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Abstract 

The research into the use of small molecules as drugs continues to be a key driver in the development 

of molecular databases, computer-aided drug design software and collaborative platforms. The 

evolution of computational approaches is driven by the essential criteria that a drug molecule has to 

fulfil, from the affinity to targets to minimal side effects while having adequate ADME properties. A 

combination of ligand- and structure-based drug development approaches are already used to obtain 

consensus predictions of small molecule activities and their off-target interactions. Further integration 

of these methods into easy to use workflows informed by systems biology could realise the full 

potential of available data in the drug discovery and reduce the attrition of drug candidates. 
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Body of the text 

Small molecules as drugs and drug candidates continue to be of interest for pharmaceutical industry 

[1,2] despite the current backdrop of a global pipeline for new medicines that is running dry across a 

range of therapeutic areas (see  e.g.[3,4]) and a trend towards complex biologics as the next generation 

of therapeutics, particularly for inflammatory diseases and cancers [5–7]. It could be assumed by 

world-weary pharmaceutical scientists that the days when small molecules, broadly defined as  

compounds which adhere to Lipinski’s rules of five[8], were the preferred starting point in drug 

discovery projects are coming to an end.  The high failure rates in the later stages of small molecule 

drug discovery projects, caused by a lack of efficacy and problems with safety profiles [9]  give 

significant cause for concern in the pharmaceutical industry. This has led big pharma to review their 

discovery pipeline strategies and develop initiatives – such as AstraZeneca’s 6 R’s framework [10] – to 

ensure that potential liabilities are removed early in the process. 

It would seem counterintuitive that in an age where information is increasingly prevalent and 

accessible, the failure rate for small molecules at the later stages of drug development projects is still 

so stubbornly high. Whilst it can be argued that some efficacy and toxicological data relating to small 

molecules is proprietary, and the inability to access such information can result in unsuitable 

molecules being progressed through the drug discovery pipeline, it is likely this number is small. If we, 

as a scientific community, accept this statement it implies that we are not learning enough from past 

mistakes. It is possible that a number of current projects are progressing molecules which are destined 

to fail, and that this future failure was predictable in the early stages of the project via a thorough and 

systematic interrogation of the existing and accessible knowledge base. This boils down to the root of 

the problem being a problem of big data.  

The information available for the use in drug discovery processes can be characterized by the “5 Vs” 

i.e. volume – typically big data concerns datasets; variety – the different nature of the types and forms 

in which data is acquired; velocity – the rate at which new data relating to a topic is becoming 

available; variability –inconsistencies with how data is reported, which may hinder subsequent 

analysis; and veracity – whether the data that is under investigation can be trusted to be accurate.[11] 

To be successful in identifying novel compounds in the future, it is imperative to overcome challenges 

of 5 Vs and understand,  harness and progress from the wealth of information that is currently 

available. This colossal task is reliant upon the development of sophisticated in-silico systems to help 

capture, store, curate, analyse and exploit the vast amount of data relating to small molecules. This 

data can be broadly categorised into non- clinical data i.e. information pertaining to the structure of 

the molecule, its physicochemical properties and the information from in vitro and in vivo animal 

experiments to establish preliminary biological activity and toxicology profiles, and clinical data i.e. 

data relating to efficacy and toxicology of molecules as a result of clinical trials. Arguably, the greatest 

gains are to be made by analysing the data at the non-clinical development stage, as identifying 

patterns at this point in the process, which will ultimately result in failure in clinical trials will help to 

prioritise resource. The challenges to achieving this arise from the storage, extraction and analysis of 

the appropriate data. 

The physical computing resource for storing, managing and, crucially, analysing the vast amount of 

freely available small-molecule data is immense, and in the recent past would have proved a financial 

barrier to a global, information-rich approach to drug discovery.  However, the advent of cloud 

computing, whereby data is stored, managed and processed on remotely networked servers, provides 

a credible solution to this problem. Cloud computing has already been successfully used in small 

molecule drug discovery experiments for computer memory intensive activities such as de novo drug 

design and virtual screening[12–14] by allowing the combined processing power of networked 



 

 

computers to perform complex simulations in an acceptable timeframe, but risks and perception of 

risk with respect to issues such as information security, data location and disaster recovery[15] 

continue to limit the widespread adoption of cloud computing, particularly in drug discovery settings 

where the potential financial rewards for addressing unmet clinical needs can be substantial. 

