403 research outputs found

    Portable detection of apnea and hypopnea events using bio-impedance of the chest and deep learning

    Get PDF
    Sleep apnea is one of the most common sleep-related breathing disorders. It is diagnosed through an overnight sleep study in a specialized sleep clinic. This setup is expensive and the number of beds and staff are limited, leading to a long waiting time. To enable more patients to be tested, and repeated monitoring for diagnosed patients, portable sleep monitoring devices are being developed. These devices automatically detect sleep apnea events in one or more respiration-related signals. There are multiple methods to measure respiration, with varying levels of signal quality and comfort for the patient. In this study, the potential of using the bio-impedance (bioZ) of the chest as a respiratory surrogate is analyzed. A novel portable device is presented, combined with a two-phase Long Short-Term Memory (LSTM) deep learning algorithm for automated event detection. The setup is benchmarked using simultaneous recordings of the device and the traditional polysomnography in 25 patients. The results demonstrate that using only the bioZ, an area under the precision-recall curve of 46.9% can be achieved, which is on par with automatic scoring using a polysomnography respiration channel. The sensitivity, specificity and accuracy are 58.4%, 76.2% and 72.8% respectively. This confirms the potential of using the bioZ device and deep learning algorithm for automatically detecting sleep respiration events during the night, in a portable and comfortable setup

    Doctor of Philosophy

    Get PDF
    dissertationPatients sometimes suffer apnea during sedation procedures or after general anesthesia. Apnea presents itself in two forms: respiratory depression (RD) and respiratory obstruction (RO). During RD the patients' airway is open but they lose the drive to breathe. During RO the patients' airway is occluded while they try to breathe. Patients' respiration is rarely monitored directly, but in a few cases is monitored with a capnometer. This dissertation explores the feasibility of monitoring respiration indirectly using an acoustic sensor. In addition to detecting apnea in general, this technique has the possibility of differentiating between RD and RO. Data were recorded on 24 subjects as they underwent sedation. During the sedation, subjects experienced RD or RO. The first part of this dissertation involved detecting periods of apnea from the recorded acoustic data. A method using a parameter estimation algorithm to determine the variance of the noise of the audio signal was developed, and the envelope of the audio data was used to determine when the subject had stopped breathing. Periods of apnea detected by the acoustic method were compared to the periods of apnea detected by the direct flow measurement. This succeeded with 91.8% sensitivity and 92.8% specificity in the training set and 100% sensitivity and 98% specificity in the testing set. The second part of this dissertation used the periods during which apnea was detected to determine if the subject was experiencing RD or RO. The classifications determined from the acoustic signal were compared to the classifications based on the flow measurement in conjunction with the chest and abdomen movements. This did not succeed with a 86.9% sensitivity and 52.6% specificity in the training set, and 100% sensitivity and 0% specificity in the testing set. The third part of this project developed a method to reduce the background sounds that were commonly recorded on the microphone. Additive noise was created to simulate noise generated in typical settings and the noise was removed via an adaptive filter. This succeeded in improving or maintaining apnea detection given the different types of sounds added to the breathing data

    Snoring and arousals in full-night polysomnographic studies from sleep apnea-hypopnea syndrome patients

