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Das grosse Lalula 

Kroklokwafzi? Se¯eme¯i! 
Seiokrontro -- prafriplo: 
Bifzi, bafzi; hulale¯i: 
quasti basti bo... 
Lalu lalu lalu lalu la! 
 
Hontraruru miromente 
zasku zes rü rü? 
Entepente, leiolente 
klekwapufzi lü? 
Lalu lalu lalu lala la! 

Simarat kos malzlpempu 
silzuzankunkrei (;)! 
Marjomar dos: Quempu Lempu 
Siri Suri Sei []! 
Lalu lalu lalu lalu la!  

Christian Morgenstern, 1905 
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Die unmögliche Tatsache  

Palmström, etwas schon an Jahren,  
wird an einer Straßenbeuge  
und von einem Kraftfahrzeuge  
überfahren.  
 
Wie war (spricht er, sich erhebend  
und entschlossen weiterlebend)  
möglich, wie dies Unglück, ja -:  
daß es überhaupt geschah?  
 
Ist die Staatskunst anzuklagen  
in Bezug auf Kraftfahrwagen?  
Gab die Polizeivorschrift  
hier dem Fahrer freie Trift?  
 
Oder war vielmehr verboten  
hier Lebendige zu Toten  
umzuwandeln - kurz und schlicht:  
Durfte hier der Kutscher nicht -?  
 
Eingehüllt in feuchte Tücher,  
prüft er die Gesetzesbücher  
und ist alsobald im klaren:  
Wagen durften dort nicht fahren!  
 
Und er kommt zu dem Ergebnis:  
Nur ein Traum war das Erlebnis.  
Weil, so schließt er messerscharf,  
nicht sein kann, was nicht sein darf.  

Christian Morgenstern, 1910  
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Abstract of the doctoral thesis 

“Invasive and non-invasive assessment of upper airway 
obstruction and respiratory effort with nasal airflow and 

esophageal pressure analysis during sleep” 
 

Doctoral student: Christian Morgenstern de Muller 

Advisor: Dr. Raimon Jané Campos 

 

The assessment of respiratory effort during sleep is of major importance for the correct 

identification of respiratory events in sleep-disordered breathing (SDB), the correct 

diagnosis of SDB-related pathologies and the consequent choice of treatment. 

Currently, respiratory effort is usually assessed in night polysomnography (NPSG) with 

imprecise techniques and manually evaluated by human experts, resulting in a laborious 

task with significant limitations and missclassifications.  

The main objective of this thesis is to present new methods for the automatic, invasive 

and non-invasive assessment of respiratory effort and changes in upper airway (UA) 

obstruction. Specifically, the application of these methods should, in between others, 

allow the automatic invasive and non-invasive differentiation of obstructive and central 

respiratory events during sleep.  

For this purpose, a completely new NPSG database consisting of 28 patients with 

systematic esophageal pressure (Pes) measurement was acquired. Pes is currently 

considered the gold-standard to assess respiratory effort and identify respiratory events 

in SDB. However, the invasiveness and complexity of Pes measurement prevents its use 

in clinical routine, underlining the importance and difficulty to acquire this new 
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database. All the processing methods developed in this thesis have consequently been 

validated with the gold-standard Pes-signal in order to ensure their clinical validity. 

In a first step, an (invasive) automatic system for the classification of inspiratory flow 

limitation (IFL) in the inspiratory cycles is presented. IFL has been defined as a lack of 

increase in airflow despite increasing respiratory effort, which normally results in a 

characteristic inspiratory airflow pattern (flattening). A total of 38,782 breaths were 

extracted and automatically analyzed. An exponential model is proposed to reproduce 

the relationship between Pes and airflow of an inspiration and achieve an objective 

assessment of changes in upper airway obstruction. The characterization performance of 

the model is appraised with three evaluation parameters: mean-squared-error when 

estimating resistance at peak-pressure, coefficient of determination and assessment of 

IFL episodes. The model’s results are compared to the two best-performing models in 

the literature. The results indicated that the exponential model characterizes IFL and 

assesses levels of upper airway obstruction with the highest accuracy and objectivity. 

The obtained gold-standard IFL annotations were then employed to train, test and 

validate a new automatic, non-invasive IFL classification system by means of the nasal 

airflow signal. Discriminant Analysis, Support Vector Machines and Adaboost 

algorithms were employed to objectively classify breaths non-invasively with features 

extracted from the time and frequency domains of the breaths’ flow patterns. The new 

non-invasive automatic classification system also succeeded identifying IFL episodes, 

achieving a sensitivity of 0.87 and a specificity of 0.85.  

The differentiation between obstructive and central respiratory events is one of the 

most recurrent tasks in the diagnosis of sleep disordered breathing, but only Pes 

measurement allows the gold-standard differentiation of these events. Recently new 

techniques have been proposed to allow the non-invasive differentiation of hypopneas. 
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However, their adoption has been slow due to their limited clinical validation, as the 

creation of manual, gold-standard validation sets by human experts is a cumbersome 

procedure. In this study, a new system is proposed for an objective automatic, gold-

standard differentiation between obstructive and central hypopneas with the esophageal 

pressure signal. An overall of 769 hypopneas of 28 patients were manually scored by 

human experts to create a gold-standard validation set. Then, features were extracted 

from each hypopnea to train and test classifiers (Discriminant Analysis, Support Vector 

Machines and adaboost classifiers) to differentiate between central and obstructive 

hypopneas with the gold-standard esophageal pressure signal. The automatic 

differentiation system achieved promising results, with a sensitivity, a specificity and an 

accuracy of 0.90. Hence, this system seems promising for an automatic, gold-standard 

differentiation between obstructive and central hypopneas. 
Finally, a non-invasive system is proposed for the automatic differentiation of central 

and obstructive hypopneas. The nasal airflow signal is proposed for the differentiation 

of hypopneas. Features extracted from the inspiratory cycles of the hypopnea, such as 

the flattening patterns, are used to train and test the classifiers. This automatic, non-

invasive system is a combination of the systems presented before and it was also 

validated with the gold-standard scorings obtained with the Pes-signal by human 

experts. The outcome of the automatic, non-invasive system is compared to the results 

obtained by human scorers that applied a new non-invasive algorithm for the manual 

differentiation of hypopneas. The automatic non-invasive system’s results are promising 

and show the feasibility of the methodology employed. Once validated, this algorithm 

has been proposed to be used in therapy devices developed by one of the partner 

institutions cooperating in this project. 
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Glossary 
AI Apnea Index 

AHI Apnea/Hypopnea Index 

CNS Central nervous system 

CSA Central sleep apnea 

CSAHS Central Sleep Apnea/Hypopnea Syndrome 

CSH Central sleep hypopnea 

DA Discriminant Analysis 

HI Hypopnea Index 

IFL Inspiratory Flow Limitation 

MA filter Moving Average filter 

NREM non Rapid-Eye-Movement 

NPSG Night PolySomnoGraphy 

OSA Obstructive sleep apnea 

OSAHS Obstructive Sleep Apnea/Hypopnea 
Syndrome 

OSH Obstructive sleep hypopnea 

Pes Esophageal Pressure 

PSG PolySomnoGraphy 

R&K Rechtschaffen & Kales [80] 

REM Rapid-Eye-Movement 

RERA Respiratory Effort Related Arousal 

RIP Resistive Inductance Plethismography 

SD Standard Deviation 

SDB Sleep Disordered breathing 

SpO2 Arterial oxygen saturation 

SVM Support Vector Machine 
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UA Upper Airway 

UAR Upper Airway Resistance 

UARS Upper Airway Resistance Syndrome 
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Chapter I: Introduction 
 

Sleep Disordered Breathing (SDB) and state of the art in non-
invasive diagnostics in night polysomnography 

Sleep Disordered Breathing (SDB) describes a group of disorders characterized by 

abnormalities of respiratory pattern (pauses in breathing) or the quantity of ventilation 

during sleep [1, 2]. SDB comprises syndromes such as the obstructive sleep 

apnea/hypopnea syndrome (OSAHS), Cheyne-Stokes respiration, the upper airway 

resistance syndrome (UARS) [3] and others [1, 2].  

According to recent studies [2, 4, 5] the prevalence of OSAHS is between 5 - 17% of 

the general population in dependence of the syndrome’s severity. While apneas 

represent a complete (> 90%) cessation of flow, hypopneas are defined by a clear 

decrease > 50%) from baseline in the amplitude of a valid measure of breathing during 

sleep or is associated with either an oxygen desaturation of > 3% or an arousal, and both 

events have to last for at least for 10 seconds [6, 7], see fig. 1.1. The clinical 

consequences of SDB syndromes usually are sleep fragmentation and excessive daytime 

sleepiness [3], hypertension [8, 9] and related cardiovascular diseases [2].  The clinical 

consequences of obstructive sleep hypopnea syndrome (OSHS) are almost identical to 

obstructive sleep apnea syndrome (OSAS) [8]. 
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Figure 1.1: Examples of an obstructive apnea and an obstructive hypopnea. The represented flow 

signal was recorded with a nasal cannula device, while respiratory effort is represented by the 

esophageal pressure (Pes) signal. 

Thus, one of the most important aspects of the diagnosis of SDB in regards of the 

appropriate choice of treatment, is the correct identification of respiratory events. 

Particularly, the correct differentiation between central and obstructive 

apneas/hypopneas is one of the most recurrent tasks due to the commented prevalence 

of the corresponding OSAHS and central sleep apnea/hypopnea syndromes (CSAHS). 

The difference between central and obstructive events relies in the differences in 

respiratory effort at the onset of the event. While a sequential increase in respiratory 

effort is observed during obstructive events, central events show no increase, sometimes 

even a decrease, in respiratory effort [6, 7], see fig. 1.2. Currently, esophageal pressure 

(Pes) measurement is considered the gold-standard technique for measurement of 

respiratory effort and the identification of obstructive and central events [6, 7]. Still, the 

complexity and invasiveness of esophageal pressure manometry and its impact on sleep 

[10] limits its usage in clinical routine.  

So, researchers have been recently trying to develop non-invasive techniques for the 

differentiation between central and obstructive apneas/hypopneas [11-13]. Most systems 

try to find a reliable non-invasive indicator for respiratory effort and UA resistance that 

could represent a valid, non-invasive alternative to esophageal pressure measurement.  
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Figure 1.2:  Examples of an obstructive and a central hypopnea. Observe the incremental evolution 

of the Pes swings during the obstructive event, while there is almost no variation of pressure swings 

during the central hypopnea. 

For example, events caused by increased UA resistance, such as inspiratory flow 

limitation (IFL), seem to cause a characteristic inspiratory flow pattern in the airflow 

signal that is considered to contain information on these changes in UA [14 - 16]. IFL 

has been defined as a lack of increase in airflow despite increasing respiratory effort. 

Thus, techniques such as flow shape clustering [15-18], neural-network classification [19] and 

other signal processing methods [20, 21] have been used to identify IFL and increased UA 

resistance. Also other techniques, such as Pulse-Transit-Time (PTT) [11, 22], forced-

oscillation-technique (FOT) to determine respiratory resistive impedance [23, 24], 

intercostal EMG signal filtering [25 - 27], critical pressure measurement with therapy 

devices [28 - 31], the phase angle modification of thoracic and abdominal muscle 

movement measured by Resistive Inductance Plethismography (RIP) belts [32, 33], 

Cyclical Alternating Patterns (CAPs) [34, 35] or analysis of the snoring [36 – 39, 41, 

43, 131] and respiratory sound signals  [40, 42, 44 - 46], are promising and interesting 

approaches. 

However, the clinical adoption of these techniques has been slow, mostly due to their 

limited clinical validation. The bottleneck when creating a gold-standard validation set 
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is usually found in the manual identification of the mentioned events by a human expert, 

as it is a cumbersome procedure that may suffer of interscorer differences and 

subjective interpretation. Hence, the development of an objective and efficient method 

for automatic invasive assessment of central and obstructive events is desirable, while 

the development of a simple and robust automatic, non-invasive method is also still 

necessary. 

 Objectives of this thesis 

This thesis has the main objective of finding non-invasive alternatives to esophageal pressure 

measurement in order to reliably assess increased upper airway resistance (UAR) and 

respiratory effort. The study will focus on obtaining the necessary information through signal 

processing techniques out of non-invasive signals recorded in standard clinical routine NPSGs. 

We will try to find viable and robust techniques to automatically identify and estimate 

respiratory effort and upper airway (UA) resistance, as these are he most important 

parameters to successfully differentiate the most important SDB events [6, 7] and correctly 

diagnose SDB related pathologies. Finally, the developed techniques should allow us to 

differentiate between central and obstructive respiratory events by invasive (Pes signal) 

and non-invasive means.  

The work developed in this thesis can be divided into three main stages: 

• In the first stage an extensive literature review was performed in order to 

review the state of the art in invasive and non-invasive methods to asses UA 

resistance and respiratory effort. Conventional and freely available NPSG 

databases were not valid for our purposes as they do not include the gold-

standard esophageal pressure signal in its recordings. Given these limitations 

a new NPSG patient database was designed and developed in collaboration 
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with the group of Prof. Dr. WJ Randerath at Klinikum Bethanien hospital in 

Solingen, Germany hospital. We wanted to obtain a whole new set of NPSG 

recordings with a systematic recording of the gold-standard Pes measurement 

for each patient. The NPSG protocol was designed from scratch in cooperation 

with the mentioned clinic, in order to create a new signal database that includes all 

the necessary signals and information which will be needed to develop the 

techniques proposed in stage 2. A latter validation study will be necessary in order to 

assess the efficacy of the developed techniques, see stage 3. The authors thus had the 

unique opportunity to influence decisions in the pre-study design and have a word on 

the selection of parameters such as which signals were recorded, the signal 

characteristics, the number of patients to be recorded and select previously some 

characteristics of the patients in order to include or exclude certain pathological 

cases, in between others. All NPSG recordings were afterwards manually 

revised and analyzed by human experts of the clinic to manually classify and 

differentiate respiratory events and sleep stages.  

• In the second stage we analyzed the NPSG recordings of the database we had 

obtained in stage 1. We exhaustively analyzed the Pes signal to evaluate 

respiratory effort and tried to find complementary information primarily in 

the airflow signal to objectively identify respiratory events. The airflow 

signal was chosen in between all signals of the NPSG recordings, as it 

reliably reflects events occurring in the respiratory system and contains direct 

information on changes in UA resistance and respiratory drive and could 

therefore be promising to achieve our purposes. In order to achieve the 

invasive identification of respiratory events, techniques like the assessment of 

inspiratory flow limitation (IFL) were developed by means of analyzing the 



Chapter I - Introduction 

 

6 

Pes signal. For the non-invasive automatic identification of repiratory events, 

we implemented a system that used used the spectral analysis of the airflow 

signal for the detection of IFL episodes. Finally, these insights were used in 

order to implement the invasive and non-invasive differentiation of 

obstructive and central respiratory events during sleep. Manually scored 

markers by a human expert with the flow and Pes signal represent the gold-

standard scorings, allowing the validation of these newly developed 

techniques, see stage 3. As human scoring is subjective and presents 

interscorer differences, most of the applied techniques are methods belonging 

to the family of supervised machine learning that try to emulate human behavior. 

One of the specific purposes of this thesis is to use the techniques developed to 

assess UA resistance and respiratory effort for the  differentiation between central 

and obstructive respiratory events during sleep with and without the gold-

standard Pes signal. Our system focused on the differentiation of hypopneas, 

because Pes swings during a hypopnea are more subtle than during other 

events, therefore being considered one of the most challenging tasks [2, 3]. 

• In the third stage the algorithms developed in the second stage were validated 

with the manual scorings obtained in stage 1. The manual scorings performed 

with the Pes-signal represent the gold-standard [6, 7] for respiratory event 

scorings and differentiation. These scorings should allow us validating any 

computational algorithm for clinical purposes. 
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 Organization of this thesis 

Chapter I: Introduction. A brief introduction is given on SDB and the state of the art 

in apnea/hypopnea classification. The thesis objectives are briefly outlined and the 

structure of the thesis is described. 

Chapter II: Sleep disordered breathing. In order to give an overview of the 

respiratory system, the anatomy and physiology of the UA is described. Then 

mathematical models that explain the physiology of the UA are commented. Finally the 

most important syndromes in SDB are listed.  

Chapter III: Concepts of sleep monitoring and night polysomnography (NPSG). 

The general concepts of NPSG are described and the criteria for sleep stage scorings to 

create a hypnogram are detailed. The sensors for flow and Pes measurement are 

commented, as well as other commonly recorded signals, such as SpO2, RIP belts, etc.  

Chapter IV: New patient study and NPSG database with esophageal pressure 

measurement. The recording protocol of the new patient database and the demographic 

data of the patients are presented. The criteria for the manual scoring of respiratory 

events are described.  

Chapter V: Pre-processing and automatic detection of inspiratory cycles. A scheme 

of the signal pre-processing system that is common to all of the proposed techniques is 

outlined. Filtering, signal alignment and inspiratory cycle detection  are described in 

detail. 

Chapter VI: Automatic identification of inspiratory flow limitation with 

esophageal pressure. The pressure/flow (P/V) relationship is introduced as a help for 

an objective classification of IFL. Classical and Clark’s criteria are introduced for IFL 
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classification. Finally a new exponential model is proposed to classify IFL and its 

performance is compared with several criteria to the other models described in the 

literature. The models’ evaluation criteria are also described and the comparison results 

presented. 

Chapter VII: Techniques used in pattern classification. A brief introduction is given 

into techniques used in pattern classification such as discriminant analysis (DA), 

Support Vector Machines (SVMs) and boosting algorithms like Adaboost. The methods 

presented in the following chapters for respiratory event classification will be mainly 

based upon these techniques. 

Chapter VIII: Non-invasive, automatic identification of inspiratory flow limitation 

during sleep. For the automatic, non-invasive detection of IFL, the spectral information 

contained in the inspiratory flow pattern was analyzed. Features were extracted and 

supervised machine learning classifiers were trained and tested to identify IFL. 

Chapter IX: Automatic differentiation of central and obstructive hypopneas with 

esophageal pressure during sleep. For the automatic, invasive differentiation of 

central and obstructive hypopneas, a visual localization index is proposed to analyze 

and make a relative comparison between the respiratory effort during a hypopnea and 

the two minutes prior to the event. Features are extracted and again supervised machine 

learning techniques were used to differentiate the events. 

Chapter X: Non-invasive, automatic differentiation of central and obstructive 

hypopneas. The information contained in the IFL patterns is used (also see chapter IX) 

for the automatic, non-invasive differentiation of central and obstructive hypopneas. For 

this purpose the systems presented in chapters VI and IX are combined. Features were 
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again extracted from the signal and classifiers were trained and tested to non-invasively 

differentiate these events. 

Chapter XI: Conclusions. The outcome and contributions of this thesis is summarized 

in this chapter and briefly presented.  The outlook of the further development of the 

techniques presented here is given.  
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Chapter II: Sleep Disordered Breathing 
(SDB)  
 

Introduction 

Sleep is one of the most important physical and mental regenerative functions of the 

human body. But life quality and expectancy of 5 - 30% of the present population is being 

affected by sleep disorders in dependence of age, sex, constitutional features and social 

characteristics [47].  

Sleep Disordered Breathing (SDB) describes a group of disorders characterized by 

abnormalities of respiratory pattern (pauses in breathing) or the quantity of ventilation 

during sleep [1, 2]. SDB comprises syndromes such as the obstructive sleep 

apnea/hypopnea syndrome (OSAHS), Cheyne-Stokes respiration, the upper airway 

resistance syndrome (UARS) [3] and others [1, 2]. Even mild degrees of sleep-disordered 

breathing (SDB) may cause symptoms such as daytime sleepiness with concomitant 

fatigue [3, 49, 50], and cardiovascular diseases associated to obesity like atrial fibrillation, 

congestive heart failure and systemic hypertension [2, 9, 51, 55, 132].  

During sleep, SDB is triggered by a physiologic decrease of the muscle tone of the 

pharyngeal dilator muscles supporting the upper airway (UA) [15]. The hypotonic UA 

usually partially or complete collapses due to the negative intrathoracic pressure developed 

during inspiration and that it cannot further be supported by the failing UA muscles [56]. 

So, the cross-sectional area of the UA is reduced, UA resistance increases and the tidal 

volume may fall or persist [57, 58], leading to different degrees of collapse of the UA and 

consequently a whole spectrum of different respiratory events such as inspiratory flow 

limitation (IFL), hypopneas or apneas (in increasing order of UA collapse, respectively) 
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[15, 56]. An obstructive respiratory event has a direct incidence on the cardiovascular 

system, provoking a decrease in oxygen saturation and an increase in respiratory effort [2, 

3, 9, 16]. Usually such an event leads to a micro-arousal or a related respiratory effort 

related arousal (RERA) which, in case of repetitive events, will finally cause sleep 

fragmentation [3, 14].  

In the following chapter we will describe in detail the anatomic and physiological 

characteristics of the human UA and the mathematical models that have been proposed to 

predict its behavior during sleep. Also the most important SDB syndromes, such as 

OSAHS and UARS, will be described in detail.  

  The human Upper Airway 

Anatomy of the Upper Airway 

 

Figure 2.1: Saggital view of the anatomical structures of the upper airway. (courtesy of Seer 

Training Modules, NCI, USA) 

The larynx and the pharynx are two specialized structures associated with the digestive and 

respiratory tracts, located in the neck. The larynx, see figs. 2.1 and 2.2, is a semi-rigid 

structure at the upper part of the lower airway and it is only in very seldom cases related to 



Chapter II - Sleep Disordered Breathing 

 11 

OSA or SDB [64]. The pharynx, see figs. 2.1 and 2.2, is considered the main structure of 

the human upper airway. It is the part of the neck and throat situated immediately posterior 

to the mouth and nasal cavity, and cranial to the esophagus, larynx, and trachea. The 

pharynx is part of the digestive system and respiratory system and conducts air from the 

nose and the oral cavity to the larynx. In order to allow swallowing, the pharynx has to be 

collapsible. But it is the collapsibility of the pharynx that is also inherently related to the 

causes of various SDB syndromes like OSAHS. As stated by Drake et al. [59] (pp. 937) 

“The pharynx is a half cylinder of muscle and fascia attached above to the base of the 

skull, and below to the margins of the esophagus. On each side, the walls of the half 

cylinder are attached to the lateral margins of the nasal cavities, the oral cavity, and the 

larynx. The two nasal cavities, the oral cavity, and the larynx therefore open into the 

anterior aspect of the pharynx, and the esophagus opens inferiorly.”  

  

Figure 2.2:  Saggital view of the anatomical structures of the upper airway (left), conceptual 
view (center), anatomical view (right) [59] 

More than 30 pairs of muscles control the functions of the pharynx and that together 

control the pharyngeal collapsibility. As stated by Drake et al. [59] (pp. 939 ff.) “The 

major muscle groups of the neck include:  
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• muscles of the pharynx (constrict and elevate the pharynx); 

• muscles of the larynx (adjust the dimensions of the air pathway); 

• strap muscles (position the larynx and hyoid bone in the neck); 

• muscles of the outer cervical collar (move the head and upper limb); 

• postural muscles in the muscular compartment of the neck (position the neck and 

head). 

Constrictor muscles 

The structure of the pharyngeal wall is mainly composed by the three constrictor muscles 

for each side of the wall (superior, middle and inferior), see fig. 2.3. Posteriorly, the 

muscles from each side are joined together by the pharyngeal raphe. Anteriorly, these 

muscles attach to bones and ligaments related to the lateral margins of the nasal and oral 

cavities and the larynx. The constrictor muscles overlap each other in a fashion resembling 

the walls of three flower pots stacked one on the other. The inferior constrictors overlap the 

lower margins of the middle constrictors and, in the same way, the middle constrictors 

overlap the superior constrictors. Collectively, the muscles constrict or narrow the 

pharyngeal cavity. When the constrictor muscles contract sequentially from top to bottom, 

as in swallowing, they move a bolus of food through the pharynx and into the esophagus.  
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Figure 2.3:  Saggital and posterior view of the constrictor muscles of the pharynx that 

constitute the pharyngeal wall [59] 

Longitudinal muscles 

The three longitudinal muscles of the pharyngeal wall, see fig. 2.4, are named according to 

their origins: stylopharyngeus from the styloid process of the temporal bone, 

salpingopharyngeus from the cartilaginous part of the pharyngotympanic tube (salpinx is 

Greek for tube), and palatopharyngeus from the soft palate. From their sites of origin, these 

muscles descend and attach into the pharyngeal wall. The longitudinal muscles elevate the 

pharyngeal wall, or during swallowing, pull the pharyngeal wall up and over a bolus of 

food being moved through the pharynx and into the esophagus.”  

Many more muscles are directly or indirectly related to pharyngeal patency. If these 

muscles are impaired, like post-mortem or under anasthesia, the UA is prone to collapse 

[69].   
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Figure 2.4:  Saggital view of the longitudinal muscles structures of the pharynx [59] 

 
The pharynx consists of three parts: 
 

Oropharynx 

The oropharynx lies posterior to the oral cavity, inferior to the level of the soft 

palate and superior to the upper margin of the epiglottis. As stated by Drake et 

al. [59] (pp. 945) “The anterior wall of the oropharynx inferior to the 

oropharyngeal isthmus consists of the base of the tongue and the epiglottic 

vallecula, the lateral wall is made up of the tonsil, tonsillar fossa, and tonsillar 

(faucial) pillars and the superior wall consists of the inferior surface of the soft 

palate and the uvula. The palatoglossal folds (arches), one on each side, that 

cover the palatoglossal muscles, mark the boundary between the oral cavity 

and the oropharynx. When holding liquid or solids in the oral cavity, the 

oropharyngeal isthmus is closed by depression of the soft palate, elevation of 

the back of the tongue, and movement toward the midline of the palatoglossal 
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and palatopharyngeal folds. This allows a person to breathe while chewing or 

manipulating material in the oral cavity. On swallowing, the oropharyngeal 

isthmus is opened, the palate is elevated, the laryngeal cavity is closed, and the 

food or liquid is directed into the esophagus. Due to the collapsibility of the 

pharynx, a person cannot breathe and swallow simultaneously, as the airway is 

closed at the pharyngeal isthmus and the larynx. “ 

Nasopharynx 

The nasopharynx lies posterior to the apertures of the nasal cavity and superior 

to the soft palate. Postero-superiorly it extends from the level of the hard and 

soft palates to the sloping base of the skull (the posterior part of the body of the 

sphenoid bone and the basal part of the occipital bone). As stated by Drake et 

al. [59] (pp. 943 ff.)  “The ceiling and lateral walls of the nasopharynx form a 

domed vault at the top of the pharyngeal cavity that is always open. The cavity 

of the nasopharynx is continuous below with the cavity of the oropharynx at 

the pharyngeal isthmus. The position of the pharyngeal isthmus is marked on 

the pharyngeal wall by a mucosal fold caused by the underlying 

palatopharyngeal sphincter, which is part of the superior constrictor muscle. 

The ground consists of the superior surface of the soft palate.  

Elevation of the soft palate and constriction of the palatopharyngeal sphincter 

close the pharyngeal isthmus during swallowing and separate the nasopharynx 

from the oropharynx. There is a large collection of lymphoid tissue (the 

pharyngeal tonsil) in the mucosa covering the roof of the nasopharynx. 