This is not to say that the scientific community guards its data jealously; nothing could be further from 

the truth. Simple web-browser searches quickly identify a dizzying array of small molecule databases, 

which contain vast amounts of information that can be harnessed for drug discovery projects. These 

databases range from large repositories containing top-level information across a number of different 

areas (e.g. physical, toxicological and spectral properties of small molecules) such as Zinc[16] 

ChemSpider[17] and PubChem [18] through to those that deal in more detail with compounds that 

are known or predicted to demonstrate biological activity (CheBI[19], ChemBL[20] DrugBank[21]), 

those that focus on drug targets and the molecules known to act on them (IUPHAR[22]) and those that 

consider the metabolites of compounds and the implications of these on patient safety (e.g. Urine 

Metabolome[23], IMDB Toxin[24]). All these resources contain information, which would reliably 

inform drug development projects but there are two big data problems, volume and reliability of data, 

that present a barrier to easy harvesting and applying this information. Although each of the database 

providers mentioned have developed procedures for automated data acquisition and validation, there 

is a need for manual inspection of retrieved data due to duplication of data entries and possible 

variability of results of assays from different research groups.  Although a suite of sophisticated web 

services for these databases is available, which scientists can use to interrogate their databases, it can 

be difficult for users to extract the exact information they need for their project[25], and another 

problem of big data – that of variability with respect to how data is stored in each individual repository 

– can require researchers to spend a lot of time training to become experts in using a number of 

different web services which again prevent them accessing all relevant information prior to embarking 

on their project. One way of overcoming these challenges is via the judicious use of web  scraping. 

In essence, web scraping (also known as web harvesting) is the copying of information from the web 

to a local repository, usually with the intention of subsequently manipulating and analysing this 

information. Although a person manually copying and pasting information from the web into a local 

database is doing webscraping, the term is more usually associated with the automated data 

collection of ‘bots’ or ‘web  crawlers’, small pieces of programming code which are designed to harvest 

and deposit relevant pieces of information with minimal human intervention. Such activities were 

initially computationally complex and required expert knowledge of the web and scripting languages. 

However, the development of freely available desktop technologies such as iRobotsoft[26] means that 

this technique for gathering data is now available to novice, as well as expert, users. 

Despite being one of the oldest technologies for extracting data from the internet, web scraping can 

prove invaluable where web services provided by database moderators do not meet the data capture 

needs of the user, and could prove invaluable in collating disparate data from the multitude of small 

molecule databases available prior to embarking on a drug discovery experiment. It is not, however, 

without its limitations. In order for their databases to be mined by bots the curators need to provide 

access, which is not always readily forthcoming given concerns over malicious hacking and information 

security. In addition legal jurisdictions with respect to where the data is stored can prove problematic 

as different thresholds exist in different parts of the world[27]. These limitations have not completely 

stymied recent drug discovery initiatives which have combined web-scraping with data-mining 

technologies to ensure that the latest and most relevant information related to small molecule drug 

discovery from a range of different sources is being considered at the implementation stage of drug 

discovery projects (see e.g [28]). 



 

 

Data mining, sometimes used synonymously with machine learning, is the autonomous analysis of 

large-scale datasets to generate new information, and will be at the heart of this big data era of small 

molecule drug discovery. Networked computers processing information (for example the information 

extracted via web-scraping) will be used to identify previously obfuscated patterns that can directly 

input into rational drug design and development[29]. This technique is already proving beneficial to 

investigations into drug repurposing, a relatively low-risk strategy where small molecules that are 

known to have therapeutic benefits and acceptable safety profiles are investigated to see if they can 

be applied to other conditions by exploiting drug repurposing databases such as the NCGC 

Pharmaceutical Collection[30]. A number of drug repurposing studies have already been published to 

demonstrate the potential of machine learning for exploiting information to identify novel molecular 

disease targets[31] and repurpose existing medications for the treatment of a range of conditions 

including lupus[32], neurodegenerative disorders[33] and tuberculosis[34]. As it becomes easier to 

collate and analyse more data it is expected that this technology can also make significant in-roads 

into combatting orphan diseases, which although rare still affect up to 350 million people 

worldwide[35].     