    Get PDF
    SAHS (Sleep Apnea-Hypopnea Syndrome) is recognized to be a serious disorder with high prevalence in the population. The main clinical triad for SAHS is made up of 3 symptoms: apneas and hypopneas, chronic snoring and excessive daytime sleepiness (EDS). The gold standard for diagnosing SAHS is an overnight polysomnographic study performed at the hospital, a laborious, expensive and time-consuming procedure in which multiple biosignals are recorded. In this thesis we offer improvements to the current approaches to diagnosis and assessment of patients with SAHS. We demonstrate that snoring and arousals, while recognized key markers of SAHS, should be fully appreciated as essential tools for SAHS diagnosis. With respect to snoring analysis (applied to a 34 subjects¿ database with a total of 74439 snores), as an alternative to acoustic analysis, we have used less complex approaches mostly based on time domain parameters. We concluded that key information on SAHS severity can be extracted from the analysis of the time interval between successive snores. For that, we built a new methodology which consists on applying an adaptive threshold to the whole night sequence of time intervals between successive snores. This threshold enables to identify regular and non-regular snores. Finally, we were able to correlate the variability of time interval between successive snores in short 15 minute segments and throughout the whole night with the subject¿s SAHS severity. Severe SAHS subjects show a shorter time interval between regular snores (p=0.0036, AHI cp(cut-point): 30h-1) and less dispersion on the time interval features during all sleep. Conversely, lower intra-segment variability (p=0.006, AHI cp: 30h-1) is seen for less severe SAHS subjects. Also, we have shown successful in classifying the subjects according to their SAHS severity using the features derived from the time interval between regular snores. Classification accuracy values of 88.2% (with 90% sensitivity, 75% specificity) and 94.1% (with 94.4% sensitivity, 93.8% specificity) for AHI cut-points of severity of 5 and 30h-1, respectively. In what concerns the arousal study, our work is focused on respiratory and spontaneous arousals (45 subjects with a total of 2018 respiratory and 2001 spontaneous arousals). Current beliefs suggest that the former are the main cause for sleep fragmentation. Accordingly, sleep clinicians assign an important role to respiratory arousals when providing a final diagnosis on SAHS. Provided that the two types of arousals are triggered by different mechanisms we hypothesized that there might exist differences between their EEG content. After characterizing our arousal database through spectral analysis, results showed that the content of respiratory arousals on a mild SAHS subject is similar to that of a severe one (p>>0.05). Similar results were obtained for spontaneous arousals. Our findings also revealed that no differences are observed between the features of these two kinds of arousals on a same subject (r=0.8, p<0.01 and concordance with Bland-Altman analysis). As a result, we verified that each subject has almost like a fingerprint or signature for his arousals¿ content and is similar for both types of arousals. In addition, this signature has no correlation with SAHS severity and this is confirmed for the three EEG tracings (C3A2, C4A1 and O1A2). Although the trigger mechanisms of the two arousals are known to be different, our results showed that the brain response is fairly the same for both of them. The impact that respiratory arousals have in the sleep of SAHS patients is unquestionable but our findings suggest that the impact of spontaneous arousals should not be underestimated

