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Abstract

Molecular docking systems model and simulate in silico the interactions of inter-

molecular binding. Haptics-assisted docking enables the user to interact with the

simulation via their sense of touch but a stringent time constraint on the com-

putation of forces is imposed due to the sensitivity of the human haptic system.

To simulate high fidelity smooth and stable feedback the haptic feedback loop

should run at rates of 500Hz to 1kHz. We present an adaptive force calculation

approach that can be executed in parallel on a wide range of Graphics Processing

Units (GPUs) for interactive haptics-assisted docking with wider applicability to

molecular simulations. Prior to the interactive session either the regular grid or

an octree is selected according to the available GPU memory to determine the

set of interatomic interactions within a cutoff distance. The total force is then

calculated from this set. The approach can achieve force updates in less than 2ms

for molecular structures comprising hundreds of thousands of atoms each, with

performance improvements of up to 90 times the speed of current CPU-based force

calculation approaches used in interactive docking. Furthermore, it overcomes
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several computational limitations of previous approaches such as pre-computed

force grids, and could potentially be used to model receptor flexibility at haptic

refresh rates.

Keywords: Molecular Docking, Protein-Protein Interactions, Structure-based Drug

Design, Force Feedback, Proximity Querying

1. Introduction

Molecular docking refers to those computational methods that try to fit two

molecules (often referred to as receptor and ligand) together in their binding pose

based on their topographic and physiochemical properties. It is a challenging

computational problem due to the high dimensionality of the underlying search5

space of binding conformations (especially when the molecules are treated as

flexible), with application areas in the fields of protein-protein interactions and

drug design.

Docking approaches are often categorised as automated or interactive. Automated

docking approaches search the space for possible binding conformations utilizing10

sophisticated pose selection and scoring algorithms[1, 2, 3, 4]. They can result in a

large number of scored poses where the correct binding conformation is expected

to have a high score.

Interactive systems provide a 3D virtual environment, where the user interacts

with the virtual molecules, and performs a knowledge-guided search and selection15

of the final binding pose. Interactive docking is not able to search a large number

of docking pairs as in automated docking. However, it allows the user to focus

the search based on their knowledge and expertise[5, 6, 7]. It could also provide

insight into the process of docking itself [8]. Many interactive systems utilize

haptic feedback devices to enhance human-computer interaction with the sense20
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of touch. Haptics-assisted docking systems enable the use of the sense of touch

to feel the interaction forces and guide the molecules to their binding configu-

ration. They offer an immersive virtual learning environment for the study of

the docking process, and a test bed for exploring new ideas and hypotheses [8]

(e.g. whether electrostatic steering is involved in the process). Moreover in virtual25

screening, they can assist experts to improve upon or reject the leading docking

conformations identified by their automated counterparts[9, 8]. It has been shown

that such docking systems can reduce incorrect binding poses[10], and improve

the users’ (experts or students of structural biology) understanding of the process

of molecular binding[11, 12].30

A fundamental part of haptics-assisted interactive docking is the calculation

of the interaction forces acting between the molecules. Forces and torques are a

consequence of nonbonded (noncovalent) interactions and their calculation can

be time consuming, particularly when considering molecules comprising large

numbers of atoms. For continuous, smooth and stable kinesthetic and tactile re-35

sponses, modern haptic technology requires haptic feedback cues to be updated

at a refresh rate of 500Hz to 1 kHz due to the sensitivity of the human haptic

system [13][14][15]. When this rate is not met device vibrations and force disconti-

nuities can occur limiting practical use. Due to this haptic docking applications are

mostly constrained to rigid molecules with interaction forces calculated as sums of40

pairwise distance-dependent interactions.

Existing haptics-assisted docking systems which are executed on the CPU

address this time constraint in various ways. The simplest approach is the brute

force method[16, 17, 18] (i.e. compute all interatomic interactions between the two

molecules) studied initially by Nagata et. al.[16]. On modern CPUs this approach45

can accommodate molecules comprising several hundred atoms each[19]. Molecule
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sizes larger than these make this approach impractical. An alternative is to use

pre-computed 3D force grids[20] as first proposed by Brooks et. al.[21]. Force

grid systems usually treat both molecules or just the receptor as rigid structures,

and pre-compute a 3D force grid of the van der Waals (vdW) and/or electrostatic50

forces around the receptor[21, 22, 23, 24, 25, 26] or the receptor’s active site[27].

Such grids, however, have high memory requirements and induce rough force

transitions at cell boundaries[27]. Moreover, by design they cannot accommodate

receptor flexibility since the grids must be computed at haptic refresh rates after

each structural deformation. Though this approach remains the most popular55

one in the field it has been applied thus far only to rigid protein small-molecule

docking problems, it would be impractical for very large rigid protein-protein

docking problems[9], and it cannot be extended to deal with molecular flexibility.

Other CPU-based approaches include the works of Daunay et. al.[28], and Zonta

et. al.[29] Daunay et. al. developed a system that models molecular flexibility, and60

uses a molecular dynamics engine to compute the forces. The system could not

achieve haptic force-refresh rates, and therefore it circumvented the 2ms constraint

entirely by using wave transformations to bridge the rate disparities between haptic

rendering and force calculations. Zonta et. al.[29] addressed ligand flexibility and

used a third-party library to accelerate force computations. Both approaches65

however, are applied only to the study of protein small-ligand docking problems.

