10,065 research outputs found

    Distributed Hybrid Simulation of the Internet of Things and Smart Territories

    Full text link
    This paper deals with the use of hybrid simulation to build and compose heterogeneous simulation scenarios that can be proficiently exploited to model and represent the Internet of Things (IoT). Hybrid simulation is a methodology that combines multiple modalities of modeling/simulation. Complex scenarios are decomposed into simpler ones, each one being simulated through a specific simulation strategy. All these simulation building blocks are then synchronized and coordinated. This simulation methodology is an ideal one to represent IoT setups, which are usually very demanding, due to the heterogeneity of possible scenarios arising from the massive deployment of an enormous amount of sensors and devices. We present a use case concerned with the distributed simulation of smart territories, a novel view of decentralized geographical spaces that, thanks to the use of IoT, builds ICT services to manage resources in a way that is sustainable and not harmful to the environment. Three different simulation models are combined together, namely, an adaptive agent-based parallel and distributed simulator, an OMNeT++ based discrete event simulator and a script-language simulator based on MATLAB. Results from a performance analysis confirm the viability of using hybrid simulation to model complex IoT scenarios.Comment: arXiv admin note: substantial text overlap with arXiv:1605.0487

    A distributed simulation methodological framework for OR/MS applications

    Get PDF
    Distributed Simulation (DS) allows existing models to be composed together to form sim- ulations of large-scale systems, or large models to be divided into models that execute on separate computers. Among its claimed benefits are model reuse, speedup, data pri- vacy and data consistency. DS is arguably widely used in the defence sector. However, it is rarely used in Operations Research and Management Science (OR/MS) applications in areas such as manufacturing and healthcare, despite its potential advantages. The main barriers to use DS in OR/MS are the technical complexity in implementation and a gap between the world views of DS and OR/MS communities. In this paper, we propose a new method that attempts to link together the methodological practices of OR/MS and DS. Using a rep- resentative case study, we show that our methodological framework simplifies significantly DS implementation.This research was funded by the Multidisciplinary Assessment of Technology Centre for Healthcare (MATCH), an Innova- tive Manufacturing Research Centre (IMRC) funded by the Engineering and Physical Sciences Research Council (EPSRC) (Ref: EP/F063822/1 )

    A distributed simulation methodological framework for OR/MS applications

    Get PDF
    Distributed Simulation (DS) allows existing models to be composed together to form sim- ulations of large-scale systems, or large models to be divided into models that execute on separate computers. Among its claimed benefits are model reuse, speedup, data pri- vacy and data consistency. DS is arguably widely used in the defence sector. However, it is rarely used in Operations Research and Management Science (OR/MS) applications in areas such as manufacturing and healthcare, despite its potential advantages. The main barriers to use DS in OR/MS are the technical complexity in implementation and a gap between the world views of DS and OR/MS communities. In this paper, we propose a new method that attempts to link together the methodological practices of OR/MS and DS. Using a rep- resentative case study, we show that our methodological framework simplifies significantly DS implementation.This research was funded by the Multidisciplinary Assessment of Technology Centre for Healthcare (MATCH), an Innova- tive Manufacturing Research Centre (IMRC) funded by the Engineering and Physical Sciences Research Council (EPSRC) (Ref: EP/F063822/1 )

    Methodological approaches to support process improvement in emergency departments: a systematic review

    Get PDF
    The most commonly used techniques for addressing each Emergency Department (ED) problem (overcrowding, prolonged waiting time, extended length of stay, excessive patient flow time, and high left-without-being-seen (LWBS) rates) were specified to provide healthcare managers and researchers with a useful framework for effectively solving these operational deficiencies. Finally, we identified the existing research tendencies and highlighted opportunities for future work. We implemented the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) methodology to undertake a review including scholarly articles published between April 1993 and October 2019. The selected papers were categorized considering the leading ED problems and publication year. Two hundred and three (203) papers distributed in 120 journals were found to meet the inclusion criteria. Furthermore, computer simulation and lean manufacturing were concluded to be the most prominent approaches for addressing the leading operational problems in EDs. In future interventions, ED administrators and researchers are widely advised to combine Operations Research (OR) methods, quality-based techniques, and data-driven approaches for upgrading the performance of EDs. On a different tack, more interventions are required for tackling overcrowding and high left-without-being-seen rate

    AGENT-BASED DISCRETE EVENT SIMULATION MODELING AND EVOLUTIONARY REAL-TIME DECISION MAKING FOR LARGE-SCALE SYSTEMS

    Get PDF
    Computer simulations are routines programmed to imitate detailed system operations. They are utilized to evaluate system performance and/or predict future behaviors under certain settings. In complex cases where system operations cannot be formulated explicitly by analytical models, simulations become the dominant mode of analysis as they can model systems without relying on unrealistic or limiting assumptions and represent actual systems more faithfully. Two main streams exist in current simulation research and practice: discrete event simulation and agent-based simulation. This dissertation facilitates the marriage of the two. By integrating the agent-based modeling concepts into the discrete event simulation framework, we can take advantage of and eliminate the disadvantages of both methods.Although simulation can represent complex systems realistically, it is a descriptive tool without the capability of making decisions. However, it can be complemented by incorporating optimization routines. The most challenging problem is that large-scale simulation models normally take a considerable amount of computer time to execute so that the number of solution evaluations needed by most optimization algorithms is not feasible within a reasonable time frame. This research develops a highly efficient evolutionary simulation-based decision making procedure which can be applied in real-time management situations. It basically divides the entire process time horizon into a series of small time intervals and operates simulation optimization algorithms for those small intervals separately and iteratively. This method improves computational tractability by decomposing long simulation runs; it also enhances system dynamics by incorporating changing information/data as the event unfolds. With respect to simulation optimization, this procedure solves efficient analytical models which can approximate the simulation and guide the search procedure to approach near optimality quickly.The methods of agent-based discrete event simulation modeling and evolutionary simulation-based decision making developed in this dissertation are implemented to solve a set of disaster response planning problems. This research also investigates a unique approach to validating low-probability, high-impact simulation systems based on a concrete example problem. The experimental results demonstrate the feasibility and effectiveness of our model compared to other existing systems

    Location of Emergency Treatment Sites after Earthquake using Hybrid Simulation

    Get PDF
    A mass-casualty natural disaster such as an earthquake is a rare, surprising event that is usually characterized by chaos and a lack of information, resulting in an overload of casualties in hospitals. Thus, it is very important to refer minor and moderately-injured casualties, that are the majority of casualties and whose injuries are usually not life threatening, to ad hoc care facilities such as Emergency Treatment Sites (ETSs). These facilities support the efficient use of health resources and reduce the burden on permanent healthcare facilities. In our study, a hybrid simulation model, based on a combination of discrete events and an agent-based simulation, provides a solution to the uncertainty of positioning temporary treatment sites. The simulation methodology used compares between "rigid" and "flexible" operating concepts of ETSs (main vs. main+minor ETSs) and found the "flexible" concept to be more efficient in terms of the average walking distance and number of casualties treated in the disaster area
    corecore