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A B S T R A C T   

Intercropping – the planting of more than one crop in the same plot of land – is a prevalent agricultural man
agement practice which can be used for risk reduction. Despite its widespread use, intercropping is not 
commonly reported in agricultural statistics, resulting to very limited spatially disaggregated information about 
its prevalence. Remote sensing-based approaches to detect and estimate the area of cropping patterns like 
intercropping require good understanding of the spectral response of (intercropped) crops at different crop 
growth phases. This study integrates field surveys, farmer interviews and temporal Sentinel-2 data from four crop 
growth phases and the post-harvest period of maize and intercropped maize (imaize). The goal is to identify the 
optimal crop growth phases, spectral regions and vegetation indices (VIs) that can accurately discriminate the 
two cropping patterns. We computed p-values for the spectral bands using Mann-Whitney U test and identified 
critical crop growth phases. Classification of maize and imaize cropping patterns was performed using random 
forest classifier. Our spectral analysis revealed effective discrimination between maize and imaize cropping 
patterns during the vegetative (in all spectral bands) and flowering-yield phases (in Blue, Green, Red, RE704, 
RE783, NIR833, NIR865). The most suitable VIs contained red-edge and near-infrared spectal bands. Utilizing 
spectral data and VIs from vegetative and flowering-yield phases, we achieved optimal discrimination during the 
vegetative phase (user’s accuracy of 100 % and producer’s accuracy of 100 %). However, accuracy decreased 
during the flowering yield phase (overall accuracy of 87 % for all spectral bands). The highest classification 
results using all spectral bands at the flowering yield phase resulted in 80 % producer’s accuracy for maize and 
100 % for imaize. This study illustrates the utility of temporal Sentinel-2 spectral data for identifying the critical 
crop growth phase, spectral regions and VIs for cropping patterns classification, particularly for intercropping.   

1. Introduction 

Intercropping, the planting of more than one crop in the same plot of 
land, is predominantly practised to maximise land use and crop di
versity, and to mitigate the risk of yield loss (Giller et al., 2021b; Him
melstein et al., 2017). Intercropping is associated with weed reduction, 
the control of pests and diseases (Bybee-Finley and Ryan, 2018; Zae
farian and Rezvani, 2016), the preservation of soil nutrients and 
reduction of rainwater runoff (Sun et al., 2019; Yang et al., 2020). It can 
also promote biodiversity (Liu and Chen, 2019), sustain food produc
tion, and diversify income (Zuo et al., 2013). According to Himmelstein 
et al. (2017), on average intercropping can increase crop yields by 23 %. 

There are different types of intercropping, and the practice of 
intercropping is dynamic, evolving with seasonal changes and the 
availability of external resources (Kehs et al., 2021). Intercropping types 

can be described based on the arrangement of the crops within a field; 
mixed, strip and row cropping (Bégué et al., 2018; Mahlayeye et al., 
2022). The spatial and temporal dynamics in intercropping practice and 
the different types of intercropping show that it is challenging to 
generate reliable and timely information on when, where, and how 
intercropping practice is practiced. 

Intercropping is the backbone of African agriculture, though such 
practice is not commonly reported in agricultural statistics and spatially 
disaggregated information about the location of intercropping is not 
available (Giller et al., 2021a). In Africa, between 41 % and 86 % of 
maize, rice, sorghum, and millet are estimated to be produced from 
intercropped fields (Garrett et al., 2020), but this depends on manage
ment practices and agro-ecological factors. More spatially detailed 
estimation of intercropped area requires robust mapping and moni
toring approaches. 
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The spatial, spectral, and temporal resolution of imagery such as 
Sentinel-1, Sentinel-2, RapidEye, and WorldView-2 (Bégué et al., 2020) 
may provide suitable information for identifying intercropping practices 
yet studies on intercropping are rare. Most studies have focused on 
mapping the crop type and cropping patterns of single cropped fields, 
occasionally accompanied by intercropped fields, and have used a single 
satellite image during one crop growing season or spectral information 
from different growth phases when using multiple dates (Aduvukha 
et al., 2021; Hegarty-Craver et al., 2020; Ibrahim et al., 2021; Richard 
et al., 2017). A common observation of these studies is that intercropped 
fields tend to have a similar spectral response to single crop fields, 
resulting in misclassification. Consequently, intercropped fields have 
often been misclassified in previous studies (Gumma et al., 2020; 
Hegarty-Craver et al., 2020). One of the studies that explored multi- 
temporal data for intercropping mapping was by Ibrahim et al. 
(2021). That study used Sentinel-2 to map maize in single-cropped and 
intercropped fields using phenological analysis and crop calendars to 
find useful temporal windows/periods for discriminating different 
cropping patterns. However, these windows were not clearly linked to 
crop type and crop growth phases, further, each separation window 
identified seem to cover multiple crop growth phases. 

