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Abstract

The search for druggable pockets on the surface of a protein is often performed on a single conformer, treated as a rigid
body. Transient druggable pockets may be missed in this approach. Here, we describe a methodology for systematic in silico
analysis of surface clefts across multiple conformers of the metastable protein a1-antitrypsin (A1AT). Pathological mutations
disturb the conformational landscape of A1AT, triggering polymerisation that leads to emphysema and hepatic cirrhosis.
Computational screens for small molecule inhibitors of polymerisation have generally focused on one major druggable site
visible in all crystal structures of native A1AT. In an alternative approach, we scan all surface clefts observed in crystal
structures of A1AT and in 100 computationally produced conformers, mimicking the native solution ensemble. We assess
the persistence, variability and druggability of these pockets. Finally, we employ molecular docking using publicly available
libraries of small molecules to explore scaffold preferences for each site. Our approach identifies a number of novel target
sites for drug design. In particular one transient site shows favourable characteristics for druggability due to high enclosure
and hydrophobicity. Hits against this and other druggable sites achieve docking scores corresponding to a Kd in the mM–nM
range, comparing favourably with a recently identified promising lead. Preliminary ThermoFluor studies support the
docking predictions. In conclusion, our strategy shows considerable promise compared with the conventional single
pocket/single conformer approach to in silico screening. Our best-scoring ligands warrant further experimental
investigation.

Citation: Patschull AOM, Gooptu B, Ashford P, Daviter T, Nobeli I (2012) In Silico Assessment of Potential Druggable Pockets on the Surface of a1-Antitrypsin
Conformers. PLoS ONE 7(5): e36612. doi:10.1371/journal.pone.0036612

Editor: Chandra Verma, Bioinformatics Institute, Singapore

Received October 10, 2011; Accepted April 9, 2012; Published May 8, 2012

Copyright: � 2012 Patschull et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: AOMP was supported by a Wellcome Trust PhD studentship. PA was supported by a Biotechnology and Biological Sciences Research Council (BBSRC)
Collaborative Awards in Science and Engineering (CASE) studentship, which was part-funded by Pfizer. BG was supported by a Wellcome Trust Intermediate
Clinical Fellowship and a Clinical Lectureship from the University of Cambridge. No additional external funding was received for this study. The funders had no
role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: Yes, the authors have the following competing interest. PA holds a studentship that is part-funded by Pfizer. There are no patents,
products in development or marketed products to declare. This does not alter the authors’ adherence to all the PLoS ONE policies on sharing data and materials,
as detailed online in the guide for authors.

* E-mail: i.nobeli@mail.cryst.bbk.ac.uk

Introduction

The desire to modulate protein function with small molecules

that can be administered as drugs has led to a plethora of studies

attempting to define and calculate the ‘‘druggability’’ of sites on a

protein [1,2,3,4,5]. Most studies have relied on experience from

inhibiting enzymes acting on small molecule substrates. Here the

target sites are well-formed surface pockets, characterized by high

curvature and low solvent accessibility. Recently ‘‘harder’’ targets

have been addressed. These include protein-protein interactions

and proteins belonging to large homologous superfamilies e.g.

kinases. In the former, the interfaces are larger and flatter [6]. In

the latter, inhibiting the common active site risks serious cross-class

side effects. Both these issues may be addressed by targeting clefts

that are not necessarily associated directly with the protein’s

biochemical function. The idea is that binding of small molecules

to such clefts may be more favourable and could still allosterically

modulate protein function, e.g. via preferential stabilization of a

particular state within the conformational landscape of the protein

in solution.

The search for suitable allosteric clefts requires consideration

of functional relevance and druggability. Functional relevance is

usually less obvious from structural snapshots for an allosteric site

than an active site. It may be deduced experimentally by

mutagenesis, or through observation of the binding site of known

ligands. Druggability has traditionally been indirectly assessed by

computational studies (docking) or in vitro screening. More

recently, quantitative predictors of cleft druggability have been

devised [2,3,5,7,8,9]. These commonly assess the size, shape,

buriedness and hydrophobic character of a site. However, a

major limitation is currently not addressed routinely: the

transient character of some clefts that may otherwise be of

interest in drug design. Druggable pockets on a protein’s surface

are most commonly assessed using a single 3D structure. This is

unsatisfactory because proteins undergo dynamic changes in

solution, sampling multiple conformations, each with potentially

different surface pockets. The existence of multiple conformers is

especially relevant to ligand recognition. Ligand binding inher-

ently tends to conformational selection [10,11], a process by

which protein-ligand interactions lower the free energy of a

conformer, increasing the stability and population of a state that

may otherwise rarely be observed. In recent years some notable

efforts have been made to identify transient sites. In the approach
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pioneered by Eyrisch and Helms [12], trajectory snapshots from

molecular dynamics simulations revealed transient pockets on the

surfaces involved in protein-protein interactions. In a more

recent study, the same authors showed that transient pockets

could also be revealed by methods that were more efficient

computationally than molecular dynamics, albeit usually at the

cost of reduced pocket diversity [13]. In another interesting

study, Schmidtke et al. [14] demonstrated how pocket tracking

across multiple structures with the program fpocket can highlight

important changes to a pocket, arising from both dynamics of a

single protein as well as evolutionary time in a family of

homologues. Recently, the importance of employing multiple

protein conformers in virtual screening has been highlighted

[15,16,17] and there is a growing trend for incorporating notions

of flexibility in the docking process. Despite these pioneering

studies, most current in silico screening starts with the selection of

a single pocket from a single conformer.

In this study we demonstrate how the approach of employing

multiple protein conformers at the selection-of-pocket stage can be

combined with predictions of druggability, to aid the identification

of transient, novel druggable pockets often missed in single

conformer approaches. Our study focuses upon a1-antitrypsin

(A1AT), the archetypal member of the serpin (serine protease

inhibitor) superfamily [18]. Its characteristic native fold (Figure 1)

is metastable and this is key to its antiprotease function [19]. It is

an excellent candidate to assess our strategy for a number of

reasons. Firstly, A1AT is a medically important target. Its

metastability is subverted by pathogenic mutations that cause

A1AT to polymerise. This causes diseases of the liver (neonatal

hepatitis, cirrhosis and hepatocellular carcinoma) and lung (early-

onset emphysema) through loss- and gain-of-function mechanisms

[20]. Secondly, the biological function and dysfunction of serpins

is coupled to marked conformational changes involving large

rearrangements of their structure [21]. Moreover, extensive

mutagenesis experiments demonstrate that mutations around

surface clefts can significantly alter the stability of native A1AT

[22]. Metastability is therefore related to pocket vacancy,

indicating that ligand binding in a range of allosteric sites may

modulate stability, and hence, pathological conformational

change. Lastly, a range of high-resolution crystallographic datasets

are available for wild type and mutant A1AT species in native,

metastable (or stressed ‘S’) and relaxed (‘R’), hyperstable states,

allowing comparison of computationally derived conformers with

structural data. Following docking studies we have gone on to

assess some of our most promising findings experimentally,

identifying small molecule ligands with potential for development

as novel therapeutics.

