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Abstract 

S. Li. Forest Aboveground Biomass Estimation Using Multi-Source Remote Sensing Data in 

Temperate Forests, 145 pages, 21 tables, 19 figures, 2019. APA style guide used. 

Forests are a crucial part of global ecosystems. Accurately estimating aboveground 

biomass (AGB) is important in many applications including monitoring carbon stocks, 

investigating forest degradation, and designing sustainable forest management strategies. Remote 

sensing techniques have proved to be a cost-effective way to estimate forest AGB with timely 

and repeated observations. This dissertation investigated the use of multiple remotely sensed 

datasets for forest AGB estimation in temperate forests. 

We compared the performance of Landsat and lidar data—individually and fused—for 

estimating AGB using multiple regression models (MLR), Random Forest (RF) and 

Geographically Weight Regression (GWR). Our approach showed MLR performed similarly to 

GWR and both were better than RF. Integration of lidar and Landsat inputs outperformed either 

data source alone. However, although lidar provides valuable three-dimensional forest structure 

information, acquiring comprehensive lidar coverage is often cost prohibitive. Thus we 

developed a lidar sampling framework to support AGB estimation from Landsat images. We 

compared two sampling strategies—systematic and classification-based—and found that the 

systematic sampling selection method was highly dependent on site conditions and had higher 

model variability. The classification-based lidar sampling strategy was easy to apply and 

provides a framework that is readily transferable to new study sites. 

The performance of Sentinel-2 and Landsat 8 data for quantifying AGB in a temperate 

forest using RF regression was also tested. We modeled AGB using three datasets: Sentinel-2, 

Landsat 8, and a pseudo dataset that retained the spatial resolution of Sentinel-2 but only the 

spectral bands that matched those on Landsat 8. We found that while RF model parameters 

impact model outcomes, it is more important to focus attention on variable selection. Our results 

showed that the incorporation of red-edge information increased AGB estimation accuracy by 

approximately 6%. The additional spatial resolution improved accuracy by approximately 3%. 

The variable importance ranks in the RF regression model showed that in addition to the red-

edge bands, the shortwave infrared bands were important either individually (in the Sentinel-2 

model) or in band indices. With the growing availability of remote sensing datasets, developing 

tools to appropriately and efficiently apply remote sensing data is increasingly important. 

Key Words: regression; Random Forest; Geographically Weighed Regression; data integration; 

systematic sampling; classification-based sampling; forest types;  
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1. Dissertation Introduction 

1.1. Introduction 

1.1.1. Background 

Forests provide critical resources and are one of the most important ecosystems covering 

the Earth’s land surface. However, human and natural actions have stressed forests across the 

globe. Disturbance of natural ecosystems can contribute to climate change, decrease biological 

diversity, disturb hydrological cycles, and cause soil erosion and degradation (Singh et al., 2018). 

People have recognized the need to protect forest ecosystems and maintain sustainable 

development (Almeida et al., 2019). Sustainable and effective forest management requires 

accurate, consistent and timely forest monitoring.  

Forest aboveground biomass (AGB) is a fundamental parameter for describing the 

structure and function of forest ecosystems (Li et al., 2019). AGB has been identified as an 

essential biodiversity variable to measure ecosystem function (Pettorelli et al., 2016). Many 

forest ecosystem processes are reflected in changes of AGB value, thus AGB is often used to 

monitor forest ecosystem processes. Accurate estimation of AGB is indicative of the extent to 

which forests contribute to the global carbon budget and can reduce uncertainty in understanding 

the quantity and distribution of terrestrial carbon stocks. 

1.1.2. AGB estimation techniques 

Forest AGB has been used to address various technical and scientific questions, including 

estimating forest productivity and monitoring the global carbon cycle over time (Viana et al., 

2012). Traditional forest inventories can provide accurate forest AGB estimation by measuring 

the dry weight of trees or applying measured tree height or diameter at breast height to biomass 
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allometric equations (Basuki et al., 2009; Djomo et al., 2010; Nam et al., 2016). However, both 

methods are laborious, time consuming, and practical only for local scale measurements. Such 

approaches are also complicated by the necessity to gain physical access for field measurements. 

Remote sensing technologies have long been applied to estimate forest attributes (Cohen and 

Spies, 1992). With the increasing availability of diverse remotely sensed datasets, studies have 

explored AGB estimation using medium- and high-spatial resolution optical imagery (Cohen et 

al., 2003; Meng et al., 2009), radar (Boudreau et al., 2008), and light detection and ranging (lidar) 

data (Li et al., 2015).   

The Landsat satellites have been one of the most popular remote sensing datasets for 

AGB estimation. With open and free access to the digital data archive, Landsat satellites have 

provided continuous coverage of most of the globe since the 1980s. Numerous studies have 

proved the feasibility of Landsat data for AGB estimation (Wang et al., 2018; Zheng et al., 2004). 

The more recently available Sentinel-2 satellites have similar access with improved spatial, 

spectral and temporal resolutions and offer great potential to improve forest AGB estimates. The 

first Sentinel-2 sensor was launched by the European Space Agency in June 2015 with 13 

spectral bands. Sentinel-2 includes red-edge bands not available on any of the Landsat sensors. 

The red-edge bands characterize the sharp increase in vegetation reflectance and collecting data 

in this portion of the spectrum has been demonstrated to improve the accuracy of AGB 

estimation (Dang et al., 2019). However, one of the main drawbacks of using passive remote 

sensing data, such as Landsat or Sentinel, is a well-documented saturation problem. The problem 

relates to the fact that indices derived from passive sources tend to asymptotically approach a 

saturation level after reaching a certain biomass density (Chi et al., 2017; Knapp et al., 2018; 

Lumbierres et al., 2017; O. Mutanga and Skidmore, 2004; Vafaei et al., 2018). 
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An alternative to passive data sources are the use of active sensors such as lidar and radar. 

Lidar data can be used to characterize vertical forest information, which is a critical variable for 

AGB estimation. Many studies have also reported that lidar can estimate AGB without the 

saturation problem faced by passive sources (Luo et al., 2019; Sun et al., 2019; Zhao and 

Popescu, 2009). However, compared with passive optical remote sensing data, the cost and 

volume of lidar data tends to be higher for the same extent. The cost of lidar data acquisition is 

influenced by factors such as the location, frequency, and point density. Reducing lidar point 

density or sampling through lidar transects can reduce budget demands as well as keep the data 

volume manageable. Several studies have investigated the relationship between lidar point 

density and forest attribute estimation and reported that reliable accuracy can be achieved with 

relatively low lidar point density (Watt et al., 2014; Singh et al., 2015; Singh et al., 2016). 

Reducing lidar data coverage has also been explored using different sampling strategies with 

promising results (Hudak et al., 2002). The challenge is that the optimal lidar transect coverage 

reported varies across studies with no specifications about the ideal transect design clearly 

defined. While transects are often selected with equal intervals, some studies used auxiliary 

information to subjectively select lidar transects. In most situations these factors—e.g. sampling 

unit, sampling direction, transect coverage and transect interval—cannot be concurrently 

controlled due to limitations in data, time, or human resources. Exploring the importance of these 

different factors, as well as the interaction between them, can help people to make better choices 

in order to optimize AGB estimation. 

1.1.3. Remote sensing data fusion 

Lidar has proved to be the most powerful single sensor for estimating many forest 

variables (Gonzalez et al., 2010), such as canopy height (Hyde et al., 2006), biomass (Cao et al., 
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2019) and vegetation height (Nie et al., 2018). However, optical sensors have advantages in 

terms of spatial coverage and availability. Fusion of multiple data types can harness the spectral, 

spatial, and temporal advantages of different data sources. Data fusion can also improve 

information interpretation and reduce uncertainty compared to using any source dataset 

independently (Li et al., 2016; Lu et al., 2019; Solberg et al., 1994). Thus, the fusion of lidar and 

Landsat has been adopted by many researchers (Xu et al., 2018). Data fusion has been applied to 

various applications including object detection and delineation (Heinzel et al., 2008; Kim et al., 

2010), change detection (Trinder and Salah, 2012), image classification (Hartling et al., 2019), 

and forest characterization (Vogeler and Cohen, 2016). Multi-sensor fusion has demonstrated 

better performance than using single sensor data in numerous forest variable estimation studies 

(Singh et al., 2012; Hyde et al., 2006).  

1.1.4. Statistical methods 

Statistical models applied to relate field forest attribute observations and remotely sensed 

data including parametric and non-parametric models. The most frequently used methods for 

estimating AGB include multiple linear regression models and machine learning algorithms. 

Linear regression models assume residuals are uncorrelated, which is inappropriate when 

considering the spatial dependence of forest variables. Machine learning algorithms have the 

ability to learn and build estimation models from training data. The random forest (RF) 

algorithm proposed by Breiman (2001) is one of most commonly used machine learning 

algorithms. It can be applied for both classification and regression and has several distinct 

advantages. RF can be used to rank and select important predictor variables, generate 

relationship models between forest attributes and predictor variables, and apply models to map 
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forest attributes. RF is efficient in dealing with large input datasets while requiring few 

parameters (Shao et al., 2015; Belgiu and Drăguţ, 2016).  

A weakness of multiple linear regression models is that important local variations may 

not be reflected. Geographically weighted regression (GWR) is an extension of multiple linear 

regression that allows coefficients for environmental covariates to vary at different locations 

(Kumar et al., 2012). Localized coefficients of GWR are based on weighting observations around 

a sample point using a distance decay function. The closer the data point is to the sample point, 

the greater the weight applied. GWR is a powerful approach for modeling spatially 

heterogeneous processes. Zhang and Shi (2004) modeled forest growth using GWR and 

concluded that the GWR model performed better than a traditional ordinary least-squares model. 

GWR provides useful information about the impact of surrounding environmental factors and 

neighboring competitors on tree growth variation.  

1.2. Hypotheses 

This dissertation investigates the use of remotely sensed data in forest aboveground 

biomass estimation. This study explores the value of lidar and Landsat fusion for estimating 

AGB using different methods and in different forest conditions. It investigates the potential for 

developing a protocol for using lidar samples to support AGB estimation using Landsat inputs.  

The study also explores the utility of the enhanced spectral and spatial characteristics of Sentinel-

2 data for AGB estimation.  In exploring these broad objectives, the following research 

hypotheses are addressed in this study: 

1. Lidar and Landsat data fusion enhances AGB estimation compared to single source 

approaches. 
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2. AGB estimation quality varies with application of multiple linear regression, RF and 

GWR approaches.  

3. Forest type influences the performance of AGB estimation using lidar and Landsat 

inputs. 

4. Lidar sampling can capture the majority of AGB variation explained by full lidar 

coverage but stability of AGB estimation is influenced by lidar sampling strategy 

used. 

5. The increased spectral and spatial resolution of Sentinel-2 improves AGB estimation 

outcomes compared to Landsat 8. 

This dissertation uses a manuscript format, where Chapters 2, 3 and 4 are presented as 

independent manuscripts. Research hypotheses 1, 2 and 3 are explored in Chapter 2 of this 

dissertation. Research hypothesis 4 is explored in Chapter 3 and research hypothesis 5 is 

explored in Chapter 4 of this dissertation. 
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2. Manuscript 1: The influence of forest type and biomass range on forest 

aboveground biomass estimation from integrated airborne lidar and 

Landsat data 

2.1. Abstract 

Quantifying forest aboveground biomass (AGB) is crucial for understanding the role of 

forests in the global carbon cycle. Light detection and ranging (lidar) data provides accurate 

measurement of forest structure in the vertical plane; however, since current airborne lidar 

datasets are often practically limited in terms of spatial coverage lidar data is often supplemented 

by more extensively distributed passive imagery. We compared the performance of Landsat, 

lidar, an integration of Landsat and lidar for estimating AGB using multiple regression models 

(MLR), Random Forest (RF) and Geographically Weight Regression (GWR) in Huntington 

Wildlife Forest in Central New York State. Our approach showed MLR performed similarly to 

GWR and both were better than RF. We also explored the performance of AGB estimation from 

different data sources under different forest type and AGB range conditions. Our study found 

both factors impacted model accuracy. AGB estimation using Landsat data performed better in 

hardwood forest compared to softwood forest, which was contrary to using only lidar data. This 

study demonstrated the importance of forest type and AGB range on AGB estimation and 

suggests pre-classification of data based on forest type and AGB range may enhance AGB 

estimation results. 

Keywords: Multiple Linear Regression; Random Forest; Geographically Weighed Regression; 

data integration; forest measurement 
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2.2.  Introduction 

Concerns about global climate change require understanding of the dynamic between 

atmospheric and terrestrial carbon cycles. Forest ecosystems play an important role in the 

exchange of carbon between the atmosphere and the land surface. Aboveground biomass (AGB, 

in Mg ha-1) is the total dry weight of biological material above the ground in an area (Hu et al., 

2016). Characterizing aboveground biomass is crucial for providing essential information to 

advance our understanding of the global carbon cycle and climate change. For example, forest 

AGB has been used to study deforestation and forest degradation, land cover change, invasive 

species, and emission of greenhouse gases (Chen et al., 2016; Houghton et al., 2008; Shao et al., 

2018; Wulder et al., 2012). Understanding AGB can inform strategic forest management plans 

and strengthen policy making. Therefore, it is necessary to explore efficient approaches to 

estimate and monitor AGB distribution.  

Forest inventory to quantify AGB traditionally involved either destructive methods or 

application of allometric equations (Lu, 2006). Destructive methods require cutting, drying and 

weighing each tree being inventoried (Kankare et al., 2013). Allometric equations are used to 

compute AGB based on the measurement of either tree height or diameter at breast height (DBH) 

from each tree (Chave et al., 2014; Clark and Kellner, 2012). Compared with traditional forest 

inventory, remote sensing technology has the potential to generate AGB using non-destructive, 

efficient and repetitive techniques with relatively low cost (Dassot et al., 2011; Gonçalves et al., 

2017; Lumbierres et al., 2017). For example, Landsat 8 covers the entire globe every 16 days and 

data is currently available for download at no cost (https://earthexplorer.usgs.gov/). However, 

remote sensing technology cannot quantify AGB directly. Instead, AGB is estimated based on 
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statistical models applied to image-derived variables. Consequently, the performance of remote 

sensing data in estimation of AGB is highly dependent on the characteristics of the data and the 

performance of the models applied. 

As an active remote sensing technology, lidar determines the distance between a sensor 

and the reflecting surface based on travel time of an emitted laser pulse (Ucar et al., 2018). 

Multiple echo sensors can detect several returns for one emitted pulse, which allows detection of 

tree crowns, leaves at different levels, branches and the underlying ground (Jones and Vaughan, 

2010). Through this process, lidar enables characterization of three-dimensional forest structure. 

Lidar has been successfully applied to estimate tree height (Kwak et al., 2007; Popescu et al., 

2002), crown dimension (Falkowski et al., 2006), stem counts (Ene et al., 2012), tree leaf area 

(Roberts et al., 2005), canopy clumping (García et al., 2015), and tree volume (Takagi et al., 

2015; Tesfamichael et al., 2010), and it is regarded by many as the most accurate remote sensing 

approach for AGB estimation (Ahmed et al., 2015; Feng et al., 2017; Hudak et al., 2002; 

Korhonen et al., 2011; Riaño et al., 2004; Tang et al., 2014). However, despite the appealing 

accuracy achieved by lidar for local scales, there are practical limitations that prohibit the 

application of lidar at regional or continental scales (Galidaki et al., 2017; Liu et al., 2017; Ma et 

al., 2017; Wang et al., 2016). Moreover, although acquisition of lidar data has been increasing 

steadily over the past decade, lidar collection is often focused on specific areas of interest rather 

than systematic coverage of large extents. 

To address information needs in forests that lack comprehensive or up-to-date lidar or 

inventory data, optical remote sensing data can be applied. Optical sensors capture spectral 

responses of forest canopies, which can be used to derive useful information about the physical 
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and biological characteristics of the vegetation. Compared to lidar data, multispectral optical 

remote sensing sensors typically have advantages in terms of both spectral and temporal 

resolutions. For example, with moderate spatial resolution, the sensors onboard the Landsat 

series of satellites have collected spectral information from visible to thermal wavelengths with a 

16-day repeat coverage of the surface of earth since 1984. Landsat data has been successfully 

applied to estimate forest cover change (Coppin and Bauer, 1994), deforestation and forest 

degradation (Margono et al., 2012), timber volume (Trotter et al., 1997), and AGB (Powell et al., 

2010). However, the data acquired from optical sensor data are often compromised by factors 

such as clouds and shadow, weather, topography, forest complexity, and saturation effects at low 

and high biomass levels (Goldbergs et al., 2018; Lu et al., 2012; Ma et al., 2017).  

Integration of multiple data sources can harness the spectral, spatial, and temporal 

advantages of different sources of data as well as overcome shortcomings of any single data 

source. Data integration has been applied to various areas including object detection and 

delineation (Heinzel et al., 2008; Kim et al., 2010), change detection (Trinder and Salah, 2012), 

classification (Dalponte et al., 2008), and decision making (Vogeler and Cohen, 2016). Lidar and 

multispectral Landsat data can be integrated to extrapolate lidar-based forest attributes to broader 

scales through the addition of Landsat’s multispectral information and repetitive data collection. 

Singh et al. (2012) found fusing lidar and Thematic Mapper (TM) data achieved land cover 

classification accuracy of 87.2%, which outperformed Landsat TM or lidar data alone by 8% and 

32%, respectively. 