Enlargement of this tonsil, known then as adenoids, can occlude the 

nasopharynx so that breathing is only possible through the oral cavity.”  
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Laryngopharynx 

The laryngopharynx extends from the the superior margin of the epiglottis (C4 

vertebral level) to the top of the esophagus (level C6). it includes the pharyngo-

esophageal junction (postcricoid area), the piriform sinus, and the posterior 

pharyngeal wall. As stated by Drake et al. [59] (pp. 945) “The laryngeal inlet 

opens into the anterior wall of the laryngopharynx. Inferior to the laryngeal inlet, 

the anterior wall consists of the posterior aspect of the larynx. The cavity of the 

laryngopharynx is related anteriorly to a pair of mucosal pouches (valleculae), 

one on each side of the midline, between the base of the tongue and epiglottis. 

There is another pair of mucosal recesses (piriform fossae) between the central 

part of the larynx and the more lateral lamina of the thyroid cartilage. The 

piriform fossae form channels that direct solids and liquids from the oral cavity 

around the raised laryngeal inlet and into the esophagus”. Like the oropharynx 

located superiorly, the laryngopharynx serves as a passageway for food and air. 

It lies inferior to the upright epiglottis and extends to the larynx, where the 

respiratory and digestive pathways diverge. At that point, the laryngopharynx is 

continuous with the esophagus posteriorly. Air enters the larynx anteriorly while 

the esophagus conducts the bolus to the stomach.  

 

Physiology of the Upper Airway 

Even though the nose has been described to be responsible of 2/3 of the total airway 

resistance during sleep [70] and it even may increase in dependence of body position, it is 

the UA that is the critical cause for SDB [69].  
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The pharynx conducts air from the nose and oral cavity to the larynx, see fig. 2.5, and 

during breathing the pharynx remains patent. However, as it is also necessary for 

swallowing, the pharynx has the ability to collapse. Thus, the noncartilaginous segment of 

the UA (which extends from from the nares to the vocal cords) is a hollow tube that, 

exceptuating the nares and the small intrapulmonary airways (the two ends of the 

respiratory airway), is the only collapsible region of the respiratory tract [60]. Thus, the 

pharynx has several shared functions that compete with and may impair each other. In fact, 

swallowing is associated with a short central apnea with laryngeal closure [69]. 

Furthermore, and in comparison to animals, the human’s ability to perform complex 

speech and to walk in upright position inherently predisposes the UA to collapse. Studies 

have identified that the mechanism responsible for pharyngeal collapse depends on both 

anatomical [67] and active neuromuscular control factors [62], like abnormalities of the 

central nervous system, ventilatory drive, local UA muscle tone, sensation and reflexes.  

 
Figure 2.5: The flow of air through the normal upper airway during sleep [figure by Nucleus 

Communications, Inc.] 

As commented before, more than 30 pairs of muscles are directly or indirectly related to 

pharyngeal patency. If these muscles are impaired, like during sleep, post-mortem or under 

anasthesia, the UA is prone to collapse [69].  During wakefulness the tendency of the UA 
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to collapse is countered by neuromotor mechanisms that provoke reflex muscle 

mechanisms in response to subatmospheric pressure and hypercapnia [69] but these 

mechanisms are decreased or absent after sleep onset. 

The capability of the UA to resist collapse is individual and depends on such factors as the 

force developed by the dilating muscles of the UA. Factors that influence in pharyngeal 

tone include chemoreceptor afferents, UA pressure, flow receptors, changes in lung 

volume, sleep state and stage [69] or sleep deprivation, and pathologies, like muscular 

dystrophy, that weaken these muscles.  Also the stiffness of pharyngeal soft tissues could 

result in UA collapse. Other factors such as alcohol ingestion, narcotic medicaments or fat 

deposits can reduce muscle tone during sleep and predispose the UA to collapse. In cases 

when the predisposition of UA collapsibility is high enough, some individuals may suffer 

of pathological events as OSA. 

Models of the Upper Airway 

Model of the Upper Airway as a Starling resistor 

Schwartz et al. [65] and Gold et al. [66] modeled the pharyngeal airway at the velopharynx 

as a Starling Resistor, see fig. 2.6, and used continous Positive Airway Pressure (cPAP) 

devices to determine the critical pressure below which the pharyngeal airway completely 

collapsed. The Starling resistor theory predicts that in a collapsible tube, inspiratory flow 

can increase with increasing driving pressure only up to a critical pressure value for the 

transmural pressure (the pressure difference between the inside and the outside of the UA), 

see fig. 2.6. If, during an inspiration, higher driving pressure is applied, the UA partially 

collapses, resulting in a stall or decrease in flow despite higher respiratory effort, also 

known as IFL. So, the Starling resistor model postulates that IFL occurs when the airway is 

highly compliant, like the hypotonic UA after sleep onset, even leading to soft tissue flatter 
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if the UA further collapses due to increased driving pressure. Isono et al. [60] have shown 

evidence that support the postulations by Schwartz et al. [65] that the velopharynx behaves 

like a Starling resistor for a certain range in airway pressure were it becomes very 

compliant. Others applied the Starling resistor theory to experimental settings to explain 

partial UA collapse [31] and snoring [69]. Gold. et al. [66] used the critical pressure 

criteria to differentiate between snorers and populations with hypoapneas or obstructive 

sleep apneas, and in another later study, also differentiate between OSAHS and UARS 

patients [68].  

 

Figure 2.6:  Modelling of the pharyngeal airway as a Starling Resistor.  A: System overview, B: 

Collapsible segment remains collapsed and occluded, C: Collapsible segment flutters D: Collapsible 

segment is widely open [66]. 

Equation 1 represents the model as described by Gold et al. [66], which allows the 

representation of the airway resistance as the inverse of the slope of the linear regression 

graph, see also fig. 2.7. 
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( )US DSP PV
R

⋅ −=   (2.1) 

with 
.

V  being the airflow, Pus the pressure at the upper side of the airway,  Pds the 

pressure at the lower side of the airway, PN the nasal pressure and R is the resistance of  the 

airway.  

 

Figure 2.7:  Determination by regression of the pharyngeal critical pressure [66] 

 

A mathematical, multi-dimensional model of the Upper Airway 

Starling’s model presents an important limitation, as it describes the UA only as a single 

[70] or two [71] collapsible segments, characterizing flow by time-dependent but spatially 

invariant variables (lumped parameter model). This is why Aitttokallio et al. [56] proposed 

a new, physiologically more compatible, model that also considered the longitudinal 

dimension of the collapsible UA, to predict the various flow traces that commonly occur in 

real patient populations, see fig 2.8. 
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Figure 2.8: Decrease of the cross-sectional area A of the collapsible segment of the UA of length L 

enclosed in a chamber with external pressure (Pe). Au is the constant uniform, cross-sectional area of 

the unstretched tube, while the flow is characterized by the temporally- and spatially variable cross-

sectional area A, velocity u and pressure p. [56] 

Aitttokallio et al. [56] used a set of partial differential equations with time and space 

variance and some supplementary boundary conditions. Instead of analyzing the vibration 

of the UA (snoring sounds) his model analyzed the changes in flow shape that can be used 

to non-invasively asses IFL [16]. In a later study, Aittokalio et al. [15] were able to predict 

individual treatment responses with an adaptation of this model.  

Please see Appendix A for a more detailed explanation on the origins and derivation of 

Aittokalio et al.’s mathematical model. 
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 Syndromes of SDB 

The obstructive sleep apnea/hypopnea syndrome (OSAHS) 

Obstructive sleep apneas and hypopneas are caused by the predisposition of an individual 

to UA collapse. The negative pressure gradient created in the UA by the inspiratory drive 

may lead the UA to partially or completely collapse if the transmural forces developed by 

pharyngeal dilator muscles are insufficient [61, 62], see fig. 2.9 a and b, respectively. The 

velopharynx (the segment of the nasopharynx ventrally limited by the soft palate) appears 

to be the region of the pharynx most commonly associated with occlusion during OSA 

[63], see fig. 2.9, and therefore of utmost pathophysiological importance [60].  

(a)         (b)  

Figure 2.9: (a) when the pressure inside the UA exceeds, due to increased respiratory drive, the 

intramural pressure, inspiratory flow limitation (IFL) occurs (courtesy of D. Navajas, Biofísica, 

Universitat de Barcelona). (b) During an OSA event the velopharynx collapses, limiting the circulation 

of flow from the nostrils to the larynx [133]. 

While apneas represent a complete (> 90%) cessation of flow, hypopneas are defined by a 

clear decrease (> 30 - 50%) in airflow, lasting both a minimum of 10 seconds [6, 7]. Thus, 

while during a hypopnea or inspiratory flow limitation episode the UA collapses partially, 

see fig. 2.9a, during an apnea the upper airway collapses completely (which corresponds to 
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infinite UAR [72]), see fig. 2.9b. This leads to oxygen de-saturation, as the oxygen 

concentration in blood falls drastically and, as a consequence, the brain reacts with a 

micro-arousals which reactivates the tone of the pharyngeal dilator muscles, re-opening the 

UA. However, these micro-arousals cause sleep-fragmentation, which affects the quality of 

sleep. Severe OSAH syndromes are characterized by more than 70 arousals in an hour, 

leading to severe sleep fragmentation, see fig. 2.10. Even mild degrees of OSAHS may be 

associated with significant morbidity, including excessive daytime somnolence [3, 49, 50], 

long-term cardiovascular complications [9, 51, 55] and significant societal costs [49-54]. 

Even though hypopneas are caused only by a partial collapse of the UA and may appear as 

a more subtle event, subsequent hypopneas also lead to RERAs and consequently the 

clinical consequences of OSHS are almost identical to OSAS [8]. 

 

Figure 2.10: Sample hypnograms of patients with fragmented sleep. Notice that sleep stages are 
constantly interrupted by arousals, caused by OSAs, with a recurrent back-fall from sleep to the wake 

stage.  

Studies have shown a high prevalence of the obstructive sleep apnea syndrome (OSAHS) 

in approx. a 5- 17% of the general population in dependence of the syndrome’s severity [2, 

5]. OSAHS usually affects approx. 5% of the population, concretely 2-4% of middle aged 
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males and 1-2% of middle-aged females [2, 5, 47, 48]. There are a number of risk factors 

for obstructive sleep apnea, see Table 2.1. As stated by Bao et al. [72] “In the middle-aged 

adult population, the most important risk factor is obesity, and even moderate increases in 

weight increase the risk of OSA. Obesity increases the rate of progression of disease, and 

weight gain further accelerates disease progression. In the elderly, however, OSA is not as 

closely associated with obesity. In children, the major risk factor for OSA is adenoidal-

tonsillar hypertrophy. OSA is common in patients with craniofacial disorders; however, 

even in individuals without a specific disorder, alterations in craniofacial structure confer 

risk for OSA.” The typical patient affected by OSAHS has been reported to be mostly an 

obese (BMI > 27), male snorer over 40 years old [72]. 

 

Table 2.1: Clinical Differential Features in Upper Airway Resistance Syndrome (UARS) and 
Obstructive Sleep Apnea-Hypopnea Syndrome (OSAHS) [72] 

Continous positive airway pressure (cPAP) devices have been proven to be a valid therapy 

for OSAHS and represent presently the treatment of choice for this syndrome [2]. A nasal 

mask is usually attached to the patient’s nose and the cPAP device creates a positive 

pressure in the UA of the patient, helping to avoid UA collapse during an OSA, see fig. 
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2.11.  Alternative therapies like uvulopalatopharyngoplasty (UPPP) or intraoral devices 

that reposition the mandible forward during sleep, have not shown a comparable outcome 

to cPAP devices and are therefore only taken into consideration when cPAP therapy can 

not be applied [2]. As stated by Guilleminault et al. [77] (pp. 189) “The reasons why dental 

appliances may not completely relieve a patient are multiple, from problems involving soft 

tissues attached to the maxilla and advancing the mandible, to a narrow airway at the base 

of the tongue and difficulty shifting the hyoid bone forward even with nasal continuous 

positive airway pressure (CPAP).” 

 

Figure 2.11: A typical cPAP mask attached to a patient’s nose that creates a positive pressure flow that 
keeps the airway open [133] 

The Upper Airway Resistance Syndrome (UARS) 

Being OSAHS the most common and best diagnosed pathology in present day sleep labs, 

there still is a wide array of other obstructive, respiratory-effort related pathologies which 

are comparable to OSAHS in severity, but are much more difficult to diagnose and affect 

other type of populations [3, 32, 72]. One of these syndromes is the upper airway 

resistance syndrome (UARS) [3], although there is still significant controversy between 

experts if UARS is a distinct syndrome to OSAHS [73]. 

Repetitive Increased Upper Airway Resistance (IUAR) is defined as increasingly negative 

respiratory drive (respiratory effort) concomitant with decreased oronasal airflow in the 
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absence of frank apnea or oxygen desaturation. IUAR periods last one to three breaths and 

result in an EEG arousals with a duration of 2 - 14s [74]. IUAR is usually caused by a 

partial collapse of the UA that is followed by IFL. IFL has been commonly defined as a 

lack of increase in airflow despite increasing respiratory effort (respiratory drive). IFL is one of the 

more subtle respiratory events, being much more subtle than a hypopnea or an apnea. The 

hypotonic UA after sleep onset is highly compliant and can partially collapse due to high 

inspiratory drive, which can even lead to soft tissue flatter (snoring) if the UA further 

collapses due to increased driving pressure, see fig. 2.9. In order to diagnose UAR events 

and differentiate other pathologies, like e.g. differentiating between central and obstructive 

apneas, it is compulsory to use Pes measurement, as it is the gold-standard to assess 

respiratory effort [6, 7]. The absence of Pes measurement makes it difficult for sleep 

experts to diagnose and treat the listed pathologies and syndromes. However Pes 

measurement is not used in clinical routine due to its complexity and invasiveness.  

 
Figure 2.12: A RERA event in an UARS and in an OSAS patient. Note the absence of apnea in the 

UARS patient. [75] 

IUAR events can be divided into two components:  



Chapter II - Sleep Disordered Breathing 

 27 

1.  Increased Effort: Pes manometry demonstrates a pattern of progressive negative Pes 

terminated by a change in pressure to a less negative pressure level associated with an 

arousal or microarousal.  

2.    Arousal: Brief arousals (3s to 10s shift to alpha or fast theta in EEG frequency) 

As stated by Loube et al. [75] “The Respiratory Effort Related Arousal (RERA) is an event 

characterized by increasing respiratory effort for more than 10s leading to an arousal or 

microarousal from sleep that did not fulfill the criteria for hypopnea or apnea” , see fig. 2.12. There 

are several polysomnographic scoring criteria that allow the differentiation between OSAH and 

UAR events, see Table 2.2. 

 

Table 2.2: Polysomnography and Power Spectral Analysis in Upper Airway Resistance Syndrome 
(UARS) and Obstructive Sleep Apnea-Hypopnea Syndrome (OSAHS) [72] 

Increased Upper Airway Resistance (IUAR) is a recognized cause for sleep disruption and 

fragmentation [74]. This implies that a lot of patients with symptoms indicative of sleep 

disorders remain untreated and develop chronic illnesses such as EDS, Chronic Fatigue 

Syndrome (CFS), chronic insomnia, sleepwalking, etc. [9, 76, 35].  
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The central apnea/hypopnea Syndrome (CSAHS) 

In the same way as OSA, central sleep apnea (CSA) is defined as a complete cessation of 

flow for more than 10s [6]. The cessation of flow in this case is not caused by the collapse 

of the UA, but because of lack of neural input from the central nervous system to the 

diaphragm. CSAHS is much less common than OSAHS, affecting just a 10-15% of the 

SDB-affected population [2], but it is usually associated with heavy snoring [78]. It usually 

affects subjects that, being awake, have a high sensitivity to CO2 and low arterial Pco2 

(typically around 35.0 mm Hg), therefore being closer to the CO2-dependent sleep apnea 

threshold [2]. Thus, one of the most important risk factors for CSA is hypocapnia [2]. 

However, during wakefulness and quiet breathing, because of non-specific stimuli that 

anticipate the changes in blood gases, chemosensitivity is of low importance. But the 

dependence on chemosensitivity increases during sleep, peaking at stages 3–4 of NREM 

sleep [77].  

As stated by Guilleminault et al. [77], “normally, the upper airway sensors (pharyngeal and 

laryngeal) inform the brainstem that increased resistance has occurred and, reflexly, 

enhancement of contraction of upper airway dilators then occurs. Despite reduced 

diaphragmatic effort (owing to diminished stimulation of phrenic motor neurons associated 

with decrease in CO2 sensitivity at sleep onset), this allows breathing even if shallow. If 

pharyngeal and laryngeal receptors are only partially or completely non-functional 

adjustment to sleep onset phenomena will be impaired. Since 1992, studies have 

demonstrated blunting or destruction of pharygo-laryngeal sensors related to the 

development of a local neuropathy, probably of variable severity based on duration of the 

problem”. 

Clinically, the most common form of central apnea is found in Cheyne-Stokes’ respiration, 

especially in patients with stroke and with congestive heart failure [2]. CSA is treated with 
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a bright spectrum of different therapies that are completely different to the therapies of 

OSA, like drug intervention (acetazolamide has been used to treat repetitive CSA [77]), 

rocking bed, diaphragm pacing, nocturnal mechanical ventilation and weight reduction 

[79]. As the treatments of OSA and CSA are vastly different from each other, it is 

imperative for choosing the correct treatment, to reliably diagnose the respective 

syndrome. The gold-standard technique to differentiate between obstructive events is, 

again, Pes measurement, as it allows a reliable assessment of respiratory effort [6, 7].  

 

Conclusions 

There are several pathologies that affect respiration during sleep and belong to the family 

of SDB. Obstructive events such as obstructive sleep apneas/hypopneas or IFL are related 

to higher UA collapsibility during inspiration, while central sleep apneas/hypopneas are 

more related to a dysfunctional central nervous system.  

Despite their different etiology, all of these pathologies have a considerable morbidity in 

present day’s population and may result in severe clinical consequences for the affected 

patients. The correct diagnosis of these syndromes is essential to allow the best choice of 

therapy. However present day techniques are limited or too invasive for a correct 

differentiation between some of these events.  
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Chapter III: Concepts of sleep 
monitoring and nocturnal 
polysomnography (NPSG)  

 

 Introduction 

The diagnosis of OSAHS and related pathologies are performed in clinical sleep 

laboratories where the patient usually has to stay for several nights. For decades, the 

classical tool for diagnosis of most of sleep-related pathologies has been full nocturnal 

polysomnography (NPSG).  

Sleep medicine is still a young field in medical sciences but its diagnostic and 

therapeutic weight is becoming more and more important as we begin to understand all 

the consequences of sleep pathologies. 

 Classical nocturnal polysomnography (NPSG) 

In healthy subjects, sleep presents a cyclical and continuous pattern of sleep stages [80]. 

Starting from the awake state, the sleep cycle usually starts with stages Non-REM 

(NREM) 1 and 2, which combined are considered the light sleep stage. From light sleep 

the transition goes to deep sleep, stages NREM 3 and 4. The cycle usually ends with a 

Rapid-Eye-Movement (REM) stage of variable duration. This whole sleep cycle is 

repeated 5 to 6 times during the total sleep time (TST), while the length of the REM 

stages increases over the night. A hypnogram of a healthy patient represents the 

transition through the different sleep stages over the whole night, see fig. 3.1. 
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Figure 3.1: A typical hypnogram of a healthy subject [133] 

Like commented in chapter II, sleep disturbances like OSAH provoke micro-arousals 

that interrupt the normal sleep cycle. In case of a high recurrence of OSAH during the 

whole night the result is a high disturbance of the transitions between sleep stages, 

called sleep fragmentation, see fig. 2.10 and a decrease in number and duration of REM 

stages. REM stages are considered to be crucial for mental and physical regeneration 

[6]. Thus, sleep fragmentation results in excessive daytime sleepiness and fatigue [2, 

80]. 
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Figure 3.2: The five typical derivations needed to create hypnogram according to R&K [80], figure 
[133].  

According to Rechtschaffe & Kales [8], five derivations are needed to determine the 

sleep stages and create a hypnogram, see fig. 3.2: 2 EEG channels at derivations 

C4A1/C3A2, 2 EOG channels (left/right) and 1 sub-mental EMG channel. 

 

Figure 3.3: The typical signal patterns that appear in the 5 derivations of R&K (courtesy of M, 
Schwaibold [133]) 
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According to R&K [80], a whole set of distinctive signal patterns can be recognized in 

these derivations, see fig. 3.3. The manual of R&K [80] set up a table of rules, see fig. 

3.4, that indicated how the incidence of these signal patterns could be used to classify 

the sleep stages and create a hypnogram. 

 

Figure 3.4: The rules of R&K to classify sleep stages (courtesy of M. Schwaibold [133])   

However, in present day NPSGs, the recording of more signals than the 5 R&K 

derivatives has become usual [6, 7], such as oronasal flow (acquired with a nasal 

cannula or a pneumotachograph), ECG signal, leg-EMG, blood pressure and SpO2 

(plethysmography), snoring sounds (audio signal recorded with a tracheal microphone), 

respiratory movements at thorax and abdomen (recorded with resistive inductance 

plethysmography (RIP)-belts), etc., see fig 3.5, in order to support the diagnosis of a 

whole spectrum of other sleep pathologies. 
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Figure 3.5: Typical set of signals recorded during full NPSG at a sleep lab in present day [133] 

However, esophageal pressure (Pes) measurement, despite being the gold-standard to 

assess respiratory effort [6], is not commonly used in clinical routine due to being a 

very complex and invasive technique that causes patient discomfort and disrupts sleep 

[10]. This implies that not always a gold-standard diagnosis can be performed, 

especially in cases of more rare pathologies like UARS or CSAHS. So, a lot of patients 

with symptoms indicative of sleep disorders remain untreated or are not treated 

correctly, and can develop chronic illnesses such as EDS, Chronic Fatigue Syndrome 

(CFS), chronic insomnia, sleepwalking, etc. [9, 76, 35]. Therefore the developments of 

non-invasive techniques that assess respiratory effort are necessary, and extensive 

research has been performed in this direction in the last decade. 

  NPSG recording techniques to assess respiratory effort 

On one side, and as has been commented before, esophageal pressure measurement 

represents the current gold-standard to assess respiratory effort and should therefore be 

mandatory in any study to validate new automatic classification techniques. On the 

other side, it appears that the airflow signal is one of the most promising non-invasive 

signals to asses SDB related events [14 - 16] and estimate changes in UA resistance. 
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Therefore, in the following, the current insights on recording sensors and techniques of 

the airflow signal and the esophageal pressure signal will be commented in detail. 

Respiratory monitoring in NPSG: nasal cannula vs. plethysmography 

SDB has finally been recognized as a common disease, thus the focus has been shifted 

from using the EEG to characterize sleep to a greater emphasis on respiratory 

monitoring. However the tools to detect respiration have only recently begun to evolve 

[90]. In the past, thermistors were the most commonly used devices to measure airflow, 

because of their ease of use and patient comfort. Thermistors allow measuring the 

temperature changes caused by inspiratory and expiratory airflow at the nostrils. 

However, thermistors have strong limitations as they represent only a qualitative 

indicator of airflow, see fig. 3.6, and do not allow to register events other than apneas 

(complete cessation of flow). So they fail in the detection of subtle respiratory events 

related to a partial obstruction of the UA, such as hypopneas or IFL [90, 91]. Thus, 

currently only two different devices, nasal cannulas and pneumotachography, are 

recommned for use in clinical routine of NPSG [6, 7]. In the last decade, an important 

discussion has flourished about which of these two devices is the optimal for use in 

clinical routine. 
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Figure 3.6: An example of the relationship between true flow amplitude, as measured by a 
pneumotachograph, and a thermistor (left) and a nasal cannula device (right). Note the lack of 

relationship between the thermistor and the pneumotachograph flow recordings. [90] 

Pneumotachography represents the gold-standard to quantitatively measure airflow [6, 

7] but it has the disadvantage to be relatively intrusive and depend on complex devices 

that are therefore not commonly used in clinical routine.  

Flow measurement with a nasal cannula/pressure transducer delivers a 

“semiquantitative” flow shape signal [6, 14, 92] as the flow signal can not be calibrated 

[16, 14, 17, 18, 19]. However, Hosselet et al. [16] stated in their study that (pp. 1461) “a 

nasal cannula/pressure transducer system provides a noninvasive indicator of flow 

limitation (defined by the actual driving pressure flow characteristics) and that this can 

be useful to identify periods of elevated upper airway resistance in both normal subjects 

and patients with sleep disordered breathing”. In order to justify the use of the nasal 

cannula signal as “nasal flow”, Hosselet et al. [16] (pp. 1462) “demonstrated that the 

relationship between this signal and a simultaneous pneumotachographic flow signal is 

essentially linear over the relevant range”, see figure 3.7, as had also been previously 

shown by Montserrat et al. [92, 93]. 
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Hence, a result obtained with a nasal cannula device should also be reproducible with a 

quantitative measurement technique like a pneumotachograph [16, 92, 93]. Hosselet et 

al.’s [16] methodology and results have in fact been quoted and reproduced by other 

studies using nasal cannula [14, 94] as well as quantitative pneumotachograph flow [16, 

71, 94]. 

 
Figure 3.7: “Comparison of signal from a nasal cannula/pressure transducer system used for 

monitoring respiration and simultaneously obtained pneumotachograph flow from a mask. Awake 
flow data were collected from two subjects (open and closed symbols) over a range of breathing 
patterns and expressed as percent of maximal signal in each subject and in each signal. Flows 

ranged from 2 to 50 L/min. Overall, the relationship is curvilinear in nature (quadratic as shown by 
Montserrat et al.), but is also nearly linear in the range of normal breathing.” [16, pp. 1462] 

 
In another study, Ayappa et al. [14] concluded that (pp. 763) “the nasal cannula/pressure 

transducer provides a non-invasive reproducible detector of all events in sleep 

disordered breathing” and that (pp. 771) “the nasal cannula is the tool of choice for 

monitoring respiratory airflow during sleep in both clinical and research sleep studies“. 

These SDB events include events such as apneas, hypoapneas, respiratory effort related 

arousals (RERAs) and inspiratory flow limitation (IFL) [14]. 

Furthermore, current NPSG guidelines [6, 7] explicitly recommend nasal 

cannula/pressure transducer system as flow measurement devices for clinical and 
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research applications for the detection of the mentioned SDB events. Norman et al. [19] 

and Aittokallio et al. [17, 18] did also work with and applied different classification and 

clustering techniques to an uncalibrated flow signal recorded with a nasal 

cannula/pressure transducer system. Their classification techniques were based on the 

identification and analysis of airflow patterns, obtaining valid and reproducible results. 

Nasal cannula devices are validated and commercially available devices that should 

deliver a reliable flow signal, as mentioned in several studies [14, 16 - 19]. Given all 

this evidence by the current literature, the nasal cannula/pressure transducer system 

should be appropriate for the purposes described in this study and should not represent 

any obstacle for a proper reproduction of the methodology and the results obtained here 

in any clinical or scientifical research environment, even if quantitative recording 

devices, such as a pneumotacograph, are used for its reproduction [14, 16, 92, 93].  