Results

Identification of Surface Pockets Present in Crystal
Structures of a1-antitrypsin

We denote the eight top-ranking surface clefts identified by

SiteMap [2] on the structure of native A1AT (PDB entry: 1qlp) A

to H (Figure 2). Sites A, D and G are each clearly distinct from

other cavities, whereas sites C, B and E, as well as F and H are

very close in space. The B, D and G sites are all defined by loop

regions. In the case of site B, the loop involved is the reactive

centre loop (RCL). It is also interesting to note that sites C and E

are proximal to the glycosylation site Asn247, whereas D is

proximal to glycosylation site Asn46. The largest predicted site on

the native wild type A1AT (1qlp) is site A, adjacent to strand 2 of

b-sheet A. This site scores the highest for tight binding of drug-like

ligands with SiteMap scores (SiteScore 1.03, Dscore 1.03) highly

Figure 1. The structure of the wild type a1-antitrypsin. Front (A) and back (B) views of the structure of A1AT in cartoon representation (PDB
entry: 1qlp). The secondary elements are coloured as follows. ß-sheets: A (red), B (blue), and C (yellow); helices: A (cyan), B (apricot), C (blue), D (grey-
green), E (purple), F (yellow), G (orange), H (pink), I (olive); loops: reactive centre loop (RCL, red), all other loops (green).
doi:10.1371/journal.pone.0036612.g001
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consistent with those observed in sites binding drugs with a

submicromolar Kd (mean 1.01) [2].

Having identified potentially interesting sites on a single crystal

structure, we assessed how persistent these sites were across our

dataset of different crystal structures of A1AT (Table 1 and

Figure 3A). In structures containing the metastabilizing mutation

Ala70Gly (PDB entries: 1hp7, 1oph and 1iz2), we identified an

additional site (here referred to as site ‘‘I’’), located between the H-

helix, the s4-s6 of the B ß-sheet and the A-helix. This site is small

(45 Å3), and very hydrophobic (the ratio of hydrophobic to

hydrophilic character measured by SiteMap’s ‘‘balance’’ property

is 5.1, with 1.6 being the average balance for tight-binding sites

[2]). Despite the small size of this site, the corresponding Site- and

Dscores (0.92 and 0.92 respectively) calculated by SiteMap

indicate a promising pocket for targeting with small molecule

drug-like ligands. Although site I is present as a cavity in the

remaining non-mutated structures, it is not solvent-accessible, and

so is not identified by SiteMap. Interestingly, in PDB entry 1hp7,

sites E and I are combined by SiteMap into one site, indicating

that a ligand could possibly straddle both. Of the remaining eight

sites, four are present in both the stressed and relaxed forms of

A1AT (C, D, E, F), and four are only found in the stressed form

(A, B, G and H). We summarise our results for the properties of

each site in Figure 3.

A large variation is observed in the volumes of all the larger sites

among the eight crystal structures studied reflecting significant

conformational changes across this dataset. However, even the

largest of these sites (1qlp, site A: 234 Å3) is small compared with

the average volume of drug-binding sites (reported as 600 to 900

Å3, depending on the method used to measure them [23]).

Nevertheless, six of the sites (A, B, C, D, E and I) have a median

SiteScore higher than 0.8, the recommended value for distin-

guishing drug-binding from non-drug binding sites [2]. Sites A, C,

and E demonstrate SiteScores .1.01, consistent with submicro-

molar drug-binding, in at least one crystal structure [2].

Incidence and Variability of Surface Pockets within a
Computationally-generated Conformer Ensemble

An ensemble of 100 A1AT conformations was generated from

the native wild type structure 1qlp using the distance constraints-

based method within CONCOORD [24] (Figure S1). SiteMap

was then used to assess pockets A–I across the entire computa-

tionally generated native-like ensemble. The frequency of occur-

rence of each site across all conformers is summarised in Figure 3B.

The boxplots in Figures 3C–F summarise selected SiteMap

property results for these sites. Similar trends for the volumes

and site scores are observed for conformations produced using

more extensive sampling, or a different structure of native wild

type A1AT (2qug) as the starting point for the CONCOORD

simulation (data not shown). The majority of the values for the

Site- and DScores (Figures 3C and 3D respectively), volume

(Figure 3E), and hydrophobic/philic balance (Figure 3F) for

pockets in the crystal structures are within the boxplot limits. Thus

the A1AT cavity characteristics explored by the computational

conformers are supported by crystallographic observations. In

addition, more detailed assessment of the computational conform-

ers demonstrating the maximum Dscore for each cavity using the

PROSESS server [25] indicated they were of comparable quality

to experimental structures in our dataset in terms of geometry and

packing (Table S1).

The behaviour of the A site across the computationally

generated conformeric ensemble demonstrates the conservative

nature of the conformational lability simulated by the program

CONCOORD. Within the dataset of crystal structures of native

A1AT the A site is largest and most druggable in 1qlp, the starting

template for our CONCOORD simulation. The site is retained in

96% of the generated ensemble (Figure 3B) and displays higher

volumes (Figure 3E) and druggability scores (Figures 3C & D)

across these conformers than observed across the crystallographic

structures. Despite this conservative approach, the ensemble

generated by CONCOORD demonstrates that even these small

fluctuations can have major consequences for surface clefts in

A1AT, simulating pocket ‘‘breathing’’ in solution. Thus pocket

volumes varied #3-fold for many sites (Figure 3E) and druggability

scores showed up to 2-fold variation (Figure 3D). For many sites a

source of high variability was their merging with other sites via

formation of a channel of interconnected subsites. In particular, a

channel ran from the RCL to the H-helix incorporating sites B, C,

E and I in various combinations across several conformers (Figure

S2).

A number of other sites have the potential to achieve

druggability scores comparable to site A within the ensemble.

However, the spread of scores across the conformational ensemble

(Figure 3C) indicates that the ligand-favouring properties of these

sites are subject to greater fluctuation than the A site. Only three

sites (F, G and H) have median SiteScores below the 0.8

Figure 2. The nine top-ranking surface pockets identified by
SiteMap on a1-antitrypsin. Coloured spheres represent the SiteMap
predictions for eight top-ranking surface clefts on the wild type a1-
antitrypsin (PDB entry 1qlp, in grey cartoon representation): site A:
green, B: cyan, C: blue, D: purple, E: fuchsia, F: orange, G: slate blue, H:
brown. The yellow spheres correspond to the ninth site, I, a cleft
identified on crystal structures of A1AT containing the Ala70Gly
mutation.
doi:10.1371/journal.pone.0036612.g002

Assessment of Druggable Pockets on a1-Antitrypsin

PLoS ONE | www.plosone.org 3 May 2012 | Volume 7 | Issue 5 | e36612



recommended cut-off for promising drug targets. In general, the

SiteScore for a pocket correlates with the volume of that pocket,

but it is interesting that site I, although relatively small, scores very

highly (its median druggability score is highest after site A, among

sites not defined by the RCL). This is probably due to its strongly

hydrophobic environment (see Figure 3F), which has highly

favourable drug binding characteristics.