Several methods have been used for cropping pattern classification, 
including the fusion of multi-sensor data (Chen et al., 2014; Ding et al., 
2020; Ferrant et al., 2019), object-based classification technigues (Cui 
et al., 2020; Song et al., 2017), and a combination of object and pixel- 
based classification using various algorithms (Belgiu and Csillik, 2018; 
Castillejo-González et al., 2009). The majority of these studies have 
explored different classification methods, with machine learning 
methods being the most preferred approach. Notably, mainly Random 
Forest (RF) and Support Vector Machine (SVM) have demonstrated su
perior perfomance in achieving high classification accuracies (Kuchler 
et al., 2020; Liu et al., 2013; Liu and Chen, 2019). Despite their effec
tiveness, the results of machine learning methods, including RF and 
SVM, can be inconsistent (Feyisa et al., 2020). Several factors contribute 
to the variability, including hyperparameter tuning (Saini and Ghosh, 
2018), sample quality and quantity (Jin et al., 2019), selection of 
training samples (Belgiu and Drăgu, 2016), imbalanced classes (Belgiu 
et al., 2021) and feature selection (Peña-Barragán et al., 2011). 
Achieving optimal model performance often involves a trade-off among 
these factors, necessitating experimentation to fine-tune the models 
(Belgiu and Drăgu, 2016). The accuracy of mapping is also influenced by 
the common practice of using a generalized approach for mapping 
different crop types and cropping patterns. In regions characterized by 
substantial diversity in cropping practices and varying field-level crop
ping patterns, misclassification issues may arise. This approach is suit
able when there are enough field boundaries for different categories at 
the field level. Therefore, starting with a field-based approach can 
enhance our understading of the factors contributing to these mis
classifications and improve classification accuracy. 

Comprehensive understanding and consideration of various factors 
are essential for obtaining precise spatial information about cropping 
patterns. To enhance the accuracy of mapping maize cropping patterns, 
it is crucial to have knowledge of the multiple factors that contribute to 
their complexity. Key factors, including cropping practices such as weed 
control (Ibrahim et al., 2021), synchronized crop calendar data, and the 
management of pests and diseases (Mthembu et al., 2019), play a crucial 
role in successfully distinguishing these cropping patterns. These factors 
provide valuable guidelines for selecting suitable remote sensing data 
and methods, which are instrumental in achieving precise classification 
and generating reliable spatial information. 

According to Mahlayeye et al. (2022), no studies have explored and 
separately analysed the spectral response of cropping patterns that 
include intercropping at different crop growth phases. The use of multi- 
temporal Sentinel-2 data throughout the entire crop growing season to 
identify the most suitable crop growth periods phases for improved 
classification of single-cropped and intercropped cropping patterns has 

not been explored. 
The objective of this study is to analyze the variations in Sentinel-2 

spectral signatures of maize and intercropped maize (imaize) at a 
field-level during the crop growing season. This analysis includes spec
tral discrimination and classification of maize and imaize cropping 
patterns. 

2. Materials and methods 

2.1. Study area 

The Busia County was selected as the study area and is located in the 
western region of Kenya (Fig. 1). Its central coordinates are 
0◦27′38.77″N and 34◦06′41.26″E and it borders Uganda to the West and 
Lake Victoria to the Southeast. The area of interest spans about 950 km 
square and it is within three agroecological zones (AEZs); Lower 
Midland Sugarcane Zone (LM1), Marginal Sugarcane Zone (LM2), and 
Lower Midland Cotton Zone (LM3) (Jaeztold, 1983). Busia has a tropical 
rainforest climate, the temperature ranges from 17 − 28 ◦C with an 
average annual precipitation of 302 mm and 307 (84 %) rainy days per 
year. There are two rainy seasons, resulting in a bimodal rainfall pattern. 
The long rains start between March-April and short rains around 
October-November. Farming is predominantly rainfed with farmers 
planting in February-March (first crop growing season) and again in 
August-September (second crop growing season) (Fig. 3). 

Maize is the dominant crop in the region, cultivated either as mon
ocrop, generally for commercial purposes, or as an intercrop typically 
for subsistence consumption, alongside beans, soybeans, cowpea, and 
cassava. Other crops found in the region include millet, groundnut, and 
sorghum. The prevalent cropping patterns are maize and imaize. The 
dominant intercropping type is mixed and row intercropping (Fig. 2). 