As our non-invasive classifier has the objective to be adopted in clinical routine, the flow sensor 

had also to be commonly used in clinical routine. Obtaining a conventional pneumotachograph 

flow requieres a tight-fitting face mask, which may be excessively intrusive for routine sleep 

monitoring [16]. The nasal cannula device is a widerspread and commonly used sensor and has 

some characteristics, like being simple, inexpensive and non-obstructive, that makes it ideal for 

clinical routine. For more information on flow pattern analysis, please refer to chapters VI and 

VII. 

  Esophageal pressure measurement  

Esophageal pressure (Pes) measurement is currently the gold-standard to acquire 

information on respiratory effort, which is reflected by the pressure changes in the 

pleura [6]. Although the absolute values are only approximative, the esophagus, because 

of being a passive structure and due to its close location to the pleura, see fig. 3.12, 
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reliably transmits the relative changes in pleural pressure during inspiration and 

expiration. 

Esophageal pressure measurement is normally performed with a catheter that is 

introduced through the nostrils and, after anaesthezing the nasopharyinx and asking the 

patient to swallow, the catheter is placed in the lower third of the abdomen [82, 136], 

see fig. 3.8. 
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Figure 3.8: Layout of esophageal pressure measurement with a balloon catheter [82] 

Catheter placement 

As stated by Benditt et al. [82], also see fig. 3.9., “The lung and chest wall are 3-

dimensional mechanical structures that can change in volume under the influence of 

pressures applied naturally by the respiratory muscles or artificially by applying positive 

pressure to the airway (i.e., positive-pressure ventilation) or negative pressure external 

to the chest wall (i.e., negative-pressure ventilation, such as the “iron lung”). The lung 

and chest wall move together, conjoined by the pleural space, which is in fact only a 

potential space. The pressure in the pleural space is denoted Ppl, and at rest in the 

upright human it is generally slightly negative, because the lung is a passive structure 

that is elastic and has a tendency to recoil to a smaller volume than the respiratory 
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system combination (lung and chest wall together). The lung is prevented from 

collapsing because of the tendency of the chest wall to recoil outwards and the negative 

value of Ppl. At the end of a relaxed exhalation (to functional residual capacity) and with 

the mouth open, the alveolar pressure (Palv), the pressure at the airway opening (PAO or 

Pm), and the atmospheric pressure (Patm) are equal. Thus, at functional residual capacity 

with the mouth open, the distending pressure of the lung (PL) is equal to the pressure 

inside the lung Palv (which in this case is equal to Patm) minus the pressure in the pleural 

space Ppl (Fig. 3.9). The importance of this is that the distending pressure across the 

lung (transpulmonary pressure) determines the volume of the lung. Changes in 

distending pressure result in changes in lung volume and therefore ventilation. Thus, to 

understand ventilation—a primary objective in respiratory medicine—we must 

understand and be able to measure Ppl and Palv. This will in turn allow us to calculate the 

all-important distending pressure of the lung, chest wall, and respiratory system. 

 

Figure 3.9: Elastic properties of the lung, with PAO as the pressure at the airway opening, PCW as 
the transchest wall pressure, PRS as the trans-respiratory system pressure, Patm as the atmospheric 
pressure, Ppl as the pressure in the pleural space, Palv as the alveolar pressure (pressure inside the 

lung) and PL as the distending pressure of the lung (transpulmonary pressure) [82] 
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As noted above, Palv is measured by assessing PAO during a static maneuver when, with 

an open glottis and uninterrupted airway, Palv = PAO = Patm. We can easily measure Patm, 

and by convention, Patm is said to equal a pressure of zero. Ppl is measurable directly 

only by placing a catheter in the pleural space, which is not usually possible in clinical 

practice. Fortunately, the pressure in the lower one third of the esophagus (Pes) closely 

approximates the pressure in the adjacent pleura when the subject is in the upright 

posture.”…”Because the body of the esophagus is essentially a passive structure (except 

during a swallow), able to transmit pressure from the adjacent pleural space (Ppl) to the 

measurement catheter in the esophagus, Pes is a reasonably close surrogate for Ppl in a 

human being in the upright posture. This does not necessarily hold true in the supine 

posture, in which the mediastinum may compress the esophagus, and compression of 

the posterior and inferior portions of the lung can create large regional differences in 

pleural pressure. In addition to the measurement of Pes, it is also possible to measure 

the gastric pressure (Pga) by placing another catheter more distally, in the stomach. Pga 

closely approximates the pressure in the abdominal cavity. With accurate measurements 

of Ppl and abdominal cavity pressure, a wide variety of useful measurements of the 

mechanical respiratory system can be determined.”...” The balloon catheter (or 

catheters) is passed through the nares (nose) into the posterior pharynx. At this point the 

subject is instructed to swallow (if spontaneously breathing) and the catheter is passed 

into the esophagus and then into the stomach. The catheter is attached to the 

transducer/recorder system, and 2.0 mL of air is injected into the balloon. Then 1.5 mL 

of air is withdrawn, to leave 0.5 mL of air in the system to partially inflate the balloon 

and the catheter. The presence of a positive pressure deflection during inspiration 

indicates that the balloon is located in the stomach, if the diaphragm is functioning. The 

catheter is then slowly withdrawn into the esophagus, where the pressure reads negative 



Chapter III - NPSG 

 43 

during inspiration. The catheter is then withdrawn another 10 cm after the initial 

negative deflection, to ensure that the entire catheter is within the esophagus. The 

catheter will be posterior to the heart, and cardiac pulsations appear on the waveform. 

The catheter tip will be approximately 35–45 cm from the nares. It is helpful to mark 

the catheter at 10-cm intervals prior to placement, and some commercially made devices 

are pre-measured and marked.“ 

As there is no official guide or consensus for the positioning of the catheter, each study 

used a different technique to assure the right positioning: 

• As stated by Stoos et al. [26], “A standard, closed-end, esophageal latex balloon 

system with a total length of 86 cm and a 9.5 cm distal balloon was placed 

transnasally after local anaesthesia in the distal oesophagus (subject height · 

0.288 cm from the nares), inflated with 1 cc of air, and connected to the 

pressure transducer of the Viasys PSG recording system. A 4-point calibration 

(atmospheric pressure, 10, 20, and 30 cmH2O) using a water-filled manometer 

was performed at the beginning and end of the study.” 

• As stated by Loube et al. [75], “measurement of Pes” was performed “with a 

2.7-mm-diameter electronic pressure catheter with the tip positioned in the 

midesophagus by radiograph. Once correctly positioned, the catheter was 

secured at the nose with adhesive tape. The catheter tip transducer was 

referenced to atmospheric pressure and calibrated with a water manometer to 

250 cm and 150 cm H2O.” 

• As stated by Horiuchi et al. [85] “Pes was recorded simultaneously using a 

microtiptype pressure transducer (MPC500: Millar, Houston Tex) that was 

inserted 35 cm from the nostrils. Signals from the transducer were amplified by 



Chapter III - NPSG 

 44 

a signal conditioner and converted by a four channel A/D converter (Power 

Lab/4s: ADI Instrument Pty. Ltd., Castle Hill, Australia)”. 

Catheter specifications 

Prior esophageal manometry systems used either water-perfused or solid-state pressure 

transducer but even more considerable clinical skills were necessary to obtain accurate 

results [87, 89]. The hydraulic or pneumatic pressure differences were then converted 

with an external transducer into an electrical signal. Recently developed single-use, 

disposable esophageal manometry catheters seem to be promising alternatives to solid-

state manometry systems in measuring intra-esophageal pressure [88, 89].  

Also a flexible microtransducer catheter has become available for medical monitoring. 

This new generation of catheter tip pressure transducers may provide a simpler and 

more reliable tool for assessing transpulmonary pressure changes in infants [87]. The 

use of a pediatric feeding catheter instead of the esophageal balloon has made the 

procedure more tolerable in both adults and children [72]. However, nowadays most 

catheters are uni- or bi-directional pressure-tip catheters with a piezoresistive pressure 

sensor that translates the mechanical forces into electrical values directly in the catheter’s tip. 

The pressure sensor normally consists of a microchip with a pressure-sensitive membrane on its 

surface. A Wheatstone bridge converts the slight deformations of the membrane into an 

electrical signal. Finally, the electrical signal normally has to be amplified with an external 

signal amplifier before being digitally processed. 

Other commercially available catheters used in the literature are 

• Standard, closed-end, esophageal latex balloon system, Ackrad 

Laboratories, distr. by Advantage Medical Inc. USA – 2004 with a total 

length of 86 cm and a distal balloon length of 9.5 cm [26, 27] 
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• Electronic pressure catheter, Gaeltec, Hackensack, NJ, USA – 1999 with 

a diameter of 2.7 mm [75] 

• Microtip pressure transducer MPC500 by Millar, Houston Tex and a four 

channel A/D converter  by Power Lab/4s: ADI Instrument Pty. Ltd., 

Castle Hill, Australia [85].   

Problems with Pes measurement 

Problems with esophageal pressure measurement comprise  

a) False measurements due to changes in body position 

• In the supine posture the mediastinum may compress the esophagous. 

The compression of the posterior and inferior portions of the lung can 

create large regional differences in pleural pressure [85]  

• In supine position the ΔPes /ΔPm ratio tends to increase when the 

balloon is being moved towards the cardia, suggesting that in supine 

position there is a horizontal gradient in changes of pleural surface 

pressure, with the greater values towards the lung base. [86] 

However with repositioning the balloon at a different level this 

measuring error can be corrected [86]. Thus, the correct positioning of 

the balloon requires a lot of experience and clinical practice.  

As stated by Benditt et al. [82], in order “to assure that the esophageal catheter is in the 

correct position, a dynamic “occlusion test” is performed to assure that Pes is changing 

in concert with PAO. In this test the subject makes inspiratory and expiratory efforts 

against a closed airway. Equivalence of PAO and Pes over a range of pressures during 

respiratory effort is believed to ensure the accuracy of the Pes measurement.” 
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b) Influence on sleep 

Esophageal manometry has been associated with small but statistically 

significant (p < 0.05) decrements [10] in   

•  total recording time  

•  total sleep time  

•  sleep efficiency  

•  percent Stage 2 sleep and percent rapid-eye-movement (REM) sleep 

•  increases in latency to REM sleep  

•  latency to persistent sleep 

•  percent Stage 3/4 sleep.  

However the differences are of such a small magnitude so that their clinical 

significance is questioned. Pes measurement did not have any influence in the 

number of awakenings per hour of sleep, latency to sleep onset and percent 

Stage 1 sleep.  

It was concluded that the effects of monitoring Pes on sleep architecture are 

minimal, and that the decision of whether or not to use the technique can be 

based to a large extent on whether quantitative information about respiratory 

effort will be useful. [38]  

c) Patient discomfort 

Inspiratory effort is determined by estimating pleural pressure by monitoring 

esophageal pressure (Pes), which is invasive and uncomfortable, and may 

adversely affect sleep, and is thus not routinely used by most sleep centers [6, 

10, 21]. These problems are major hurdles in clinical practice and the main 

reason why esophageal pressure measurement is not included in present clinical 

routine. Thus, to find a non-invasive alternative to esophageal pressure 
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measurement which is as reliable reflecting respiratory effort, is of great 

importance and one of the major problems in present SDB diagnostics. 

Characteristics of the esophageal pressure signal  

The esophageal pressure signal (Pes) represents the pressure changes in the pleura 

during inspiration (and expiration). The harder the breathing effort is, the deeper will be 

the pleural pressure values reflected in the Pes signal. Three abnormal forms of Pes 

tracing can be described [72] 

• A “Pes crescendo” is a progressively increased negative peak 

inspiratory pressure in each breath that terminates with an α-wave EEG 

arousal or a burst of δ-wave. Unlike a hypopnea, this event is not 

associated with a drop in oxygen saturation of 3%.  

• Another characteristic event is the ‘‘Continuous Sustained Effort’’: the 

Pes tracing shows a relatively stable negative peak inspiratory pressure 

that is more negative to that seen in the baseline and nonobstructed 

breaths and lasts longer than four breaths.  

• The ‘‘Pes reversal’’ represents an abrupt drop in respiratory effort 

indicated by a less negative peak inspiratory pressure after a sequence of 

increased respiratory efforts independent of the EEG patterns, see fig. 

3.10.  
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Figure 3.10: A flow limitation is seen in the flow signal (pneumotachograph), associated 
with abnormal peak end inspiratory Pes on the first 2 breaths on the left side of figure. An 

EEG arousal occurs at the end of the flow limitation event with an abrupt decrease in 
respiratory effort (Pes signal), a Pes reversal (it starts with the third breath from left) that 

is associated with the EEG arousal. [72] 

Conclusions 

For the last decades, NPSG has been the standard method to diagnose sleep-related 

pathologies and assess a subject’s hypnogram. Esophageal pressure measurement 

represents the gold-standard to measure respiratory effort but, due to its invasiveness 

and patient discomfort, it is not used in clinical routine. Several promising techniques 



Chapter III - NPSG 

 49 

have been explored to find a non-invasive alternative to Pes-measurement for reliably 

diagnosing SDB-realted pathologies, such as snoring analysis, analysis of the presence 

of CAPs, PTT, etc. However, it appears that for respiratory related events, the flow 

signal is the most promising signal to acquire UA-resistance and respiratory related 

information. Nasal cannula devices have proven to reliably reflect changes in UA-

resistance and permit the diagnosis of most SDB events and, unlike 

pneumotachography, these devices are non-obtrusive, comfortable and commonly used 

in clinical routine.  
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Chapter IV: New patient study and 
NPSG database with esophageal pressure 
measurement 

 

 Introduction 
 

The basis of this thesis was the development of a completely new NPSG patient 

database with the systematic recording of esophageal pressure measurement. For this 

purpose a cooperation between our institution and the groups of Dipl.-Ing.Matthias 

Schwaibold at MCC Gmbh & Co. KG, Karlsruhe, Germany, Prof. Dr. Armin Bolz of 

the Institute of Biomedical Engineering of the University of Karlsruhe (TH), Karlsruhe, 

Germany and  Prof. Dr. Winfried Randerath of the Wissenschaftliches Institut of the 

Klinikum Bethanien in Solingen, Germany was set up, see fig. 4.1. The group of Prof. 

Randerath possesses an extraordinary scientifical, experimental and clinical experience 

in NPSG studies [95 - 103], making them an excellent and reliable partner. An external 

stay at the IBT of the University of Karlsruhe (TH), Karlsruhe with regular visits to 

Solingen was performed September through October 2006 to kick off the cooperation. 

During this stage the clinical and recording protocols were defined during several 

meetings with the mentioned groups. During these visits, the author also introduced the 

medical staff into the new recording equipment, conducted technical briefings and 

clarified all points related to instrument calibration and study objectives. An extensive 

bibliographic review on esophageal pressure manometry was also performed and 

handed out to the medical personnel for optimal guidance. 
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Figure 4.1: An international cooperation between the mentioned institutions in Germany and the 
UPC was set up for this thesis. 

The sleep lab at Klinikum Bethanien was equipped with the newest PSG recording 

equipment (Somnocheck 2, Weinmann GmbH, Hamburg) and the esophageal pressure 

catheter. The clinical PSG study focused on creating a record database versatile and 

broad enough to allow a reliable posterior non-invasive detection and identification of 

IFL and the objective differentiation of hypopneas. The study design was partly based 

upon the accumulated experience, data formats and formal parameters of other more 

extensive european multi-centric studies [103, 104].  

Once a full-night recording had been recorded, human experts proceeded to manually 

and automatically [105] score relevant respiratory events and sleep stages [80] 

according to defined standard criteria [6, 7]. For special study purposes, the Solingen 

group also attempted a non-invasive differentiation of hypopneas only with the air flow 

signal by using a new algorithm exclusively developed by them. This study will later be 

used to compare the performance of our automatic, non-invasive algorithm, see chapter 

X.  

Furthermore, a human expert at MCC proceeded to manually differentiate central and 

obstructive hypopneas by means of the Pes signal (gold-standard scorings).  These 
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scorings were then used for the validation of the developed automatic scoring and 

differentiation algorithms. 

Recording protocol and measurement devices  

Thirty-one lung-healthy subjects without asthma nor COPD, had full nocturnal 

polysomnography (NPSG) with an 18-channel recorder (Somnolab PSG system V2.01, 

Weinmann GmbH, Hamburg, Germany) at the sleep laboratories of Klinikum Bethanien 

hospital in Solingen, Germany, according to a protocol completely new designed for 

this purpose and approved by the hospital’s Ethics Committee. The signals that were 

recorded can be seen in Tables 3 to 5. Exceptionally for this study, all patient records 

included esophageal pressure measurement, as it is normally not routinely included in 

clinical PSG routine. The NPSG recording equipment consisted of thre separate 

components (headbox, bodybox and transferbox) for the connection of the described 

NPSG signals. This segmentation into components facilitates the disconnection of the 

different sensors just with one cable, increasing the mobility for the patient in case 

he/she needs to leave bed. The signals of the head- and bodyboxes were collected in the 

transferbox, which allowing the correct synchronization of the signals. The Pes signal 

was obtained by connecting to an auxiliary port of the transferbox, being synchronized 

like the other signals. 

Three patients of this cohort had full NPSG while receiving therapy with a cPAP device 

(Weinmann GmbH, Hamburg, Germany). The rest had typical, full NPSG only for 

diagnosis purposes. 

A nasal cannula device (Weinmann GmbH, Hamburg, Germany) that was connected to 

a pressure transducer system (Weinmann GmbH, Hamburg, Germany) was used to 

obtain the respiratory signal. Nasal cannula device/pressure transducer systems have 
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been indicated for identification of IFL and RERAs [6, 7] and have been routinely used 

in studies [16, 14, 17, 19, 18] for IFL analysis, as it reliably reproduces flattening and 

permits an objective and accurate detection of IFL events [16, 14]. The flow channel 

was recorded with a sampling frequency of 32Hz [7] and an 8-bit resolution. A 

nasal/cannula pressure transducer system delivers a semi-quantitative flow shape signal 

[92], as the airflow signal can not be calibrated. However, Hosselet et al. [16] and 

Montserrat et al. [92, 93] have shown that the relationship between this signal and a 

simultaneous pneumotachographic flow signal is essentially linear over the relevant 

range. Montserrat et al. [92, 93] concluded that  the overall signal obtained from a nasal 

cannula/pressure transducer system is comparable in both shape and amplitude to that of 

a conventional pneumotachograph if a quadratic root conversion is performed. This 

mathematical conversion was directly integrated and performed by our registration 

device for each individual recorded flow sample. This should allow the methodology 

and results reported in this study to be reproducible with nasal cannula devices as well 

as pneumotachographs [16, 92, 93]. 

Esophageal pressure was systematically measured with an unidirectional pressure-tip 

catheter (UniTip catheter by UNISENSOR AG, Attikon, Switzerland) with a 

piezoresistive pressure sensor with an accuracy of +/- 0.6 mmHg, a sensitivity of 5 

uV/V/mmHg and a typical resolution of [-100...+300 mmHg], and a separate pressure 

amplifier (ISOPRE-P amplifier, Standard instruments GmbH, Karlsruhe, Germany) 

with a resolution of [-99 mmHg...+200mmHg]. The manufacturers of the 

sensor/catheter for esophageal pressure measurement and for the pressure amplifier 

confirmed on our request that their devices have been developed and validated under 

CE guidelines, obtaining the CE mark as medical devices, and having sold over 10.000 

sensors so far. Other relevant scientific studies were found that had used the same 
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pressure sensor [107 - 109]. The Pes signal was recorded with a sampling frequency of 

16Hz and a 12 bit resolution. Each time before the pressure catheter was to be employed 

on a patient, a sensor impedance measurement, a biosignal test and a manual calibration 

test were performed in order to assure that the pressure sensor correctly functioned and 

was correctly calibrated.  The calibration test consisted in introducing the catheter in a 

sealed cylinder, manually incrementing the pressure inside the cylinder with a pressure 

manometer from 0 mmHg to 100mmHg and manually setting the calibration markers in 

the pressure amplifier. After the NPSG recording, the sensor was placed for 2 hours in 

0.5% Teralin. Every 12 months the sensor was sent to the manufacturer for a routine 

maintenance check. No incidences have been reported. After the nasopharynx was 

sprayed with Xylocaine, the catheter was placed trans-nasally and positioned in the 

lower third of the esophagus [82], see fig. 4.2. Then, the catheter was taped to the nose 

of the patient. Patients were actively monitored during the night and medical personnel 

intervened in case of any sensor displacement or malfunction.  
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Figure 4.2: Sketch of how the Pes-recording protocol was implemented (figures courtesy of 

Klinikum Bethanien, Solingen, Germany) 

Other physiological signals recorded with an 8-bit resolution were arterial oxygen 

saturation (SpO2), body position, pulse and plethysmography (ProTech, Services Inc, 

Mukilteo, WA, USA). Furthermore, 2 electroencephalogram channels (C3-A2/C4-A1), 

2 electrooculogram (right/left), 1 submental electromyogram (EMG), 1 leg-EMG and an 

electrocardiographic (ECG) channel were recorded each with a sample frequency of 

256Hz and a 12-bit resolution. An overview of the recorded signals can be seen in 

Tables 4.1 – 4.3. 
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Sleep stages were scored manually and automatically with the ARTISANA algorithm 

[105] following standard criteria [80]. Apneas and other respiratory events were scored 

applying standard criteria [6].  

Signal name Sensor/Channels SOMNOlab 

EEG C3/C4 Standard (S) 

EOG O1/O2 S 

EMG Chin and leg Chin: S, 1 leg: S 

Chest RIP belt + piezo sensor Piezo: S 

Abdomen RIP belt + piezo sensor RIP: Head-Box(HB) 

Nasal Airflow Nasal cannula 
(diagnosis) or 
pneumotacograph 
(therapy) 

Cannula: S, Therapy: TB 

Esophageal Pressure  TB 

SO2  S 

Audio signal (breathing 
sounds) 

Tracheal microphone Sibel or A/D 

ECG (heart rate 
automatically calculated by 
SOMNOlab and represented 
as separate signal) 

 S 

Pulse Wave (pulse rate 
automatically calculated by 
SOMNOlab and represented 
as separate signal) 

Photoplethismograpy TB 

Body Position  S 

Table 4.1: Standard PSG signals to be recorded in the PSG clinical study 
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Transfer Box (TB) – Auxiliary channels 

Diagnosis cohort Therapy cohort 

Pulse wave (raw data!) Flow 32 Hz (calculated through PAP 
motor revolutions) 

Pes signal ODS or Pes (if measurement is possible) 
32 Hz 

 Pulse wave 50 Hz 

Table 4.2: Auxiliary signals to be recorded in the PSG clinical study 

 

Head Box (HB) 

ECG 

RIP1 

RIP2 

EMG leg or intercostal 

Table 4.3: Additional signals to be recorded in the PSG clinical study 

 
As the subject acquirement for our database has been an ongoing process since 2005, a 

different number of subjects was available during the development of the methodology 

that will be exposed in the coming chapters. The addition of the patients to our database 

was sequential, so that the ID values in the first column of Table 4.4 also reflect the 

chronology of the patient’s addition. For the purposes described in this thesis, only the 

diagnostic patients, see column “Type” in Table 4.4., were used.   
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Patient’s demographic data 
In the following tables, the demographic data of the recorded patients is described in detail. 

ID Sex Date Type Age BMI  EDS  AHI 
AHI 
REM 

AHI 
NREM AI HI Snoring Snoring 

ASDA 
arousals 

   -  (years) (kg/m2) 
Y(1) / 
N(0) 

Nr./h
TST 

Nr / 
hREM 

Nr / 
hNREM 

Nr 
/hTST 

Nr 
/hTST TST 

% of 
TST Nr /hTST 

1 M 27/11/2006 

Diag
nosti
cs 72 26,8 1 11,53 15,5 9,79 0,35 11,18 61,4 14,6 3,7 

2 M 21/12/2006 

Diag
nosti
cs 52 26 1 2,27 7,6 0,68 0,87 1,4 170,8 31,6 0,3 

4 M 30/11/2006 

Diag
nosti
cs 56 24,7 0 91,24 78,5 92,06 90,14 1,11 191,8 44,6 52,0 

5 M 30/08/2005 

Diag
nosti
cs 78 31,4 1 33,2 22,5 34,52 14,23 18,97 305,1 59,4 15,9 

6 M 07/09/2005 

Diag
nosti
cs 38 24 0 27,64 0,9 34,2 19,72 7,92 204,2 47,7 21,1 
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7 M 17/10/2005 

Diag
nosti
cs 44 29,42 1 5,85 27,7 2,53 0,49 5,37 184,9 36,4 3,2 

8 M 16/12/2005 

Diag
nosti
cs 46 28,7 0 16,07 23,7 15,03 2,68 13,39 74,2 22,1 7,5 

9 M 29/05/2006 
Ther
apy 46 29 1 k.A. k.A. k.A. 

1,39/A
wz 

2,43/A
WZ 80,8 15,6 3,4 

10 M 22/06/2006 
Ther
apy 56 32 1 3,03 0,8 3,83 0,2 2,82 75,6 18,4 2,2 

11 F 12/06/2006 
Ther
apy 40 39,19 1 4,28 0,0 4,28 0,5 3,78 0,0 0,0 0,0 

12 M 19/05/2008 

Diag
nosti
cs 38 30,10 

Score 
13 6,74 4,7 7,01 0 6,74 78,0 23,7 4,9 

13 M 16/06/2008 

Diag
nosti
cs 71 24,9 

Score 
9 15,59 7,6 16,99 6,05 9,54 100,7 39,0 9,7 

14 M 30/06/2008 

Diag
nosti
cs 50 30,35 

Score 
1 18,3 10,6 20,7 0,3 18,0 182,7 48,3 11,3 

15 M 21/07/2008 
Diag

64 30,72 
Score 

34,0 48,8 32,9 6,6 27,3 196,2 83,5 7,7 
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nosti
cs 

7 

16 M 25/08/2008 

Diag
nosti
cs 55 27,2 

Score 
2 27,46 9,1 29,38 21,25 6,21 126,1 29,8 20,6 

18 M 28/08/2008 

Diag
nosti
cs 57 26,7 

Score 
7 5,36 3,6 5,71 0,00 5,36 4,0 1,1 1,6 

19 M 08/09/2008 

Diag
nosti
cs 73 24,6 

Score 
6 9,36 21,2 5,22 0,61 8,75 173,0 37,4 3,7 

20 M 15/09/2008 

Diag
nosti
cs 30 40,2 

Score 
3 13,25 65,9 3,81 6,11 7,13 221,0 48,8 4,3 

21 M 22/09/2008 

Diag
nosti
cs 68 30,1 

Score 
0 28,07 4,1 32,14 4,15 23,92 125,0 29,8 19,8 

22 M 19/01/2009 

Diag
nosti
cs 65 21 

Score 
5 21,67 35,0 20,51 4,68 16,99 76,0 16,9 11,8 

23 F 26/01/2009 Diag
nosti

48? 27,6 
Score 

11 9,53 2,2 11,20 0,20 9,32 118,0 39,9 7,7 
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cs 

24 M 01/02/2009 

Diag
nosti
cs 42 32,4 

Score 
2 3,07 2,1 3,06 0,41 2,66 90,0 28,9 1,7 

25 F 16/02/2009 

Diag
nosti
cs 71 41,9 

Score 
2  56,18 66,8 54,44 49,11 7,07 189,0 60,2 7,3 

26 M 19/02/2009 

Diag
nosti
cs 37 27,8 

Score 
1 11,82 6,9 12,82 1,50 10,32 74,5 20,7 8,7 

27 F 02/03/2009 

Diag
nosti
cs 55 24,5 

Score 
11 20,07 0,0 21,47 1,06 19,01 74,5 21,7 17,5 

28 F 18/05/2009 

Diag
nosti
cs 23 27 

Score 
2 2,26 0,0 2,43 0,35 1,92 344,5 11,3 10,0 

29 M 07/06/2009 

Diag
nosti
cs 33 27,5 

Score 
19 10,51 6,8 11,15 0,00 10,51 297,0 7,5 26,0 

30 M 08/06/2009 

Diag
nosti
cs 45 23,1 

Score 
10 5,97 7,2 5,70 0,16 5,81 372,0 90,5 7,0 
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31 M 17/08/2009 

Diag
nosti
cs 28 31,1 

Score 
2 13,82 18,75 12,57 0,91 12,91 374,0 64,3 49,0 

32 F 24/08/2009 

Diag
nosti
cs    12,27 21,95 9,62 2,04 10,22 381,5 52,2 2,0 

33 M 31/08/2009 

Diag
nosti
cs    15,96 14,52 16,32 2,88 13,08 312,0 14,6 48,0 

Table 4.4: Demographic data of the recorded patients. BMI: Body-Mass-Index, EDS: Excessive Day Sleepniness, AHI: Apnea/Hypopnea Index, TST: Total Sleep 
Time, AI: Apnea Index, HI: Hypopnea Index, ASDA: American Sleep Disorders Association 

 

 Age BMI EDS AHI 
AHI 
REM 

AHI 
NREM AI HI Snoring Snoring 

ASDA 
arousals 

 (years) (kg/m2) 
Y(1) / 
N(0) 

Nr./h
TST 

Nr / 
hREM 

Nr / 
hNREM 

Nr 
/hTST 

Nr 
/hTST TST 

% of 
TST Nr /hTST 

Mean (28 
diagnosis patients) 52,56 28,46 18,9 19,1 18,7 8,5 10,4 182,2 36,7 0 13,7 

STD (28 diagnosis 
patients) 15,60 4,50 18,51 21, 5 19,25 19,01 6,60 108,11 21,78 0 14,32 

Table 4.5: Demographic data of the global population of the 28 recorded diagnostics patients
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Manual, invasive classification of hypopneas 

Two human experts reviewed the NPSG recording for all patients and scored relative 

respiratory events such as apneas or hypopneas according to the standard criteria [6]. 