In addition to using appropriate data sources, algorithm selection for establishing biomass 

estimation models is also critical. Multiple linear regression (MLR) is the most commonly used 
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algorithm for AGB estimation (Deo et al., 2017; Ediriweera et al., 2014; Hyde et al., 2006; 

Popescu et al., 2004; Zheng et al., 2007). For MLR, plot level (Boudreau et al., 2008; Deo et al., 

2017) biomass typically serves as the dependent variable with both lidar (Cao et al., 2014; Li et 

al., 2017) and Landsat (Karlson et al., 2015; Zheng et al., 2004) derived factors as predictors. 

Stepwise variable selection is often used in MLR to select the remote sensing derived variables 

that best represent AGB while avoiding multicollinearity (Moser et al., 2017). Researchers also 

report using other approaches to estimate AGB such as machine learning (Karlson et al., 2015; 

Li et al., 2017; Urbazaev et al., 2018) and Geographically Weighted Regression (GWR). The 

nonparametric machine learning Random Forest (RF) algorithm has received considerable 

attention due to its ability to handle imbalanced datasets and its insensitivity to noise (Adam et 

al., 2014; Mutanga et al., 2012). GWR incorporates spatial location of input data into the 

algorithm and is a powerful tool for addressing spatial heterogeneity (Benitez et al., 2016). 

Fassnacht et al. (2014) compared the impact of data sources and prediction method on AGB 

estimation and found data sources had a larger impact on the outcomes than prediction methods. 

Previous prediction method comparison often uses one data source (Gagliasso et al., 2014; 

Propastin, 2012; Zhang and Shi, 2004). In this study, we compared prediction methods using 

both single data source and data integration.  

Despite the fact that various remote sensing data have been applied and compared in the 

field of AGB estimation, the impact of site condition on estimation accuracy has been minimally 

reported. The goal of this study was to compare the impact of forest type and AGB range on the 

performance of lidar and Landsat datasets for AGB estimation. This study developed MLR, RF 

and GWR models for forest AGB estimation using Landsat and lidar data, both independently 

and in an integrated approach. More specifically, we aimed to: (1) compare model performance 
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of AGB estimation using Landsat data, airborne lidar data and the integration of the two data 

sources; (2) examine the advantages and drawbacks of models when applied to different forest 

stand types, i.e., hardwood, softwood and mixed forests; and (3) evaluate the applicability of the 

models for different AGB ranges. 

2.3. Materials and methods 

2.3.1. Study area 

The study area for the project was the Huntington Wildlife Forest (HWF) in the central 

Adirondacks in northern New York State, which is managed by the State University of New 

York College of Environmental Science and Forestry (SUNY-ESF; 43°58'19" N, 74°13'18" W; 

Figure 2-1). HWF covers approximately 60 km2 with mountainous topography and an elevation 

range from 466 m to 859 m. HWF has a mean annual temperature of 4.4°C and mean annual 

precipitation of 1010 mm (Shepard et al., 1989). HWF contains both undisturbed natural 

communities and managed forest stands. The forest is composed of hardwood, mixed, and 

softwood stands with major species being American beech (Fagus grandifolia), yellow birch 

(Betula alleghaniensis Britt.), sugar maple (Acer saccharum Marshall.), red spruce (Picea rubens 

Sarg.), red maple (Acer rubrum L.) and hemlock (Tsuga spp.).  
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Figure 2-1. Location of Huntington Wildlife Forest in New York State. The figure shows the distribution of 

270 forest inventory plots overlaid on a lidar generated DEM. 

 

2.3.2. Field measurements 

SUNY ESF maintains continuous forest inventory (CFI) plots within HWF, with 

comprehensive plot data last collected during the summer of 2011. The center of each CFI plot 

was located using a global positioning system (GPS) receiver. All trees with diameter at breast 

height (DBH) of 11.7 cm or greater were measured on a fixed circular plot with radius 

approximately 16 m. Information recorded for each plot included tree species, DBH, and tree 

location relative to plot center. Based on the field observations, tree-level AGB was calculated 

using species-specific DBH allometric equations from Jenkins et al. (Jenkins et al., 2003). Plot-

level AGB was then determined by summing the AGB for each tree within a plot and dividing by 

the plot area. Data from all plots in this study were applied to train the model. Table 2-1 presents 

a summary of descriptive statistics for plot level AGB in HWF. The unit for plot-level AGB is 

megagrams per ha (Mg ha-1).  
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Table 2-1. Summary of descriptive statistics for plot level AGB in HWF (units: Mg ha-1). 

Plot Count Mean Median Variance Minimum Maximum 

270 186.6 186.3 6808.0 0.9 440.3 

 

The United Nations Economic Commission for Europe (UNECE) Food and Agriculture 

Organization (FAO; UNECE/FAO, 2000) defines mixed forests as stands where neither 

broadleaved nor coniferous trees account for more than 75% of the tree crown area. Since we 

collected DBH and used that to determine AGB, we modified the UNECE/FAO approach and 

defined a plot as hardwood if the total hardwood AGB was more than 75% of total AGB of that 

plot. Softwood forests were defined as plots with softwood AGB over 75% of total AGB.  Mixed 

forests had neither softwood nor hardwood accounting for more than 75% of the total AGB.   

Table 2-2 provides a summary of the descriptive statistics for plot level AGB in different forest 

stand types. 

Table 2-2. Summary of descriptive statistics for plot level AGB in different forest stand types (units: Mg ha-1). 

 
Plot Count Mean Median Variance Minimum Maximum 

Hardwood 194 182.3 184.5 6693.1 0.9 440.3 

Mixed 60 211.9 208.7 5461.0 68.8 390.7 

Softwood 16 144.3 133.9 9771.0 9.1 314.7 

 

2.3.3. Lidar data and processing 

Airborne lidar data was acquired for HWF on September 10, 2011 (Table 2-3). An 

ALS60 lidar system was used to simultaneously collect both discrete return point clouds and the 

waveforms of the returned signals. The lidar sensor was operated at 218.7 kHz at an average 

flying height of 1770 m above ground with swath width of 542 m and flight line spacing of 407 

m. The average point density was more than 10 points/m2. Raw laser data were post-processed 



 

20 

 

 

with Terrasolid’s lidar-dedicated TerraScan software (https://www.terrasolid.com/home.php) by 

Kucera International Inc. All further point-cloud processing tasks were performed with 

FUSION/IDV software (http://forsys.cfr.washington.edu/fusion/fusionlatest.html).  

Table 2-3. ALS60 system settings and raw laser statistics of the lidar data collection for HWF. 

Parameter Value 

Scan field of view (FOV) 24° 

Outgoing pulse width 4 ns 

Flying altitude 1770 m 

Swath width 542 m 

Flight line spacing 407 m 

Footprint diameter 0.3 m 

Average point density >10 pts/m2 

Laser pulse rate 218.7 kHz 

Acquisition date September 10th, 2011 

 

Lidar variables were derived from the lidar points within each inventory plot using the 

CloudMetrics function in FUSION. Return-based, height-based, and density-based variables 

were derived (Table 2-4). 
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Table 2-4. Description of lidar derived variables calculated. Calculation details are described by McGaughey 

(2019). 

Variable name Description Variable name Description 

Pt_total Total number of returns ht_P25 25th percentile of height 

Pt_first Count of first returns ht_P30 30th percentile of height 

Pt_second Count of second returns ht_P40 40th percentile of height 

Pt_third Count of third returns ht_P50 50th percentile of height 

ht_min height minimum ht_P60 60th percentile of height 

ht_max height maximum ht_P70 70th percentile of height 

ht_mean height mean ht_P75 75th percentile of height 

ht_mode height mode ht_P80 80th percentile of height 

ht_stddev height standard deviation ht_P90 90th percentile of height 

ht_variance height variance ht_P95 95th percentile of height 

ht_CV height coefficient of variation ht_P99 99th percentile of height 

ht_AAD height absolute deviation from mean Per_first_5m Percentage of first returns above 5 m 

ht_skewness height skewness Per_first_mean Percentage of first returns above mean 

ht_hurtosis height kurtosis Per_first_mode Percentage of first returns above mode 

ht_L1 first L moments Per_all_5m Percentage of all returns above 5 m 

ht_L2 second L moments Per_all_mean Percentage of all returns above mean 

ht_L3 third L moments Per_all_mode Percentage of all returns above mode 

ht_L4 fourth L moments First_abv_mean First returns above mean 

ht_L_kurtosis L moment kurtosis First_abv_mode First returns above mode 

ht_L_skewness L moment skewness All_abv_mean All returns above mean 

ht_L_CV L moment coefficient of variation All_abv_mode All returns above mode 

ht_P01 1st percentile of height First_returns Total first returns 

ht_P05 5th percentile of height All_returns Total all returns 

ht_P10 10th percentile of height Canopy relief ratio ((mean-min)/(max-min)) 

ht_P20 20th percentile of height   

 

2.3.4. Landsat data and processing 

We selected an orthorectified Landsat 5 TM Level-1 image acquired on June 19, 2011 to 

estimate AGB (path/row: 15/29). The image was downloaded from the U.S. Geological Survey 

Earth Explorer web site (https://earthexplorer.usgs.gov/). The image was chosen to minimize 

both time between Landsat and lidar data acquisitions and cloud cover over the study area.  We 

did not use Landsat 7 data due to the impact of the Scan Line Corrector failure. Although the 
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Landsat image was collected earlier in the growing season than the lidar images, this was the 

cloud free image that best coincided with the forest inventory data collection.  

Using the metadata associated with the downloaded Landsat imagery, radiometric 

correction was applied to convert digital numbers into reflectance and mitigate the impact of 

scene illumination and viewing geometry. Dark object subtraction was applied for atmosphere 

correction, which was intended to remove the effects of atmosphere scattering and absorption. 

Both radiometric and atmosphere corrections were performed using ENVI 5.2  

(http://www.harrisgeospatial.com/Software-Technology/ENVI). Bands 1–5 (blue (B1), green 

(B2), red (B3), near infrared (B4), and shortwave infrared (B5)), and band 7 (shortwave infrared 

(B7)) reflectance values and vegetation indices derived from these bands were used for model 

variable selection. Five indices commonly used for vegetation analysis were used in the study: 

Differenced Vegetation Index (DVI), Ratio Vegetation Index (RVI), Normalized Vegetation 

Difference Index (NDVI), Soil Adjusted Vegetation Index (SAVI) and Modified Soil Adjusted 

Vegetation Index (MSAVI) (Table 2-5). 

Table 2-5. Landsat 5 vegetation indices used in this study: DVI (differenced vegetation index), RVI (ratio 

vegetation index), NDVI (normalized vegetation difference index), SAVI (soil adjusted vegetation index) and 

MSAVI (modified soil adjusted vegetation index). Landsat 5 bands B3 (red) and B4 (near-infrared) were 

applied for index calculation.  

Vegetation index Equation Source 

DVI 𝐵4 − 𝐵3 Bacour et al. (2006) 

RVI 
𝐵4

𝐵3
 Jordan (1969) 

NDVI 
𝐵4 − 𝐵3

𝐵4 + 𝐵3
 Tucker (1979) 

SAVI 1.5 ×
𝐵4 − 𝐵3

𝐵4 + 𝐵3 + 0.5
 Huete (1988) 

MASVI 
2 × 𝐵4 + 1 − √(2 × 𝐵4 + 1)2 − 8 × (𝐵4 − 𝐵3)

2
 Qi et al. (1994) 
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2.3.5. Model establishment and variable selection 

This study explored the relationship between forest inventory plot AGB and remote 

sensing derived variables. The model dependent variable was plot level AGB with Landsat 

derived variables, lidar derived variables, and variables derived from both datasets applied as 

predictors. We built three models to estimate AGB using MLR, RF and GWR: (1) Model I: 

Landsat predictors only; (2) Model II: lidar predictors only; (3) Model III: both Landsat and lidar 

predictors.  

MLR was applied to estimate AGB based on the equation shown below. 

 𝐴𝐺𝐵𝑖 =  𝛽0 + ∑ 𝛽𝑗𝑋𝑖𝑗
𝑝
𝑗=1 + 𝜀𝑖 (i = 1, …, n) (2-1) 

where 𝛽0  is the intercept, 𝛽𝑗  are model coefficients, and 𝑋𝑖𝑗  represents the remote sensing 

derived predictors. There are several commonly used variable selection methods when applying 

MLR: forward selection, backward selection, and stepwise selection. Forward selection starts 

with the most significant variable in the model and adds the most significant variable among the 

remaining variables into the model one at a time until none of the remaining variables is 

statistically significant. Backward selection starts with all variables in the model and removes the 

least significant variable one by one until all the variables in the model are statistically 

significant at a chosen level. Both forward and backward selection neglects the interaction 

among variables, which could result in nonsignificant variables in the model while significant 

variables are left out. Stepwise selection adds or removes one variable at each step to ensure all 

variables in the model are significant while none of the variables outside the model are 

significant to enter the model. Stepwise selection was applied using SAS software 
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(https://www.sas.com/en_us/software/sas9.html) in this study. Our significance level to enter and 

significance level to stay were both 0.15, which were default values for the software. After 

performing variable selection, we confirmed that all variables in the model were significant at a 

0.10 significance level. We also checked the model variance inflation factor to verify that there 

was no multicollinearity among independent variables. The predictors selected in MLR were also 

applied in RF and GWR models.  

RF is a non-parametric machine learning algorithm that was implemented using the 

“RandomForest” package (Liaw and Wiener, 2002) within the R software environment 

(http://www.R-project.org). RF can be used for regression or classification depending on the type 

of variable to be estimated. Compared with linear regression techniques, RF has lower bias and 

avoids overfitting (Boisvenue et al., 2016; Ghosh and Behera, 2018; Gleason and Im, 2012; Tian 

et al., 2017). RF grows many trees to vote for a result, which makes it insensitive to outliers and 

noise (Ghosh and Behera, 2018; Gleason and Im, 2012). For each tree, approximately two-thirds 

of the original data was randomly chosen to build the tree, and the remaining data was used for 

estimating out-of-bag error and calculating variable importance. In this study, RF was applied to 

estimate AGB using forest inventory plots as reference data and Landsat derived variables, lidar 

derived variables, and variables derived from both datasets applied as predictors. Default RF 

parameters were applied. The default value is 500 for ntree, ⅓ of the total predictors for mtry and 

5 for nodesize.  

GWR is an extension of standard regression that allows coefficients for environmental 

covariates to vary at different locations (Kumar et al., 2012). Localized coefficients of GWR are 

based on weighting observations around a sample point using a distance decay function. The 

https://www.sas.com/en_us/software/sas9.html
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closer the data point is to the sample point, the greater the weight applied. GWR is a powerful 

approach for modeling spatially heterogeneous processes. GWR provides useful information 

about the impact of surrounding environmental factors and neighboring competitors on tree 

growth variation. In this study, GWR was applied using GWR 4.0 software 

(https://gwrtools.github.io/gwr4-downloads.html). The bandwidth was selected by minimizing 

Akaike Information Criterion (AIC) 

2.3.6. Validation methods 

To assess model performance, we calculated coefficient of determination (R2), adjusted 

R2, AIC, Root Mean Squared Error (RMSE), and Predicted Sum of Squares (PRESS). R2 is the 

proportion of dependent variable variation that can be explained by the independent variables in 

the model and provides information about the goodness of fit of a model. Higher R2 value are 

preferable; however, R2 increases every time a new independent variable is introduced into the 

model. Therefore, to avoid any bias associated with this issue, we calculated adjusted R2 because 

it does not increase as the number of independent variables increases. AIC is a measure of the 

goodness of fit of an estimated model and provides a means to compare model fit for a given 

dataset. The PRESS statistic gives a good indication of the predictive power of the fitted model. 

A small PRESS usually indicates that the model is not overly sensitive to any single data point. 

For RF and GWR, we applied the same selected variables for each model to keep the comparison 

between statistical methods consistent.  

https://gwrtools.github.io/gwr4-downloads.html
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2.4. Results 

2.4.1. Comparison of Landsat, lidar and integration of Landsat and lidar. 

Table 2-6 compares the MLR, RF and GWR model results using all 270 hardwood, 

softwood and mixed forest plots where AGB ranged from 0.85 to 440.27 Mg ha-1. None of the 

approaches performed well using only Landsat data (Model I), with MLR and GWR having the 

highest R2 (0.11); RMSE values were similar across the three Landsat only approaches. Using 

lidar data only (Model II), MLR had the highest R2 (0.52) while GWR has the lowest RMSE 

(55.97 Mg ha-1). Using an integration of lidar and Landsat data (Model III), MLR had the highest 

R2 (0.57) and lowest RMSE (55.19 Mg ha-1). MLR had the highest R2 values for Model I, II and 

III. Although MLR has slightly higher RMSE value compared with GWR models, the 

differences were minor. Thus, given that MLR is much easier to apply in most situations, MLR 

was applied for further analysis.  

Table 2-6. Comparison of MLR, RF and GWR for estimating AGB in 270 plots in HWF. Model I uses 

Landsat data only; Model II uses lidar data only; Model III uses an integration of Landsat and lidar data.  

 Predictors MLR RF GWR 

  R2 
RMSE  

(Mg ha-1) 
R2 

RMSE  

(Mg ha-1) 
R2 RMSE  

(Mg ha-1) 

Model I B3, B4, B5 0.11 78.49 0.08 78.75 0.11 78.16 

Model II 

Ht_min; ht_P01; ht_P40; 

ht_skewness; ht_kurtosis; ht_L2; 

ht_L_kurtosis 

0.52 58.36 0.41 63.05 0.51 55.97 

Model III 

B4; B5; ht_min; ht_L2; ht_L_CV; 

ht_P50; Per_first_5m; 

Per_first_mean 

0.57 55.19 0.45 61.17 0.54 55.47 

 

Table 2-7 provides a comparison of model fitting results for Model I, II and III. Model I 

and II used Landsat and lidar independent variables, respectively. Model III used an integration 

of Landsat and lidar independent variables. As can be seen, Model II explains 50% of the 
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variation in AGB and is better than Model I in terms of all of the statistics we considered. Based 

on this study site, it is clear that lidar data was better than Landsat data in forest AGB estimation 

when only a single data source is used. However, Model III had better performance than both 

Model I and Model II, explaining 55% of AGB variation, with significantly decreased AIC, 

RMSE and PRESS. This demonstrates that integration of Landsat and lidar data could improve 

AGB estimation compared to using Landsat or lidar data alone.  

