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Abstract 

Natural gas is an important source of energy. This paper addresses the problem of integrating an existing natural 

gas combined cycle (NGCC) power plant with a carbon capture process using various solvents. The power plant 

and capture process have mutual interactions in terms of the flue gas flowrate and composition versus the 

extracted steam required for solvent regeneration. Therefore, evaluating solvent performance at a single 

(nominal) operating point is not indicative and solvent performance should be c onsidered subject to the overall  

process operability and over a wide range of operating conditions. In the present research, a novel optimization 

framework was developed in which design and operation of the capture process are optimized simultaneously 

and their interactions with the upstream power plant are fully captured. The developed framework was applied 

for solvent comparison which demonstrated that GCCmax, a newly developed solvent, features superior 

performances compared to the MEA baseline solvents.  
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Introduction 

Increasing energy demand and associated pollution have posed a n important challenge around the security of 

energy supply and environmental protection. Among various prospective scenarios, the International Energy 

Agency (IEA) asserts that fossil  fuels are most l ikely to remain the dominant sources of energy for a foreseeable 

future1. Therefore, carbon capture from existing fossil-fuel-driven energy infrastructure will be a major pathway 

for sustainability and environmental protection. Despite such clarity, there are various barriers against 

commercialization of carbon capture technologies. Firstly, the current energy infrastructure is relatively mature 

and the number of existing processes is significantly larger than the number of processes  under construction. 

Therefore, enhancing energy efficiency and mitigating the emissions should require minimal process retrofit. 

Secondly, seamless integration of energy conversion processes with carbon capture technology requires the 

latter process to be at least as flexible as the former (standalone) process. Finally, in order to justify the process 

retrofit and overcome financial barriers, the energetic implications of the carbon capture process should be 

minimal.  

Solvent-based CO2 removal using aqueous amines is the most promising technology for carbon capture, as this 

technology is an end-of-pipe treatment and has been in use since the 1930s for natural gas sweetening 2. 

However, adaptation of this technology for post-combustion carbon capture is nontrivial as gas processing is 

significantly different from power generation in several aspects. Natural gas is often produced at an elevated 

pressure and does not contain any oxygen. Furthermore, in natural gas sweetening, a higher degree of CO2 

removal is required and the separated CO2 is emitted to the atmosphere. Finally, gas processing is a relatively 

steady-state process. By comparison, post-combustion carbon removal is conducted at near atmosphere 

pressure and deep CO2 separation is often uneconomic. In addition, power plants are subject to dra stic variations 

in electricity demand and for the capture plant to remain integrated with the power plant, it should feature a 

high degree of flexibil ity.    

Retrofitting the existing power generation processes with carbon capture technologies has been the focus of 

academic and industrial researchers. The International Energy Agency (IEA) conducted a comparative study3 on 

pre-combustion and post-combustion CO2 capture in natural gas combined cycle (NGCC) power plants, as well 

as pre-combustion carbon capture from coal gasification plants. Post-combustion carbon capture from natural 

gas was identified as the lowest cost retrofit. Later, the National Energy Technology Laboratory (NETL), in a 
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comprehensive study 4, evaluated the implications of carbon capture from natural gas combined cycle (NGCC), 

integrated gasification combined cycle (IGCC), and pulverized coal (PC) power plants. The observation was that 

the energetic penalties associated with carbon capture from NGCC power plants are less than PC and IGCC power 

plants, mainly due to the lower carbon intensity of the natural gas and the higher conversion efficiency of NGCC 

plants. Large increases in the boiler water withdrawal and cooling water were observed for the scenario of NGCC 

power plant, integrated with carbon capture process. Recently, a group of European researchers 5 conducted a 

comprehensive study on the carbon capture from a supercritical pulverised coal power plant and a natural gas 

combined cycle (NGCC) power plant. They employed two economic analysis methods; a top -down method in 

which the historical data from previous projects and similar studies were used, and a bottom-up method that 

was based on mass and energy analysis and detailed equipment costing. Significant difference between the 

results of two studies was reported (table 7 of reference5), i l lustrating the difficulties associated with 

reproducible and comparative economic analysis . 

Furthermore, researchers have focused on the method of process integration from a thermodynamic point of 

view.  The heat integration schemes investigated include steam extraction and condensate recycling 6, 

integrating compressor inter-coolers to the low pressure section of the steam cycle7 or stripper reboiler8, 

preheating combustion air using waste heat from the capture plant9, and application of pressurized hot water 

instead of steam for solvent regeneration10,11. Furthermore, the CO2 concentration of the flue gas can be 

increased by recirculation of exhaust gases 10,12,13 or using a supplementary burner placed in the duct connecting 

the turbine exhaust and heat recovery steam generation (HRSG) system12-14. Other researchers have explored 

the implications of the process configuration on the capital investment and energy costs.  

It was shown that depending on the solvent heat of desorption, either a multi -pressure or vacuum desorber 

could be the optimal configuration15. Other configurations include the absorber with intercooling, condensate 

heating, evacuation using water ejector, stripper overhead compression, lean amine flas h, split-amine flow to 

absorber and desorber, and their combinations. Le Moullec, et al. 16 classified these configurations into three 

categories of (1) absorption enhancement, (2) heat integration and (3) heat pump applications. They 

enumerated twenty process configurations from the open literature and patents. In general, up to 37% energy 

saving in terms of the required reboiler steam was reported 17. Damartzis et al.18 applied a module-based 

generalized design framework in order to optimize process flow diagram including the stream topologies, the 

heat redistribution and the cascades of desorption columns. They reported significant economic improvement 
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(15%-35%) and reductions in the reboiler duty (up to 55%). However, as discussed by Karimi 19, a high degree of 

energy integration may result in poor dynamic behaviour, because in energy integrated processes, disturbances 

propagate in several paths. Therefore, a trade-off between energy saving and process controllability should be 

established 20.  

Nevertheless, integrated operation of carbon capture process es may not be realizable without considering the 

main operational characteristics of the upstream power plant. Power plants are subjects to dra stic variations in 

the electricity demand. Examples of such variations include regular daily and hourly variations in the consumer 

demand or stochastic variations such as extreme weather conditions or local events. It is expected that by the 

introduction of renewable energy resources the fluctuations in the electricity grid will also increase on the supply 

side, as some of these new resources such as solar or wind ha ve intermittent generation characteristics. Thus, 

it is for the fossil -based power plants to operate flexibly and balance the supply defici t in order to meet the 

demand. Therefore, commercialization of new CO2 capture technologies strongly depends on their adaptability 

in order to remain integrated as the upstream power plant experiences variations in the electricity demand. 

Recently, the flexibility of solvent-based carbon capture processes has been the focus of various research groups. 