Recently GPU-accelerated approaches for haptic-assisted docking have been

reported. Anthopoulos et.al. applied a GPU-based force calculation approach[30]

to their haptic-driven molecular modelling simulator[31] in order to evaluate

the induced fit effect during protein-drug docking. Their approach addresses70

flexibility to some degree, but not at haptic refresh rates since it updates the forces

at 33Hz (30ms response time). Furthermore, it can be applied only to the study of
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protein-small ligand docking. Current haptics-assisted interactive docking systems

cannot manage (within the 2ms constraint) docking problems (rigid or flexible) of

very large molecules and they have thus been limited to a) rigid protein-ligand75

docking problems of average size molecules (i.e comprising a couple of thousand

of atoms), and b) rigid receptor-flexible ligand docking problems of very small

ligand molecules.

Our contribution to the field is an adaptive GPU-accelerated force calculation

approach which uses either a regular grid or an octree spatial partitioning structure.80

The choice of partitioning structure is made automatically based on the GPU

resources and the molecules loaded. This leads to a force calculation approach

capable of computing the intermolecular forces (vdW and electrostatic) within 2ms

for very large molecular structures, comprising hundreds of thousands of atoms

each, with no pre-computation requirements on the receptor. It can be applied85

equally to the interactive haptics-assisted study of protein-protein and protein-

drug docking problems. Moreover, it can in principle support receptor flexibility

(providing conformational change can be computed sufficiently fast), as in contrast

to pre-computed force grids there is no additional overhead in the force calculation

when atoms change position.90

2. Methods

2.1. Calculating the Force

As for most haptics-assisted, interactive docking approaches, we consider only

the vdW and electrostatics interactions. The vdW interaction is modelled by the

Lennard-Jones potential and the electrostatic interaction by Coulomb’s law.95

Equation 1 gives the total force acting on the ligand of M atoms while interacting
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with a receptor of N atoms,

~FTot =
N

∑
i

M

∑
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]
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where Aij and Bij are constants that depend on the type of interacting atoms, qi

and qj are the atomic charges of the two atoms, ǫ0 is the permittivity of free space,

ǫ is the relative permittivity dependent on the dielectric properties of the solvent,100

rij is the distance between these atoms, and ~̂rij is the unit vector in the direction

from atom i to j. By reversing the force direction we get the total force acting on

the receptor due to its interactions with the ligand. In this study we do not model

the torques acting on those molecules as most low-cost haptic devices are unable

to render them. Furthermore, we apply Equation 1 only for those inter-atomic105

interactions within the cut-off distance.

We used the Gromos54a7[32] force field (as specified and implemented in Gro-

macs version 4.6.2[33]) to get values for the parameters Aij, Bij, qi and qj; namely,

we compute Aij and Bij as Aij =
√

Ai × Aj and Bij =
√

Bi × Bj respectively, where

Ai, Bi and Aj, Bj are the Lennard-Jones parameters of atoms i and j defined by110

the force field. We set the Coulomb constant 1
4πǫ0

equal to 138.935485 kJ mol−1

nm e−2 and we set ǫ equal to 1.0, i.e. we assume interactions take place in vacuo.

The total force is measured in kJ mol−1 nm−1. To render it on the haptic device we

convert it first to Newtons by dividing by 6.02329× 1011 since 1N is equivalent to

6.02329× 1011 kJ mol−1 nm−1, and then scale it by 109 to ensure a good range of115

forces can be felt by the user through the haptic device. In addition to Gromos54a7,

our method can utilize other force fields such as AMBER[34], CHARMM[35] and

OPLS-aa[36].
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2.2. GPU Computing

We have implemented our methods using the Open Computing Language[37]120

(OpenCL) parallel programming framework and executed them on an NVIDIA

GPU. We used OpenCL in order to maximize the portability of our application to

different GPU architectures. A scalable and efficient GPU-based algorithm should

incorporate in its design effective thread deployment, instruction execution and

memory access patterns[38]. Namely, the algorithm should: (a) maintain a high125

level of occupancy (i.e. number of resident threads against the theoretical number

of GPU threads) at all times to maximize execution performance and hide global

memory latency; (b) attain fine-grained data parallelism to minimize execution

divergence (i.e. threads that execute different kernel instructions); (c) utilize shared

memory whenever possible to reduce global memory accesses; (d) avoid scattered130

global memory reads and writes (i.e. uncoalesced memory accesses). Our approach

takes into account all of the aforementioned design principles in order to optimize

its performance.

2.3. Constructing Spatial Partitioning Structures

To efficiently compute the force spatial partitioning structures and a cutoff135

distance are used in order to reduce the number of interacting atom pairs consid-

ered in Equation 1. To acheive this we developed two GPU-accelerated proximity

querying methods based on octrees and regular grids. Our querying methods are

designed to support GPUs of different memory sizes, facilitate docking simulations

of various complexities and memory footprints, and have minimal precomputation140

requirements. These points were addressed by utilizing regular grids and octrees

interchangeably based on the size of the simulation problem, and by constructing

them only for the molecule with the least number of atoms. Octrees have a smaller
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Figure 1: The molecule Trypsin subdivided with the same level of detail by the two spatial parti-
tioning structures. Left image: The octree structure with its leaf octants. Right image: The regular
grid structure with its cells. The total number of octants is far less than the total number of cells,
resulting in a smaller memory footprint for the octree.