Table 2-7. Comparison of MLR models for estimating AGB in 270 plots in HWF. Model I uses Landsat data 

only; Model II uses lidar data only; Model III uses an integration of Landsat and lidar data. 

Model R2 Adjusted R2 AIC 
RMSE 

(Mg ha-1) 
PRESS 

I 0.11 0.09 2360 78.49 1707513 

II 0.52 0.50 2206 58.36 954298 

III 0.57 0.55 2177 55.19 861565 

 

2.4.2. AGB estimation at different forest stand types 

Our data was divided into three forest stand types based on the AGB majority in each plot. 

In contrast to the results reported in Table 2-7 where the three MLR models were applied to all 

270 plots, in this step, we applied the three models separately to each forest type group. A 

summary of the results is shown in Table 2-8. For Model I, adjusted R2 values from the forest 

type specific models are higher in hardwood and mixed plots and lower in softwood plots 

compared with the adjusted R2 for the pooled model (0.09; Table 2-7). Among the three forest 

types, hardwood plots have the highest adjusted R2 for Model I. For Model II and III, adjusted R2 

values from the forest type specific models are higher in softwood and mixed plots and lower in 

hardwood plots compared to the adjusted R2 values from the pooled model. The models that used 

only Landsat data performed best in hardwood plots while the lidar only and integrated Landsat 

and lidar data models had their best performance in softwood plots.  
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In all forest stand types, when a single data source was used, the lidar-based model 

always outperformed the Landsat model. Integration of Landsat and lidar data had the best 

performance for hardwood and mixed forest AGB estimation; integrating data did not provide 

improvement over the lidar only model for softwood forest. 

Table 2-8. Results of AGB estimation for different forest stand types (hardwood, softwood and mixed) using 

Landsat only (I), lidar only (II) and integration of Landsat and lidar (III) models. 

Stand type Count Model R2 Adjusted R2 AIC 
RMSE 

(Mg ha-1) 
PRESS 

Hardwood 

 I 0.17 0.15 1680 75.22 1135975 

194 II 0.50 0.47 1594 59.34 732410 

 III 0.55 0.53 1573 56.14 664276 

Softwood 

 I 0.22 0.03 150 97.52 191205 

16 II 0.97 0.92 110 27.43 123050 

 III 0.90 0.70 131 54.42 463699 

Mixed 

 I 0.15 0.11 513 69.84 310972 

60 II 0.60 0.53 480 50.54 180521 

 III 0.65 0.58 474 47.79 174537 

 

2.4.3. Model comparison at different forest AGB ranges 

To test the impact of different AGB value ranges on model performance we ranked our 

forest inventory plots by AGB value, and then grouped the data into four subgroups using two 

methods. The first method had subgroups with an equal number of plots (Table 2-9), the second 

method distributed the AGB value ranges evenly across the subgroups (Table 2-10). We used 

comparison of means of pairs of subgroups to determine if the data division meaningfully 

separated the subgroups. The mean comparison result showed that each data subgroup was 

significantly different from other subgroups regardless of whether we divided the data by plot 

count or AGB range.  
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Both of the methods used to divide the data showed common trends (Figure 2-2) in terms 

of adjusted R2, with better performance in the low and high AGB value ranges compared to 

intermediate AGB values. The Landsat only model had the lowest adjusted R2 regardless of 

subgroup. Integration of Landsat and lidar data had the largest adjusted R2 among the three 

models, except for subgroup R2. However, in terms of AIC, Model III was better than Model II 

in only half of the subgroups (N1, N3, R3 and R4). In all other subgroups, although Model III 

improved Model II both in adjusted R2 and AIC, the improvement was limited. 

Table 2-9. Model comparison on AGB subgroups divided by equal number of plots.   

Data N 
AGB range 

(Mg ha-1) 
Model R2 Adjusted R2 AIC 

RMSE 

(Mg ha-1) 
PRESS 

N1 

 

< 128 

I 0.12 0.08 464 31.01 69469 

67 II 0.55 0.47 432 23.43 43507 

 III 0.59 0.52 427 22.48 41545 

N2 

  I 0.03 -0.02 384 16.34 19103 

68 128–186 II 0.23 0.11 380 15.32 17903 

  III 0.25 0.12 380 15.24 18352 

N3 

  I 0.02 -0.02 388 16.90 20568 

68 186–242 II 0.15 0.01 391 16.59 21954 

  III 0.35 0.23 375 14.63 18759 

N4 

  I 0.09 0.05 500 40.69 119461 

67 > 242 II 0.29 0.17 496 37.92 118620 

  III 0.30 0.17 497 37.97 138875 
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Table 2-10. Model comparison on AGB subgroups divided by equal AGB ranges. 

Data N 
AGB range 

(Mg ha-1) 
Model R2 Adjusted R2 AIC 

RMSE 

(Mg ha-1) 
PRESS 

R1 

  I 0.16 0.11 367 27.10 44205 

55 < 110 II 0.60 0.52 338 19.95 26670 

  III 0.62 0.53 338 19.77 30782 

R2 

  I 0.05 0.03 753 26.76 84770 

114 110–210 II 0.24 0.18 740 24.62 73815 

  III 0.24 0.16 743 24.84 77612 

R3 

  I 0.03 -0.01 595 28.71 76037 

88 210–310 II 0.16 0.06 594 27.71 78874 

  III 0.22 0.12 589 26.82 73583 

R4 

  I 0.35 0.13 101 43.19 37214 

13 > 310 II 0.99 0.95 62 10.64 83752 

  III 1.00 0.98 43 5.69 14469 

 

(a)  (b)  
Figure 2-2. Adjusted R2 values using different model. (a) Subgroups divided by equal number of plots (N1, N2, 

N3 and N4); (b) subgroup divided by equal AGB value range (R1, R2, R3 and R4). 

 

2.5. Discussion 

In this study, we compared the ability of MLR, RF, and GWR approaches in modeling 

AGB variation. MLR had slightly better performance than GWR, with RF having the weakest 

performance regardless of input data type. This was contrary to the study by Fassnacht et al. 



 

31 

 

 

(2014), who found that RF yielded better performance in a comparison that included stepwise 

linear regression, support vector machines, Gaussian processes and k-nearest neighbor. Our 

results were consistent with Li et al. (2014) who compared MLR and RF in biomass estimation 

on a single study site.  Fassnacht et al. (2014) concluded that there is still no general agreement 

on best practices and that further comparative analysis is needed. There are several possible 

explanations for the better performance of MLR over RF in our study. One of the advantages of 

using RF is the ability to handle a large dataset. As stated in earlier studies, RF may result in 

considerable variance of the estimates when applied to a small number of sample units (Latifi et 

al., 2012).  The second portion of this study suggests that model performance is highly dependent 

on site conditions. A normality test of the forest inventory plot AGB shows that the data is 

normally distributed with p values over 0.15 from Anderson-Daring and Shapiro-Wilk normality 

tests. GWR generally had better model prediction outcomes than MLR, which can be attributed 

to its capacity to capture spatial autocorrelation and heterogeneity (Gagliasso et al., 2014; 

Propastin, 2012; Zhang and Shi, 2004). In our study, GWR has similar outcomes with MLR, 

which can be attributed to the nature of regularly distributed plot locations. Zhang et al. (2009) 

had found GWR has similar coefficients with MLR in regular plantations.  However, there was 

substantial higher cost in performing GWR in this study. 

Using Landsat data, airborne lidar data, and the integration of the two data sources for 

calculating AGB over different forest types was compared in this study. The models we 

developed that were based only on Landsat data did not explain AGB variation. Prior studies 

have found the relationship between AGB and Landsat derived information to be extremely 

variable (Garcia et al., 2017; Lu, 2006). Avitabile et al. (2012) found that Landsat could be used 

to produce accurate and detailed estimates of biomass distribution, while Ediriweera et al. (2014) 
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concluded there was no strong relationship between Landsat derived information and ground 

measured AGB in their study. Lu (2005) found that as sites become more complex, the 

correlation between AGB and Landsat TM spectral response decreases while the correlation with 

Landsat TM derived texture information increases. Landsat data is limited by its inherent spatial, 

spectral and radiometric resolutions. The 30 m ground sampled distance of Landsat data 

introduces mixed pixels and an inability to deal with in-pixel forest complexity. Multiple land 

cover types contribute to each pixel value, which made the Landsat data less able to characterize 

AGB, which is problematic given the impact that forest type has AGB estimation success shown 

in our study. The moderate spectral resolution of the Landsat sensors also limits the ability to 

differentiate subtle differences among forest sites. The older Landsat missions were also limited 

by their 8-bit radiometric resolution. This resolution exacerbates the saturation problem often 

reported in the literature. Canopy reflectance saturation has been found in sites with complex 

forest structure and high biomass values (Ediriweera et al., 2014; Lu, 2005; Lu, 2006).  

Lidar can overcome the data saturation shortcoming of Landsat by obtaining forest 

vertical structure information. Lidar is also extremely useful for regions constantly covered by 

clouds. A number of studies have reported that lidar can obtain more accurate results for AGB 

estimation than Landsat (Cao et al., 2014; Gleason and Im, 2012; Lu et al., 2012); Garcia et al. 

(2017) stated that lidar is the most accurate remote sensing technology for biomass estimation. 

The results from this study showed that the best performance came from the models that relied 

on integration of lidar and Landsat data, which were slightly better than the models that used 

only lidar data. Previous studies explored the integration of lidar and Landsat in AGB estimation 

and these also concluded that this data combination was better than using lidar or Landsat alone 
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(Babcock et al., 2018; Deo et al., 2017; Ediriweera et al., 2014; Hudak et al., 2002; Hyde et al., 

2006; Phua et al., 2017; Yavaşlı, 2016).  

Our study showed AGB estimation accuracy can be impacted by site conditions, 

predictor variables incorporated, and prediction model. Fassnacht et al. (2014) concluded that 

remote sensing data types the most important factor in their study, followed by prediction 

method and sample size; however, Fassnacht et al. (2014) did not account for the impact of site 

conditions in their study and acknowledged that more comprehensive analysis is needed to 

establish best practices. The impact of remote sensing data source and prediction method was 

also confirmed by Avitabile et al (2012) who found that adding land cover information could 

improve model prediction and RF performed better than multiple linear regression. Avitabile et 

al. (2012) applied the same model to two tropical sites and found the site with a more humid 

climate had larger errors likely due to the impact of higher rainfall.  

The results from this study showed that forest stand-specific models produced better 

estimations of AGB than the pooled models in hardwood and mixed plots using Landsat data, 

and better estimations in softwood and mixed plots using lidar or an integration of lidar and 

Landsat data. Landsat data performed better in AGB estimation of hardwood stands than 

softwood stands in our study. Similar results have be reported in previous research using Landsat 

data (Zheng et al., 2004; Zheng et al., 2007). Our study also matched prior work that showed that 

estimating hardwood AGB is more difficult than softwood when using airborne lidar derived 

variables (Boudreau et al., 2008; Næsset, 2004; Popescu et al., 2003). Nelson et al. (2017) 

estimated AGB in the continental US and Mexico for wetland, hardwood, conifer, mixed wood 

and burn lands. Similar to this study, their results showed lidar derived variables had the best 
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performance in conifer stands (R2=0.72, RMSE = 69.29 Mg ha-1), followed by mixed wood 

(R2=0.71, RMSE = 50.00 Mg ha-1), and hardwood stands (R2=0.57, RMSE = 44.49 Mg ha-1). 

This discrepancy between Landsat and lidar data could be caused by both the different 

characteristics of data and tree structure. Landsat data is sensitive to forest horizontal expansion 

while lidar is superior at modeling forest vertical structure. Generally, hardwoods have high 

canopy cover compared to cone shaped softwood, which increases the detection chance in 

Landsat images. For softwood trees, the height detected by lidar is more correlated with AGB 

compare to hardwood trees, since a great amount of the AGB in a hardwood is distributed into 

lateral branches. Integration of Landsat and lidar data combines the advantages from both 

datasets and thus tends to have better results than using Landsat or lidar derived variables alone. 

Since the integrated model in our study tended to use more lidar variables than Landsat variables, 

the pooled model followed the same pattern as the lidar-only model, that is, performing best in 

the softwood plots, followed by mixed wood and hardwood. 

In this study, we divided plots in two different ways to explore if model performance 

varied for different AGB ranges. As noted above, when we used all of our available plot data to 

build the model, we found that an integration of Landsat and lidar data improved AGB 

estimation compared to the single data models. However, when applied to subgroups, the 

integration of Landsat and lidar did not always enhance the result. To accurately estimate AGB 

requires knowledge of the appropriate model application range as well as remote sensing data 

characteristics. Our results showed that the linear models performed better for low and high 

AGB values, regardless of how we divided the data. This might be due to the nature of ordinary 

least square methods, which try to accommodate extreme values, or it could mean that forest 

structure within plots that have either low or high AGB values are relatively simple and thus 
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easier to estimate. The extreme low or high AGB levels are from plots with few trees or dense 

forest, respectively, which may be less influenced by mixed pixel effects. There is a risk of 

overfitting when dividing data into groups, such as is likely the case for R4, the high AGB group, 

which has a small number of plots and illustrated particularly high model fit. 

2.6. Conclusion 

In this study we applied Landsat, lidar, and an integration of Landsat and lidar data for 

forest AGB estimation. Variables derived from Landsat and lidar data were used as independent 

variables and AGB value from forest inventory plots was the dependent variable within the 

models. We compared AGB estimation performance of MLR, RF and GWR approaches and 

found that MLR had similar results as GWR, with both outperforming RF. We built MLR 

models using Landsat variables only, lidar variables only and variables from both datasets and 

tested the application of the models on all inventory plots, on plots with different forest types, 

and on plots with different AGB ranges. As expected based on prior studies, we found that lidar-

based models worked better than Landsat for forest AGB estimation in general. AGB range can 

impact the outcome of Landsat and lidar data integration, which was better than using either 

dataset alone in most situations. Our models performed better for low and high AGB values. The 

best performance for the Landsat models was in application to hardwood stands rather than 

softwood stands, which was contrary to the lidar models.  

Our study showed the importance of understanding site condition when considering the 

datasets and models to use for AGB estimation. Accurate estimation of AGB requires knowledge 

of both remote sensing data characteristics and site conditions; no remote sensing dataset appears 

to be universally best across all site conditions. Our efforts aimed to improve understanding of 
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the interaction between remote sensing data and site conditions, so that we can better select and 

apply the most suitable dataset in order to enhance model performance. The variation in model 

performance across forest type or AGB level observed in this study suggests that AGB 

estimation may be improved through preliminary classification based on forest type or biomass 

level. While a more comprehensive evaluation of a broader range of sites, particularly softwood 

plots, is needed to determine if generalizations of data are possible, extension of this study may 

facilitate more efficient application of both models and datasets.  
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3. Manuscript 2: Airborne lidar sampling strategies to enhance forest 

aboveground biomass estimation from Landsat imagery 

3.1. Abstract 

Accurately estimating aboveground biomass (AGB) is important in many applications 

including monitoring carbon stocks, investigating deforestation and forest degradation, and 

designing sustainable forest management strategies. Although lidar provides critical three-

dimensional forest structure information for estimating AGB, acquiring comprehensive lidar 

coverage is often cost prohibitive. This project focused on developing a lidar sampling 

framework to support AGB estimation from Landsat images. Two sampling strategies, 

systematic and classification-based, were tested and compared. Analysis was performed over a 

temperate forest study site in northern New York State and the process was then validated at a 

similar site located in central New York State. Our results demonstrated that while inclusion of 

lidar data using systematic or classification-based sampling supports AGB estimation, the 

systematic sampling selection method was highly dependent on site conditions and had higher 

accuracy variability. The classification-based lidar sampling strategy was easy to apply and 

provides a framework that is readily transferable to new study sites.  

Keywords: systematic sampling; classification-based sampling; forest types; data fusion; 

regression; Random Forest 

3.2. Introduction  

3.2.1. Remote sensing forest AGB estimation 

Forest ecosystem management requires comprehensive, timely and accurate monitoring 

efforts (Matasci et al., 2018). Above ground biomass (AGB) is an important indicator in 
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monitoring the change of forest carbon stocks. Airborne lidar has been successfully applied to 

estimate forest biophysical parameters and has proved to provide accurate AGB estimation in 

many studies (Chen et al., 2012; Maltamo et al., 2006), particularly when used in coordination 

with data from passive sensors. Commonly used remote sensing data sources, such as Landsat 

(Lu et al., 2012), Moderate Resolution Imaging Spectroradiometer (MODIS; Zhang et al., 2014) 

and radar (Baghdadi et al., 2015), tend to reach a saturation point that limits their effectiveness in 

estimating higher AGB levels (Knapp et al., 2018). The saturation level of radar varies with the 

bands applied. For example, the X- and C-band backscatters saturate at low biomass levels (30–

50 Mg ha-1; Zhang et al., 2014) and L-band saturation ranges from 40–150 Mg ha-1 (Mitchard et 

al., 2009). Lidar does not suffer from this saturation problem and thus is able to more accurately 

estimate AGB (Hajj et al., 2017). However, lidar acquisitions are often practically limited by cost 

or data volume. Although the increasing availability of unmanned aerial vehicles (UAVs) is 

providing new avenues for data collection, the cost and effort to acquire lidar data are still higher 

than passive sensors like Landsat, MODIS, or Sentinel. Moreover, acquiring full coverage lidar 

is often infeasible for large area studies due to the data volume. Kelly and Di Tommaso (2015) 

provide an example of a 5-hectare forest stand that can be covered by a 300 byte Landsat 

Thematic Mapper (TM) image or a 50 Mb 10 pulse/m2 lidar dataset. These cost and data 

limitations inhibit the widespread and ready availability of lidar data.  