    PVDF 필름 센서를 사용한 수면관련 호흡장애 및 수면 단계의 무구속적 모니터링

    Get PDF
    학위논문 (박사)-- 서울대학교 대학원 : 협동과정 바이오엔지니어링전공, 2015. 8. 박광석.이 연구에서는 PVDF 필름 센서를 사용하여 무구속적으로 수면관련 호흡장애 및 수면 단계를 모니터링 할 수 있는 기법을 개발하였다. PVDF 센서는 4 x 1 배열로 구성되었으며, 센서 시스템의 총 두께는 약 1.1mm 였다. PVDF 센서는 침대보와 매트리스 사이에 위치시켜 참가자의 몸에 직접적인 접촉이 없도록 하였다. 수면무호흡증 검출 연구에는 26명의 수면무호흡증 환자와 6명의 정상인이 참가하였다. PVDF 신호의 표준편차에 근거하여 수면무호흡증 검출 방법을 개발하였고, 추정된 수면무호흡증 검출 결과를 수면 전문의의 판독 결과와 비교하였다. 추정된 결과와 판독 결과 간의 수면 무호흡-저호흡 지수 상관계수는 0.94 (p < 0.001) 이었다. 코골이 검출 연구에는 총 20명의 수면무호흡증 환자가 참가하였다. PVDF 신호를 단시간 푸리에 변환하여 얻은 파워 비율과 최대 주파수를 주파수 영역 특징으로 추출하였다. 추출된 특징들을 서포트 벡터 머신 분류기에 입력하였고, 분류기의 검출 결과에 따라 코골이 또는 코골이가 아닌 구간으로 나누었다. 제안된 방법에서 추정한 코골이 검출 결과를 정상 성인 3명의 청각 및 시각 기반 코골이 판독 결과와 비교하였다. 코골이 검출에 대한 평균 민감도 및 양성예측도는 각각 94.6% 및 97.5% 이었다. 수면 단계 검출 연구에는 11명의 정상인과 13명의 수면무호흡증 환자가 참가하였다. 렘 (REM) 수면 구간은 호흡의 주기와 그 변동률에 근거하여 추정하였다. 깸 구간은 움직임 신호에 근거하여 추정하였다. 깊은 수면 구간은 분당 호흡수의 변화폭에 기반하여 추정하였다. 각 수면 단계 검출 결과를 통합하여 최종 결과를 수면 전문의의 판독 결과와 비교하였다. 30초 단위로 수면 단계를 검출하였을 때, 평균 정확도는 71.3% 이었으며 평균 카파 값은 0.48 이었다. 연구에서 제안된 PVDF 센서와 알고리즘을 통하여 상용화된 수면 모니터링 장치에 비교할 수 있을 만한 수준의 성능을 확보하였다. 이 연구 결과가 가정환경 기반 수면모니터링 시스템의 활용도와 정확도를 높이는데 기여할 수 있을 것으로 기대한다.In this study, unconstrained sleep-related breathing disorders (SRBD) and sleep stages monitoring methods using a polyvinylidene fluoride (PVDF) film sensor were established and tested. Subjects physiological signals were measured in an unconstrained manner using the PVDF sensor during polysomnography (PSG). The sensor was comprised of a 4×1 array, and the total thickness of the system was approximately 1.1 mm. It was designed to be placed under the subjects back and installed between a bed cover and mattress. In the sleep apnea detection study, twenty six sleep apnea patients and six normal subjects participated. The sleep apnea detection method was based on the standard deviation of the PVDF signals, and the methods performance was assessed by comparing the results with a sleep physicians manual scoring. The correlation coefficient for the apnea-hypopnea index (AHI) values between the methods was 0.94 (p < 0.001). For minute-by-minute sleep apnea detection, the method classified sleep apnea with average sensitivity of 72.9%, specificity of 90.6%, accuracy of 85.5%, and kappa statistic of 0.60. In the snoring detection study, twenty patients with obstructive sleep apnea (OSA) participated. The power ratio and peak frequency from the short-time Fourier transform were used to extract spectral features from the PVDF data. A support vector machine (SVM) was applied to the spectral features to classify the data into either snore or non-snore class. The performance of the method was assessed using manual labelling by three human observers. For event-by-event snoring detection, PVDF data that contained snoring (SN), snoring with movement (SM), and normal breathing (NB) epochs were selected for each subject. The results showed that the overall sensitivity and the positive predictive values were 94.6% and 97.5%, respectively, and there was no significant difference between the SN and SM results. In the sleep stages detection study, eleven normal subjects and thirteen OSA patients participated. Rapid eye movement (REM) sleep was estimated based on the average rate and variability of the respiratory signal. Wakefulness was detected based on the body movement signal. Variability of the respiratory rate was chosen as an indicator for slow wave sleep (SWS) detection. The performance of the method was assessed by comparing the results with manual scoring by a sleep physician. In an epoch-by-epoch analysis, the method classified the sleep stages with average accuracy of 71.3% and kappa statistic of 0.48. The experimental results demonstrated that the performances of the proposed sleep stages and SRBD detection methods were comparable to those of ambulatory devices and the results of constrained sensor based studies. The developed system and methods could be applied to a sleep monitoring system in a residential or ambulatory environment.Chapter 1. Introduction 1 1.1. Background 1 1.2. Sleep Apnea 3 1.3. Snoring 5 1.4. Sleep Stages 8 1.5. Polyvinylidene Fluoride Film Sensor 11 1.6. Purpose 12 Chapter 2. Sleep Apnea Detection 13 2.1. Signal Acquisition System 13 2.2. Methods 16 2.2.1. Participants and PSG Data 16 2.2.2. Apneic Events Detection 18 2.2.3. Statistical Analysis 25 2.3. Results 26 2.3.1. AHI Estimation 26 2.3.2. Diagnosing Sleep Apnea 29 2.3.3. Minute-By-Minute Sleep Apnea Detection 30 2.4. Discussion 34 2.4.1. Agreement between Proposed Method and PSG 34 2.4.2. Comparisons with Previous Studies 34 2.4.3. Validation of PVDF Film Sensors 36 2.4.4. Validation of Sleep Apnea Detection Algorithm 37 Chapter 3. Snoring Detection 40 3.1. Methods 40 3.1.1. Participants and PSG Data 40 3.1.2. Feature Extraction for Snoring Event Detection 42 3.1.3. Data Selection and Reference Snoring Labelling 46 3.1.4. Snoring Event Classification Based on the SVM 48 3.2. Results 52 3.2.1. Event-By-Event Snoring Detection 52 3.2.2. Snoring Event Detection and Sleep Posture 56 3.2.3. Epoch-By-Epoch Snoring Detection 57 3.3. Discussion 59 3.3.1. Agreement between Proposed Method and Reference Snoring 59 3.3.2. Comparisons with Previous Studies 59 3.3.3. Validation of the Snoring Detection Algorithm 61 Chapter 4. Sleep Stages Detection 65 4.1. Methods 65 4.1.1. Participants and PSG Data 65 4.1.2. REM Sleep Detection 68 4.1.3. Wakefulness Detection 74 4.1.4. SWS Detection 80 4.2. Results 86 4.2.1. REM Sleep Detection 86 4.2.2. Wakefulness Detection 89 4.2.3. SWS Detection 92 4.2.4. Sleep Macro- and Microstructure Detection 94 4.3. Discussion 99 4.3.1. Agreement between Proposed Method and PSG 99 4.3.2. Comparisons with Previous Studies 99 4.3.3. Validation of Sleep Stages Detection Algorithm 102 Chapter 5. Conclusion 105 References 107 Abstract in Korean 118Docto