memory footprint than grids, but accessing a grid cell is a constant time operation,

whereas, accessing an octree node is a logarithmic operation on the height of the145

octree (Figure 1). With that in mind, our hybrid approach constructs a grid if the

underlying memory requirement, given by mG, does not exceed the available GPU

memory, or an octree otherwise. To compute mG we use Equation 2,

mG =

⌊

ℓx

cg

⌋ ⌊

ℓy

cg

⌋ ⌊

ℓz

cg

⌋

cb (2)

where mG is the total memory required for the regular grid, ℓx, ℓy, and ℓz are the

side-lengths of the molecule’s tightest rectangular bounding box in the x, y and z150

axes respectively, cg is the desired size of a grid cell side (i.e. each cell is bounded

by a cube), and cb the memory requirement in bytes of each cell. When mG is less

than or equal to the GPU’s available memory, the method chooses a regular grid;

otherwise it chooses an octree. All sizes are measured in Ångstrom, cb is 12 bytes
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and cg = nrC (rC is 1.7Å, the radius of a carbon atom), where n was determined155

empirically. The actual cell size used might change slightly in order to divide the

bounding box into an integer number of subdivisions. Both partitioning structures

are built on the CPU, and then transferred to the GPU as a 1D array of cell’s or

octants S. Each cell or octant defines a record which holds, among other entries, the

total number of atoms assigned to it, and an index to a 1D array of atoms A. A is160

constructed concurrently with S and contains the ligand atoms in a sequential order

that maps the order the cells/octants are indexed within S. For example, if the

initial grid consists of the two cells Ca and Cb, each of which contains atoms a,d,e,f

and k,m,b,h respectively, and these cells are transferred to S as CGPU
a and CGPU

b (i.e.

S={CGPU
a , CGPU

b }), then the array of atoms is formed as A={a,d,e,f,k,m,b,h}, and the165

cell records as CGPU
a =(1, 4) and CGPU

b =(5, 4) (see Figure 2).

To construct the regular grid on the CPU we use a similar approach to Fang and

Piegl[39]. We then obtain the 1D cell array S for the GPU, by looping through the

grid in an x first, y second, z last order, mapping the 3D grid cell index into a 1D

index, and then using it to assign the cell in the 1D array. A cell, as stated earlier, is170

12 bytes and contains an index in A referencing the first atom in the set of atoms

assigned to the cell (4-byte integer), the cardinality of this set (4-byte integer), a flag

stating whether the cell is empty or not (1 byte), and memory-alignment padding

(3 bytes) to facilitate memory-access coalescing on the GPU.

To construct an octree on the CPU, we use the algorithm described in Iakovou175

et.al.[40]. We then obtain the 1D octant array S for the GPU, by executing a breadth-

first traversal of the tree and assigning the respective octants in the array in that

order. An octant is 32 bytes, and contains an index in A referencing the first

atom in the set of atoms assigned to the octant (4-byte integer), the cardinality of

this set (4-byte integer), a flag stating whether the octant is a leaf or not (1 byte),180
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Figure 2: A 2D depiction of a regular grid built on the CPU and transferred to the GPU as a 1D
array of cell records S and 1D array of atoms A. The initial grid consisted of the cells Ca and Cb

containing the atoms a,d,e,f and k,m,b,h, respectively. Both cells are represented in the S array as cell
records CGPU

a and CGPU
b . Each cell record holds the total number of atoms assigned to it (4 in both

cases), and an index to the array of atoms A pointing to the first atom assigned to this cell (indices 1
and 5 in this case).
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the octant’s homogeneous centre coordinates (4×4-byte floats), the length of the

octant’s bounding-sphere radius (4-byte float), and memory-alignment padding (3

bytes). In our construction, the number of levels in the octree, L, depends on the

size of the molecule, and is decided dynamically using Equation 3,

L = min

(⌊

log2

(

max(ℓx, ℓy, ℓz)

co

)⌋

, Lmax

)

(3)

where L is the octree subdivision target, co is the side-length of the leaf octant we185

are aiming for (i.e. the length of one of the bounding cube sides), and Lmax is the

maximum subdivision level our GPU-based query algorithm can support, i.e. 7

due to memory constraints. We take as numerator the maximum side because our

query requires the subdivision to be uniform along all three dimensions, i.e. the

octant bounding volume is a cube. L is set equal to Lmax only when the derived190

level is greater than Lmax. The side-length of the leaf-octant co is given by co = nrC,

where n is determined empirically. The values of the targeted leaf-octant side-

lengths co and the actual leaf-octant side-lengths obtained after construction would

differ when the value max(ℓx, ℓy, ℓz)/co is not a power of 2.

Overall, our construction strategy allows us to a) construct the grid/octree195

structure at the appropriate subdivision level adaptively at run time, b) reduce

the memory footprint of both structures, and c) attain coalesced memory accesses

during querying (since ligand atoms within the cell/octant are listed sequentially).

It also helps our query kernel achieve optimum execution convergence, since

nearby receptor atoms are more likely to query the same cells/octants in 3D space,200

access the same ligand atoms, and have their threads execute the respective kernel

instructions synchronously. Given that there are no pre-processing requirements

(i.e. construction of a space partitioning structure) for the receptor, our approach
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can facilitate, in principle, docking problems that model receptor flexibility.

2.4. Querying Partitioning Structures and Calculating Forces on the GPU205

To compute the total interaction force, the method queries the grid/octree

(built for the ligand) in parallel for each receptor atom ai individually. Each query

identifies all ligand atoms within dcuto f f from ai, and computes in real time the

contribution of ai to the total interaction force. The method derives the total force

by accumulating these partial contributions (Figure 3). We reduce further the total210

computational cost of querying, using a combined viewing transformation matrix

TNew as suggested in Iakovou et.al.[40].

The following list outlines the key execution steps of our approach.

1. Spawn a work-item (i.e. OpenCL term for thread) for every atom ai within

the largest molecule and group them into workgroups (i.e. OpenCL term for215

thread blocks).

2. Transform the coordinates of ai into the local coordinates of the ligand using

TNew.

3. Execute the partitioning-structure-specific querying algorithm.

(a) Find the set of ligand atoms within the cut-off distance to ai.220

(b) Compute the force for all pairs in the set.

4. For all work-items in a workgroup sum their contributions to the total force

FW
i , and store the result in an array FW of length equal to the number of

workgroups.