Shah and Mac Dowell 21 studied the multi -period operation of a coal -fired power plant. They adapted a time-

varying solvent regeneration strategy in order to minimize the costs of CO2 capture. Delarue, et al. 22 had a 

similar observation that flexible operation of capture plant would offer a better economy.  Lawal, et al. 23 studied 

the dynamic performance of carbon capture from a coal-fired sub-critical power plant. They concluded that the 

capture plant has a slower dynamic response than the power plant, which can prolong the power plant start-up 

or load-change due to steam extraction.  In addition, it was observed that the interactions between the control 

loops in the power plant and capture plant l imit the overall  process controllability. Bypassing the flue gas, solvent 

storage and stripper-bypass can potentially offer fl exibil ity and economic savings 24,25. 

In the present paper, we explore model development and validation, scale up, NGCC power plant integration 

and flexible operation of the capture process es. The research questions also include the interactions between 

the power plant and carbon capture plant in terms of the flow and composition of the flue gas and the required 

steam for solvent regeneration, which have implications for the overall  energy efficiency and operational 

flexibil ity. The performances of GCCmax and the MEA solvents for carbon capture from an NGCC power plant 

are studied. GCCmax is recently developed by Carbon Clean Solutions Limited (CCSL) and belongs to the class of 

amine-promoted buffer salt (APBS) solvents. MEA is chosen as the reference solvent for comparison. 
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Nevertheless, the research methodology is general in nature and can offer effective standards for carbon 

capture solvent development and comparison.    

In the following sections first, the overall  process block diagram and the process flow diagram of the sub-

processes are presented and discussed. Then, the capture process model is briefly discussed and justified. The 

discussions continue with the implications of various operating modes of the combined cycle gas turbine (CCGT) 

for the flue gas flowrate and composition. These enable the application of an optimization framework for the 

problem of retrofitting an existing NGCC power plant using solvent-based capture process. Finally conclusions 

are made with respect to the implications GCCmax and MEA reference solvent in terms of technical and 

energetic performance measures.    

Overall process block diagram  

The overall  process block diagram is shown in Figure 1. As shown in this figure, the natural gas combined cycle 

(NGCC) power plant comprises two trains of combined cycle gas turbines (CCGT), heat recovery and steam 

generation (HRSG) systems which are integrated to the steam turbines at three high, medium and low pressure 

levels. The advantages of paral lel trains are due to the fact that in the presence of large variations in the 

electricity demand, it is possible to shut down a gas turbine and operate the other train close to its nominal 

operating conditions, i .e., at a high conversion efficiency.  Based on a similar justification, in the present research, 

separate carbon capture and compression trains are considered in the downstream process, in order to enable 

flexible operation of the overall  integrated process. Figure 1 shows that the NGCC power plant integrates with 

the carbon capture plant at three points. The flue gas is sent from the power plant to the capture plant for CO2 

separation. In addition, the capture plant relies on the steam from the power plant for regeneration of the 

solvent and it returns the condensates to the power plant for reuse and further steam generation. 
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Figure 1. The block diagram for a natural gas combined cycle (NGCC) power plant integrated with CO2 capture and CO2 

compression processes. 

 

Process flow diagram of natural gas combined cycle (NGCC) power plant 

Figure 2 shows the process flow diagram of the natural gas combined cycle (NGCC) power plant, in more detail. 

This process consists of three sub-processes, combined cycle gas turbine (CCGT), heat recovery and steam 

generation (HRSG) system and stream turbines at high pressure (HP), medium pressure (MP) and low pressure 

(LP) levels. Firstly, air is compressed and fed to the combustor where natural gas feed is burned in order to 

release heat. Hot exhaust gases are expanded in the gas turbine in order to produce electricity. Then, the hot 

gases are exploited in the HRSG for generating steam at the three pressure levels. The steam from the high 

pressure steam drum is sent to the HP steam turbine. The discharge of HP turbine is mixed with the steam from 

the medium pressure steam drum and is superheated in the economisers before entering the MP steam turbine. 

The discharge of the MP steam turbine is mixed with the steam generated at the low pressure steam drum. A 

fraction of this steam stream is extracted and sent to the reboiler of the CO2 capture plant for solvent 

regeneration. The pressure and temperature of the extracted steam is adjusted in the desuperheater using the 

condensates returning from the capture plant. In addition, a valve before the LP steam turbine ensures that the 

extracted steam is at the desired pressure. Both HP and MP turbines are of the back-pressure type. However, 

the LP turbine is a condensing turbine. The justification of using a condensing turbine is that the produced power  

is proportional to the pressure ratio between suction and discharge. Therefore, it is possible to enhance the 
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produced work by creating vacuum conditions at the turbine discharge using a surface condenser. The 

condensates from the surface condenser and the condensates returning from the carbon capture plant are 

mixed, deaerated, pressurized and recycled to the steam drums for further steam generation.  

Process flow diagram of CO2 capture and compression sections  

Figure 3 shows the process flow diagram of the CO2 capture and compression sections. In the first column, the 

flue gas from the power plant comes into direct contact with cooling water in order to reduce its temperature 

and remove any entrained particles. In the next column, absorber, the CO 2 is chemisorbed and removed by the 

solvent. The CO2-rich solvent leaves from the absorber bottom, and the cleaned flue gas exits from the absorber 

top and is sent to the water wash column. The aim of the water wash column is minimizing the solvent loss by 

absorbing the solvent spil led from the top of the absorber. The CO2-rich solvent from the bottom of the absorber 

is sent to the top of the desorber for CO2 stripping and solvent regeneration. The CO2-lean solvent from the 

desorber reboiler is recycled to the absorber for reuse and CO2 separation. The absorption reactions are 

exothermic and favour low temperatures. By comparison, the desorption reactions are endothermic and favour 

high temperatures. Therefore, there is an opportunity for heat integration between hot CO2-lean and cold CO2-

rich streams. The separated CO2 from the desorber condenser is sent to the compression section. The 

compression section consists of seven compression stages. In each compression stage, due to pressure 

enhancement, the temperature of the CO2 gas is increased, and needs to be cooled in the subsequent inter-

stage cooler. As a result of sequential compression and cooling, most of the water content is condensed in the 

early stages. The remaining water is removed using an adsorption process in the dehydrators. The compressed 

CO2 is sent from the last stage for storage and sequestration.  
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Figure 2. The process flow diagram of the natural gas combined cycle (NGCC) power plant. 
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Figure 3. The process flow diagram of the CO2 capture and CO2 compression processes
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Research methodology  

For the capture plant, the detailed of model development, pilot plant trials and model validation were reported 

in a previous contribution 34. The present research builds upon this initial results and aims at evaluating the 

performance of the GCCmax solvent in comparison with the MEA benchmark solvent, at a n industrial scale and 

when integrated to an NGCC power plant. In the following, firstly the problem statement for retrofitting an NGCC 

power plant with carbon capture and compression processes is presented. Then, model development and 

validation are briefly discussed. Then, the capture process model is scaled up and integrated to the power plant 

model.  The main feature of interest is uncertainties in the power plant electricity demand that require flexible 

operation of the capture process in order to realize seamless process integration and retrofit. A novel 

optimization framework is proposed to address the posed retrofit problem. In the proposed optimization 

framework, the design and operation of the capture process are optimized simultaneously, and the interactions 

of the down steam capture process with the upstream in terms of the flue gas flowrate and composition and 

the required steam for solvent regeneration, as various electricity load scenarios are fully considered. Then , the 

implementation software tools are elaborated upon. Finally, the results are reported and discussed.  

