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ABSTRACT

Patients sometimes suffer apnea during sedation procedures or after general anes-

thesia.  Apnea presents itself in two forms: respiratory depression (RD) and respiratory

obstruction (RO).  During RD the patients' airway is open but they lose the drive to

breathe.  During RO the patients' airway is occluded while they try to breathe.  Patients'

respiration is rarely monitored directly, but in a few cases is monitored with a capnomet-

er.  This dissertation explores the feasibility of monitoring respiration indirectly using an

acoustic sensor.  In addition to detecting apnea in general, this technique has the possibil-

ity of differentiating between RD and RO.  Data were recorded on 24 subjects as they

underwent sedation.  During the sedation, subjects experienced  RD or RO.

The first part of this dissertation involved detecting periods of apnea from the

recorded acoustic data.  A method using a parameter estimation algorithm to determine

the variance of the noise of the audio signal was developed, and the envelope of the audio

data was used to determine when the subject had stopped breathing.  Periods of apnea

detected by the acoustic method were compared to the periods of apnea detected by the

direct flow measurement.  This succeeded with 91.8% sensitivity and 92.8% specificity in

the training set and 100% sensitivity and 98% specificity in the testing set.

The second part  of  this dissertation used the periods during which apnea was

detected to determine if the subject was experiencing RD or RO.  The classifications

determined from the acoustic signal were compared to the classifications based on the



flow measurement in conjunction with the chest and abdomen movements. This  did not

succeed with a 86.9% sensitivity and 52.6% specificity in the training set, and 100%

sensitivity and 0% specificity in the testing set. 

The third part of this project developed a method to reduce the background sounds

that were commonly recorded on the microphone.  Additive noise was created to simulate

noise generated in typical settings and the noise was removed via an adaptive filter.  This

succeeded  in  improving  or  maintaining  apnea  detection  given  the  different  types  of

sounds added to the breathing data.
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CHAPTER 1

INTRODUCTION

1.1 Patient Safety in Sedated Care

Patients  often  undergo  painful  procedures  that  require  sedation.   When  such

procedures are performed in the physician's office, adverse events occur at a rate of 66

per 100,000 procedures as compared to 5.3 per 100,000 procedures in an ambulatory

surgery center.  Death occurs at a rate of 9.2 per 100,000 procedures in the physician's

office as compared to 0.78 per 100,000 procedures in an ambulatory surgery center [1].

Mortality rate at an ambulatory surgery center is comparable to mortality rate at an inpa-

tient surgery center [2].  A significant source of the increase in adverse events and deaths

is the significant difference in patient monitoring.  In an operating room and ambulatory

or inpatient surgery center, patients are intubated, allowing breath rate and volume to be

monitored and controlled directly.  Another significant difference is the absence of an

anesthesiologist in the physician's office.  Guidelines on what monitoring equipment and

personnel  are needed vary from state to state,  but are still  subject  to ASA and OBA

guidelines  [3].  More specifically, Domino et al.  [4] state that a  significant number of

adverse events and deaths could be prevented by improved monitoring in the physician's

office.

The objective of this project is to develop a new respiratory monitor that will

detect the respiratory function from the sound recorded at skin over the trachea.  Sounds
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recorded at the skin over the trachea will be processed to detect periods of apnea.  In

addition, an adaptive filter will be tested to remove any ambient sounds not related to

breathing so that apnea can be detected reliably.

1.2  The Need for Better Respiratory Monitoring

1.2.1 Current respiratory monitors

Respiratory  monitors  used  in  the  physician's  office include  pulse-oximetry,

thoracic-impedance plethysmography, and capnometry.  Direct respiratory flow measure-

ments are not typically monitored because intubation or a tight-fitting facemask are not

present in a  procedure at the physician's office [5].

1.2.2 Pulse-oximetry

Pulse-oximetry measures the blood-oxygen saturation through a transcutaneous

light measurement on an appendage.  Pulse-oximetry is a very common and useful monit-

or because of its ability to continuously measure the blood-oxygen saturation and meas-

ure the patient's  heart  rate.   Although it  does measure the blood-oxygen saturation it

cannot replace direct respiratory monitoring.  A healthy well oxygenated patient, receiv-

ing oxygen via a facemask or nasal cannula, can stop breathing for 131 seconds before

the oxygen saturation falls below 92% and the alarm of the pulse-oximeter sounds.  This

amount of time can be increased up to 215 seconds in cases where hypothermia and vaso-

constriction are present [6].  This means that several minutes can pass from the time that

the patient has stopped breathing to the time that the pulse-oximeter would show a notice-

able change in his/her blood-oxygen saturation.  During periods of apnea the oxygen

saturation falls, and the CO2 concentration in the blood increases.  Excessive concentra-
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tions of CO2 can cause metabolic acidosis of the blood, which sets the patient at risk for

cardiac arrhythmias [7-9].

1.2.3 Plethysmography

Thoracic-impedance plethysmography  uses ECG electrodes on the chest to meas-

ure  the  change  in  thoracic  impedance.   Less  common  is  respiratory  inductance

plethysmography (RIP), which is measured by finding the change of inductance in wires

sewn into elastic bands that are placed on the chest and abdomen [10].  Both forms of

plethysmography  can  measure  the  relative  change  in  chest  and  abdomen  volume.

Plethysmography  directly  measures  respiratory  effort  but  can  be  corrupted  by  body

movement of the patient.  Plethysmography is a relative measurement.  The plethysmo-

graphy measurement  can be calibrated to  the change in lung volume measured by a

respiratory flow meter if a respiratory flow measurement is present. Using this calibra-

tion, change in chest and abdomen volume can be estimated to be the change in lung

volume [11].  Although this is a useful measurement, the calibration cannot be performed

unless the patient is wearing a tight-fitting facemask, or is intubated. 

If  a direct airway flow measurement is available in addition to the plethysmo-

graphy signal, together they can be used to determine whether periods of apnea are due to

respiratory obstruction (RO) or  respiratory depression (RD).   In  the case of  RO the

plethysmography signal would show chest and abdomen movement with no airway flow

in the direct respiratory measurement.  In the case of RD the plethysmography signal

would show no significant change in volume while the direct respiratory measurement

would show no significant  flow.  In  the absence of  a direct  flow measurement,  if  a

patient's airway becomes obstructed, but the patient continues to try to breathe, the meas-
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ured change in the calibrated plethysmography signal might be mistakenly counted as a

normal breath.    This can show that the patient is breathing normally but no valid gas

exchange occurs [12]. 