The final hypopnea scorings were reconciled. 

But in order to differentiate between obstructive and central events, esophageal pressure 

(Pes) measurement is necessary, as it is currently considered the gold-standard 

technique for measurement of respiratory effort and the identification of obstructive and 

central events [6, 7]. The differentiation of hypopneas is considered the more 

challenging task, as pressure swings during a hypopnea are more subtle than during 

other events. 

According to these criteria [6], a hypopnea is identified by a clear decrease (>50%) 

from baseline in the amplitude of a valid measure of breathing during sleep and lasts for 

at least 10 seconds. The baseline is defined as the mean amplitude of stable breathing 

and oxygenation in the two minutes preceding onset of the event. For the scoring of a 

central apnea/hypopnea, a clear reduction in esophageal pressure swings from baseline 

(as defined before) is required. According to this guideline [6], there is no relative or 

absolute reduction in esophageal pressure inside the event’s interval that can be used to 

distinguish a central from an obstructive, event, which increases the difficulty of the 

automatic differentiation.  

A human expert reviewed the full-night recordings of our patients and manually scored 

hypopneas with the mentioned criteria, primarily using Pes signal. The scored 

hypopneas can be seen in Table 4.6. The discrepancies between the Solingen hypopnea 

scoring and the MCC Pes scoring are caused mainly that the human expert at MCC 

discarded hypopneas because of artifacts at the Pes signal during the hypopnea, such as 
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coughing, swallowing or baseline shift, that would not allow the posterior 

differentiation of the hypopnea into obstructive or central. The Solingen scorer only just 

the classical signals [6] for the hypopnea detection, like the airflow and the SpO2 

signals, without consideration of the Pes signal’s quality.  

 Patient 

Overall number of 
differentiated 

Hypopneas 
(Solingen) 

Overall number of 
differentiated 

hypopneas (Pes-
signal)  

Overall number of 
overlapping 
hypopneas 

(reconciliation 
Solingen/Pes) 

1 55 24 21 

5 90 32 32 

6 45 38 37 

7 9 4 2 

8 74 19 19 

13 22 17 13 

14 97 37 26 

15 105 6 5 

16 32 11 10 

18 22 12 12 

19 37 22 19 

20 30 14 14 

21 122 109 100 

22 126 21 21 

23 16 1 1 

24 14 2 2 

25 37 36 36 

26 63 44 43 
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27 89 75 72 

28 9 10 9 

29 52 18 18 

30 36 36 36 

31 85 85 85 

32 65 64 64 

33 73 73 72 

Total 1405 810 769 

Table 4.6: Manually scored hypopneas by human experts 

Manual, non-invasive classification of hypopneas 

Researches in Solingen have been working on a manual classification algorithm for 

human experts based upon a decision tree protocol in order to differentiate between 

central and obstructive hypopneas non-invasively using only the airflow signal. The 

algorithm consisted in a multi-step evaluation of flattening incidence and the context of 

events around a hyopnea (such as the incidence of other hyopneas, presence of arousals, 

type of crescendo, etc.) in order to allow the final hypopnea differentiation. The 

preliminary classification results of this manual, non-invasive algorithm are promising, 

see chapter XI, even though the development of this algorithm is still ongoing. 

Conclusions 
A new patient database with a complete new recording protocol was designed from 

scratch in order to have new NPSG recording with systematic esophageal pressure 

measurement during the whole night. Patient demographics correspond to the typical 

population suffering from OSAHS. Hypopneas, other respiratory events and sleep 

stages were manually and automatically classified according to standard criteria. 

Hypopneas were manually differentiated by a human expert according to standard 
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criteria with the Pes-signal. These scorings represent the current, gold-standard for 

hypopnea differentiation that will be used for validation purposes of the automatic 

algorithms to be developed.The NPSG patient database described in chapter IV has 

been in ongoing development since the year 2005, with patients being added every year. 

The techniques and results presented in the coming chapters (VI, VIII, IX and X) were 

developed at different stages of this project and with the patients available in the 

database at that particular moment. Therefore the number of patients used for the 

development may vary from one technique to another and will be respectively indicated 

in each chapter. 
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Chapter V: Pre-processing and automatic 
identification of inspiratory cycles 

 

 Introduction 

As commented in previous chapters, the development of the methodology in this thesis 

will mainly be based upon the analysis of the nasal airflow and esophageal pressure 

(Pes) signals, see fig. 5.1. Both signals present some intrinsic physiological and 

technical disturbances and noise that need to be processed, before the information 

contained in the signals can be thoroughly analyzed. 

 

Figure 5.1: Examples of the recorded airflow (above) and Pes (below) signals. Observe the high-

frequency noise and the artifacts (positive pressure peaks) on the Pes signal (screenshot of one of 

our NPSG recordings displayed by the Somnolab software V2.01, Weinmann GmbH & Co. KG, 

Hamburg, Germany) 

The pre-processing stage consists of digital filtering of both signals in order to ease up 

the later processing and allow a better focus on each signal’s informational content, see 

fig. 5.2. Also an automatic alignment had to be performed between both signals. The 
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Pes signal sometimes showed a slight delay in relationship to the flow signal probably 

due to both technical and physiological origins. 

The detection and identification of the inspiratory cycles was also of utmost importance 

for the later processing and analysis. Even though methods on detection of respiratory 

cycles in the airflow signal have been published [17, 18, 81], few has been reported on 

the detection of respiratory cycles in the Pes signal. This is why a complete new 

automatic respiratory cycle detection system had to be developed in order to be able to 

analyze corresponding respiratory cycles in the airflow and Pes signals. In a first step, a 

baseline estimation was performed and then maxima and minima of the 

inspiratory/expiratory respiration cycles were detected. With this information, the 

beginning and ending of each inspiratory cycle were then identified in the flow and Pes 

signals and each inspiration was then extracted for a separate processing and analysis. 

 

Figure 5.2: System overview of the typical pre-processing steps and identification of inspiratory 
periods   
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Most of the commented methods and pre-processing steps will later be shared by and 

are common to the automatic processing algorithms that will be described in the coming 

chapters. 

Filtering and alignment 

In a first step, all NPSG recordings were manually converted from the proprietary 

Somnolab format to the more common EDF format [103].  

In regard to filtering, studies [17, 18] have shown that a low-pass filter with a cut-off 

frequency of 2.5 Hz is adequate to analyze the underlying flow shape of a flow signal 

with flattening, if snoring is not to be analyzed. The main frequency content of the 

esophageal pressure signal has been reported to be located below 1 Hz [106]. So, after 

interpolating the Pes-signal to 32Hz, moving average (MA) filters were applied to the 

flow and the Pes-signal (5 and 15 point MA filters with cut-off frequencies of 2.9 Hz  

and 1 Hz at -3 dB, respectively) in forward and reverse directions in order to achieve 

zero-phase. The MA filters used here act as low-pass filters in order to supress high-

frequency oscillations, see fig. 5.3. The basic flattening flow pattern, which is essential 

for recognition [6, 17, 19, 18], is preserved, while peak flow detection was not affected 

by the filtering. 
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Figure 5.3: Examples of the filtered and unfiltered airflow (above) and Pes-signals (below) 
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Signal drifting and baseline estimation 

The flow signal showed in rare cases an approximately constant baseline offset that was 

subtracted. The baseline of the Pes-signal often showed drifts during the night, mostly 

because of small catheter displacements due to body movements, see fig. 5.4, so the 

baseline was estimated using a sliding window that consisted of 1600 points (50s). 

Then, each individual Pes-inspiration was subtracted to a zero baseline.  

Most of the observed Pes-baseline drifts should be related to small displacements of the 

catheter due to changes in body position. As reported in the literature [82], drifts related 

to body movement usually happen during Pes measurements and are difficult to avoid. 

Even though our catheter was always fixed with tape to the nose of the patient, small 

displacements of the catheter may result in the migration of the Pes signal’s baseline. 

Also the compression of the thoracic cage in lying position could have an influence in 

the absolute values of the Pes signal. However, changes in absolute values of the 

esophageal pressure signal are not critical, as long as the relative pressure changes (that 

reflect the relative changes in respiratory effort) are correctly reproduced by the sensor. 

As commented before, the functionality of our sensor was exhaustively tested before 

each measurement, so our measured pressure signal reliably and correctly replicated 

respiratory effort. Furthermore during the pre-processing phase each Pes-inspiration was 

subtracted to a zero baseline. Thus, the absolute baseline drifts were compensated for 

every individual Pes-inspiration and were of no further relevance for posterior analysis, 

as only the relative pressure changes were analyzed. So, the relative changes in 

esophageal pressure were correctly replicated by the pressure sensor, implying that the 

absolute baseline drifts had no incidence on posterior analysis.  
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Figure 5.4:  An example of a full night Pes-recording of one patient. The positive peaks observed in 
the images are swallowing (sometimes coughing) artifacts. Note the drifting of the baseline during 

the night. 

 

Regarding the absolute values, fig. 5.4 shows a typical Pes-signal, which we believe is a 

correct representation of intrathoracic pressure. Unlike pharyngeal pressure, 

intrathoracic pressure has consistent negative values [82] that can become of even 

higher magnitude especially for patients that suffer of conditions that involve high 

respiratory effort. As our pressure sensor was placed in the lower third of the 

esophagus, as indicated for esophageal pressure measurement [7, 82], the measured 

negative pressure values should correctly reflect the physiological conditions in that 

area.  

Identification of inspirations 

In order to accurately identify the inspiration’s beginning and ending, we first detected 

the corresponding peaks of each inspiration with the standard derivative function. We 



Chapter V – Pre-processing and detection of inspirations 

 75 

defined thresholds for minimum peak distance (1 sec., which should approximately 

correspond to 50% of normal inspiratory breathing separation time, as the frequency of 

the inflow wave during sleep is approximately 0.5 Hz [17, 18]), for the minimum flow 

peak height (20% of the standard deviation of a patient’s flow amplitude) and minimal 

area for a flow inspiration (20% of the mean area of a patient’s inspirations) to avoid 

artifacts and small peaks of oscillations around the baseline, see fig. 5.5.  

Then, start and ending of flow inspirations were identified with “zero-line” (baseline) 

crossing [17, 81]. In regard to sample frequency related imprecision, always the sample 

with the minimal distance to the baseline was chosen as the start or ending point. 

Finally, an exhaustive visual examination of the preprocessing results was performed 

for each patient to validate the inspiratory detection. Apneas were excluded from the 

analysis.  
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Figure 5.5: An example of pre-processed flow (solid line) and Pes signals (dashed line) with detected 
maxima and minima (circles) and the inspiration’s start and ending points (crosses). The latter are 

not always symmetrical because of sample frequency related imprecision. 

A variable delay with absolute mean values of 0.34 ± 0.25 sec. was identified between 

corresponding flow- and Pes-inspirations throughout the night. We suppose that a 

component of the delay could be of technical origin, while a part of the delay could also 

have physiological origins. The pulmonary system and the UA can have a capacitive or 
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inductive behavior [134, 135] possibly influencing the delay between an inspiration’s 

corresponding Pes minimum and Flow maximum, especially if we consider that we are 

measuring respiratory effort from outside the pulmonary system (esophagus).. However, 

the detected starting point of an inspiration may, in some cases, show an intrinsic 

variability due to the presence of variations in the inspiration’s shape around the zero-

line that can not be removed without altering the inspiration’s shape, consequently 

inciding on the delay’s calculation. The pressure sensor is a piezoresistive microchip 

that directly translates pressure values into an electrical signal. Thus, according to the 

manufacturer, the catheter-related transmission delay is negligible. No digital or analog 

filters are integrated in the pressure sensor. In the flow pressure transducer system, the 

mathematical conversion of the flow samples (root-square) is performed for each 

individual sample before sample storage, so no relevant delay is caused by this 

procedure. Although the analog and digital filters integrated in the recording box had 

similar anti-aliasing properties for all channels, they could result in a small delay 

between channels. There are also other components that could add-up to cause a small 

delay, such as the length of the hose of the nasal cannula, etc.. These possible sources 

for small delays are difficult to measure individually but summed up, they should 

explain the small delay observed between the flow and Pes-signals. The digital filters 

during the pre-processing phase were applied, as indicated before, in forward and 

reverse directions to achieve zero-phase. However, the delay had no further impact on 

the posterior analysis because of the described pre-processing stages that aligned each 

flow inspiration with the corresponding Pes nadir. In order to align the inspirations, the 

closest Pes-nadir was located for each flow inspiration once the beginning and end of 

the flow inspirations had been determined. Then the duration of the flow inspiration was 

equally distributed around the corresponding Pes nadir in order to establish equivalent 
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start and ending points. When a corresponding flow/Pes pair could not be found (e.g. 

because of a swallowing artifact), the complete inspiration was discarded.  

Conclusions 

The pre-processing stage was optimized for the airflow and Pes signals, the two signals 

that will be mainly analyzed in this thesis. For this purpose, filtering, baseline detection 

and signal alignment were performed to subtract artifacts, avoid high-frequency noise 

and compensate signal delay and baseline drifting. The inspiratory cycles were 

automatically identified with a robust methodology that was visually validated by 

human experts. For the later processing stages, the inspiratory cycles will be available 

separately as flow/Pes inspirational pairs for easier processing and manipulation. 
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Chapter VI: Automatic identification of 
inspiratory flow limitation with 
esophageal pressure 

 

 Introduction 

The automatic invasive and non-invasive identification of changes in upper airway 

(UA) obstruction is an ongoing challenge in sleep analysis. During sleep, the partial 

collapse of the UA, with the consequent increase in UA resistance, usually results in 

Inspiratory Flow Limitation (IFL) [62, 56], which is defined as a lack of increase in 

airflow despite increasing respiratory effort (decreasing intrathoracic pressure). The 

identification of IFL episodes is necessary to assess respiratory-effort related arousals 

(RERAs), that consist of multiple episodes of increasing respiratory effort (because of 

the increased UA resistance) resulting in a microarousal [16, 6]. RERAs detection is 

essential to diagnose multiple pathologies in Sleep Disordered Breathing (SDB), such as 

the upper airway resistance syndrome (UARS) that causes daytime hypersomnolence 

and cardiovascular diseases [2].  

The bottleneck when creating a gold-standard validation set is usually found in the 

manual identification of IFL with the invasive Pes signal, as it is a cumbersome 

procedure that may suffer of interscorer differences and subjective interpretation. Thus, 

the development of an objective and computationally efficient method for automatic 

invasive assessment of IFL and related changes in UA obstruction in large datasets is 

also desirable. 
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Figure 6.1: System overview of the automatic classifier of IFL with the esophageal pressure signal 
(invasive classifier) 

In the present chapter we propose a new exponential model [Morgenstern 2008a, 2008c, 

2009a, 2009b] that should permit to objectively reproduce the esophageal pressure/flow 

(P/
.

V )-relationship of breaths with IFL or subtle changes in UA obstruction. An 

automatic invasive annotation system will be developed with this model in order to 

identify IFL episodes with high accuracy, robustness and computational efficiency, see 

fig. 6.1. The model should also allow a reliable prediction of respiratory resistance. 

After presenting the model, its characterization performance is compared to the current 

best-performing mathematical models in the literature [94, 57].  

The P/
.

V -relationship 

Introduction 

As commented in chapter III, the flow signal may be one of the most useful signals to 

non-invasively assess respiratory-related pathologies and changes in UA obstruction, as 

it is commonly recorded in clinical routine [6, 7].  

Condos et al. [31] found out in 1994 that an identification of a plateau on the inspiratory 

waveform correlated with an increased UA resistance in patients under cPAP treatment. 

Hosselet et al. [16] later also showed that inspiratory flow limitation (IFL) was reflected 
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in the inspiratory flow pattern during spontaneous breathing, reliably reflecting even the 

most subtle changes in UA resistance.  IFL has been defined as a lack of increase in 

airflow despite increasing respiratory effort [6, 16]. In a first try to classify the severity 

of IFL with the flattening of the contour, Hosselet et al. [16] used the esophageal 

pressure – airflow (P/
.

V ) relationships to differentiate between 3 different types of 

contours: normal, intermediate and flattened contour, see fig. 6.2. 

 

Figure 6.2:  Classification of flow contours by Hosselet et al. [16] 

In a similar approach, Clark et al. [81] used the P/
.

V -relationship of each inspiration to 

measure the extent of flow limitation. In this study the classification was based upon the 

invasive pharyngeal pressure signal. Even though esophageal pressure is usually 

measured in the lower third of the abdomen [82], pharyngeal pressure also reflects 

respiratory effort, still representing a valid “gold-standard” reference. As seen in fig. 

6.3, Clark et al. [81] also divided the flow limitations into four levels of ascending 

severity, also see Table 6.1.  
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Level Criterion 1 Logical operator Criterion 2 

 

1  

( )
.

bV P a P= ⋅  with b >= 0.8 
 

AND 
 

not level 3 or 4 

 

2  

( )
.

bV P a P= ⋅   with b  < 0.8 
 

AND 
 

not level 3 or 4 

 

3  
.

0V
P

∂ =
∂

  for ΔP = 1cmH20 

 
 
 
 
 
 
 
 

OR 

 
.

0V
P

∂ ≤
∂

 for 0.75 < ΔP < 2cmH20 

 

4  
.

0V
P

∂ <
∂

   for ΔP = 1cmH20 

 
 

OR 
 

.

0V
P

∂ ≤
∂

 for ΔP >= 2cmH20 

 
Table 6.1: Clark’s classification criteria for inspiratory flow limitation (IFL)  

                                       

Figure 6.3:  Clark et al. [81] created comparative “gold-standard” levels of flow limitation by 
plotting airflow vs. pressure, Level 1: non flow-limited inspiratory cycles,  Level 2: mildly flow-

limited inspiratory cycles,  Level 3: no pressure dependence, Level 4: severe, decreasing flow rate 
with negative pressure dependence [81] 



Chapter VI – Automatic identification of IFL with esophageal pressure 

 83 

In order to determine the flow limitation by non-invasive methods Clark et al. [81] used 

an area index representing the area below the inspiration’s contour in the airflow signal, 

as seen in fig. 6.4, to evaluate the inspiratory breath contour and consequently created a 

relationship between this area index to the commented gold-standard reference levels in 

order to classify every breath into one of the defined flow limitation levels. 

 

Figure 6.4:  Clark et al. [81] used an area index to evaluate the flattening of the airflow pattern 
contour [81] 

However, Clark’s study was performed with asymptomatic snorers and not with 

symptomatic patients with syndromes associated with SDB, thus limiting the validity of 

the study. It is therefore important that this or similar algorithms for non-invasive flow 

limitation detection and discrimination are validated in a larger clinical population.  

Implementation 

After pre-processing the flow and Pes signals (fig. 6.5a), also see chapter V, all 

inspirations were available in form of flow-Pes inspiration pairs (fig. 6.5 b, c) with 



Chapter VI – Automatic identification of IFL with esophageal pressure 

 84 

which the P/
.

V -relationship of each breath was constructed (fig. 6.5 d). As the values 

beyond the pressure nadir do not contain IFL-related information (increasing Pes) [16, 

94, 81], each inspiration was cut at the time value of the Pes nadir to avoid the 

hysteresis. The Pes-values before the Pes nadir were transformed to absolute values 

during the construction of the P/
.

V -relationship, to support the hyperbolic model [57, 

71].   

a)
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b)
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Figure 6.5:  (a) An example of pre-processed flow (solid line) and Pes signals (dashed line) with 
detected maxima and minima (circles) and the inspiration’s start and ending points (crosses). The 

latter are not always symmetrical because of sample frequency related imprecision. (b) An 
extracted flow inspiration with IFL. (c) its corresponding Pes-signal. The P/ .

V -relationship (d) 
presents an accentuated non-linear behavior indicating presence of IFL. 

Classical criteria 

Assessment of IFL was automatically performed by applying classical criteria on a 

breath’s P/
.

V -relationship. IFL has been classically defined as a min. decrease of 1 

cmH2O (0.7356 mmHg) of intrathoracic pressure without a corresponding increase in 

airway flow rate [16, 14, 57, 94, 81, 71].  
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Clark’s criteria 

An additional automatic assessment of UA obstruction was performed by applying 

Clark’s criteria [81] on a breath’s P/
.

V -relationship. Clark’s criteria were chosen 

because they are based upon classical classification criteria but allow differentiating 

four separate levels of IFL with ascending severity (Table 1). Thus, these criteria allow 

observing a model’s characterization capability of more subtle changes in UA 

obstruction than the classical criteria.  

Models of the P/
.

V -relationship 

Introduction 

During an IFL episode, transiently elevated UA resistance prevents the increase of 

inspiratory flow despite increasing respiratory effort (decreasing Pes), hence the P/
.

V -

relationship of an inspiration becomes non-linear [16, 81] (fig. 6.5d). Thus, most of the 

IFL-related information is contained in the non-linear segment of the P/
.

V -relationship, 

as it indicates if flow stalls or falls for increasing respiratory effort. Several 

mathematical models have been proposed to reproduce the P/
.

V -relationship of an 

inspiration and achieve an objective automatic assessment of IFL, such as a hyperbolic 

equation [57, 71] or a 3rd degree polynomial equation [94], although none of these were 

specifically designed to reproduce the non-linear segment of a P/
.

V -relationship.  

Hudgel’s hyperbolic model 

Classically the P/
.

V -relationship had been modeled by the Rohrer equation, see eq. 6.1. 

However, the Rohrer equation assumes that the caliber of the conduit through which 

airflow passes is constant but during flow-limitations, such as those caused by OSAHS, 
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UARS and others, the diameter of the airflow conduit narrows considerably. So the 

Rohrer equation, as shown by Tamisier et al. [71], has strong limitations modeling the 

pharyngeal airway during flow limitations.  

2
1 2P K V K V

⋅⋅
= ⋅ + ⋅         (6.1) 

withV
⋅

 being flow,  P pressure, K1: y-intercept (constant), K2: slope (constant) 

Hudgel et al. [57] proposed a new way to model the P/
.

V -relationship with the 

hyperbolic eq. 6.2 by considering the narrowing of UA’s diameter during flow 

limitations. 

PV
P

α
β

⋅
=

+
   (6.2) 

with V
⋅

 being flow, P: pressure, α : asymptote for peak flow, β : pressure at 50% of 

peak flow 

                                  

Figure 6.6:  Representation of Hudgel’s equation. The α  and β  parameters are shown in the 

ordinate and abscissa axes [71] 

The α and β  parameters represent the cut of the curve with the axes, see also fig. 6.6. 

The alpha parameter represents the asymptote for the peak flow while the beta 
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parameter represents the pressure at 50% of the peak flow.  Thus, parting from the 

classical representation of resistance in thermodynamics .
PR

V
Δ=  at peak pressure, an 

alternative calculation of this resistance can be made by means of these parameters, see 

eqs. 6.3 – 6.7. 

As eq. 6.2 represents a right rectangular hyperbola, which general form is given by:  

( )( )Y X constantα β+ + =   (6.3) 

The specific pressure-flow form is 

( )
.

V Pα β α β⎛ ⎞− + = ⋅⎜ ⎟
⎝ ⎠

  (6.4) 

Solving this equation for P, one obtains a simple algebraic expression in terms of flow 

.

.

V
P

V

β

α

⎛ ⎞⋅⎜ ⎟
⎝ ⎠=
⎛ ⎞−⎜ ⎟
⎝ ⎠

  (6.5) 

And by rearranging these expressions, we can also obtain the resistance value 

( ) ( ) 1.

.
1

Hyperbolic
PR V

V
α

β β
−Δ ⎛ ⎞= = − ⋅⎜ ⎟

⎝ ⎠
  (6.6) 

Thus, equations 6.5 and 6.6 allow a representation of the pressure P and the resistance 

R, after the determination of the constants α and β , with the airflow 
.

V  as the only 

variable but that can be determined by empirical measurement. 

hyperbolic
P PR

V

β
α α⋅

Δ Δ= = +   (6.7) 
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As shown by Tamisier et al. [57], the hyperbolic equation proved to be, as expected, the 

better model in comparison with the Rohrer equation as well as for normal (non-flow 

limited) respiratory cycles as for flow limited respiratory cycles caused by OSAHS or 

UARS. In the comparison between the hyperbolic resistance, see eq. 7, and the classical 

reference peak value .
P

V
Δ resistance, the correlation values were of approx. 0.98, also 

see fig. 6.7. 

                            

Figure 6.7:  Comparison between resistance values calculated by dP/Vf low and hyperbolic model 

by Tamisier et al. [15]-> Difference between two measurements falls within  9.1 cmH20s/L of the 

mean difference 95% of the time [57]. 

Thus the Hudgel equation seemed to be a robust method for estimation of resistance and 

was a true improvement in comparison to the classical Rohrer equation for pharyngeal 

airway narrowing. 

Mansour’s 3rd degree polynomial model 

Mansour et al. [94] used another approach to model the P/
.

