorporates a monthly climate and climatic water balance covering global ter-
restrial surfaces from the University of California Merced as well as various high- and coarse-resol-
ution climatological datasets (e.g. WorldClim, Japanese 55-year Reanalysis (JRA55)). Monthly data
for June 2021 were obtained that had a relatively high spatial resolution when compared to other cli-
matic datasets. The high spatial distribution allowed us to detect spatial variations in the rainfall and
temperature across the study area. The datasets were fed into the estimationmodel as an input feature.

2.5.2. Topographic variables
A high-accuracy LiDAR digital terrain model (DTM) with a spatial resolution of 5 cm was obtained for
the study area. The DTM was derived from airborne radar data collected in 2019. The data were
resampled by using the cubic convolutionmethod in the software ERDAS IMAGINE2020 to resolutions
of 3 and 10 m tomatch the spatial resolutions of PS and S2, respectively. The rescaled datasets were used
to calculate the secondary variables, slope, and aspect as input parameters for the estimation model.

2.6. Estimation model based on RFR

RFR is an ensemble learning method that is based on the decision tree algorithm. It can be used for
both classication and regression tasks, and it has been applied to crop yield estimation (Smith,
Ganesh, and Liu 2013). In RFR, the model builds tree predictors associated with dierent random
vector values sampled independently. The model constructs decor-related decision trees during the
training phase, and the overall model output is obtained by averaging the output values of all

Table 3. Multispectral VIs were used in this study.

Index Equation References

Normalized dierence vegetation index
(NDVI)

NIR− Red
NIR+ Red

(Rouse et al. 1973)

Green normalized dierence vegetation
index (GNDVI)

NIR− Green
NIR+ Green

(Gitelson, Kaufman, and
Merzlyak 1996)

Modied soil-adjusted vegetation index
(MSAVI2) (NIR+ 1)− 1

2

 
[(2NIR+ 1)− 8(NIR− R)]1/2

(Qi et al. 1994).

Modied triangular vegetation index
(MTVI2)

1.5[1.2(NIR− Green)− 2.5(Red − Green)]
(2NIR+ 1)2 − 6NIR− 5


Red

√( )
− 0.5

(Haboudane 2004).

MERIS terrestrial chlorophyl index
(MTCI)

NIR− RE
RE − RED

(Dash and Curran 2007)

Red edge normalized dierence vegetation
index (reNDVI)

NIR− RE
NIR+ RE

(Gitelson and Merzlyak 1994)

Soil adjusted vegetation index (SAVI) (NIR− RED)
(NIR+ RED+ L)

∗(1+ L)
(Huete 1988)

Enhanced vegetation index (EVI) 2.5∗(NIR− RED)
(NIR+ 6∗RED− 7∗BLUE + 1)

(Huete et al. 2002)

Weighted dierence vegetation index
(WDVI)

NIR− S∗RED where: Sis the slope of the soil line (Clevers 1989)
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individual trees. The learner bagging algorithm is used to train any single tree (Breiman 2001). RFR
combines the estimations from multiple ML algorithms to improve the accuracy over that of a
single model, which is the main benet compared with decision trees (Fawagreh, Gaber, and
Elyan 2014).

The RFR model was implemented by using the randomForest package in R software (Liaw and
Wiener 2002). In this study, the default parameters of the random forest ntree and mtry were used
for the regression analysis. The number of trees produced in the regression forest (i.e. ntree) was
set at 500, and the number of distinct predictors sampled at each node (i.e. mtry) was set to a
default of the number of predictors (i.e. 203) divided by 3. Firstly, four wheat elds were selected
for analysis which has GPS combine harvester yield data. We used two merged wheat parcels for
model development by dividing 70% for training and 30% for the test, respectively. Furthermore,
owing the best-performed regression models were applied for validation parcels to verify the
result that has completely independent datasets which included the two elds. Several combi-
nations of variables were applied to the RFR model to determine the best estimation accuracy
at the eld level. Table 4 presents the datasets used as independent variables during the model
training to estimate eld-scale variability of the wheat yield. Table 5 presents the layer combi-
nations used to examine how dierent combinations of data and temporal coverages aected
the estimation accuracy.

The yields estimated from the training and validation datasets were compared to the observed
yields collected by the combine harvester, and the residuals were calculated. We calculated the

Table 4. Independent variables were used to build the RFR model.