Surface Cleft Variability Assessed by Provar
To assess the variability of each predicted site in terms of the

residues that line the site we employed Provar [26] a method

recently developed in our group for the calculation and depiction

of surface cleft variability. Provar uses an ensemble of conformers

and their predicted pockets as input, calculates the propensity of

each residue to line a pocket, and aids visualization by mapping

the results on a single conformer structure. Provar results for the

100 CONCOORD conformers of A1AT are summarized in

Figure 4. The Provar analysis is consistent with SiteMap analysis

data (Figure 3B), and provides additional information about which

residues are consistently part of a pocket and which are only

occasionally so. For example, the majority of the residues lining

the A pocket appear to be persistently part of a cleft across the

CONCOORD conformer ensemble (Figure 4C). By contrast, of

the residues surrounding the I pocket, only three are consistently

pocket-lining: Leu276, Ile375 and Lys380 (Figure 4D). As the I

pocket is only identified in about a quarter of all conformers, these

residues must be often part of a different pocket that incorporates

part of the I site. Moreover, Provar offers an insight into how

conformational changes affect a pocket: pockets that have many of

their residues coloured red (e.g. site A, Figure 4C) are likely to be

changing in volume (as evidenced also in Figure 3) by ‘‘breathing’’-

style motions that inflate and deflate the site without having much

effect on which residues are pocket-lining. Sites that have many

residues surrounding them coloured pink (e.g. site I) are either

transiently observed, or change shape and volume by burying and

exposing different parts of the site in different conformers. Such

sites are consequently more likely to be missed by software that

identifies pockets, if only one conformation or poor sampling of

conformers is used.

Global Fragment and DrugBank Library Docking Studies
To further characterize the A–I pockets we proceeded to dock a

set of representative fragments from the ZINC database and

compounds from the DrugBank library to each of the sites on

A1AT using Glide. Our in silico fragment screen identified high-

scoring fragments for each site, highlighting chemotypes that may

be used as starting points for future in vitro exploration. The ZINC

identification codes for the 5 top-scoring fragments against each

site are provided in Table S2. The docked poses of these fragments

can be used to define pharmacophores for each site. Encourag-

ingly, the top scoring fragments for the A site clustered in the area

identified in our previous proof-of-principle study as a target for

pharmacophores capable of blocking polymerization of A1AT

while preserving inhibitory function (Figure 5). The area of the

pharmacophore is defined by Asn104, Thr114 and His139, and

several of our fragment poses favour hydrogen bonds to the

threonine and histidine residues.

The protein-fragment interactions within the other, less well

characterized, sites provide great insight into the ligand-binding

capabilities of these pockets. For example, the top 10 fragments in

the I site have at least one hydrogen bond to one of three residues:

Thr273 (side-chain oxygen OG1 acts as an acceptor to 5 ligands),

Lys380 (backbone oxygen O acts as donor to 7 ligands) and

His269 (ND1 acts as donor to 4 ligands). Moreover two areas

within the site are often occupied by hydrophobic rings. These

findings can be used to build a pharmacophore template for

further searches of additional ligand databases.

Overall the sites identified by SiteMap analysis demonstrated

specificity even when probed with small fragment compounds, that

are intrinsically more likely than larger compounds to bind

promiscuously [27]. Top-scoring fragments for each site typically

scored better for binding at that site than against any other site

(Figure S3).

Our second docking experiment scanned all pockets with the

DrugBank collection of small molecules in an effort to identify any

high-ranking ligands that are already used, or being tested as

drugs for different targets. 12,115 small molecule ligand structures

based on 5,897 molecules from the DrugBank library were docked

using Glide (see Methods for details) to each of the nine surface

clefts A–I. Docking scores for each ligand successfully docked to

each site are summarized in Figure 6. In these plots we have

merged the distribution of docking scores for sites B, C and E

(labelled as site BCE), as well as F and H (FH), as the necessity of

using a reasonable-size receptor grid in docking means that we

cannot exclude ligands from docking to neighbouring sites, even if

the grid is centred on a specific site. As is usual for docking

calculations, the majority of the ligands interacted in silico with

relatively poor predicted binding energies (23 to 25 kcal/mol),

Table 1. The dataset of selected crystal structures of A1AT used in this study.

Description PDB id Resolution (Å) Mutations

Stressed – Native wild type 1qlp [30] 2.00 None

Stressed – Native wild type 2qug [41] 2.00 None

Stressed – Native with citrate bound 3cwm [41] 2.51 None

Stressed – Native mutant 1hp7 [42] 2.10 Ala70Gly

Stressed – Native mutant 3drm [32] 2.20 Thr114Phe

Stressed – Native mutant 1oph [43] 2.30 Ph351Leu, Thr59Ala, Thr68Ala, Ala70Gly,
Cys232Ser, Met358Arg, Met374Ile, Ser381Ala,
Lys387Arg

Relaxed – Uncleaved RCL (kinetic trap) 1iz2 [37] 2.20 Phe51Leu, Thr59Ala, Thr68Ala, Ala70Gly,
Arg101His, Val364Ala, Met374Ile, Glu376Asp,
Ser381Ala, Lys387Arg

Relaxed – Cleaved reactive loop 1ezx [19] 2.60 None

doi:10.1371/journal.pone.0036612.t001
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Figure 3. Properties of surface pockets in crystal structures and in silico conformers of a1-antitrypsin. Persistence of clefts A–I among
A1AT crystal structures (A) and computationally produced conformers (B). Where the sites C and E overlapped, the data are presented under the label
‘‘C_E’’. The distribution of SiteMap calculated properties for the 100 in silico conformers are shown as boxplots: SiteScore (C), DScore (D), site volume

Assessment of Druggable Pockets on a1-Antitrypsin
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indicating poor potential for drug development. However,

promisingly, low energy outliers in these distributions achieve

scores in the range of 27.5 to 28.8 kcal/mol for each site (Table 2

and Figure 7). These scores are comparable to the score of

compound ‘‘CG’’, a molecule identified in a previous study as an

inhibitor of A1AT polymerization (CG achieves a score of

28.7 kcal/mol against its target site (A) after induced fit docking

using Glide). Moreover, the best-scoring ligand for each site

appeared highly selective for that site (Figure 6B). The best overall

scores were achieved for sites BCE and FH. The highest-scoring

ligand interaction was for 7,8-dihydro-7,7-dimethyl-6-hydroxyp-

terin (DrugBank ID DB02278). Despite the relatively small size

(209 Da) of this ligand, it achieved a score of 28.8 kcal/mol

against the BCE site. However in our simulations, this molecule

bound the RCL with likely adverse effects on the enzyme

inhibitory function of A1AT.

Since larger compounds (.350 Da) are considered unfavour-

able as leads for drug design we also considered the 10 best

performing ligands in terms of their ligand efficiency for each

site. Ligand efficiency is traditionally defined as the docking

score divided by the number of heavy atoms, but here we are

referring to the natural logarithm scaling of the ligand

efficiency, a metric that the Schrödinger developers suggest

gives a better fit to experimental data. Within these best ligand

efficiency sets we then selected the ligand with the best overall

docking score to avoid overcompensating for size at the expense

of docking score. Some of these (‘best-efficient’) ligands

conserved interactions that are important in the binding of

the highest scoring ligand overall (‘best-overall’). Thus, within

the I site, hydrogen bonding of a charged amine group to the

backbone of Ser140 was seen with both the best-efficient

(DrugBank ID: DB00610) and best-overall (DB07124) ligands.