V -relationship with a 3rd 

degree polynomial model. They parted from the Bernoulli eq.  

   (6.8) 
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and the equation for a steady homogenous flow in a circular cylinder, assuming that the 

flow of air in the cylinder will expand without the loss or gain of heat. 

 (6.9) 

with a density ( ), a pressure (P), an area (A), the velocity (V), and the flow (F).  

By using the heat kinematic ratio  and rearranging eqs. 6.8 and 6.9, they 

obtained the following 3rd degree polynomial equation  

  (6.10) 
obtained a 3rd degree polynomial equation, also see fig. 6.8, with  

  (6.11) and  (6.12) 

They then used this polynomial equation to model the P/
.

V -relationship and obtained 

curve-fitting and IFL detection results that were superior to those of other mathematical 

models like the commented hyperbolic equation or a quadratic equation. 

 

Figure 6.8:  Graphical representation of the mathematical nature of polynomial function, being 
characterized by two deflections (max/min) [94] 
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Comparison of the hyperbolic vs. the polynomial model 

We compared the modelling performance of the two models for a set of different 

inspiratory breaths and their respective P/V-diagrams, which can be seen in fig. 6.9.  

The mathematical models showed some problems when reproducing certain type of 

P/V-diagrams as can bee seen in fig. 6.10 and fig. 6.11 for the polynomial and Hudgel 

equations respectively. 
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Figure 6.9:  Examples of different P/V-Diagrams (each one represents one inspiratory breath). 
Original function (blue) modelled by the Hudgel eq. (red) and polynomial eq. (green). 
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Table 6.2: Overview of the IFL Level (mis-)classifications for the predicted functions of the different 
models and the corresponding original function of a number of example inspirations. 

 

Figure 6.10: Classification problems of the polynomial equation. Observe how the predictions by the 
mathematical model (green line) present a steep fall in the non-linear segment in comparison to the 

original function (blue line), leading to a inspiratory flow level misclassification.  
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Figure 6.11: Classification problems of the Hudgel equation. Hudgel’s hyperbolic model (red line) is 
not able to classify IFL Level 4 as its asymptotic limitation prevents it to fit the falling patterns of the 

original function (blue line), usually leading to an inspiratory level misclassification 

 

Polynomial model Hudgel’s  hyperbolic model 

0.8391 0.5097 

Table 6.3: Overall percentage (sensitivity) of correct classifications of the predicted functions by the 
respective models in comparison to the classification of the original function with classical criteria. 

 

IFL Level Polynomial model Hudgel’s  hyperbolic model 

1 0.8041 0.5350 

2 0.9249 0.9933 

3 0.5390 0 

4 0.8580 0.0031 

Table 6.4: Percentage (sensitivity) of correct classification of the predicted functions by the 
respective models in comparison to the classification of the original function by Clark et al.’s IFL 

level criteria. 
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IFL Level Polynomial model Hudgel’s  hyperbolic model 

1+2 0.8434 0.6842 

3+4 0.8264 0.0028 

Table 6.5: Correct classifications (sensitivity) for the combination of Clark et al.’s mild IFL levels 
(1+2) and more severe IFL levels (3+4) 

 

Polynomial model Hudgel’s  hyperbolic model 

0.9429 0.4135 

Table 6.6: Mean R2 Pearson-Coefficient calculated for the model’s predictions and the original 
function. 

 

IFL Level Polynomial model Hudgel’s  hyperbolic model 

1 0.9890 0.7828 

2 0.9139 0.6260 

3 0.8519 0.3571 

4 0.8831 -0.2971 

Table 6.7: Mean R2 Pearson-Coefficient calculated for the model’s predictions and the original 
function segmented into Clark et al.’s IFL levels. 

The results show that the Hudgel equation is unable to classify accurately the IFL Level 

4 breaths, which are, in our opinion, the most interesting breaths overall as they present 

the highest severity as they present the highest UA-resistance. As the Hudgel equation 

is an hyperbolic equation, it will never be able to reproduce the descending end of the 

original P/V-diagram. 

The Polynomial equation showed problems when approximating the latter part of the 

P/V-Diagram, sometimes resulting in misclassifications, especially in the IFL Level 3 

breaths. Both equations performed well when classifying IFL Level 1+2. 
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Thus, a new mathematical alternative is necessary that does not show the limitations of 

the hyperbolic model for IFL levels 3+4 and the variance around the IFL segment as the 

polynomial model. 

Exponential model 

Clark et al. [81] proposed a model to mathematically fit the approximately linear P/
.

V -

relationship of flow limitation levels 1 and 2 (Table 3), but they were not able to model 

the P/
.

V -relationships for levels 3 and 4 because of its non-linear behavior. Despite this 

limitation, Clark’s model is elegant and simple, allowing a fast classification with only 

one coefficient value. So, we decided to build on this model and expand it to also fit 

non-linear P/
.

V -relationships by complementing it with an exponential term. The 

resulting equation,  

( )
.

b cPV P a P e= ⋅ ⋅                            (6.13) 

being the variable P the esophageal pressure and (a, b, c) the equation’s coefficients, 

possess interesting characteristics that meet the previously mentioned considerations on 

non-linearity:  
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Figure 6.12:  Different combinations of the coefficients b and c of eq. 2 (the x-axis represents the 
variable P and the y-axis the variable .

V ) with a positive coeff. a and positive values for x. The upper 
and lower row show the equation’s capability to model approximately linear functions and non-

linear curves, respectively (courtesy of I.N. Bronstein et al., Taschenbuch der Mathematik, Verlag 
Harri-Deutsch, 1999) 

for different coefficient combinations, none, one or two inflection points (C, D) will 

appear at ( ) /P b b c= − ±  , while an extremum (A) will appear at /P b c= −   when 

coefficients b and c have opposite signs (fig. 6.12). Hence, we hypothesized that, 

because of this adaptability, eq. 6.13 could give a confident fit for linear as well as non-

linear P/
.

V -relationships. Furthermore, other studies [60, 110] had also suggested 

different types of exponential equations that showed promising fitting results for IFL 

breaths. 

Subjects 

Eleven male, lung-healthy subjects without asthma nor COPD, had full nocturnal 

polysomnography (NPSG) with an 18-channel recorder (Somnolab PSG system V2.01, 

Weinmann GmbH, Hamburg, Germany) at the sleep laboratories of Klinikum Bethanien 

hospital in Solingen, Germany. Mean values ± SD  of the studied population for Apnea-
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Hypoapnea Index (AHI) were 14.752 ± 12.53 events/h (range 1.8 – 46.9 events/h), 

body-max-index (BMI) 27.67 ± 2.72 kg/m2 (range 24 – 39.19 kg/m2) and age 55.36 ± 

14.03 years (range 39 – 78 years).  In regards to arterial oxygen saturation (SpO2), 

mean SpO2 values were 94.43% ± 1.45%, (range 92-0% - 96.5%), minimal  SpO2 values 

were 85.55% ± 3.5%, (range 80% - 92%) and mean SpO2 time under 90% was 8.38 ± 

15.82 minutes, (range 00.07 – 54.54 min.).  

Evaluation criteria for the mathematical models 

Regression was automatically performed on the measured P/
.

V -relationship of each 

breath, see circles in fig. 6.13, in order to estimate the coefficients of the hyperbolic 

model [57], the polynomial model [94] and the new exponential model. Regression was 

performed with a standard least-square (LS) algorithm, also see chapter VII, that 

minimized the summed square of the residuals S: 

2
2

1 1
min( )

n n

i i i
i i

S r y y
∧

= =

⎛ ⎞= = −⎜ ⎟
⎝ ⎠

∑ ∑
  
             (14) 

being ri the residual of the ith data-point for a total of n points, while yi is the measured 

and iy
∧

the fitted response value. Then each model’s predictions were computed, see fig. 

6.10, for each breath’s P/
.

V -relationship. 
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Figure 6.13:  Examples of pressure/flow relationships of breaths classified as a) non-IFL (level 1) b) 

(level 2), c) IFL (level 3) and d) severe IFL (level 4). The functions are displayed after LS-regression 

on the measured values (circles). 

Analyzing the coefficients of the exponential equation, individual Kolmogorov-Smirnov 

tests proved that none had a normal distribution (P < 0.01). When Clark’s criteria were 

applied, we used the Kruskall-Wallis test to test the coefficients for significant 

differences (P < 0.001) between the 4 levels. Mann-Whitney U tests were performed to 

assess the between-group differences (P < 0.05) for classical and Clark’s criteria. A 

Two-Step Cluster analysis (SPSS v.16.0, SPSS Inc., Chicago, IL, USA) was used to 

find the cluster centroids for classical criteria. 

The following three evaluation parameters were employed to assess each model’s 

characterization capabilities:  
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1) Mean-Squared Error when estimating respiratory resistance at peak pressure 

The mean-squared error (MSE) when estimating respiratory resistance at peak-

pressure [71] with 
.

/R P V= , was computed as the squared difference between the 

estimated measured resistance and each of the models’ estimated predicted 

resistances at peak-pressure, respectively.  

 

 2) Coefficient of determination (R2) 

In order to estimate the variability of the models’ predictions in regard to the 

measured values, we calculated the coefficient of determination [111] which has 

been commonly defined as the squared coefficient of correlation or, alternatively, by 

the sum of squared errors (SSE) and the total sum of squares (SST): 

 
22 _

2

1 1
1 / 1 /

n n

i i i
i i

R SSE SST y y y Y
∧

= =

⎛ ⎞⎛ ⎞= − = − − −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
∑ ∑                (15) 

being 
_

Y the mean value of the measured values. 

 

3) Assessment of IFL and increasing levels of UA obstruction 

Assessment of IFL was automatically performed by classical criteria on the measured 

and on the predicted P/
.

V -relationship of each breath for each mathematical model. 

Sensitivity and specificity were then computed for each model. For Clark’s criteria 

sensitivity and specificity were computed for increasing levels of UA obstruction 

[81]. 

Individual Kolmogorov-Smirnov tests (P < 0.05) proved that neither the R2 nor the 

MSE were normally distributed. Mann-Whitney U tests (P < 0.01) were used to confirm 

the differences between the mathematical models. 
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Results 

The IFL classification results for the exponential model’s predictions on a total of 

38,782 breaths for classical and for Clark’s criteria can be found in (Tables 6.8 - 6.10). 

The exponential model delivers the highest sensitivity and specificity for both criteria.  

Significant differences (P < 0.01) were found for the R2 coefficient between each 

mathematical model for classical and for Clark’s criteria, with the exception of the 

polynomial and exponential functions for level 3 (P < 0.05). Significant differences (P < 

0.01) were found for the MSE between each model for classical and for Clark’s criteria, 

while the exponential model presented the smallest average MSEs for IFL breaths 

(Tables 6.8, 6.9).  

When evaluating the exponential model’s coefficients, the nonparametric Kruskall-

Wallis test showed significant differences (P < 0.001) for the coefficients a, b and c 

between the 4 levels and between IFL and non-IFL breaths, respectively. All 

coefficients presented significant (P < 0.01) between-level differences, with the 

exception of coefficient b between levels 1 and 4 (P < 0.05). For classical classification 

criteria, significant differences (P < 0.01) were found between non-IFL and IFL breaths 

for all three coefficients. The coefficients’ values mean and standard deviation were for 

coefficient a: 3.90 ± 2.49, range (1 – 9.99), for coefficient b: 3.74 ± 2.74 range (1 – 

9.99) and for coefficient c: -0.539 ± 10.79 range (-1.906 – 17.72).The Two-Step cluster 

analysis returned 2 clusters with a sensitivity/specificity of 1,0 and the following cluster 

profiles: the mean values, with a 95% confidence interval, for the cluster centroids were 

for parameter a 4.025 for IFL and 3.876 for non-IFL, for parameter b 3.396 for IFL and 

3.806 for non-IFL and for parameter c -1.3129 for IFL and -0.3846 for non-IFL. 
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No. of 
breaths 

 
Evaluation 
parameter Polynomial  Hyperbolic Exponential 

  MSE 0.0008  0.0019 0.0017 

non-IFL 32,360 R2 0.95  0.92  0.95  

  MSE 0.167  0.059 0.045 

IFL 6,422 R2 0.90 0.71  0.89  

  Se 0.84 0.04 0.86 

  Sp 0.94 0.99 0.95 

  Acc 0.92 0.83 0.94 

 

Table 6.8: Characterization results for classical criteria. Coefficient of determination (R2), Mean 
Square Error (MSE), Sensitivity (Se), specificity (Sp) and Accuracy (Acc). 

 
 

 
Table 6.9: Characterization results for Clark’s criteria. Coefficient of determination (R2), Mean 

Square Error (MSE). 
 

 

Flow 
limitation 

Level 

 

 
No. of 

breaths 

 
Evaluation 
parameter 

Polynomial Hyperbolic Exponential 

  MSE 0.0003 0.0011  0.0007  

1 13,398 R2 0.99 0.95  0.98  

  MSE 0.0007 0.0014  0.0014 

2 17,514 R2 0.93 0.90  0.93 

  MSE 0.007 0.016 0.013 

3 1,683 R2 0.90 0.81  0.90  

  MSE 0.17  0.06 0.05 

4 6,187 R2 0.90 0.70  0.89  
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Table 6.10: Classification results for Clark’s criteria. Sensitivity (Se), specificity (Sp) and Accuracy 
(Acc). 

 

Discussion 

This study’s focus has been on finding a methodology that automatically assesses 

changes in UA obstruction robustly and accurately, while still allowing an efficient 

computational processing. The classification and curve fitting performances of the 

mathematical models were tested on an overall of 38,782 breaths extracted from eleven 

patients, a significant increase in the total number of analyzed breaths compared to 

previous studies [94, 81, 71]. Thus, the methods presented here represent a promising 

tool for automatic invasive assessment of IFL especially for scenarios where a high 

number of breaths have to be analyzed. The clinical relevance is to be comprehended in 

combination with already developed methodology [14], in order to detect RERAs. The 

more accurate the identification of IFL or changes in UA obstruction, the better the 

RERA detection should become.  

For the signal acquisition we employed esophageal pressure measurement and nasal 

cannula flow, as these have extensively been proven to permit a reliable reconstruction 

Flow 
limitation 

Level 

 
 

versus 
Level 

 
Polynomial Hyperbolic Exponential 

1 2 ,3, 4 Se 0.89 0.96 0.99 

  Sp 0.82 0.68 0.83 

1, 2 3, 4 Se 0.88 0.96 0.93 

  Sp 0.72 0.03 0.72 

1, 2, 3 4 Se 0.85 0.92 0.89 

  Sp 0.83 0.04 0.85 

Overall  Acc 0.84 0.78 0.88 
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of the P/
.

V -relationship and detection of IFL episodes [16, 14, 15, 19, 18]. Classical and 

Clark’s classification criteria are defined by decreasing flow tendencies (not absolute 

differences), so absolute airflow values are not required for IFL detection [16, 14, 19, 

81]. As our non-invasive classifier has the objective to be adopted in clinical routine, 

the flow sensor had also to be commonly used in clinical routine. Obtaining a 

conventional pneumotachograph flow requires a tight-fitting face mask, which may be 

excessively intrusive for routine sleep monitoring [16]. The nasal cannula device is a 

widespread and commonly used sensor and has some characteristics, like being simple, 

inexpensive and non-obstructive, that makes it ideal for clinical routine.  

For the invasive assessment of relative changes in UA obstruction we sought after a 

model that best characterized linear as well as non-linear P/
.

V -relationships. The gold-

standard automatic invasive classifier was implemented as described by Clark et al. [81] 

in order to validate the exponential model. This is an elaborate procedure, while the 

iterative classification algorithm for classical and Clark’s criteria is computational 

inefficient. An automatic classification system using a model should be easier to 

implement, more robust if the measured data is noisy and permit a more computational 

efficient classification of IFL episodes. Another advantage of describing mathematically 

a P/
.

V -relationship is that it permits estimating a wide variety of other parameters (like 

respiratory resistance) for further breath analysis. 

We chose to employ the coefficient of determination R2 and the MSE when estimating 

resistance at peak-pressure as evaluation parameters, as they had been previously 

employed in other studies [16, 94, 71] for the same purpose. Particularly, Tamisier et al. 

[71] calculated resistance at peak-pressure in order to assess the hyperbolic model and 

measured a high correlation between real resistance values and the predictions of the 
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hyperbolic model. We were inclined to also employ the MSE when estimating 

resistance at peak-pressure in our study, as it should be a good indicator on how well the 

models predict resistance in the non-linear portion of the P/
.

V -relationship during IFL 

episodes.  

However, during the analysis we observed that only these two parameters could fall 

short to evaluate a model’s ability to characterize IFL, as high values did not always 

correlate with a correct IFL classification (Tables 6.8 - 6.10). Therefore we decided to 

employ the direct assessment of IFL on each model’s predictions as the third and most 

basic evaluation parameter, permitting us to obtain an accurate insight on each model’s 

robustness for automatic invasive IFL classification. Still, this study did not reach out to 

compare each model’s intrinsic characterization capabilities, such as the coefficient 

based classification for the hyperbolic model [57] or the derivative classification 

method for the polynomial model [94], which should be compared in detail in a future 

work.  

The new exponential model showed the highest average sensitivity and specificity when 

classical criteria were applied (Table 6.8). The hyperbolic model showed a poor 

performance when assessing breaths with IFL, because a hyperbola is very limited when 

modeling the non-linear segment of the P/
.

V -relationship of an IFL breath, as its 

asymptote prevents it from correctly fitting falling flow for decreasing pressure, see fig. 

6.10 c, d. Although the difference between polynomial and exponential models is 

modest, it should not be neglected due to the high amount of processed breaths. When 

Clark’s criteria were applied, the exponential model again achieved better results than 

the other two models (Table 6.10), implying that it delivers the most accurate 

reproduction of the P/
.

V -relationship when a higher resolution of the changes in UA 
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obstruction is required. All three models had problems classifying level 3 breaths, see 

Table 6.10, probably because they were not able to reproduce its characteristic stalling 

flow pattern.  

Most of the observed IFL misclassifications occurred because of curve fitting problems 

specifically at the non-linear segment of the P/
.

V -relationship. For example, a R2 value 

of 0.93 may indicate a good fit of the polynomial function on the overall measured P/
.

V -

relationship shown in fig. 6.13 b) that had been previously annotated as non-IFL with 

classical criteria. But the polynomial model’s prediction was misclassified as IFL 

because of the polynomial model’s tendency to oscillate around the non-linear segment. 

This is not reflected by the R2 coefficient because it analyzes the P/
.

V -relationship as a 

whole. For future studies, we would recommend to use, instead of the R2 coefficient, an 

evaluation parameter that ponders the non-linear segment higher.  

The average MSEs were relatively small for non-IFL breaths (Tables 6.8, 6.9), 

indicating a good fit of approximately linear P/
.

V -relationships for all three models. For 

IFL breaths, the MSEs had a two- to threefold higher magnitude for all models, 

indicating that the prediction of resistance at peak pressure represented the more 

challenging task. The exponential model achieved the best result when estimating 

resistance at peak-pressure, as it delivered the significant smallest average MSE, see 

Tables 6.8 and 6.9.  

Conclusions 

In conclusion, the linear P/
.

V -relationship was used in order to achieve a gold-standard 

classification of breaths for IFL. These gold-standard scorings were then used to 

validate different mathematical models that may help to optimize the automatic 
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classification process. The exponential model delivers the best characterization of 

changes in UA obstruction, as it achieves the highest sensitivity and specificity when 

assessing classical IFL episodes and the more subtle changes in UA obstruction as 

defined by Clark’s criteria. Furthermore, the exponential model also allows predicting 

UA resistance at peak pressure with the lowest average MSE. We have also shown that 

the coefficients of the exponential model should permit developing a computational 

efficient automatic IFL annotation system that is solely based on the characterization of 

IFL by its coefficients’ values. Still, alternative mathematical methods for level 

classification with the exponential model could also be explored, as e.g. an analysis of 

the exponential model’s derivative function. Thus, the exponential model seems to be a 

promising tool for an invasive assessment of IFL and the prediction of UA resistance, in 

a scenario where a high number of breaths may need to be processed. 
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Chapter VII: Techniques used in pattern 
classification 

 

 Introduction 

Automatic pattern identification and classification has been one of the main and most 

challenging tasks in computer science in recent time. Supervised machine learning 

techniques, like artificial neural networks (aNN) or support vector machines (SVMs), 

are techniques that have been commonly used for this purpose. These techniques 

usually try to guide the classifier’s decision-taking process to emulate human behavior. 

Currently in most sleep laboratories SDB pattern recognition and NPSG pattern 

recognition for R&K sleep stage scoring are still performed manually, which is a highly 

inefficient and costly procedure, representing a strong burden on sleep lab human 

resources. Only slowly reliable automatic systems are developed and find their way into 

clinical routine [105]. One of the objectives of this thesis is to develop automatic 

systems that increase the efficiency of scoring but still are able to recreate the gold-

standard results obtained by human experts. We believe that supervised machine 

learning methods represent a valuable tool to achieve these goals and the most 

important techniques of this family will be briefly introduce in this chapter to be later 

implemented in the coming chapters.  

In supervised machine learning, a training phase is needed during which the classifier 

learns to solve a bi- or multi-class problem. After the training phase, the classifier’s 

performance can be optimized and tested on validation and test sets, respectively, and 

the classification results are then obtained. The training, validation and test sets usually 

consist of a (n-times-k) feature matrix with a number k of n-dimensional elements and of 
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a label vector of length k, usually containing the class label {+1;-1} for each element. 

The class labels have usually been obtained by manual classification of human experts. 

The feature matrix contains those features needed to best characterize the pattern to be 

recognized. The better the features characterize the sought pattern, the better the 

classification results usually become. When a big pool of features is available, usually 

selection algorithms, such as fast forward selection, are run before the training and 

testing, in order to narrow down the most optimal feature sets for each classifier and 

reduce the complexity of the classification problem.  

However, the limit of any supervised machine learning approach for classification is 

usually found in the human decision making itself, as interhuman and interscorer 

differences regularly appear above the boundary of 80-85% of accuracy [123]. 

Discriminant Analysis (DA)  

As stated in [122, 128], discriminant analysis uses training data to estimate the 

parameters of discriminant functions of the predictor variables which will then be 

applied to separate the classes in the test data. These functions, like linear DA (LDA), 

quadratic DA (QDA) or the related Fisher's LDA, are called the discriminant functions, 

and they are used in supervised machine learning to get the combination of features that 

separate two or more classes of events. The results can be employed just to reduce the 

complexity/dimensionality of a classification problem or as a classifier itself. 
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Figure 7.1:  Example of a feature set of two groups separated by a quadratic function with DA 

[128] 

For our purposes, we used DA with the following discriminant functions as described in 

[128]: 

• Linear DA (LDA):  Fits a multivariate normal density to each group, with a 

pooled estimate of covariance. This is the default. 

• Diaglinear DA (DLDA):  Similar to 'linear', but with a diagonal covariance 

matrix estimate (naive Bayes classifiers). 

• Quadratic DA (QDA):  Fits multivariate normal densities with covariance 

estimates stratified by group. 

• Diagquadratic DA (DQDA): Similar to 'quadratic', but with a diagonal 

covariance matrix estimate (naive Bayes classifiers). 

• Mahalanobis DA (MDA): Uses Mahalanobis distances with stratified 

covariance estimates. 
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LDA attempts to express a dependent variable as a linear combination of features, thus 

showing some similarities to the statistical algorithm analysis of variance (ANOVA). 

However, for LDA the dependent variable is a categorical variable, while in ANOVA 

the dependent variable is numerical. [122] 

As stated in [122], for the two-class LDA algorithm, we need a training set that consists 

of a set of features  for each sample of an event with a known class correspondence y 

є {+1,-1}. The assumption is taken that the conditional probability density functions 

 and  are both normally distributed. Given only one observation 

, the LDA algorithm will try to find a good predictor for the class y of any sample of 

the same distribution. In LDA also the simplifying assumption can be made that the 

class covariances are identical Σy = 0 = Σy = 1 = Σ (homoscedastic assumption) and that the 

covariances have full rank. In this case the general LDA function [122] can be 

simplified resulting in   

  (7.1) 

for some threshold constant c, where 

  (7.2) 

This means that the criterion of an input  being in a class y is purely a function of this 

linear combination of the known observations. If seen in geometrical terms, see fig. 7.1, 

we could assume that the location of the plane is defined by the threshold c, while a 

feature belongs to y if a corresponding  is located on a side of the hyperplane 

perpendicular to .  
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Support Vector Machines (SVMs)  

Support Vector Machines (SVMs) are very poweful classifiers for pattern classification 

[113]. As stated by Burges et al. [112], “SVMs are widely used for learning classifiers 

and regression models, and are generally trained through supervised learning. Given 

two classes of points {+1;-1}, the main objective of an SVM is to find an optimal 

hyperplane that correctly classifies them and separates them as far as possible, see 

example in fig. 7.2. The goal of an SVM is to find the optimal separating hyperplane 

(OSH), which minimizes the risk of misclassifying the training data and the unseen test 

data. The OSH guarantees the fulfilment of the following conditions 

• The largest possible fraction of points of the same class are left on the same side 

of the plane. 

• The distance from the hyperplane of both classes is the maximum possible. 

 

Figure 7.2:  (a) A separating hyperplane with small margin with a class of points on each side (b) A 
separating hyperplane with larger margin. A better generalization is expected in the latter case 

[112] 

Given a set of points n
ix R∈ , where i = 1…l and l is the number of observations or 

points to be shattered. Each point xi belongs to either one of our two classes with the 

labels { }1,1iy ∈ − . We suppose that a linear hyperplane x ¢ w + b = 0, which separates 



Chapter VII – Techniques used in pattern classification 

 112 

the positive from the negative examples, exists. All training examples thus satisfy the 

constraints 

1ix w b⋅ + ≥ +  when 1iy = +    (7.3) 

1ix w b⋅ + ≤ −  when 1iy = −   (7.4) 

or equivalently: 

( ) 1 0,i iy x w b i⋅ + − ≥ ∀  (7.5) 

Being this the case, the set is considered linearly separable [112]. Thus, given a linearly 

separable set S, the hyperplane for which the distance to the closest point of S is 

maximum, is called the optimal separating hyperplane (OSH). As explained in detail in 

[112], the solution to the linear case can be found by solving the Quadratic 

Programming problem with linear constraints, which results in sparse solutions. This 

implies that the problem can be solved by using a linear combination of a relative small 

percentage of the initial data points xi, which are represented by the vector w. Given the 

constraints 

           ( ) 1 0i iy x w b⋅ + − ≥   (7.6) 

with i = 1,2….N, the solution becomes 

1

N

i i i
i

w y xα
−

−

=∑   (7.7) 

where N  is the number of Support Vectors. The points known as Support Vectors, see 

fig.7.3, are the closest points to the hyperplane. As stated before, only these points are 

necessary to determine the final OSH.” 
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Figure 7.3: The optimal hyperplane and the circled support vectors [112] 

In most cases, a linear SVM should be able to achieve the expected results. However, 

there are cases where the optimal separating hyperplane can not be described with a 

linear function. As can be seen in [112], “the data in the training problem appears in a 

form that allows the problem to be solved by mapping the data into a higher 

dimensional Euclidean space H, where it is more likely to find a hyperplane that 

separates both classes. Hence, it is possible to solve this problem using the 

transformation operatorφ . However, the best solution is usually achieved by using a 

Kernel function K(x1; x2) in the training algorithm. Instead of mapping the training data 

nonlinearly to a higher-dimensional feature space with the operator φ and constructing 

there the separating hyperplane with maximum margin, the kernel function can be used 

to compute the separating hyperplane without explicitly carrying out the map into the 

feature space. This allows to reduce the computational complexity.” 