The information about small molecules and their properties should be complemented with 

information that is available about biological targets. The probability of discovering a next blockbuster 

drug through serendipity has become negligible and various in silico screening approaches as well as 

computer-aided molecule design methods are being developed. The availability of structural 

information of biomolecules complexed with small molecules with potential bioactivity in Protein Data 

Bank (PDB) [36] and PDB-REDO [37] is increasing year-on-year. There are currently over 98k models 

of biomolecules in a complex with a ligand available for the download and possible use in the drug 

discovery process. One of the most common uses of these target structures is to evaluate a potential 

binding mode of a small molecule through molecular docking (see e.g. [38]), if the binding sites for 

those structures are known. The trend in increase of number of available structures in the PDB is 

considerably higher than the number of publications in the Scopus database that have “docking” and 

“pdb” words mentioned anywhere in the text of the publications. This is most likely due to two factors, 

the released structures are either refined structures of previously released complexes with different 

ligands or published structures are not druggable targets.  The in silico evaluation of protein 

druggability can be achieved using protein structural information, their known interactions with FDA 

approved drugs and knowledge of the human genome [39], albeit this approach provides only 

information on human targets and neglecting drugs that act on proteins expressed in other organisms.   

Since the researchers are often faced with the lack of the structural information on targets of interest 

alternative strategies are employed, such as homology modelling to use existing structures to obtain 

structural information about the same targets from different organisms or structures of novel targets. 

In this way increased number of targets provides additional opportunities to apply docking in an 

attempt to find therapeutic agents against a wider range of diseases, resulting in almost two-fold 

higher number of publications that use homology models when compared to those where the docking 

is carried against a structure from the PDB. As a consequence of the issues mentioned, the information 

about targets is less suited for automation of the docking process. Furthermore, most of the docking 

protocols require careful examination of the available target structure which includes pre-processing 

of models obtained by either x-ray crystallography and NMR spectroscopy.  However, web services 

are being developed, such as SwissDock, that are providing an opportunity to carry out docking against 

already prepared targets with well-defined binding sites [40]. Albeit this provides an easy access to 

selected targets and opportunity for direct comparison of the docking results from different research 

groups as the preparation of targets, scoring functions and algorithms used for docking are always the 

same, the usefulness of this service is limited by the number of proteins available in such databases. 



 

 

Similarly, the other web services that provide collated information on proteins important in drug 

discovery, Potential Drug Target Database (PDTD) [41] and Therapeutic Target Database (TDD) [42], 

have a potential to be useful resources in the drug discovery efforts. However the lack of updates or 

information on the latest updates is impeding their future use. 

Significant progress in improving the relevance of docking results is being made by taking into 

consideration the flexibility of targets [43] and docking with explicit hydration[44], and these efforts 

are further enhanced by the development of computational approaches to elucidate modulation of 

target via potential allosteric binding site [45]. In certain cases, biological activity and the binding 

affinity cannot be attributed to binding to active and/or allosteric sites. In those cases, the affinity 

studies should be carried by molecular docking against the whole protein/target surface to obtain a 

working hypothesis [46]. To ensure that the theoretical  studies of interactions between protein and 

a small molecule  provide the most reliable results the docking results against known binding site 

should be complemented by docking against the whole surface of the target using methods similar to 

those in the BINDSURF approach [47] and implementation of multi-objective strategies for combining 

scoring functions [48]. The future of the docking software development should be aiming to 

incorporate the above enhancements into the process for the hit identification as well as in lead 

optimization efforts when docking ligands against target databases. 