Problem statement  

The present research addresses the problem of retrofitting an existing natural gas combined cycle (NGCC) power  

plant using solvent-based carbon capture and compression processes. The specifications of an existing NGCC 

power plant including the nominal operating conditions and the performance curves of process equipment 

under various partial load scenarios are given. It is intended to retrofit the power plant with CO2 capture and 

compression plants, so that 90% of the CO2 from natural gas combustion is captured and compressed to 111 bar  

for subsequent storage and sequestration. In addition, it is desired to ensure that the capture plant and its 

compression network remain operable at a wide range (i.e., 25%-100%) of electricity power demands.  

Capture plant model development and validation 

The accurate modelling of the solvent-based CO2 capture processes for the purpose of solvent benchmarking 

and comparison requires a thorough understanding of the underlying physical and chemical phenomena 

involved, as discussed in the following.  

Rate-based modelling of gas-liquid contactors  
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The rate-based model  of the gas-liquid contactor is founded on the two-fi lm theory. In this method, 

thermodynamic equilibrium is assumed only at the interface of vapour and liquid phases. Unlike equilibrium-

based models, the exiting vapour phase is superheated and the exiting l iquid phase is subcooled and they have 

different temperatures. The exchanged mass and energy between phases depend on the driving forces, 

transport coefficients, and the interfacial area. Often, both convective and diffusive transport phenomena are 

involved and component-coupling effects need to be considered 26. Various empirical correlations for calculating 

the mass transfer coefficient are proposed by researchers for random 27-29 and structured packing 29-31. Finally, 

the bulk l iquid and gas phases may have different flow configurations such as plug or mixed flows.  

Reaction kinetics and thermodynamics  

In the present research, the statistical associating fluid theory (SAFT) was adopted for modelling the chemical 

and phase equilibria. In this approach, the rate of reactions, the concentration of intermediate ionization 

species, and their thermophysical properties are not formulated directly. Instead, CO 2 and solvent are 

represented as molecule chains with associating sites. The concentration of CO2 in association with the solvent 

molecules represents the actual CO2 loading at different temperatures and pressures.  

Justification of the modelling strategy 

The combination of rate-based modelling and representation of chemical reactions using statistical associating 

fluid theory (SAFT) provides a consistent modelling approach. The justification is that for solvents such as MEA 

and GCCmax, the rate of reaction is significantly faster than the heat and mass transfer rates. Therefore, the 

knowledge of the reaction kinetics is unnecessary and chemical equilibrium sufficiently describes the actual 

system behaviour at the gas-liquid interface. This modelling approach offers several advantages; firstly unlike 

activity-based models, the same equation of state is used to describe both liquid and vapour phases. Secondly, 

the chemical equilibria are treated at the same level as phase equilibria. Furthermore, this approach results in 

significant model reduction because the speciation of intermediate ions is not included in the mathematical 

formulation and the uncertainties associated with their thermophysical parameters are disentangled from 

problem formulation. Most of all, the aforementioned approach establishes a connection between the chemical 

and physical behaviour of the mixture and the molecular structure of the involved materials. This is of particular 

importance to modelling new solvents as the required information can be acquired from the available data for 

the molecular segments of associating sites. 
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In the present research, the applied software tools were advanced modelling l ibrary gas -liquid contactors (AML-

GLC) and gSAFT toolboxes developed by Process System Enterprise (PSE). The parametric values of 

thermodynamic models for the GCCmax solvent are obscured in order to respect the confidentiality agreements 

with Carbon Clean Solutions Limited (CCSL) and Process Systems Enterprise Ltd (PSE). The modelling equations 

of the gas-liquid contactors and the underlying assumptions are described in 32. More details on the 

thermodynamic model are given in reference 33.  

Pilot plant studies and model validation 

As discussed in a previous contribution 34, In order to ensure effective benchmarking and model validation, two 

sets of pilot plant runs were conducted using the monoethanolamine (MEA) and GCCmax solvents. MEA served 

as the baseline reference solvent. The pilot plant studies were conducted in the US National Carbon Capture 

Center (NCCC) located in Alabama, USA. Table 1 shows the results of model validation for MEA reference solvent 

34. Since the US NCCC pilot plant was not previously operated under natural gas exhaust conditions, the model 

validation was conducted based on historical data for a scenario of coal -fired exhausts. The last column in Table 

1 reports the prediction of the model, when the system is operated for natural gas exhaust conditions. Table 1 

shows a very good agreement between pilot plant data and simulation results, in terms of the captured CO2 and 

the solvent composition. Minor discrepancies in the consumed steam are deemed to be associated with heat 

losses and temperature indicator errors. Table 2 reports the results of the GCCmax solvent model validation 

under natural-gas-fired conditions 34. Two sets of pilot plant data were used, which are different with respect to 

the lean solvent temperature entering the absorber top. The justification was due to the fact that in different 

parts of the world, cooling water may be supplied at different temperatures.  Again the model predictions are 

in good agreement with the pilot plant data with respect to the captured CO 2 and the solvent concentrations, 

giving confidence in the model’s predictive capabilities. The discrepancies in the required steam and 

temperatures were attributed to lack of insulation or temperature measurement errors. 

  



13 | P a g e  

 

Table 1. Model validation for MEA baseline solvent 34.  