Adaboost 

AdaBoost is one of the most popular boosting algorithms in supervised machine 

learning theory. The term boosting describes the process of strengthening simple, 
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"weak" classifiers and turning them into a "strong" classifier by combining them 

iteratively. A general combination classifier [114] usually takes the form 

1
( ) ( )

T

t t
t

g x h xα
=

=∑   (7.8) 

where th  is the hypothesis of a weak classifier which performs slightly better than 

random guessing  and tα is a parameter which measures the importance assigned to th . 

Input data are the pairs of ( ),t tx y , where x X∈ , X being an instance space, and the 

label ty belongs to a label set { }1, 1Y = − + . 

AdaBoost iteratively calls the weak learning algorithm in a series of rounds t =1...T, 

where at each time step t the algorithm has to  

• Update the training sample distribution in order to favour the difficult examples 

according to the previous results of the weak classifiers. This is done with the 

help of a distribution of Weights ( )tD i over the training set, on round t of 

training example i. 

• Train a new weak classifier. The Weak learner's job is to find a Weak hypothesis 

{ }: 1,1th X → − appropriate for the distribution ( )tD i . 

• Select the new Weight parameter tα  once the the Weak hypotheses ht has been 

received. 

The final solution of the algorithm is the weighted sum of all Weak classifiers, as seen 

in equation 10. The algorithm stops if it is not able to find a Weak classifier which 

satisfies the condition named above of being better than random guessing. As stated in 

[114], the algorithm takes thus the following form: 
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• Given: labelled training inputs ( ) ( ), ,..., ,t t m mx y x y  

• Initalize Weight distribution: 1
1( )D i m= , all Weights are equal for the first 

round. 

• for t = 1…T 

a) train Weak learner using distribution ( )tD i  

b) get Weak hypothesis th and calculate Weighted training error tε : 

( ) ( )( )
1

n

t t t t t
t

D i I y h xε
=

= ⋅ ≠∑   (7.9) 

where ( ) 1I z = if z is true, 0 otherwise 

c) Compute Weight tα  of Weak classifier th : 

11 ln
2

t
t

t

εα
ε

⎛ ⎞−= ⋅ ⎜ ⎟
⎝ ⎠

  (7.10) 

d) Update Weight distribution: 

( ) ( ) ( )( )
1

expt t t t t
t

t

D i y h x
D i

Z
α

+

⋅ −
= ,  (7.11) 

where tZ is a normalization factor such as ( )1 1t
t

D i+ =∑  

• Output final hypothesis: 

( )
1

( )
T

t t
t

H x sign h xα
=

⎛ ⎞= ⎜ ⎟
⎝ ⎠
∑  (7.12) 

Recent developments have suggested using Classification and Regression trees 

(CARTs) as the better weak classifiers. An Adaboost algorithm using CARTs with only 
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one split would be equivalent to the classical stump learner [114]. Also variations of the 

Adaboost algorithm itself have been recently proposed. Algorithms like the gentle 

adaboost [116] or modest adaboost [117] have each different generalization capabilities 

that make them interesting in different classification scenarios.  

Stepwise forward feature selection 

As stated in [128], sequential feature selection is a popular iterative selection method, 

which picks the highest correlated components out of a huge feature pool. Sequential 

selection normally has two variants: 

• Sequential forward selection (SFS): the features are sequentially added to an 

empty candidate set until the addition of further features does not decrease the 

criterion. 

• Sequential backward selection (SBS): the features are sequentially removed 

from a full candidate set until the removal of further features increase the 

criterion. 

The criterion is an objective function which the algorithm usually seeks to minimize 

over all feasible feature subsets. Common criteria are e.g. mean squared error for 

regression models or the misclassification rate for classification models. Another 

component of the algorithm is the sequential search algorithm, which adds or removes 

features from a candidate subset while evaluating the criterion. Since an exhaustive 

comparison of the criterion value at all 2n subsets of an n-feature data set is typically 

infeasible (depending on the size of n and the cost of objective calls), sequential 

searches move in only one direction, always growing or always shrinking the candidate 

set. 
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So, as detailed in [127], given a collection of possible predictors/templates x1…xN, linear 

regression is performed on the initial label vector y with an approximation vector y’i = a 

· xi + b. This results in a residual error vector vi for every predictor xi, where vi ┴ y’i and 

i = 1…N. The predictor with the smallest error vector |vi|  min is selected, see fig. 74. 

The selected, smallest error vector vs becomes the new response/label vector for the next 

iteration t. This algorithm is repeated for k rounds, which results in a set of selected 

predictors x1…xk. Note that the same component can be selected several times in the 

selection process but will never appear repeated in pairs in the sequential order. The 

error/label vector should decrease its size with every iteration. The algorithm takes the 

following form in pseudo-code: 

• Given the vectors x1…xN, where N is the total amount of predictors available in 

the input set. Every single vector i contains the scalar correlation values xi = 

(x1,…,xq) for all q positive and negative training samples. The label vector y 

represents the initial distribution of labels (y1…yq), where y є {+1,-1}. 

•  for t = 1…k cycles do 

a) for n = 1…N predictors do 

1. Given the vector xn, approximate the label vector y with least 

squares and determine the scalar parameters of the linear equation 

y’ = a · xi + b. 

2. Compute the error vector and its norm using the resulting 

approximation vector y’: v = y – y’, see fig. 4. 

b) Determine the error vector with the smallest length (=smallest error) vs 

out of the set of all computed error vectors v1…vN. The selected error 

vector vs is the new label vector for the next iteration: yt+1 = vs 

• Output the selected predictors x1…xk. 
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Figure 7.4: Vector distribution in forward selection: the label vector y is ap- 

proximated with linear regression by y0 = a ¢ x + b resulting in the error vector 
v, which becomes the label vector for the next iteration [135]. 

Receiver Operator Characteristic (ROC) 

The Receiver Operator Characteristic (ROC) displays the classification performance of 

a particular classifier. As seen on the plots in fig. 7.5, the percentage of correctly 

classified positive samples are plotted on the ordinate axis, while the percentage of 

false-positive samples, these are the negative samples that have been misclassified as 

positive, are plotted on the abscissa [124]. 

 
Figure 7.5: On the left the ROC of a perfect classifier, in the middle, a classifier with a good 

performance and on the right, a classifier with a very poor performance [135]. 
 

The ROC curve is constructed as follows: a vector containing the correlation values of a 

template with each of all positive and negative samples. The values of this vector are 

then sorted by size. The ROC curve plotting process starts with the highest correlation 

value of the vector. 
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If the first value belongs to e.g. a positive sample a step will be taken on the ordinate 

axis and a point will be plotted there, where the step has the value 1=p and p is the 

number of positive samples. If the next correlation value in the sorted vector belongs to 

e.g. a negative sample, the classifier would have done an error, as this negative sample 

has a higher correlation value than all other positive samples remaining. For the plot a 

step will have to be taken on the abscissa, parting from the previous position, and a new 

point will have to be plotted, where the step has the value 1=n and n is the number of 

negative samples. Thus the threshold value is given implicitly through the correlation 

values of the positive samples. If this process is iterated for all the vector's correlation 

values, we will obtain the ROC curve for that template. 

The more an ROC curve approaches the upper left corner, the better is the classification 

performance of the system, see fig. 7.5. For example, fig. 7.5 (left) displays a perfect 

classification system that is able to classify the 100% of events without misclassifying a 

single negative sample. Fig. 7.5 (center) shows a system with a slightly lower 

performance, while fig. 7.5 (right) has a very low performance, as its ROC indicates that 

the system is misclassifying object samples. A diagonal from the bottom left to the top 

right of the sample would describe the process of guessing, thus the ROC of this latter 

classifier is not much better than guessing. Hence, a good measurement for the 

performance of a classifier is the area below its ROC.  

K-Means Clustering  

As stated in [128], K-means is a clustering technique which partitions the points of a 

NxP data set X into k clusters. The algorithm partitions the set iteratively by minimizing 

the sum of all distances of each of the clusters' data points to its corresponding cluster-

center, over the sum of all clusters. Thus the value of the cluster-center, also called 
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cluster-centroid, changes with every iteration, defining a trajectory over all iterations, 

see fig. 7.6. 

 

Figure 7.6: Example: Screenshot of how a 2 × 1500 sample data matrix is being clustered into 3 
different clusters. The cluster-centroids are relocated with every iteration through the data, the 

trajectory is shown by the colored lines. [135] 
 

There are different type of distance measures with which the clusters' centroid can be 

computed, where the most common is the squared Euclidean distance. This distance 

measurement implies that each cluster centroid becomes the mean of all points in that 

cluster. 

An important parameter to set is the method used to choose the initial positions of the 

cluster-centers, also known as "seeds". If the algorithm fails to make a good initial 

distribution of the cluster centers over the data, we might get very bad separated and 

balanced clusters after running the algorithm. This would imply that some clusters 

would contain too many data points and others would contain none. This should and can 

be avoided by homogenously distributing the cluster centers over the initial data. There 

are different methods to initialize the cluster centers, e.g. picking k random observations 

of the initial data set X, or selecting k random points uniformly from the range of X. A 

more robust initialization method is to perform a preliminary clustering phase on a 
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small, random subsample of the initial data set X and initialize the cluster-centers 

parting from its results. 

As already commented before, K-means minimizes, summed over all k clusters, the sum 

of point-to-centroid distances iteratively. The algorithm can be divided in two phases: 

• The first phase is mainly used as a preprocessing phase and starting point for the 

next phase, as its result only an approximate solution. In this phase so called 

"batch" updates are implemented, where in each iteration the points are 

reassigned to their nearest cluster-center. Then the algorithm performs a re-

computation of all the cluster-centers. 

• The second phase uses so called "on-line" updates, where, as long as the sum of 

distances is reduced, points are individually reassigned. This phase goes through 

all of the points in each iteration, where after each reassignment the cluster 

centers are recomputed. 

Linear Least Squares Approximation 

As detailed in [125, 126], linear regression is the process of approximating a system's 

response function with a linear function that consists of the predictor data and one or 

more coefficients that have to be determined. The least squares method determines these 

unknown coefficients by minimizing the summed square of residuals. The residual ri, 

where i is the current data point, is defined as the difference between the observed 

response value yi and the approximated response value y^
i. 

  (7.13) 

Thus, the sum of squares error estimate S, which is the summed square of residuals, 

takes the form 
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  (7.14) 

where n is the number of data points in the fit. 

As long as the coefficients in an equation are linear, we are working with a linear 

model. Thus, e.g. 1st degree polynomials are linear but Gaussian-functions are not. For 

example, given n data points that are described by a first-degree polynomial, 

  (7.15) 

We need to determine the unknown coefficients a and b to be able to solve this 

equation. One approach to determine these coefficients would be to write S as a system 

of n simultaneous linear equations in two unknowns. The system of equations is called 

overdetermined, if n is greater than the number of unknown coefficients. 

  (7.16) 

As the least squares approximation method minimizes the summed square of the 

residuals, the coefficients can be determined by differentiating S with respect to ach 

parameter and setting the result equal to zero. Solving equation 3.16 for a results in 

  (7.17) 

where the summations run from i = 1…n. Solving for equation 7.16 b using the value of 

a: 

  (18) 



Chapter VII – Techniques used in pattern classification 

 123 

Thus only some calculations are necessary to determine the coefficients a and b. It is 

now also evident how to determine the solution for a higher degree polynomial, as only 

an additional normal equation, for each linear term added to the model, is necessary.  

Cross-correlation 
The cross-correlation coefficient for two discrete functions f and g is given by 

  (7.19) 

where m, n are the number of samples of each function. Pearson’s correlation 

coefficient is given by 

 (7.20) 

where xi and yi are a series of measurements (samples) with i = 1...n and sx, sy are the 

standard deviations of and x-, y- are the means of those series. 

The correlation coefficient is a measure of similarity between two functions. Hence, this 

coefficient is often used in pattern recognition to measure the similiarity between two 

patterns and weigh the classification decission process.  

Conclusions 

The most popular pattern classification techniques in supervised machine learning have 

been presented. These techniques usually try to emulate human behavior in pattern 

classification, which also implies that these techniques are liable to human subjectivity 

and interscorer differences. Supervised machine learning techniques require a training 

and a test stage where the algorithm learns to classify. The results can be visually 

represented with the ROC curves and their performance measured with the area under 

the curve.  
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Chapter VIII: Non-invasive, automatic 
identification of inspiratory flow 
limitation during sleep 

 

 Introduction 

Several groups have tried in the last decade to find a reliable non-invasive indicator for 

UA resistance and respiratory effort, as a valid non-invasive alternative to esophageal 

pressure measurement. Techniques like Pulse-Transit-Time (PTT) [11, 22], forced-

oscillation-technique (FOT) to determine respiratory resistive impedance [23, 24], 

intercostal EMG signal filtering [25 - 27], critical pressure measurement with therapy 

devices [28 - 31], the phase angle modification of thoracic and abdominal muscle 

movement measured by Resistive Inductance Plethismography (RIP) belts [32, 33], 

Cyclical Alternating Patterns (CAPs) [34, 35] or analysis of the audio (snoring) signal 

[36 – 46, 131] are promising and interesting approaches but they still have to show its 

validity in clinical routine. One of the most promising signals for non-invasive 

assessment of SDB related events seems to be airflow signal, as flattening patterns 

present during inspirations seem to contain direct information on changes in UA 

resistance and respiratory effort [14 - 16]. In the following, some of the most important 

non-invasive techniques to assess SDB events are presented, to finally introduce a new 

proposal for a non-invasive method to detect IFL and subtle variations in UA resistance 

in the airflow signal. 

Analysis of snoring  

At first placed at the beginning of the severity scale of sleep disorders (followed by 

UARS, OSAHS and SHVS), it is now understood that snoring is a separate entity that 
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usually co-exists with other forms of sleep-disordered breathing [74] and may be an 

indicative of sleep disorders. With better understanding of breathing during sleep and 

better monitoring technology, it has become clear that the existence of benign snoring 

should be questioned. Snoring has been proposed to be evaluated especially for adults, 

because many are supposed to suffer from UARS [72] or a related SDB pathology.  

Several studies have recorded audio signals during sleep with tracheal microphones to 

analyze snoring [40 – 46, 131]. Findings have suggested that the spectral envelope of 

the snoring signal may be a valid parameter for differentiation between obstructive and 

non-obstructive snoring [43]. Hoffstein et al [77] found a correlation between a snoring 

index (snores/h) and sleep efficiency and wakefulness time after sleep onset, but no 

significant effect of snoring was found on sleep architecture. Woodson [84] also 

reported a pattern of crescendo snoring followed by transient EEG arousals in the 

absence of oxyhemoglobin desaturation as highly suggestive of UARS. However, this 

non-invasisve approach of identifying increasing snoring intensity followed by EEG 

arousals produced a significant number of false-negatives. In summary, it appears that 

the scoring criteria that mainly rely on EEG arousals without taking into consideration 

other criteria may lack reproducibility [74]. 

According to Wilson et al. [38], Snoring Sound Intensity (SSI) levels are related to a 

number of demographic, clinical, and polysomnographic test results and shows some 

relation to apnea/hypopnea during sleep. The noise generated by snoring can disturb or 

disrupt a snorer’s sleep, as well as the sleep of a bed partner. However, SSI has been 

rejected as a predictor for flow limitation during snoring, as high between- and within-

subject variance did not allow to find a significant interdependence between tidal 

volume and SSI [37]. 
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Thus, the true utility of snoring as a predictive parameter for sleep pathologies is still to 

be determined but could be of relevance as an additional non-invasive parameter to 

differentiate sleep disorders [131]. 

Cyclical Alternating Patterns (CAPs) 

The cyclic alternating pattern (CAP) is a periodic EEG activity of non-REM sleep and 

is characterized by sequences of transient electrocortical events that differ from 

background EEG activity and can recur at up to 1 min intervals [34], see fig. 8.1.  CAPs 

are an EEG activity that may indicate sleep instability and/or sleep disturbance, while 

they can appear spontaneously in non-REM sleep or occur in association with sleep 

disturbances like SDB and periodic leg movement [34]. Its subtype classification 

extends the current scorers manual’s definitions [6], as a periodicity dimension and a 

possible marker of pre-arousal activation should also be included [34]. 

                                  

        

Figure 8.1: An example of CAPs. Note the repetitive pattern cycle in the EEG signal. [72] 

In a study of 25 OSA patients, Guilleminault et al. [77] showed that all subjects 

presented at least one standard deviation higher amount of CAPs, with higher CAP rate 

and higher amount of phase in A2 and A3. It appears that CAPs could be a valid 

indicator for the persistence of some degree of sleep disturbance and instability of 

NREM sleep.  
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Other studies [35] also indicated a more disturbed NREM sleep both in sleepwalkers 

and UARS compared to normal controls. The findings suggested that the instability of 

NREM sleep may be more related to subtle SDB than to anything else, as UARS 

patients without sleepwalking had similar abnormal CAP findings [35].  

Thus, the presence of CAPs in EEG signals is a strong indicator for sleep disturbances 

and can be used as a valid parameter to demonstrate abnormal NREM sleep and 

underlying pathologies. 

A non-invasive IFL classifier with the airflow signal 

Subjects 

Eleven male, lung-healthy subjects without asthma nor COPD, had full nocturnal 

polysomnography (NPSG) with an 18-channel recorder (Somnolab PSG system V2.01, 

Weinmann GmbH, Hamburg, Germany) at the sleep laboratories of Klinikum Bethanien 

hospital in Solingen, Germany, according to a protocol completely new designed for 

this purpose and approved by the hospital’s Ethics Committee. Mean values ± SD  of 

the studied population for Apnea-Hypoapnea Index (AHI) were 14.752 ± 12.53 events/h 

(range 1.8 – 46.9 events/h), body-max-index (BMI) 27.67 ± 2.72 kg/m2 (range 24 – 

39.19 kg/m2) and age 55.36 ± 14.03 years (range 39 – 78 years).  In regards to arterial 

oxygen saturation (SpO2), mean SpO2 values were 94.43% ± 1.45%, (range 92-0% - 

96.5%), minimal  SpO2 values were 85.55% ± 3.5%, (range 80% - 92%) and mean SpO2 

time under 90% was 8.38 ± 15.82 minutes, (range 00.07 – 54.54 min.).  

Methods 

As commented in chapter III, the airflow signal seems to be a very promising signal for 

non-invasive monitoring of respiratory events, as it contains information on changes in 

UA obstruction [14 - 16] and is a simple technique that is routinely used in clinical 
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routine. Motivated by approaches employed in automatic object recognition [118, 119], 

where huge datasets have to be efficiently and accurately processed, we propose a new 

type of non-invasive IFL classifier [Morgenstern 2008b, 2008d, 2009a, 2009b] based 

upon supervised machine learning techniques like Discriminant Analysis (DA), Support 

Vector Machines (SVMs) and Adaboost, also see chapter VII. After extracting features 

that characterize a breath’s airflow pattern, the classifiers should be able to 

automatically identify IFL episodes reliably on a significant number of breaths, see fig. 

8.2. As the classifiers will be trained and tested with the previously obtained gold-

standard invasive IFL annotations, the validity of the non-invasive classification should 

be ensured. 

 

Figure 8.2: System overview of the automatic IFL classifier by means of the airflow signal (non-
invasive classifier) 

Non-invasive identification of IFL 

The distinctive contour of an IFL inspiration (flattening), see fig. 8.3, is a key element 

for a successful non-invasive IFL classification, as it contains information on the 

relative variations in UA obstruction that causes IFL [56, 16, 15, 81, 71].  



Chapter VIII – Non-invasisve, automatic identification of IFL during sleep 

 130 

0 0.5 1 1.5 2-20

0

20

40

60

80

100

120
Flow pattern of a non-IFL inspiration

Time [s]

Fl
ow

0 0.5 1 1.5-10

0

10

20

30

40

50

60

70

80

90

Time [s]

Fl
ow

Flow pattern of a normal inspirationa) b)

c) d)

0 0.5 1 1.5-5

0

5

10

15

20

25

30

35

40

45

Time [s]

Fl
ow

Flow pattern of an inspiration with severe IFL

0 0.5 1 1.5-10

0

10

20

30

40

50

Time [s]

Fl
ow

Flow pattern of an inspiration with IFL

 

Figure 8.3: Examples of flow inspirations: (a) a normal inspiration (level 1), (b) a non-IFL 
inspiration (level 2), (c) an inspiration with IFL (level 3), (d) an inspiration with severe IFL (level 

4). Significant changes in the breaths’ flow contour can be observed between each example. 

Aittokalio et al. [18] presented an interesting approach to automatically classify 

inspiratory flow shapes in dependence of their flattening pattern. After normalizing 

different shapes in duration and amplitude, they created different classes of inspiratory 

shapes and its subsequent hierarchy, see fig. 8.4. 

 

 

Figure 8.4: Hierarchy of the inspiratory flow shape classes. The first row represents the classes with 
one, two, and three or more peaks. The second row represents a further analysis of single peak 
shapes regarding the existence and orientation of the flat part. The last row distinguishes the 

sinusoidal class and the flat top flow limitation class. [18] 
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For the supervised machine learning methods used here (DA, SVMs and Adaboost, also 

see chapter VII), the training set consisted of a (n-times-k) matrix with a number k of n-

dimensional elements and of a label vector of length k containing the class label {+1;-1} 

for each element. In our case, each inspiration had been previously labeled as an IFL 

{+1} or non-IFL {-1} episode by the automatic invasive annotation system that has 

been detailed before, see chapter V.  
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Figure 8.5: Example of a PSD function of a non-IFL breath calculated with Burg’s AR model. The 
indicated features were extracted from this signal to create the feature vector that was fed to the 

non-invasive IFL classifiers. 

In order to reduce the dimensionality, hence, the complexity of the non-invasive 

classification problem, n features were extracted out of each inspiration’s time and 

frequency domains and combined into a feature vector for a total of k inspirations. We 

used power spectral density (PSD) analysis to obtain information from the frequency 

domain of an inspiration. The PSD was calculated with autoregressive (AR) modeling, 

as it allows increasing the observed frequency resolution and it does not suffer of the 

distortion effect caused by classical windowing.  

Burg’s method [120] was used to fit an AR model with an order p to the input signal. 

The optimal order p (mean ± SD values: 9.48 ± 3.78, range 2 - 33) of the AR-model was 
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chosen by means of Rissanen's Minimum Description Length (MDL) criterion [121]. 

Extracted features from the time domain can be found in Table 8.1. Features extracted 

from the frequency domain can be seen in fig. 8.5 and Table 8.1. Sequential forward 

selection was used for each classifier in order to select the most relevant subset of 

features, respectively. Cross-validation indexing was used in order to randomly assign 

the breaths to the training, validation and test sets, as indicated in Table 8.2.  

Index Description Index Description 

1 Total energy (area) of the PSD  12 (area of the first derivative of the inspiration’s 
flow)÷(mean of dV) 

2 Nr. of peaks of dPSD in [0 Hz – PSD0] 13 (area of the flow inspiration* from [0s - time of 
peak amplitude])÷(total area of the inspiration*) 

3 Peak amplitude of the PSD [dB] 14 Area of the inspiration* in the interval from [0s – 
1/2 of the inspiration’s duration]  

4 Energy of the PSD in [0Hz–PSD0] 15 (PSD total energy)×(PSD peak amplitude)  

5 PSD0 [Hz] 16 (total energy of the PSD) – (energy of the PSD 
triangle at 20 dB) 

6 Nr. of Peaks of the PSD  17 Energy of the PSD triangle at 30 dB  

7 Nr. of peaks in the inspiration’s flow shape  18 Energy of the PSD in [PSD freq. at 30 dB - end of 
PSD] 

8 Duration of the inspiration [s] 19 Area of the inspiration* from [0s - the first 1/3 of 
the inspiration]  

9 Amplitude of the inspiration normalized with 
the patient’s peak-flow 

20 (area of the first 1/3)+(area of the last 1/3) of the 
inspiration*  

10 Energy of the PSD in [0.25 - 0.375 Hz ] 21 (area of the inspiration*) × (inspiration’s duration 
[s]) 

11 Energy of the PSD in [0.375 – 0.5625 Hz ] 22 Product between the peak frequency of the PSD 
and the total energy of the PSD  

Table 8.1:  Features of the non-invasisve classifiers 
dV: 1st derivative of the inspiration; dPSD: 1st derivative of the PSD; PSD0: freq. at which the PSD 

function crosses 0 dB; *with amplitude normalization (an inspiration’s flow values were divided by the 
inspiration’s maximum flow value) 
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Training set 
 

Test set 
 

Validation set 
 

Total 
 

IFL breaths  
 

2,120 (33%) 
 

3,211 (50%) 
 

1,091 (17%) 
 

6,422 (100%)  
 

non-IFL breaths 
 

2,120 
 

5,269 
 

3,149 
 

10,538 
 

Total breaths 
 

4,240 
 

8,480 
 

4,240 
 

16,960 
 

Table 8.2: Breath distribution  
 

Discriminant analysis (DA) was performed with 3 different functions: Linear DA 

(LDA), Quadratic DA (QDA) and Mahalanobis DA (MDA). We used the validation set 

to find the SVM’s (SVM-light v. 6.01, University of Dortmund, Dortmund, Germany) 

optimal parameters, testing it with a polynomial kernel with degrees (4, 8, 17, 24) and a 

radial-basis-function (RBF) kernel with sigma values (0.1, 0.2, ... 1.0). Our Adaboost 

implementation (GML Adaboost Matlab Toolbox, MSU Graphics & Media Lab, 

Computer Vision Group, Moscow, Russia) uses classification and regression trees 

(CARTs) as weak classifiers. Three different variations of the Adaboost algorithm, 

standard Adaboost [114, 115], “gentle” Adaboost [116] and “modest” Adaboost [117], 

each with different generalization capabilities, were tested with several parameters: 

number of CART splits (1, 3, 6, 12, 24, 36, 64, 128) and maximum iterations (100, 300, 

500 cycles).  

Results 

The linear DA classifier achieved the best sensitivity and specificity of all DA 

classifiers, see Table 8.3. The SVM with the best performance was configured with a 

RBF kernel, a sigma of 0.7 and a vector of 7 selected features. Of all tested Adaboost 

classifiers, the best results were achieved with a “gentle” Adaboost algorithm with 128 
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CART splits, after 300 cycles of maximum iteration and a feature vector with 11 

features, see Table 8.3.  

As can be seen in the ROC curves, the best Adaboost classifier seems to deliver a better 

overall performance than the best SVM and the LDA classifiers, see fig 8.6. 

 

Table 8.3: Classification results of the non-invasive classifiers for classical criteriaSensitivity (Se), 
specificity (Sp), Positive Predictive Value (PPV) and Negative Predictive Value (NPV). 