Docking against multiple targets is already employed in target fishing by using reverse docking. This 

approach is particularly useful if biological activities of sets of molecules determined in cell-based 

assays are known, but without knowledge of the target protein. The great promise of this approach 

was demonstrated by predicting targets for 4OH-tamoxifen and vitamin E, where 50% of 

computationally predicted targets were implicated in the binding of these two molecules [49]. This 

concept of “target fishing” was developed further via developing a PDTD with the defined binding sites 

of proteins known to be targets for small molecule therapeutics. The improved algorithms and scoring 

functions led to the improvement  of the target identification results for 4H-tamoxifen and vitamin E 

[50]. Although promising, this approach has not been utilized fully in most disease areas, the 

TarFisDock was mainly used in studies to explain activities either of sets of sets of molecules that may 

have multiple targets [51] or of components of plant extracts  [52].. This is mainly due to a complexity 

of the results obtained, as well as the lack of direct correlation between observed biological activities 

and corresponding binding affinities to a single possible target. This could be a result of ligands with 

the activity having affinity for several targets and a possible interplay of cellular pathways affected by 

these interactions. Therefore, the target selection has to be informed by knowledge-based 

approaches and using a target pool relevant to the disease of interest [51,53], and further 

complemented by systems biology computational analysis [54] and network biology [55]. 

It is apparent that target fishing through molecular docking approaches has some drawbacks, as the 

activities of small molecules depend on their molecular properties as well as on the target availability. 

Therefore, other approaches are being developed to address the important issue of target 

identification that often arises from high throughput screening (HTS) or developing of libraries of 

analogues. The drug target interactions can be predicted based on the structures of ligands through 

the comparison to the information derived from known three dimensional structures of protein-drug 

complexes. An open web server, TargetNet, utilizes naïve Bayes approach in SAR models to evaluate 

possible affinity of ligands for 623 human proteins [56]. While the ligands are represented as 

molecular fingerprints for TargetNet to evaluate molecular similarity, the  use of 2D structures and 

fingerprints is a simplification and can lead to biased results, as the outcomes of searches can depend 

on the methods used to evaluate similarity [57]. This type of a limitation was purposely addressed 

when developing the PolyPharmacology Browser  (PPB), where sets of ligands binding to the same 



 

 

target are used to develop a consensus voting scheme where six different fingerprints and four fused 

fingerprints to evaluate similarity of a query molecule to ligands present in ChEMBL database. 

Moreover, the use of molecular similarity of ligands in quest for target responsible for activity can be 

expanded by evaluation of their 3D shape and surface feature similarity in addition to using 2D 

similarity as criteria to predict a possible target. The Chemmapper  website [58] allows comparison of 

a molecular structure of a query molecule to a diverse sets of ligands with known binding in the PDB 

(7072 structures) and KEGG (5928 structures) datasets, as well as to ligands present in big data 

bioactivity databases (DrugBank, ChEMBL and BindingDB).  However, the results of 2D and 3D 

similarity comparisons are obtained and have to be analysed separately. 

An additional dimension to target identification was introduced by combining 2D and 3D similarity 

measures between a query molecule and identified ligands as implemented in the 

SwissTargetPrediction website [59].  Furthermore, the SuperPred webserver takes into consideration  

2D, fragment and 3D molecular similarity of a query molecule to all ligands that are associated with 

the targets in the database [60]. The applicability domain of these two webservers is possibly larger 

compared to previously mentioned services, as their target databases contain proteins that are not 

only human but also from other mammals. 

However, the above mentioned ligand-based approach to target identification that uses direct 

comparison of a query structure to a single ligand from the binding databases may not provide a 

comprehensive overview of the potential interactions that can occur. The development of a 

pharmacophore approach can take into consideration features in query molecules that should be 

present for favourable binding to occur. The website Pharmmapper provides a platform for a reverse 

pharmacophore mapping approach [61,62], that uses over 23k protein structures from the PDB to 

develop druggable and ligandable pharmacophores in relation to 450 indications and 4800 molecular 

functions related to these protein structures.  Currently, the number of publications citing  

Pharmmapper in the Scopus search outnumbers publications involving the  other above-mentioned 

approaches, most likely due to the inclusion of targets that are non- mammalian such as bacterial 

targets being important in a search for therapeutic agents to treat multidrug resistant strains. These 

are particularly useful features of the Pharmmapper service in addition to providing the information 

related to function of targets and relevant indications. However, pharmacophore models that are 

generated for this server are based on a single structure for each target protein. This results in the 

multiple occurrence of the same protein in the resulting list of targets for a query molecule. An 

opportunity to consider multiple experimentally determined structures for target proteins is 

overlooked, as that could introduce some elements of the protein flexibility in target identification 

and diversify type of ligands that could fit into such pharmacophores.  

