29,479 research outputs found

    Modeling and supervisory control design for a combined cycle power plant

    Get PDF
    The traditional control strategy based on PID controllers may be unsatisfactory when dealing with processes with large time delay and constraints. This paper presents a supervisory model based constrained predictive controller (MPC) for a combined cycle power plant (CCPP). First, a non-linear dynamic model of CCPP using the laws of physics was proposed. Then, the supervisory control using the linear constrained MPC method was designed to tune the performance of the PID controllers by including output constraints and manipulating the set points. This scheme showed excellent tracking and disturbance rejection results and improved performance compared with a stand-alone PID controller’s scheme

    On the thermal dynamic behaviour of the helium-cooled DEMO fusion reactor

    Get PDF
    The EU-DEMO conceptual design is being conducted among research institutions and universities from 26 countries of European Union, Switzerland and Ukraine. Its mission is to realise electricity from nuclear fusion reaction by 2050. As DEMO has been conceived to deliver net electricity to the grid, the choice of the Breeding Blanket (BB) coolant plays a pivotal role in the reactor design having a strong influence on plant operation, safety and maintenance. In particular, due to the pulsed nature of the heat source, the Primary Heat Transfer System (PHTS) becomes a very important actor of the Balance of Plant (BoP) together with the Power Conversion System (PCS). Moreover, aiming to mitigate the potential negative impact of plasma pulsing on BoP equipment, for the DEMO plant is also being investigated a "heat transfer chain" option which envisages an Intermediate Heat Transfer System (IHTS) equipped with an Energy Storage System (ESS) between PHTS and PCS. Within this framework, a preliminary study has been carried out to analyse the thermal dynamic behaviour of the IHTS system for the Helium-Cooled Pebble Bed (HCPB) BB concept during pulse/dwell transition which should be still considered as the normal operating mode of a fusion power plant. Starting from preliminary thermal-hydraulic calculations made in order to size the main BoP components, the global performances of DEMO BoP have been quantitatively assessed focusing the attention on the attitude of the whole IHTS to smooth the sudden power variations which come from the plasma. The paper describes criteria and rationale followed to develop a numerical model which manages to simulate simple transient scenarios of DEMO BoP. Results of numerical simulations are presented and critically discussed in order to point out the main issues that DEMO BoP has to overcome to achieve a viable electricity power output

    Process intensification for post combustion COâ‚‚ capture with chemical absorption: a critical review

    Get PDF
    The concentration of COâ‚‚ in the atmosphere is increasing rapidly. COâ‚‚ emissions may have an impact on global climate change. Effective COâ‚‚ emission abatement strategies such as carbon capture and storage (CCS) are required to combat this trend. Compared with pre-combustion carbon capture and oxy-fuel carbon capture approaches, post-combustion COâ‚‚ capture (PCC) using solvent process is one of the most mature carbon capture technologies. There are two main barriers for the PCC process using solvent to be commercially deployed: (a) high capital cost; (b) high thermal efficiency penalty due to solvent regeneration. Applying process intensification (PI) technology into PCC with solvent process has the potential to significantly reduce capital costs compared with conventional technology using packed columns. This paper intends to evaluate different PI technologies for their suitability in PCC process. The study shows that rotating packed bed (RPB) absorber/stripper has attracted much interest due to its high mass transfer capability. Currently experimental studies on COâ‚‚ capture using RPB are based on standalone absorber or stripper. Therefore a schematic process flow diagram of intensified PCC process is proposed so as to motivate other researches for possible optimal design, operation and control. To intensify heat transfer in reboiler, spinning disc technology is recommended. To replace cross heat exchanger in conventional PCC (with packed column) process, printed circuit heat exchanger will be preferred. Solvent selection for conventional PCC process has been studied extensively. However, it needs more studies for solvent selection in intensified PCC process. The authors also predicted research challenges in intensified PCC process and potential new breakthrough from different aspects

    Carbon capture from natural gas combined cycle power plants: Solvent performance comparison at an industrial scale

    Get PDF
    Natural gas is an important source of energy. This article addresses the problem of integrating an existing natural gas combined cycle (NGCC) power plant with a carbon capture process using various solvents. The power plant and capture process have mutual interactions in terms of the flue gas flow rate and composition vs. the extracted steam required for solvent regeneration. Therefore, evaluating solvent performance at a single (nominal) operating point is not indicative and solvent performance should be considered subject to the overall process operability and over a wide range of operating conditions. In the present research, a novel optimization framework was developed in which design and operation of the capture process are optimized simultaneously and their interactions with the upstream power plant are fully captured. The developed framework was applied for solvent comparison which demonstrated that GCCmax, a newly developed solvent, features superior performances compared to the monoethanolamine baseline solvent