2.2. Data 

Farmer interviews, field boundaries, crop type, crop calendar infor
mation, and Sentinel-2 images were utilized to characterise imaize and 
maize cropping patterns. We implemented a stratified random sampling 
method for our study, taking into account crop calendars, crop types, 
and cropping patterns. Additionally, we utilized secondary field data 
provided by Plant Village, an initiative affiliated with Penn State Uni
versity, which strives to uplift small-scale farmers from poverty by 
making technology, data and information about crop cultivation more 
accessible for farmers, government and researchers (Plant Village, 
2023). Notably, a significant proportion of farmers in the study area 
primarily cultivated maize, either as a sole crop or in intercropping with 
legumes. To ensure an adequate sample size, we focussed our sampling 
efforts on the most prevalent crop types and cropping patterns.  

(i) Farmer interviews 

In July 2022 we interviewed 240 farmers from the northern parts 
which includes Teso North, Teso South and Nambale sub-counties. 
Farmer interviews were based on the first and second crop growing 
season’s management practices from year 2019 till 2022. Questions 
included field sizes, the variety of crops cultivated in both long rain and 
short rain seasons, the specific timelines of planting and harvesting for 
each crop, the categorization of intercropping types (mix, strip, row), 
planting techniques, encountered challenges (such as drought and crop 
health issues), factors that influence the choice of cropping patterns, and 
crop management practices (including crop varieties, weed control, 
pesticide application, fertilizer application, etc.). Prior to the interviews, 
the farmers provided informed oral consent and had the option to 
terminate the interview at any given moment. 

The majority of the farmers recalled the months for both planting 
and harvesting, providing either precise dates or approximate time 
frames (early/late). Notably, farmers adopt various maize varieties bi- 
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annually to optimize their yield. These varieties commonly mature after 
90–120 days. Manual harvesting is prevalent in this region and the re
sidual maize plants are often left in the field as fodder for cattle.  

(ii) Field boundaries 

Field boundaries for 2019, delineated by PlantVillage - a project by 
Penn State University- in partnership with Radiant Foundation, they 
strive to assist small-scale farmers by using affordable technology and 
making data and information more accessible. The primary objective is 

to aid farmers in improving food production and overcoming poverty. 
These field boundaries were verified during our field visit and were 
adjusted or eliminited if they no longer accurately depicted the actual 
situation or if farmers provided different information. A total of 120 
fields were visited, and 87 of these were considered for this study: 50 
comprised of maize fields and 37 were categorized as imaize fields. The 
GPS coordinates of these field boundaries were updated from PlantVil
lage data, with some being newly recorded on-site using Map Marker 
application (www.mapmarker.app). These coordinates were later veri
fied using high-resolution images from Google Earth. Field observations, 

Fig. 1. Study area, Busia in western Kenya.  

Fig. 2. Emergence-seedling phase of maize cropping patterns.  
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photographs and sketches of the fields were used to document the lo
cations of trees and any objects that could potentially influence the 
reflectance response within these fields.  

(iii) Crop type, phases, and crop calendar 

The field boundary data provided by Plant Village encompassed crop 
calendar information with only planting and estimated harvest dates 
(Plant Village, 2019). These were revised following interviews with 
farmers. Our focus was on the first long-rain season due to its extended 
crop growth period and the prevalence of intercropping among most 
farmers, as indicated by the interviews. Furthermore, during this period, 
farmers allocate more resources, anticipating higher yields compared to 
the subsequent short-rain season. Notably, in this region, the impacts of 
climate change are predominantly experienced during the second sea
son. Table 1 describes the considered maize growth phases and their 
relation to land-surface phenology derived from remote sensing-based 
information.  

(iv) Sentinel-2 time-series images 

The Sentinel-2 Multispectral Imager (MSI) has 13 spectral bands in 
the visible (VIS), red-edge (RE), near-infrared (NIR) and shortwave 
infrared (SWIR) domains. Sentinel-2 images were attained from March 
to August 2019, selecting scenes with less than 15 % cloud cover and a 
UTM/WGS84 projection. The dates on which images were acquired and 
utilized were: 23rd March, 12th April, 22nd May, 01st July, and 25th 
August 2019. No cloud masking was necessary as the study area 
remained cloud-free during these dates. The images were surface 
reflectance (SR) (level 2A) corrected from the Copernicus Open Access 
hub. (Fig. 3). 

During pre-processing, B1, B9, and B10 were excluded as they were 
not relevant to this study (Table 2). We used the SNAP toolbox to 
resample B5, B6, B7, B8A, B11 and B12 from 20 m to 10 m. Upon 
stacking the 10 m bands, the ENVI software (ENVI version 5.6.3. Harris 
Geospatial, USA) was used for processing and analyzing geospatial data. 
This software facilitated the computation of the average spectral 
reflectance and standard deviation using the field boundaries. Maize and 

imaize field spectral signatures were computed according to crop 
growth phases, from emergence-seedling to ripening and post-harvest 
period (Fig. 4). 

