68,403 research outputs found

    Ligand-biased ensemble receptor docking (LigBEnD): a hybrid ligand/receptor structure-based approach.

    Get PDF
    Ligand docking to flexible protein molecules can be efficiently carried out through ensemble docking to multiple protein conformations, either from experimental X-ray structures or from in silico simulations. The success of ensemble docking often requires the careful selection of complementary protein conformations, through docking and scoring of known co-crystallized ligands. False positives, in which a ligand in a wrong pose achieves a better docking score than that of native pose, arise as additional protein conformations are added. In the current study, we developed a new ligand-biased ensemble receptor docking method and composite scoring function which combine the use of ligand-based atomic property field (APF) method with receptor structure-based docking. This method helps us to correctly dock 30 out of 36 ligands presented by the D3R docking challenge. For the six mis-docked ligands, the cognate receptor structures prove to be too different from the 40 available experimental Pocketome conformations used for docking and could be identified only by receptor sampling beyond experimentally explored conformational subspace

    DockPro: A VR-Based Tool for Protein-Protein Docking Problem

    Get PDF
    Proteins are large molecules that are vital for all living organisms and they are essential components of many industrial products. The process of binding a protein to another is called protein-protein docking. Many automated algorithms have been proposed to find docking configurations that might yield promising protein-protein complexes. However, these automated methods are likely to come up with false positives and have high computational costs. Consequently, Virtual Reality has been used to take advantage of user's experience on the problem; and proposed applications can be further improved. Haptic devices have been used for molecular docking problems; but they are inappropriate for protein-protein docking due to their workspace limitations. Instead of haptic rendering of forces, we provide a novel visual feedback for simulating physicochemical forces of proteins. We propose an interactive 3D application, DockPro, which enables domain experts to come up with dockings of protein-protein couples by using magnetic trackers and gloves in front of a large display

    Identification of Potent Leads for Human cAMP Dependent Protein Kinase Catalytic Subunit Alpha: A Strategic Application of Virtual Screening for Cancer Therapeutics

    Get PDF
    The advancement in therapeutic applications focused on specific macromolecular compounds of deregulated cell signaling pathways bestowed novel approach to design the ligands as drug molecules against several life threatening diseases such as Cancer. In humans, protein kinase A is one of the important kinases those were involved in cell signaling mechanism. cAMP, G-proteins and ATP molecules were required for activation of protein kinase A (PKA), upon activation, PKA catalytic subunits (PRKACA,PRKACB and PRKACG) undergoes many cellular functions like cell proliferations, cell cycle regulation, and survival of cells through acting on many substrates. Overexpression of extracellular cAMP dependent protein kinase A catalytic subunits (PRKACA) causes severe tumorgenesis in different organs (prostate gland, breast, lungs and pancreas) leading to cancer. High throughput virtual screening was implemented herein to identify the potent leads for human PRKACA that stimulates chronic form of cancers. In silico functional and phylogenetic analysis of PRKACA protein provided enough evidences towards its cancer stimulating nature. The human PRKACA crystal structure in complex with inhibitor ‘796’ (PDB ID: 2GU8) was optimized in Maestro v9.0 and the amino acid residues constituting inhibitor interaction site were determined. Fifteen published inhibitors were selected including HA1077, Flavopiridol, Roscovitine, MLN-518, PP2 and Gleevec which were already in clinical trials for high throughput screening at Ligand.Info database. An in house library of 5388 compounds was designing from the above screening procedure were prepared in LigPrep for molecular docking with human PRKACA. Maestro Glide docking from lesser to higher stringency towards minor steric classes were applied subsequently to the prepared ligand dataset against a grid around centroid of the identified inhibitor interaction site of human PRKACA and 21 lead molecules with good docking scores were obtained. Lead ‘1’ (Leptosidin) with relatively least docking score (-11.02 Kcal/mol) compared to other 20 lead molecules and 15 published inhibitors delineates it as potentially the best competitive inhibitor among all. The promising inhibitory activity of Leptosidin is further supported from analysis of binding orientations of human PRKACA- Leptosidin complex deciphering the Lead 1 blocks the active site residues Thr51, Glu121, Val123, Glu127 and Thr183 by forming hydrogen bond. Thus, Leptosidin could be futuristic perspective chemical compound to design drug molecule against human PRKACA in numerous cancers, however, further in vitro and in vivo studies were required to verify the computational strategic prediction of PKA holoenzyme against cancer therapeutics