Variable type Dataset Pixel size Temporal resolution

PlanetScope Dove PSB.SD bands: 2, 3, 4, 5, 6, 7, 8 3m November 6, 2020 -
July 31, 2021

Sentinel-2 Sentinel-2 Level 2A bands: 2, 3, 4, 5, 6, 7, 8, 8a,
11, 12

10 m November 6, 2020 –
July 30, 2021

Vegetation indices NDVI, GNDVI, MSAVI2, MTVI2, MTCI, reNDVI,
SAVI, EVI and WDVI derived from PlanetScope
and Sentinel-2 images

3, 10 m November 2020 –
July 2021

Environmental Precipitation TerraClimate: monthly accumulated
precipitation (mm)

∼4km November 2020 –
July 2021

Temperature TerraClimate: monthly accumulated maximum
temperature (°C)

DTM Airborne LiDAR 5cm (resampled to
3 and 10 m)

Created using the
data acquired in
2019

Aspect Calculated using the LiDAR DTM
Slope Calculated using the LiDAR DTM

Table 5. Data combinations applied to the RFR model.

Integration Data layers

Question 1: Sensor comparison
PS PlanetScope bands
S2 Sentinel-2 bands
Question 2: Testing VIs individually and in combination with spectral bands of PS and S2
VI VIs extracted from PS and S2
PS-VI PlanetScope + VIs
S2-VI Sentinel-2 + VIs
Question 3 Combination of the Topographic and climate data to the best-performed integrated Spectral bands and VIs
PS-VI – Topographic
PS-VI - Topographic-Climate

PlanetScope + VIs + DTM, Aspect, Slope
PlanetScope + VIs + DTM + Aspect + Slope + Precipitation + Temperature

S2-VI – Topographic
S2-VI - Topographic-Climate

Sentinel-2 + VIs + DTM, Aspect, Slope
Sentinel-2 + VIs + DTM + Aspect + Slope + Precipitation + Temperature

Question 4: Identication of best-performed single VIs and growing stage
PS NDVI, GNDVI, MSAVI2, MTVI2, MTCI, reNDVI, SAVI, EVI and WDVI
S2 NDVI, GNDVI, MSAVI2, MTVI2, MTCI, reNDVI, SAVI, EVI and WDVI
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coecient of determination (R2) and RMSE as evaluation metrics for the estimation accuracy
of the model:

R2 = 1− RSS
TSS

. (1)

RMSE =

∑n
i=1 (yi − ŷi)

2

n

√

. (2)

3. Results

3.1. Phenology monitoring

The four VIs were used to describe the wheat growth stages from sowing to harvest. Identifying the
growth stage that most aects the potential yield can help improve the eectiveness of management
actions. For instance, the yield is aected depending on which growth stage is subjected to actions
such as fertilization or pesticides or stresses such as frost, hail, low soil moisture, and plant diseases.
Figure 2 illustrates the dierent temporal patterns acquired from the satellite data. The VIs derived
from PS and S2 data demonstrated nearly identical and consistent temporal patterns. All VIs
showed their lowest values at the beginning of the vegetative period. The VIs began to steadily
increase after a few weeks (30–73 DAS), which indicated the initiation of vegetative stages (e.g.
leaf development) and signicant growth. The wheat growth peaked at 155–230 DAS, which cor-
responded to the highest VI values. The wheat had begun to fruit when the VIs started to decline
at 231–243 DAS. The VIs then dropped to their lowest values at 244–275 DAS, which corresponded
to the when the wheat had ripened and was harvested.

3.2. Model training

PS and S2 data obtained for each phenological stage were analyzed individually to identify any strong
correlations with the wheat yield. The estimation accuracy of the RFRmodel showed the highest cor-
relation with the yield data when using spectral bands from the botting, owering, and fertilization

Table 7. RFR model performance at each phenological stage using PS bands.

BBCH-scale Day RMSE R2

Emergence 11-November 2020 0.514 0.44
Tillering 5-December 2020 0.574 0.32
Vernalization 27-January 0.591 0.28
Tillering 15-February 0.508 0.46
Tillering 21-March 0.523 0.43
Steam Elongation 10-April 0.516 0.44
Botting & Flowering & Fertilization 27-May 0.380 0.70
Milk & Dough stage 17-June 0.336 0.79
Physiological Maturity & Harvest 25-July 0.459 0.56

Table 6. Phenological development of wheat from sowing to harvest.