Similarly the aromatic ring of the most efficient ligand for the I

(E) and hydrophobic vs. hydrophilic character balance (F). The corresponding data for crystal structures are shown as red symbols superimposed on
the boxplots; 1qlp (circle), 2qug (plus sign), 3cwm (square), 1hp7 (diamond), 3drm (triangle point up), 1oph (triangle point down). Data are shown
only for sites identified within PDB entries for native (stressed, ‘S’) forms of A1AT, as these are likely to be the appropriate target states for the design
of polymerization inhibitors.
doi:10.1371/journal.pone.0036612.g003

Figure 4. The pocket-lining propensity of the residues of a1-antitrypsin calculated with Provar. Ribbon representation of A1AT (front, A
and back, B) coloured by the residue-based Provar probabilities. Provar colours each protein residue according to its probability of being pocket-
lining in an ensemble of conformers (here, 100 CONCOORD-produced conformations of A1AT). The first (0.05) and third quartile (0.92) of the
probability distribution are used as the white and red limits of the spectrum respectively. Hence, residues appearing red belong to the top quartile
distribution, i.e., in this case, they are pocket-lining in more than 92% of the conformers. (C) and (D): The SiteMap predictions for two pockets (A and I
respectively) are shown as solid spheres, and every residue with an atom within 3.75 Å of any sphere is shown in stick representation coloured by its
Provar value. Depth-cueing has been switched off in these figures to preserve the variation in the colouring of the residues.
doi:10.1371/journal.pone.0036612.g004
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site (DB03329) overlaps with the positions of all other aromatic

rings in the top 10 scoring ligands.

Induced Fit Screening for Promising I Site Ligands
For a flexible protein, like A1AT, rigid receptor docking is likely

to miss many ligands that require small structural rearrangements

in order to fit some of the smaller sites. In this case, docking

calculations that allow for induced fit are recommended. We

experimented with the induced fit protocol mostly with the I site,

as this is the smallest of all and more likely to benefit from such a

protocol, whereby ligands are docked into sites in a soft mode

(repulsive forces are very much reduced), then the protein and the

ligand are allowed to relax, and finally the ligand is redocked to

the relaxed conformer of the receptor. We found that the induced

fit docking protocol dramatically changes the results for some

ligands.

We illustrate two examples here of two natural compounds with

promising results. Menthol (DB000825) is a natural compound of

mint oils that scores reasonably well (26.6 kcal/mol) in the

original docking trial (with the receptor kept rigid) and, more

importantly, ranks eighth out of the 10,000 reported ligand poses.

Following induced fit docking, this score improves dramatically to

28.5 kcal/mol, aided by a small rearrangement of His269, which

results in an additional hydrogen bond to the ligand. Thymol is

another interesting hit against site I. In preliminary docking

experiments (without prior protein refinement in Glide) we

observed that thymol was the fourth best scoring molecule against

this site. Thymol is a natural product of thyme and a known

protein binder [28] that is used as a stabilizer in pharmaceuticals

as well as an antiseptic, vermifuge, antibiotic and fungicide, so it

may be an interesting ligand to explore. Unlike many of the larger

ligands that were found bound mostly on the outside of the cavity,

thymol docked inside and showed a good complementarity to the

site. Following protein refinement (a recommended procedure in

Glide), thymol could not be docked inside the I site, resulting in a

very poor docking score (Figure 8A). However, after induced fit

docking thymol could enter the cavity and achieved a Glide score

of 28.3 kcal/mol (Figure 8B). Finally, a series of molecules

comprising the thymol scaffold resulted in several good hits, the

top-scoring one being 5-ethyl-2-(4-ethyl-2-hydroxy-phenyl)phenol

(PubChem CID: 19850961), which binds the I site with an

impressive score of 210 kcal/mol. This score is equivalent to a Kd

prediction in the nanomolar range (Figure 8C).

Figure 5. Fragment docking to the A site targets the
pharmacophore defined by Asn104, Thr114, and His139. Best
poses of the top-scoring 20 fragments (coloured sticks) from the ZINC
dataset docked in the A site of A1AT (cartoon, blue). The majority of
these fragments fill the pocket defined by Thr114 and Asn104 at the
top, and His139 at the bottom (thin sticks, cyan), identified in our
previous study as a potential allosteric site for targeting A1AT
polymerization. Some of the fragments take advantage of hydrogen
bonding opportunities presented by His139 and Thr114.
doi:10.1371/journal.pone.0036612.g005

Figure 6. Results from docking the DrugBank collection against nine pockets on a1-antitrypsin. (A) Boxplot distributions of docking
scores for DrugBank molecules docked to each of the nine sites A to I. Only the top-ranking pose is included for each ligand and only ligands of
molecular weight less than 500 Daltons are included in this plot. (B) The best-scoring ligand for each site is assigned a worse score when docked
against each of the other sites. The red diamonds represent the best docking score for each ligand depicted in Table 2, when docked to the site
where it is ranked top. The black diamonds correspond to the scores for each of these ligands when docked to all other sites. The x-axis labels
correspond to the DrugBank ID of the ligand and, in brackets, the site against which it is selected as ‘‘best-scoring’’, e.g. 07124(A) refers to DrugBank
entry DB07124 which achieves its best score against site A.
doi:10.1371/journal.pone.0036612.g006
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Another interesting observation relating to the I site is that

there seems to be a transient hydrophobic pocket next to the

originally identified pocket, which, in some conformers, is

merged with that site. This can allow larger ligands with two

rings connected by a flexible linker to dock in a way that takes

advantage of both hydrophobic patches. For example, when

docking DrugBank entry DB07263 using the induced fit

protocol, we can obtain the pose depicted in Figure 8D where

two of the aromatic rings are placed in the two hydrophobic

subpockets making up the site in this conformer (yellow surfaces

in Figure 8D). This pose achieves a very respectable Glide score

of 29.5 kcal/mol. As this particular ligand does not take full

advantage of the hydrogen bonding opportunities clearly

depicted in the SiteMap surfaces of the site (Figure 8D surfaces

in blue and red), we can assume that the affinity could be further

improved by adding suitable functional groups that could interact

with polar residues on the receptor.

ThermoFluor Experiments Validate Interactions Predicted
in silico

A small number ofhits fromour docking studies wereassayed using

thermal shift experiments (ThermoFluor). All compounds selected

for testing had shown promising docking scores either using the

induced fit protocol, or in preliminary docking studies using rigid

receptor docking. Table 3 summarises the results for the three of the

eight ligands tested that demonstrated significant thermal shifts (4-

nitrocatechol, 2,6-diisopropylphenol and thymol), compared with

the control substance (DMSO). The corresponding ThermoFluor

graphs for these three ligandscanbe found inFigureS4; theyshowthe

differencebetweentheassayedmeltingtemperatureof theincubation

with compound and the average melting temperature of an

appropriate A1AT control incubated under the same conditions (in

this case, DMSO concentration). One of the eight compounds

assayed (4-nitrocatechol, predicted to bind at the I site) demonstrated

an average thermal shift exceeding 1uC. Interestingly, two of the

compounds representing hits to the I site (thymol, and 2,6-

diisopropylphenol) appeared to destabilise the protein, causing a

negative shift in the melting temperature, which was particularly

pronounced for thymol (average of 21.66uC). Negative shifts may

alsobeduetothehydrophobicnatureof thecompounds,whichunder

the assay conditions may induce non-specific destabilization of the

folded state [29]. Whether stabilizing or destabilizing, the observed

shifts in the melting temperature ofA1ATsupport our dockingresults

and indicate that the compounds assayed are most likely interacting

with our protein.

