97 research outputs found

    Adaptive GPU-accelerated force calculation for interactive rigid molecular docking using haptics

    Get PDF
    Molecular docking systems model and simulate in silico the interactions of intermolecular binding. Haptics-assisted docking enables the user to interact with the simulation via their sense of touch but a stringent time constraint on the computation of forces is imposed due to the sensitivity of the human haptic system. To simulate high fidelity smooth and stable feedback the haptic feedback loop should run at rates of 500 Hz to 1 kHz. We present an adaptive force calculation approach that can be executed in parallel on a wide range of Graphics Processing Units (GPUs) for interactive haptics-assisted docking with wider applicability to molecular simulations. Prior to the interactive session either a regular grid or an octree is selected according to the available GPU memory to determine the set of interatomic interactions within a cutoff distance. The total force is then calculated from this set. The approach can achieve force updates in less than 2 ms for molecular structures comprising hundreds of thousands of atoms each, with performance improvements of up to 90 times the speed of current CPU-based force calculation approaches used in interactive docking. Furthermore, it overcomes several computational limitations of previous approaches such as pre-computed force grids, and could potentially be used to model receptor flexibility at haptic refresh rates

    Sign Language Recognition

    Get PDF
    This chapter covers the key aspects of sign-language recognition (SLR), starting with a brief introduction to the motivations and requirements, followed by a précis of sign linguistics and their impact on the field. The types of data available and the relative merits are explored allowing examination of the features which can be extracted. Classifying the manual aspects of sign (similar to gestures) is then discussed from a tracking and non-tracking viewpoint before summarising some of the approaches to the non-manual aspects of sign languages. Methods for combining the sign classification results into full SLR are given showing the progression towards speech recognition techniques and the further adaptations required for the sign specific case. Finally the current frontiers are discussed and the recent research presented. This covers the task of continuous sign recognition, the work towards true signer independence, how to effectively combine the different modalities of sign, making use of the current linguistic research and adapting to larger more noisy data set

    The MOS multimedia E-mail system

    No full text
    corecore