1.2.4 Capnometry

Capnometry measures the concentration of CO2 in expired air.  The gas sample is

obtained through a nasal cannula placed in the nose.  Capnometry is important because of

its ability to give a relative respiratory rate noninvasively.  Capnometry cannot reliably

estimate  breath  volume  based  on  the  length  of  the  expiratory  period  and  CO2

concentration of each breath.  Capnometry respiratory rate estimation also relies on the

assumption that the nasal passage is not occluded.  Nasal cannula are also uncomfortable

and dislodge easily.   If  a patient stops breathing for a short period of time, the CO2

concentration within the lungs increases as the  CO2 concentration in the venous blood

increases.  The capnometer can be used to detect hypopnea because the PaCO2 increases

with decreased ventilation. Hypopnea is defined as a period of shallow breathing or a

period of low respiratory rate.  

1.3  Acoustic Respiratory Monitoring

1.3.1  Current use of respiratory sounds by physicians

Since the development of  the stethoscope in the 19th century, anesthesiologists

have relied on directly listening to the patient breathing through an esophageal stetho-

scope  or  precordial  stethoscope  [13].   Today  most  anesthesiologists  use  the  pulse-

oximeter or capnometer rather than the esophageal or precordial stethoscope  to continu-

ously monitor the respiratory activity of a patient [14]. Anesthesiologists listen to breath
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sounds to detect esophageal intubation, endobronchial intubation, and airway obstruction.

Listening to patients breathe can be laborious and is also not convenient for the anesthesi-

ologist to be tethered to the patient during a procedure.  For this reason breath sounds

have been  analyzed  and modeled  electronically  using computer  algorithms to  detect

respiratory rate and classify breath sounds [15-21].  This research has led to a recently

FDA approved acoustic respiratory monitor developed by Masimo Corporation (Irvine,

CA) [22]. Continued research is needed to improve upon current designs and technolo-

gies.

1.3.2 The source of respiratory sounds at the trachea

Breathing sounds are created as the flow within the trachea becomes turbulent.

The turbulence occurs at the narrowest point in the respiratory path.  The glottal opening

is the primary source of breath sounds [23].  The critical flow for the tracheal turbulence

happens when the tracheal flow rate exceeds 7.2 l/m, which corresponds to a tracheal

Reynolds number of  1000 [23]. 

During normal breathing, airway flow  is correlated with the amplitude of the

sound [15,17,21].  This relationship is not linear, but it is possible to estimate flow from

the amplitude of the breath sound [21].  The relationship of flow to sound amplitude has

been modeled with  the equation  A=kF3.0±0.2, where  k  is  a  constant,   A  is  the  sound

amplitude in units of volts, and F is the flow rate in liters per second [16,24].  Beck and

Olson et al. [24] did not give some of the units for this equation.  A more detailed explan-

ation  is  given  in  Chapter  2.   Similarly,  Kraman  measured  the  relationship  between

tracheal  flow  and  sound amplitude  in  a  model  of  a  canine  respiratory  airway  [25].

Kraman concluded that the sound amplitude is directly proportional to the flow rate (l/s)
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squared.  Calibration of the audio amplitude to the flow rate is necessary in order to make

a flow rate estimate using the audio signal.  This is because the size of the sub-glottal

opening near the trachea varies between patients  [15], as well as the amplitude of the

audio with respect to where the transducer is placed on the patient relative to the sound

source.   

1.3.3 Measurement of respiratory rate from normal tracheal sounds

Sierra et al. [19] estimated the respiratory breath rate from the acoustic sounds in

both healthy patients and those with pulmonary disease.  Sierra et al. used a piezo-electric

film transducer placed on the neck to record breath sounds.  The methodology in Sierra et

al. involved estimating the respiratory rate from the autocorrelation function of the audio

envelope.  Sierra et al. performed this by taking a section of the audio envelope and

calculating the autocorrelation of it.  Sierra et al. then found the local maxima of the auto-

correlated signal.  The number of samples between each local maxima was used as the

number of samples between each breath and was used to calculate a breath rate.  This

algorithm worked well for the healthy patients, with  R2 = 0.99  when compared to the

respiratory rate measured by a pneumotachometer, which is the current gold standard.

This value dropped to  R2 = 0.87 for patients with pulmonary disease. Major errors were

found to be related to low signal-to-noise ratio and from sounds not related to breathing,

both external sounds like talking and internal sounds like swallowing.  Sierra et al. also

compared a manually counted respiratory rate from the audio data to that of the gold

standard  by  manually  counting  the  breaths  of  the  audio  envelope.   This  method

performed with similar results to the automatic detection algorithm.  Although Sierra et

al. were successful in measuring an accurate respiratory rate from the audio envelope, the
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ability of this algorithm to detect apnea was not determined.

1.4 Classification of Snoring and Obstruction

1.4.1  Source of snoring and obstructive sounds

Snoring occurs when loose adipose tissue near the oropharynx vibrates and slaps

against other tissue [26]. This generally only partially occludes the airway but in severe

cases this turns into RO where the loose tissue completely occludes the airway [27,28].

RO that occurs in nonsedated patients as they sleep is called obstructive sleep apnea

(OSA).  OSA poses a serious risk to an estimated 24% of the American population [26].

Because of the prevalence of OSA, research has been done to automatically record and

detect periods of OSA without the need of an all-night study called polysomnography

[28-31].  Benumof et al.  [26] state that patients undergoing medical procedures that are

suspected of having OSA are at higher risk for life-threatening occurrences during periop-

erative periods.  The detection of apnea and classification of apnea as RO during a seda-

tion would be a valuable information to physicians performing the procedure.

1.4.2  Literature review of methods for snore sound classification

Hara et al.  [29]  attempt to decipher the difference between snore sounds gener-

ated by simple snorers versus those generated by patients with OSA.    Hara et al. used a

Multidimensional Voice Program (MDVP) using inputs of soft phonation index, noise

harmonics ratio, and power ratio in an attempt to decipher between simple snore sounds

and obstructive snore sounds.  Hara et al. defined simple snore sounds as snores that still

allow the subject to be normally ventilated.  Hara et al. concluded that the most promin-

ent difference between simple snore sounds and obstructive snore sounds was the range
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in the acoustic spectrum observed in obstructive snore sounds.  Obstructive snore sounds

showed multiple harmonics in the spectrum up to 4000 Hz, while simple snore sounds

were observed to have spikes in the spectrum under 1000 Hz.  

Jane et al. [28] used a multilayer neural network to decipher between obstructive

snore sounds and simple snore sounds.  This neural network received 22 temporal and

spectral features from each sound segment as inputs.    Jane et al. used a large database of

sounds consisting of 625 pre-selected events.  Using this strategy, the neural network was

able to provide an 82% sensitivity and 90% specificity of OSA snore detection.