Discussion

Transiently druggable pockets on the surface of proteins can be

missed by in silico screens to identify the most promising target site

on a protein, commonly based upon a single structural snapshot.

Such pockets are of particular interest in cases where the protein

target undergoes large conformational variations, as in the

archetypal serpin A1AT. Here, we present an alternative

methodology that characterizes more pockets, and simulates their

solution behaviour in greater detail than a single conformer/single

pocket approach.

In this study we focused our efforts on identifying druggable

pockets on the surface of native A1AT that could be the targets of

inhibitors blocking polymerization. Previous in silico attempts to

identify small molecules that can act as inhibitors of polymerisa-

tion have concentrated on what we refer to in this paper as the A

site, a large cavity between the ß-sheet A and the D-helix [30].

This site was seen as a good drug target, as the space filling

Thr114Phe mutation situated in the A site reduces polymerisation

and preserves inhibitory function of native wild type A1AT in vitro,

and increases secretion in a mammalian cell model of disease

[31,32]. Drug design studies based on the Thr114Phe mutant and

in silico research focusing on this site have led to ligands that

blocked polymerisation of A1AT in vitro [33]. However, they did so

irreversibly and with the undesirable side effect of blocking the

inhibitory action of A1AT [32,34]. Hence, there is both scope and

need for targeting alternative sites on A1AT. A recent attempt at

identifying such sites across a range of serpins has revealed at least

one site where selected sugars and amino acid derivatives may

bind, acting as chemical chaperones that reduce polymerization

[35]. The aim of the study described here was to identify

potentially druggable sites on A1AT that have not yet been

targeted in in silico screens.

We expected to see clues of the existence of alternative

potentially druggable sites in the available crystal structures of

A1AT. Indeed, crystal structures of A1AT allow us a glimpse of

the variety of conformations sampled by this protein. This

inherent flexibility, intimately linked to function, is dispersed

across the whole protein [22,36,37,38,39] and thus potentially

reflected in the properties of pockets on the surface. Analysis of

available crystal structures revealed considerable variability in the

surface clefts between different conformers, and suggested that this

variability should not be ignored in structure-based drug design.

We showed that probing deeper into the variability of potential

druggable pockets could be done with a relatively cheap,

constraints-based computer simulation that efficiently explores

part of the protein conformational space. Additionally, we

Table 2. The best-scoring and ‘‘best-efficient’’ small molecules from DrugBank docked against each of the sites A-I on A1AT.

Best overall docking score Best scoring within ten most efficient

Site DrugBank ID
Glide SP score
(kcal/mol)

Molecular Weight
(Daltons) DrugBank ID

Glide SP score
(kcal/mol)

Molecular Weight
(Daltons)

A DB07124 28.3 384.4 DB00610 27.9 167.2

B/C/E DB02278 28.8 209.2 Same as best overall

D DB04861 27.9 405.4 DB02377 27.2 150.1

F/H DB08003 28.3 486.5 DB00529 26.8 126.0

G DB07597 27.9 163.2 Same as best overall

I DB03536 27.5 379.4 DB03329 26.2 111.2

Diagrams, IUPAC names and PubChem CIDs for all DrugBank entries in this table can be found in Figure 7.
doi:10.1371/journal.pone.0036612.t002
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demonstrated that this approach can lead to identification of both

novel (transient) sites, and also pre-existing pockets deemed non-

druggable in a single crystal structure, that may demonstrate

substantial druggability in the solution ensemble. Identification of

such sites is the first step towards a structure-based drug design

strategy that would seek to stabilize conformations where these

sites are present and druggable. Such an approach may be

particularly fruitful in proteins like A1AT, where the design of

small molecule modulators has to strike a delicate balance between

stabilizing the stressed state in order to reduce the protein’s

tendency to polymerise, and preserving the protein’s antiprotease

function.

The variability of each pocket was further probed using Provar,

a method recently developed in our lab. Provar allows us to

highlight and readily visualize residues responsible for the

variability of a protein pocket across an ensemble of conformers.

This information allows us an insight into the origin of the pocket

variability and can assist in silico induced-fit type screening within

high throughput studies, where keeping the number of residues

that are allowed flexibility small is necessarily limited. We believe

the combination of druggability and variability predictions could

be very interesting for many proteins that are difficult targets due

to their flexibility. We are currently pursuing an automated

combination of these predictions in our laboratory.

The conformers in which each pocket achieved its highest

druggability score were selected for docking studies, employing the

publicly available database of marketed and experimental drugs

DrugBank. These docking experiments highlighted several low

molecular weight ligands that scored well on individual sites and

were specific for these sites. Promisingly, several of the docking

scores of our best-scoring ligands at the novel targets are

comparable to the docking score of compound ‘‘CG’’, a molecule

previously identified as an inhibitor of A1AT polymerization

in vitro and in mammalian cells [34].

Our approach has also revealed sites that could become the

focus of future in vitro studies. A small but very hydrophobic site

Figure 7. Top-scoring DrugBank molecules against the a1-antitrypsin sites. IUPAC names and PubChem CIDs for the DrugBank IDs in
Figure 6 and Table 2 are: DB07124: 3-[(2S)-2-amino-3-[(5-{7H-pyrazolo[3,4-c]pyridin-5-yl}pyridin-3-yl)oxy]propyl]-6H-indole, PubChem CID: 46937052;
DB00610: 3-[(1R,2S)-2-amino-1-hydroxypropyl]phenol, PubChem CID: 5906 DB02278: 2-amino-6-hydroxy-7,7-dimethyl-3,4,7,8-tetrahydropteridin-4-
one, PubChem CID: 3340355; DB04861: 1-(6-fluoro-3,4-dihydro-2H-1-benzopyran-2-yl)-2-{[2-(6-fluoro-3,4-dihydro-2H-1-benzopyran-2-yl)-2-hydro-
xyethyl]amino}ethan-1-ol, PubChem CID: 71301; DB02377: 2-aminopurin-6-one, PubChem CID: 764; DB08003: (2S)-2-acetamido-N-[(2S)-1-amino-1-
oxo-3-[4-[(5S)-1,1,3-trioxo-1, 2-thiazolidin-5-yl]phenyl]propan-2-yl]-3-phenylpropanamide, PubChem CID: 9547915; DB00529: phosphonoformic acid,
PubChem CID: 3415; DB07597: (1R,2S)-2-amino-1,2,3,4-tetrahydronaphthalen-1-ol, PubChem CID: 6420129; DB03536: benzyl N-[(1S)-4-[(diamino-
methyl)amino]-1-{[(2S)-3-oxobutan-2-yl]carbamoyl}butyl]carbamate, PubChem CID: 6398520; DB03329: pyridine-2-thiol, PubChem CID: 2723698.
doi:10.1371/journal.pone.0036612.g007