    A review of automated sleep disorder detection

    Get PDF
    Automated sleep disorder detection is challenging because physiological symptoms can vary widely. These variations make it difficult to create effective sleep disorder detection models which support hu-man experts during diagnosis and treatment monitoring. From 2010 to 2021, authors of 95 scientific papers have taken up the challenge of automating sleep disorder detection. This paper provides an expert review of this work. We investigated whether digital technology and Artificial Intelligence (AI) can provide automated diagnosis support for sleep disorders. We followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines during the content discovery phase. We compared the performance of proposed sleep disorder detection methods, involving differ-ent datasets or signals. During the review, we found eight sleep disorders, of which sleep apnea and insomnia were the most studied. These disorders can be diagnosed using several kinds of biomedical signals, such as Electrocardiogram (ECG), Polysomnography (PSG), Electroencephalogram (EEG), Electromyogram (EMG), and snore sound. Subsequently, we established areas of commonality and distinctiveness. Common to all reviewed papers was that AI models were trained and tested with labelled physiological signals. Looking deeper, we discovered that 24 distinct algorithms were used for the detection task. The nature of these algorithms evolved, before 2017 only traditional Machine Learning (ML) was used. From 2018 onward, both ML and Deep Learning (DL) methods were used for sleep disorder detection. The strong emergence of DL algorithms has considerable implications for future detection systems because these algorithms demand significantly more data for training and testing when compared with ML. Based on our review results, we suggest that both type and amount of labelled data is crucial for the design of future sleep disorder detection systems because this will steer the choice of AI algorithm which establishes the desired decision support. As a guiding principle, more labelled data will help to represent the variations in symptoms. DL algorithms can extract information from these larger data quantities more effectively, therefore; we predict that the role of these algorithms will continue to expand

