981 research outputs found

    Potential of ALOS2 and NDVI to estimate forest above-ground biomass, and comparison with lidar-derived estimates

    Get PDF
    Remote sensing supports carbon estimation, allowing the upscaling of field measurements to large extents. Lidar is considered the premier instrument to estimate above ground biomass, but data are expensive and collected on-demand, with limited spatial and temporal coverage. The previous JERS and ALOS SAR satellites data were extensively employed to model forest biomass, with literature suggesting signal saturation at low-moderate biomass values, and an influence of plot size on estimates accuracy. The ALOS2 continuity mission since May 2014 produces data with improved features with respect to the former ALOS, such as increased spatial resolution and reduced revisit time. We used ALOS2 backscatter data, testing also the integration with additional features (SAR textures and NDVI from Landsat 8 data) together with ground truth, to model and map above ground biomass in two mixed forest sites: Tahoe (California) and Asiago (Alps). While texture was useful to improve the model performance, the best model was obtained using joined SAR and NDVI (R2 equal to 0.66). In this model, only a slight saturation was observed, at higher levels than what usually reported in literature for SAR; the trend requires further investigation but the model confirmed the complementarity of optical and SAR datatypes. For comparison purposes, we also generated a biomass map for Asiago using lidar data, and considered a previous lidar-based study for Tahoe; in these areas, the observed R2 were 0.92 for Tahoe and 0.75 for Asiago, respectively. The quantitative comparison of the carbon stocks obtained with the two methods allows discussion of sensor suitability. The range of local variation captured by lidar is higher than those by SAR and NDVI, with the latter showing overestimation. However, this overestimation is very limited for one of the study areas, suggesting that when the purpose is the overall quantification of the stored carbon, especially in areas with high carbon density, satellite data with lower cost and broad coverage can be as effective as lidar

    Coverage of high biomass forests by the ESA BIOMASS mission under defense restrictions

    Get PDF
    The magnitude of the global terrestrial carbon pool and related fluxes to and from the atmosphere are still poorly known. The European Space Agency P-band radar BIOMASS mission will help to reduce this uncertainty by providing unprecedented information on the distribution of forest above-ground biomass (AGB), particularly in the tropics where the gaps are greatest and knowledge is most needed. Mission selection was made in full knowledge of coverage restrictions over Europe, North and Central America imposed by the US Department of Defense Space Objects Tracking Radar (SOTR) stations. Under these restrictions, only 3% of AGB carbon stock coverage is lost in the tropical forest biome, with this biome representing 66% of global AGB carbon stocks in 2005. The loss is more significant in the temperate (72%), boreal (37%) and subtropical (29%) biomes, with these accounting for approximately 12%, 15% and 7%, respectively, of the global forest AGB carbon stocks. In terms of global carbon cycle modelling, there is minimal impact in areas of high AGB density, since mainly lower biomass forests in cooler climates are affected. In addition, most areas affected by the SOTR stations are located in industrialized countries with well-developed national forest inventories, so that extensive information on AGB is already available. Hence the main scientific objectives of the BIOMASS mission are not seriously compromised. Furthermore, several space sensors that can estimate AGB in lower biomass forests are in orbit or planned for launch between now and the launch of BIOMASS in 2021, which will help to fill the gaps in mission coverage

    Regional Forest Volume Estimation by Expanding LiDAR Samples Using Multi-Sensor Satellite Data

    Get PDF
    Accurate information regarding forest volume plays an important role in estimating afforestation, timber harvesting, and forest ecological services. Traditionally, operations on forest growing stock volume using field measurements are labor-intensive and time-consuming. Recently, remote sensing technology has emerged as a time-cost efficient method for forest inventory. In the present study, we have adopted three procedures, including samples expanding, feature selection, and results generation and evaluation. Extrapolating the samples from Light Detection and Ranging (LiDAR) scanning is the most important step in satisfying the requirement of sample size for nonparametric methods operation and result in accuracy improvement. Besides, mean decrease Gini (MDG) methodology embedded into Random Forest (RF) algorithm served as a selector for feature measure; afterwards, RF and K-Nearest Neighbor (KNN) were adopted in subsequent forest volume prediction. The results show that the retrieval of Forest volume in the entire area was in the range of 50–360 m3/ha, and the results from the two models show a better consistency while using the sample combination extrapolated by the optimal threshold value (2 × 10−4), leading to the best performances of RF (R2 = 0.618, root mean square error, RMSE = 43.641 m3/ha, mean absolute error, MAE = 33.016 m3/ha), followed by KNN (R2 = 0.617, RMSE = 43.693 m3/ha, MAE = 32.534 m3/ha). The detailed analysis that is discussed in the present paper clearly shows that expanding image-derived LiDAR samples helps in refining the prediction of regional forest volume while using satellite data and nonparametric models