Figure 8. Induced fit docking allows the discovery of high affinity hits for site I. (A) Thymol (DrugBank ID DB02513, in wire representation)
docks on the outside of the main cavity of the I site (small white spheres) and does not reach the hydrophobic pocket within the cavity (yellow
surface), resulting in a poor docking score (23.2 kcal/mol). (B) After induced fit docking, thymol (in stick representation) enters the site, which now
comprises a larger hydrophobic cavity; the docking score is consequently greatly improved to 27.8 kcal/mol. The initial docked pose of thymol
before the application of IFD is shown superimposed in wire format. (C) A derivative of thymol, 5-ethyl-2-(4-ethyl-2-hydroxyphenyl)phenol, (PubChem
CID 19850961, sticks coloured by element) achieves an impressive score of 210 kcal/mol after induced fit docking, whilst retaining the original
thymol pose (in blue) for the substructure that is common to both molecules. (D) Best-ranking pose for DrugBank ID DB07263 ([{2-bromo-4-[(2R)-3-
oxo-2,3-diphenylpropyl]phenyl}(difluoro)methyl]phosphonic acid, in stick representation) following induced fit docking. In this protein conformer, the
channel connecting sites I and C has been opened creating two hydrophobic subpockets (predicted by SiteMap and depicted here in yellow semi-
transparent surface). Two of the aromatic rings of this ligand are placed in these subpockets. This ligand achieves a very good docking score
(29.5 kcal/mol), despite the fact that several hydrogen bonding opportunities (depicted by the blue and red surfaces, corresponding to H-bond
donor and acceptor, respectively) are not satisfied in the case of this ligand.
doi:10.1371/journal.pone.0036612.g008
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(site I) that is present in about one fifth of our in silico-produced

conformers was initially identified by SiteMap in three crystal

structures, carrying the Ala70Gly mutation. This mutation is

known to increase the stability of the stressed state, oppose the

propensity to polymerisation and retain the functionality of the

protein, while inducing widespread changes in cavity sizes within

A1AT. Further analysis showed that this site is present in all other

crystallographic structures but it is not solvent accessible. Crucially

it became solvent accessible in about one fifth of our conformers

generated in silico from the wild type native structure 1qlp,

indicating that transient solvent accessibility may be feasible in

solution in the absence of mutations. Site I is therefore a potential

ligand target site with some characteristics suggesting that ligand

binding might induce local, stabilising conformational change.

Support for this idea comes from mutagenesis studies that showed

13 mutations in the region of the I site (e.g. the space-filling

mutation His269Tyr) increased stability, while preserving inhib-

itory function [22]. Thymol and menthol are both small,

hydrophobic natural products that showed high complementarity

to the I site, and are considered safe for use in the pharmaceutical

industry. Following induced fit docking they achieved scores

comparable to the score for the CG compound discovered in

earlier studies. Some thymol derivatives achieved even better

results, although the effect of their binding could be destabilizing,

as suggested by our preliminary ThermoFluor experiments.

The channel of interconnecting sites B,C and E is also

potentially interesting as the druggability scores for these pockets

are persistently high, and some of our best docking scores are

results of docking ligands to these sites. However, the obvious

caveat of docking to this site is that many of the ligands will

interact with the RCL loop, thus potentially interfering with

A1AT’s antiprotease function. Indeed, mutation experiments have

shown that the sequence between Arg196 to Glu279 can carry 9

mutations that increase the stability of the A1AT, but in several

cases also decrease functional activity [38]. Some of the other sites

explored in our study may be more promising in terms of their

position on the surface and their lower potential to affect

inhibitory function.

There are obvious caveats in the approach presented here. The

conformers generated using CONCOORD may be artificially

produced but appeared realistic when assessed for geometry and

packing by the structure validation server PROSESS [25].

Moreover, the range of cavity characteristics observed was

consistent with the variation between crystal structures. Although

the conformational space of the protein is unlikely to be fully

explored using CONCOORD, this technique did identify

interesting pocket variations. In future work we plan to use the

program tCONCOORD, considered better for exploration of

larger variations in molecular structure [13]. The definition of

pockets on the protein surface can vary significantly between

programs, thus results presented here are specific to SiteMap

predictions. Similarly the calculation of pocket volume and other

properties are very much dependent on the definition of pocket

boundaries, which varies widely across different software. Calcu-

lations of druggability are empirical, based upon previous

correlations of scoring function predictions with in vitro observa-

tions of drug-like ligand binding. They do not guarantee in vitro

binding affinity in a new system but provide a reasonable starting

point for docking studies in silico and in vitro. Finally, our docking

calculations are subject to many approximations. They should

therefore be considered as a screening tool, based upon goodness

of fit of certain ligands against each site, to enrich true positive hits

among the ligand rankings.

In summary, we have presented a promising strategy that

utilizes multiple protein conformer structures to identify both

persistent and transiently druggable surface pockets. We have

applied this approach to A1AT, whose conformational flexibility

suggests that the usual one conformer/one pocket approach to

screening is likely to be inadequate. We have found that pockets on

the surface of A1AT show considerable variability across

conformers, and we have also identified a new transient pocket

with druggability potential. Some of our docking hits to this and

other sites are at least as good or better than a previously identified

promising lead. Finally, an unusually high proportion of a limited

set of our in silico hits targeted at the I site and assayed by

ThermoFluor alter the melting temperature of A1AT. These data

are consistent with an in vitro interaction and indicate that further

experiments are warranted to pursue these ligands and I site

targeting.

Materials and Methods

Selection of a1-antitrypsin Crystal Structures
A1AT structures were retrieved from the PDB using the SAS

tool available in PDBsum [40]. The amino acid sequence of the

structure with PDB id 1qlp was used to search the PDB, and all

sequences with percentage sequence identity higher than 97%

were kept (this very high cut-off was used as we were only

interested in sequences that did not deviate significantly from the

wild type A1AT). Among identical sequences representing

identical states, the highest resolution available was kept.

Structures with cleaved chains, where the break in the chain was

not in the RCL were removed. Our final dataset (summarised in

Table 1) comprised structures that sampled different features, such

as the stressed and relaxed forms, point mutations, and ligands

that induce stability. More specifically, there are six native stressed

and two relaxed A1AT structures, all with resolution better than or

equal to 2.6 Å. The six native stressed structures can be separated

into two groups. The first group comprises PDB entries 1qlp [30],

2qug [41]and 3cwm [41], which have no mutations and share

Table 3. Shifts in melting temperature of A1AT in the presence of selected small molecule ligands (ThermoFluor assay).