Month Description

01–15 November Emergence
01–31 December Tillering
01-January 29-February Vernalization & Tillering
01–31 March Tillering
01–31 April Steam Elongation
01–31 May Botting & Flowering & Fertilization
01–31 June Milk & Dough stage
July Physiological Maturity & Harvest
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stage and the milk and dough stages, with RMSE values of 0.336–0.380 t/ha with PS data and 0.325–
0.389 t/ha with S2 data. As indicated in Tables 7 and 8, the estimation accuracy of the model contin-
ued to increase until July, which corresponded to the peak growth of the wheat. However, the esti-
mation accuracy did not increase any further when data from July onward were incorporated.

Figure 2. Wheat growth at the pixel level according to the BBCH-scale: (a) PS and (b) S2. For each wheat yield pixel, four VIs were
extracted from sowing to harvest. The horizontal axis indicates DAS.

Table 8. RFR model performance at each phenological stage using S2 bands.

BBCH-scale Day RMSE R2

Emergence 7-November 2020 0.391 0.70
Tillering 5-December 2020 0.424 0.65
Vernalization 9-January 0.377 0.70
Tillering 15-February 0.394 0.69
Tillering 7-March 0.361 0.72
Steam Elongation 9-April 0.377 0.71
Botting & Flowering & Fertilization 21-May 0.389 0.79
Milk & Dough stage 20-June 0.325 0.81
Physiological Maturity & Harvest 25-July 0.375 0.71
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show scatter plots demonstrating the relationship between the observed and estimated wheat
yields of individual validation elds according to the diering satellites. The estimated wheat dis-
tribution visually reected the general patterns of the observed yield with relatively little eld-
scale variation. We were also able to identify areas where the model underestimated and over-
estimated yields. Overall, the model estimated the eld-scale yield variability with reasonable
accuracy, and the RMSE values diered between elds.

The results can be summarized by answering the four key questions around which the study was
based as follows:

1. How do the spatial and temporal resolutions of PS and S2 aect the yield estimation accuracy?

The training results showed that high-resolution PS and S2 image data (3 and 10 m, respectively)
could be used to map the wheat yield with similar results (R2 = 0.79 and 0.81, respectively) (Tables 9
and 10).

2. Does the addition of VIs contribute extra information to the estimation model?

The training results showed that the RMSE value was lower with the spectral bands than with the
VIs, and the error was slightly higher for the VIs alone. When the spectral bands and VIs were com-
bined, the yield estimation accuracy increased marginally with the PS-based model but not always
with the S2-based model for both training and validation (Table 11, ). This indicates that adding VIs
to the spectral bands added some insights that helped improve the estimation accuracy of the
model.

3. How does combining the PS and S2 data with environmental data aect the estimation
accuracy?

The estimation accuracy of the model was increased by combining the environmental data with
the spectral bands and VIs (Table 11). Adding topographic variables such as the DTM and the
slope and aspect noticeably increased the model accuracy. Further improvement was achieved by
adding climatic data to the model (e.g. monthly precipitation and temperature).

4. Which phenological stage and VI provide an accurate estimation of the wheat yield?

Table 10. RMSE and R-squared values of the RFR model using S2 bands and VIs at the peak phenological stage.

Sentinel 2 Band Indices

Days RMSE R2 RMSE R2

11-may 0.373 0.78 0.468 0.57
21-may 0.389 0.79 0.452 0.59
20-june 0.325 0.81 0.426 0.66
23-june 0.348 0.80 0.453 0.58
25-june 0.354 0.80 0.459 0.60

Table 11. Combinations of the spectral band, VI, and environmental data for the optimal dates used to train the RFR models.

Data layers

PlanetScope Sentinel 2

RMSE R2 RMSE R2

Bands 0.336 0.79 0.325 0.81
Vis 0.412 0.64 0.426 0.66
Bands + VIs 0.321 0.81 0.321 0.80
Bands + VIs + Topographic 0.307 0.83 0.309 0.83
Band + VIs + Topographic + Climate 0.287 0.84 0.298 0.84
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Data from the milk and dough stage (210–225 DAS, BBCH-scale: 71–83) provided higher esti-
mation accuracy of the wheat yield. Among nine VIs, MTCI derived from PS performed better
in yield estimation with RMSE = 0.500 t/ha, followed by MTVI, SAVI and reNDVI, respectively
(Figure 9). In the case of S2 VIs, MTVI2 produced high accuracy with RMSE = 0.550 t/ha, followed
by reNDVI, GNDVI and MTCI.