Nakano et al.  [30] provided a different approach to classifying periods of OSA.

Nakano et al.  used the sounds recorded at the trachea to calculate the power spectral

density (PSD) per  Hz.  This produced a single value of  the summed PSD spectrum

weighted by the inverse valued frequency in a specified frequency band.  Obstructive

snoring was classified if the peak value of the PSD per Hz was over 70 dB per Hz within

the frequency band of 100-300 Hz.  Obstructive snoring was defined as snore sounds that

preceded a period of RO.  Nakano et al. classified periods of apnea into three categories:

RO, obstructive hypopnea, and  RD.  Nakano et al. further defined the tracheal sound-

respiratory disturbance index (TS-RDI) as the number of TS dips per hour of examina-

tion. A TS dip was as a drop of 12 dB in the moving average in the PSD per Hz value in

the band of 400-600 Hz.

In Nakano et al., RO was detected if the PSD per Hz value was found to be in the

snoring classification area and was followed by a sudden drop in PSD per Hz.  Periods of

hypopnea  were  identified  when  the  PSD per  Hz  remained  in  the  snoring  range  for

extended periods of  time with no drop into  the normal range.   Periods of  RD were
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defined as the PSD stayed in normal range, then dropped near zero.  Periods of apnea

were identified and classified by performing polysomnography on the data recorded.

Nakano et al.  compared the performance of the TS-RDI to the apnea-hypopnea (AHI)

index given by polysymnography with a high correlation coefficient of R=0.93.  Nakano

then specified two values of the cutoff for the AHI of 5 and 15. The sensitivity and

specificity for the AHI cutoff value of 5 were calculated at 93% and 67%, respectively,

and similarly with the AHI cutoff value of 15 at 79% and 95% respectively.

Ng et al.  [31]  used psychoacoustics of snore sounds to screen for OSA.  The

psychoacoustics were qualitative characteristics that were quantized using various equa-

tions.  The qualitative characteristics included loudness, sharpness, roughness, fluctuation

strength and annoyance.  Each quality was used independently to generate a receiver

operating characteristic (ROC) plot.  The most successful features were loudness, annoy-

ance, and roughness with sensitivities of 72-78% and specificities of 82-92%.  The work

of Ng et al. could be improved by using the combination of two or  more of these qualit-

ies to improve sensitivity and specificity.  Ng et al.  also used a subjective method to

select snore sounds before the psychoacoustic analysis was performed, rather than using

the psychoacoustic data to classify a sound as a snore.   Although equations for each

psychoacoustic quality were given, the use of human classifications were used adding

subjectivity to the data classification process.

The research focused on sleep-disordered breathing above is similar to the sleep-

disordered breathing that occurs during patient sedation.  Many principles are common

for  both situations,  but  sedation-induced apnea carries  more risk  because the patient

wakes up periodically during sleep-disordered breathing to breath but is unable to do this
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during a sedation procedure.  The mechanisms that stop the breathing are similar though,

and so the research regarding sleep disorders can be applied to sedative apnea in certain

circumstances.

Although these works support the theory that  breathing sounds can be used to

detect breathing and apnea, a comprehensive method to detect breaths and define the

source of apnea has not been performed.  This has also never been done for sedated

patients rather than data collected from sleep centers.  This research covers data collected

from subjects who were sedated and attempts to uncover the validity of novel approaches

to apnea detection and classification.

1.5 Sound Detection

Detecting signals in noisy environments is an important task in signal detection

theory.  Gazor et al. [32]  attempt to detect voiced conversations in a noisy environment.

This is referred to as a voice activity detector (VAD).  The VAD modeled the background

noise as the sum of multiple Gaussian distributed signals with zero mean, which is equal

to a single Gaussian distributed signal with zero mean.  The speech portion was modeled

as a Laplace distribution uncorrelated with the background noise. Gazor et al.  used a

maximum likelihood (ML) estimator for determining both the standard deviation of the

combined Gaussian signals and the standard deviation of the Laplace signal.  Gazor et al.

then used a hypothesis test to determine if speech is present during that period. Gazor et

al. had a goal of creating a reliable VAD with low computational complexity.  Gazor's et

al. method performed better than a VAD outlined in [33] and was lower in complexity.

Chapter  2  describes  a method that  uses  a  similar  model  to  find  the standard

deviation  of  the  background  noise  and  the  standard  deviation  of  the  desired  signal.
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Instead  of  using  an  ML  estimator  to  find  the  parameters,  a  parameter  estimation

algorithm will be implemented. 

Chapter 3 describes the methods used that attempt to classify breath sounds in

order to classify apnea as RD or RO when compared to a standard. A standard to classify

apnea as RD or RO has been developed that is based on the flow rate and the chest and

abdomen movement of the subjects.

Chapter 4 describes the methods used to improve the sensitivity of  the apnea

detection algorithm described in Chapter 2.  This was performed by testing the validity of

using an adaptive filter to remove ambient sounds recorded by the microphone at the

trachea.

Chapter 5 summarizes the results found in Chapters 2, 3, and 4 and discusses the

success of algorithms that were developed.  It also suggests directions for future work.

1.6 Project Objectives

This work will show the development of novel approaches to breath detection and

apnea detection.  It will also attempt to classify periods of apnea detected by the apnea

detection algorithm.  It  will  do this using a data set  collected from volunteers for  a

sedative sleep study.

The  goal  is  to  develop  a  novel  respiratory  monitor  that  overcomes  the

shortcomings of the other monitors.  It should be able to detect apnea sooner than a pulse-

oximeter, be easier to use than plethysmography, and not need a tight-fitting facemask in

the case of the direct flow measurement.  In addition, it should be able to detect the

difference between RO and RD, which none of the mentioned monitors can do.
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CHAPTER 2

DETECTION OF APNEA

2.1 Introduction

2.1.1  Apnea and its risks during sedation

Apnea is the cessation of lung ventilation for a defined period of time, from 15-20

seconds (see Section 2.1.2).  Apnea can come in two primary forms: respiratory depres-

sion (RD) and respiratory obstruction (RO). Both problems pose a serious risk to the

patient if not detected and treated.  Respiratory depression is caused by the lack of drive

to breathe although the airway may be open. RO is caused when tissues in the upper

airway relax and the upper airway is occluded.  During RO the subject may be trying to

breathe, but no ventilation occurs.  These types of apnea are discussed in greater detail in