  Alabama-coal    Alabama-coal    Alabama NG 

    Pi lot Plant Simulation  Simulation 

Flue gas to the absorber         

Ni trogen + Oxygen Mass  Fraction 0.786 0.786 0.909 

Carbon Dioxide Mass  Fraction 0.165 0.165 0.067 

Water Mass  Fraction 0.049 0.049 0.024 

Tota l  flowrate Kg/s  0.6279 0.6280 0.6279 

Flue Gas Temperature - Absorber Inlet  K 316.56 316.56 316.56 

Lean Solvent - Absorber Inlet          

Amine Mass  Fraction 0.297 0.298 0.296 

CO2 Mass  Fraction 0.063 0.059 0.059 

Water Mass  Fraction 0.640 0.643 0.645 

Tota l  Kg/s  2.5200 2.5100 1.3000 

Lean solvent   temperature K 316.15 316.15 316.15 

Intercoolers outlet temperature K 316.15 316.15  - 

Reboiler Steam          

Steam pressure bar 2.92 2.92 2.92 

Steam temperature K  405.60 405.60 405.60 

Steam flowrate Kg/s  0.18 0.15 0.07 

Lean-Rich Heat Exchanger          

Lean in K 388.87 388.9 389 

Lean out K 331.4 338.9 330.8 

Rich in K 327.91 330.4 321.7 

Reboiler temperature K 385.6 388.0 389.0 

Absorber bottom pressure bar  1.1 1.17 1.16 

Absorber top pressure  bar  1.04 1.04 1.04 

Desorber bottom (reboiler) pressure  bar  1.71 1.71 1.16 

Desorber top pressure  bar  1.69 1.70 1.70 

General specifications     

CO2 capture target  % 91.84 91.85 90 

Inter-stage Cooling  Yes  Yes  No 
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Table 2. Model validation for GCCmax solvent 34.  

  Data Set 1 Data Set 1 Data Set 2 Data Set 2 

Absorber inlet gas stream   Pi lot Plant Simulation  Pi lot Plant Simulation  

Nitrogen + Oxygen Mass Fraction 0.895 0.895 0.896 0.896 

Carbon dioxide Mass Fraction 0.065 0.065 0.065 0.065 

Water Mass Fraction 0.040 0.040 0.039 0.039 

Temperature K 313.1 313.1 312.8 312.8 

Tota l  flowrate kg/s  0.995 0.995 0.9951 0.9951 

Absorber           

Absorber top pressure  bara  1.160 1.160 1.160 1.160 

Absorber bottom pressure  bara  unavailable 1.224 unavailable 1.221 

Absorber outlet CO2 concentration Mass Fraction 0.0053 0.0056 0.004 0.005 

Lean solvent - absorber inlet temperature  K 304.1 304.1 325.4 325.4 

Rich solvent - absorber outlet temperature  K 318.1 316.5 318.7 316.1 

Lean solvent  flowrate kg/s  0.857 0.857 0.756 0.756 

Desorber (regenerator)            

Desorber  Bottom Temperature K 388.6 388.6 395.4 395 

Desorber  Top Pressure bara  1.701 1.708 2.031 2.03 

CO2 s tream  kg/s  0.0578 0.0611 0.060 0.0605 

Reboiler Steam            

Steam pressure bar 3.606 3.605 4.075 4.075 

Steam temperature K 402.8 402.8 408.5 408.5 

Steam condensate Temperature K 401.9 401.9 407.8 407.5 

Steam flowrate kg/s  0.091 0.078 0.086 0.0823 

Lean-Rich Heat Exchanger Temperatures           

Lean solvent in K 387.4 388.6 394.2 395.0 

Lean solvent out K 325.0 322.6 324.7 327.4 

Rich solvent in K 318.9 316.5 319.9 316.1 

Rich solvent out K 380.4 379.9 384.0 379.9 

Lean solvent concentration           

GCCmax Solvent   Mass Fraction 0.410 0.410 0.439 0.439 

Water Mass Fraction 0.536 0.541 0.504 0.515 

CO2 Mass Fraction 0.054 0.049 0.057 0.046 

General specifications           

CO2 Capture target % 89.1 91.7 92.50 92.13 

Inter-stage Cooling   No No No No 
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The validated pilot plant model was used to extract several technical key process indicators (KPIs) which are 

important measures that quantify the difficulties associated with CO 2 separation from the flue gas in terms of 

the required heating and cooling duties, required packing, and solvent circulation. These measures are scaled 

with respect to the amount of pure CO2 captured, to become independent of the pilot plant throughput and 

enable comparisons. Table 3 shows the key process indicators for the baseline solvent (MEA) and the GCCmax 

solvent 34. The first indicator is the heating duty, in terms of the required energy needed in the desorber reboiler 

for separating 1 ton of CO2. Around a 25.4-29.4% reduction in heating duty was observed. Furthermore, a 

comparison between the values of the second KPI, suggest significant reductions (73-84.4%) in the cooling 

duties. The third key process indicator is concerned with the volume of packing in the absorber and desorber 

columns showing improvements in the case of GCCmax solvent. The last KPI is concerned with the required 

solvent circulations, and is an indicator of the electricity power needed for pumping. The observed 

improvements are between 58.8-64.7%.  

 

Table 3. Key process indicators (KPIs) for the GCCmax solvent and baseline MEA solvent 34. 

Key Process Indicators (KPIs) Unit MEA GCCmax (Data1)  GCCmax (Data2)  

Heating duty  (MJ/ton CO2)  3986 2813 2975 

Cooling duty  (MJ/ton CO2) 5644 1524 884 

Volume of packing (m3/ton CO2 hr-1 ) 46.619 45.64 45.91 

Solvent circulation flowrate  (ton solvent/ton CO2) 34 14 12 
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Process Scale-up 

The validated model was applied for analysis at the l arge scale corresponding to the retrofitted power plant. The 

assumptions behind process scale up are summarized in the following.  The bulk l iquid and gas phases are 

assumed to be well -mixed at each stage. Phase equilibrium was assumed only at the vapour–liquid interface. It 

was assumed that the reaction kinetics is significantly faster than the heat and mass transfer rates and therefore, 

equilibrium chemical reactions sufficiently represent the species composition at the gas-liquid interface. In the 

present study, the effects of solvent degradation and heat losses were not considered. In practice, for large-

scale CO2 capture processes, achieving the aforementioned performances will  require effective gas and liquid 

distributors. In addition, the process should be carefully insulated and the composition of the solvent should be 

tightly controlled using make-up.  

Solution algorithm: Simulation-optimization framework  

The aforementioned problem statement falls into the category of Integrated Process Design and Control (IPDC). 

The motivation of the integrated approach, as opposed to sequential process design and control design, is due 

to the fact that when the process design is fixed, there is l ittle room left to improve its operational performance. 

Therefore, it is highly recommended that operational characteristics should be considered at the early design 

stages (i.e., process retrofit in the context of this research). A comprehensive review of the methods for 

integrated process design and control is provided by Sharifzadeh 20.  