    Evolutionary Multi-Objective Design of SARS-CoV-2 Protease Inhibitor Candidates

    Full text link
    Computational drug design based on artificial intelligence is an emerging research area. At the time of writing this paper, the world suffers from an outbreak of the coronavirus SARS-CoV-2. A promising way to stop the virus replication is via protease inhibition. We propose an evolutionary multi-objective algorithm (EMOA) to design potential protease inhibitors for SARS-CoV-2's main protease. Based on the SELFIES representation the EMOA maximizes the binding of candidate ligands to the protein using the docking tool QuickVina 2, while at the same time taking into account further objectives like drug-likeliness or the fulfillment of filter constraints. The experimental part analyzes the evolutionary process and discusses the inhibitor candidates.Comment: 15 pages, 7 figures, submitted to PPSN 202

    Adaptive GPU-accelerated force calculation for interactive rigid molecular docking using haptics

    Get PDF
    Molecular docking systems model and simulate in silico the interactions of intermolecular binding. Haptics-assisted docking enables the user to interact with the simulation via their sense of touch but a stringent time constraint on the computation of forces is imposed due to the sensitivity of the human haptic system. To simulate high fidelity smooth and stable feedback the haptic feedback loop should run at rates of 500 Hz to 1 kHz. We present an adaptive force calculation approach that can be executed in parallel on a wide range of Graphics Processing Units (GPUs) for interactive haptics-assisted docking with wider applicability to molecular simulations. Prior to the interactive session either a regular grid or an octree is selected according to the available GPU memory to determine the set of interatomic interactions within a cutoff distance. The total force is then calculated from this set. The approach can achieve force updates in less than 2 ms for molecular structures comprising hundreds of thousands of atoms each, with performance improvements of up to 90 times the speed of current CPU-based force calculation approaches used in interactive docking. Furthermore, it overcomes several computational limitations of previous approaches such as pre-computed force grids, and could potentially be used to model receptor flexibility at haptic refresh rates

    Computational structure‐based drug design: Predicting target flexibility

    Get PDF
    The role of molecular modeling in drug design has experienced a significant revamp in the last decade. The increase in computational resources and molecular models, along with software developments, is finally introducing a competitive advantage in early phases of drug discovery. Medium and small companies with strong focus on computational chemistry are being created, some of them having introduced important leads in drug design pipelines. An important source for this success is the extraordinary development of faster and more efficient techniques for describing flexibility in three‐dimensional structural molecular modeling. At different levels, from docking techniques to atomistic molecular dynamics, conformational sampling between receptor and drug results in improved predictions, such as screening enrichment, discovery of transient cavities, etc. In this review article we perform an extensive analysis of these modeling techniques, dividing them into high and low throughput, and emphasizing in their application to drug design studies. We finalize the review with a section describing our Monte Carlo method, PELE, recently highlighted as an outstanding advance in an international blind competition and industrial benchmarks.We acknowledge the BSC-CRG-IRB Joint Research Program in Computational Biology. This work was supported by a grant from the Spanish Government CTQ2016-79138-R.J.I. acknowledges support from SVP-2014-068797, awarded by the Spanish Government.Peer ReviewedPostprint (author's final draft

    In silico assessment of potential druggable pockets on the surface of α1-Antitrypsin conformers

    Get PDF
    The search for druggable pockets on the surface of a protein is often performed on a single conformer, treated as a rigid body. Transient druggable pockets may be missed in this approach. Here, we describe a methodology for systematic in silico analysis of surface clefts across multiple conformers of the metastable protein α1-antitrypsin (A1AT). Pathological mutations disturb the conformational landscape of A1AT, triggering polymerisation that leads to emphysema and hepatic cirrhosis. Computational screens for small molecule inhibitors of polymerisation have generally focused on one major druggable site visible in all crystal structures of native A1AT. In an alternative approach, we scan all surface clefts observed in crystal structures of A1AT and in 100 computationally produced conformers, mimicking the native solution ensemble. We assess the persistence, variability and druggability of these pockets. Finally, we employ molecular docking using publicly available libraries of small molecules to explore scaffold preferences for each site. Our approach identifies a number of novel target sites for drug design. In particular one transient site shows favourable characteristics for druggability due to high enclosure and hydrophobicity. Hits against this and other druggable sites achieve docking scores corresponding to a Kd in the µM–nM range, comparing favourably with a recently identified promising lead. Preliminary ThermoFluor studies support the docking predictions. In conclusion, our strategy shows considerable promise compared with the conventional single pocket/single conformer approach to in silico screening. Our best-scoring ligands warrant further experimental investigation