3.2.2. Lidar and Landsat fusion 

Sensors like those onboard the Landsat satellites can provide extensive forest coverage 

with low cost but offer limited capacity for vertical characterization. Conversely, lidar can 

provide accurate measurements of forest attributes in the vertical plane; however, as mentioned 

above, lidar acquisitions are often limited in horizontal extent due to issues with cost and data 
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volume. Additionally, lidar cannot capture all necessary forest attributes. For example, Erdody 

and Moskal (2010) discuss the limitation of lidar data in discerning tree species. To mitigate the 

weaknesses of each data type, fusion of lidar and Landsat has been proposed and explored for 

AGB estimation (Ediriweera et al., 2014; Lu et al., 2012). The advantages of lidar and Landsat 

data fusion are twofold: (1) the synergistic usage of advantages from both datasets, and (2) with 

appropriate sampling, full lidar coverage is not required. 

3.2.3. Lidar sampling 

Researchers have applied lidar sampling to mitigate the limitations associated with 

managing cost and data volume. Instead of collecting full-coverage data, lidar sampling can 

significantly reduce the time and effort needed for data collection, organization and processing. 

Lidar samples supply detailed information on specific locations that can be used to calibrate 

models to derive forest attributes for other regions (Ørka et al., 2012). Studies have demonstrated 

that lidar sampling can provide estimates for biomass (Ene et al., 2016; Næsset et al., 2009) or 

forest height (Hudak et al., 2002). Researchers have used numerous statistical methods to 

extrapolate forest biophysical parameters beyond lidar samples to represent a broader area of 

interest. For example, Boudreau et al. (2008) used intermediate samples of airborne lidar data to 

extrapolate AGB estimates from plot-level forest inventory data to a broader spaceborne lidar 

coverage. In a two-stage method, they first developed a lidar-based biomass equation to relate 

plot-level biomass and airborne lidar derived variables and then applied the equation to estimate 

biomass throughout the airborne lidar coverage. The second stage developed a regression 

equation between the lidar derived biomass and spaceborne ICESat Geoscience Laser Altimer 

System (GLAS) metrics in order to extrapolate the limited lidar biomass estimates to the broader 

GLAS coverage. 
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 There are two approaches to reduce lidar data volume—thinning lidar density and 

reducing lidar extent—that have proved to have minimal impact on accuracy estimation of 

biophysical parameters compared with using full lidar data coverage. For example, Holmgren, 

(2004) reduced laser density from 4.3 to 0.1 pulses/m2 and observed minimal change in errors for 

estimation of mean tree height, basal area, and stem volume. This was also confirmed by 

Maltamo et al., (2006) who reported that simulated point density reduction had no effect on 

volume estimation accuracy. Instead of using full lidar data coverage, Chen and Hay (2011) 

sampled 17.6% of total lidar extent and achieved similar accuracies as the full lidar data in 

estimating canopy height.  

Decisions regarding lidar sample locations are critical. Countless lidar samples can be 

generated with similar data collecting efforts but may generate different analysis outcomes. It is 

preferable to use lidar samples that best characterize the study area in order to achieve similar 

outcomes as comprehensive lidar coverage. Sampling methods used to reduce lidar coverage 

generally fall into two categories: systematic sampling and classification-based sampling. In 

systematic lidar sampling, data is collected based on a designated sampling unit and distance 

interval. The distribution of sampling units may be point, strip, or grid based. Tsui et al. (2013) 

sampled lidar data using a grid pattern in which horizontal and vertical lines had distance 

intervals of 1000 m. Hudak et al. (2002) sampled lidar data using both strip and point patterns 

with distance intervals of 250 m, 500 m, 1000 m, and 2000 m. Systematic sampling is easy to 

design and apply, but it might fail to represent the full data range, especially if only a small 

portion of data is sampled. Classification-based sampling can help compensate for this situation 

by better representing all value ranges. In classification-based sampling, a classification map is 

created and then applied to assist lidar sample selection. Chen and Hay (2011) aimed to model 
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forest canopy height from lidar samples that were selected by combining pseudo-height 

classification from QuickBird imagery with several other inputs in a rule-based model. The rules 

included non-overlapping transects, covering all height classes, and selecting pseudo-height 

histograms with the highest correlation to the pseudo-height histogram derived from all data. 

Previous studies have considered both systematic sampling and classification-based sampling 

though there has not been a comparison of these two strategies. 

3.2.4. Objectives 

The overall aim of this study was to deepen our understanding of lidar sampling for AGB 

estimation. While the value of lidar sampling has been well documented and various lidar 

sampling strategies have been proposed, there are no widely accepted protocols for cost-effective 

lidar sampling for AGB estimation. Additionally, while forest type has long been recognized as a 

factor in AGB estimation, prior studies have not documented the use of forest type classification 

for lidar sampling selection within this field. This paper presents a methodological framework to 

map AGB in temperate forests by combining ground-based inventory data, comprehensive 

Landsat data and lidar samples acquired using a variety of methods. We particularly focused on: 

(1) assessing whether lidar samples can substitute for comprehensive lidar data collection, (2) 

characterizing the differences in AGB estimation based on systematic and classification-based 

sampling lidar sampling strategies, and (3) providing a protocol for lidar sampling acquisition, 

implementation, and evaluation.  
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3.3. Data and methods 

3.3.1. Study areas 

3.3.1.1. Main study area: Huntington Wildlife Forest 

Our main study area is the Huntington Wildlife Forest (Huntington) in the central 

Adirondack Park in northern New York State. The Huntington property provided a location for 

evaluating the value of different lidar sampling procedures and developing a sampling protocol. 

Huntington is managed by the State University of New York College of Environmental Science 

and Forestry (SUNY-ESF; 43°58'19" N, 74°13'18" W; Figure 3-1). Huntington covers 

approximately 60 km2 area with mountainous topography ranging in elevation from 466 m to 

859 m above mean sea level. Huntington has a mean annual temperature of 4.4°C and mean 

annual precipitation of 1010 mm (Shepard et al., 1989). Huntington contains both undisturbed 

natural communities and managed forest stands with major species being American beech 

(Fagus grandifolia), yellow birch (Betula alleghaniensis Britt.), sugar maple (Acer saccharum 

Marshall.), red spruce (Picea rubens Sarg.), red maple (Acer rubrum L.) and hemlock (Tsuga 

spp.).   
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Figure 3-1. Location of Huntington Wildlife Forest in New York State. The figure shows the distribution of 

270 forest inventory plots overlaid on a lidar generated digital elevation model. 

 

3.3.1.2. Test study area: Heiberg Memorial Forest 

Our test study area is the Heiberg Memorial Forest (Heiberg) south of Syracuse in central 

New York State. Heiberg is also managed by SUNY ESF (42°47'12" N, 76°05'37" W; Figure 

3-2). Heiberg provided an independent site for testing the lidar sampling protocol developed at 

Huntington.  Heiberg covers approximately 16 km2 with elevation ranging from 383 m to 625 m 

above mean sea level. The majority of Heiberg is conifer plantations (6.64 km2, 42%), Allegheny 

hardwoods (5.65 km2, 36%) or open areas (2.39 km2, 15%). Predominant conifer species include 

Norway spruce (Picea abies), hemlock (Tsuga), white pine (Pinus strobus) and eastern larch 

(Larix laricina). Deciduous tree species mainly include maple (Acer), ash (Fraxinus L.), beech 

(Betula), and basswood (T. americana). 
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Figure 3-2. Location of Heiberg Memorial Forest in New York State. The forest inventory plots (white dots) 

are overlaid on a true color Landsat 5 image composite. 

 

3.3.2. Field inventory data 

SUNY ESF maintains continuous forest inventory (CFI) plots within Huntington and 

Heiberg forests, with comprehensive data collection during the summer of 2011 and 2010, 

respectively. The CFI plots are approximately 405 m2 circular regions, with the center of each 

plot located using a global positioning system receiver. All trees in the plot with diameter at 

breast height (DBH) of 11.7 cm or greater were measured in Huntington and 9.1 cm or greater 

were measured in Heiberg. Information recorded for each tree included tree species, DBH, and 

location relative to the plot center.  

Based on the field observations, tree-level AGB was calculated using species-specific 

DBH allometric equations from Jenkins et al. (2003). Plot-level AGB was calculated as the 

average AGB per unit area within each plot in megagrams per hectare (Mg ha-1). This was 
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calculated by dividing the tree-level AGB total by the plot area. Table 3-1 presents plot-level 

AGB descriptive statistics for Huntington and Heiberg forests.  

The United Nations Economic Commission for Europe (UNECE) Food and Agriculture 

Organization (FAO; UNECE/FAO, 2000) defines a stand as mixed forest where neither 

broadleaved nor coniferous trees account for more than 75% of the tree crown area. We adapted 

the UNECE/FAO approach and defined a plot as hardwood if the hardwood AGB within the plot 

was over 75% of the total AGB. Softwood plots were similarly defined when at least 75% of the 

total AGB was softwood AGB. Mixed forest plots had neither softwood nor hardwood 

accounting for more than 75% of the total AGB. Table 3-1 provides descriptive statistics for plot 

level AGB in hardwood, softwood, and mixed plots in Huntington and Heiberg forests. 

Table 3-1. Plot level AGB descriptive statistics for all plots and plots grouped by forest type (hardwood, 

softwood, and mixed) in Huntington and Heiberg forests (units: Mg ha-1). 

Study area Forest type Plot count Mean Median Variance Min Max 

Huntington Total 270 186.6 186.3 6808.0 0.9 440.3 

 Hardwood 194 182.3 184.5 6693.1 0.9 440.3 

 Mixed 60 211.9 208.7 5461.0 68.8 390.7 

 Softwood 16 144.3 133.9 9771.0 9.1 314.7 

Heiberg Total 43 212.6 215.9 9672.9 2.0 375.8 

 Hardwood 31 220.8 249.7 9699.2 2.0 375.8 

 Mixed 9 220.3 249.0 7846.7 76.4 323.9 

 Softwood 3 104.9 59.5 7548.8 50.1 205.1 

 

3.3.3. Lidar data and processing 

Airborne lidar data was acquired for Huntington and Heiberg on September 10, 2011 and 

August 10, 2010, respectively. ALS60 lidar systems were used to simultaneously collect both 

discrete return point clouds and the waveforms of the returned signals. Characteristics of the 

lidar data collections for Huntington and Heiberg are summarized in Table 3-2. Raw laser data 

was post-processed by Kucera International using Terrasolid’s TerraScan software 
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(https://www.terrasolid.com/home.php). All further point-cloud processing tasks were performed 

within FUSION software (http://forsys.cfr.washington.edu/fusion/fusionlatest.html). 

Table 3-2. ALS60 system settings and raw laser statistics of the lidar data collection for Huntington and 

Heiberg forests. 

Study site Huntington Heiberg 

Scan field of view (FOV) 24° 28° 

Outgoing pulse width 4 ns 4 ns 

Flying altitude 540 m 487 m 

Swath width ~542 m ~554 m 

Average point density >10 pts/m2 >7 pts/m2 

Laser pulse rate 218.7 kHz 183.8 kHz 

Acquisition date September 10, 2011 August 10, 2010 

 

Lidar variables were derived from the lidar points within each inventory plot using the 

CloudMetrics function in FUSION. Return-based, height-based, and density-based variables 

were derived (Table 3-3). 

http://forsys.cfr.washington.edu/fusion/fusionlatest.html
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Table 3-3. Description of lidar derived variables calculated. Calculation details are described by McGaughey 

(2019). 

Variable name Description Variable name Description 

Pt_total Total number of returns ht_P50 50th percentile of height 

Pt_first Count of first returns ht_P60 60th percentile of height 

Pt_second Count of second returns ht_P70 70th percentile of height 

Pt_third Count of third returns ht_P75 75th percentile of height 

ht_min height minimum ht_P80 80th percentile of height 

ht_max height maximum ht_P90 90th percentile of height 

ht_mean height mean ht_P95 95th percentile of height 

ht_mode height mode ht_P99 99th percentile of height 

ht_stddev height standard deviation Per_first_5m Percentage of first returns above 5 m 

ht_variance height variance Per_first_mean Percentage of first returns above mean 

ht_CV height coefficient of variation Per_first_mode Percentage of first returns above mode 

ht_skewness height skewness Per_all_5m Percentage of all returns above 5 m 

ht_hurtosis height kurtosis Per_all_mean Percentage of all returns above mean 

ht_AAD 

height absolute deviation from 

mean Per_all_mode Percentage of all returns above mode 

ht_P01 1st percentile of height First_abv_mean First returns above mean 

ht_P05 5th percentile of height First_abv_mode First returns above mode 

ht_P10 10th percentile of height All_abv_mean All returns above mean 

ht_P20 20th percentile of height All_abv_mode All returns above mode 

ht_P25 25th percentile of height First_returns Total first returns 

ht_P30 30th percentile of height All_returns Total all returns 

ht_P40 40th percentile of height Canopy relief ratio ((mean-min)/(max-min)) 

 

3.3.4. Landsat data and processing 

We selected orthorectified Landsat TM Level-1 images acquired on June 19, 2011 

(path/row: 15/29) and July 18, 2010 (path/row: 15/30) that covered the Huntington and Heiberg 

forest areas, respectively. The images were downloaded from the U.S. Geological Survey Earth 

Explorer (https://earthexplorer.usgs.gov/). Although the Landsat images were collected earlier in 

the growing season than the lidar datasets, they were the cloud-free images that best coincided 

with the forest inventory data collection. 

Using the metadata associated with the downloaded Landsat images, radiometric 

correction was applied to convert digital numbers into reflectance aiming to mitigate the impact 
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of scene illumination and viewing geometry. Dark object subtraction was applied for atmosphere 

correction, which was intended to remove the effects of atmosphere scattering and absorption. 

Radiometric and atmosphere correction were both performed using ENVI 5.2  

(https://www.harrisgeospatial.com/). Landsat bands 1–5 and 7 (blue, green, red, near infrared, 

and two shortwave infrared), reflectance values and vegetation indices calculated from these 

bands were used for model variable selection. Five commonly used vegetation indices were 

applied in this study: Differenced Vegetation Index (DVI), Ratio Vegetation Index (RVI), 

Normalized Vegetation Difference Index (NDVI), Soil Adjusted Vegetation Index (SAVI) and 

Modified Soil Adjusted Vegetation Index (MSAVI) (Table 3-4). 

Table 3-4. Landsat TM vegetation indices used in this study: DVI (differenced vegetation index), RVI (ratio 

vegetation index), NDVI (normalized vegetation difference index), SAVI (soil adjusted vegetation index) and 

MSAVI (modified soil adjusted vegetation index). Landsat 5 red (B3) and near-infrared (B4) bands were used 

for index calculation.  

Vegetation 

index 
Equation Source 

DVI B4 – B3 
Bacour et al. (2006) (Bacour, Bréon, 

& Maignan, 2006) 

RVI 
𝐵4

𝐵3
 Jordan (1969) (Jordan, 1969) 

NDVI 
𝐵4 − 𝐵3

𝐵4 + 𝐵3
 Tucker (1979) (Tucker, 1979) 

SAVI 1.5 ×
𝐵4 − 𝐵3

𝐵4 + 𝐵3 + 0.5
 Huete (1988) (Huete, 1988) 

MASVI 
2 × 𝐵4 + 1 − √(2 × 𝐵4 + 1)2 − 8 × (𝐵4 − 𝐵3)

2
 

Qi et al. (1994) (Qi, Chehbouni, 

Huete, Kerr, & Sorooshian, 1994) 
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3.3.5. Lidar and Landsat fusion procedure 

3.3.5.1. Overview 

We used AGB data developed from full lidar coverage as a baseline to see if Landsat-

based AGB models that used lidar samples could achieve accuracies that approached that of 

models that used the more expensive full lidar coverage. We also sought to determine how 

accuracy varied with sampling strategy and if there was a way to establish a protocol to guide 

lidar sample collection. The work flow for this study is shown in Figure 3-3. The baseline for 

comparison in our study was an AGB model developed from the comprehensive lidar data 

coverage.  Forest inventory plot and lidar data were applied to build a first stage regression 

model that was then used to estimate AGB for the Huntington study area. The impact of different 

lidar sampling strategies was explored using second stage regression models, which established a 

relationship between samples of the lidar estimated AGB values and Landsat derived variables. 

Two categories of lidar sampling strategies were explored: systematic sampling and 

classification-based sampling. The classification-based sampling approach was based on a 

Random Forest (RF) forest type classification. To assess the accuracy of different sampling 

strategies, Landsat estimated AGB values generated from second stage regression models were 

validated using plot and lidar estimated AGB values using root mean square error (RMSE) and 

relative root mean square error (RRMSE).  
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Figure 3-3. Flowchart of the research process including data, sampling strategies, methods and results. 