Chapter 3.  A sedated patient can suffer from either form of apnea depending on the

amount and type of drug used to sedate the patient.  The goal of the physician is to use

enough drug to make the patient comfortable but still allow him/her to breathe on his/her

own.  Clinical monitors help in ensuring that the patient continues to breathe, but depend-

ing on the clinical monitors available, not all periods of apnea are detected before adverse

events or even death occurs [1,2].
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2.1.2  Apnea detection and definition

An acoustic apnea detection monitor has been previously investigated as a simple

and effective monitor to detect  apnea during procedures  as described above.  Several

attempts have already been made to detect breath rate, as described in Chapter 1. In Sierra

et al. [3], breath rate was measured from the sounds recorded on the neck near the trachea

via a piezo-electric film transducer.  Great care was taken to measure the breath rate very

accurately, but the breath rates were not low enough that apnea would have been detec-

ted.  The lowest measured breath rate by the gold-standard flow meter was ten breaths per

minute in healthy individuals, and five breaths per minute in patients with pulmonary

disease.  Although it is important to detect breaths, it is far more important to be able to

detect periods of apnea accurately.  

Apnea has been defined as the cessation of breathing for at least ten seconds in

[4,5].  Little physiological reasoning was given for this definition.  In the case of pediat-

rics, apnea has been defined as a period lasting at least 15 seconds without breathing [6].

The defined length of apnea described in the literature is variable; for this study, a period

of fifteen seconds without a valid breath was defined as a period of apnea.  

A valid breath is  defined as  a  breath with  enough breath volume to clear  the

airway dead-space.  The airway dead-space consists of the volume in the oral passage,

nasal passage, trachea, and bronchi.  In the average adult, this volume is estimated to be

150 milliliters [7]. 

2.1.3 Correlation of breath sounds to flow rate

The envelope of normal breathing sounds is highly correlated to the flow rate, and

when properly calibrated and processed, breath sounds can predict flow rate [8,9]. Breath
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sounds are generated in adults when the flow rate exceeds approximately 7.2 liters per

minute given the Reynolds number of approximately 1000 for the anatomy of the trachea

of  an  adult  [10].  As  the  rate  of  the flow increases,  the  amplitude  of  the  sound also

increases. This relationship is not linear, and since flow during both inspiration and expir-

ation creates turbulence,  direction of flow from the sound alone cannot accurately be

determined.  Beck and Olson et al.  [11,12] state that the relationship of flow to sound

amplitude is A=kF3.0±0.2 where k is a fitting constant,  A is the amplitude of the sound and

F is the flow rate, but they did not indicate the units of  k,  F or A.  Using data selected

from that data set that will be described in Section 2.2, the plot shown in Figure 2.1 was

created that shows the comparison of flow rate in units of liters per minute and the audio

amplitude in units of volts.  The audio envelope was calculated from the raw audio as will

be described in Section 2.3.  The data between the markers at +/-7.2 l/m are observed to

have little variation which supports the claim by Ludwig that absolute flow rates below

7.2 l/m would not create turbulent noise.  The value between these markers is not zero

and it is hypothesized that the signal that created this portion of the data is due to noise.

In addition, a model was fitted to the data with equation  A=|kF3|  where A is the audio

envelope amplitude in units of volts, F is the flow rate in units of l/min, and k is a fitting

constant with units of V/(L/min)3 and valued at k=1.5×10-7.  The correlation coefficient of

the data with absolute flow rate greater than 7.2 l/m is R=0.8869.

2.2 Data Set

2.2.1  Data collection process

In an IRB-approved study, 24 subjects were sedated by injecting a combination of

remifentinal and propofol intravenously. Remifentinal is a short acting opioid analgesic
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used to reduce pain sensed by the subject. Propofol is a sedative/hypnotic used to lessen

the awareness of the subject. The amount of each drug was varied according to the chart

in Figure 2.2, where the concentration of one drug was held constant and the other was

incremented. The drug-dosing for each subject was assigned randomly from a pre-de-

termined drug-dosing regimen.  The randomized drug-dosing regimen would randomly

assign each drug as the first or second drug and the amounts of each drug to be used

according to predetermined sedation strategies.  Each subject underwent three periods of

sedation.  During the first period of sedation, the first drug concentration was incremen-

ted stepwise while the second drug  concentration was held constant.  In the second peri-

od of sedation, the concentration of the second drug was increased while repeating the

drug-incrementation regimen of the first drug from the first period.  In the third period,

the concentration of the second drug was again increased while repeating the drug-incre-

mentation  regimen of  the  first  drug  from the  first  and  second  sedation  period.   The

primary design  of  this  study was to  measure  the  alertness  and  pain tolerance  of  the

subjects for different concentrations of the two drugs. 

The sedation method used for the study was target-controlled infusion (TCI).  TCI

takes advantage of pharmacokinetic models to maintain a constant sedation level for the

patient [13].  Although several phamacokinetic models exist, the Minto model was used

for the remifentinal infusion and the Schnider model was used for the propofol infusion

to maintain the sedative level of the subjects of  this study.

The subjects  were monitored using both standard medical  monitors  (described

below) and by a board certified anesthesiologist to avoid any complications caused by the

injected drugs. Each subject was given an initial dosage of the two drugs and tests were
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Figure 2.2  Drug-dosing regimen for sedating patients participating in the study. 
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performed at baseline as well as before increasing the drug amounts. The tests included

the observer's assessment of alertness and sedation (OAA/S), tetanic stimulus, pressure

algometry,  and attempting to insert a bougie  into the subjects'  esophagus.  OAA/S is

done as a nurse tries to communicate with the subject, and the nurse rates the amount of

interaction received for specific communication attempts. Tetanic stimulus is a controlled

electric shock to the leg.  Pressure algometry is the application of a pressure generated by

a one square inch piston to the subjects' shin bone.  A bougie is a rubber tube used to

simulate inserting an esophageal  scope.   The bougie test  required the removal  of the

facemask; thus data in these time periods did not record the flow through the tight-fitting

facemask.  The use of the tight-fitting facemask is described in the next section. 

The primary study using the data of the sedated subjects attempted to find specific

dosing  combinations  of  remifentinal  and  propofol  that  would  satisfy  pain  tolerances

while allowing the subjects to breathe without the need of ventilation. The study under-

taken in this dissertation was allowed to use the data recorded from the primary study and

was allowed to record the audio data from the subjects.

Of the twenty-four  subjects  participating,  data  from four  of  the subjects  were

discarded.  Two of the subjects'  data were lost  during data transfer of the audio data

between computers. Flow and respiratory inductance plethysmography (RIP) data from

another subject were lost during data transfer between two computers. One data set was

recorded with a different microphone than for the other recordings, leaving twenty sets to

be processed.