2.3. Analysis of spectral signatures of single and intercropping maize 
fields 

We extracted the average reflectance values from Sentinel-2 images 
for each field, categorizing them into maize and imaize. A comprehen
sive time-series analysis on Sentinel-2 data was then performed to un
derstand differences between maize and imaize fields. Firstly, we 
explored the influence of phenological phases on the spectral reflectance 
differences within maize cropping patterns. Four main growth phases- 
emergence-seedling, vegetative, flowering-yield formation, and 
ripening- were carefully selected. We calculated average reflectance, 
standard deviation, the first derivative of every growth phase, then 
computed line and boxplots for every spectral region for maize and 
imaize cropping patterns. 

The Mann-Whitney U test was used for all crop growth phases and 
post-harvest period, to identify significant differences in spectral 
reflectance between maize and imaize cropping patterns, since our data 
were not normally distributed. The test is non-parametric and can be 
compared to the t-test; however, it relies on no assumptions about the 
data distribution. 

2.4. Temporal analysis using various VIs 

We considered the following VIs, which are commonly used for 
temporal and phenological analysis of vegetation (Table 3) and which 
predominantly use red-edge and near-infrared bands. The findings from 
2.3 were used to further refine this list of VIs and identify the most 
promising ones. 

Fig. 3. Crop calendar showing critical period, crop growth phases, available satellite images, 2019 average monthly precipitation of Busia.  

Table 1 
Maize growth stages and definitions (adopted from (FAO, 2022)).  

Maize growth phase Definition Phenology 
phase 

Emergence-seedling 
(15–25 days) 

Development of leaves and 
appearance of leave collars 

Green up 

Vegetative (25–40 days) Elongation of the stem, dominant 
nodal root system 

Early-phase 

Flowering-Yield formation 
(20–40 days) 

Development of maize cob and 
tassel 

Mid-late 
phase 

Ripening (10–15 days) Kernels fully developed, ready for 
harvest 

Late phase  

Table 2 
Sentinel-2 spectral bands used.  

Spectral bands  
Central wavelength (nm) Spatial resolution (m) 

Band 2 – Blue 492 10 
Band 3 – Green 560 10 
Band 4 – Red 665 10 
Band 5 – RE 704 20 
Band 6 – RE2 740 20 
Band 7 – RE3 783 20 
Band 8 – NIR 833 10 
Band 8A –NIR2 865 20 
Band 11 – SWIR1 1614 20 
Band 12 – SWIR2 1374 20  

M. Mahlayeye et al.                                                                                                                                                                                                                            



International Journal of Applied Earth Observation and Geoinformation 128 (2024) 103699

5

2.5. Random Forest classification 

We chose a Random Forest (RF) classifier as it is known to be su
perior and reliable for achieving high classification accuracies when 
compared to other classifiers such as the binary hierarchical classifier, 
artificial neural networks and decision trees (Belgiu and Drăgu, 2016). 
Fundamentally, it is an ensemble learning method that is efficient, 
simple to parametrize, robust, and often used for crop type and cropping 
pattern mapping (Feyisa et al., 2020; Liu and Chen, 2019; Richard et al., 
2017). Based on the spectral analysis and VIs, five random classification 
scenarios were done viz. (i) all Sentinel-2 spectral bands, (ii) significant 
spectral bands, (iii) VIs, (iv) all spectral bands and VIs, and (v) signifi
cant spectral bands and VIs. We followed Immitzer et al. (2016)’s 
methodological framework and model parametrization. The sample 
number of maize and imaize were 50 and 37, respectively. We split the 
dataset into training and validation sets, 65 % for training and 35 % for 
validation. The RF has two tuning parameters, the number of trees used 
to form ensemble denoted by ntree and also the number of predictors 
used for splitting nodes which is denoted as mtry. The mtry is set to 
default and it is the square root of the total number of features (Genuer 
et al., 2010), this parameter plays a significant role in the accuracy of the 
classification (Breiman, 2001; Saini and Ghosh, 2018). Following a 
geographically similar study by Richard et al. (2017), we searched for 
the ntree between 500 and 2500 using a 500 interval and optimal 
maximum depth (max_depth) between 2 and 10 using an interval of 2. 
The optimal classification results used ntree = 50 and max_depth = 4. 
The random state was set at 5, min_sample_split at 10, and criterion =
gini. The RF classifier was implemented using the scikit-learn Library 
version is 1.2.1 in Python version 3.10.9 (Pedregosa et al., 2011). 

Fig. 4. Methodological flowchart for the discrimination and classification of single and intercropped maize.  

Table 3 
List of indices used for phenological temporal analysis of the spectral response of 
maize and imaize.  