Molecule Name DrugBank ID

Average Thermal Shift in 6C

(p-value) Predicted site of binding
Best Glide SP score
after IFD (kcal/mol)

Thymol DB02513 21.66 (0.0089) I 27.8

4-Nitrocatechol DB03407 1.92 (0.0002) I 26.9

2,6-Diisopropylphenol DB00818 21.21 (0.0021) I 28.3

The quoted p-values are the result of a Welch two-sample t-test (performed using the R statistical software) testing the null hypothesis that the difference in the mean
values of the distribution of the thermal shift values for DMSO and the distribution of the thermal shift values observed for each ligand is zero. The null hypothesis was
rejected for p-values ,0.01.
doi:10.1371/journal.pone.0036612.t003
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nearly 100% sequence similarity (except for minor variations in

the length of the C- and/or N-terminus). A partially stabilising

ligand, citrate, is present in 3cwm. The second group comprises

1hp7 [42], 1oph [43] and 3drm [32], all representing the native

stressed fold but with partially stabilising mutations in the

sequence. Finally, of the two relaxed structures, one is an

uncleaved kinetic trap of A1AT (1iz2 [37]) with ten mutations,

and the other is a cleaved form, with no mutations in its sequence,

and co-crystallised with the substrate (1ezx [19]).

Identification of Surface Pockets and Calculation of their
Properties

One protein chain from each crystal structure in our dataset was

prepared using the Protein Preparation Wizard protocol available

in the Schrödinger suite (Maestro package version 9.0 from

Schrödinger, LLC). Ligands, waters and other co-crystallised

agents were deleted and hydrogen atoms were added. The

protassign script was used to optimise intramolecular contacts.

The impref script was used to perform a restrained minimisation

of the protein, with a maximum root mean square deviation

(RMSD) of 0.30 Å.

All structures were superimposed on the native wild type protein

(1qlp) using the structalign utility from Schrödinger. The site

recognition software SiteMap 2.3 (Maestro package version 9.0

from Schrödinger, LLC) was run on all 8 crystal structures to

identify the top 10 ranked potential ligand-binding sites. SiteMap

uses an algorithm analogous to the Goodford’s GRID algorithm

[44], which uses interaction energies between the protein and grid

probes to locate energetically favourable sites. Sites were kept if

they comprised at least 15 site points. A restrictive hydrophobicity

definition, a standard grid (1.0 Å) and the OPLS2005 force field

were used (default settings in SiteMap 2.3).

The following physicochemical properties of the sites were

calculated by the SiteMap program: size, volume, degree of

enclosure/exposure, degree of contact, hydrophobic/-philic char-

acter, hydrophobic/-philic balance and hydrogen-bonding possi-

bilities (acceptors/donors). In addition, SiteMap calculates two

scores for each site. The SiteScore is defined as:

SiteScore~0:0733
ffiffiffi

n
p

z0:6688�e{0:20�p

where

n = the number of site points (capped at 100),

e = enclosure,

p = hydrophilicity of the site (capped at 1.0).

The druggability score, Dscore, is defined as:

Dscore~0:094
ffiffiffi

n
p

z0:60�e{0:324�p

where n, e and p are defined as above, except that p is uncapped in

this case. The developers of SiteMap suggest that a cut-off in the

SiteScore of 0.80 can be used to differentiate between drug-

binding and non-drug-binding sites, with scores higher than 1.0

being indicative of highly promising sites [45]. The Dscore can

help to distinguish between undruggable and druggable sites, by

penalising highly hydrophilic sites, as ligands binding to such sites

would be very polar, and would be quickly eliminated by the

organism. This does not mean that the site cannot bind any

ligands, but that it would be difficult to find high affinity drug-like

ligands for such a site [2].

Nine sites were identified in our dataset of crystal structures of

A1AT. These sites were labelled A to I. The geometric centre of

each site as seen in the native wild type protein (1qlp), or, in the

case of the I site, as seen in the structures bearing the Ala70 to Gly

mutation (1oph, 1iz2 and 1hp7), was calculated and it was used to

identify sites in all other crystal structures and computationally

produced conformers. This was done as follows: If the geometric

centre of a site k was within 3.75 Å of the geometric centre of any

site s (where s M {A,B,C,D,E,F,G,H,I}) then site k was assigned the

letter of the site s (i.e. the two sites were thought to coincide). This

cut-off is strict and it was chosen after manual inspection of several

cases where sites were very close to each other, but where it was

still possible to discriminate between them. Sites C and E overlap

in many conformers and in these cases they were assigned the label

‘‘C_E’’. If the calculated distances for a new site were between

3.75 and 10 Å, the sites were inspected and assigned manually. If

all distances were above 10 Å, the site was categorised as being

new. Inspection of all ‘‘new’’ sites found in conformers of 1qlp led

to approximately half of these sites being reassigned to one of the

original nine sites (A to I). The remaining unassigned sites included

mostly low-scoring sites, which were ignored in the present

analysis.

Generation of Protein Conformers Using CONCOORD
CONCOORD 2.0 [24] was used to produce alternative

conformations for the native wild type proteins (1qlp and 2qug).

The input structures were prepared with Schrödinger’s Protein

PreparationWizard, as detailed above. CONCOORD builds a

library of distance constraints based on the observed interatomic

distances in the original structure. Interactions deemed to be

stronger are given tighter constraints. The program then produces

randomly a large number of potential conformations, and attempts

to correct structures with atom-pair distances falling outside the

allowed regions. We allowed 1000 iterations of the correction

algorithm per structure, and rejected structures whose interatomic

distances violated the original distances by more than 3nm in total.

We set CONCOORD to an output of 100 novel conformations

for the native wild type proteins (1qlp and 2qug), which fulfilled

the distance constraints. The maximum RMSD from the original

structure was 2.96 Å. We have also performed a CONCOORD

run that produced 5000 conformers based on the 1qlp structure.

These were only used for comparison to our more limited 100

runs. All computationally produced conformers were superim-

posed on the native wild type (1qlp) using the structalign program.

We have evaluated the quality of the CONCOORD conform-

ers using the PROSESS server [46] available at http://prosess.ca.

Table S1 contains a summary of these results.

Automated Assessment and Visualisation of Surface
Pocket Variability

For each of the 100 CONCOORD conformers potential

druggable sites were identified using SiteMap 2.3, as detailed

previously. The SiteMap output files were then merged into single

PDB files containing all predicted site sphere coordinates and were

used as input to our in-house pocket variability visualisation method

Provar. The Provar method is explained briefly here: For each

conformation, residues within 3.75Å of any SiteMap sphere were

considered as being pocket-lining and assigned a score of 1, all other

residues were assigned a score of 0. These scores were summed

across all conformations and divided by the number of conformers

(100) to assign each residue a probability value representing the

likelihood that it borders a predicted site. These values were written

to the B-factor column of the PDB file (1qlp), and results were

displayed using Chimera. Residue atoms and ribbons were rendered

on a continuous colour scale from white (low probability set to the

value of the first quartile of the distribution) to red (high probability

set to the value of the third quartile).
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Docking
Each of the nine sites (A to I) was used as a target for docking

small molecules. For each site, the CONCOORD conformer that

was selected to dock to was the one with the highest volume

among the ones with the top five SiteScores as predicted by

SiteMap. This selection was justified on the grounds that the

highest SiteScore was not always associated with the largest cavity,

but in rigid receptor docking a larger cavity, which allows more

room for ligands to bind can potentially make up for the lack of

side-chain flexibility during docking. Receptor grids were calcu-

lated with Glide (Maestro package version 9.0 from Schrödinger,

LLC), keeping default settings. The grid box was centred on the

calculated geometric mean of the particular site. The box side

lengths were set to the maximum value (14 Å).