The  monitoring  equipment  for  each  subject  included  respiratory flow,  capno-

graphy, pulse-oximetery, RIP, bi-spectral EEG index, arterial blood pressure, and tracheal
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audio recording. Only a few of these were pertinent to this project, namely the respiratory

flow, RIP, and the tracheal audio recording.

2.2.2  Data measurement

2.2.2.1 Direct flow data measurement

The respiratory flow was measured by placing a tight-fitting facemask onto each

subject  and measuring the flow rate via a differential pressure technique called pneu-

motachography implemented in  the  CosmoII+ device  (Respironics,  Wallingford,  CT).

This device measures flow rate directly in units of liters per minute (l/m).  The device

calculates  breath volume by integrating the flow rate  on a breath-to-breath basis  and

records it in units of milliliters (mL). This device also produced a breath marker at the

beginning of inspiration for each breath. The data were recorded directly to a computer

hard drive at a sampling rate of 100 Hz.  Each sample recorded was accompanied with a

time-stamp.

Respiratory flow measured by the CosmoII+ device served as the gold standard

for apnea detection for this study because it is a direct measurement of the subjects' vent-

ilation. 

2.2.2.2  Plethysmography data measurement

True plethysmography is  the measure of the change in  body volume.   This is

measured by placing the subject inside a chamber and having the subject breathe through

a tube to the open air and measuring the change in volume in the chamber [14].  

Two common ways to estimate plethysmography without the need of a chamber

are thoracic impedance plethysmography and RIP.  Thoracic impedance plethysmography



23

measures the change of skin impedance through standard ECG leads.  As the chest and

abdomen volumes change, the body impedance between the ECG leads changes and is

measured.  RIP measures the change of inductance of bands placed on the chest  and

abdomen of the patient.  The bands are lined with elastic with a conducting element sewn

into the fabric.  The conducting element is sewn into the bands in a “V” pattern, inducing

mutual inductance.  As the chest and abdomen volumes change the circumference of the

bands change thus changing the inductance of the conducting elements.  The RIP device

measures the changes in the inductance of the bands, which is proportional to the change

in chest and abdomen volume [15].

In this study RIP was used to measure the thoracic and abdominal circumference

change.   The RIP device measured the change in the inductance of the bands as the

subject breathed. The change in inductance of the RIP can be calibrated to the change in

flow rate. The calibration is performed by comparing the change in the inductance to the

respiratory breath volume as calculated by the CosmoII+ [16].   In this study the breath

volume of each breath, segmented by the CosmoII+ device, was compared to the change

in inductance from the RIP.  If the correlation coefficient of the breath volume segment

Vflow and the RIP  segment  LRIP was greater than 0.75 the best fit line of the two data

segments was calculated.  This produced  a gain mccf and offset  bccf.  The values of  mccf

and bccf  were averaged for every 10 minutes of data.  The values were  recorded as the

RIP calibration gain and offset. 

The RIP measurements were recorded to the same hard drive as the flow measure-

ments were, at a 100 Hz sampling rate.
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2.2.2.3  Respiratory acoustic data measurement

Audio signals were recorded using a microphone (WM-56A103 Panasonic, NJ)

placed in a metal precordial stethoscope cup (Wenger #00-390-C, AINCA, San Marcos,

CA). The cup was affixed to the neck with a double-stick disc (#2181 3M, MN) just

below the larynx and above the supersternal notch of each subject. The audio signals

were digitized at 22 kHz onto a computer hard drive using an audio sound card (Sound-

Blaster Audigy, Creative, Singapore). Acoustic data were synchronized to the flow rate

and RIP data by recording the start time of the beginning of the acoustic recording.

2.3 Methods

2.3.1 Creation of the audio envelope

The term “envelope” can have many definitions in signal processing.  This work

uses a basic template to build an acoustic envelope from a raw audio signal.  Figure 2.3

shows a flowchart of the general steps of creating the acoustic envelope from the raw

audio.  The steps of audio amplification, analog low pass filter and A/D conversion were

all performed by the audio sound card used to record these data (SoundBlaster Audigy,

Creative, Singapore).

The first step after digitization was to apply a bandpass filter to the raw audio

signal.  An example of raw audio is shown in Figure  2.4a.   The bandpass filter was

designed to remove both high frequency noise not related to the breathing sounds and low

frequency sounds, such as heartbeat and electronic noise.  For this work the bandpass

filter passed frequencies from 75 Hz to 1500 Hz.  75 Hz was chosen as the low cutoff

frequency because of its ability to remove most of the heartbeat sounds [11] and common
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Figure 2.3  Flowchart showing steps used to create an acoustic respiratory monitor.
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Figure 2.4 Section of audio data that shows a period of silence. (a) Raw audio (b)Filtered 

digitized audio signal. 
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Figure 2.4 cont’d (c) Absolute value of the filtered signal (d)Envelope of the signal. 
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electronic noise at 60 Hz.  The high cutoff at 1500 Hz was chosen because most informa-

tion about the breath sounds is within the range of 100-1400 Hz  [17].  The resulting

signal is shown in Figure 2.4b.

The next step was to downsample the data.  To avoid aliasing, this must done with

a sample rate at least two times the high cutoff frequency of the bandpass filter.  The

audio was downsampled by a factor of five to 4410 Hz.  Downsampling was performed

by keeping every fifth sample in the filtered signal.

The absolute value was then applied to the resulting signal.  The absolute value-

doubles the frequency of the signal with an additional DC component. The DC compon-

ent is an indicator of signal amplitude in the band from 75 Hz to 1500 Hz.  This also

creates a positive signal ensuring a positive envelope.  The resulting signal is shown in

Figure 2.4c.

Finally, a lowpass filter with corner frequency of 43 Hz was applied.  This filter

removed all high frequency content and left only a weighted average of the signal. The

value of 43 Hz was chosen because it is less than the Nyquist frequency for a signal

sampled at 100 Hz.  This signal was then  downsampled to 100 Hz to match the sample

rate of the accompanying flow and RIP data.  The resulting envelope is shown in Figure

2.4d.