Index Formula Description Reference 

NDVI (NIR − R)/(NIR +
R) 

Normalized Difference 
Vegetation Index 

(Rouse et al., 1973) 

NDWI (G − NIR)/(G +
NIR) 

Normalized Difference 
Water Index 

(McFeeters, 1996) 

NDRE2 (NIR − RE2)/(NIR 
+ RE2) 

Red Chlorophyll Index (Gitelson and 
Merzlyak, 1994; Kross 
et al., 2015) 

NDRE (NIR − RE)/(NIR +
RE) 

Normalized Difference 
Red-edge Index 

(Kross et al., 2015) 

GNDVI (NIR − G)/(NIR +
G) 

Green Normalized 
Difference Vegetation 
Index 

(Gitelson and 
Merzlyak, 1998) 

SIPI (NIR − B)/(NIR +
R) 

Structure Intensive 
Pigment Vegetation 
Index 

(Peñuelas et al., 1995) 

EVI G * ((NIR − R)/ 
(NIR + C1 * R − C2 
* B + L)) 

Enhanced Vegetation 
Index 

(Huete et al., 1997) 

REcl ((NIR)/(RE)) − 1 Red-edge Chlorophyll 
Index 

(Gitelson et al., 2005) 

MTCI (NIR − RE)/(RE −
R) 

MERIS Terrestrial 
Chlorophyll Index 

(Dash and Curran, 
2007) 

REI NIR/RE Red-edge Index (Gitelson and 
Merzlyak, 1994) 

NDRE3 (RE3 − RE)/(RE3 
+ RE) 

Normalized Difference 
Red-edge 3 

(Barnes et al., 2000)  
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3. Results 

3.1. Spectral response of maize and imaize during the crop growing 
season 

Fig. 5(a–e) illustrates the spectral response of the two maize cropping 
patterns during the early crop growing phase until post-harvest period. 
The spectral reflectance of maize is consistently higher than imaize in 
bands RE705, RE740, RE865 and NIR842 for both cropping patterns in 
vegetative, flowering-yield formation and ripening phases. However, in 
the same growth phases, maize spectral reflectance is lower than that of 
imaize in the following bands, 560, 665 and 704 during the emergence- 
seedling and post-harvest phases, maize spectral reflectance is lower 
than that of imaize. 

The Mann-Whitney test results for the Sentinel-2 spectral bands 
revealed significant differences in the spectral reflectance of maize and 
imaize during the vegetative and flowering-yield formation phases 

across most bands. Particularly, bands like Blue, Green, Red, RE1, RE3, 
NIR1, and NIR2 exhibit extremely low p-values for both stages, indi
cating a strong statistical difference in their readings between these two 
growth stages. As observed in Figs. 5 and 6, differences in spectral 
reflectance are evident only at the vegetative and flowering-yield for
mation phases. Specifically, during the vegetative phase, all spectral 
regions are significantly different (p < 0.05), while during the flowering- 
yield formation, most of the spectral regions show significant differences 
except for RE740, SWIR1614 and SWIR2202. The p-values for RE740 and 
SWIR2202 during flowering-yield formation are somewhat higher, sug
gesting a less pronounced but still notable difference. The SWIR1614 
band has a high p-value in the flowering-yield formation stage, indi
cating no significant statistical difference in this band between the two 
stages. 

Statistical tests conducted for the emergence-seedling and ripening- 
harvest growth phases showed no significant differences between the 
two cropping patterns. This finding is supported by the spectral response 

Fig. 5. Boxplots showing the reflectance variation of maize (red) and imaize (blue) in these growth phases (a) emergence-seedling, (b) vegetative, (c) flowering-yield 
formation, (d) ripening and (e) post-harvest period. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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shown in Fig. 5 (d), where maize and imaize spectral reflectance appears 
similar across all bands in these phases. The differences during the end 
of the season were not considered. According to our field interviews, 
during that period the fields were either fallow, featured cover crops, 
had a second crop growing (particularly cassava) or early planting for 
the second season had commenced. These cropping practices are com
mon, leading to the initial stages of a vegetation spectral signature (high 
NIR and low red reflectance) during this period (Fig. 5 (e)). This analysis 
suggests that most Sentinel-2 spectral bands are sensitive to changes 
between the vegetative and flowering-yield stages, with some variations 
in the degree of sensitivity. 

3.2. Analysis of the most suitable VIs for cropping pattern discrimination 

The spectral regions that have the potential to discriminate between 
the two cropping patterns include most spectral regions except RE740, 
SWIR1610, and SWIR2190 in flowering-yield formation. The VI analysis in 
Fig. 6 and Fig. 7 show the frequency distribution of eleven VIs for maize 
and imaize. 

During the vegetative phase, the frequency distributions of the 
cropping patterns exhibit skewness in different directions with the 
modes further apart from each other (Fig. 6). For the imaize class, most 
VIs display a right-skewed distribution, while the maize class shows a 

left-skewed pattern, except for NDWI. Vegetation indices such as 
NDRE2, GNDVI, SIPI, NDWI, MTCI and NDVI have few overlaps, whilst 
EVI, NDRE3, RECL and REI show no overlaps. Overall, there is minimal 
overlap in the counts between both cropping patterns. 