 

3.3.5.2. Regression and variable selection 

This study explored the relationship between AGB and remote sensing derived variables 

using regression models based on the equation below: 

 𝐴𝐺𝐵𝑖 =  𝛽0 + ∑ 𝛽𝑗𝑋𝑖𝑗
𝑝
𝑗=1 + 𝜀𝑖(i = 1, …, n) (3-1) 

where 𝛽0  is the intercept, 𝛽𝑗  are model coefficients, and 𝑋𝑖𝑗  represents the remote sensing 

derived predictors. As discussed in the prior section, regression models were built in two distinct 

steps within the work flow (Figure 3-3). In the first stage regression model, the dependent 

variable was AGB for the 270 plots within the Huntington area and the predictors were selected 

from lidar derived variables using the forward variable selection method. Similar to prior studies 

(Ali et al., 2019; Van Vinh et al., 2019), using the natural logarithm of both dependent and 

predictor variables was found to achieve better performance for the first stage regression model. 

The second component of the analysis applied equation 3-1 to develop regression models for a 
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series of different sampling strategies (described in the next section). Shown as second stage 

regression models in Figure 3-3, these models used a sample of the lidar estimated AGB values 

as the dependent variable and Landsat variables as predictors without variable selection.  All 

variables were used to facilitate comparison by ensuring all second stage regression models had 

the same predictors.  

There are several commonly used variable selection methods when applying multiple 

linear regression: forward, backward, and stepwise selection. Forward selection starts with the 

most significant variable in the model and sequentially adds the next most significant variable 

into the model until none of the remaining variables are significant. Backward selection starts 

with all variables in the model and successively removes the least significant variable until all 

the variables in the model are significant at a chosen level. Stepwise selection adds or removes 

one variable at each step to ensure all variables in the model are significant while no variable 

outside the model is significant enough to enter the model. Forward selection was applied when 

building the first stage regression model because it supported easy application of the following 

procedures.  

3.3.5.3. Lidar sampling strategies 

Two sampling strategies were adopted in this study: systematic and classification-based 

sampling. In systematic sampling, combinations of three sampling patterns (point, strip, and grid) 

and four sampling intervals (500 m, 1000 m, 1500 m, and 2000 m) were applied to acquire 

twelve systematic lidar samples (Figure 3-4). A northwest-southeast alignment was applied to be 

consistent with the airplane flight path used during the lidar acquisition. The classification-based 

sampling used the same sampling pattern and amount of data as the best performing systematic 
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sampling strategy. However, instead of using a pre-defined distance interval, the classification-

based sampling selected data based on the forest type distribution within the samples.  

Based on the 542 m lidar data acquisition swath width, a 500 × 500 m square area was 

chosen as the basic sampling unit at Huntington. However, given the smaller forest extent of our 

test site, for the Heiberg area, a 200 × 200 m square area was chosen as the basic sampling unit. 

By reducing the basic sampling unit at Heiberg, we kept the overall area percentage sampled 

consistent with the Huntington analysis.    

 

 

Figure 3-4. Distribution of lidar samples generated from twelve systematic lidar sampling strategies. Each 

sampling strategy had a unique combination of sampling pattern, distance interval, and percentage of 

sampled area as indicated in the lower left corner of each panel. Sampled area is shown in color on top of the 

greyscale digital elevation model.  
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3.3.5.4. RF classification of forest type for classification-based sampling 

RF is a non-parametric machine learning algorithm that was implemented in this study 

using the “RandomForest” package (Liaw and Wiener, 2002) within the R software environment 

(http://www.R-project.org). RF can be used for regression or classification depending on the type 

of variable to be estimated. Compared with linear regression techniques, RF has lower bias and 

avoids overfitting (Boisvenue et al., 2016; Ghosh and Behera, 2018; Gleason and Im, 2012; Tian 

et al., 2017). RF grows many trees to vote for a result, which makes it insensitive to outliers and 

noise (Ghosh and Behera, 2018; Gleason and Im, 2012). For each tree, approximately two-thirds 

of the original data was randomly chosen to build the tree, and the remaining data was used for 

estimating out-of-bag error and calculating variable importance. In this study, RF was applied to 

develop a forest type classification map using forest inventory plots as reference data and 

Landsat derived variables as predictors. Default RF parameters were applied: 500 for ntree, 

square foot of the total predictors for mtry, and 1 for nodesize. 

3.3.5.5. Chi-square test for selecting classification-based samples 

For the classification-based sampling, there is a need to identify a sample that represents 

the overall distribution of forests within the study site.  There are multiple approaches that can be 

used to explore the relationship between a sample and the population.  The chi-square goodness 

of fit test is used to determine whether an observed categorical variable frequency distribution 

differs from an expected distribution.   

 

𝜒2 =  ∑
(𝑂𝑖 − 𝐸𝑖)2

𝐸𝑖
 

𝐸𝑖 = 𝑁𝑝𝑖 

(3-2) 
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where 𝑂𝑖  is the observed frequency, 𝐸𝑖  is the expected frequency, N is total number of 

observations, and 𝑝𝑖 is percentage of type i in the expected distribution. The similarity between 

observed and expected distribution can be reflected from 𝜒2 value. Smaller  𝜒2 value indicates 

more similar distributions. In this study, forest type distribution from the sampled area was our 

observed distribution and forest type distribution from the whole study area was our expected 

distribution. We divided study site into multiple non-overlapping strips. Using this method, we 

calculated the 𝜒2  value between the whole study area and each strip based on forest type 

distribution. Smaller 𝜒2  values correspond to strips forest type composition that was more 

similar to the whole study site. 

3.3.5.6. Accuracy assessment for second stage regression models 

Second stage regression models were assessed using model fitting R2. In addition, the 

Landsat AGB estimations generated from second stage regression models were compared to plot 

and lidar estimated AGB with accuracy reported using RMSE and RRMSE. The plot estimated 

AGB was calculated from ground inventory plots and the lidar estimated AGB was the estimated 

AGB value generated by applying the first stage regression model to the whole area. Plot 

estimated AGB was considered the best estimate of actual AGB. Therefore, plot tested RMSE 

was given more importance in terms of model comparison.  

 𝑅𝑀𝑆𝐸 =  √
1

𝑚
∑ (𝐴𝐺𝐵𝐿𝑎𝑛𝑑𝑠𝑎𝑡,𝑘 − 𝐴𝐺𝐵𝑟𝑒𝑓,𝑘)2𝑚

𝑘=1   (3-3) 

 𝑅𝑅𝑀𝑆𝐸 =  
𝑅𝑀𝑆𝐸

1
𝑚

∑ (𝐴𝐺𝐵𝑟𝑒𝑓,𝑘)𝑚
𝑘=1

 (3-4) 
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where 𝐴𝐺𝐵𝐿𝑎𝑛𝑑𝑠𝑎𝑡,𝑘 is Landsat derived AGB from second stage regression models,  𝐴𝐺𝐵𝑟𝑒𝑓,𝑘 is 

plot or lidar derived AGB, m is the number of validation data (k = 1, 2, …, m). 

3.4. Results 

3.4.1. Full lidar coverage AGB estimation 

All 270 forest inventory plots in Huntington were used when establishing the relationship 

between plot AGB and the lidar derived variables using the first stage regression model. The 

regression equation for the final model selected is shown in Equation 3-5.  This equation shows 

the two variables selected through the forward variable selection process: ht_P90 (90th percentile 

of lidar point heights) and Per_first_mean (percentage of first returns above mean return height 

within each plot). The model has an R2 of 0.58, RMSE of 67.9 Mg ha-1, and RRMSE of 36.4%. 

Figure 3-5 shows a scatter plot illustrating the relationship between the field-based plot AGB and 

the lidar estimated AGB for the Huntington site.  

 𝐴𝐺𝐵𝑝𝑙𝑜𝑡 =  𝑒−4.41 + 2.61× ln (ℎ𝑡_𝑃90)+ 0.39×𝑙𝑛 (𝑃𝑒𝑟_𝑓𝑖𝑟𝑠𝑡_𝑚𝑒𝑎𝑛) (3-5) 

 

Figure 3-5. Scatter plot between plot and lidar estimated AGB at the Huntington Wildlife Forest.  
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Raster layers of ht_P90 and Per_first_mean covering the whole area were created from 

the lidar point data. A cell size of 30 m was adopted for both raster layers to be consistent with 

the Landsat spatial resolution. The two raster layers were then applied in Equation 3-5 to 

generate a lidar estimated AGB map for Huntington (Figure 3-6). 

 

Figure 3-6. Lidar estimated AGB distribution map calculated using Equation 3-5 and the lidar derived 

ht_P90 and Per_first_mean raster layers. Lidar estimated AGB value at Huntington ranged from 0 to 784.89 

Mg/ha. Water areas were masked out. 

 

3.4.2. Systematic sampling AGB estimation for the Huntington area 

We used the AGB data developed from the full lidar coverage using Equation 3-5 as a 

baseline to see if the Landsat based AGB model using lidar samples can achieve accuracies that 

approached that of the more expensive full lidar coverage AGB estimation.  Several second stage 
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regression models were built for each sampling strategy. The model for each sampling strategy 

was evaluated by looking at the model fitting R2, RMSE and RRMSE values calculated using 

both the field-based plot AGB and the lidar estimated AGB as references (Table 3-5). The 

number of pixels applied for building the regression models is also summarized in Table 3-5.  

The first stage regression model shown in Equation 3-5 that used the full lidar coverage 

had an R2 of 0.58. Of the systematic sampling strategies, point sampling at a sample interval of 

1500 m showed the highest R2 at 0.41. The point pattern generally outperformed the strip and 

grid patterns with higher R2 values at sample intervals of 1000 m, 1500 m, and 2000 m. None of 

the twelve systematic sampling strategies explored matched the RMSE and RRMSE values for 

AGB derived from the full lidar coverage. Using the full lidar coverage, the RMSE was 67.9 Mg 

ha-1 and RRMSE was 36.4% using the field-derived plot observations as a reference. Plot-based 

RMSE and RRMSE for the systematic sampling strategies ranged from 84.2–93.9 Mg ha-1 and 

45.1%–50.3%, respectively, while the lidar based RMSE and RRMSE ranged 70.5–81.1 Mg ha-1 

and 40.9%–47.0%, respectively. The strip sampling strategies had the lowest average RMSE and 

RRMSE values, but they also had the highest variation among different distance intervals. Strip 

sampling at 1500 m had the lowest plot and lidar based RMSE and RRMSE values among all 

systematic sampling strategies.  
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Table 3-5. Evaluation of the second stage regression models developed for the twelve systematic sampling 

strategies developed from combinations of three sampling patterns (grid, point, strip) and four distance 

intervals (500 m, 1000 m, 1500 m, 2000 m). Models were evaluated based on model fitting R2, and plot and 

lidar AGB based RMSE and RRMSE values. 

Sampling strategy 

Model fitting Model testing 

 Plot based reference Lidar based reference 

Pixel 

Count R2 

RMSE  

(Mg ha-1) 

RRMSE 

(%) 

RMSE  

(Mg ha-1) 

RRMSE 

(%) 

Point 500 m 14772 0.20 89.3 47.8 71.7 41.6 

1000 m 6880 0.30 92.8 49.7 76.5 44.4 

1500 m 3906 0.41 93.9 50.3 81.1 47.0 

2000 m 3268 0.31 90.1 48.3 74.3 43.1 

Strip 500 m 29743 0.24 89.7 48.1 72.2 41.9 

1000 m 19727 0.23 92.5 49.6 74.6 43.3 

1500 m 15335 0.19 84.2 45.1 70.5 40.9 

2000 m 15193 0.14 87.3 46.8 70.8 41.0 

Grid 500 m 45962 0.22 89.3 47.9 71.9 41.7 

1000 m 34185 0.24 91.0 48.8 73.3 42.5 

1500 m 27316 0.22 88.7 47.5 72.1 41.8 

2000 m 24735 0.19 91.8 49.2 73.4 42.6 

 

Overall, although the point sampling generally had higher R2 values, the strip sampling 

approach had smaller RMSE and RRMSE values when assessed using the field-based AGB 

values. Strip sampling also matches the nature of airplane flight paths, which renders it easy to 

adopt from a practical viewpoint. Therefore, strip pattern was applied for further analysis. 

The location of the starting point for the systematic sampling determines the location of 

all subsequent samples. To evaluate the sensitivity of the AGB estimates to this starting point 

and examine the stability of systematic sampling, we tested five different starting points for the 

strip sampling using a 1500 m interval. Figure 3-7 illustrates the arrangement of the five 

systematic strip sampling layouts with 500 m swath width and a distance interval of 1500 m.  
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Figure 3-7. Possible outcomes using strip sampling pattern at the distance interval of 1500 m. The sampled 

strip ID and plot based RMSE values are listed in the lower left corner of each part of the figure.  

 

Given the variability shown in these five alternatives, we also explored the variability 

based on random selection of 3 of the 13 non-overlapping strips available for this property. This 

led to a total of 286 combinations, with plot based RMSE values summarized in Figure 3-8. The 

plot based RMSE values that came from randomly selecting 3 strips ranged from 80.1–102.0 Mg 

ha-1. 

 

 

Figure 3-8. The boxplot summarizing plot based RMSE values from 286 possible sampling outcomes that 

were generated by randomly selecting 3 of the 13 total strips on the Huntington site. 
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3.4.3. Classification-based sampling AGB estimation for the Huntington area 

The second sampling approach explored used a classification-based framework. We used 

a strip sampling structure at distance interval of 1500 m to select three strips of the forest type 

map generated from the Landsat data using a RF classification. The forest type classification 

map identified three classes: hardwood, mixed, and softwood forests. As with the systematic 

sampling, the Huntington study site was covered with 13, 500m wide non-overlapping strips. 

The distribution of strips and strip ID are shown in Figure 3-9.  

 

Figure 3-9. RF forest type classification of the Huntington site. Classification used Landsat derived variables 

as predictors and plot inventory information as a reference. Strips (with ID labeled) used for sampling are 

overlaid on top of the classification map. 

 

In order to select strips that best represented the entire study site, the frequency of each 

forest type was summarized within each strip and in the full dataset and Chi-square goodness of 

fit values were calculated.  Strips with smaller chi-square values had a forest class distribution 



 

76 

 

 

that was closer to the full data than strips with larger chi-square values. Strips 6, 7, 8 had the 

smallest chi-square values (Figure 3-10), thus were selected to provide the classification-based 

lidar sample. 

 

Figure 3-10. Chi-square values between the full coverage and each strip in terms of forest type frequency. X 

axis is strip name and Y axis is chi-square goodness of fit value. 

 

Lidar estimated AGB within strips 6, 7, and 8 was used to build a regression model with 

Landsat derived variables as predictors. The model results are shown in Table 3-6. The R2 for the 

classification-based sampling is generally higher than any of the twelve systematic sampling 

strategies and the plot and lidar tested RMSE and RRMSE values are generally smaller.  Overall, 

the classification-based sampling outperformed 75% of the systematic sampling strategies. 
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Table 3-6. Results of the classification-based sampling model at the Huntington site.  

Sampling 

strategy 

Model fitting Model testing 

 Plot based reference Lidar based reference 

Pixel 

Count 
R2 

RMSE  

(Mg ha-1) 

RRMSE 

(%) 

RMSE  

(Mg ha-1) 

RRMSE 

(%) 

Strip 6, 7, 8 16446 0.26 87.4 47.0 70.9 41.0 

 

3.4.4. Testing classification-based sampling for the Heiberg data 

A first stage regression model was built between plot AGB for all 43 Heiberg forest 

inventory plots and lidar derived variables following the same procedure as in the Huntington 

site. The regression model is shown in Equation 3-6. The two lidar variables identified through 

the forward selection process were the 95th percentile of lidar point heights (ht_P95) and the 

percentage of first returns above 5 m (Per_first_5m). The model had R2 of 0.74, RMSE of 91.4 

Mg ha-1, and RRMSE of 42.6%. Raster layers for ht_P95 and Per_first_5m were created from the 

Heiberg lidar points with pixel size of 30 m. The two raster layers were applied to Equation 3-6 

to acquire lidar estimation of AGB for Heiberg. 

 𝐴𝐺𝐵𝑝𝑙𝑜𝑡 =  𝑒1.05 + 0.08× ℎ𝑡_𝑃95+ 0.03×𝑃𝑒𝑟_𝑓𝑖𝑟𝑠𝑡_5𝑚 (3-6) 

To test the transferability of the classification-based sampling method, we applied the 

procedure developed at Huntington to the Heiberg study area. The forest type classification map 

with three forest classes (hardwood, mixed, and softwood forests) was produced using RF based 

on forest inventory plot and Landsat data. The Heiberg site was smaller than the Huntington site, 

hence was divided into seven, 200 m wide strips along the flight path used to acquire the lidar 

data. Chi-square values were calculated between full data and each strip based on the 

distributions of forest type classes. As shown in Figure 3-11, strip 2, 4, 7 had the smallest chi-
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square values hence lidar estimated AGB values in those strips were used as the dependent 

variable and Landsat variables were used as predictors in the regression model. 

 

Figure 3-11. Chi-square values between all data and each strip. X axis is strip name and Y axis is chi-square 

value. 

 

The regression model built using the sample strips was then applied to the Landsat data 

covering the Heiberg study area to acquire AGB estimates. Landsat AGB estimates were tested 

using plot and lidar estimated AGB values (Table 3-7). Compared with using full lidar coverage, 

the classification-based sampling decreased R2 value from 0.74 to 0.40. Plot and lidar tested 

RMSE and RRMSE values also increased.  

Table 3-7. Results of the classification-based sampling model at the Heiberg site. 