    Specifications for modelling fuel cell and combustion-based residential cogeneration device within whole-building simulation programs

    Get PDF
    This document contains the specifications for a series of residential cogeneration device models developed within IEA/ECBCS Annex 42. The devices covered are: solid oxide and polymer exchange membrane fuel cells (SOFC and PEM), and internal combustion and Stirling engine units (ICE and SE). These models have been developed for use within whole-building simulation programs and one or more of the models described herein have been integrated into the following simulation packages: ESP-r, EnergyPlus, TRNSYS and IDA-ICE. The models have been designed to predict the energy performance of cogeneration devices when integrated into a residential building (dwelling). The models account for thermal performance (dynamic thermal performance in the case of the combustion engine models), electrochemical and combustion reactions where appropriate, along with electrical power output. All of the devices are modelled at levels of detail appropriate for whole-building simulation tools

    Poplar from phytoremediation as a renewable energy source:gasification properties and pollution analysis

    Get PDF
    Biomass gasification is a very efficient process to produce clean energy in the form of a fuel gas (syngas). Hazelnut shells and poplar have good energy production potential and they are abundant in nature. Hazelnut shells have the characteristics of a very good fuel and poplar is among the fastest growing trees; furthermore, poplar demonstrated the capability to absorb organic contaminants (i.e. heavy metals) from the soil in which they are cultivated. However, poplar is not usually used for biomass gasification and its potential is not fully assessed. Here, 3 types of biomass, hazelnut shells (HS), simple poplar (P) and poplar coming from a phytoremediation procedure (PHYP), were chosen as representative samples to be characterized and tested in a steam gasification process carried out on a bench scale fluidized bed gasifier. A comparison is reported on gasification results, such as gas composition, tar production and gas yield for the biomass feedstocks mentioned above. It was concluded that hazelnut shells and poplar (P and PHYP) could be easily gasified in a fluidized bed gasifier, thus producing a good quality gas with low polluting by-products. The PHYP sample showed lower tar content and higher gas yield. It is guessed that Ca and Mg, found in higher quantities in the PHYP sample, could have had a catalytic effect in tar reforming thus producing lower quantity of heavy hydrocarbons

    Dynamic Simulation of a solar tower system with open volumetic receiver - a review on the vICERP project

    Get PDF
    The paper presents an overview on the modeling and simulation activities of the virtual institute for central receiver power plants (vICERP). Within a three years launch period models and tools for dynamic simulation of central receiver power plants have been developed by the five research institutes involved. The models are based on the Modelica modeling language. Today, models for the heliostat field, the receiver, the air cycle, the thermal storage, and the water-steam cycle are available within the consortium. As a first application, the Solar Tower JĂĽlich technology was used as a reference. Models are validated with real operational data from the Solar Tower JĂĽlich

    Hydrogen production through steam electrolysis : model-based evaluation of an intermediate temperature solid oxide electrolysis cell

    No full text
    Steam electrolysis using a solid oxide electrolysis cell at elevated temperatures might offer a solution to high electrical energy consumption associated with conventional water electrolysers through a combination of favourable thermodynamics and kinetics. Although the solid oxide electrolysis cell has not. received significant attention over the past several decades and is yet to be commercialised, there has been an increased interest towards such a technology in recent years, aimed at reducing the cost of electrolytic hydrogen. Here, a one-dimensional dynamic model of a planar cathode-supported intermediate temperature solid oxide electrolysis cell stack has' been developed to investigate the potential for hydrogen production using such an electrolyser. Steady state simulations have indicated that the electrical energy consumption of the modelled stack is significantly lower than those of water electrolysers commercially available today. However, the dependence of stack temperature on the operating point has suggested that there is a need for temperature control. Analysis of a possible temperature control strategy by variation of the air flow rate through the stack has shown that the resulting changes in the convective heat transfer between the air flow and stack can alter the stack temperature. Furthermore, simulated transient responses indicated that manipulation of such an air flow rate can reduce stack temperature excursions during dynamic operation, suggesting that the p,oposed control strategy. has a good potential to prevent issues related to the stack temperature fluctuations.Imperial Users onl
    • …
    corecore