    Snoring and sleep apnea in children

    Get PDF
    Snoring is a primary and major clinical symptom of upper airway obstruction during sleep. Sleep-disordered breathing ranges from primary snoring to significant partial upper airway obstruction, and obstructive sleep apnea. Adult snoring and obstructive sleep apnea have been extensively studied, whereas less is known about these disorders in children. Snoring and more severe obstructive sleep apnea have been shown to have a harmful effect on the neurobehavioral development of children, but the mechanisms of this effect remains unknown. Furthermore, the correlation of this effect to objective sleep study parameters remains poor. This study evaluated the prevalence of snoring in preschool-aged children in Finland. Host and environmental risk factors, and neurobehavioral and neurocognitive symptoms of children suffering from snoring or obstructive sleep apnea were also investigated. The feasibility of acoustic rhinometry in young children was assessed. The prevalence and risk factors of snoring (I) were evaluated by a questionnaire. The random sample included 2100 children aged 1-6 years living in Helsinki. All 3- to 6-year-old children whose parents reported their child to snore always, often, or sometimes were categorized as snorers, and invited to participate to the clinical study (II-IV). Non-snoring children whose parents were willing to participate in the clinical study were invited to serve as controls. Children underwent a clinical ear-nose-throat examination. Emotional, behavioral, and cognitive performances were evaluated by Child Behavioral Checklist (CBCL), Wechsler Preschool and Primary Scale of Intelligence (WPPSI-R) and NEPSY-A Developmental Neuropsychological Assessment (NEPSY). Nasal volume was measured by acoustic rhinometry, and nasal resistance by rhinomanometry. Lateral and posteroanterior cephalometry were performed. A standard overnight ambulatory polysomnography was performed in the home environment. Twenty-six healthy children were tested in order to assess the feasibility of acoustic rhinometry in young children (V). Snoring was common in children; 6.3% of children snored always or often, whereas 81.3% snored never or occasionally. No differences were apparent between snorers and non-snorers regarding age, or gender. Pediatric snoring was associated with recurrent upper respiratory infections, otitis media, and allergic rhinitis. Exposure to parental tobacco smoke, especially maternal smoking, was more common among snorers. Rhinitis was more common among children who exposured to tobacco smoke. Overnight polysomnography (PSG) was performed on 87 children; 74% showed no signs of significant upper airway obstruction during sleep. Three children had obstructive apnea/hypopnea index (OAHI) greater than 5/h. Age, gender, or a previous adenoidectomy or tonsillectomy did not correlate with OAHI, whereas tonsillar size did correlate with OAHI. Relative body weight and obesity correlated with none of the PSG parameters. In cephalometry, no clear differences or correlations were found in PSG parameters or between snorers and non-snorers. No correlations were observed between acoustic rhinometry, rhinomanometry, and PSG parameters. Psychiatric symptoms were more frequent in the snoring group than in the nonsnoring group. In particular, anxious and depressed symptoms were more prevalent in the snoring group. Snoring children frequently scored lower in language functions. However, PSG parameters correlated poorly with neurocognitive test results in these children. This study and previous studies indicate that snoring without episodes of obstructive apnea or SpO2 desaturations may cause impairment in behavioral and neurocognitive