1,366 research outputs found

    An Unsplit, Cell-Centered Godunov Method for Ideal MHD

    Full text link
    We present a second-order Godunov algorithm for multidimensional, ideal MHD. Our algorithm is based on the unsplit formulation of Colella (J. Comput. Phys. vol. 87, 1990), with all of the primary dependent variables centered at the same location. To properly represent the divergence-free condition of the magnetic fields, we apply a discrete projection to the intermediate values of the field at cell faces, and apply a filter to the primary dependent variables at the end of each time step. We test the method against a suite of linear and nonlinear tests to ascertain accuracy and stability of the scheme under a variety of conditions. The test suite includes rotated planar linear waves, MHD shock tube problems, low-beta flux tubes, and a magnetized rotor problem. For all of these cases, we observe that the algorithm is second-order accurate for smooth solutions, converges to the correct weak solution for problems involving shocks, and exhibits no evidence of instability or loss of accuracy due to the possible presence of non-solenoidal fields.Comment: 37 Pages, 9 Figures, submitted to Journal of Computational Physic

    Smoothed Particle Hydrodynamics and Magnetohydrodynamics

    Full text link
    This paper presents an overview and introduction to Smoothed Particle Hydrodynamics and Magnetohydrodynamics in theory and in practice. Firstly, we give a basic grounding in the fundamentals of SPH, showing how the equations of motion and energy can be self-consistently derived from the density estimate. We then show how to interpret these equations using the basic SPH interpolation formulae and highlight the subtle difference in approach between SPH and other particle methods. In doing so, we also critique several `urban myths' regarding SPH, in particular the idea that one can simply increase the `neighbour number' more slowly than the total number of particles in order to obtain convergence. We also discuss the origin of numerical instabilities such as the pairing and tensile instabilities. Finally, we give practical advice on how to resolve three of the main issues with SPMHD: removing the tensile instability, formulating dissipative terms for MHD shocks and enforcing the divergence constraint on the particles, and we give the current status of developments in this area. Accompanying the paper is the first public release of the NDSPMHD SPH code, a 1, 2 and 3 dimensional code designed as a testbed for SPH/SPMHD algorithms that can be used to test many of the ideas and used to run all of the numerical examples contained in the paper.Comment: 44 pages, 14 figures, accepted to special edition of J. Comp. Phys. on "Computational Plasma Physics". The ndspmhd code is available for download from http://users.monash.edu.au/~dprice/ndspmhd

    Introducing PHAEDRA: a new spectral code for simulations of relativistic magnetospheres

    Full text link
    We describe a new scheme for evolving the equations of force-free electrodynamics, the vanishing-inertia limit of magnetohydrodynamics. This pseudospectral code uses global orthogonal basis function expansions to take accurate spatial derivatives, allowing the use of an unstaggered mesh and the complete force-free current density. The method has low numerical dissipation and diffusion outside of singular current sheets. We present a range of one- and two-dimensional tests, and demonstrate convergence to both smooth and discontinuous analytic solutions. As a first application, we revisit the aligned rotator problem, obtaining a steady solution with resistivity localised in the equatorial current sheet outside the light cylinder.Comment: 23 pages, 18 figures, accepted for publication in MNRA
    • …
    corecore