5. Sum the partial forces in FW to obtain the total force FW
Tot.225

Steps 1), 2), 4) and 5) are steps common to both partitioning structures. The

execution flow differs in Step 3) because our method queries the regular grid and

12



�

�

�

�

C

P

U

G

P

U

��������	
����

��������


	��
�

������������������


��
�������������

�
����	
����	
���
�

�����	
��	
��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
	

�


�
��

�
��
�
�� ������������
��������

	
���������

�����������	
��������

���
����
������

��
������������������

�� �� ��

�����
����
����
����������

�1


������������
�
 	
���������

�
�
�����������
����

���������
��	
�����
���

�
	�����	����	�
���
��� �
���

�2
 �3



�1
 �2

 �3


Figure 3: A visualization of our GPU-accelerated force calculation approach, illustrating the main
execution steps, and the processing unit (i.e. GPU or CPU) that executes them. The method starts by
deploying on the GPU one work-item (red springs) for each receptor atom ai (12 receptor atoms in
this case), and grouping these work-items in workgroups (the 3 green boxes with 4 work-items each).
Each work-item executes our proximity querying/force calculation kernel (grey semi-rectangular
shape) in parallel, within its workgroup, and computes the force contribution of ai to the total force
(execution steps 1-3). The first work-item in each workgroup accumulates these force contributions
from all work-items in the group, and stores the result FW

i in a global number-of-workgroups-long

force array FW (execution step 4). Array FW is transferred back to the CPU, where its entries are
accumulated to produce the total interaction force FW

Tot (execution step 5).
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Figure 4: A conceptual 2D visualization of our proximity querying strategies. (a) Querying the
regular grid. The method uses the cut-off distance dcuto f f to form a bounding cube (red dashed
square) centred on receptor atom ai. Using the cube’s min/max coordinates, the query identifies all
grid cells (green cells A, B and C) intersecting the cube and produces a search range. The method
calculates an interatomic distance d between ai and each of the ligand atoms contained within these
cells (i.e. ligand atoms aL

1 , aL
2 , aL

3 and aL
4 ), but computes the total force only for those atom pairs

with d ≤ dcuto f f (in this case pairs aia
L
1 , aia

L
2 , aia

L
4 , since atom aL

3 is not within the cut-off radius).
(b) Querying the octree. The coordinates of the receptor atom ai are tested against octant Oi. The
method calculates dTot (i.e. distance between the octant centre and ai) and subtracts it from rL (i.e.
radius of the octant’s bounding sphere) to obtain dNet (i.e. net distance). If dNet ≤ dcuto f f and Oi is
not a leaf octant then the method traverses the children of Oi in the same manner. When Oi is a leaf
octant (as in the case shown), the method calculates an interatomic distance d between ai and each
of the atoms indexed by Oi (aL

1 in this case), but again computes the force only for those atom pairs

with d ≤ dcuto f f (i.e. pair aia
L
1 ).

the octree differently. To query the grid the method obtains first a search range and

then indexes the cells within this range; whereas, to query the octree it performs a

combination of depth-first and breadth first traversals on the octants starting from230

the root (Figure 4).

In the next two paragraphs we describe our GPU-accelerated, regular grid and

octree-based force calculation algorithms.
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2.4.1. Querying and Calculating Forces Using a Regular Grid

We utilize the random access property of regular grids to determine in parallel235

the subset of grid cells containing those ligand atoms within the cut-off, and

then compute the total force on this set. We begin by executing one work-item

for each receptor atom, arranged in workgroups of 256 items each. Using its

global ID, each work-item accesses the underlying receptor atom and updates the

atom’s coordinates with TNew. Based on the new coordinates we then identify240

our search region of grid cells using Algorithm 1, GetSearchRange (provided as

supplementary information).

Initially, Algorithm 1 computes the tightest bounding cube of a sphere with

centre equal to the coordinates of receptor atom ai, and radius equal to dcuto f f . It

then uses the cube’s minimum and maximum coordinates to derive a minimum/-245

maximum search range for the grid along the three dimensions x, y, and z (Figure

4a). Using this range, it loops through the grid cells and for all ligand atoms aL
i

within each cell it checks whether or not the interatomic distance between the

receptor and ligand atoms is within the cut-off. It then computes the forces, for all

atom pairs that pass this test, and accumulates these forces in force vector fi. As250

such, vector fi holds (upon loop termination) the force contribution of the given

receptor atom ai to the total force. Each work-item saves fi within a local array

of force values, and waits on a group-synchronization primitive. When all group

work-items are synchronized, the first work-item in the workgroup sums up the

values within the local array, and stores the result FW
i in a group-specific global255

array of force values FW . We accumulate the entries in FW to compute the total

force. In almost all practical cases the size of this array is very small (e.g. even

for one million atoms the size is 1000000/256=3907). As such we perform this
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accumulation on the CPU since it can perform this summation faster than the 0.2ms

overhead (time from submission to start) required by NVIDIA’s OpenCL drivers to260

deploy a kernel on the GPU. The size of the local array equals the workgroup size

(i.e. 256), whereas the size of the global array equals the number of workgroups,

i.e.
⌈

receptoratoms
256

⌉

. A work-item indexes these local and global arrays using its local

(block-specific) and workgroup IDs, respectively. Overall, the use of the local and

global arrays allows us to perform the majority of force calculations on the GPU in265

a memory-coalesced fashion, and hence optimize the performance of our method.

Algorithm 2, GPUQueryRegularGrid (provided as supplementary information),

outlines the aforementioned key execution steps.