The challenge is that the full-space formulation of integrated process and control design for large scale industrial 

problems such as the abovementioned retrofit problem results in numerically intractable optimization 

problems. Therefore, an objective of the present research was to identify critical process variables and ensure 

process operability at the plant-wide level, with a reasonable computational complexity. To this end, a novel 

simulation-optimization framework was developed and tailored for the above-mentioned retrofit problem, as 

shown in Figure 1 and discussed in the following.  

The proposed optimization framework is shown in Figure 1. Here, the overall  process is decomposed into three 

parts; simulation is used for the power plant and compression plant; optimization is applied to the capture 

process.  These three parts are l inked together through flow of materials and energy. As shown in Figure 1, the 

CO2 capture process receives the flue gas from the NGCC power plant and depends on the steam supply for 

regeneration of the solvent. The flowrate of flue gas depends on the electricity power demand and changes as 
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the NGCC power plant experiences variations. In addition, the composition of the fl ue gas depends on the ratio 

of the combustion air and natural gas. However, the ratio of combustion air and natural gas is subject to 

constraints on (1) the maximum allowable temperature of the turbine suction area, and (2) maximum allowable 

temperature of the turbine discharge gases.  Therefore, the operation of CO2 capture plant is highly entangled 

with the operational procedure followed for power plant load reduction. As will  be shown in the first part of the 

Results section, the second constraint (i.e., maximum allowable temperature of the turbine discharge gases) 

becomes active first and by its satisfaction, the first constraint is automatically met.  

The variables involved in the optimal design of the CO2 capture process can be classified as (i) process design 

variables and (i i) process control variables. The differentiation is necessary as process design variables (such as 

the dimensions of process equipment) have a physical realization. After the process is commissioned, they are 

fixed and cannot be changed without costly process modifications.  By contrast the control variables (such as 

the flowrate of the reboiler steam or the circulation rate of the solvent) are available during the process 

operation in order to adapt the capture process to the variations in the upstream power plant.  

In the proposed optimization framework, without loss of generality, we focus on optimizing the capture plant in 

order to manage the numerical size of the problem. The solution algorithm for the optimization framework is as 

follows: 

Algorithm I: 

Step (1) The power plant model is run for a series of steady-state electricity load reduction (100%, 75%, and 

50%) scenarios, and a series of default values for the extracted steam and condensate recycle rates. The 

results of the simulation will  determine the flowrate and composition of the flue gas in each scenario. 

Step (2) Given the flowrate and composition of the flue gas at various load reduction scenarios, the design and 

control variables of the capture plant are optimized (as discussed in the following).  

Step (3) The results of the optimization determine the optimal values of the extracted steam and recycled 

condensates. These values are compared to the previous values of the extracted steam and recycled 

condensates and if the differences are less than the tolerance, the solution is found. Otherwise, the value 

of the extracted steam and recycled condensates are updated in the power plant model and the algorithm 

is repeated from Step (1). 

Note the compression section does not have mutual interaction with the power plant and capture process . The 

required energy for CO2 compression is calculated once the above iterative calcul ation (Steps 1-3) is converged. 
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In the present study, the economic analysis was concerned only with the capture process. However, the 

energetic study also studied the interactions between the power plant and capture plant in terms of the required 

steam and flowrate and composition of the flue gas in addition to the electricity power required for CO2 

compression. 

The abstract formulation of the proposed optimization program (blue envelope in Figure 1) is as follows: 

𝐎𝐛𝐣𝐞𝐜𝐭𝐢𝐯𝐞 = 𝐄(𝐓𝐀𝐂𝐬
) = ∑ 𝛍𝒔 × 𝐓𝐀𝐂𝐬

𝐍𝒔

𝒔=𝟏

                                                   𝐏𝐫𝐨𝐛𝐥𝐞𝐦 − 𝟏 

Subject to  

Constraints associated with first principles (transport phenomena, thermodynamics) 

Technical Constraints: maximum reboiler temperature (l imited by the possibility of solvent degradation)  

Control Constraints: 90% CO2 Capture, maximum turbine discharge temperature 

Disturbances: Composition and flowrate of flue gas for various power load reduction scenarios  

Process design decision variables: The dimensions of absorber, desorber, and heat exchangers 

Control (recourse) decision variables: Circulation flowrate, Reboiler steam flowrate  

In the above formulation, 𝐄  is the expected value, 𝒔  is the index of the load reduction scenarios, 𝛍𝒔  is the 

likelihood of each scenario and 𝐍𝒔 is the total number of scenarios. 𝐓𝐀𝐂 refers to the total annualized cost (TAC) 

of the capture plant, and was calculated as:  

𝑇𝑜𝑡𝑎𝑙 𝐴𝑛𝑛𝑢𝑎𝑙𝑖𝑧𝑒𝑑  𝐶𝑜𝑠𝑡𝑠 =  
𝐹𝑖𝑥𝑒𝑑  𝐶𝑎𝑝𝑖𝑡𝑎𝑙 𝑖𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡

𝑃𝑙𝑎𝑛𝑡 𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒  𝐿𝑖𝑓𝑒
 + 𝑇𝑜𝑡𝑎𝑙  𝐴𝑛𝑛𝑢𝑎𝑙  𝐸𝑛𝑒𝑟𝑔𝑦  𝑐𝑜𝑠𝑡𝑠          (1) 

where the value of 5 years was considered for the capture plant effective l ife, in order to combine the plant l ife 

and the time value of money. The costs of process equipment were calculated according to the costing 

correlations provided in 35. A Lang factor of 6 was considered for estimating the total capital investment 36. The 

util ity costs considered were 65 $/MWh for electricity 37, 0.048 $/tonne for cooling water 38, and 14.5 $/tonne 

for steam. The MEA solvent loss is around 1400 mg/m3 of flue gas. Equivalent value for the GCCmax is around 

28 mg/m3. However, since the GCCmax is not priced yet, the costs of solvent losses is not included in the 

objective function. Solvent degradation was not considered in this study. The considered load reduction 

scenarios were 100%, 75% and 50% and were assumed to be equally l ikely.  Since the overall  process (Figure 1) 

consists of two parallel trains, the 50% load reduction in each train will  be sufficient to realize a large range of 

potential operational part-load scenarios (25-100%). The part-load operation of power plants is l imited to their 
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turndown ratio (approximately 50%). The turndown ratio is dictated by the technical l imitations such as 

excessive pressure drops across the power plant, or the surge margins of the compressor and turbines. In the 

present research, three operational scenarios were considered; in the first scenario both gas turbines are 

operated at full -load (100%). This scenario refers to the highest conversion efficiency, i .e., the highest CO2 

concentration and smallest steam demand per ton of captured CO2. In the third scenario, both gas turbines are 

operated at 50%, which refers to the worst conversion efficiency and hence, the lowest CO2 concentration and 

the largest steam demand per ton of captured CO2. The second scenario is intermediate, where both gas 

turbines are operated at 75%. These scenarios cover all the operating regions thoroughly. It is notable that there 

are other operating scenarios where the gas turbines could be operated at different loads (e.g., operating one 

of trains at full  load and shutting down the other), which could be more energy efficient. However, the 

aforementioned scenarios are more comprehensive with respect to CO2 concentration and flowrate.   