2.3.2  Synchronization of acoustic data with flow and RIP data

Data  recorded  from  the  RIP  and  the  CosmoII+  were  recorded  on  the  same

computer, and were thus synchronized. Data from the microphone were recorded at  a

different rate and on a different computer. The start times of the audio recordings were

recorded at the beginning of data collection for each recording period.  Each recording
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period lasted between one and four hours,  and small errors in sampling rate or buffer

errors in the audio data were found to cause errors between the synchronization of the

audio data and the flow and RIP data. In order to ensure that  the data were properly

synchronized, short sections of the audio envelope were compared to the absolute value

of the flow rate.  Because of the high correlation of the flow rate to the audio envelope

[8,9,11] manual synchronization was possible.   This  was performed as the researcher

compared the envelope of the audio signal to the absolute value of the flow rate.  Pauses

between breaths and significantly larger breaths allowed for a high level of confidence

that the synchronization was performed properly.  In retrospect, the audio signal should

have been synchronized to the flow rate and RIP data by recording the time stamp from

the flow rate and RIP computer to a second channel of the audio data.

The data were divided into 10 minute segments to allow for ease of processing

and ease of finding and sorting of data.

2.3.3 Data separation for blinded testing

Of the 20 viable data sets, 10 were randomly selected to be held out for testing

purposes. The subjects' data sets were assigned an index number (1-20) in the order that

they were recorded.  Twenty nonrepeating random numbers URN were generated using a

pseudo-random number generator, and were assigned an index number IRN  (1-20) in the

order that they were generated.  IRN  was then sorted by the value of URN from lowest to

highest.  The first 10 sorted values of IRN  were used to select the data sets of the subjects

that would be held out as the testing set.  The remaining 10 subjects' data were used as

the training set.   The training set allowed for the researcher to develop algorithms to

detect apnea.  The testing set allowed half of the data to be blinded against researcher bias
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before processing it with the algorithms. 

2.3.4  Acoustic threshold modeling

The acoustic sounds recorded were composed of two primary sources, the noise

source n(t) and the signal source s(t).  During times of breathing, vocalization, or snoring

the recorded signal x(t) was the summation of the two sound sources; otherwise the recor-

ded signal was made up entirely of the noise source as described by:

�x �t ��n �t��s �t � , for periodsof detected signals

x �t ��n �t � , for periods of silence
                   (2.1)

Equation 2.1 is the basis for the model that will be used to differentiate the noise from the

signal.  

2.3.4.1  Description of the noise source

The noise was a wide sense stationary (WSS) signal recorded at the microphone.

This signal consisted of several additive sources.  The two main sources of noise at the

microphone  were  thermal  noise  and  ambient  WSS  room  noise  that  was  transmitted

through the precordial stethoscope.  Thermal noise was the most significant source of this

signal.  This was because the stethoscope cup shielded the microphone from any major

noise coming from outside the subject. Because the thermal noise made up the majority

of the noise, the noise was considered WSS and Gaussian [18].   

The first attempt at finding the threshold of the noise involved modeling the histo-

gram of the audio envelope.  The process of finding the parameters of this model are

described below.  Although this method was eventually abandoned, it helped in the devel-

opment of the modeling of the raw audio signal to determine a threshold of the noise.
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2.3.4.2  Audio envelope histogram model

Using the methodology of calculating the sound envelope described above, an

envelope was created for each 10 minute segment of data. 

Initially it was noticed that the histogram of the envelope amplitude had a distinct

pattern that would help in identifying noise threshold. A typical histogram of the envelope

is shown in Figure 2.5a.  The portion shown by the thick line was hypothesized to be

noise of the audio envelope.  This was hypothesized because it was observed that this

portion of the distribution would show little change after changing the window of the data

used to generate the histogram.  The portion of the distribution with envelope exceeding

the presumed noise threshold, shown as a thin line, was hypothesized to be the desired

signal.   This  was  hypothesized  because  this  portion  of  the  histogram  fluctuated  in

amplitude and samples in each bin as the audio envelope changed in amplitude, and it

also had a higher amplitude than the portion of the histogram attributed to noise.  In most

cases it was observed that the portion of the distribution attributed to noise had a Gaussi-

an appearance.  To test this, a portion of audio was found that contained no detected

sounds.   This  portion was identified by observation and confirmed that  no breathing

occurred when compared to the flow rate measurement.  The histogram of an example of

this signal with a best fit Gaussian curve is shown in Figure 2.5b.  From the figure shown,

the histogram of the noise segment does not match the distribution of the fitted Guassian

primarily because the histogram is not symmetric about the mean.

The part of the distribution attributed to the detected sounds took on many forms.

The most commonly observed distribution was similar to an exponential distribution as
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 Figure 2.5 Plot of the histogram of an audio envelope. (a) Semilog plot of the histogram 

of an example audio envelope(b) During a period of silence with best fit Normal 

distribution. 
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seen in Figure 2.5a.    This observation was based on the histogram displayed with a

logarithmic  plot  similar  to  the  one  shown in  Figure  2.5a  from ten  normal  breathing

segments.  An exponential distribution on a logarithmic plot is a sloped line and was easy

for the primary investigator to identify histograms with a similar plot.  This distribution

was observed on the ten normal breathing segments above the portion of the distribution

attributed to noise.

Using the model of Gaussian distributed noise with an exponentially distributed

breathing  signal, a threshold can be determined from the standard deviation of the noise.

The mean of the Gaussian signal �NF was estimated as the bin number with the maximum

value of the entire histogram.  This estimation is based on the assumption that the most

common signal during a recording was the noise.  

Using the value of  �NF as the center of the distribution, bins lower in amplitude

than  �NF were summed until they made up 34% of the values between 0 and  �NF.  The

value of 34% was used because in a Gaussian distribution 34% of the area of the curve is

found between the mean and one standard deviation of half  of  the distribution.   The

difference between �NF  and the lowest valued bin described was used as the estimate of

�NF.  The threshold to divide the noise signal from the breathing signal was calculated to

be  �NF  +3�NF such that the breathing portion of the signal would have to be at least three

standard deviations  higher in envelope than the noise threshold for it to be detected.

The model described was developed using a small number of data sets.  Initially

this appeared to be a very effective method of finding the noise threshold, but using a

broader pool of data it was observed that the model did not estimate the parameters of the

distributions as well as for the initial data sets.  Common examples of this were when the
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portion of the histogram attributed to breathing sounds did not have an exponential distri-

bution.  This was a common occurrence when the amplitude of the signals recorded satur-

ated the microphone.  Another reason for poor estimation of the parameters was when the

assumption that  the noise was most common sound was not true.   In  these cases the

portion of the histogram attributed to breathing sounds had a higher amplitude than the

portion of the histogram attributed to noise.  This caused the estimate of �NF and �NF to be

too large and breathing sounds were missed.  