    Forest Aboveground Biomass Estimation Using Multi-Source Remote Sensing Data in Temperate Forests

    Get PDF
    Forests are a crucial part of global ecosystems. Accurately estimating aboveground biomass (AGB) is important in many applications including monitoring carbon stocks, investigating forest degradation, and designing sustainable forest management strategies. Remote sensing techniques have proved to be a cost-effective way to estimate forest AGB with timely and repeated observations. This dissertation investigated the use of multiple remotely sensed datasets for forest AGB estimation in temperate forests. We compared the performance of Landsat and lidar data—individually and fused—for estimating AGB using multiple regression models (MLR), Random Forest (RF) and Geographically Weight Regression (GWR). Our approach showed MLR performed similarly to GWR and both were better than RF. Integration of lidar and Landsat inputs outperformed either data source alone. However, although lidar provides valuable three-dimensional forest structure information, acquiring comprehensive lidar coverage is often cost prohibitive. Thus we developed a lidar sampling framework to support AGB estimation from Landsat images. We compared two sampling strategies—systematic and classification-based—and found that the systematic sampling selection method was highly dependent on site conditions and had higher model variability. The classification-based lidar sampling strategy was easy to apply and provides a framework that is readily transferable to new study sites. The performance of Sentinel-2 and Landsat 8 data for quantifying AGB in a temperate forest using RF regression was also tested. We modeled AGB using three datasets: Sentinel-2, Landsat 8, and a pseudo dataset that retained the spatial resolution of Sentinel-2 but only the spectral bands that matched those on Landsat 8. We found that while RF model parameters impact model outcomes, it is more important to focus attention on variable selection. Our results showed that the incorporation of red-edge information increased AGB estimation accuracy by approximately 6%. The additional spatial resolution improved accuracy by approximately 3%. The variable importance ranks in the RF regression model showed that in addition to the red- edge bands, the shortwave infrared bands were important either individually (in the Sentinel-2 model) or in band indices. With the growing availability of remote sensing datasets, developing tools to appropriately and efficiently apply remote sensing data is increasingly important

    Individual tree-based vs pixel-based approaches to mapping forest functional traits and diversity by remote sensing

    Full text link
    Plant ecology and biodiversity research have increasingly incorporated trait-based approaches and remote sensing. Compared with traditional field survey (which typically samples individual trees), remote sensing enables quantifying functional traits over large contiguous areas, but assigning trait values to biological units such as species and individuals is difficult with pixel-based approaches. We used a subtropical forest landscape in China to compare an approach based on airborne LiDAR-delineated individual tree crowns (ITCs) with a pixel-based approach for assessing functional traits from remote sensing data. We compared trait distributions, trait–trait relationships and functional diversity metrics obtained by the ITC- and pixel-based approaches at changing pixel size and extent. We found that morphological traits derived from airborne laser scanning showed more differences between ITC- and pixel-based approaches than physiological traits estimated by airborne Pushbroom Hyperspectral Imager-3 (PHI-3) hyperspectral data. Pixel sizes approximating average tree crowns yielded similar results as ITCs, but 95th quantile height and foliage height diversity tended to be overestimated and leaf area index underestimated relative to ITC-based values. With increasing pixel size, the differences to ITC-based trait values became larger and less trait variance was captured, indicating information loss. The consistency of ITC- and pixel-based functional richness also decreased with increasing pixel size, and changed with the observed extent for functional diversity monitoring. We conclude that whereas ITC-based approaches in principle allow partitioning of variation between individuals, genotypes and species, high-resolution pixel-based approaches come close to this and can be suitable for assessing ecosystem-scale trait variation by weighting individuals and species according to coverage

    Individual tree attribute estimation and uniformity assessment in fast-growing Eucalyptus spp. forest plantations using lidar and linear mixed-effects models