functions. The mechanism of action remains unknown. Exposure to parental tobacco smoke is more common among snorers than non-snorers, emphasizing the importance of a smoke-free environment. Children tolerated acoustic rhinometry measurements well.Unenaikainen ylähengitystieahtauma käsittää jatkumon ajoittaisesta hiljaisesta kuorsaamisesta vaikea-asteiseen obstruktiiviseen uniapneaan, jossa koko uni on toistuvien tukoksellisten hengitystaukojen rikkoma. Vaikea-asteisen obstruktiivisen uniapnean tiedetään voivan vaikuttaa sekä lapsen henkiseen että fyysiseen kehitykseen, mutta yleisemmin on osoitettu kuorsaavien lasten pärjäävän verrokkeja huonommin koulussa. Selvitimme 1 - 6-vuotiaiden helsinkiläisten lasten kuorsauksen yleisyyttä kyselykaavakkeella. Aineiston valinta perustui satunnaistettuun otantaan väestörekisterikeskuksesta (n=2100). Vastanneista (n=1471, 71%) lapsista 92 (6,3%) kuorsasi aina tai lähes aina, ajoittain kuorsasi 183 lasta (12,4 %) ja 1196 (81,3%) lapsista ei kuorsannut koskaan tai kuorsasi satunnaisesti. Kutsuimme kaikki 3 - 6-vuotiaat aina tai lähes aina kuorsaavat lapset sekä halukkaat terveet verrokit, jatkotutkimuksiin. Jatkotutkimuksiin osallistui 45 kuorsaava lasta ja 52 ei-kuorsaavaa lasta. Tavoitteenamme oli selvittää kuorsauksen riskitekijöitä, minkä asteisista unenaikaisista hengityshäiriöstä lapsen kärsivät ja millaisia päiväoireita kuorsaus aiheuttaa lapselle. Lisäksi selvitimme terveillä vapaaehtoisilla lapsilla (n=26) jo aiemmin aikuisilla käytössä olevan mittausmenetelmän, akustisen rinometrian käyttökelpoisuutta lasten nenän tilavuuden arvioinnissa. Kyselytutkimuksen perusteella kuorsaavien ja ei-kuorsaavien lasten välillä ei ollut eroja sukupuolen, iän eikä painon osalta. Sen sijaan vanhempien ja erityisesti äidin tupakointi olivat riskitekijöitä lapsen kuorsaukselle (P < .01). Ero kuorsaajien ja eikuorsaajien välillä oli merkittävä, vaikka lapsi ei altistunut tupakansavulle sisätiloissa. Kuorsaavilla lapsilla oli ei-kuorsaavia lapsia useammin ylempien hengitysteiden infektioita, välikorvan tulehduksia ja allergista nuhaa (P < .001). Nenän tilavuutta ja ilmavirtausta arvioitiin akustisen rinometrian avulla. Menetelmä soveltui hyvin jo alle kouluikäisillä lapsilla. Nenämittauksissa ei todettu eroja kuorsaavien ja eikuorsaavien lasten välillä. Jatkotutkimukseen osallistuneille lapsille tehtiin koko yön kestävä unirekisteröinti(n=87). Kolmella kuorsaavalla lapsella unirekisteröinti oli selkeästi poikkeava (OAHI >5/h). Lapsen ikä, sukupuoli, paino tai nenämittaukset tulokset eivät korreloineet unirekisteröinnin tuloksiin. Nielurisojen koko sen sijaan korreloi obstruktiivisten hengitystukosten määrään (OAHI) ja voimistuneeseen hengitystyöhön (P < .01). Lapsen tunne-elämää, käytöshäiriöitä ja älykkyyttä mitattiin neuropsykologisilla testeillä (CBCL, WPPSI-R ja NEPSY-A). Psyykkiset oireet, erityisesti ahdistus ja masennus (P = . 04) olivat yleisempiä kuorsaavilla lapsilla verrattuna ei-kuorsaaviin lapsiin. Lisäksi kuorsaavilla lapsilla oli huonommat kielelliset valmiudet (P < .01). Kokonaisälykkyydessä ei ollut eroja ryhmien välillä. Unirekisteröinnin tulokset eivät korreloineet neuropsykologisten ja käyttäytymistä mittaavien testien kanssa. Kuorsaus on suhteellisen yleinen oire lapsella. Se aiheuttaa jo alle kouluikäisellä ahdistus- ja masennusoireita sekä vaikeuksia kielellisissä taidoissa. Tarkka mekanismi, miksi kuorsaus aiheuttaa lapselle päiväoireita, on epäselvä. Terveydenhuollossa on tärkeä tunnistaa lasten kuorsaus ja ohjata lapsi jatkotutkimuksiin ja -hoitoon. Lapsen altistuminen vanhempien tupakoinnille lisää lapsen riskiä kuorsaukselle, jonka vuoksi kuorsaavien lasten hoidossa tulisi kiinnittää huomiota myös vanhempien mahdolliseen tupakointiin