Sampling 

strategy 

Model fitting Model testing 

 Plot based reference Lidar based reference 

Pixel 

Count 
R2 

RMSE  

(Mg ha-1) 

RRMSE 

(%) 

RMSE  

(Mg ha-1) 

RRMSE 

(%) 

Strip 2, 4, 7 2097 0.40 108.18 50.4 136.0 63.4  
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3.5. Discussion 

In this study we aimed to determine if samples of lidar data could be combined with 

forest inventory data and Landsat imagery to produce viable wall-to-wall maps of AGB. In 

particular, this study aimed to assess the stability of sampling techniques in order to develop a 

strategy to identify lidar samples that could be fused with Landsat data to estimate AGB without 

substantially compromising accuracy when compared to a full lidar based model. In our study, 

both systematic sampling and classification-based sampling were compared to AGB derived 

from full lidar coverage. For our main Huntington site, when compared to having full lidar 

coverage, the RMSE from systematic strip sampling and classification-based sampling both had 

higher RMSE (by 24% or more). One possible factor to consider in reducing this difference may 

relate to the proportion of data sampled (Hopkinson et al., 2016; Luo et al., 2016; Saarela et al., 

2015). In both sampling approaches, we limited samples to under 25% of the study area. Chen et 

al. (2012) compared the fusion of QuickBird imagery and different sized lidar samples and 

concluded that model performance for estimating forest canopy heights increased with lidar 

sampled area.  

Another weakness for the sampling based approach lies in the use of multiple regression 

models (Feng et al., 2017; Li et al., 2015). In contrast to the AGB estimation based on full lidar 

coverage that used one regression model, in the sampling-based fusing approach, we used two 

regression models. By adding the second regression model, we introduced additional 

uncertainties from both Landsat data and the second statistical model (Skowronski et al., 2014). 

Multiple studies have performed lidar sampling, with the strips being the most commonly 

used sampling pattern among the studies (Chen & Hay, 2011; Hilker, Wulder, & Coops, 2008; 
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Hudak et al., 2002; Tsui et al., 2013). Sampling using data strips is consistent with the nature of 

airplane flight planning, which makes it a good compromise between ease of use, lower cost, and 

accuracy. The problem faced when using systematic sampling is inconsistency. Chen and Hay 

(2011) stated that different lidar transects would generate different results, which is consistent 

with our outcomes as reported in Table 3-5, which showed the variability in the AGB estimates 

from the twelve systematic sampling strategies. Systematic sampling using strips at 1500 m 

intervals showed better performance in terms of RMSE than the other systematic sampling 

strategies at Huntington study area tested with plot and lidar estimated AGB.  

Systematic sampling strategy outcomes are highly connected with site conditions, 

modeling technique and the use of auxiliary data (Almeida et al., 2019; Cao et al., 2019). Our 

study demonstrated that even with consistency in terms of modeling technique and auxiliary data 

inputs, RMSE values varied substantially (Figure 3-7) when we used different starting points to 

sample three strips at a constant distance interval. These RMSE values varied from 

outperforming all other systematic sampling strategies in Table 3-5 being the worst sampling 

strategy. From a practical standpoint, it would be almost impossible to discern which systematic 

strategy would return a good outcome since you cannot typically explore multiple systematic 

sampling combinations and would not be considering sampling if the full lidar coverage was 

available. In our study, there was no general trend in terms of the changes in accuracy with 

variation in systematic sampling intervals and sampling pattern. This variability may have been 

linked to differences in forest condition in different regions. Gregoire et al. (2010) recommended 

considering the AGB gradient during the sampling stage. Although Chen and Hay (2011) got 

similar performance from N-S and E-W direction lidar samplings, this might be attributed to the 

forest ecosystem in their study site which was complex and had no general trend in any direction. 
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If there was a general trend shown in a site, as might be the case for plantation areas, considering 

sampling direction is highly recommended. Our study supported prior work that demonstrated 

that systematic sampling is easy to apply, but the instability of the outputs suggests it has lower 

transferability for AGB estimation at other sites. 

We applied classification-based sampling with the goal of using readily available Landsat 

data to select samples for acquiring lidar data that were representative of the entire study area. 

Land cover is an important factor in modeling AGB (Zheng et al., 2004; Zheng et al., 2007) and 

it is easy to overlook some forest types especially over large and heterogeneously distributed 

areas. Zheng et al. (2007) showed that developing individual regression models for each forest 

type could improve model accuracy. In general, hardwoods have high canopy cover resulting in 

more horizontal expansion compared to softwood (Zheng et al., 2004). Selecting lidar strips 

based on forest type classification result could avoid over or under representation of certain 

forest types. The classification-based sampling outperformed 75% of the systematic sampling 

strategies in Huntington study area, and more importantly, provided a means to plan lidar 

acquisition that was lacking in the systematic sampling approach. Adopting this method to our 

test Heiberg area, the classification-based sampling also worked effectively, with R2 and RMSE 

values acquired from the classification-based sampling only moderately impacted when 

compared to the full lidar coverage model.  The classification-based sampling method provides a 

means to substantially reduce lidar acquisition without a major compromise in accuracy while 

providing a preprocessing step to guide application in new study areas. The need to perform the 

classification does require additional analysis; however, the random nature of systematic 

sampling can lead to substantial, and unknown a priori, sample variability that potentially 

decreases transferability of this approach.    
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3.6. Conclusion 

The framework in this study provides an approach to obtain wall-to-wall estimates of 

AGB by merging lidar samples with Landsat imagery and forest inventory data. We focused on 

the AGB estimation accuracy based on systematic and classification-based lidar sampling 

strategies.  While systematic lidar sampling can achieve promising AGB estimates and is easy to 

implement, there was high model outcome variability among systematic sampling strategies. 

Moreover, the results attained from systematic sampling strategies were highly dependent on site 

condition, which provides challenges in planning lidar acquisitions. Classification-based lidar 

sampling provides a planning framework that is more readily transferable to new sites by guiding 

selection of lidar samples representative of the study site. Fusion of lidar samples and Landsat 

had lower accuracies in AGB estimation compared with full lidar coverage, which can be 

exacerbated by the uncertainties introduced by the addition of Landsat data and the use of a 

second regression model. This study methodically compared different lidar sampling approaches 

to support AGB estimation.  We anticipate the results of this study could facilitate cost-effective 

lidar data collection for use in future studies. 
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4. Manuscript 3: Evaluating the performance of Sentinel-2 and Landsat 

inputs to estimate aboveground biomass in temperate forests 

4.1. Abstract 

Quantifying forest aboveground biomass (AGB) is helpful for assessing carbon emission 

and sequestration and can reduce uncertainty in monitoring global carbon cycles and climate 

change. Remote sensing techniques have proved to be a cost-effective way to estimate forest 

AGB with timely and repeated observations.  We compared the performance of Sentinel-2 and 

Landsat 8 data for quantifying AGB in a temperate forest using Random Forest (RF) regression. 

These missions are similar, but Sentinel-2 has higher spatial resolution and collects data from the 

red-edge region of the electromagnetic spectrum. We modeled AGB using three datasets: 

Sentinel-2, Landsat 8, and a pseudo dataset that retained the spatial resolution of Sentinel-2 but 

included only the spectral bands that matched those on Landsat 8. We found that while the RF 

model parameter values can impact model outcomes, it is more important to focus attention on 

variable selection.  Our results showed that the incorporation of red-edge information—Sentinel-

2 compared to the pseudo dataset—increased AGB estimation accuracy by approximately 6%. 

The additional spatial resolution—comparing the pseudo dataset to Landsat 8—improved 

accuracy by approximately 3%. The variable importance ranks in the RF regression model 

showed that in addition to the red-edge bands, the shortwave infrared bands were important 

either individually (in the Sentinel-2 model) or in band indices.  

Keywords: Random Forest regression, red-edge bands, spatial resolution 
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4.2. Introduction 

Forest ecosystems serve as a carbon reservoir and provide the primary source of carbon 

transmission from the terrestrial environment to the atmosphere. Hence, they play a critical role 

in both the global carbon cycle and climate change. Deforestation and forest degradation have 

resulted in unforeseeable and inconsistent carbon emission that magnifies the challenge of 

monitoring global carbon cycle and climate change. Forest aboveground biomass (AGB) reveals 

information about forest structure and condition, soil nutrition allocation and productivity, thus it 

is useful for assessing carbon emission and sequestration. To reduce the uncertainty in 

monitoring global carbon cycle and climate change, it is crucial to develop a robust and cost-

effective approach to estimate forest AGB that can be implemented repeatedly in a timely 

manner.  

AGB acquisition techniques can be classified into two groups: (1) field-based 

measurements, which typically include destructive sampling and application of nondestructive 

allometric equations based on measurements of tree height or diameter at breast height (DBH), 

and (2) remotely sensed methods, which use terrestrial, airborne, or spaceborne remote sensing 

data to indirectly estimate AGB. Field measurements on regional or broader scales are not 

feasible due to constraints on time and other resources. With remote sensing technology, it is 

possible to obtain measurements from most locations, even those that are inaccessible for human. 

Another advantage of remote sensing is that it allows information to be attained quickly across 

significant extents. Remote sensing has proved to be an effective alternative for field 

measurements for monitoring forests at various scales with timely and repeated updates 

(Gonzalez et al., 2010; Liu et al., 2017; Powell et al., 2010).  
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The Landsat satellites have been one of the most popular remote sensing datasets for 

AGB estimation. With open and free access to the digital dataset archive, Landsat datasets 

provides continuity covering much of the globe since the 1980s. Numerous studies have proved 

the feasibility of Landsat data in AGB estimation (Wang et al., 2018; Zheng et al., 2004). These 

studies rely on both direct analysis of Landsat data as well as incorporation of indices derived 

from spectral bands. The normalized difference vegetation index (NDVI) is the most widely 

applied vegetation index extracted from Landsat data (Zhang et al., 2016). NDVI used red and 

near infrared portions of the electromagnetic spectrum for assessing biophysical properties, 

which is based around the fact that vegetation chlorophyll pigments have high absorption in the 

red and high reflectance in the near infrared. However, the main drawback of using NDVI and 

other vegetation indices is a well-documented saturation problem in that the indices 

asymptotically approach a saturation level after reaching a certain biomass density (Chi et al., 

2017; Knapp et al., 2018; Lumbierres et al., 2017; Mutanga and Skidmore, 2004; Vafaei et al., 

2018). Because of this, NDVI tends to underestimate forest biomass in dense or complex forests 

(Kelsey and Neff, 2014). In response to the limitations of Landsat data, several studies have 

underscored the need for new remote sensing data (Cao et al., 2014; Liu et al., 2017) as well as 

algorithms (Avitabile et al., 2012; Zhu and Liu, 2015) to accurately estimate AGB. 

A newer moderate resolution remote sensing platform is Sentinel-2, which is a system of 

two satellites launched in 2015 and 2017 by the European Space Agency (ESA). Sentinel-2 aims 

to ensure continuity of high-resolution, multispectral images with a high revisit frequency. The 

Sentinel satellites build from the technology and experience acquired from the long standing 

moderate spatial resolution Landsat and Satellite Pour l'Observation de la Terre (SPOT) families. 

Compared with most of the publically available optical datasets, e.g. MODIS and Landsat, 
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Sentinel-2 provides better spectral, spatial and temporal resolutions. These enhanced 

characteristics have led Sentinel-2 to outperform Landsat 8 for applications such as land use and 

land cover classification (Forkuor et al., 2018; Schuster et al., 2012). A distinguishing 

characteristic of Sentinel-2 data is the inclusion of three red-edge bands. The red-edge region lies 

between the red and near infrared portions of the electromagnetic spectrum. This is the region 

where a sharp increase in vegetation reflectance takes place due to the combined effects of strong 

chlorophyll absorption in red wavelengths and leaf internal scattering in the near infrared 

wavelengths (Filella and Penuelas, 1994; Horler et al., 1983). Red edge bands have been applied 

in estimation of canopy and leaf chlorophyll concentration (Delegido et al., 2011; Frampton et al., 

2013), leaf area index (LAI) (Delegido et al., 2011; Frampton et al., 2013; Richter et al., 2012; 

Sibanda et al., 2018), canopy cover (Korhonen et al., 2017), land use and land cover (Forkuor et 

al., 2018), growing stock volume (Chrysafis et al., 2017; Mura et al., 2018; Puliti et al., 2018), 

and AGB (Ghosh and Behera, 2018; Laurin et al., 2018; Pandit et al., 2018; Vafaei et al., 2018). 

Estimating LAI is one of the most popular applications of red edge bands. Several studies have 

shown that red-edge bands are strongly correlated with LAI and inclusion of red edge vegetation 

indices can improve LAI estimation accuracy (Korhonen et al., 2017; Mura et al., 2018; Sibanda 

et al., 2018). The Sentinel-2 red edge bands have also been shown to increase accuracy of 

Landsat 8 data for image classification (Forkuor et al., 2018).  

Sentinel data has been applied to AGB estimation in tropical (Ghosh and Behera, 2018), 

sub-tropical (Pandit et al., 2018; Vafaei et al., 2018), and Mediterranean (Laurin et al., 2018) 

forests with promising results. Metrics extracted from Sentinel-2 and Landsat 8 data can be 

correlated to field inventoried biomass values using statistical models. Random forest (Breiman, 

2001) is a non-parametric machine learning technique that has been widely applied to estimate 
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forest attributes (Hudak et al., 2012). Compared with commonly used statistical regression 

models, RF is not confined by assumptions of underlying data distributions (Immitzer et al, 

2012). Additionally, RF has gained attention in the remote sensing field due to its potential to 

deal with many predictor variables, capture non-linear relationships, and provide variable 

importance information. In contrast to parametric methods, RF is also relatively insensitive to 

problems with small sample size (Immitzer et al., 2012). While RF has more traditionally been 

applied for classification rather than regression analysis (Adam et al., 2012; Ramoelo et al., 

2015), the application of RF in AGB estimation holds great potential compared to other 

statistical methods (Verrelst et al., 2012).  

The overall aim of this study is to explore the application of Sentinel-2 data in AGB 

estimation with a focus on understanding the potential improvement Sentinel-2 data offers over 

Landsat 8 imagery for deriving temperate forest AGB. We particularly seek to determine 

whether the new Sentinel-2 red edge bands can provide improved accuracy in forest AGB 

estimation and examine whether NDVI is the most appropriate vegetation index when these new 

bands are available. In order to achieve these aims, this study will: (1) identify the most useful 

Sentinel-2 bands and band combinations for AGB estimation, and (2) compare the predictive 

ability of Sentinel-2 and Landsat 8 for AGB estimation. 

4.3. Data and materials 

4.3.1. Study area 

The study area was the Heiberg Memorial Forest (HMF) in Tully, New York, which is 

managed by the State University of New York College of Environmental Science and Forestry 

(SUNY-ESF; 42°47'12" N, 76°05'37" W; Figure 4-1. Location of Heiberg Memorial Forest in 
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New York State. The left and right images show the distribution of 37 plots in Compartment 78 

and the 60 plots in Compartment 96, respectively, overlaid on a true color Sentinel-2 image 

composite at 10 m spatial resolution.). HMF provides educational and research resources 

representative of forest ecosystems in the northeastern United States for studies including forest 

management, wildlife management, watershed management, and soil science. HMF covers an 

area of approximately 16 km2 with an elevation range of 383–625 m above mean sea level. The 

majority of HMF is covered with conifer plantations (6.64 km2, 42%), Allegheny hardwoods 

(5.65 km2, 36%) or open areas (2.39 km2, 15%). Conifer species predominantly consist of 

Norway spruce (Picea abies), hemlock (Tsuga) species, white pine (Pinus strobus), and eastern 

larch (Larix laricina). Major deciduous tree genera including maple (Acer), ash (Fraxinus L.), 

beech (Betula), and basswood (T. americana). HMF is divided into multiple compartments 

serving as basic forest management units. 
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Figure 4-1. Location of Heiberg Memorial Forest in New York State. The left and right images show the 

distribution of 37 plots in Compartment 78 and the 60 plots in Compartment 96, respectively, overlaid on a 

true color Sentinel-2 image composite at 10 m spatial resolution. 

 

4.3.2.  Data acquisition and preprocessing 

4.3.2.1. Field inventory data 

HMF forest inventory data from Compartment 78 and Compartment 96 was used in this 

study. Both compartments contain over 85% deciduous trees, predominately sugar maple (Acer 

saccharum). Compartment 78 was inventoried during April 2017 with 37 randomly distributed 

plots. Compartment 96 was inventoried during July 2016 with 60 plots set up in a 30.5 m × 61 m 

grid pattern. For both compartments, the inventories were done using a basal area factor 10 prism. 

The prism was held over the plot center. Any tree stem that was only partially offset when 

viewed through the wedge was counted as in the plots; all others were not counted. Counted trees 

with diameter at breast height (DBH) over approximately 2.5 cm were subsequently measured. 
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Species and DBH were recorded for each measured tree. Based on the field observations, tree-

level AGB was estimated using species-specific DBH allometric equations from Jenkins et al. 

(2003). Plot-level AGB per area was then calculated in megagrams per hectare (Mg ha-1). 

Descriptive statistics of plot-level AGB is shown in Table 4-1. 

Table 4-1. Summary of descriptive statistics for plot level AGB in HMF (units: Mg ha-1) 

Plot Plot Count Mean Median Variance Minimum Maximum 

Overall 97 214.6 221.5 6808.0 32.5 357.5 

Compartment 78 37 188.8 200.6 5224.8 32.5 295.7 

Compartment 96 60 230.4 230.6 4280.8 88.5 357.5 

 

4.3.2.2. Remote sensing data acquisition and pre-processing 

For this study, data from Sentinel-2A (acquired on June 10, 2016) and Landsat 8 

(acquired on June 16, 2016) were used to estimate forest AGB. The dates were chosen to 

minimize the time gap between the Sentinel-2A and Landsat data acquisitions. Both images were 

cloud free over the HMF area. 