4. Discussion

4.1. Advantages of RFR compared with other ML methods

This study investigated the suitability of PS and S2 image data for estimating the wheat yield at the eld
scale. We selected the RFR model for the yield estimation because we discovered that the correlation
between the crop yield and reectance is suciently sophisticated for ML methods. Because RFR is
less likely to contain outliers, we expected it to realize a higher estimation accuracy than other ML
methods. RFR can be used to eectively handle both linear and nonlinear relationships as well as insen-
sitivity to overttingwhere linear regression fails (Kumhálová andMatějková 2017; Xie et al. 2021). It is

Figure 3. Variable importance list of all RFR model (PS + VIs + Topographic + Climate).
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more ecient thanSVMandboosted regressionswhendealingwith large inputs andnoisy datasets that
may overt and startmodeling the noise (Segarra, Luis Araus, andKefauver 2022;Adugna,Xu, and Fan
2022; Kuradusenge et al. 2023). Recent studies have proven the superiority of RFR to other algorithms
forwheat yield estimation (Hunt et al. 2019). The results of this study showed that the RFRmodel could
estimate thewheat yield at theeld scalewithRMSEsof 0.301 and0.274 t/hawhenusingPSandS2data,
respectively (Figures 5 and 9). The developedmodel estimated the wheat yield withmuch higher accu-
racy and consistency than the model of (Segarra, Luis Araus, and Kefauver 2022). They also estimated
the wheat yield at the eld level by using an RFR model with VIs and LAI retrieved from S2 data but
realized an RSME of 0.74 t/ha.

RFR can be used to eectively was used to determine relevant predictor variables. It showed that PS
VIs including reNDVI, SAVI, EVI, WDVI and DEM were the top ve important variables (Figure 3).
Because reNDVI is critical to detect the amount of chlorophyl in the plants and is ideally applied in the
mid-to-late growing season when wheat was the milk and dough stage (Saad El Imanni, Harti, and
Iysaouy 2022). SAVI, EVI and WDVI are sensitive in vegetation structures and LAI, which were also
inuential in predicting crop yield (Kaplan et al. 2023). S2 Band 2 were the best predictor due to

Figure 4. Variable importance list of all RFR model (S2 + VIs + Topographic + Climate).
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chlorophyl pigments selectively absorbing blue (400–500 nm) light for photosynthesis which has a
strong connectionwith yield (Figure 4). At the canopy scale,MTVI2 can detect leaf chlorophyl content
but is relatively insensitive toLAI.GNDVIwas the thirdmost important variable in the S2-basedmodel
that is associatedwith the crop canopywater and nitrogenuptakewhich is successful for crop yield esti-
mation.DTMwas among the tenmost important variables due to its high resolutionwhich can capture
dierent local roughness. The MTCI was also the most important feature due to the sensitivity of
canopy chlorophyl content. The climatic data had a coarse pixel size of 4 km, resulting in
almost regionally identical values across elds. Thus, it contributed the least to the prediction accuracy.

4.2. Phenological tting and monitoring

We applied VIs and spectral data from the peak phenological stages to build the estimation model.
To do this, we determined the importance of temporal variations in the sensed information to accu-
rate yield estimation. The data indicated that peak wheat growth occurred between May and June,

Figure 5. Pixel-level yield estimation with the RFR model using PS data.
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which corresponded to the botting, owering, and fertilization stage and the milk and dough stage
(BBCH-scale: 41–83). In the model training, RMSE values of 0.325–0.411 t/ha were obtained
(Tables 9 and 10). Multiple studies have reported that peak VI values provided better yield esti-
mation accuracy (Skakun et al. 2019; Ziliani et al. 2022). The PS and S2 satellite images acquired
on June 17 and 20, respectively, helped the RFRmodel accurately estimate the yield. This result sup-
ports the results of (Zhao et al. 2020), who estimated the wheat yield at the eld scale by combining
VIs with S2 data and realized an RMSE of 0.64 t/ha.