Most of the vegetation indices information for both maize and imaize 
overlap during the flowering-yield formation phase (Fig. 7). In this 
phase, most VIs have closely positioned modes, with the exception of 
NDWI and NDRE2. The distribution of most VIs for maize is skewed to 
the left, whilst VIs for imaize is slightly skewed to the right. Some VIs, 
such as NDRE3, GNDVI, NDVI show nearly normal distributions. For 
maize cropping patterns, RECL, MTCI and NDVI show minor bimodal 
distributions. 

3.3. Random forest classification results 

During the vegetative phase, the classification results showed an 
overall user accuracy, producer accuracy and overall accuracy is 100 % 
with F1-score and Kc of 1.0 for all the classification scenarios. This is 
consistent with the spectral analysis and VIs results. The U test results 
reveal significant differences between maize and imaize in this phase. 
Furthermore, the VIs demonstrated their potential to effectively 
discriminate between the two cropping patterns during this phase. 

For flowering-yield formation phase, the performance of the 

Fig. 6. Histogram plots of the pixel count for each VIs used for discriminating maize and imaize cropping patterns at the vegetative phase.  
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combination of (iv) all spectral bands and VI and (v) significant bands 
and VIs did not surpass that of the other classification scenarios. The 
highest accuracy was observed in the first three scenarios: (i) all 
Sentinel-2 spectral bands, (ii) significant spectral bands, (iii) VIs. Spe
cifically, during flowering-yield formation phase, using all spectral 
bands yielded the highest accuracy of 86 %, followed by significant 
bands with 79 % and VIs at an overall score of 66 % (Table 4). 

4. Discussion 

The study demonstrated the utility of temporal Sentinel-2 imagery 
for the discrimination and classification of maize and intercropped 
maize fields in rainfed small-holdings of Kenya. The investigation 

identified key spectral bands, VIs, and growth phases important for ac
curate discrimination. Spectral data and VIs extracted from five 
Sentinel-2 images, aligned to the crop calendar were utilized to identify 
variations between maize and imaize during different growing phases. 
Our spectral analysis revealed a distinct separation of maize and imaize 
cropping patterns during the vegetative phase (across all bands) and the 
flowering-yield phases (specifically in Blue, Green, Red, RE704, RE783, 
NIR833, NIR865 bands). This distinction proved beneficial for accurate 
RF classification using Sentinel-2 data from those phases in the region. 
Regarding VIs, all indices were suitable during the vegetative phase, 
while in the flowering-yield formation phase, RECL, MTCI and NDVI 
displyed notable differences alongside some similarities. Despite the 
study’s limitations due to its focus on a relatively small number of test 

Fig. 7. Histogram plots of the pixel count VIs used for discriminating maize and imaize cropping patterns at flowering-yield formation phases.  

Table 4 
Random forest classification results of flowering-yield formation phase.  

Features Cropping Patterns User Accuracy Producer Accuracy Overall Score Kappa coefficient F1-score 

All spectral bands Maize  1.00  0.80 0.86 0.71  0.89 
Imaize  0.69  1.00  0.82 

Significant spectral bands Maize  0.94  0.75 0.79 0.57  0.83 
Imaize  0.62  0.89  0.73 

VIs Maize  0.75  0.67 0.66 0.29  0.71 
Imaize  0.54  0.64  0.58  
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fields, the results illustrated the potential for discriminating between the 
two cropping patterns. Additionally, the study highlighted the essential 
role of utilizing temporal Sentinel-2 spectral data in identifying the 
critical crop growth phase for mapping cropping patterns with 
intercropping. 

4.1. Differences between maize and imaize spectral response 

The overall distribution and median of field-averaged spectral 
reflectance for maize and imaize were comparatively similar at the 
emergence-seedling phase (Fig. 5(a)). During this phase, the spectral 
signature predominantly indicates a mix of soil and crops for both 
cropping patterns. These results support the earlier findings of Gao et al. 
(2021), who showed the difficulty in distinguishing crops from the soil, 
particularly during the early phases of crop growth, such as crop 
emergence. 