2.4.2. Querying and Calculating Forces Using an Octree

Similar to our grid-based algorithm, our octree querying algorithm begins by270

executing a work-item per receptor atom, in workgroup sizes of 256, and updates

the coordinates of the receptor atoms with TNew. It then begins the tree traversal

loop by assigning the root as the current octant, and looping through all of its

children. Normally, octree traversal is done recursively starting from the root

octant, but OpenCL does not support recursive control flow. Even if it did support275

recursion[41], such a query would be prone to high execution divergence (with

substantial performance penalties) since the recursive branching to the child octants

would need to be made independently by each work-item. To address this we

developed a stack-based, octree querying method that emulates programmatically

recursive behaviour, while minimizing execution divergence. The method traverses280

the tree iteratively utilizing a stack to mimic recursive calls. The stack is defined as

an array of octant indices, and is allocated in private memory by each work-item

(since OpenCL does not support dynamic memory allocation). We set the size
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of the stack equal to fifty six four-byte integers (7 octree levels and 8 octants for

each level), which can accommodate octree traversals of height seven (which is our285

maximum subdivision level and a good balance point between subdivision and

total stack memory requirements). Using this stack, the tree traversal loop begins

by checking (in a breadth-first manner) whether the net distance dNet between the

receptor atom and the child octants is within cut-off or not. To compute dNet we

apply Equation 4,290

dNet = dTot − rL (4)

where dTot is the total distance between the octant centre and the atom, and rL

is the radius of the octant’s bounding sphere. If dNet ≤ dcuto f f and the child

octants are leafs, it loops through all atoms indexed by these octants, calculates

their interatomic distance d with the receptor atom, and accumulates the force

(in a similar way to our regular grid method) only for those receptor/ligand295

atom pairs with d ≤ dcuto f f (Figure 4b). Otherwise it sets the first one of these

octants (in a depth-first manner) as current, and pushes the remaining ones onto

the stack in reverse order. When the downward tree traversal comes to an end

(i.e. the index of the current octant is -1), the algorithm pops an octant off the

stack and repeats the loop. When the stack becomes empty the traversal loop300

terminates, and the algorithm calculates the total force on the CPU the same

way as described in our grid-based force calculation method. Each work-item,

regardless of its traversal path, executes the same loop repetitively until it has

no more octants to traverse. Hence, for a number of iterations the work-items

(especially those indexing receptor atoms nearby in 3D space) will be executing305

the same kernel instructions, which allows our algorithm to achieve substantial

execution convergence during octree traversals. Algorithm 3, GPUQueryOctree
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(provided as supplementary information), describes the main steps of our octree-

based approach.

3. Results310

We have implemented our approach using Visual C++ and OpenCL 1.1, and in-

tegrated it within our haptics-assisted interactive rigid-docking application (Figure

5). We conducted a series of experiments in order to benchmark the performance

of our approach (against demanding simulation loads), compared it to a current

CPU-based implementation, and measured its efficiency during interactive rigid-315

docking simulations on known complexes. We executed all tests on a 2.93GHz

Intel Core i7 PC running under a 64bit version of Windows 7 with an NVIDIA

GTX580 GPU. The PC was equipped with 8GB RAM, and the GPU with 1.5GB

RAM. We used the 3DOF Geomagic Touch haptic device, formerly known as the

Phantom Omni from SensAble Technologies. For the purpose of benchmarking320

and GPU-CPU performance comparisons, we used arbitrary force parameters, as

we were only interested in timing their force-computation. For the haptics-assisted

rigid-docking simulations, however, we used Gromacs’ pdb2gmx tool in order to

obtain the actual Gromos54a7 force field topology/nonbonded parameters file,

and add the necessary hydrogens. Specifically, for each one of these molecules we325

executed the following command,

pdb2gmx -f xxxx.pdb -o gmx_xxxx.pdb -p gmx_xxxx.top

-ff gromos54a7 -ignh -water none -merge all

where xxxx is the molecule’s pdb code (information about this command can be

found in the Gromacs manual[33]).330
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Figure 5: Conducting an interactive rigid docking simulation with proteins GroEL (larger molecule)
and GroES (smaller molecule) and the 3DOF Geomagic Touch haptic device. Both molecules are
defined in the PDB file with accesion code 1GRU where they are in a bound conformation. The user
controls GroES and feels the interaction forces using the haptic device.
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3.1. Benchmarking Experiments

We conducted benchmarking experiments to measure the scalability of our ap-

proach, and identify its limitations. To achieve that, we devised and subjected our

approach to various artificial docking simulations of demanding computational

workloads and different molecular complexities (comprising up to two hundred335

thousand atoms each). At this stage emphasis was given in finding those molecules

that can stress test the two proximity querying algorithms effectively. Since prox-

imity queries are sensitive to the atom granularity of the underlying cells/octants,

we selected molecules with different sizes and shapes (e.g. compact, extended).

Although unrealistic, we also allowed the molecules to overlap in order to increase340

the number of interacting atom pairs, and attain sufficient, upper-bound, perfor-

mance indicators. In these simulations both molecules were modelled as rigid

structures.

We used the molecules Alcohol Dehydrogenase dimer (PDB code: 1ADG), Aspar-

tate Carbamoyltransferase, (1AT1), GroEL-E434K Mutant (2YEY) and Clathrin (1XI4),345

as defined in their respective Protein Data Bank[42] (PDB) files (Figure 6). Us-

ing these proteins we generated the artificial protein-protein docking test cases

1ADG-1ADG (i.e. 1ADG with 1ADG), 1AT1-1AT1, 2YEY-2YEY and 1XI4-1XI4.