There are other platforms that deal with the use of big data  in target identification for small molecules 

that show activity in cell-based and whole organism assays (see [57] for a comprehensive list). 

However, all of those approaches have their limitations leading to an uncertainty  of target prediction 

for each query molecule. This may be overcome by merging the best features of already developed 

approaches into a single platform and proposing a census scoring of each solution obtained by 

different methods. 

It is interesting that these relatively recent efforts in developing methods for target fishing did not 

result in the expected progress of identifying targets for molecules with known activity and the 

number of publications does not reflect the promise that these methods offer. There are some 

examples of useful applications that arose from application of one or a combination of several 

methods that led to, for example, the discovery and experimental validation of novel mechanisms of 

inhibition in Magnaporthe oryzae by a chalcone-based inhibitor [63] and identification of ten 



 

 

phytochemicals  from Rhazya stricta that may have good anticancer activities [64].  There are also 

some examples where these  services enabled scaffold hopping in identification of novel inhibitors for 

treatment of type 2 diabetes [65] and small lung cancer [66]. The experimental validation of predicted 

targets is becoming one of the most important criteria for consideration of manuscripts, which is not 

always an easy undertaking, thus the number of studies that report successful target identification is 

relatively low.  

Despite the discouraging outcome for discovery of hits and development of lead molecules, the 

applications of the methods described above and similar ones have boomed in three other fields: 

evaluating polypharmacology of small molecules, off-target interactions prediction and drug 

repurposing.  

The initial efforts in predicting the side effects of small molecules was via evaluation of their affinity 

towards protein structures using the inverse docking procedure [67]. This has led to development of 

a number of webservers employing structure-based approaches.  Virtualtoxlab tool is one of the first 

server implementations that provided prediction of toxic potential for small molecules via evaluating 

their interactions with 16 proteins. This set of proteins are known or suspected to trigger adverse 

effects and include 10 nuclear hormone receptors (NHR).  These predictions are made by a 

combination of flexible docking with multi-dimensional QSAR [68,69]. It may appear that such 

predictions are not important as the comprehensive in vitro study of 615 drugs did not find a 

significant number of drugs that interact with the NHR. The most likely reason for absence of 

interactions of drugs with NHR is that drug candidates with a potential to exert such interactions were 

discontinued during the drug development process. Although these experiments did not indicate 

problems related to NSAID toxicity, Virtualtoxlab results revealed that diclofenac and celecoxib may 

have affinity for thyroid hormone receptor . This receptor is implicated in hypothyroidism associated 

with increased heart muscle stiffness and therefore inhibition may lead to an increased risk of 

myocardial infarction. These in silico findings  were confirmed by ex vivo studies, indicating the 

importance of prediction results [70], especially if these are used in early drug discovery and 

development stages. Opensource developments in this areas are also prominent, where a website 

service “Endocrine Disruptome” provides a similar prediction of small molecule affinities to 12 NHRs 

[71], allowing toxicity predictions in resource-challenged environments. Moreover, their docking 

interface for target systems (DoTS) is freely available for implementation on secure servers, thus 

addressing potential intellectual property issues that may arise if publicly available servers are used. 