A Sentinel-2A Level-1C (L1C) image covering the entire study area was downloaded 

from the Copernicus Open Access Hub (https://scihub.copernicus.eu/dhus/#/home). The 

Sentinel-2A image was delivered in 100×100 km2 tiles in UTM/WGS84 coordinates. The Level-

1C product provides geometrically and radiometrically corrected Top-of-Atmosphere (TOA) 

reflectance measurements per pixel. Sentinel-2 Toolbox 

(https://sentinel.esa.int/web/sentinel/toolboxes/sentinel-2) and Sen2Cor plugin 

(http://step.esa.int/main/third-party-plugins-2/sen2cor/) were applied for data processing. The 

Sentinel-2 Toolbox includes a collection of features such as image display and navigation, layer 

management, band arithmetic, and region-of-interest definition. Sen2Cor performs atmospheric 

https://sentinel.esa.int/web/sentinel/toolboxes/sentinel-2
http://step.esa.int/main/third-party-plugins-2/sen2cor/
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correction by converting Sentinel-2 Level 1C data to a Level 2A product by converting pixel 

values from Top-of-Atmosphere reflectance to Bottom-of-Atmosphere reflectance. To be 

consistent for further analysis, all bands were resampled to 10 m pixel size using the nearest 

sampling method. Plots were overlaid on the Sentinel-2A data and then pixel values over each 

plot were extracted for further analysis.  

An orthorectified Landsat 8 Operational Land Imager (OLI) image (path/row: 15/30) was 

downloaded from the United States Geological Survey Earth Explorer website 

(https://earthexplorer.usgs.gov/). Radiometric correction and atmosphere correction were 

performed using ENVI 5.2 (http://www.harrisgeospatial.com/Software-Technology/ENVI). 

Using the metadata associated with the downloaded image, we applied radiometric correction to 

convert raw digital numbers into reflectance and remove the impact of scene illumination and 

viewing geometry. Dark object subtraction was applied for atmosphere correction, which is 

intended to remove the effects of atmosphere scattering and absorption. Spectral values from 

pixels corresponding to plot locations were extracted for analysis.  

4.3.3. Remote sensing data comparison 

The ESA Sentinel-2 satellite system provides optical images with more spectral bands 

and finer spatial resolution than Landsat 8. The Sentinel-2 Multispectral Instrument (MSI) that is 

onboard the Sentinel-2A and Sentinel-2B satellites acquires data in 13 spectral bands: four bands 

at 10 m, six bands at 20 m, and three bands at 60 m (https://earth.esa.int/web/sentinel/user-

guides/sentinel-2-msi/overview). Landsat 8 has 9 spectral bands: eight bands at 30 m and one 

band at 15 m (https://landsat.usgs.gov/). Table 4-2 summarizes the Sentinel-2 and Landsat 8 

band designations. Bands that have similar wavelength ranges are in the same row.  

https://earth.esa.int/web/sentinel/user-guides/sentinel-2-msi/overview
https://earth.esa.int/web/sentinel/user-guides/sentinel-2-msi/overview
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Ten Sentinel-2 spectral bands were applied for data analysis: three visible bands (S2, S3, 

S4), three red edge bands (S5, S6, S7), two near-infrared (NIR) bands (S8, S8a) and two 

shortwave infrared (SWIR) bands (S11, S12). Six Landsat 8 bands were applied in the analysis: 

three visible bands (L2, L3, L4), one NIR band (L5) and two SWIR bands (L6, L7). Compared to 

Landsat 8, Sentinel 2 has finer spatial resolution as well as three additional red edge bands. A 

simple comparison between Sentinel-2 and Landsat 8 data may not discern whether differences 

are due to the finer spatial resolution or red edge bands. Therefore, we generated a pseudo 

dataset by reducing the Sentinel-2 dataset to use only bands that matched the spectral range of 

the Landsat 8 bands while retaining the Sentinel-2 spatial resolution. Sentinel-2 bands S2, S3, S4, 

S8a, S11, S12 in the pseudo dataset spectrally match Landsat 8 bands L2, L3, L4, L5, L6, and L7, 

respectively. To distinguish the sets of bands during analysis, we referred to this subset of 

Sentinel-2 bands using labels P1–P6. Table 4-2 showed the spectral range and corresponding 

label for the three different datasets used in the analysis. Sentinel-2 and the pseudo dataset have 

the same spatial resolution, but the Sentinel-2 dataset has three more red edge bands and one 

more NIR band. The pseudo dataset has similar band spectral ranges as Landsat 8, but with finer 

spatial resolution.  
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Table 4-2. Band designations for Sentinel-2, pseudo dataset (i.e. relabeled Sentinel-2 bands), and Landsat 8. 

Bands with similar spectral range are in the same row. Band labels in bold are those applied in this study. 

NIR: near infrared; SWIR: shortwave infrared. 

 
Sentinel-2 MSI 

Pseudo 

dataset 
Landsat 8 OLI 

 
Band 

Wavelength 

(nm) 

Pixel size 

(m) 
Band Band 

Wavelength 

(nm) 

Pixel size 

(m) 

Coastal 

aerosol 
S1 433–453 60  L1 435–451 30 

Blue S2 458–523 10 P1 L2 452–512 30 

Green S3 543–578 10 P2 L3 533–590 30 

Red S4 650–680 10 P3 L4 636–673 30 

Red edge 1 S5 698–713 20     

Red edge 2 S6 733–748 20     

Red edge 3 S7 773–793 20     

NIR S8 785––900 10     

NIR S8a  855–875 20 P4 L5  851–879 30 

Water vapor S9 935–955 60     

Cirrus S10 1360–1390 60  L9 1363–1384 30 

SWIR 1 S11 1565–1655 20 P5 L6 1566–1651 30 

SWIR 2 S12 2100–2280 20 P6 L7 2107–2294 30 

Panchromatic     L8 503–676 15 

 

4.3.4. Statistical analysis 

4.3.4.1. Random forest 

RF is a non-parametric machine learning algorithm that was implemented in this study 

using the “RandomForest” package (Liaw and Wiener, 2002) within the R software environment 

(R Development Core Team, 2008). RF can be used for regression or classification depending on 

the type of variable to be estimated. Compared with simple regression techniques, RF has lower 

bias and avoids overfitting problems (Boisvenue et al., 2016; Ghosh and Behera, 2018; Gleason 

and Im, 2012; Tian et al., 2017). RF grows many trees that are combined through voting to 

generate a result, which makes it insensitive to outliers and noise (Ghosh and Behera, 2018; 

Gleason and Im, 2012). For each tree, approximately two-thirds of the original data was chosen 
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randomly to build the tree, and the remaining data was used for estimating out-of-bag (OOB) 

error and calculating variable importance. Three parameters need to be optimized in the RF 

algorithm: ntree, mtry, and nodesize. Ntree defines the number of trees to grow. The default and 

most commonly used ntree value is 500. The ntree values should be large enough to get all 

possible results represented several times. At each node of the tree, a subset of variables was 

selected. Mtry is used to control the number of variables at each node. The default value of mtry 

depends on whether RF is applied for regression or classification. When RF is used for 

regression, the default value is one-third of the number of variables. When RF is used for 

classification, the default value is the square root of the number of variables. Nodesize represents 

the minimum size of nodes, which controls tree extent. The default value of nodesize is one for 

classification and five for regression.  

In this study, we used field derived AGB values as the response variable and remote 

sensing derived information as predictor variables in the RF algorithm. To find the ntree and 

mtry value that can best predict AGB, the two parameters were optimized based on the root 

mean square error (RMSE) using all plot data. To determine the most suitable RF parameters, we 

tested ntree values from 500 to 9500 at intervals of 1000 and mtry from 1 to 20 with an 

increment of one. The default nodesize of five was applied throughout the study.  

4.3.4.2. Vegetation indices 

The normalized difference vegetation index (NDVI) has been widely applied in AGB 

estimation. Previous studies have demonstrated that NDVI provides a useful input for modeling 

AGB (Zhu and Liu, 2015). NDVI was originally proposed by Rouse et al. (1974) as: 

 𝑁𝐷𝑉𝐼 =  
𝜌𝑁𝐼𝑅 − 𝜌𝑅𝑒𝑑

𝜌𝑁𝐼𝑅 + 𝜌𝑅𝑒𝑑
 (4-1) 
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where 𝜌𝑁𝐼𝑅 and 𝜌𝑅𝑒𝑑 represent the reflectance from the near infrared and red bands, respectively. 

While NDVI is commonly applied to vegetation-focused studies, an index can be calculated by 

generating the normalized difference of any pair of bands. In this study, we calculated 

normalized difference indices (NDI) using all pairs of bands within the Sentinel-2 and Landsat 8 

datasets to determine if other band combinations—particularly using the new red edge bands—

provided greater utility in AGB estimation. The general equation applied is: 

 𝑁𝐷𝐼 =  
𝜌𝐵𝑖

−𝜌𝐵𝑗

𝜌𝐵𝑖
+𝜌𝐵𝑗

  (i > j) 
(4-2) 

where 𝜌𝐵𝑖
 represents the reflectance from band i. To avoid including values with the same 

absolute value, we defined that Bi has higher wavelength than Bj. For the Sentinel-2 data, 10 

bands (S2, S3, S4, S5, S6, S7, S8, S8A, S11, and S12) were applied in the NDI equation, which 

resulted in 45 different combinations. With the reduction in bands for the pseudo dataset, six 

bands (P1, P2, P3, P4, P5, and P6) were applied resulting in 15 NDIs. Fifteen NDIs were also 

calculated using the six Landsat 8 bands (L2, L3, L4, L5, L6, and L7). These NDIs and the 

reflectance values of the individual bands were applied to RF regression analysis.  

4.3.4.3. Variable importance and selection 

Variable importance can be quantified using mean decrease in accuracy (MDA) in RF. 

MDA is calculated based on permuting one variable while keeping other variables constant. The 

evaluation process first calculates differences of OOB data prediction errors with and without 

permutation of one variable in each tree. Then, the OOB data prediction errors among all trees 

are averaged and normalized to obtain the MDA for that variable (Breiman, 2001). This process 

is repeated for all variables.  
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After ranking the predictors with MDA, the challenge was to minimize the number of 

predictors while keeping the predictive power as strong as with using all predictors (Ismail and 

Mutanga, 2010). There are several commonly used variable selection methods: forward selection, 

backward selection, and stepwise selection. Forward selection starts with the most significant 

variable in the model and adds the most significant variable among the remaining variables into 

the model one at a time until none of the remaining variables is significant. Backward selection 

starts with all variables in the model and removes the least significant variable one by one until 

all the variables in the model are significant at a chosen level. Stepwise selection adds or 

removes one variable at each step to ensure all variables in the model are significant while none 

of the variables outside the model are significant to enter the model. MDA is frequently used for 

RF variable selection (Belgiu and Drăguţ, 2016; Karlson et al., 2015; Rhee and Im, 2017). A 

backward selection method was implemented in this study. This method starts with all predictors 

in the model and then progressively eliminates the variable with the least MDA. At each iteration, 

the model applied default RF parameters. The smallest subset of variables with lowest RMSE 

value was then selected to build a reduced model for AGB estimation. A reduced model was 

developed for each dataset. To test the performance of reduced models, they were compared with 

full model that used all predictors from the same dataset.   

4.4. Results 

4.4.1.  Optimization of random forest regression models 

RF regression was applied to five models in this study. Three of the models used pixel 

values corresponding to the exact plot locations from the Sentinel-2, pseudo dataset, and Landsat 

8. The other two models used mean pixel values of a 3 × 3 window centered on each plot 
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location from the Sentinel-2 and pseudo datasets, which have finer spatial resolution than 

Landsat. The neighborhood mean models were used to explore the pixel size mismatch between 

Sentinel-2 and Landsat 8. In all models the dependent variable is AGB from all plots while the 

predictor variables include band values and NDIs calculated from two-band combinations. Table 

4-3 shows the total number of predictor variables applied for variable selection in each model, 

which is the sum of the number of bands and NDIs. 

For each model, we tracked the change of RMSE with variation in ntree (500 to 9500) 

and mtry (1 to 20) values (Figure 4-2). The optimal ntree and mtry values for the five models are 

listed in Table 4-3. In our analysis, the optimal ntree value was 500 for all of the five models, 

which matched the RF default value. The optimal mtry values for the three pixel-based models 

were close to the default value (1/3 of the number of predictor variables). However, the models 

based on neighborhood mean values did not follow the same trend and had smaller optimal mtry 

values.  

The choice of ntree and mtry values did impact the random forest regression results. 

Within each of the five models, the RMSE values acquired with ntree of 500 have more variation 

than those with ntree of 9500. In the first three models (Figure 4-2(a), (b), and (c)), the RMSE 

values decrease as mtry moved from 1 to the default value and increased once mtry went past the 

default value. In the model using the Sentinel-2 neighborhood mean value (Figure 4-2(d)), the 

RMSE values steadily increased with mtry value. In the model using the pseudo dataset 

neighborhood mean value, the RMSE values briefly decreased and then followed an overall 

increasing trend as mtry increased. The neighborhood mean models allowed exploration of 

whether the plot data was better represented by pixel values (Figure 4-2(a) and (b)) or 



 

106 

 

 

neighborhood mean (Figure 4-2(d) and (e)). Our results found that the models that used pixel 

values had smaller RMSE values than the corresponding models used neighborhood mean values 

and followed a similar trend as the Landsat 8 model. Therefore, the pixel-based models were 

applied for identifying important predictors.  

Table 4-3. Summary of parameters for the five models tested in this study. Three models used pixel values 

extracted from Sentinel-2, pseudo dataset and Landsat 8. Two models used 3×3 neighborhood mean extracted 

from the Sentinel-2 and pseudo dataset. 

 Data 
Number of 

predictors 

Optimal 

ntree 

Optimal 

mtry 
Default mtry 

Single pixel 

Sentinel-2 55 500 20 18 

Pseudo dataset 21 500 8 7 

Landsat 8 21 500 7 7 

Neighbor mean 
Sentinel-2 55 500 8 18 

Pseudo dataset 21 500 4 7 
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Figure 4-2. Random forest ntree and mtry optimization results from five models: (a) pixel value from 

Sentinel-2; (b) pixel value from the pseudo dataset; (c) pixel value from Landsat 8; (d) neighborhood mean 

from Sentinel-2; (e) neighborhood mean from the pseudo dataset. 

 

4.4.2. Identifying the best single band and NDI 

In each of the RF regression models, all predictors were ranked using MDA. The 

predictors evaluated in the model included the band values and NDIs. Predictors with higher 

MDA values are more important in the RF regression AGB estimation model.  

Figure 4-3 shows the ranked importance of predictors in the RF regression model that 

used the Sentinel-2 pixel values. This model used the optimal ntree (500) and mtry (20) values 

with 55 predictors. For clarity, Figure 4-3 only shows the most important half of the predictors. 

Red edge bands (S5, S6 and S7), NIR narrow (S8A), and SWIR bands contributed to the 



 

108 

 

 

estimation of AGB. However, the most important predictor was the NDI combination of S7 and 

S3, which are red edge and green bands, respectively. The most important single band was S12, 

the SWIR2 band. The traditional NIR-red NDVI input (B8A and B4) ranked 48th of 55 predictors.  

 

Figure 4-3. Variable importance in AGB estimation from Sentinel-2 pixel values using RF regression. The 

model was developed using ntree of 500 and mtry of 20. Higher MAD values indicate greater variable 

importance. This figure shows the most important 28 predictors. The remaining 27 predictors had MAD 

below 2.1%.  

 

Figure 4-4 shows predictor importance measured in terms of MDA in the pseudo dataset 

model. This RF regression model used optimal ntree of 500 and mtry of 7 with 21 predictors. 

Predictors from the combination of SWIR (P5 and P6) and NIR (P4) regions contributed most to 

the model. The most important single band was the NIR band, which ranked 4th in variable 

importance. In this model, the traditional NDVI ranked 10th among the 21 predictors. 
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Figure 4-4. Variable importance in AGB estimation from the pseudo dataset pixel values using RF regression. 

The model was developed using 500 ntree and 8 mtry. Higher MAD values indicate greater variable 

importance. 

 

Figure 4-5 shows predictor importance measured in terms of MDA in the Landsat 8 

model. This RF regression model used optimal ntree of 500 and mtry of 8 with 21 predictors. 

The most important predictor in this model was the NIR band (L5) followed by the blue band 

(L2). The most important band combination used SWIR (L6) and NIR (L5). NDVI ranked 17th 

among the 21 predictors. 

-2

0

2

4

6

8

10

12

14

M
A

D
(%

)

Bands and NDIs



 

110 

 

 

 

Figure 4-5. Variable importance in AGB estimation from Landsat 8 pixel values using RF regression. The 

model was developed using 500 ntree and 7 mtry. Higher MAD values indicate greater variable importance 

 

To determine which spectral range has the best AGB estimation performance, we 

summarized the proportion of predictors within each spectral range (Visible, Red edge, NIR, and 

SWIR) that were in the most important 25% of the predictors (Figure 4-6). Using Sentinel-2 data, 

the SWIR bands contributed most for AGB estimation, followed by red-edge, NIR, and visible 

bands (Figure 4-6(a)). In the pseudo dataset model, the most important spectral range is NIR, 

followed by SWIR and visible (Figure 4-6(b)). In the Landsat 8 model, NIR is more important 

than visible and SWIR, which had the same percentage (Figure 4-6(c)). 
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Figure 4-6. Proportion of predictors from each spectral range selected in the top 25% most important 

predictors: (a) Sentinel-2, (b) pseudo dataset, and (c) Landsat 8. 