For each test case we ran seven rigid docking simulations using regular grids of

different cell sizes (we used cg values equal to nrC, where n=1,2,..7), and another350

seven simulations using octrees of subdivision levels L, where L=1,2,..7. For each

of these test cases we also created a 4×4 matrix that specified the position and

orientation of the ligand such that the ligand overlapped with the receptor, and

generated a substantial set of interatomic interactions to benchmark sufficiently

our approach (these matrices are provided as supplementary information). For355

each simulation we recorded 10000 different response times (i.e. a simulation time
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Figure 6: The four molecules used in our benchmarking experiments, showing their relative sizes.
1XI4 is the largest one with 184k atoms, and a bounding box with largest axis of 747.22Å in z (see
Table 1).

of about 10ms), and computed the percentage of those responses found below

1ms, within 1-2ms(inclusive), within 2-4ms and above 4ms (Figures 7c and 7d),

since there are reports suggesting that acceptable haptic refresh rates in some cases

can go as low as 250-300Hz[43, 44]. We report test-case/construction specific data360

(Table 1) and simulation specific data (Figures 7a-7d and supplementary Tables 1

and 2). Moreover, we set dcuto f f =8Å in all tests.

The results show that the interaction forces were updated within the 2ms time

constraint consistently, in the majority of the simulations, regardless of the querying
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Figure 7: Benchmarking the two GPU-accelerated force calculation methods using the four artificial
protein-protein docking cases 1ADG-1ADG (where 1ADG is the PDB code), 1AT1-1AT1, 2YEY-
2YEY and 1XI4-1XI4. Each test was repeated 10000 times, and all response times were calculated
based on more than 20K interacting atom pairs. (a) The best force response times obtained using
regular grids constructed with cg values equal to nrC, where n=1,2,..7 and rC is the radius of a
carbon atom. (b) The best force response times obtained using octrees at depth levels 1-7. The
force response times for test cases 2YEY-2YEY and 1XI4-1XI4, at depths 1 and 1-2 respectively, are
not shown here (to improve graph readability). The times for these test cases were 14.92ms for
2YEY-2YEY, and 74.11 ms (level 1) and 12.96ms (level 2) for 1XI4-1XI4. (c) The percentage of those
10000 response times found below 1ms, within 1-2ms(inclusive), within 2-4ms and above 4ms (for
each test case), obtained using the same regular grids as in (a). (d) The percentage of those 10000
response times found below 1ms, within 1-2ms(inclusive), within 2-4ms and above 4ms (for each
test case), obtained using the same octrees as in (b).
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Table 1: Molecule specific information used for the construction of both partitioning structures.
The table lists the molecule’s PDB code, the number of atoms comprising each molecule, and the
molecule’s largest bounding box dimension.

# of Bounding Box

Molecule heavy atoms Largest Side (Å)

1ADG 7046 112.10
1AT1 21318 150.51
2YEY 53984 184.50
1XI4 183600 747.22

method used. Moreover, there was at least one simulation in each test case, under365

which the grid-based method delivered sub-millisecond force response times more

than 90% of the time (e.g. at 5rC). Similarly, at octree levels 3, 4, 4 and 6 under test

cases 1ADG-1ADG, 1AT1-1AT1, 2YEY-2YEY and 1XI4-1XI4 respectively, almost

90% of the force responses were computed by the octree-based method in less than

2ms. In all four cases, the grid-based method attained force responses in the range370

of 0.58-0.71ms, whereas the octree-based method attained force responses in the

range of 1.22-1.44ms. In theory, the approach could maintain such force updates

throughout a simulation, if given exclusive use of the CPU/GPU resources. In

practice however, we observed fluctuations between the best and worst response

times (in all simulations), reaching in some instances a difference of up to 1.5ms.375

We attribute these performance fluctuations to intervening CPU/GPU workloads

(e.g. background processes, display rendering). We set the grid-based method

as the first choice, since it performed consistently faster than the octree-based

method, and use the latter for cases in which the available GPU memory cannot

accommodate the construction of a regular grid. The dimensions of the grid-380

cell/leaf-octant also influenced the performance of the querying method. In the

case of grid-based querying, a cell size cg=5rC appears to construct those grids that

can facilitate efficient query responses (Figure 7a). Slightly better responses were
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attained in 1ADG-1ADG and 1AT1-1AT1 at cg=4rC, however these performance

differences are insignificant. As such, a cg=5rC could be used in our approach as a385

universal subdivision criterion for regular grids. We also use this cg criterion in

Equation 2 in order to decide which partitioning structure to use in our queries. In

the case of octree-based querying, we identified, initially, the subdivision levels L

with the fastest response times (Figure 7b), used the formula max(ℓx, ℓy, ℓz)/2L to

obtain the actual side-length of the leaf octants, and related this to rC (i.e. found390

those multiples of rC that would cause our method to construct a tree of level L).

Using Equation 3 we determined L for each value of n by setting co equal to nrC.

Though in many cases this relation was not one-to-one (e.g. in 1ADG-1ADG n=5,6,

or 7 all resulted in L=3), it did identify the correct subdivision level (bold entries in

supplementary Table 2) when co=5rC. In all cases, the octrees occupied less memory,395

at the respective leaf/cell sizes than the regular grids (supplementary Tables 1 and

2), and their byte difference increased proportionally to the simulation workload

(e.g. more than a six fold difference in 1XI4-1XI4). In almost all simulations, with

an exception of 1XI4-1XI4 at cell size equal to 1.7Å, our approach was able to

construct both partitioning structures on the GPU. We were unable to find a PDB400

file containing a molecule large enough for an octree to be chosen over a regular

grid for the GPU used. To overcome this, we created a test molecule from four 1XI4

molecules aligned along the main diagonal of the bounding box so as to maximise

its volume (referred to as 4 1XI4). This artificial structure comprised approximately

735K atoms, and was bounded by a cube with side length of 2873.69Å. Using 4 1XI4,405

we generated and benchmarked the docking case 4 1XI4-4 1XI4, at a targeted octant

size co=5rC. For this test case our approach utilized an octree (of 1.4MB), since

the GPU could not allocate the 463.5MB of memory needed for the regular grid.