While significant progress has been made in utilizing in silico methods to predict drug-target 

interactions (see e.g. [72]) and enable drug repurposing (see e.g. [73], utilising not only standard 

methods and ideas, but also innovative concepts, approaches and algorithms, there are intrinsic 

problems that are related to how the research in this area is funded and how these efforts are 

rewarded. Whilst the pharmaceutical industry is engaged in data sharing and there are excellent 

examples of developing collaborative platforms for opensource drug discovery [34], their need to 

protect their intellectual property and not share all the data and software applications  is 

understandable. However, due to the lack of appropriate funding, the efforts of the academic 

community often result in projects that are short-lived delivering sometimes ingenious software 

solutions that are frequently not finished and/or difficult to integrate into other relevant software 

platforms as the file formats and data storage are not standardized. More often than not, as a drive 

to meet criteria for academic promotions and to achieve quick wins, software solutions or web 

services are developed that appear redundant and do not significantly contribute to furthering the 

progress in the field. Furthermore, the efforts in developing collaborative drug discovery projects 

appear not to be unified as the researchers have to make a choice where to direct their efforts when 



 

 

there many platforms available, e.g. Open PHACTS [74], Online chemical modelling environment [75], 

Collaborative Drug Discovery Vault [76], in addition to platforms dedicated to specific therapeutic 

areas such as SysBorg 2.0 for open source  drug discovery platform to fight tubercolosis  [77] . 

Future perspectives 

In order to have a true impact on small-molecule drug discovery projects, the acquisition and 

processing of pertinent big data will need to be standardized and automated. However, a dichotomy 

exists whereby such automation will need to be generalizable enough to broadly apply to any drug 

discovery project whilst also being customisable enough to address the nuances of each therapeutic 

target including not only proteins but also oligonucleotides and other validated druggable targets.  

Additionally, these automated analysis frameworks would need to be accessible to non-experts in 

order to ensure that barriers to their adoption don’t exist.  

As such, modular workflow interfaces seem set to play (an even bigger) role in the near future. 

Although competitors are emerging into this market all the time, there are two main pieces of 

software which have influenced drug discovery over the past twenty years, namely the proprietary 

Pipeline Pilot[78] which was launched in 1999 and the Open Source KNIME[79] which followed in 

2004. Both of these tools allow users to build general architectures from a library of pre-designed 

modules in a “drag and drop” style to facilitate the automated processing and filtering of data. They 

do this whilst retaining sufficient fine control to allow these architectures to easily become custom-

tailored by giving users the ability to modify threshold values for parameters in each of the modules 

to suit the needs of their project.  

These architectures can incorporate well-established models for predicting not only potential activity 

of small molecules but also physicochemical and toxicological properties such as aqueous 

solubility[80–82], plasma-protein binding[83], blood-brain-barrier permeation[84–86] cytochrome 

P450 isoform specificity[87]  [88] and off-target interactions [50,56–62] in order to remove potential 

liabilities at an early stage of the process. It is desirable that in the future calculated properties could 

be compared against a database of experimental values for such properties harvested from the web 

to highlight limitations of any model and guard against identifying false negatives as part of the 

screening process. It is also possible that the workflow could then be extended to use machine learning 

to address the weaknesses of a model, based on the outcome of these comparisons and automatically 

build, test and validate iterative models based on the information it receives  [89]. Although we have 

not reached this stage yet, there are again a significant number of publications in the scientific 

literature, which show the positive impact of workflow interfaces in a diverse range of therapeutic 

areas including the identification of molecules with the potential to treat cancer [90][91,92], and those 

with potential to act as anti-inflammatory compounds [93]. Given the scalability of such interfaces, it 

does not seem unreasonable to expect their prominence to grow in small molecule drug development 

in response to the challenges and opportunities presented by big data.  

 

 

  



 

 

Executive summary 

Small molecules continue to attract the interest of pharmaceutical companies and academic 

research groups as drugs and drug candidates. 

Increased availability of information on molecular properties of small molecules, their biological 

activities and targets drive the development of methods for processing big data.  

The optimal use of small molecule information can be achieved in conjunction with the structural 

information available on the biological targets. 

Publicly available web servers can be used to predict potential targets for small molecules and off-

target interactions via a combination of ligand-based and structure-based methods.   

Standardization of the data storage in the databases and incorporation of well-established methods 

for prediction of activities, molecular properties, side effects and network biology into easy-to-use 

workflows can provide a basis for the next paradigm in drug discovery. 
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