357 research outputs found

    Algorithms for Neural Prosthetic Applications

    Get PDF
    abstract: In the last 15 years, there has been a significant increase in the number of motor neural prostheses used for restoring limb function lost due to neurological disorders or accidents. The aim of this technology is to enable patients to control a motor prosthesis using their residual neural pathways (central or peripheral). Recent studies in non-human primates and humans have shown the possibility of controlling a prosthesis for accomplishing varied tasks such as self-feeding, typing, reaching, grasping, and performing fine dexterous movements. A neural decoding system comprises mainly of three components: (i) sensors to record neural signals, (ii) an algorithm to map neural recordings to upper limb kinematics and (iii) a prosthetic arm actuated by control signals generated by the algorithm. Machine learning algorithms that map input neural activity to the output kinematics (like finger trajectory) form the core of the neural decoding system. The choice of the algorithm is thus, mainly imposed by the neural signal of interest and the output parameter being decoded. The various parts of a neural decoding system are neural data, feature extraction, feature selection, and machine learning algorithm. There have been significant advances in the field of neural prosthetic applications. But there are challenges for translating a neural prosthesis from a laboratory setting to a clinical environment. To achieve a fully functional prosthetic device with maximum user compliance and acceptance, these factors need to be addressed and taken into consideration. Three challenges in developing robust neural decoding systems were addressed by exploring neural variability in the peripheral nervous system for dexterous finger movements, feature selection methods based on clinically relevant metrics and a novel method for decoding dexterous finger movements based on ensemble methods.Dissertation/ThesisDoctoral Dissertation Bioengineering 201

    Differentiating Variations in Thumb Position From Recordings of the Surface Electromyogram in Adults Performing Static Grips, a Proof of Concept Study

    Get PDF
    Hand gesture and grip formations are produced by the muscle synergies arising between extrinsic and intrinsic hand muscles and many functional hand movements involve repositioning of the thumb relative to other digits. In this study we explored whether changes in thumb posture in able-body volunteers can be identified and classified from the modulation of forearm muscle surface electromyography (sEMG) alone without reference to activity from the intrinsic musculature. In this proof-of-concept study, our goal was to determine if there is scope to develop prosthetic hand control systems that may incorporate myoelectric thumb-position control. Healthy volunteers performed a controlled-isometric grip task with their thumb held in four different opposing-postures. Grip force during task performance was maintained at 30% maximal-voluntary force and sEMG signals from the forearm were recorded using 2D high-density sEMG (HD-sEMG arrays). Correlations between sEMG amplitude and root-mean squared estimates with variation in thumb-position were investigated using principal-component analysis and self-organizing feature maps. Results demonstrate that forearm muscle sEMG patterns possess classifiable parameters that correlate with variations in static thumb position (accuracy of 88.25±0.5% anterior; 91.25±2.5% posterior musculature of the forearm sites). Of importance, this suggests that in transradial amputees, despite the loss of access to the intrinsic muscles that control thumb action, an acceptable level of control over a thumb component within myoelectric devices may be achievable. Accordingly, further work exploring the potential to provide myoelectric control over the thumb within a prosthetic hand is warranted

    Computational Intelligence in Electromyography Analysis

    Get PDF
    Electromyography (EMG) is a technique for evaluating and recording the electrical activity produced by skeletal muscles. EMG may be used clinically for the diagnosis of neuromuscular problems and for assessing biomechanical and motor control deficits and other functional disorders. Furthermore, it can be used as a control signal for interfacing with orthotic and/or prosthetic devices or other rehabilitation assists. This book presents an updated overview of signal processing applications and recent developments in EMG from a number of diverse aspects and various applications in clinical and experimental research. It will provide readers with a detailed introduction to EMG signal processing techniques and applications, while presenting several new results and explanation of existing algorithms. This book is organized into 18 chapters, covering the current theoretical and practical approaches of EMG research

    A Review of Non-Invasive Techniques to Detect and Predict Localised Muscle Fatigue