The failure of this model and algorithm can be attributed to several reasons.  The

first reason was that the maximum point of the distribution of a sound was not always the

maximum point of the Gaussian distribution as described above.   The second reason was

the histogram of the noise of the envelope was assumed to be a Gaussian distribution, but

when compared to a Gaussian distribution it became apparent that this assumption was

not correct.  In addition the calculation of the distribution of the envelope of the noise

could not be found.  The third reason was the distribution of the detectable signal was not

always distributed as an exponential distribution as described above.  

Another reason that this method was abandoned in favor of the method described

in Section 2.3.4.3 was that the sample rate of the audio envelope at  100 Hz required

several minutes of data to initially populate a histogram to be able to estimate the model

parameters when compared with the method that will be described.

2.3.4.3  Raw audio histogram model

The experimentation with the model of the distribution of the audio envelope led

to an investigation of the distribution of the raw audio.  This investigation was prompted

because the raw audio would be able to populate a histogram using a shorter period of
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data, and the mean of the distribution would already be known to be zero.  The distribu-

tion of the noise portion of the raw audio data could also be directly attributed to be

Gaussian signal rather than just assumed to be.  This is because primary source of noise is

thermal noise and can be modeled as a Gaussian distribution.  To further prove this model

a period was found that was confirmed by the flow meter to be a period of noise only.

The histogram of these data was calculated and a Gaussian distribution was fitted to it as

shown in Figure 2.6.  The standard deviation of the Gaussian distribution fitted to this

model was �=3.6×10-4.  This histogram shows a high correlation to the Gaussian distribu-

tion with a correlation coefficient of R=0.9984.

The  raw  audio signal  was  first  filtered using the bandpass  filter  and down-

sampled to a rate of 4410 Hz as shown in Figure 2.4b.  An example of a histogram of this

signal can be seen in Figure 2.7.  The noise has been modeled as a Gaussian random

signal with zero mean.  The detected breathing signal was observed to have a distribution

with a much higher standard deviation and heavier tails than a Gaussian distribution.  A

segment of the audio used to generate this histogram is shown in Figure 2.8.   

The heavy-tailed distribution of signal that has been attributed to the breathing

signal,  was modeled as  a Laplace distribution with  zero mean,  based on observation.

Observations  showed that  the  histograms  of  the  sound attributed to  breathing sounds

observed  were  very similar  to  the  Laplace  distribution.   In  addition,  sounds  such  as

snoring and vocalization created heavy-tailed histograms.  Gazor et al. [19]  also modeled

the voiced periods of his voice-activity detector as a Laplace distribution.  The noise and

breath signals can be considered nonoverlapping in time, since during periods of detect-

able signal it is assumed that the breathing signal has a standard deviation a factor of 10
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Figure 2.6 Histogram of a typical audio signal during a period of noise. 
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Figure 2.7 Histogram of a typical audio signal including breathing and the model fit to it 

using the EM algorithm. 
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Figure 2.8 Audio signal used to generate histogram and model. 
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greater than the standard deviation of the noise that it does not contribute significantly to

the Laplace distribution. During times of breathing silence, the noise signal is the only

signal present.  Because these two signals can be considered to be nonoverlapping in

time,  the  convolution  of  the  two distributions  does  not  need  to  be  performed.   The

assumption that the noise is insignificant in comparison to the detected signal modifies

the acoustic model to be:

�x �t ��s �t� , for periods of detected signals

x �t ��n �t � , for periods of silence
             (2.2)

The mixture of the models can be modeled simply as the summation of the two distribu-

tions in proportion to each other with the equation:

                  f m� x��
p

�2���2
e

	 x
2

2�
2


�1	p�
1

2b
e

	�x�
b                            (2.3)

 where fm(x) is the distribution of the mixture, x is the random variable in units of volts, p

is the probability that the signal only contains noise,  � is the standard deviation of the

Gaussian distribution,  and b is the parameter of the Laplace distribution.  The standard

deviation of the Laplace distribution is �L�
�2b

2
.

This  model  is  based  upon  the  assumption  that  the  standard  deviation  of  the

Laplace distribution �L is much greater than the standard deviation of the Gaussian distri-

bution  �.   If  �L  is  less  than or  equal  to  � the signal  to  be detected  would have less

amplitude than the noise and would not be audible.  A breath sound signal with absolute

amplitude a factor of 10 times that of the standard deviation of the noise ensures that that

signal is greater than more than 99% of the noise samples.  This is based on the assump-

tion that the noise is WSS Gaussian and that the standard deviation of the noise has been
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fitted accurately.

Using the raw signal was an advantage over the envelope for two reasons. The

number of samples was dramatically increased for a given period of time. This allows for

the histogram to be populated in a shorter period of time.  This model bases the distribu-

tion of the noise signal on the known distribution of thermal noise and has further shown

that the noise can be accurately fit with a Gaussian distribution.  This model also uses the

nature of the audio signal as a zero mean distributed signal to remove the need for calcu-

lating the mean of the two distributions.

2.3.5  Finding the model parameters

2.3.5.1  Finding the model parameters directly

Finding the parameters of the distribution mixture, namely p,  �,  and b,  was the

next task. Because there are three unknowns to the above equation, three equations are

needed to find all of the parameters. 

The initial attempt was to find the second, fourth, and sixth moments of a signal

and compare them to the mathematical  model of the distributions.   This method was

eventually abandoned, but shows the step made towards model parameterization. 

The odd moments on a symmetric distribution are zero, thus the first three even

moments were selected.  For the equations below, A is the second moment, B is the fourth

moment and C is the sixth moment calculated from the audio signal.

                           A=p�2+(1-p)2b2                         

                        B=p3�4+(1-p)24b4                                                (2.4)

C=p15�6+(1-p)720b6

This set of equations does not provide a close estimate for the parameters because the
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estimates of the fourth and sixth moments are noisy and that amplifies the amount of

noise in the estimates.   In addition, the signal modeled by the Laplace distribution would

have to be nearly perfectly Laplace distributed for these equations to estimate the proper

values for  p, �, and b.  Because the actual signals can be distributed differently from the

model it is possible that this parameterization technique would fail.  For these reasons a

different approach to finding the parameters was pursued.

2.3.5.2  Finding the model parameters using the 

expectation maximization algorithm

The expectation maximization (EM) algorithm [20] was used to estimate the

values of p, �, and b.   The EM algorithm is an iterative method that uses initial estimates

of the parameters and iterates until the estimates of the parameters converge on a value.

The generalized EM algorithm has two major steps, the expectation step (E-step) and the

maximization step (M-step).  