 
 
 
 

  
LDA 

 
QDA 

 
MDA SVM  Adaboost 

 

Se 

 

0.81 

 

0.81 

 

0.89 0.86   0.87  

Sp 0.85 0.81 0.74 0.79 0.85 

PPV 0.77 0.72 0.68 0.72 0.78 

NPV 0.88 0.87 0.91 0.90 0.91 

Selected 
features 

(see Table 
8.1) 

 

1, 2, 7, 9, 11, 12, 
13, 14, 15, 17, 18, 

19, 20, 21 

 
7, 9, 10, 13 

 

3, 7, 9, 10, 13, 
15, 16, 19, 21, 22  

 

1, 7, 8, 9, 13, 14, 
19 

    

2, 3, 4, 5, 6, 7, 8, 
9, 13, 14, 19 

Vector 
length 

 

14               
  

4 
 

10 
 

 7 
 

11 
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Figure 8.6: Receiver Operator Characteristic (ROC) curves for the Linear DA (LDA) classifier, the 

SVM classifier and the Adaboost classifier for IFL classification by classical criteria. The curves 
were obtained by varying the threshold value of the classifier’s output in the range between -1 and 

+1. 

Discussion 

In respect to the non-invasive classifiers, IFL incidence had been previously annotated 

with the gold-standard esophageal pressure/flow relationship of each inspiration’s 

measured values. As the non-invasive automatic classifiers were trained with these 

gold-standard references, the objectiveness and validity of the non-invasive 

classification should be ensured. Only the gold-standard annotations of the measured 

P/
.

V -relationships by classical criteria were used for the non-invasive classification, so 

the reported non-invasive classification scores represent the overall score. Although the 

flow signal quality varied from patient to patient, the non-invasive classifiers did not 

present any patient-specific limitations during the classification. 

The Adaboost classifier shows a promising classification performance, as the 

classification sensitivity of 0.87 of our best classifier is very close to the sensitivity of 

0.88 reported by Ayappa et al. [14] for manual classification by human experts, while 
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the specificity of 0.85 of our best classifier, see Table 8.3, clearly outperformed their 

specificity of 0.77. It should be added that Ayappa et al.’s sensitivity and specificity 

included also the detection of gross respiratory events, such as apneas/hypoapneas, that 

are usually easier to detect. Other studies of non-invasive systems [19, 20] presented a 

distinctively smaller amount of analyzed breaths, making it more difficult to fairly 

compare them with our classification results.  

Conclusions 

In conclusion, several techniques have been proposed to non-invasively asses changes 

in UA resistance. The airflow signal seems to be one of the most promising non-

invasive signals with an easy and simple acquisition in clinical routine and that contains 

direct information on respiratory events. The automatic non-invasive classifier 

presented here for IFL detection achieved promising results on a considerable number 

of breaths with low computational costs, outperforming prior manual classification 

results achieved by human experts. As the classifier had been trained and validated with 

invasive gold-standard references, it could represent a promising tool for use in a 

clinical scenario.  

 



Chapter IX – Automatic differentiation of hypopneas with esophageal pressure  

 137 

Chapter IX: Automatic differentiation of 
central and obstructive hypopneas with 
esophageal pressure during sleep 
 

 Introduction 

One of the most important aspects of the diagnosis of Sleep Disordered Breathing 

(SDB) in regards of the appropriate choice of treatment, is the correct identification of 

respiratory events. Particularly, the correct differentiation between central and 

obstructive apneas/hypopneas is one of the most recurrent tasks due to the prevalence of 

the corresponding syndromes (OSAHS/CSAHS) [5]. Currently, esophageal pressure 

(Pes) measurement is considered the gold-standard technique for measurement of 

respiratory effort and the identification of obstructive and central events [6, 7]. Still, the 

complexity and invasiveness of esophageal pressure manometry and its impact on sleep 

[10] limits its usage in clinical routine. So, researchers have been recently trying to 

develop non-invasive systems for the differentiation between central and obstructive 

apneas/hypopneas [11, 12]. However, the clinical adoption of these techniques has been 

slow, mostly due to their limited clinical validation. The bottleneck when creating a 

gold-standard validation set is usually found in the manual identification of the 

mentioned events by a human expert, as it is a cumbersome procedure that may suffer of 

interscorer differences and subjective interpretation. Hence, the development of an 

objective and efficient method for automatic invasive assessment of central and 

obstructive events is desirable, as new invasive approaches have also been recently 

suggested [129].  
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Figure 9.1: System overview of the automatic hypopnea classifier by means of the esophageal 
pressure signal (invasive classifier) 

In this work a new automatic classifier is proposed based upon supervised machine 

learning techniques, see chapter VII, to automatically differentiate between central and 

obstructive hypopneas with the gold-standard Pes signal, see fig. 9.1. Our system 

focused on the differentiation of hypopneas, because pressure swings during a hypopnea 

are more subtle than during other events, therefore being considered one of the most 

challenging tasks [6, 7]. In a first step, hypopneas were manually scored by human 

experts to create a gold-standard validation set. Then, a specific set of features was 

extracted from the Pes-signal of each hypopnea in order to train and test the classifiers. 

Finally the performance of the different classifiers is evaluated and compared.        

Methodology 

Subjects 

Twenty-eight subjects had full nocturnal polysomnography (NPSG) with an 18-

channel recorder (Somnolab V2.01 Weinmann GmbH, Hamburg, Germany) at the sleep 

laboratories of Klinikum Bethanien hospital in Solingen, Germany. The clinical 

protocol was specifically designed for these purposes and approved by the hospital’s 

Ethics Committee. Twenty-three subjects were male and five were female. Mean values 
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± SD of the studied population for Apnea-Hypopnea Index (AHI) were 18.9 ± 18.5 

events/h (range 2.3 – 91.2 events/h) with a Hypopnea Index (HI) of 10.4 ± 6.6 events/h 

(range 1.1 – 27.3 events/h), body-mass-index (BMI) 28.5 ± 4.5 kg/m2 (range 21.0 – 

41.9 kg/m2) and age 52.6 ± 15.6 years (range 23 – 78 years).   

Sleep stages, apneas, hypopneas and other respiratory events were scored applying 

standard criteria [6]. According to these criteria, a hypopnea lasts for at least 10 seconds 

and is identified by a clear decrease (>50%) from baseline in the amplitude of a valid 

measure of breathing during sleep or is associated with either an oxygen desaturation of 

> 3% or an arousal [6]. The baseline is defined as the mean amplitude of stable 

breathing and oxygenation in the two minutes preceding the onset of the event [6]. With 

these criteria, hypopneas were independently identified in the the full-night PSG 

recordings of our twenty-eight patients by two human experts and the final hypopnea 

scorings were reconciled.   

For the scoring of a central apnea or a central hypopnea, a clear reduction in esophageal 

pressure swings from the baseline, as defined before, is required [6]. According to the 

guideline [3], there is no relative or absolute reduction in esophageal pressure during the 

event that can be used to differentiate between a central and an obstructive event, 

increasing the difficulty for the automatic differentiation. A human expert reviewed the 

priorly manually identified hypopneas and differentiated them into obstructive and 

central by using the airflow and Pes signals. Undifferentiated hypopneas,   mixed 

hypopneas and apneas were excluded from this study. A total of 477 obstructive and 

292 central hypopneas were manually scored, resulting in an overall of 769 manual 

hypopnea scorings. Pre-processing and detection of inspirations 
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The time markers of the manually scored hyopapneas were imported for our automatic 

processing, as the automatic detection of apneas/hypopneas in the flow signal has 

already been proficiently solved by others [12]. The specific purpose of this study is to 

propose a new method for the differentiation of obstructive/central hypopneas.  

The Pes signal presented noise and physiological disturbances (like swallowing or 

coughing artifacts) that had to be reduced. Flow and Pes pre-processing stages were 

performed as detailed in chapter V. 

Table 9.1: Extracted features  

In order to differentiate a hypopnea, the Pes signal of the hypopnea (hPes) and the 2 

min prior to the hypopnea’s start (Pes2min) were extracted and processed separately. In 

case hPes or Pes2min presented a significant baseline oscillation, linear trends were 

automatically removed from the signals (detrending).  

Respiratory periods in the extracted airflow and Pes signals were detected as described 

in chapter V, obtaining the signal’s maxima and minima for each respiratory cycle, see 

fig. 9.2. The corresponding flow/Pes inspiration pairs were then separately extracted in 

order to allow the individual analysis of each inspiration. In the case that less than two 

inspirations could not be detected in the Pes signal of a hypopnea due to artifacts, the 

Index Description Index Description 

1 Number of amplitude difference values 
of hPes 

6 and 7 
Median of the amplitude difference 
values of hPes + and - its standard 

deviation, respectively 

2 Median of  the amplitude difference 
values of Pes2min 

8 Relative respiratory effort index  

3 Median of the superior group of 
difference values of Pes2min 

9 Correlation index of the amplitude 
difference values of hPes  

4 Median of the inferior group of 
difference values of Pes2min 

10 Median of the 1st derivative of the 
maxima in hPes 

5 Median of  the amplitude difference 
values of hPes 

11  Median of the 1st derivative of the 
minima in hPes 
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whole hypopnea was discarded. A 7% of the 769 hypopneas were discarded by the pre-

processing algorithm because of artifacts, resulting in a total of 715 hypopneas that 

were finally available for the automatic processing and analysis. 

We used the manual hypopnea time markers to separate the Pes signal of the hypopnea 

(hPes), the flow signal of the hypopnea (hflow) and the 2 min prior to the hypopnea’s 

start (Pes2min and flow2min, respectively), see fig 9.2.  

 

Figure 9.2:  Example of a central hypopnea after pre-processing. Maxima were detected in the 
airflow signal and maxima and minima were detected in the Pes signal (circles). The crosses 

indicate the beginning and ending of the inspiratory periods, respectively. The triangle indicates the 
original, manual hyopapnea marker that indicates the beginning of the hypopnea. The arrow at the 
Pes signal indicates the amplitude difference for that respiratory cycle. The signals were separated 

into the signals of the hypopnea (hPes and hflow) and the signals of the 2min prior to the 
hypopnea’s onset (Pes2min and flow2min), respectively. Note the significant decrease in flow after 
the hypopnea’s onset in respect to flow2min and the significant decrease in respiratory drive for 

hPes in comparison to Pes2min, indicating the presence of a central hypopnea. 

 

Feature extraction 

The accurateness of the differentiation process will primarily depend on how well the 

extracted features characterize the pressure swings of central and obstructive 
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hypopneas. As no relative or absolute reduction in esophageal pressure during a 

hypopnea’s interval can be used to distinguish between central and obstructive 

hypopneas, the relative changes in amplitude in hPes in respect to Pes2min had to be 

compared to assess the relative changes in respiratory effort of an hypopnea. In order to 

minimize the effects of possible baseline drifts during the observed segments of the Pes 

signal, we were inclined to work with the amplitude difference of the corresponding 

minimum (inspiration) and maximum (expiration) of each respiratory cycle, see the 

arrow in fig. 9.2, instead of only using the Pes minima’s absolute amplitude values.  

After this preliminary processing, we started looking for the features that best 

characterize the differences between obstructive and central hypopneas and could be 

used to train our classifiers (Table 9.1). So, the overall number of amplitude difference 

values of the hPes signal was used as the first feature, see Table 9.1. As seen in figs. 9.3 

and 9.4, we computed the median of the amplitude differences of the Pes2min signal, 

see solid line on the left in figs. 9.3 and 9.4, dividing the Pes2min amplitude difference 

values in two groups, one located above this median and another located below. For 

each of these two groups, their respective median was computed again, see dashed lines 

on the left in figs. 9.3 and 9.4. The standard deviations of the Pes2min signal around the 

median can also be seen in figs. 9.3 and 9.4 as dash-dot lines on the left. For the hPes 

signal the median was computed, see solid line on the right of figs. 9.3 and 9.4, ± the 

standard deviation of hPes see dashed red lines on the right in figs. 9.3 and 9.4. All 

these parameters were assembled in the feature pool, see features (2 - 7) in Table 9.1, 

for the automatic classifier. 

With these visual references, we defined a relative respiratory effort index, see feature 

8 in Table 1, that defined four amplitude difference intervals of where the median of 

hPes could be located in respect to Pes2min, and assigned to these intervals numerical 
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values within the range[1,…, 4] (figs. 9.3 and 9.4). E.g. if the median of hPes was 

located above the median of the superior group of Pes2min, the relative respiratory 

effort index was assigned the value 1, see fig. 9.3, while if the median of hPes was 

located below the median of the inferior group of Pes2min, the relative respiratory effort 

index was assigned the value 4, see fig. 9.4.  

Furthermore, we observed that an obstructive hypopnea usually presented a sequential, 

(approx.) linear increase of amplitude differences (fig 9.4) representing the subsequent 

increase in respiratory effort typical of obstructive events, while the amplitude 

differences of central hypopneas (fig. 9.4) usually  are more constant, not showing a 

specific recurrent pattern. We assessed this characteristic by computing Pearson’s 

correlation coefficient of the hPes amplitude differences, using its value as a 

characteristic feature for the differentiation, see feature 9 in Table 9.1.  

Finally, we also observed a recurrent divergent behavior of the envelope of the hPes 

maxima and minima for obstructive hypopneas. So, we computed the median of the first 

derivatives of the amplitudes of the maxima and minima, respectively, see features 10 

and 11 in Table 9.1.   

The automatic invasive classifier was trained, tested and validated with the manual, 

gold-standard (Pes) annotations. 
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Figure 9.3: Example of the distribution of amplitude differences for an obstructive hypopnea. The 

amplitude difference values (circles) of the hPes segment are located on the right side of the figure 
and its median (solid line on the right) is located above the median (solid line on the left) of 

difference values of the Pes2min (circles on the left), representing an increase in absolute values of 
the respiratory effort. The values of the location index are indicated in the dash-dot circles. Note 

that the hPes difference values for the obstructive apnea show an approximate sequential 
increment, representing a progressive increase in respiratory effort due to the elevated UA 

resistance. 
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Figure 9.4: Example of the distribution of amplitude differences for a central hypopnea. The 
amplitude difference values (circles) of the hPes segment are located on the right side of the figure 

and its median (solid line on the right) is located below the median (solid line on the left) of 
difference values of the Pes2min (circles on the left), representing a decrease in absolute values of 
the respiratory effort. The values of the location index are indicated in the dash-dot circles. Note 

that the hPes difference values for the central apnea do not show a specific pattern. 
 

Furthermore, we also calculated Pearson’s correlation coefficient of the hPes amplitude 

differences, as we observed that an obstructive hypopnea usually presented a higher 

linear correlation of its amplitude differences fig 9.3 in comparison to a central 

hypopnea fig. 9.4, see feature (2), Table 9.1.  

Finally, we also usually observed a divergent behavior of the envelope of the hPes 

maxima and minima for obstructive hypopneas fig. 9.2 (above). So, we computed the 

median of the first derivatives of the amplitudes of the maxima and minima, 

respectively, see features (4, 5), see Table 9.1.   

Training and testing of the classifiers 

Supervised machine learning techniques, like Discriminant Analysis (DA), Support 

Vector Machines (SVMs) or boosting algorithms like adaboost, try to predict the 

belonging of a case to a pre-defined class from training data. During the training phase, 
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the classifiers learn how to solve the problem with a number of input values (features) 

that should be selected in order to best characterize the function to be predicted by the 

classifier. The training set is usually composed of a number k of cases (here k = 715 

hypopneas) characterized each by a number n of features, resulting in a (n-times-k)-

input matrix, and an output vector of length k containing the desired output classes 

{+1;-1} for each case. Here, the desired output values correspond to the manual, gold-

standard annotations for the obstructive {+1} and central {-1} hypopneas. A validation 

set is usually used in order to optimize and fine-tune each classifier’s parameters. 

Finally, the optimized and trained classifier is applied on a test set. The classifier’s 

predicted values are then compared to the desired output values in order to estimate the 

classifier’s performance. 

A cross-validation algorithm was used in order to randomly assign the hypopneas in a 

previously designated proportion to the training, test and validation sets, see (Table 9.2). 

In order to obtain the automatic invasive classifier that is closest to generalization, an i-

fold hold-out cross-validation was performed with i=100 iterations. The advantage of 

hold-out cross-validation over i-fold cross-validation is that the proportion of the 

training/validation split is not dependent on the number of folds (iterations). Thus, a 

number i of random training, validation and test sets were iteratively created to train, 

validate and test our classifiers. Finally, the mean outcome for the classification results 

of the i iterations was computed to obtain the overall score of the global classifier.  
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Obstructive 
 

Central 
 

Total 

Training set 157 93 250 (35%) 

Validation set 68 40 108 (15%) 

Test set 225 132 357 (50%) 

Total 450  265  715 (100%) 

Table 9.2: Hypopnea distribution for the training, validation and test sets 

Existing supervised machine learning techniques differ in their generalization 

capability and computational complexity. For this study, we selected three of the most 

popular classification techniques with increasing computational complexity. . 

Five different functions were used during the DA analysis: linear DA (LDA), diagonal 

linear DA (DLDA), quadratic DA (QDA), diagonal quadratic DA (DQDA) and 

Mahalanobis DA (MDA). The best performing function was chosen during the 

optimization phase with the validation set. 

SVM classification (SVM-light v. 6.01, University of Dortmund, Dortmund, Germany) 

also requires the optimization of several parameters. We used the validation set in order 

to chose between a polynomial kernel of degrees (4, 8, 16, 24) and a Gaussian kernel 

with sigma values (0.1, 0.2...0.9).  

Adaboost combines and weighs a set of weak classifiers to boost them into a strong 

final classifier. The weak classifiers here were classification and regression trees 

(CARTs) with an arbitrary number of splits. Different variations of the adaboost 

algorithm with different generalization properties have also been recently proposed. 

Standard adaboost, “gentle” adaboost and “modest” adaboost are the most important 

algorithms that will be used here (GML adaboost Matlab Toolbox, Moscow, Russia). 

Again the validation set was used to optimize the commented parameters, like the 

number of CART splits (1, 3, 6, 12, 24, 36, 64, 128) and maximum cycles of the 

adaboost algorithm (100 and 300 iterations).  
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The extracted features did not always individually allow a strict characterization of 

obstructive and central events. Thus, the best differentiation results were obtained by 

using a specific combination of features for each classifier, respectively. So, sequential 

forward selection was used to automatically select the most relevant subset of the 

described features that best fit each classifier for the hypopnea’s characterization. 

Results 

The invasive classifiers used the features extracted exclusively from the esophageal 

pressure signal in order to differentiate between central and obstructive events. After 

a100-fold hold-out cross-validation with the validation set, the best classification results 

for DA were achieved with the diagonal quadratic DA (DQDA) function and a feature 

vector comprising the features (1, 3, 7, 8), see Table 9.1. The best classification results 

for the SVM classifier were achieved with a Gaussian kernel, a sigma of 0.3 and a 

feature vector with the features (8, 9, 11). Of all tested adaboost classifiers, the best 

results were achieved with the gentle adaboost algorithm, 1 CART split and after 100 

cycles of maximum iteration. The feature vector for the adaboost classifier comprised 

the features (1, 2, 4, 5, 8). 

The mean classification results of the automatic classifiers in comparison to the 

manual, gold-standard hypopnea scorings after a 100-fold hold-out cross-validation can 

be seen in Table 9.3. In order to better observe and compare the classification 

performance, the results of each classifier for a random test and training set (Table 9.4) 

were plotted in form of ROC curves (fig. 9.5). According to the ROC curves, the 

adaboost classifier seems to deliver a better overall performance than the SVM and the 

DQDA classifiers. 

 



Chapter IX – Automatic differentiation of hypopneas with esophageal pressure  

 149 

 DQDA SVM Adaboost 

Sensitivity 0.85     0.82     0.90     
Specificity 0.81     0.89     0.90     

PPV 0.83     0.90     0.91     
NPV 0.83     0.82     0.90     

Accuracy 0.83 0.86 0.90 

Selected features 
(see Table 9.1) 1, 3, 7, 8 8, 9, 11 1, 2, 4, 5, 8 

Vector length 
 

4 
 

3 
 

5 
Table 9.3: Mean classification results after a 100-fold cross validation. Obstructive events were 

labeled as {+1} and central events as {-1}. 

As seen in the ROC curves, see fig. 9.5, the adaboost classifier seems to deliver a better 

overall performance than the SVM and the QDA classifiers when a specific test set is 

taken, see Table 9.4. 

 DQDA SVM Adaboost 

Sensitivity 0.88     0.82     0.87     

Specificity 0.80     0.92     0.92     
PPV 0.83     0.92     0.92     
NPV 0.86     0.82     0.87     

Accuracy 0.84 0.87 0.89 
Table 9.4: Classification results for a random test set. Obstructive events were labeled as {+1} and 
central events as {-1}. 
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Figure 9.5: Receiver Operator Characteristic (ROC) curves for the QDA, the best SVM and best 

adaboost classifiers for the differentiation between central and obstructive hypopneas. The curves 
were obtained by varying the threshold value of the classifier’s output in the range between -1 and 

+1. 

Disscusion  

An overall of 715 manual, gold-standard hypopnea scorings of 28 patients were 

automatically classified, representing a significant increase in the number of patients 

with systematic Pes measurement and in the number of gold-standard annotations than 

in comparable studies [11, 12].   

In regard to the invasive, automatic classifier, the information contained in the features 

extracted from the Pes signal seems to be adequate for the automatic differentiation of 

obstructive and central hypopneas. It strikes out that feature 8 (Table 9.1) was the only 

feature selected by all three classifiers, underlining the importance of the relative 

respiratory effort index for the classification process. The Pes differentiation criteria of 

hypopneas are identical to those of apneas [6], implying that the presented automatic 

differentiation system may also be applicable for the automatic differentiation of central 

and obstructive apneas. The elevated accuracy of our automatic hypopnea classifier 
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after a 100-fold hold-out cross-validation, see Table 4 , and using only 35% of the 

hypopneas for the training set, see Table 3, strikes out the system’s robustness and 

generalization capability.  

The adaboost classifier showed the best overall classification results (Table 4, fig. 5), 

although it was also the classifier with the highest computational complexity, the largest 

feature vector and processing time. The DQDA classifier showed a remarkable overall 

performance given the fact that it is the classifier with the lowest computational 

complexity, see Table 4 and fig. 5.  

Currently, only manual annotations of the Pes signal by human experts are accepted as 

gold-standard annotations for hypopnea differentiation [6]. As all classifiers here were 

trained and validated with manual, gold-standard annotations, the validity of the 

automatic classifier’s scorings should consequently be ensured. However, it should be 

remarked that because of a human scorer’s subjective interpretation, human interscorer 

agreement usually ranges between [80- 90%]. This limitation imposes an upper limit on 

the classification performance that can be achieved by an automatic classifier. The 

scores reported in this study are within this range of human interscorer agreement, so 

the classifiers presented here seem to be promising for the automatic, invasive 

differentiation of obstructive and central hypopneas and an objective and time-efficient 

creation of gold-standard validation sets.  

Conclusions  

A new system for differentiation of central and obstructive hypopneas with the gold-

standard esophageal pressure signal was presented. The outcome reported in this study 

represent the upper limit of human interscorer agreement [123]. Given that currently the 

only accepted gold-standard annotations are manual scorings by human experts, these 
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results should also correspond to the overall limit to be reached by an automatic 

classifier. Hence, the classification techniques presented in this study seem to be 

promising for the automatic, invasive differentiation of obstructive and central 

hypopneas and an objective and time-efficient creation of gold-standard validation sets. 

This should help to validate more efficiently and objectively non-invasive 

differentiation systems that have already been or are to be developed. 
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Chapter X: Non-invasive, automatic 
differentiation of central and obstructive 
hypopneas 
 

 Introduction 

As commented in chapter IX, the non-invasive differentiation between central and 

obstructive events has been one of the main challenges in recent time in SDB research. 

Different approaches for the non-invasive differentiation of hypopneas have been 

recently proposed [11 - 13] but their clinical adoption has been slow due to the limited 

clinical validation of these techniques. As our database contains systematic esophageal 

pressure (Pes) measurement, we have now the unique opportunity to achieve the gold-

standard validation [6, 7] of any new non-invasive technique that is developed and ease 

up its implementation in clinical routine. 

The main objective of this thesis has been the development of non-invasive assessment 

techniques for UA obstruction and respiratory effort. In the following, the techniques 

and systems presented in chapters VI, VIII and IX will be combined to create a new 

system that permits the non-invasive differentiation of obstructive and central 

hypopneas. This new automatic, non-invasive classifier, as the automatic invasive 

classifier in chapter IX, will also be based upon supervised machine learning 

techniques, see chapter VII, but the system’s input data will solely consist of 

information contained in the airflow signal. However, the validation of this system will 

be based upon the gold-standard Pes signal. Again, our system will focus on the 

differentiation of hypopneas, because hypopneas are one of the most subtle events 

during SDB and are therefore considered one of the most challenging tasks for 
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differentiation [6, 7]. The purpose of this work is, that after exhaustively validating the 

non-invasive algorithm, this new non-invasive system is finally implemented into the 

therapy devices of Weinmann GmbH by our partner R&D company MCC GmbH & Co. 

KG in Karlsruhe, Germany, to enhance the treatment of patients suffering of OSAHS, 

CSAHS and Cheyne-Stokes respiration. 

Non-Invasive Hypopnea Classifier
System overview

Full night 
PSG

Extraction of 
hypopneas (Flow) 

+ 2min

Pre-
processing

Detection of 
Inspirations

Features: 
IFL labels

Training of 
classifiers

Testing of 
classifiers

Manual hypopnea 
markers (time)

Non-invasive 
IFL classifier

Manual gold-standard 
hypopnea scorings 

(central/obstructive)
gold-standard IFL scorings

 

Figure 10.1: System overview of the automatic hypopnea classifier by means of the flow signal (non-
invasive classifier) 

In a first step, hypopneas were manually scored by human experts with classic NPSG 

criteria [6] and were then invasively and non-invasively differentiated by a human 

expert [6] to create a manual gold-standard annotation set and a non-invasive manual 

comparative set, respectively. Then, the non-invasive classifier described in chapter 

VIII was used on the airflow signal to obtain IFL related information of each hypopnea 

and the 2min prior to the onset of each event. With this and other information contained 

in the flow signal, a specific set of features was extracted from the flow signal of each 

hypopnea in order to train and test the classifiers. Finally the performance of the 

different classifiers is evaluated and compared.        
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Methodology 

Subjects 

Twenty-eight subjects had full nocturnal polysomnography (NPSG) with an 18-

channel recorder (Somnolab V2.01 Weinmann GmbH, Hamburg, Germany) at the sleep 

laboratories of Klinikum Bethanien hospital in Solingen, Germany. The clinical 

protocol was specifically designed for these purposes and approved by the hospital’s 

Ethics Committee. Given the complexity to record the Pes signal in NPSG studies, the 

number of patients in our study already represents an up to a three-fold increase in the 

overall cohort size in comparison to other studies with Pes measurement [12, 14, 16, 

81].  

Sleep stages, apneas, hypopneas and other respiratory events were scored applying 

standard criteria [6]. According to these criteria, a hypopnea lasts for at least 10 seconds 

and is identified by a clear decrease (>50%) from baseline in the amplitude of a valid 

measure of breathing during sleep or is associated with either an oxygen desaturation of 

> 3% or an arousal [6]. The baseline is defined as the mean amplitude of stable 

breathing and oxygenation in the two minutes preceding the onset of the event [6]. With 

these criteria, hypopneas were independently identified in the the full-night PSG 

recordings of our twenty-eight patients by two human experts and the final hypopnea 

scorings were reconciled.   