Again, we overlapped both molecules along their longest surface, and generated a
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set SPairs of 27151 interacting atom pairs. The octree-based method averaged force410

response times at 4.6ms, indicating that simulation cases of such size pose an upper

limit to our approach.

Finally, the results also show that both querying methods scale very well to

the size of the interacting molecules. In all four test cases, both methods obtained

similar response times regardless of the underlying molecule sizes. The one-415

to-one work-item-per-atom strategy adapts very well to the Single Instruction

Multiple Data execution model of the GPU, and thus utilizes efficiently the GPU’s

computational resources.

3.2. GPU-CPU Comparisons

We compared our two GPU-accelerated methods to our reported CPU octree-420

based force-calculation method[40], which can facilitate the interactive, rigid dock-

ing of large scale systems and is optimized for the CPU. The purpose of these tests

is to identify/measure the performance gains attained by the GPU methods over

the CPU method. We did not compare our approach to other current CPU-based

approaches (e.g. brute force, pre-computed force-grid based etc.) since reportedly425

they cannot manage molecular systems of more than 3000 atoms each [9].

Using the same four benchmarking test cases (1ADG-1ADG, 1AT1-1AT1, 2YEY-

2YEY and 1XI4-1XI4), cut-off distance and number of iterations (i.e. 10000), we

tested the CPU-based approach to obtain comparable results. In these tests, the sub-

division levels of all octrees were set equal to 4, as stated by Iakovou et. al [40]. We430

then compared and reported for each test case and for each querying method (CPU,

GPU-Regular grid, and GPU-Octree) the best response times obtained (Figure 8a),

and the best response-time intervals for these 10000 iterations (i.e. <1ms, 1-2ms,

2-4ms, >4ms) as percentages (Figure 8b, see Figure legend for further details).
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Figure 8: GPU-CPU force response comparisons between our two GPU-accelerated force-calculation
methods (i.e. regular grid/GPU-R and octree/GPU-O) and the CPU-based force-calculation method
reported in Iakovou et. al.[40] All three methods were tested on the four artificial protein-protein
docking cases 1ADG-1ADG (where 1ADG is the PDB code), 1AT1-1AT1, 2YEY-2YEY and 1XI4-1XI4.
Each test was repeated 10000 times, and all response times involved more than 20K interacting
atom pairs. (a) The best response times obtained by each force calculation method for each docking
case. (b) The best response-time intervals (as percentages) for the 10000 iterations (i.e. <1ms,
1-2ms, 2-4ms, >4ms) obtained by each force calculation method for each docking case. The best
response-times were calculated using GPU-based grids of cell size cg = 5rc, GPU-based octrees of
Level, L, given by Equation 3 with co = 5rc and CPU-based octrees of Level, L=4.
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The results show that there were significant performance gains when utilizing435

the GPU-based methods over the CPU-based method, especially as the sizes of

the molecules increased, due to the high levels of GPU occupancy/parallelism

attained. Specifically, for the 1ADG-1ADG case (comprising 7K atoms each) both

GPU methods outperformed the CPU method by 5×, and by 90× for the very large

test case 1XI4-1XI4 (180k of atoms each). In all cases and for more than 90% of the440

trials, the regular-grid based method (GPU-R) was able to provide force updates in

less than 1ms. The octree-based method (GPU-O) although slower still updated

consistently the forces in less than 2ms. On the other hand, the CPU-based method

failed to satisfy the 2ms time constraint in every case. Overall, both GPU-based

methods improve substiantially upon the CPU-based method and, as such, can be445

applied to haptics-assisted, interactive docking simulations of very large systems,

which would have been impossible otherwise.

3.3. Haptics-assisted Interactive Rigid-Docking Simulations

In addition to benchmarking, we tested the performance under actual rigid-

docking scenarios. The purpose of these simulations was twofold: a) to measure450

force-response times under real docking examples during which atom-overlapping

cannot occur, and b) to sense the rendering quality (e.g. stability, smoothness)

of the resulting interactions on the haptic device. We used four well known

complexes, and conducted six rigid-docking simulations related to protein-protein

and protein-drug docking. We used the complexes of Epidermal Growth Factor455

(EGF) with EGF receptor (EGFr), Bovine Pancreatic Trypsin Inhibitor (BPTI) with

Trypsin, anticancer drug BAY43-9006 (sorafenib, Nexavar) with cancer target B-

raf, and GroES with GroEL as defined in the PDB files 1NQL, 3OTJ, 1UWH, and

1GRU, respectively. The first three complexes are examples of protein-protein
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docking, whereas the fourth complex is an example of protein-drug docking.460

Each file contained the structures of the receptor and the ligand in their bound

conformation. For each, we created two new separate PDB files, one for the receptor

and one for the ligand. Using Gromacs 4.6.2 and the 8 PDB files, we obtained their

respective Gromos54a7 non-bonded force parameters for all molecules except the

drug sorafenib, for which, we used the PRODRG[45] server from the University465

of Dundee (http://davapc1.bioch.dundee.ac.uk/programs/prodrg/). We ran the

simulations using the ligand as the haptic interface to the virtual world. To capture

the relation between force response times and number of interacting atom pairs

we conducted one simulation per complex. Using the haptic device, we moved

the ligand around the receptor, sensed the interaction forces on the device, and470

guided the molecules back to their binding conformation (as defined in the original

PDB file). Each simulation ran for approximately one minute during which we

recorded at 10 millisecond intervals the force response times and the number of

interacting atom pairs. To identify how the rendering quality relates to the number

of interacting atom pairs we repeated the simulations for complexes B-raf-sorafenib475

and GroEL-GroES (for the smallest and largest ligand) for approximately 6ms (i.e.

just moving the ligand around the receptor), and recorded at each haptic frame

the total force, and the number of interacting atom pairs. Table 2 gives structural

information on the molecules used. All force queries were executed using a regular

grid with cg=5rC (8.5Å), and a value of 8Å as the cut-off distance. Figures 9 and 10480

illustrate graphically the results obtained from these simulations.