During the vegetative phase, the spectral signature of maize and 
imaize fields is influenced by the planting spacing and the type of 
intercropping. Significant differences were observed in the distribution 
and median of reflectance across all spectral regions for both maize 
cropping patterns. In the red-edge to the near-infrared region, maize has 
higher spectral reflectance than imaize (Fig. 5 (b)). This difference is due 
to maize fields having smaller and more uniformly spaced crops. 
Conversely, in imaize fields, the spacing between plants is wider and less 
uniform. The variation in spacing is more pronounce in imaize fields, 
depending on the type of intercropping. For example, the “same hole” 
planting of maize and beans results in wider spacing, while mixed and 
row intercropping leads to comparatively smaller spacing between crops 
(Fig. 2). Furthermore, weeds proliferate in maize fields due to decreased 
field activity throughout the crop growing season. Conversely, our in
terviews indicate that farmers are more actively involved in imaize 
fields than in maize fields, primarily due to the mid-season bean harvest. 
As a result, weed infestation is less in intercropped maize fields 
compared to maize fields. 

The reflectance distribution and median during the flowering-yield 
formation phase vary between cropping patterns. Specifically, imaize 
shows a slightly wider range for most spectral bands compared to maize. 
Conversely, maize demonstrates higher reflectance in the red-edge and 
near-infrared regions (Fig. 5 (c)). The high reflectance in maize can be 
attributed to the presence of weeds within maize fields. This observation 
aligns with previous study by Lin et al. (2017), which showed similar
ities in the spectral profiles of maize and weeds,demonstrating that the 
spectral reflectance values of weeds were higher, especially at the red- 
edge and near-infrared regions. 

During the ripening phase, the reflectance distribution for both 
cropping patterns showed minimal variation. Across most fields during 
this phase, mazie was the predominant crop, as intercrops such as beans, 
soybean and cowpeas had been harvested, with cassava remaining in a 
few fields. Consequently, the spectral response of maize and imaize 
became notably similar. This finding aligns with the results reported by 
Hegarty-Craver et al. (2020), which showed the inability to accurately 
discriminate between maize and imaize during the later phases of crop 
growth. 

The reflectance values in the post-harvest period remain high for 
both cropping patterns (Fig. 5(e)). This period is characterized by 
various agricultural activities, including the cultivation of cassava 
following bean harvest, ploughing, and the presence of residual maize 
plants in some maize fields. Additionally, certain maize fields may be 
covered with weeds, while in certain cases, farmers may have 
commenced the planting of seeds for the upcoming second crop growing 
season. 

The results of the U test revealed that the emergence-seedling, 
ripening, and post-harvest phases for both maize and imaize showed 
no significant differences in all spectral regions. These crop growth 
phases, in both cropping patterns, show no distinct spectral behaviours. 
Consistent with prior research (Gumma et al., 2020; Hegarty-Craver 

et al., 2020; Li et al., 2022; Luciani et al., 2019), earlier studies have 
shown misclassification of cropping patterns due to spectral mixing. 

During the vegetative phase, all spectral bands were significantly 
different between maize and imaize, whilst, during the flowering-yield 
formation phase, the majority of the spectral regions showed signifi
cant differences except for RE740, SWIR1614 and SWIR2202. Despite these 
observed significant differences, standard deviations for both cropping 
patterns during the flowering-yield formation phase showed overlaps 
indicating shared spectral information in certain fields. This aligns with 
results by Richard et al. (2017), who, through the use of RapidEye im
agery, noted similar spectral responses between maize and imaize 
cropping patterns during the flowering phase. 

4.2. VI analysis 

We analysed the variability of commonly used VIs for crop type 
mapping to assess their effectiveness in discriminating cropping patterns 
during vegetative and flowering-yield phases. The results during the 
vegetative phase showed a distinct separation between maize and 
imaize across all studied VIs (Fig. 6), consistent with spectral reflectance 
analysis. Similarly, during the flowering-yield phase, some overlaps 
were observed in VI values for maize and imaize. 

The majority of the studied VIs contained either red-edge only or 
both red-edge and near-infrared bands. Red-edge VIs are valuable in 
improving crop type classification due to their sensitivity to changes in 
biophysical and biochemical crop characteristics (Frampton et al., 
2013). In comparison to individual spectral bands, VIs are recognized for 
their capacity to enhance the biophysical and biochemical properties of 
crops. These characteristics are closely related to properties such chlo
rophyll, biomass, leaf area index (LAI) and nitrogen content properties 
(Kang et al., 2021; Kanke et al., 2016). Therefore, these indices prove 
beneficial for understanding cropping patterns, but their benefits are 
more pronounced when applied during optimal growth phases for 
discriminating cropping patterns. 