For the scoring of a central apnea or a central hypopnea, a clear reduction in 

esophageal pressure swings from the baseline, as defined before, is required [6]. 

According to the guideline [3], there is no relative or absolute reduction in esophageal 

pressure during the event that can be used to differentiate between a central and an 

obstructive event, increasing the difficulty for the automatic differentiation. A human 

expert reviewed the priorly manually identified hypopneas and differentiated them into 



Chapter X – Non-invasive, automatic differentiation of central and obstructive hypopneas  

 156 

obstructive and central by using the airflow and Pes signals. Undifferentiated 

hypopneas,   mixed hypopneas and apneas were excluded from this study. A total of 477 

obstructive and 292 central hypopneas were manually scored, resulting in an overall of 

769 manual hypopnea scorings. This represents a distinctive increase in manual 

hypopnea annotations in comparison to other studies that only analyzed an overall of 

167 manually scored apneas and hypopneas [11], 120 apneas and hypopneas [12] or 200 

hypopneas [129], respectively.  

Patient Central hypopnea Obstructive Hypopnea Total 

1 20 1 21 

2 0 0 0 

4 0 0 0 

5 23 9 32 

6 16 21 37 

7 1 1 2 

8 12 7 19 

13 9 4 13 

14 7 19 26 

15 1 4 5 

16 8 2 10 

17 0 0 0 

18 4 8 12 

19 15 4 19 

20 1 13 14 

21 75 25 100 

22 11 10 21 
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23 0 1 1 

24 2 0 2 

25 3 33 36 

26 1 42 43 

27 6 66 72 

28 8 1 9 

29 0 18 18 

30 8 28 36 

31 12 73 85 

32 21 43 64 

33 28 44 72 

Total: 28 292 477 769 

Table 10.1: Gold-standard hypopneas scorings performed by a human expert with the Pes signal  

The Solingen algorithm 

As commented in chapter IV, the research group of our partner hospital Klinikum 

Bethanien in Solingen, Germany, have been developing a decision tree algorithm for 

human experts to differentiate non-invasively between central and obstructive 

hypopneas. The decision tree is mainly based upon flattening information contained in 

the hypopnea’s respiratory pattern and some context-based information on the flow 

signal, this is information about events occurring around each hypopnea.  

With this new algorithm, human experts reviewed the full-night recordings of all the 28 

patients in our database, see chapter IV, and manually scored hypopneas with the 

mentioned criteria, only using the airflow signal. A total of 357 obstructive hypopneas 

and 412 central hypopneas were scored, resulting in an overall of 769 hypopneas. The 

classification results can be seen in Table 10.2 and Table 10.3 
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Patient Central hypopnea Obstructive Hypopnea Total 

1 19 2 21 

2 0 0 0 

4 0 0 0 

5 29 3 32 

6 35 2 37 

7 2 0 2 

8 18 1 19 

13 9 4 13 

14 8 18 26 

15 4 1 5 

16 9 1 10 

17 0 0 0 

18 12 0 12 

19 18 1 19 

20 1 13 14 

21 99 1 100 

22 17 4 21 

23 0 1 1 

24 2 0 2 

25 5 31 36 

26 1 42 43 

27 4 68 72 

28 9 0 9 

29 3 15 18 



Chapter X – Non-invasive, automatic differentiation of central and obstructive hypopneas  

 159 

30 6 30 36 

31 11 74 85 

32 22 42 64 

33 69 3 72 

Total: 28 412 357 769 

Table 10.2: Non-invasive hypopneas scorings performed by a human expert only with the airflow 
signal  

 

Sensitivity  0.68 

Specificity  0.88 

PPV  0.91 

NPV  0.62 

Accuracy  0.75 

Table 10.3: Overall classification results for the non-invasive Solingen algorithm in comparison to 

the gold-standard scorings with the same test set used by the automatic classifier. Obstructive 

hypopneas used the label {+1}, central hypopneas the label {-1}.  

A new automatic, non-invasive differentiation algorithm 

The time markers of the manually scored hyopapneas that indicated the starting time 

and the duration in seconds of each hypopnea were imported for the automatic 

processing, as the automatic detection of apneas/hypopneas in the airflow signal has 

already been proficiently solved [12, 13]. The specific purpose of this study is to find a 

new method for the automatic differentiation of obstructive/central hypopneas.  

Respiratory periods in the extracted airflow and Pes signals were detected as described 

in chapter V, obtaining the signal’s maxima and minima for each respiratory cycle. The 

corresponding flow/Pes inspiration pairs were then separately extracted in order to 

allow the individual analysis of each inspiration. In the case that less than two 
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inspirations were automatically detected in the flow and Pes signals during a hypopnea 

event, the hypopnea was discarded as an artifact. A 7% of the 769 hypopneas were 

discarded as artifacts by the pre-processing algorithm, such that a total of 715 

hypopneas were finally available for the automatic processing and analysis. 

In order to differentiate a hypopnea, we used the manual hypopnea markers to separate 

the Pes signal of the hypopnea (hPes), the flow signal of the hypopnea (hflow) and the 

2 min prior to the hypopnea’s start (Pes2min and flow2min, respectively. In case the 

hPes or Pes2min signals did not start with a maximum, the manual markers were 

automatically shifted (maximal 1 second) until a maximum was found at the beginning 

of each signal. 

IFL  detection in hypopneas as a possible critical differentiation feature 

Flattening patterns [14, 16, 18, 81] usually appear in inspiratory cycles during episodes 

of inspiratory flow limitation (IFL), which have been defined as a lack of increase in 

airflow despite increasing respiratory effort (decreasing intrathoracic pressure) [14, 16, 

18]. Thus, the presence of flattening provides information on changes in UA resistance 

and respiratory effort. During an obstructive hypopnea, the partial collapse of the UA 

leads to an increase in UA resistance which consequently prevents an increase in 

airflow despite the increasing respiratory effort [6, 7]. However, during a central 

hypopnea the cessation of flow is not caused by the collapse of the UA, but because of 

lack of neural input from the central nervous system to the diaphragm, representing 

diminished or even absent respiratory effort [77]. 

Hence, we hypothesized that the incidence of flattening in the inspiratory cycles of a 

hypopnea should provide direct information on the hypopnea’s etiology, as we would 

expect to find more inspirations affected by flattening in an obstructive hypopnea than 
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in a central hypopnea. In order to prove this hypothesis, we needed to objectively 

quantify and compare the presence of IFL in inspirations of obstructive and central 

hypopneas. Previous studies [81, Morgenstern 2009b], also see chapter VI, have already 

introduced an automatic system that allows objectively assessing the presence of IFL by 

means of an inspiration’s P/
.

V -relationship. IFL has been formally defined as a min. 

decrease of 1 cmH2O (0.7356 mmHg) of intrathoracic pressure without a corresponding 

increase in airway flow rate [14, 16, 18]. As the corresponding airflow and Pes-

inspirations of each breath were here separately available after the pre-processing stage, 

we were able to reconstruct the P/
.

V -relationship as indicated in [81, Morgenstern 

2009b], see chapter VI, to objectively automatically assess the presence of IFL in an 

inspiration. If an inspiration was assessed with IFL, it was assigned the value {+1}, 

while if it was a non-IFL inspiration it obtained the value {0}. The mean IFL value for 

all inspirations of an hypopnea, see feature 3 in (Table 10.4), and all inspirations of the 

2min prior to the hypopnea’s onset, see feature 1 in (Table 10.4), were computed. This 

process was repeated for each of the 715 manually scored, gold-standard hypopneas. 

Finally, the overall mean IFL values for all hypopneas and all the 2min segments was 

calculated. To prove the hypothesis that the IFL values of obstructive hypopneas were 

significantly (p < 0.01) different than those of central hypopneas, Mann-Whitney U 

tests were performed for these two features, respectively. 

The rest of the features of this hypopnea differentiation system, see features 2 and 4 – 

10 (Table 10.4), were exclusively extracted from the airflow signal.   
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 Feature  Feature 

1 mean IFL value of the inspirations in 

flow2min 
6 Mean value of the maximas of all 

inspirations in hflow 

2 Number of inspirations in flow2min 7 Difference between feature 5 and 

feature 6 

3 mean IFL value of the inspirations in 

hflow 
8 

Maximal area of an inspiration in hflow 

divided by the maximal area of an 

inspiration in flow2min 

4 Number of inspirations in hflow 9 Number of IFL inspirations in flow2min

5 Mean value of the maximas of all 

inspirations in flow2min 
10 Number of IFL inspirations in hflow 

Table 10.4: Feature table 

Training and testing of the classifiers 

As commented in chapter VII, Supervised machine learning techniques were used for 

the classification. Here, the desired output values correspond to the manual, gold-

standard scorings for the obstructive {+1} and central {-1} hypopneas. 

A cross-validation algorithm (MATLAB v.7.6, The Mathworks Inc., Natick, MA, 

USA) was used in order to randomly assign a proportion of the hypopneas to the 

training, test and validation sets, see (Table 10.5). In order to obtain the automatic 

invasive classifier that is closest to generalization, also k-fold hold-out cross-validation 

was performed with k=100 iterations. The advantage of hold-out cross-validation over 

k-fold cross-validation is that the proportion of the training/validation split is not 

dependent on the number of folds (iterations). Thus, a number k of random test and 

training sets were iteratively created to train, validate and test our classifiers. Finally, 
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the mean outcome for all the classification results of the k iterations was computed to 

obtain the overall score of the global classifier.  

Not all extracted features contained in the training set allowed a strict characterization 

of obstructive and central events. Thus, the combination of all features to train a 

classifier was not always of interest to obtain the best differentiation results. So, 

sequential forward selection was used to select the most relevant subset of the described 

features that best fit each classifier for the hypopnea’s characterization. 

  

Obstructive 
 

Central 
 

Total 

Training set 157 93 250 (35%) 

Validation set 68 40 108 (15%) 

Test set 225 132 357 (50%) 

Total 450  265  715 (100%) 

Table 10.5: Hypopnea distribution for the training, validation and test sets 

Results 

 For the automatic, non-invasive feasibility study, only the two features containing the 

IFL-related information, were obtained using the Pes-signal, see features 1 and 3 (Table 

10.4). All other features were extracted exclusively from the airflow signal. The mean 

IFL values ± standard deviation for features 1 and 3 (Table 10.4) for the 715 hypopneas 

separated into obstructive and central hypopneas can be seen in (Table 10.6). The mean 

IFL values were significantly different (p < 0.01) between obstructive and central 

hypopneas for the inspirations during a hypopnea (feature 3) and for the inspirations in 

the 2min. prior to a hypopnea’s onset (feature 1). However, the difference between the 

IFL mean values between central and obstructive hypopneas was significantly higher 

for feature 3, see (Table 10.6).  
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The best results for the automatic classification were achieved with a diagonal quadratic 

DA (DQDA) classifier, see (Table 10.7). The manual, non-invasive classification by 

human experts was only based upon features contained in the airflow signal, see (Table 

10.7), the Pes signal was not employed at any time. 

 
Mean IFL values for 

the 2 min preceding a 
hypopnea (feature 1) 

Mean IFL values for the 
hypopnea (feature 3) 

Obstructive 
hypopneas 

0.3938 ± 0.2409 0.4721 ± 0.3391 

Central 
hypopneas 

0.3092  ± 0.2127     0.3380 ± 0.3277 

Mean 
differences 0.0846 0.1341 

Table 10.6: Mean IFL values ± standard deviation for the inspirations in the 2min preceding a 
hypopnea and for the inspirations of a hypopneas  

 

 DQDA Solingen 

Sensitivity 0.72     0.68 

Specificity 0.71     0.88 

PPV 0.81     0.91 

NPV 0.60     0.62 

Accuracy 0.72 0.75 

Features 3, 7, 8, 10 
Flattening and context-based 

information 
Table 10.7: Mean classification results after a 100-fold cross validation. Obstructive events were 

labeled as {+1} and central events as {-1}  

 

Disscusion  

This chapter presented a new a new concept for the non-invasive differentiation of 

obstructive and central hypopneas with the esophageal pressure and the nasal airflow 
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signals. An overall of 715 manual, gold-standard hypopnea scorings of 28 patients were 

automatically processed, representing a significant increase in the number of patients 

with systematical Pes measurement and in the number of gold-standard annotations than 

in comparable studies [11, 12].  

The system presented here uses the information indirectly contained in the flattening 

patterns of airflow inspirations to differentiate hypopneas. Unlike the invasive classifier 

which, as commented, should be applicable to both apneas and hypopneas, the non-

invasive classifier should solely work with hypopneas, as it would be difficult to assess 

flow patterns during apneas as the flow signal is very close to the baseline. 

We have, to our knowledge for the first time, objectively demonstrated that obstructive 

hypopneas have a significantly higher (p < 0.01) incidence of IFL than central 

hypopneas. For the objective assessment of IFL we used the P/
.

V -relationship that has 

been routinely used by others [16, 81, Morgenstern 2009b], also see chapter VI, to 

reliably identify flattening patterns. Furthermore we have also shown that the difference 

between the overall mean IFL scores of central and obstructive hypopneas when 

observing just the hypopnea episode (0.13) are higher than during the corresponding 

2min segment prior to the hypopnea’s onset (0.08), see (Table 10.6). This may be the 

reason why the forward selection method priorized feature 3over feature 1 for the 

classification process, see (Table 10.7). The importance of the IFL related information 

contained in features 1 and 3 for the accurate differentiation of central and obstructive 

hypopneas is underlined by the fact that when we trained classifiers with combinations 

of the features extracted only from the airflow signal, see features 5-10 (Table 10.4), 

they scored a distinctively lower specificity and/or accuracy on the same training and 

test sets as the original classifier.  
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Even though features 8 and 10 (Table 10.4) of the automatic hypopnea classifier 

(Table 7) were obtained non-invasively just by analyzing the airflow signal, features 3 

and 10 (Table 10.4), which have been shown to be critical for the automatic 

classification process, were obtained by means of the invasive P/
.

V -relationship 

[Morgenstern 2009b]. However, recent developments, see Chapter VII and 

[Morgenstern 2009b], have suggested new approaches that allow assessing IFLepisodes 

non-invasively with the airflow signal. Hence, these methods should then permit 

acquiring also features 1 and 3 non-invasively and,consequently, the development of an 

entirely non-invasive automatic hypopnea differentiation system.  

The results for our automatic classifier are promising and demonstrate the feasibility of 

a non-invasive classification, as the classifier’s accuracy is approximately on par with 

the results obtained with the manual, non-invasive scoring, see Table 10.7. We were 

inclined to use the results of this algorithm to compare the performance of our 

automatic system, as other non-invasive systems in the literature [12] presented a 

significantly smaller amount of analyzed hypopneas than our system. Furthermore, the 

only non-invasive study [12] the airflow signal for the hypopnea differentiation did not 

use gold-standard Pes signal annotations to validate their classifier. This increases the 

difficulty to fairly compare these studies’ respective classification results with our 

system. Consequently, we decided to use the manual non-invasive classification 

algorithm to evaluate our automatic classifiers’ performance. The manual non-invasive 

classification by human experts was only based upon features contained in the airflow 

signal (Table 10.7), the Pes signal was not employed for the classification. As with most 

systems only using NPSG signals [129], the manual classification algorithm showed a 

strong tendency to over-classify central events (0.88) in detriment of the correct 
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identification of obstructive events (0.68), see Table 10.7. The automatic classifier 

showed a better balanced identification performance of the two hypopnea classes, see 

Table 10.7. This underline the importance of using objectively extracted respiratory 

effort related information during the hypopnea’s differentiation process. As with the 

invasive classifier, the manual, gold-standard hypopnea annotations were also here used 

for the training and testing of the automatic classifier, so the validity of the automatic 

differentiation scores should be ensured. However, further development is needed to 

obtain the robustness and classification and generalization results comparable to those 

of the invasive classifier, see chapter IX. Still, we are confident that the promising 

insights obtained in this study allow coming closer to the implementation of a robust, 

automatic, entirely non-invasive hypopnea differentiation system that is validated with 

an extensive set of manually or automatically created gold-standard, hypopnea 

annotations. 

Outlook: A continuous measurement of IFL by analyzing flattening 
patterns 

The described non-invasive IFL classifier, see chapter VIII, has a discrete, binary 

outcome of {0} or {1} (IFL present/ not present) for each inspiratory cycle. Obtaining a 

continuous indicator for IFL/flattening would be the next logical step for the non-

invasive estimation of UA obstruction and changes in respiratory effort. The goal is to 

rebuild the “ideal airflow curve” of a breath with IFL, this is, the corresponding non-

IFL airflow pattern of that IFL breath with the proportional correspondence in airflow 

amplitude and area  in order to permit a continuos numerical assessment of the changes 

that have affected that breath. The information on the changes in UA obstruction and 

respiratory effort are implicitly contained in the flattening pattern of the IFL affected 
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breath. So, the characteristics of the flattening pattern should give hints on how to 

reconstruct that ideal curve, see fig 10.2.Thus, the final differences between the IFL 

affected inspiration and the reconstructed ideal airflow curve of that breath should 

permit closely quantifying the UA obstruction and/or changes in respiratory effort that 

have occured  
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Figure 10.2: Hypothesis on the geometric reconstruction of the ideal flow curve  

In order to find a valid base for the reconstruction of the ideal airflow curve, we started 

looking for Pes-curves with the most similar amplitude value and correlation coefficient 

value (similarity in shape) but presenting different UA obstructions. Thus, we looked 

for inspirations with very similar characteristics of their Pes values and patterns but 

significant differences in their respective airflow inspirational patterns (IFL or non-IFL 

), see fig. 10.3. We had to limit the time intervals in which to search for similar Pes-

curves, as the proportionality between the Pes and flow values was only valid for a 

certain time interval, see fig. 10.4 The optimal interval length was estimated at 30 min 

after analyzing different interval lengths in a range from [1 min. 2 hours] for all patients 

and computing the correlation coefficient between Pes and flow values for non-IFL 
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breaths. The interval with the highest correlation coefficient value, this is the interval 

with highest flow-Pes proportionality, was selected as the optimal interval length. 
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Figure 10.3: Example of two different Pes inspirations obtained in a 30 min interval (above left). 

The flow inspirations (left) show a clear difference in UA obstruction (IFL and non-IFL), such that 

their respective P/V-relationship differ (below). The P/V-relationship with an artificial sinus-

function as a subsititute for the orginal Pes signal shows significant deviations from the original 

(above right). 
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Figure 10.4: Pes (min) and flow (max) values correspondence for non-IFL breaths of patient 4. 

Although a linearity is present with a correlation coeff. > 0.5, it was necessary to split up the patient 

into shorter intervals to achieve a higher linearity between Pes and flow. 
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We guessed that amplitude and time normalization of the Pes and airflow signals of an 

inspiration could help to simplify the ideal curve reconstruction problem. However, this 

procedure distorts the original flattening patterns. In order to avoid the error caused by 

amplitude normalization, we also explored the possibility to approximate an 

inspiration’s resistance values by differentiating between IFL and non-IFL cases with 

the P/
.

V -relationship.  

We hypothesized that the exponential model (see chapter VI) could be used to 

approximate the original IFL P/
.

V -relationship and that the exponential model’s 

coefficients could be used to regress to the non-IFL P/
.

V -relationship. However, in 

order to make a non-invasive estimation, we would need to avoid using the Pes signal or 

substitute the Pes curve used to calculate the P/
.

V -relationship with an artificial 

function. After manually analyzing an important number of IFL/non-IFL cases with the 

same respiratory effort, see fig. 10.5, we came to the conclusion that an artificial 

function such as a sinus curve, an exponential curve or a parabola could be used to 

reconstruct the original Pes curve. When comparing the cross-correlation coefficient of 

a sinus curve with the Pes inspiration curve of all breaths, an overall correlation value of 

82% was achieved. This implies that the Pes-inspiration curve could be replaced with an 

artificial curve suffering a limited estimation error. Other functions, such as a 

trapezium, see fig. 10.6, are of limited value because of their tendency to under- or 

overestimate the area for the flattening curves, see fig. 10.7. The inspiration would have 

to be normalized in time (width) but should not be normalized in amplitude for the 

reconstruction to be proportional and valid. 
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Figure 10.5: Two different examples for two correlated flow curves  
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Figure 10.6: Examples for reconstruction functions to estimate a numerical value of the resistance 

factor 
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These results were later confirmed by comparing the estimation of the real resistance 

values with the estimated respiratory resistance. Real resistance was calculated by 

dividing the area of the Pes curve with the area of the flow curve according to the 

general formula 
.

/R P V= . 

Conclusions  

A new system for non-invasive differentiation of central and obstructive hypopneas has 

been presented. This system uses only the airflow signal to extract information on 

flattening and other parameters to feed a classifier that bases its decision process upon 

this information. We were able to confirm that obstructive hypopneas consist of 

significantly more inspirations with flattening pattern than central hypopneas, 

representing an important feature for their correct differentiation. Primary results are 

promising and match up with the results obtained by human experts in non-invasive 

classification, underlining the feasibility of this study. Further work will be required to 

optimize the classification process and permit the non-invasive system’s 

implementation into a current therapy device for treatment of OSAHS, CSAHS and 

Cheyne-Stokes respiration. For this purpose, a continuous flattening measurement based 

upon the geometrical reconstruction of the ideal flow curve for an IFL-affected flow 

curve seems a promising approach. 
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Chapter XI: Conclusions 
 

 Contributions of this thesis 

The contributions of this thesis have been focused in the design and assessment of novel 

processing and analysis methods of the airflow and esophageal pressure (Pes) signals 

during sleep in order to invasively and non-invasively assess UA obstruction and 

respiratory effort. In total, four different systems, see chapters VI and VIII - X, have 

been proposed to detect inspiratory flow limitation (IFL) and differentiate obstructive 

and central hypopneas invasively and non-invasively. The results have been submitted 

and published in international journals and national and international scientific 

congresses [Morgenstern 2008a-d, 2009a-e]. 

Database 

Given that Pes measurement is not common in clinical routine and that NPSG studies 

that include Pes measurement are rare, the development from scratch of the new 

protocol for a NPSG database with systematic pressure measurement and the acquisition 

of the NPSG of 28 patients has been an important task of this thesis. The NPSG 

database was acquired in cooperation with the group of Prof. Randerath at Klinikum 

Bethanien, Solingen, Germany. The majority of the quoted studies in the literature that 

worked with esophageal pressure measurent, presented a significantly inferior number 

of patients than our study, like e.g Hosselet et al. [16] with 10 patients,  Ayappa et al. 

[14] with 15 patients,  Clark et al. [81] with 7 patients, Tamisier et al. [71] with 12 

patients or Hudgel et al. [57] with 5 patients. Thus, the cohort size of 28 patients of our 

study is quite superior to that of comparable studies with esophageal pressure 

measurement. Our NPSG database represents an important asset that will be used for 
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further medical, clinical and technical investigation purposes by the group in Solingen, 

our research group and other research groups that may be granted the access to this 

database in a recent future. 

IFL detection 

Invasive IFL detection 

A new exponential model was proposed [Morgenstern 2008a, 2008c, 2009a, 2009b] to 

enhance the automatic classification of IFL with esophageal pressure measurement. The 

model proved to be superior to the other models in the literature in two out of the three 

evaluation criteria that were chosen for its assessment. An automatic, gold-standard IFL 

classification system like described in [81] was implemented in order to obtain the gold-

standard IFL labels for each inspiration and validate our model, see chapter VI. 

Non-invasive IFL detection 

A new non-invasive system of IFL classification was presented [Morgenstern 2008b, 

2008d, 2009a, 2009b] to allow the classification of IFL only by means of the airflow 

signal, see chapter VIII. Using spectral analysis to analyze the characteristic flattening 

pattern of IFL breaths, we were able to obtain excellent detection results with our new 

system using supervised machine learning techniques. As the gold-standard IFL labels 

of the system presented in chapter VI were used, the validity  of the non-invasive 

classification should be ensured. 

Differentiation of hypopneas 

Invasive hypopnea differentiation  

A new invasive system for differentiation of obstructive an central hypopneas was 

proposed [Morgenstern 2009c, 2009d, 2009e] , see chapter IX. Hypopneas were 

manually classified and differentiated by a human expert using the airflow and the Pes 
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signal, delivering gold-standard hypopnea markers for our processing. By analyzing the 

evolution of pressure swings during these hypopneas and the 2min prior to the onset of 

the events, we were able to characterize and differentiate automatically between central 

and obstructive events. This system opens the way to create a valid and extensive 

validation set for the non-invasive system.  

Non-invasive hypopnea classifier 

Finally, the feasibility of a non-invasive hypopnea differentiation system was 

demonstrated [Morgenstern 2009e], see chapter X. We were able to use the IFL-related 

information of the inspirations during a hypopnea to differentiate between obstructive 

and central events. We objectively demonstrated, to our knowledge for the first time, 

that obstructive hypopneas showed significantly (p < 0.01) more IFL inspirations than 

central hypopneas. The results of our system were compared to the outcome of a new 

non-invasive and context-based algorithm developed for manual classification by 

human experts, matching their results. A new system for the continuous and numerical 

assessment of flattening was proposed by means of geometrically reconstructing the 

ideal airflow curve of IFL breaths. 

Outlook 

The feasibility non-invasive system presented here represents an important step towards 

the non-invasive differentiation of obstructive and central events. The insights obtained 

here and the classification results that have been achieved allow an objective invasive 

and non-invasive estimation of UA obstruction and respiratory effort, representing an 

important step towards the correct diagnosis of SDB events. Should the ideal flow-curve 

algorithm be further developed and then implemented into this system, we expect a 

significant enhancement of the non-invasive differentiation results. Once this non-
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invasive algorithm has been optimized to achieve an overall accuracy of over 80% and a 

robust generalization capability, a possible application in a clinical scenario could be 

considered.  Our partner company MCC GmbH & Co. KG has suggested that the 

implemention of this non-invasive system in commercially available therapy devices 

(Weinmann GmbH, Hamburg, Germany) could be feasible and would provide another 

clinical tool for the therapy of patients suffering of SDB.   

In conclusion, the physiological and technical insights obtained in this thesis represent 

an important advancement in the invasive and non-invasive estimation of UA resistance 

and respiratory effort during sleep, paving the way to allow a better and more objective 

diagnosis of SDB events in clinical scenarios. 
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Appendix A 
An approach to the derivation  

of Aittokalio et al.’s mathematical model  

In the following, an approach is intented to explain and derive Aittokallio et al.’s 

[56] model and the origin of its partial differential equations. The following slides 

and figures were extracted from a presentation created by the author of this thesis 

[29]. 
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Mathematical Reminders 
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Partial differential equations (PDEs) 

 

Part of the equations exposed in this annex were obtained in part from The Free Encyclopedia 

Wikipedia (www.wikipedia.org). 
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Das Problem 

Der Zwölf-Elf kam auf sein Problem 
und sprach: Ich heiße unbequem. 
Als hieß' ich etwa Drei-Vier 
statt Sieben -- Gott verzeih mir! 
 
Und siehe da, der Zwölf-Elf nannt' sich 
von jenem Tag ab Dreiundzwanzig. 

Christian Morgenstern, 1905 

 