The results show that all interaction forces were calculated in less than one

millisecond throughout the simulation period and for varying numbers of atom

pairs. In general, the interaction forces displayed and felt on the haptic device

were fairly smooth, without any device-induced instabilities and vibrations. How-485
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Table 2: Structural information for the eight molecules used in our real-time docking simulations.
The table lists the molecule’s PDB code, the number of atoms comprising each molecule, and the
molecule’s largest bounding box dimension.

# of Bounding Box

Molecule heavy atoms Largest Side (Å)

sorafenib 48 17.20
EGF 483 41.50
BPTI 604 45.60

TRYPSIN 2094 58.70
B-raf 5376 83.10
EGFr 5836 113.09

GroES 6321 102.70
GroEL 66451 374.17

ever, the rapid change in the magnitude of the force during the simulation of the

GroEL-GroES complex (especially when the molecules were in contact) caused

device jittering which could be perceived by the user as unstable force rendering.

Force smoothing methods such as the one proposed by Bolopion et. al.[46] could

address this. Response times did not drop below 0.2ms, even when there were no490

interactions, because NVIDIA’s OpenCL drivers induce a 0.2ms kernel deployment

overhead. Furthermore, in many instances the response times for the same set

of atom pairs were found to fluctuate by up to 0.45ms. Like the benchmarking

experiments, these fluctuations reflect delays introduced by interfering system

processes.495

4. Discussion and Conclusion

We have described methods and implementation details for haptic-assisted

interactive docking. The approach utilizes effectively the many-core processing

capabilities of modern GPUs, the space partitioning properties of regular grids and

octrees, and two efficient proximity querying algorithms based on these partition-500
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Figure 9: A haptics-assisted rigid-docking simulation between: (a) the drug molecule sorafenib and
the receptor protein B-raf ; (b) protein BPTI and the receptor protein Trypsin; (c) protein EGF and
the receptor protein EGFr; (d) protein GroES and the receptor protein GroEL. The graph depicts the
force response times attained, at 10ms intervals, and the respective sets of interatomic interactions
accounted for by the approach during the simulation.
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Figure 10: A haptics-assisted rigid-docking simulation between: (a) the drug molecule sorafenib and
the receptor protein B-raf ; (b) protein GroES and the receptor protein GroEL. The graph depicts the
force magnitudes (scaled to nanoNewtons) attained at each haptic frame, and the respective sets of
interatomic interactions accounted for by the approach during the simulation.

ing structures. A major issue in haptics-assisted docking is the 2ms force-update

constraint, required for smooth and stable force-feedback. Current interactive

approaches can achieve such refresh rates only for molecules comprising up to

a couple of thousand of atoms each. We presented a GPU-accelerated force cal-

culation approach that can effectively address the 2ms constraint for interactive505

docking simulations of molecules comprising hundreds of thousands of atoms

each, thus enabling the haptics-assisted study of protein-protein interactions. When

compared to other CPU-based force calculation approaches, our approach was up

to 90 times faster. In addition, the method pre-computes a space partitioning struc-

ture for the smaller molecule (ligand) only, meaning there would be no additional510

overhead in the force calculation when receptor atoms move due to conformational

change. Providing the new positions of the receptor atoms are calculated suffi-

ciently quickly, receptor flexibility could be modelled. One approach already taken
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in haptics for modelling flexibility is to use an elastic network model[47].

As it stands, GPU memory does not seem to be an issue for either method.515

Furthermore, it appears that modern GPUs can accommodate the memory re-

quirements of the grids used in almost all practical, haptics-assisted docking cases.

However, for cases where (a) the GPU has limited memory specifications (e.g.

less than 256MB memory), (b) the GPU performs at the same time other memory

hungry tasks (e.g. ray tracing, texture mapping), and/or (c) the simulation involves520

systems that cannot be accommodated by a regular grid, our octree-based methods

represents an effective alternative.

We have presented a scalable, GPU-parallelizable force calculation approach

that overcomes the computational limitations of previous approaches (e.g. pre-

computed force grids), and can compute the intermolecular forces of docking525

between very large molecules, within haptic refresh rates. It computes the total

force in real time for all interatomic interactions within a cut-off distance. In MD

simulations variation of the cut-off distance can have significant effects. As we use

an 8 Å cut-off distance it is expected that any inaccuracy will arise from the longer

range electrostatic interactions rather than from the van der Waals. We have tried530

a docking experiment with BPTI on the receptor trypsin where instead of an 8 Å

cut-off distance all atom pairs were included in the force calculation. We could not

find, within our present system, any perceptible difference.

Currently only forces are perceived through the haptic device but torques

obviously play a crucial role in the docking process. Torque will rotate a ligand535

relative to the receptor helping to orient it correctly for docking. Affordable haptic

devices do not allow the user to feel torques although they allow the user to rotate

objects. A partial solution is to give a graphical depiction of the torque.

We have implemented and tested these methods with docking simulations of
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different molecular shapes and sizes. They achieved the targeted force update540

rates (less than 2ms) in all test cases, which ranged from standard protein-drug to

very large protein-protein interaction problems. Our work also demonstrates that

the inherent execution parallelism of GPUs can benefit haptics-assisted docking

systems, and help overcome early computational barriers (e.g. pre-computed grids,

rigid molecules) that limited their applicability.545
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