From the optimization programming point of view, the above formulation conforms to a two-stage recourse-

based optimization under uncertainty 39. From the Control Engineering point of view the above formulation 

conforms to a steady-state inversely controlled process model (ICPM) 40, 41. Here the treatment is based on the 

property that the inverse solution of process model can be applied in order to evaluate the best achievable 

control performance. The idea is shown in Figure 4, adapted from 41. In a steady-state inversely controlled 

process model, the values for the manipulated variables (MVs) required for maintaining the controlled variables 

(CVs) at constant setpoints are calculated using the inverse of process model. As discussed by Sharifzadeh 20, 41 

using this strategy, it is possible to ensure that the process remains operable under various disturbance scenarios 

(i.e., electricity load reduction). It is notable that application of a dynamic inversely controlled process model 42 

also enables studying the process controllability during transient states. However, we defer such detailed 

analysis to our future research. In the context of the present study concerning carbon capture from the NGCC 

power plant, two model inversions were conducted. Firstly, the temperature of the turbine disch arge gases (as 

discussed and justified later in the result section) is chosen as the controlled variable (CV). The corresponding 

manipulated variable (MV) is the flowrate of the combustion air which is varied in order to maintain the 

temperature of the turbine discharge gases constant at its maximum allowable value. The second controlled 

variable was the CO2 capture target. Here, the corresponding manipulated variables are the reboiler steam 

flowrate and the solvent circulation rate which are optimally varied in order to keep the controlled variable at 

the 90% CO2 capture target. It is notable that in the context of present study, the NGCC power plant model is 
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applied in order to derive realistic disturbance scenarios  (red envelop in Figure 4)  in terms of the flowrate and 

composition of the flue gas for the carbon capture process. The challenge is that there are mutual interactions 

between the capture process and the power plant, shown by arrays in Figure 4. While the steam needed for 

solvent regeneration depends on the flowrate and composition of the flue gas , the overall  fuel consumption and 

hence the flue gas itself, also depends on the required steam in the desorber reboiler .  In the present study such 

mutual interactions is captured using the iterative steps in Algorithm I, as outlined earlier. 

 

Figure 4. Optimizing a steady-state inversely controlled process model, adapted from 40. 

 

Model development and implementation software tools  

The NGCC power plant and compression process were modelled in gCCS 43, a software tool developed by Process 

Systems Enterprise Ltd (PSE). The specification of the NGCC power plant model was received from PSE from one 

of their earlier industrial projects. The important characteristics of the developed model were calculation of the 

efficiency of the compressors and turbines using performance curves and calculation of material flowrates based 

on pressure differences. The capture plant model was developed using the Advanced Model Library for Gas-

Liquid Contactors (AML:GLC) 44 and gSAFT 45. As described extensively earlier, the main characteristics of the 

capture process model were rate-base modelling of mass and heat transfer phenomena and representation of 

chemisorption reactions using SAFT equation of state. The heat-exchangers were modelled using gCCS in the 

operational mode. The implication is that the surface area was an optimization variable, and given the heat 

transfer coefficient, the temperatures of the hot and cold streams were calculated. In the present study, the 

gPROMS default values for the solution parameters were used (e.g., 10-5 for absolute tolerance). Similar to other 
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NLP algorithms, the solution time depends on the initial guess for the optimization variables, and typically takes 

1-2 days to converge. 

Results of optimization programming 

The Results Section is organized as follows. Firstly, it is investigated how the CCGT control strategy influences 

the flue gas composition and flowrate. These discussions enable underpinning the interactions between the 

power plant and capture process during electricity load reduction scenarios. Then, the results of the optimization 

Problem 1 are reported and discussed. Finally, the implications of NGCC power plant retrofit and integration 

with capture plant for the overall  energy conversion are evaluated and discussed. 

Control strategy for combined cycle gas turbine (CCGT) 

This section discusses the operation of CCGT at steady-state which has profound implications for the flowrate 

and composition of the flue gas . When the power plant is operated at full  load, the ratio of the combustion air 

and natural gas flowrates is adjusted in order to maximize energy conversion. However, as the electricity power 

demand is reduced, the flowrate of natural gas is reduced accordingly and maintaining a constant ratio with 

combustion air flowrate would increase the temperature of the combustor exhaust gases and turbine discharge 

gases which could potentially damage the process equipment. Therefore, a control strategy is needed that 

systematically safeguards the process equipment.  

 

Figure 5. The Control structure for combined cycle gas turbine (CCGT) during power plant load reduction: (a) the 

temperature of combustor exhaust gases is controlled (b) the temperature of turbine discharge gases is controlled. 
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In practice, there are two control structures in use 46, shown in Figures 5a and 5b. Both control structures have 

a similar control loop in that, the setpoint of the natural gas flow controller is adjusted according to the electricity 

power demand. However, the two control structures differ in the selected controlled variable in the seco nd 

control loop. In the first control structure (Figure 5.a), the temperature of the combustor exhaust gases is 

controlled. By comparison, in the second control structure (Figure 5.b), the temperature of the turbine discharge 

gases is controlled. The first control strategy requires a recurrent procedure. The reason is that maintaining the 

temperature of the combustor exhaust gases at a constant value results in an increase in the temperature of the 

turbine discharge gases which can damage the downs tream HRSG section. Therefore, the operational strategy 

in the first control structure consists of two iterative control modes: 

Mode (i): The flowrate of the natural gas is reduced while the flowrate of the combustion air is maintained 

constant (dotted line in Figure 6a). This results in a reduction in the temperature of the turbine discharge 

gases (descending dotted line in Figure 6c).  

Mode (ii): The temperature of combustion exhaust gases  is controlled using the combustion air flowrate 

(constant dotted l ine in Figure 6d) as the flowrate of the natural gas is further reduced.  This results in an 

increase (ascending dotted line in Figure 6c) in the temperature of the turbine discharge gases until  it 

reaches a l imit where there is a risk of thermal shock to the downstream equipment. The control system 

switches to Mode (i).   