    The benefits of in silico modeling to identify possible small-molecule drugs and their off-target interactions

    Get PDF
    Accepted for publication in a future issue of Future Medicinal Chemistry.The research into the use of small molecules as drugs continues to be a key driver in the development of molecular databases, computer-aided drug design software and collaborative platforms. The evolution of computational approaches is driven by the essential criteria that a drug molecule has to fulfill, from the affinity to targets to minimal side effects while having adequate absorption, distribution, metabolism, and excretion (ADME) properties. A combination of ligand- and structure-based drug development approaches is already used to obtain consensus predictions of small molecule activities and their off-target interactions. Further integration of these methods into easy-to-use workflows informed by systems biology could realize the full potential of available data in the drug discovery and reduce the attrition of drug candidates.Peer reviewe

    Identification of Ligands with Tailored Selectivity: Strategies & Application

    Get PDF
    In the field of computer-aided drug design, docking is a computational tool, often used to evaluate the sterical and chemical complementarity between two molecules. This technique can be used to estimate the binding or non-binding of a small molecule to a protein binding site. The classical application of docking is to find those molecules within a large set of molecules that bind a certain target protein and modulate its biological activity. This setup can be considered as established for a single target protein. In contrast to this, the docking to multiple target structures offers new possible applications. It can be used, for example, to assess the binding profile of a ligand against a number of proteins. In this work, the applicability of docking is assessed in such a scenario where multiple target structures are used. The corresponding proteins mostly belong to the family of G protein-coupled receptors. This protein family is very large and numerous GPCRs have been identified as potential drug targets, explaining the their relevance in pharmaceutical research. The protein structures used herein have different relationships and thus represent different application scenarios. The first case study uses two structures belonging to different proteins. These proteins are CXCR3 and CXCR4, a pair of chemokine GPCRs. In this chapter, new ligands are identified that bind to these proteins and modulate their biological activity. More importantly, for each of these newly identified ligands it could be predicted using docking, whether this ligand binds only to one of the two target proteins or to both. This study proves the applicability of docking to identify ligands with tailored selectivity. In addition, these ligands show excellent binding affinities to their respective target or targets. In the following two studies, the docking to different structures of the same target protein is investigated. The first application aims at identifying ligands selective for either one of two isoforms of the zebrafish CXC receptor 4. Subsequently, multiple conformations of the chemokine receptor CCR5 are used to show that different starting structures can identify different ligands. Next to the plain identification of chemically new ligands, experimental hurdles to prove the biological activity of these molecules in a functional assay is discussed. These difficulties are based on the fact that docking evaluates the structural complementarity between molecules and protein structures rather than predicting the effect of these molecules on the proteins. In addition, GPCRs form a challenging set of target proteins, since their ligands can induce a variety of different effects. Finally, the general applicability of multi-target docking to a very large number of structures is investigated. For this evaluation, kinases are used as protein family since many more structures have been experimentally determined for these proteins compared to GPCRs as membrane proteins. First, using published experimental data, a dataset is created consisting of several hundred kinase structures and a set of small-molecule kinase inhibitors. This dataset is characterised by the availability of experimental binding data for each single kinase-inhibitor combination. These experimental data were subsequently compared to the docking results of each ligand into each single kinase structure. The results indicate that a reliable selectivity prediction for a ligand is highly demanding in such a large-scale setup and beyond current possibilities. However, it can be shown that the prediction accuracy of docking can be improved by normalising the docking scores over multiple ligands and proteins. Based on these findings, the idea of "protein decoys" is developed, which might in the future allow more accurate predictions of selectivity profiles using docking
    corecore