 

4.4.3.  Comparison of full and reduced predictor models 

RF AGB estimation models developed using all predictors were compared to models 

developed from a reduced set of predictors using Sentinel-2, pseudo dataset, and Landsat 8 

inputs (Table 4-4). The full models used all available predictors while the reduced models used a 

selection of most important predictors based on backward variable selection. The reduced 

Sentinel-2 pixel-based model used the top 10 predictors shown in Figure 4-3, the majority of 

which were NDIs dominated by red-edge and SWIR bands. The pixel-based pseudo dataset 

model used the top 5 predictors shown in Figure 4-4, 80% of which included the NIR band.  The 

pixel-based Landsat 8 model used the top 10 predictors shown in Figure 4-5, which included 

bands from across all parts of the spectrum. In the reduced neighborhood-based models, 

Sentinel-2 model used the three most important predictors, which were NDIs from the 

combination of NIR with green, red edge and SWIR bands; the pseudo dataset model used the 

four most important predictors, which were NDIs built from NIR in combination with visible and 

SWIR bands. Based on model R2 and RMSE values, the Sentinel-2 model using all predictors 
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has better performance than the full models using the pseudo dataset predictors, while the 

Landsat 8 based model had the lowest performance in AGB estimation. The same trend also 

exists in the pixel-based reduced models and neighborhood mean full and reduced models. The 

pixel-based models outperformed the corresponding neighborhood mean models using the 

Sentinel-2 and pseudo datasets. In all cases, the reduced model returned higher R2 value and 

lower RMSE value comparing with its corresponding full model. The use of the variable 

selection method reduced the number of predictors in the model and improved model 

performance.  

Table 4-4. Comparison of full and reduced models using Sentinel-2, pseudo and Landsat 8 datasets 

 Dataset Variable Selection Number of predictors R2 
RMSE 

(Mg ha-1) 

Pixel 

Sentinel-2 
Full 55 0.27 59.9 

Reduced 10 0.40 54.6 

Pseudo dataset 
Full 21 0.24 61.3 

Reduced 5 0.31 58.4 

Landsat 8 
Full 21 0.21 62.4 

Reduced 10 0.27 60.1 

Neighborhood 

mean 

Sentinel-2 
Full 55 0.27 60.3 

Reduced 3 0.38 55.3 

Pseudo dataset Full 21 0.24 61.4 

Reduced 4 0.28 59.6 

 

4.5. Discussion 

4.5.1. RF parameter tuning  

Over the last two decades, the RF algorithm has received substantial attention due to its 

ability to solve multicollinearity and overfitting problems (Bourgoin et al., 2018; Zeng et al., 

2019). The RF algorithm can also quantitatively measure the importance of predictors, which 

proved important in this study; regardless of the input data applied, models that used all available 
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predictors did not perform as well as those that were based on a subset of the most important 

predictors. The application of RF has been more popular in classification rather than regression 

focused studies, and there have been few studies applying RF for remote sensing AGB 

estimation.  However, the robust nature of the algorithm makes it well suited for this area to 

provide non-redundant spectral information while improving regression accuracy (Adam et al. 

2012).  

There are two parameters that need to be tuned when using the RF algorithm: ntree and 

mtry. Unfortunately, there is no universal guidance for the selection of these two parameters and 

our analysis shows that the results are sensitive to parameter selection. The literature reports a 

range of ntree and mtry values, though these are often listed without an explanation of the values 

selected. For example, Karlson et al. (2015) reported they applied ntree of 1000 and mtry of the 

square foot of number of predictor variables. Hudak et al. (2012) used an ntree of 1000 and did 

not report their mtry value. In most cases, people focused more on the RF outcomes rather than 

the input parameters. Our results showed that the default ntree (500) and mtry (1/3 number of 

predictors) values used in the R software were a good starting place. However, our study results 

also indicated that the choice of ntree and mtry value could impact the RF outcomes, which is 

consistent with that reported by Mutanga et al. (2012). The default ntree value appears to include 

enough trees to capture sufficient outcome variability for the voting process. Conversely, while 

the default mtry value did produce a good outcome in general, this varied across different input 

datasets and selecting an optimal value for the mtry value setting may need more attention. 
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4.5.2. Band contributions 

Our results showed that the red-edge bands available in the Sentinel-2 dataset are 

important for AGB estimation. After removing the red-edge bands to create the pseudo dataset, 

R2 values dropped in both the full model and reduced models (Table 4-4). This model accuracy 

difference shows clear evidence of the additional information provided when the red-edge band 

is included in the analysis. Consistent with our results, Schuster et al. (2012) indicated that the 

incorporation of red-edge information can increase land use and land cover accuracy. 

Schumacher et al. (2016) also showed that red-edge indices and texture measures played an 

important role in wood volume estimation. The utility of the red-edge bands as compared to NIR 

and visible bands can be attributed to the fact that the red-edge region is insensitive to soil 

background and highly associated with properties of vegetation, such as chlorophyll content 

(Mutanga and Skidmore, 2004; Mutanga et al., 2012).  

Our results also showed the SWIR bands had value for AGB estimation, which has been 

mentioned by prior studies in biomass estimation and in related areas (Dube et al., 2016; Lu, 

2006). Verrelst et al. (2012) stated the most sensitive Sentinel-2 bands for LAI estimation were 

in the green and the SWIR range. Chrysafis et al. (2017) explored the correlation between 

growing stock volume and single Sentinel-2 bands. Among all the Sentinel-2 bands tested, the 

first SWIR band resulted in the highest correlated with growing stock volume and was associated 

with the highest linear regression R2 value. This could be attributed to the fact that SWIR bands 

are sensitive to vegetation structures (Verrelst et al., 2012). However, while the SWIR bands 

contributed to the retrieval accuracy of biophysical parameters in our study as well as in others, 

they are less frequently chosen and applied than other parts of the spectrum. Moreover, these 

bands are often not included on some remote sensors, especially those on unmanned aerial 



 

115 

 

 

vehicles (UAVs) and on many of the high spatial resolution commercial sensors. Vegetation 

focused studies would benefit from incorporation of SWIR bands during the development of 

future generation sensors. 

The model using Sentinel-2 data, retained a high proportion of red-edge bands in the top 

25% of predictors. The model also included a lower proportion of the NIR bands in the most 

valued predictors compared to SWIR bands.  On the contrary, when the pseudo dataset—without 

the red-edge bands—was used, a higher proportion of the NIR bands appear in the top 25% of 

predictors compared to the proportion of SWIR bands. The change in relative importance 

between NIR and SWIR bands could be attributed to the correlation among spectral bands that 

exists in various remote sensing datasets (Feilhauer et al., 2015; Sukawattanavijit et al., 2017), 

especially those with a high number of narrow spectral bands (Yue et al., 2017). Jia and Richards 

(1999) observed that neighboring spectral bands are more correlated than bands that are further 

apart. In Sentinel-2, the red-edge and NIR bands capture the spectral response from neighboring 

portions of the spectrum. The correlation between these regions may cause data redundancy, 

making the NIR bands less critical in the presence of red-edge bands.  

Many research projects incorporate indices such as NDVI and other simple or normalized 

two-band ratios.  However, there is no reason to believe the indices in common use are the 

optimal ones, particularly as new band passes are available. Verrelst et al. (2012) identified a 

three-band index that performed well for LAI estimation. Richter et al. (2012) tested 

hyperspectral band combinations using 2–10 bands for LAI retrieval. They concluded that the 

optimal number of bands ranged from 6–8. Richter et al. (2012) also concluded the importance 

of spectral regions for LAI retrieval was NIR, red edge, visible and SWIR, in descending order.  
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4.5.3. Sentinel-2 and Landsat 8 comparison 

Sentinel-2 and Landsat 8 have similar orbits and fundamentally similar applications. 

However, Sentinel-2 has more spectral bands, larger swath width, finer spatial resolution, and 

with a two-satellite system, higher revisit frequency. Our results showed Sentinel-2 data can be 

applied to estimate AGB more accurately than Landsat 8. This appears to be attributed to both 

the additional red-edge bands as well as the finer spatial resolution. Our results were consistent 

with studies that compared Sentinel-2 and Landsat 8 in the field of land use and land cover 

classification (Forkuor et al., 2018).  

We applied backward selection to progressively remove the variables with the least MDA 

until the model reached lowest RMSE. Table 4-4 indicates the number of top important 

predictors kept in the reduced models. The models that were reduced to include only the most 

important predictors were compared with full models that used all predictors. Higher R2 and 

lower RMSE values highlight the improvement in model performance regardless of input dataset 

when the model was reduced to include only the most important predictors. This finding is in 

line with previous studies using the RF algorithm (Adam et al., 2014; Karlson et al., 2015). A 

possible explanation to the better results is that the reduced model eliminates noise propagating 

in the redundant data (Adam et al., 2014). Our study highlights the need to consider RF variable 

selection for use in similar tasks. 

4.6. Conclusion 

This study compared Sentinel-2 and Landsat data for AGB estimation.  Our results 

showed that the finer spatial resolution and inclusion of red-edge bands in Sentinel-2 led to better 

performance than Landsat 8. The red-edge bands are crucial for estimating forest biophysical 
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parameters and adding red-edge bands to future Landsat missions could provide substantial value 

for vegetation-focused studies. Additionally, the value of the SWIR bands deserves more 

attention. The traditional and popular NDVI did not rate highly in AGB estimations compared to 

NDIs associated with red-edge and SWIR bands. While this study found value in two-band NDIs 

that included red-edge and SWIR, future research may also consider incorporation of these 

valuable spectral regions in other ways.  

Our study also explored the difference between using models that incorporated all 

available variables with those that used backward variable selection to reduce the variables 

included in the model. Our research showed that the reduced models improved model 

performance compared with the full models, which suggests that variable selection may be an 

important consideration when RF regression is applied to similar tasks. Our best RF regression 

ntree and mtry values are consistent with the default values (ntree = 500 and mtry = 1/3 number 

of predictors) in temperate forest AGB estimation. While there was some variability in output as 

these parameters varied, our analysis suggests that applications of RF regression should prioritize 

model variable selection over exploration of RF parameters when time is limited.  
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5. Conclusions and future Work 

5.1. Conclusions 

This dissertation focused on the use of remotely sensed data in forest aboveground 

biomass estimation using remotely sensed data from several sources—i.e., Landsat, Sentinel-2, 

and lidar. Chapter 1 introduced the field and outlined the dissertation hypotheses. In this chapter, 

conclusions of the dissertation are presented by revisiting the hypotheses and offering ideas for 

future research.  

Hypothesis 1: Lidar and Landsat data fusion enhances AGB estimation compared to 

single source approaches. 

Chapter 2 investigated the performance of AGB estimation when using Landsat and lidar 

data sources individually and integrated. The results of our study showed that Landsat data 

explained the least AGB variation due to its inherent limitation in spatial, spectral and 

radiometric resolutions. Lidar was more accurate than Landsat in AGB estimation, with the best 

AGB estimation performance coming from the models that relied on integration of lidar and 

Landsat data.  

Hypothesis 2: AGB estimation quality varies with application of multiple linear 

regression (MLR), Random Forest (RF) and Geographically Weighted Regression (GWR) 

approaches. 

In Chapter 2, we also compared the performance of MLR, RF and GWR for estimating 

AGB. MLR has better performance than RF, which may be attributed to the normal distribution 

of AGB in the plots used for model training. GWR explicitly incorporates the location of model 

inputs, thus can capture spatial effects. GWR performed slightly better than MLR using Landsat 
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or lidar individually, but the best performance in AGB estimation came from MLR using 

integration of lidar and Landsat.   

Hypothesis 3: Forest type influences the performance of AGB estimation using lidar 

and Landsat inputs.  

The results presented in Chapter 2 also showed that forest type influences the 

performance of lidar and Landsat AGB estimation. Forest stand-specific models produced better 

estimations of hardwood and mixed AGB than the pooled models when Landsat data was used.  

Using lidar or an integration of lidar and Landsat, models for softwood and mixed forests 

outperformed the corresponding pooled model. Landsat performed better for AGB estimation in 

hardwood plots than in softwood plots in our study. Our study showed that estimating hardwood 

AGB was more difficult than softwood AGB when using airborne lidar derived variables. 

Landsat data is sensitive to forest horizontal expansion while lidar is superior at modeling forest 

vertical structure. Integration of Landsat and lidar data combines the advantages from both 

dataset and thus results tend to be better when the data sourced are fused.  

Hypothesis 4: Lidar sampling can capture the majority of AGB variation explained 

by full lidar coverage. 

In Chapter 3, we aimed to determine how samples of lidar could best be combined with 

forest inventory data and Landsat imagery to produce viable wall-to-wall maps of AGB. We 

compared systematic sampling and classification-based sampling strategies with AGB derived 

from full lidar coverage. Using under 25% of full lidar coverage, the RMSE from systematic 

strip sampling and classification-based sampling both had higher RMSE (by 24% or more) than 

the full model. There was no general trend in terms of the variability in AGB estimation 



 

129 

 

 

accuracy with changes in systematic sampling intervals and sampling pattern. While systematic 

lidar sampling can achieve promising AGB accuracy and is easy to implement, there were high 

levels of variability among systematic sampling strategies, which may have been linked to 

differences in forest condition. Classification-based lidar sampling provides a planning 

framework that is more readily transferable to new sites by guiding selection of lidar samples 

representative of the study site. By applying lidar sampling, we significantly reduced lidar 

acquisition and processing cost without a major compromise in accuracy. 

Hypothesis 5: The increased spectral and spatial resolution of Sentinel-2 improves 

AGB estimation outcomes compared to Landsat 8. 

Sentinel-2 and Landsat 8 have similar orbits and fundamentally similar applications. 

However, Sentinel-2 has more spectral bands, larger swath width, finer spatial resolution, and 

with a two-satellite system, higher revisit frequency. In Chapter 4, we compared the performance 

of Sentinel-2 and Landsat 8 for AGB estimation.  Our results showed Sentinel-2 data can be 

applied to estimate AGB more accurately than Landsat 8. The advantage of Sentinel-2 for AGB 

estimation appears to be attributed to both the red-edge bands as well as the finer spatial 

resolution. By using a pseudo dataset, we were able to explore the contribution of these two 

components separately. Without the red-edge bands, model accuracy decreased by approximately 

6%. Without the finer spatial resolution, accuracy was approximately 3% lower. Understanding 

the contribution of distinct characteristics of remotely sensed data is critical to strengthen their 

appropriate applications. 
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5.2. Future research directions 

In this dissertation, we explored factors that impact the accuracy of temperate forest AGB 

estimation, such as site condition, statistical method applied, and remotely sensed data used. This 

dissertation strengthened understanding of remote sensing forest AGB estimation and may help 

direct effective applications of remote sensing in the future. However, there are still many areas 

of exploration that deserve consideration. 

Plot measurements often serve as a source of ground reference for training and testing 

remote sensing AGB estimation models. A commonly applied method to acquire plot-level AGB 

is by aggregating tree-level AGB values estimated from allometric equations. This procedure 

introduces many sources of uncertainty including tree measurements, allometric models, and 

misregistration between plot or tree location and remote sensing data (Chen et al., 2015; Yang et 

al., 2015). Although in this dissertation, we applied field inventory data for model training and 

testing, we do not account for these uncertainties, which may impact the reported model fit. 

Procedures to quantify uncertainty have been proposed in publications using statistical analysis 

(Breidenbach et al., 2013; Chave et al., 2004; Holdaway et al., 2014). For people whose 

statistical background knowledge is not strong enough to repeat the published uncertainty studies, 

a standardized procedure that is readily applicable would facilitate its usage for forest 

managements.  

The contrast of red and near infrared vegetation reflectance has been widely applied in 

developing the two-band vegetation indices commonly applied (Baret and Guyot, 1991; Xue and 

Su, 2017). Despite being widely used, the limited reflectance bands utilized by the most popular 

indices might miss critical information. Although algorithms like principal component analysis 
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aim to condense non-correlated information, such techniques require calculation of complex 

coefficient matrix and may not be convenient to utilize, thus are not as popular as more simple 

vegetation indices. In Chapter 4, we presented the promising results using two-band vegetation 

indices developed from red-edge and shortwave infrared (SWIR) bands for AGB estimation.  

With greater access to the red-edge bands, in particular through the Sentinel-2 satellite, this 

provides an area of investigation that should receive attention in the future. Further studies 

should explore the value of new vegetation indices using three or more bands from the red-edge 

and SWIR spectral regions.  

This dissertation showed that remote sensing data from various sources performed 

differently depending on ground conditions. In Chapter 2, we showed that Landsat and lidar 

variables perform differently depending on forest type and forest AGB range. Generally, with 

more data and higher resolutions, higher accuracies are more likely. Previous studies have 

demonstrated that lidar sampling can be used to support AGB estimation. In Chapter 3, we 

presented a method for using freely available Landsat data to capture variation in site conditions 

in order to plan acquisition of lidar samples that can be used to calculate AGB with accuracy 

levels that approach that from using full lidar coverage. The higher resolution Sentinel-2 data is 

now widely available, and with the increase in unmanned aerial vehicles, even more data will be 

accessible in the future. With the evolution of remote sensing platforms, the cost of data 

acquisition and storage will likely drop significantly in the future, but data processing cost will 

increase with data size. Therefore, developing tools to appropriately and efficiently apply remote 

sensing data is going to become even more important and exploring the strengths and weakness 

of remote sensing data in different applications is necessary. We must invest effort in order to 

achieve an optimal balance between cost and information needs.  
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