    Invasive and non-invasive assessment of upper airway obstruction and respiratory effort with nasal airflow and esophageal pressure analysis during sleep

    Get PDF
    La estimación del esfuerzo respiratorio durante el sueño es de una importancia crítica para la identificación correcta de eventos respiratorios en los trastornos respiratorios del sueño (TRS), el diagnóstico correcto de las patologías relacionadas con los TRS y las decisiones sobre la terapia correspondiente. Hoy en día el esfuerzo respiratorio suele ser estimado mediante la polisomnografía (PSG) nocturna con técnicas imprecisas y mediante la evaluación manual por expertos humanos, lo cual es un proceso laborioso que conlleva limitaciones significativas y errores en la clasificación. El objetivo principal de esta tesis es la presentación de nuevos métodos para la estimación automático, invasiva y no-invasiva del esfuerzo respiratorio y cambios en la obstrucción de las vías aéreas superiores (VAS). En especial, la aplicación de estos métodos debería permitir, entre otras cosas, la diferenciación automática invasiva y no-invasiva de eventos centrales y obstructivos durante el sueño. Con este propósito se diseñó y se obtuvo una base de datos de PSG nocturna completamente nueva de 28 pacientes con medición sistemática de presión esofágica (Pes). La Pes está actualmente considerada como el gold-standard para la estimación del esfuerzo respiratorio y la identificación de eventos respiratorios en los TRS. Es sin embargo una técnica invasiva y altamente compleja, lo cual limita su uso en la rutina clínica. Esto refuerza el valor de nuestra base de datos y la dificultad que ha implicado su adquisición. Todos los métodos de procesado propuestos y desarrollados en esta tesis están consecuentemente validados con la señal gold-standard de Pes para asegurar su validez.En un primer paso, se presenta un sistema automático invasivo para la clasificación de limitaciones de flujo inspiratorio (LFI) en los ciclos inspiratorios. La LFI se ha definido como una falta de aumento en flujo respiratorio a pesar de un incremento en el esfuerzo respiratorio, lo cual suele resultar en un patrón de flujo respiratorio característico (flattening). Un total de 38,782 ciclos respiratorios fueron automáticamente extraídos y analizados. Se propone un modelo exponencial que reproduzca la relación entre Pes y flujo respiratorio de una inspiración y permita la estimación objetiva de cambios en la obstrucción de las VAS. La capacidad de caracterización del modelo se estima mediante tres parámetros de evaluación: el error medio cuadrado en la estimación de la resistencia en la presión pico, el coeficiente de determinación y la estimación de episodios de LFI. Los resultados del modelo son comparados a los de los dos mejores modelos en la literatura. Los resultados finales indican que el modelo exponencial caracteriza la LFI y estima los niveles de obstrucción de las VAS con la mayor exactitud y objetividad. Las anotaciones gold-standard de LFI obtenidas, fueron utilizadas para entrenar, testear y validar un nuevo clasificador automático y no-invasivo de LFI basa en la señal de flujo respiratorio nasal. Se utilizaron las técnicas de Discriminant Analysis, Support Vector Machines y Adaboost para la clasificación no-invasiva de inspiraciones con las características extraídas de los dominios temporales y espectrales de los patrones de flujo inspiratorios. Este nuevo clasificador automático no-invasivo también identificó exitosamente los episodios de LFI, alcanzando una sensibilidad de 0.87 y una especificidad de 0.85. La diferenciación entre eventos respiratorios centrales y obstructivos es una de las acciones más recurrentes en el diagnostico de los TRS. Sin embargo únicamente la medición de Pes permite la diferenciación gold-standard de este tipo de eventos. Recientemente se han propuesto nuevas técnicas para la diferenciación no-invasiva de apneas e hipopneas. Sin embargo su adopción ha sido lenta debido a su limitada validación clínica, ya que la creación manual por expertos humanos de sets gold-standard de validación representa un trabajo laborioso. En esta tesis se propone un nuevo sistema para la diferenciación gold-standard automática y objetiva entre hipopneas obstructivas y centrales. Expertos humanos clasificaron manualmente un total de 769 hypopneas en 28 pacientes para crear un set de validación gold-standard. Como siguiente paso se extrajeron características específicas de cada hipopnea para entrenar y testear clasificadores (Discriminant Analysis, Support Vector Machines y adaboost) para diferenciar entre hipopneas centrales y obstructivas mediante la señal gold-standard Pes. El sistema de diferenciación automática alcanzó resultados prometedores, obteniendo una sensibilidad, una especificad y una exactitud de 0.90. Por lo tanto este sistema parece prometedor para la diferenciación automática, gold-standard de hipopneas centrales y obstructivas. Finalmente se propone un sistema no-invasivo para la diferenciación automática de hipopneas centrales y obstructivas. Se propone utilizar la señal de flujo respiratorio para la diferenciación utilizando características de los ciclos inspiratorios de cada hipopnea, entre ellos los patrones flattening. Este sistema automático no-invasivo es una combinación de los sistemas anteriormente presentados y se valida mediante las anotaciones gold-standard obtenidas mediante la señal de Pes por expertos humanos. Los resultados de este sistema son comparados a los resultados obtenidos por expertos humanos que utilizaron un nuevo algoritmo no-invasivo para la diferenciación manual de hipopneas. Los resultados del sistema automático no-invasivo son prometedores y muestran la viabilidad de la metodología empleada. Una vez haya sido validado extensivamente, se ha propuesto este algoritmo para su utilización en dispositivos de terapia de TRS desarrollados por uno de los socios cooperantes en este proyecto.The assessment of respiratory effort during sleep is of major importance for the correct identification of respiratory events in sleep-disordered breathing (SDB), the correct diagnosis of SDB-related pathologies and the consequent choice of treatment. Currently, respiratory effort is usually assessed in