    Get PDF
    Muscle fatigue is an established area of research and various types of muscle fatigue have been investigated in order to fully understand the condition. This paper gives an overview of the various non-invasive techniques available for use in automated fatigue detection, such as mechanomyography, electromyography, near-infrared spectroscopy and ultrasound for both isometric and non-isometric contractions. Various signal analysis methods are compared by illustrating their applicability in real-time settings. This paper will be of interest to researchers who wish to select the most appropriate methodology for research on muscle fatigue detection or prediction, or for the development of devices that can be used in, e.g., sports scenarios to improve performance or prevent injury. To date, research on localised muscle fatigue focuses mainly on the clinical side. There is very little research carried out on the implementation of detecting/predicting fatigue using an autonomous system, although recent research on automating the process of localised muscle fatigue detection/prediction shows promising results

    Investigation into the control of an upper-limb myoelectric prosthesis

    Get PDF
    SIGLEAvailable from British Library Document Supply Centre- DSC:DXN053608 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    Development of a Unique Whole-Brain Model for Upper Extremity Neuroprosthetic Control

    Get PDF
    Neuroprostheses are at the forefront of upper extremity function restoration. However, contemporary controllers of these neuroprostheses do not adequately address the natural brain strategies related to planning, execution and mediation of upper extremity movements. These lead to restrictions in providing complete and lasting restoration of function. This dissertation develops a novel whole-brain model of neuronal activation with the goal of providing a robust platform for an improved upper extremity neuroprosthetic controller. Experiments (N=36 total) used goal-oriented upper extremity movements with real-world objects in an MRI scanner while measuring brain activation during functional magnetic resonance imaging (fMRI). The resulting data was used to understand neuromotor strategies using brain anatomical and temporal activation patterns. The study\u27s fMRI paradigm is unique and the use of goal-oriented movements and real-world objects are crucial to providing accurate information about motor task strategy and cortical representation of reaching and grasping. Results are used to develop a novel whole-brain model using a machine learning algorithm. When tested on human subject data, it was determined that the model was able to accurately distinguish functional motor tasks with no prior knowledge. The proof of concept model created in this work should lead to improved prostheses for the treatment of chronic upper extremity physical dysfunction

    Closed-loop approaches for innovative neuroprostheses

    Get PDF
    The goal of this thesis is to study new ways to interact with the nervous system in case of damage or pathology. In particular, I focused my effort towards the development of innovative, closed-loop stimulation protocols in various scenarios: in vitro, ex vivo, in vivo

    On the Utility of Representation Learning Algorithms for Myoelectric Interfacing

    Get PDF
    Electrical activity produced by muscles during voluntary movement is a reflection of the firing patterns of relevant motor neurons and, by extension, the latent motor intent driving the movement. Once transduced via electromyography (EMG) and converted into digital form, this activity can be processed to provide an estimate of the original motor intent and is as such a feasible basis for non-invasive efferent neural interfacing. EMG-based motor intent decoding has so far received the most attention in the field of upper-limb prosthetics, where alternative means of interfacing are scarce and the utility of better control apparent. Whereas myoelectric prostheses have been available since the 1960s, available EMG control interfaces still lag behind the mechanical capabilities of the artificial limbs they are intended to steer—a gap at least partially due to limitations in current methods for translating EMG into appropriate motion commands. As the relationship between EMG signals and concurrent effector kinematics is highly non-linear and apparently stochastic, finding ways to accurately extract and combine relevant information from across electrode sites is still an active area of inquiry.This dissertation comprises an introduction and eight papers that explore issues afflicting the status quo of myoelectric decoding and possible solutions, all related through their use of learning algorithms and deep Artificial Neural Network (ANN) models. Paper I presents a Convolutional Neural Network (CNN) for multi-label movement decoding of high-density surface EMG (HD-sEMG) signals. Inspired by the successful use of CNNs in Paper I and the work of others, Paper II presents a method for automatic design of CNN architectures for use in myocontrol. Paper III introduces an ANN architecture with an appertaining training framework from which simultaneous and proportional control emerges. Paper Iv introduce a dataset of HD-sEMG signals for use with learning algorithms. Paper v applies a Recurrent Neural Network (RNN) model to decode finger forces from intramuscular EMG. Paper vI introduces a Transformer model for myoelectric interfacing that do not need additional training data to function with previously unseen users. Paper vII compares the performance of a Long Short-Term Memory (LSTM) network to that of classical pattern recognition algorithms. Lastly, paper vIII describes a framework for synthesizing EMG from multi-articulate gestures intended to reduce training burden
    corecore