4.3. Classification of maize and imaize at vegetative and flowering-yield 
formation 

The cropping patterns were classified for the vegetative and 
flowering-yield formation phases. Achieving a 100 % classification ac
curacy in the seedling-vegetative phase for the studied classification 
scenarios. The cropping patterns during that period are significantly 
different, as illustrated by their spectral response (Table 3). The classi
fication model using all spectral bands resulted in higher classification 
accuracy compared to when using significant spectral bands and VIs as 
features. Although bands RE740, SWIR1614 and SWIR2202 were not sta
tistically significant for discriminating the two maize and imaze classes, 
they still hold subtle information that causes improvement of the clas
sification accuracy when included in the model. These results show the 
strength of the original Sentinel-2 spectral bands in discriminating crops 
(Mudereri et al., 2019). The RF classification showed a relatively high 
accuracy of 87 %, surpassing findings from earlier studies which also 
utilized RF for crop classification (Chen et al., 2021; Hegarty-Craver 
et al., 2020; Jin et al., 2019). Several factors, beyond crop growth 
phase, influenced the results. In comparison to maize (n = 50), imaize (n 
= 37) showed lower classification accuracy. This difference may arise 
from the imbalance sample sizes from the two cropping patterns. While 
RF is recognized for its superior performance especially when using 
limited training samples (Belgiu and Drăgu, 2016), it is crucial to note 
that the model is sensitive to class imbalance. 

The increase of training samples, as demonstrated in Ibrahim et al. 
(2021) study, resulted in improved classification accuracy. Maize clas
sification results achieved the lowest user accuracy (65 %) in their study. 
However, in this study classification results for maize consistently out
performed those for imaize in all classification scenarios related to user 
accuracy. These differences in accuracy can be attributed to the 
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misclassification of maize as imaize, potentially caused by the presence 
of weeds in maize fields, wherein weeds act as a secondary crop. This 
challenge is also evident in other studies that classified maize and imaize 
cropping patterns encountered misclassification due to weeds and high- 
density legumes in intercropped maize fields (Hegarty-Craver et al., 
2020; Ibrahim et al., 2021). Notably, farmers recognized weed infesta
tion as a prevalent challenge, particularly in maize fields. In addressing 
this issue, manual labour emerged as the primary method for weed 
removal, given the financial constraints preventing many farmers from 
affording herbicides. Throughout our field visits, we observed that 
imaize fields had less weed infestation. As previously highlighted, weed 
infestation in maize fields is attributed to diminished field activity 
throughout the crop growing season. Due to the weed infestation 
problem in such regions, quantitative measurement such as LAI, Soil 
Plant Analysis Development (SPAD) and fields spectrometer readings 
can contribute greatly to the understanding of the spectral response of 
such cropping patterns. The collection of such field data is key for better 
understanding the spectral response of maize cropping patterns and aid 
to map intercropping patterns with great detail. 

The classification results reported from similar studies displayed 
inconsistentencies (Feyisa et al., 2020; Hegarty-Craver et al., 2020; 
Ibrahim et al., 2021; Richard et al., 2017). These inconsistencies may 
stem from variations in the quantity of field samples, type of imagery 
utilized, and date of image acquisition. Additional research shared the 
challenges associated with small and irregularly shaped field sizes in 
similar settings, thereby adding complexity to the process of mapping 
crop types and cropping patterns (Burke and Lobell, 2017; Lowder et al., 
2016). 

The lack of sufficient and relevant field data and optical satellite data 
that is cloud-free significantly contributes to the challenges of charac
terising and mapping intercropping. Increasing the number of satellite 
images through multi-sensor combinations from Landsat, PlanetScope 
or RapidEye can increase the quantity, spatial and spectral quality to 
identify subtle reflectance differences that can improve discrimination 
and classification. Future work could use hyperspectral sensors as they 
are better suited for distinguishing crops and weeds (Lin et al., 2017). 

5. Conclusion 

The study’s findings illustrates the effectiveness of Sentinel-2 in 
distinguishing maize and imaize cropping patterns, especially during the 
vegetative and flowering-yield formation phases. This highlights the 
necessity of a multi-temporal approach in differentiating cropping pat
terns that involve intercropping patterns. Through detailed analysis of 
spectral variations across different crop growth phases, an understand
ing of the key factors essential for effective discrimination and mapping 
of cropping patterns has been achieved. These factors include the inte
gration of crop calendar information, thorough temporal analysis, and 
the utilization of relevant spectral and spatial data. In particular, the 
red-edge and near-infrared spectral bands have demonstrated their 
effectiveness in differentiating between cropping patterns that include 
intercropping. Moreover, the study draws attention to the challenge of 
weed infestation in maize fields. It highlights how the presence of weeds 
within maize crops present a unique problem, distinct from the issues 
posed by intercropping. These weeds behave differently from the 
intercrop plants, making their detection and management a critical 
aspect of crop monitoring. Further research and development in this 
area could lead to more advanced algorithms and models that can 
accurately identify and discriminate between crops and weeds. Such 
advancements could significantly enhance the efficiency of cropping 
pattern management practices, leading to improved yield, reduced labor 
and resource inputs, and sustainable agricultural practices. Overall, this 
study contributes valuable insights into the complexities of crop pattern 
discrimination and the potential of remote sensing technologies in 
addressing these challenges. 
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