Unlike the first control strategy, the second control strategy requires only one operational mode. The reason is 

that by controlling the temperature of the turbine discharge gases (solid l ine in Figure 6c) the temperature of 

combustion exhaust gases  decreases (solid l ine in Figure 6d). In other words, the constraint on the turbine 

discharge temperature becomes active first and automatically satisfies the constraint on the combustion 

exhaust temperature. Figures 6a and 6b suggest that the second control strategy is optimal with respect to the 

CO2 separation as it produces less flue gas with a higher CO2 content, i .e., easier carbon capture task. 
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Figure 6. The flowrate of flue gas (a), The CO2 mass fraction of flue gas (b), the temperature of turbine discharge gases (c) 

and the temperature of combustion exhaust gases (d) for the control structures (a) and (b) in Figure 5.  

 

Overall energy conversion efficiency and implications of carbon capture and compression 

Table 4 reports the results summary for the scenario in which the capture process is operate with the GCCmax 

solvent. The features of interest include the flowrate of natural gas feed, the flowrate and composition of the 

flue gas, the generated power, the required steam for solvent regeneration, the power needed for CO2 

compression, the cost of produced electricity and the overall  energy efficiency. Similar results are reported in 

Table 5 where the MEA reference solvent is used. In both scenarios, the flowrate of natural gas is gradually 

reduced from the nominal value of 26.87 kg/s by almost 50% and the design and operation of the capture plant 

are optimized according to the simulation-optimization framework shown in Figure 1.  These Tables exhibit 

common observations regarding the implications of electricity load reduction for power generation with CO2 

capture. In all  scenarios, CO2 capture and compression impose energetic penalties in terms of the required steam 

for solvent regeneration and the electric power needed for CO2 compression. In addition, as the electricity load 

is decreased, the energy conversion efficiency is reduced, due to the reduced efficiency of process equipment 
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such as turbines and compressors. The combination of these penalties reduces  the net produced electricity and 

decreases the overall  energy efficiency.  

 

Table 4. The results of flexible operation of NGCC power plant for various electricity load, with and without 
CO2 capture and compression plants: GCCmax solvent.  

  Nominal a 100% load 75% load 50% load 

NG flowrate b kg/s  26.87 26.87 21.08 15.25 

Flue gas flowrate kg/s  1214.8 1214.8 1022.6 801.5 

Flue gas composition: N2 Mass fraction  0.7601 0.7601 0.7611 0.7623 

Flue gas composition: O2 Mass fraction 0.1169 0.1169 0.1230 0.1294 

Flue gas composition: H2O Mass fraction 0.0647 0.0647 0.0615 0.0581 

Flue gas composition: CO2 Mass fraction 0.0583 0.0583 0.0544 0.0502 

Generated power in NGCC b MW 747.18 698.78 510.43 341.75 

Extracted steam b kg/s  - 68.24 52.4 36.76 

Power consumed in compressors b MW - 20.68 15.88 11.64 

Net produced electricity  b MW 747.18 678.1 494.55 330.1 

Energy content of feed (HHV) b MW 1292.62 1292.62 1014.07 733.66 

CO2 captured Kg/s  63.74 63.74 50.07 36.20 

Electricity costs $/MWh 65.00 71.62  77.04 83.50 

Overall conversion efficiency % 57.8 52.46 48.77 44.99 

Notes : a Nominal refers to the s tandalone scenario where the power plant is operated at i ts nominal operating point without 
CO2 capture and compression plants. b the reported flowrates and power va lues are for the overall process and include the 

two tra ins  of CCGT, HRSG, CO2 capture and compress ion sections .  

 

Table 5. The results of flexible operation of NGCC power plant for various electricity load, with and without 

CO2 capture and compression plants: MEA baseline solvent. 

  Nominal a 100% load 75% load 50% load 

NG flowrate b kg/s  26.87 26.87 21.08 15.25 

Flue gas flowrate kg/s  1214.8 1214.8 1022.6 801.5 

Flue gas composition: N2 Mass fraction  0.7601 0.7601 0.7611 0.7623 

Flue gas composition: O2 Mass fraction 0.1169 0.1169 0.1230 0.1294 

Flue gas composition: H2O Mass fraction 0.0647 0.0647 0.0615 0.0581 

Flue gas composition: CO2 Mass fraction 0.0583 0.0583 0.0544 0.0502 

Generated power in NGCC b MW 747.18 679.94 495.89 331.09 

Extracted steam b kg/s  - 98.12 77.16 54.59 

Power consumed in compressors 
b 

MW - 20.68 15.88 11.64 

Net produced electricity b MW 747.18 659.26 480.01 319.45 

CO2 captured Kg/s  63.74 63.74 50.07 36.20 

Energy content of feed (HHV) b MW 1292.45 1292.45 1013.95 733.53 

Electricity costs $/MWh 65.00 73.67  79.38 86.29 

Overall conversion efficiency % 57.8 51.01 47.34 43.55 

Notes : a Nominal refers to the s tandalone scenario where the power plant is operated at i ts nominal operating point without 

CO2 capture and compression plants. b the reported flowrates and power va lues are for the overall process and include the 
two tra ins  of CCGT, HRSG, CO2 capture and compress ion sections .  
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The implications of load reduction for operation of the capture plant are more convoluted. To enable the 

discussions more details are provided in Tables 6 and 7 which report the design and operational specifications 

for the load reduction scenarios, in the case of GCCmax and MEA solvents, respectively. As the electricity load is 

reduced, the concentration of CO2 in the flue gas (Tables 4 and 5) decreases, which suggests a more difficult 

separation task. On the contrary, more contact area (shown by packing volume KPI in Tables 6 and 7) becomes 

available between the gas and liquid phases. Then, it is for the optimization algorithm to adjust the solvent 

circulation rate and reboiler steam for each electricity load scenario and establish a trade-off between the capital 

investment and the energy costs. Overall  a minor decrease in the heating and cooling indicators and solvent 

circulation indicators are observed for load reduction scenarios. Another important feature of interest is the 

design and operation of the absorber column. The absorber experiences the largest variations during load 

reduction due to drastic variations in the flue gas flowrates. While the desired extent of CO2 capture constrains 

the required gas-liquid contact area, a tall/thin column would result in very high pressure drops at full  load 

operation and a short/fat column would result in channelling during part-load operation. Therefore, it was for 

the optimization algorithm to find a compromise design which satisfies the CO2 capture constraint and ensures 

process operability in all  load reduction scenarios. Tables 6 and 7 suggest that the optimized columns were 

neither fat nor thin but almost square. The justification for the large heat transfer areas is the fact that the 

overall  economy is governed by the required reboiler steam. Such a large heat transfer area may require special 

equipment such as plate heat exchangers. Since the heat-transfer area was the same in all  scenarios, the 

approach temperatures are smaller in part-load scenarios as less solvent is circulated. Finally, a comparison 

between the KPIs in Tables 6 and 7 suggests that GCCmax features superior performance as  it required 45% less 

column packing, 30% less steam,  54% less cooling water, and 7% less pumping energy (shown by solvent 

circulation rate), per unit mass of captured CO2. The estimated total annualized costs of the capture process at 

full-load were 3.15×107 $/year and 3.91×107$/year for GCCmax and MEA solvents, respectively.  
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Table 6. The results of GCCmax solvent for various load reduction scenarios (all the results are reported for 
one train) 