4.3. PlanetScope vs. Sentinel-2

In this study, we examined the potential application of multispectral satellite data to estimating
the wheat grain yield at the eld scale. We compared the performances of the RFR model utiliz-
ing PS and S2 data considering the dierences between the sensors and the tradeo between
accuracy and costs. The training results showed that the S2-based RFR model estimated the
yield with slightly higher accuracy (RMSE = 0.325 t/ha, R2 = 0.81) than the higher-resolution
PS-based model (RMSE = 0.336 t/ha, R2 = 0.79) using only basic spectral bands (Tables 7 and
8). The validation results also showed that the PS bands were not always better at explaining
the wheat yield variability than the S2 data. Although the PS data had a higher temporal and

Figure 6. Pixel-level yield estimation with the RFR model using S2 data.
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spatial resolution, it had a lower radiometric resolution than the S2 data. The lack of two
additional red edge and SWIR bands in the PS data may also be a factor. However, the PS pro-
ducts are provided almost daily, which provides an opportunity to improve the prediction accu-
racy and to promote digital agriculture for crop modeling and yield estimation (Ziliani et al.
2022). However, many studies have demonstrated that satellite imagery with high spatiotemporal
resolution (e.g. S2 and Landsat 8) often fail to resolve the eld-scale yield variability that is
important for precision agriculture applications, especially for smaller elds (i.e. < 2 ha) (Jain
et al. 2017). For example, Landsat 8 images can contain dierent spectral information because
of the coarse 30-m spatial resolution.

VIs derived from the satellite image data were added as additional information for the model to
analyze. Previous studies have developed empirical connections between the crop yield and VIs or

Figure 7. Comparison between the actual yields of the validation elds and the estimated yields using the RFR model with PS
data, VIs, and environmental variables.

Figure 8. Comparison between the actual yields of the validation elds and the estimated yields using the RFR model with S2
data, VIs, and environmental variables.

862 N. FARMONOV ET AL.



biophysical factors such as the LAI to estimate the yield in large plots with homogenous crops
(Segarra, Luis Araus, and Kefauver 2022; Skakun et al. 2019). In our study, we found that using
VIs and basic spectral bands together sometimes improved the estimation accuracy but not always.
Some studies have found that calculating VIs separately did not improve the yield estimation accu-
racy (Hunt et al. 2019). Therefore, the RFR model can determine pertinent data for yield estimation
from the satellite bands rather than relying on VIs.

We evaluated the impact of environmental data when combined with the basic spectral bands and
VIs for regression analysis. The estimation accuracy was highest when the environmental data were
combined with the PS and S2 data, and the developed model outperformed previously established
models. Various previous studies have combined environmental data with satellite data to support
crop yield estimation, (Burt 2012; Hunt et al. 2019; Schwalbert et al. 2020; Manivasagam et al. 2021).
In the training results, the highest yield estimation accuracy was obtained by introducing environ-
mental data to the PS data (RMSE = 0.287 t/ha, R2 = 0.84) (Table 11). We supposed that the ndings
of this study and the achieved results can contribute to precision agriculture. First, the modeling

Figure 9. Evaluation of the VIs in prediction yield.
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algorithm is important for accurate yield estimation. Second, the availability of the time-series satellite
imagery connected to phenology, followed by the processing of spectral and combine harvester data.
Lastly, the integration of multisource data can signicantly increase yield estimation accuracy at the
eld level.

5. Conclusion

In this study, we evaluated the feasibility of applying PS and S2 data to wheat yield estimation at the
eld scale. The validation results showed that the RFRmodel achieved an RMSE of 0.413–0.438 t/ha
with 3-m PS data and 0.301–0.338 t/ha with 10-m S2 data. Adding topographic and climatic data-
sets to the PS and S2 data further improved the yield estimation accuracy with RMSE values of
0.301–0.335 and 0.274–0.298 t/ha, respectively. To our knowledge, topographic and climatic vari-
ables have not previously been combined with high-resolution satellite images such as PS for wheat
yield mapping. In addition, few studies have combined weather data with VIs derived from satellite
data. This is also the rst study to use eight bands of PS image data to estimate the wheat yield at the
eld level. Only a limited number of studies have assessed multiple sources of satellite data for
wheat yield estimation at the eld scale. Our results oer new developments in the methodology
for eld-scale wheat yield estimation. When comparing the time series of phenological stages, we
found that the yield estimation accuracy was highest when data from the botting, owering, and
fertilization stage and the milk and dough stage (BBCH-scale: 41–83) were used, which corre-
sponded to when the crops reached their maximum growth. The most suitable period for estimating
the eld-scale wheat yield was approximately 30–40 days before harvest during the milk and dough
stage. The developed model can be applied to other crops and locations if suitable training data are
available.
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