6,661 research outputs found

    On the Collaboration of an Automatic Path-Planner and a Human User for Path-Finding in Virtual Industrial Scenes

    Get PDF
    This paper describes a global interactive framework enabling an automatic path-planner and a user to collaborate for finding a path in cluttered virtual environments. First, a collaborative architecture including the user and the planner is described. Then, for real time purpose, a motion planner divided into different steps is presented. First, a preliminary workspace discretization is done without time limitations at the beginning of the simulation. Then, using these pre-computed data, a second algorithm finds a collision free path in real time. Once the path is found, an haptic artificial guidance on the path is provided to the user. The user can then influence the planner by not following the path and automatically order a new path research. The performances are measured on tests based on assembly simulation in CAD scenes

    Design area for assistance to maintenance based on augmented reality.

    No full text
    International audienceOne of the main weaknesses with traditional computing is the fact that the numerical world of the computer is decoupled from the user's real world. The application of Augmented Reality (AR) can provide interactive systems in which real objects and computer data are combined in a cohesive way. This new paradigm has many potential applications in various fields, in particular in the maintenance domain. It allows the user to see computer generated virtual objects superimposed to the real world through the see-through Head Mounted Display (HMD). The technician of maintenance, when using this system, can interact with the virtual world and have additional information, such as instruction for performing maintenance tasks in form of text messages, images, 3-D models of pieces or audio such as speech instruction. In this paper, we propose a design process of the maintenance system focused on the analysis of the interaction between the user, the system and the real world. This area is based on the UML notation. The use of UML represents our ergonomic and software design process basis for AR systems. This process also is based on ergonomic characteristics study within a UML system description and on the hybrid PAC-Amodeus model architecture adaptation for the AR systems

    Using virtual reality and 3D industrial numerical models for immersive interactive checklists

    Get PDF
    At the different stages of the PLM, companies develop numerous checklist-based procedures involving prototype inspection and testing. Besides, techniques from CAD, 3D imaging, animation and virtual reality now form a mature set of tools for industrial applications. The work presented in this article develops a unique framework for immersive checklist-based project reviews that applies to all steps of the PLM. It combines immersive navigation in the checklist, virtual experiments when needed and multimedia update of the checklist. It provides a generic tool, independent of the considered checklist, relies on the integration of various VR tools and concepts, in a modular way, and uses an original gesture recognition. Feasibility experiments are presented, validating the benefits of the approach

    Computational interaction techniques for 3D selection, manipulation and navigation in immersive VR

    Get PDF
    3D interaction provides a natural interplay for HCI. Many techniques involving diverse sets of hardware and software components have been proposed, which has generated an explosion of Interaction Techniques (ITes), Interactive Tasks (ITas) and input devices, increasing thus the heterogeneity of tools in 3D User Interfaces (3DUIs). Moreover, most of those techniques are based on general formulations that fail in fully exploiting human capabilities for interaction. This is because while 3D interaction enables naturalness, it also produces complexity and limitations when using 3DUIs. In this thesis, we aim to generate approaches that better exploit the high potential human capabilities for interaction by combining human factors, mathematical formalizations and computational methods. Our approach is focussed on the exploration of the close coupling between specific ITes and ITas while addressing common issues of 3D interactions. We specifically focused on the stages of interaction within Basic Interaction Tasks (BITas) i.e., data input, manipulation, navigation and selection. Common limitations of these tasks are: (1) the complexity of mapping generation for input devices, (2) fatigue in mid-air object manipulation, (3) space constraints in VR navigation; and (4) low accuracy in 3D mid-air selection. Along with two chapters of introduction and background, this thesis presents five main works. Chapter 3 focusses on the design of mid-air gesture mappings based on human tacit knowledge. Chapter 4 presents a solution to address user fatigue in mid-air object manipulation. Chapter 5 is focused on addressing space limitations in VR navigation. Chapter 6 describes an analysis and a correction method to address Drift effects involved in scale-adaptive VR navigation; and Chapter 7 presents a hybrid technique 3D/2D that allows for precise selection of virtual objects in highly dense environments (e.g., point clouds). Finally, we conclude discussing how the contributions obtained from this exploration, provide techniques and guidelines to design more natural 3DUIs

    User-Centred BCI Videogame Design

    Get PDF
    International audienceThis chapter aims to offer a user-centred methodological framework to guide the design and evaluation of Brain-Computer Interface videogames. This framework is based on the contributions of ergonomics to ensure these games are well suited for their users (i.e., players). It provides methods, criteria and metrics to complete the different phases required by ae human-centred design process. This aims to understand the context of use, specify the user needs and evaluate the solutions in order to define design choices. Several ergonomic methods (e.g., interviews, longitudinal studies, user based testing), objective metrics (e.g., task success, number of errors) and subjective metrics (e.g., mark assigned to an item) are suggested to define and measure the usefulness, usability, acceptability, hedonic qualities, appealingness, emotions related to user experience, immersion and presence to be respected. The benefits and contributions of the user centred framework for the ergonomic design of these Brain-Computer Interface Videogames are discussed
    corecore