All ligand libraries used in this study were prepared using

LigPrep (Maestro package version 9.0 from Schrödinger, LLC).

The preparation involved the generation of up to 32 stereoisomers

(where these were not defined), tautomers, and protonation states

corresponding to a pH of 762 (using epik), as well as an energy

minimisation of the 3D structure using the OPLS2005 force field.

The DrugBank 3.0 [47,48] library comprised 5897 entries after

filtering to remove entries larger than 500 Daltons. Following

LigPrep preparation, this library consisted of 12115 small

molecules. The library referred to as ‘‘ZINC fragments’’ is a

representative library of fragments, based on the 3632 ZINC

‘‘clean fragments’’ subset clustered at the 60% Tanimoto similarity

(downloaded from ZINC on the 05/06/2011). The clean

fragments dataset obeyed the following criteria: xlogP, = 2.5,

molecular weight , = 250 Daltons and number of rotatable bonds

, = 5. Following LigPrep preparation, this library contained 5324

small molecules. Finally, a small subset of the PubChem library

(1326 ligands related to thymol and extracted from PubChem,

using the ‘‘Similar Compounds Search’’ on the web entry for

thymol) was also prepared using LigPrep.

Glide with standard precision (SP) scoring was used for docking.

Epik 2.0 state penalties were used in the final scoring. The highest

scoring pose per ligand was kept and post-docking minimisation

was switched on.

Induced fit docking. A small number of molecules were

selected for induced fit docking (IFD). All these molecules had

shown promising Glide SP scores in preliminary docking trials, but

some had poor scores following the inclusion of a protein

preparation step. This suggested that IFD might be able to restore

or even improve on the original scores, as it allows the protein side

chains to optimise their position in the presence of the ligand. The

IFD protocol (Maestro package version 9.0 from Schrödinger,

LLC) available within the Schrödinger suite was employed [49].

Briefly, this protocol involves docking the ligand using a softened

potential, and refining selected docked poses using Prime side-

chain prediction and minimisation [49]. The refined protein

conformations are then used for the final Glide docking step,

where ligands are redocked, keeping the protein rigid. Default

values were used for all Glide and Prime parameters. As the

protein was prepared in advance no additional refinement was

performed at this stage. For the initial Glide docking both the

receptor and ligand van der Waals scaling were set to 0.50. Up to

20 poses were kept. The Prime induced fit step refined residues

within 5.0 Å of the ligand poses by optimising their side chains. In

the final step, the ligand poses were redocked using Glide SP into

structures within 30.0 kcal.mol21 of the top 20 structures.

We applied the IFD protocol to a small selection of ligands

docked in the I and C sites. This procedure was also applied to

dock the CG compound [34] to the A site in the native wild type

A1AT (1qlp).

Figures
All figures depicting A1AT, except Figure 8, were created using

the UCSF Chimera [50] package from the Resource for

Biocomputing, Visualization, and Informatics at the University

of California, San Francisco. Figure 8 was created using Maestro.

The small molecule 2-D diagrams of Figure 7 were created using

the CACTVS editor csed [51]. Plots in Figures 3B-F and 6 were

created using the statistical software R (available at http://cran.r-

project.org/doc/FAQ/R-FAQ.html).

ThermoFluor Studies
The ThermoFluor (thermal shift) assay was performed using the

iQ5 Real Time detection System (Bio-Rad – PCR Machine).

Protein unfolding was monitored by measuring the fluorescence of

the solvatochromic fluorescent dye SYPRO Orange, signalling

unfolding of the protein. The compounds to be screened were

dissolved in 100% dimethyl sulfoxide (DMSO) to give a stock

solution of 20 mM. The assay was performed in 96- well plates,

each well totalling a volume of 25 mL. Every assay had a final

concentration of 1 mg.mL21 of A1AT, 1 mM of compound giving

a final DMSO concentration of 5%, to which 1 mL SYPRO

Orange (1:200 dilution) was added. Furthermore, the influence of

DMSO and A1AT concentration on the thermal shift were

analysed. The DMSO concentration was varied to 5%, 10% and

15% and the concentration of A1AT from 1 mg.mL21 to

5 mg.mL21. Each trial was repeated 6 times (except the

5 mg.mL21 concentration of A1AT, n = 2). The starting temper-

ature for each run was 10uC increasing to 95uC in 0.5uC steps.

Supporting Information

Figure S1 Exploration of conformational space of A1AT
using CONCOORD. CONCOORD-generated conformers

from a native wild type A1AT structure ((PDB: 1qlp). (A) All

100 conformers used to analyse druggability of sites and their

occurrence. (B) The 7 structures used for docking to sites A–I;

colours for conformers are: white (site G), magenta (sites E and F),

cyan (site I), yellow (sites A and C), red (site B), blue (site H), green

(site D). (C) Three selected conformers depicting the extent to

which structural variation was simulated.

(TIF)

Figure S2 A channel of interconnecting pockets on the
surface of A1AT. (A) A channel of interconnecting surface

pockets (blue spheres) defined by the RCL at the top and the H-

helix at the bottom can be seen in several in silico produced A1AT

conformers. (B) This channel is split up into separate sites in most

conformers: B (cyan), E (fuchsia), I (yellow). These subsites

themselves occasionally overlap as in the case shown here, e.g.

site E can ‘‘spill into’’ the spaces usually occupied by sites I and B.

(TIF)

Figure S3 Site specificity of high-scoring fragment
molecules. Red diamonds represent the docking scores for the

top 5 scoring fragments for each of the sites A, BCE, D, FH, G,

and I. The boxplots summarise the corresponding (merged)

distributions of docking scores for the same five fragments docked

to all other sites.

(TIF)

Figure S4 Thermal shift and melting temperature
assays for A1AT incubated with selected ligands.
Fluorescence-based (Thermofluor) thermal shift assay curves for

A1AT incubated with small molecule ligands. Only ligands with

significant thermal shifts are shown. Representative curves

obtained in the presence of these ligands (solubilised in DMSO,
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final concentration 5% (v/v)) are shown in plots A to D (control

with 5% DMSO in grey, data from incubation with ligands in red).

The mean DTm is shown for A1AT incubated with each ligand:

(A) 5% DMSO control, (B) 4-nitrocatechol, (C) 2,6-diisopropyl-

phenol, (D) thymol. (E) Mean melting temperatures and standard

deviations for A1AT incubated with these three ligands (red) or

5% DMSO control (grey).

(TIF)

Table S1 Overall quality results for crystal structures
and in silico conformers of A1AT selected for docking
assessed by the PROSESS server (http://prossess.ca).
(DOC)

Table S2 Results for top-ranking fragments against
each of the sites A–I on A1AT. The ZINC molecule

identification codes and Glide SP docking score (within brackets,

in kcal/mol) for each of the five top-ranking fragments docked to

sites on A1AT are listed. Results for sites B, C, E and F, H are

merged.

(DOC)
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