  50% load 75% load 100% load 

Absorber      

Diameter m 13.58 13.58 13.58 

Length  m 12.47 12.47 12.47 

Absorber top pressure Pa 1.29E+05 1.18E+05 1.03E+05 

Absorber bottom pressure Pa 1.35E+05 1.35E+05 1.35E+05 

Lean Solvent to absorber     

Flowrate kg/s  840.622 1139.86 1383 

Temperature K 313.15 313.15 313.15 

Water Mass fraction 0.5036 0.5036 0.5036 

CO2 Mass fraction 0.0864 0.0864 0.0864 

GCCmax Mass fraction 0.4100 0.4100 0.4100 

Lean-Rich Heat Exchanger     

Area  m2 69398 69398 69398 

Lean inlet temperature  K 384.3 384.3 384.3 

Lean outlet temperature K 328.1 329.5 330.8 

Rich inlet temperature K 327.0 327.9 328.4 

Rich outlet temperature K 383.9 383.4 382.8 

Desorber     

Diameter m 6.59 6.59 6.59 

Length  m 6.11 6.11 6.11 

Reboiler     

Reboiler temperature K 384.3 384.3 384.3 

Reboiler pressure Pa  2.21×105 2.21×105 2.21×105 

Stream flowrate  kg/s  18.38 26.20 34.12 

Steam inlet pressure  Pa  3.61×105 3.61×105 3.61×105 

Steam inlet temperature  K 402.8 402.8 402.8 

Condenser temperature K 313.15 313.15 313.15 

Lean solvent cooler temperature K 313.15 313.15 313.15 

Carbon capture target % 90.0 90.0 90.0 

Key process indicators (KPIs)     

Packing volume m3/ (tonne CO2 hr) 30.9 22.4 17.5 

Heating duty MJ/tonne CO2 2166 2251 2348 

Cooling duty MJ/ tonne CO2 1990 2179 2305 

Circulation rate ton solvent/ tonne CO2 46.7 46.5 45.7 

Total Purchased Equipment costs $ 8.47×106  8.47×106 8.47×106 

Annualized Energy Costs $/year 1.13×107 1.62×107 2.13×107 

Total Annualized Costs (TACs) $/year 2.15×107 2.63×107 3.15×107 
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Table 7. The results of MEA baseline solvent for various load reduction scenarios (all the results are reported 
for one train) 

  50% load 75% load 100% load 

Absorber      

Diameter m 14.99 14.99 14.99 

Length  m 14.75 14.75 14.75 

Absorber top pressure Pa 1.28E+05 1.20E+05 1.03E+05 

Absorber bottom pressure Pa 1.35E+05 1.35E+05 1.35E+05 

Lean Solvent to absorber     

Flowrate  kg/s     

Temperature K 313.9 313.9 313.9 

Concentration     

Water Mass fraction  0.6504 0.6504 0.6504 

MEA Mass fraction 0.2820 0.2820 0.2820 

CO2 Mass fraction 0.0676 0.0676 0.0676 

Lean-Rich Heat Exchanger     

Area  m2 60174.5 60174.5 60174.5 

Lean inlet temperature  K 388.6 388.6 388.7 

Lean outlet temperature K 332.7 334.3 334.3 

Rich inlet temperature K 326.8 327.7 327.9 

Rich outlet temperature K 384.3 382.7 381.6 

Desorber     

Diameter m 11.47 11.47 11.47 

Length  m 10.20 10.20 10.20 

Reboiler      

Reboiler temperature K 388.6 388.6 388.7 

Reboiler pressure Pa  1.85×105 1.85×105 1.85×105 

Stream flowrate  kg/s  27.30 38.58 49.06 

Steam inlet pressure  Pa  3.05×105 3.05×105 3.05×105 

Steam inlet temperature  K 400.6 400.6 400.6 

Condenser temperature K 313.9 313.9 313.9 

Lean solvent cooler temperature K 313.9 313.9 313.9 

Carbon capture target % 90.0 90.0 90.0 

Key process indicators (KPIs)     

Packing volume m3/ (tonne CO2 ×hr) 55.95 40.7 32.2 

Heating duty MJ/tonne CO2 3241.2 3329.9 3348.2 

Cooling duty MJ/ tonne CO2 4754.6 4991.7 4998.2 

Circulation rate ton solvent/ tonne CO2 53.1 51.6 49.3 

Total Purchased Equipment costs $ 8.28×106  8.28×106 8.28×106 

Annualized Energy Costs $/year 1.54×107 2.18×107 2.76×107 

Total Annualized Costs (TACs) $/year 2.64×107 3.31×107 3.91×107 
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Conclusions 

The present research studied scale up and integration of a solvent-based carbon capture process into a natural 

gas combined cycle (NGCC) power plant for a novel solvent, GCCmax, and the MEA reference solvent. The aim 

was to establish and quantify the superior performance of the new solvent at an industrial scale. Furthermore, 

the present research provided in-depth insights into retrofit and flexible operation of NGCC power plants. It was 

observed that the control strategy for the combined cycle gas turbine (CCGT) during load reduction, has 

profound implications for the flowrate and composition of flue gas, a nd hence affects carbon capture costs. It 

was also observed that NGCC power plants are less efficient at part-load operational scenarios. In the present 

research, the method of integrated process design and control was adapted and solved. The proposed 

optimization algorithm successfully established a trade-off between the design and operational  criteria. The 

overall  total annual costs in terms of capital investment and energy costs were minimized while the process 

operability was ensured under all  load reduction scenarios. 

Since comparison between various economic analysis available in open literature is challenging due to different 

scope of system analysis, modelling details  and the economic estimation methods, and in the absence of 

economic data from industrial-scale demonstration plants, the present study chose to apply a set of key process 

indicators (KPIs) enabling objective and reproducible comparisons. In all scenarios the GCCmax performed better 

KPIs than the MEA reference solvent. GCCmax belongs to the family of the amine-promoted buffer salt (APBS) 

solvents. It features a lower heat of absorption compared to MEA and its kinetics is enhanced by a buffer salt. 

This combination enables GCCmax to require less regeneration energy and to feature a high er CO2 loading, 

resulting in a superior performance compared to the MEA benchmarks. While the comparative study was 

tailored to the aforementioned solvents, the research methodology is generic and provides effective standards 

and benchmarking criteria for new solvent development. 
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