night polysomnography (NPSG) with imprecise techniques and manually evaluated by human experts, resulting in a laborious task with significant limitations and missclassifications.The main objective of this thesis is to present new methods for the automatic, invasive and non-invasive assessment of respiratory effort and changes in upper airway (UA) obstruction. Specifically, the application of these methods should, in between others, allow the automatic invasive and non-invasive differentiation of obstructive and central respiratory events during sleep.For this purpose, a completely new NPSG database consisting of 28 patients with systematic esophageal pressure (Pes) measurement was acquired. Pes is currently considered the gold-standard to assess respiratory effort and identify respiratory events in SDB. However, the invasiveness and complexity of Pes measurement prevents its use in clinical routine, underlining the importance of this new database. . . All the processing methods developed in this thesis will consequently be validated with the gold-standard Pes-signal in order to ensure their clinical validity.In a first step, an (invasive) automatic system for the classification of inspiratory flow limitation (IFL) in the inspiratory cycles is presented.IFL has been defined as a lack of increase in airflow despite increasing respiratory effort, which normally results in a characteristic inspiratory airflow pattern (flattening). A total of 38,782 breaths were extracted and automatically analyzed. An exponential model is proposed to reproduce the relationship between Pes and airflow of an inspiration and achieve an objective assessment of changes in upper airway obstruction. The characterization performance of the model is appraised with three evaluation parameters: mean-squared-error when estimating resistance at peakpressure,coefficient of determination and assessment of IFL episodes. The model's results are compared to the two best-performing models in the literature. The results indicated that the exponential model characterizes IFL and assesses levels of upper airway obstruction with the highest accuracy and objectivity.The obtained gold-standard IFL annotations were then employed to train, test and validate a new automatic, non-invasive IFL classification system by means of the nasal airflow signal. Discriminant Analysis, Support Vector Machines and Adaboost algorithms were employed to objectively classify breaths non-invasively with features extracted from the time and frequency domains of the breaths' flow patterns. The new non-invasive automatic classification system also succeeded identifying IFL episodes, achieving a sensitivity of 0.87 and a specificity of 0.85.The differentiation between obstructive and central respiratory events is one of the most recurrent tasks in the diagnosis of sleep disordered breathing, but only Pes measurement allows the gold-standard differentiation of these events. Recently new techniques have been proposed to allow the non-invasive differentiation of hypopneas. However, their adoption has been slow due to their limited clinical validation, as the creation of manual, gold-standard validation sets by human experts is a cumbersome procedure. In this study, a new system is proposed for an objective automatic, gold-standard differentiation between obstructive and central hypopneas with the esophageal pressure signal. An overall of 769 hypopneas of 28 patients were manually scored by human experts to create a gold-standard validation set. Then, features were extracted from each hypopnea to train and test classifiers (Discriminant Analysis, Support Vector Machines and adaboost classifiers) to differentiate between central and obstructive hypopneas with the gold-standard esophageal pressure signal. The automatic differentiation system achieved promising results, with a sensitivity of 0.82, a specificity of 0.87 and an accuracy of 0.85. Hence, this system seems promising for an automatic, goldstandard differentiation between obstructive and central hypopneas.Finally, a non-invasive system is proposed for the automatic differentiation of central and obstructive hypopneas. Only the airflow signal is used for the differentiation, as features of the inspiratory cycles of the hypopnea, such as the flattening patterns, is used. The automatic, non-invasive system represents a combination of the systems that have been presented before and it was validated with the gold-standard scorings obtained with the Pes-signal by human experts. The outcome is compared to the results obtained by human scorers that applied a new non-invasive algorithm for the manual differentiation of hypopneas. The non-invasive system's results are promising and show the viability of this technique. Once validated, this algorithm has been proposed to be used in therapy devices developed by one of the partner institutions cooperating in this project

    Recent development of respiratory rate measurement technologies

    Get PDF
    Respiratory rate (RR) is an important physiological parameter whose abnormity has been regarded as an important indicator of serious illness. In order to make RR monitoring simple to do, reliable and accurate, many different methods have been proposed for such automatic monitoring. According to the theory of respiratory rate extraction, methods are categorized into three modalities: extracting RR from other physiological signals, RR measurement based on respiratory movements, and RR measurement based on airflow. The merits and limitations of each method are highlighted and discussed. In addition, current works are summarized to suggest key directions for the development of future RR monitoring methodologies

    Models and Analysis of Vocal Emissions for Biomedical Applications

    Get PDF
    The MAVEBA Workshop proceedings, held on a biannual basis, collect the scientific papers presented both as oral and poster contributions, during the conference. The main subjects are: development of theoretical and mechanical models as an aid to the study of main phonatory dysfunctions, as well as the biomedical engineering methods for the analysis of voice signals and images, as a support to clinical diagnosis and classification of vocal pathologies
    corecore