    Get PDF
    Fast-growing Eucalyptus spp. forest plantations and their resultant wood products are economically important and may provide a low-cost means to sequester carbon for greenhouse gas reduction. The development of advanced and optimized frameworks for estimating forest plantation attributes from lidar remote sensing data combined with statistical modeling approaches is a step towards forest inventory operationalization and might improve industry e ciency in monitoring and managing forest resources. In this study, we first developed and tested a framework for modeling individual tree attributes in fast-growing Eucalyptus forest plantation using airborne lidar data and linear mixed-e ect models (LME) and assessed the gain in accuracy compared to a conventional linear fixed-e ects model (LFE). Second, we evaluated the potential of using the tree-level estimates for determining tree attribute uniformity across di erent stand ages. In the field, tree measurements, such as tree geolocation, species, genotype, age, height (Ht), and diameter at breast height (dbh) were collected through conventional forest inventory practices, and tree-level aboveground carbon (AGC) was estimated using allometric equations. Individual trees were detected and delineated from lidar-derived canopy height models (CHM), and crown-level metrics (e.g., crown volume and crown projected area) were computed from the lidar 3-D point cloud. Field and lidar-derived crown metrics were combined for ht, dbh, and AGC modeling using an LME. We fitted a varying intercept and slope model, setting species, genotype, and stand (alone and nested) as random e ects. For comparison, we also modeled the same attributes using a conventional LFE model. The tree attribute estimates derived from the best LME model were used for assessing forest uniformity at the tree level using the Lorenz curves and Gini coe cient (GC).We successfully detected 96.6% of the trees from the lidar-derived CHM. The best LME model for estimating the tree attributes was composed of the stand as a random e ect variable, and canopy height, crown volume, and crown projected area as fixed e ects. The %RMSE values for tree-level height, dbh, and AGC were 8.9%, 12.1%, and 23.7% for the LFE model and improved to 7.3%, 7.1%, and 13.6%, respectively, for the LME model. Tree attributes uniformity was assessed with the Lorenz curves and tree-level estimations, especially for the older stands. All stands showed a high level of tree uniformity with GC values approximately 0.2. This study demonstrates that accurate detection of individual trees and their associated crown metrics can be used to estimate Ht, dbh, and AGC stocks as well as forest uniformity in fast-growing Eucalyptus plantations forests using lidar data as inputs to LME models. This further underscores the high potential of our proposed approach to monitor standing stock and growth in Eucalyptus—and similar forest plantations for carbon dynamics and forest product planninginfo:eu-repo/semantics/publishedVersio

    Prédiction de la distribution des diamètres des arbres à l’aide de métriques tirées de la donnée lidar aéroporté pour les forêts boréales du Québec et de l’ouest de Terre-Neuve

    Get PDF
    La forêt occupe une proportion importante du territoire Canadien et son exploitation nécessite une connaissance approfondie de la structure des peuplements forestiers. La distribution des diamètres des arbres (DDA) permet d’estimer plusieurs attributs forestiers, notamment le volume de bois ou le taux de croissance. Cette étude vise à prédire la DDA à une résolution fine (20 m²) à partir de données de LiDAR aéroporté pour les forêts boréales de conifères au Québec et à l’ouest de Terre Neuve. La donnée LiDAR aéroportée permet de produire un modèle de hauteur de canopée. Conséquemment, le premier objectif vise à améliorer les estimés de DDA avec la contribution de métriques texturales dérivées du modèle de hauteur de canopée combinées aux métriques LiDAR standards. Le deuxième objectif consiste à déterminer la meilleure approche pour modéliser les DDA : soit en différentiant a priori la modalité des DDA selon leur modalité (uni/bimodales) ou non. La modélisation de la DDA passe par la prédiction des paramètres de la fonction Weibull ajustée aux DDA unimodales et non-différentiées. Pour les DDA bimodales, un finite mixture model, composé de deux fonctions Weibull, permet d’extraire les paramètres des deux composantes Weibull ajustées à la DDA. Les paramètres, échelle et forme, des fonctions Weibull décrivant les DDA unimodales et non différenciées ont été prédits avec des R² acceptables (0.40-0.55) comparativement aux paramètres moyenne, proportion et écart type des DDA bimodales (R² moyen<0.30). L’utilisation de métriques de texture a permis d’améliorer la précision globale de la différentiation des modalités de 4%, ce qui a fait augmenter en moyenne de 0.10 le R² pour les paramètres des DDA unimodales et non-différentiées, et 0.17 pour les DDA différentiés bimodales. De plus, les DDA unimodales ont prédit en moyenne 79% des diamètres mesurés et 75% pour les bimodales. Les DDA non-différentiées ont prédit 76% des diamètres mesurés. Cependant, les DDA bimodales présentaient des R² faibles, causé par l’absence de deux modes clairement distincts ainsi eu par la difficulté de prédire les faibles diamètres
    • …
    corecore