The general equations for the EM algorithm are given by Moon et al.  [20].  The

first equation is the general form of the E-step:

               Q��
��k ���E �log f � x����y ,��k ��                                (2.5)

where Q is defined as the Q-function, f(x|�) is the differentiable pdf of the mixture, y is a

vector of observed values, x is the vector of the combination of  unobserved values and

observed values, and  �[k]  is set  of estimated parameters given the  kth  iteration of the

algorithm.  The general equation for the M-step is given as:

�� k
1��arg max
�

Q �����k �� .                                        (2.6)

The EM algorithm is based on the assumption that an observed value  yi has an

accompanied unobserved value zi.  The theoretical combination of these two values is xi
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where  xi=[yi , zi] and x=[x1, x2...xn].

Considerable simplifications can be made if it can be proven that the distribution

model is in the exponential family of distribution.  Moon et al. [20]  define a distribution

as being part of the exponential family if it has the form:

f �x����b �x �e��C ���
T

t � x� ��� a ���                                  (2.7)

where the superscript T denotes the vector transpose, a and b are scalar functions, and C

and t  are vector functions that need to be identified in the distribution in question.  The

distribution used for this method is the Gaussian-Laplace Mixture:

f �x�����i�1

n �I � z i�0�
p

�2�� 2
e

	 yi

2

2�
2


I � z i�1�
�1	p�

2b
e

	�y i�

b �                 (2.8)

where I is the indicator function that has value of 1 if the contents are true and zero if the

contents are false, and zi is the unobserved value that the observed value of yi is from the

distribution indicated by the indicator function.  If  zi=0 the accompanying value of yi is

created by the Gaussian process and if zi=1 the accompanying value of yi is created by the

Laplace  process.   In  order  to  get  equation  2.8  into  the  form of  of  equation 2.7,  the

exponential form of all values within the product term were found as:

f �x�����i�1

n �eI �zi�0�
e

log�
p

�2��
2
�

e

	y i

2

2�
2


e
I �zi�1�

e
log�

�1	 p�

2b
�

e

	�y i�

b �                   (2.9)

where  �=[�,b,p].   The exponent  was  then  taken  outside  of  the  product  creating  a

summation shown as:

f � x����exp�� i�1

n
I � zi�0��log� p

�2�� 2 �
	 y i

2

2� 2
�


I � z i�1��log� �1	 p�

2b �
	�yi�

b
��.

                    (2.10)

From equation 2.10 the parameters of a, b, C, and t can be assigned with a=1, b=1, and:
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C �����log� p

� �2�� 2�� ,
	1

2� 2
, log�1	 p

2b � ,
	1

b � ,                 (2.11)

t � x���� i�1
n

I � z i�0� , �i�1
n

I � z i�0� y i
2, �i�1

n
I � z i�1� , � i�1

n
I � zi�1��y i�� . (2.12)

With this proof that the distribution model is in the exponential family, the simplified

version of the EM algorithm for this special case was pursued.  Using the simplification

the E-step calculation becomes [20]:

t
����k



1 �����E � t � x��y ,�k �                                        (2.13)

and the M-step is [20]:

�� k
1��argmax
�

�C ���T t
����k



1����	log a ��� �                               (2.14)

Since the value of  a=1 the log of that term becomes zero.  

Applying equation 2.12 to equation 2.13 results in four values:
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t 4
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Since the values of y are known, and the values of �, b, and p are the estimates from the

initial condition or the previous iteration of the algorithm, t becomes a row vector of four

values.

Applying equations 2.11 and 2.12 to equation 2.14, the M-step becomes:

�� k
1��argmax
� �t1

� k
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log� p

��2�� 2��
t 2
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1� 	1

2� 2


 t3
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                   (2.19)

In order to find the values of the parameters �, b, and p, the derivative of the contents of

the  argmax() needs  to  be  calculated  and  equated  to  zero.   For  the  value  of  p this

calculation resulted in:

d

dp �t 1
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b ��0         (2.20)

and because two of the terms do not contain p this simplifies to:

d
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and results in:

pEST�
t1

� k
1�

t1

� k
1�
t 3

�k
1�                                                     (2.22)

where the values of  t1
[k+1]  and  t3

[k+1] are the values found by the E-step.  Similarly the

derivative with respect to � was performed:
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and because two of the terms do not contain � this simplifies to:
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and results in:
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The derivative with respect to b was also performed:
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and because two of the terms do not contain b this simplifies to:
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and results in :

bEST�
t 4

� k
1�

t 3

� k
1�
.                                                   (2.28)

The implementation of this algorithm is straightforward by first  finding initial

estimates of the three parameters  �INIT,  bINIT, and  pINIT.  These were made by finding the

standard deviation of the given audio signal  �audio=std(y) and setting � INIT�
� audio

10
and

b INIT��2� audio and pINIT=0.5. These values were chosen because the breathing signal is

assumed to be highest amplitude of the two signals. The standard deviation of the noise is

assumed to be a factor of less than the standard deviation of the total sound signal.  The
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probability pINIT was arbitrarily chosen assuming that the probability of being in a breath

sound signal or a pause sound was equally likely.  

The equations to find the E-step and resulting vector  t[k+1]  were then calculated

directly.  The M-step was then calculated to find the new estimates of the parameters  �,

b,  and  p.  Because this is an iterative process the above steps were iterated until  the

convergence criteria were met.  Convergence was achieved when the difference of five

consecutive estimates of the parameters  �, b, and p were within 5% of the estimates of

the values of  �, b, and p.  Moon et al. [20] state that convergence may be determined in

this way.

2.3.5.3  Finding the model parameters using the

Gaussian estimation algorithm

The initial attempt at calculating the EM algorithm resulted in an iterative method

to find the parameters of  �, b, and p in a similar manner to the EM algorithm.  Because

this method is not the EM algorithm, but is based on the intuitive definition of the EM

algorithm in finding the standard deviation of the noise of the signal it will be referred to

as the Gaussian estimation (GE) method.  This method is being discussed because it was

the method used in the final algorithm to detect breaths.  As will be discussed in Section

2.3.5.5, the GE algorithm was desirable for its ability to more closely estimate the stand-

ard deviation of the noise portion of the signal even when the histogram of the breath

sound signal was not a good fit to the Laplace distribution.

The GE algorithm used two primary steps in an iterative technique just as in the

EM algorithm.  Initial estimates of  �, b, and p were found in the same way as for the EM

algorithm.  Using the estimates for �, b, and p the expected distribution of each sample of
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the input vector y was calculated by Bayesian estimation.  The distribution mixture used

for this model is:

f �x����
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b .                               (2.29)

This model is made of two primary components.  The first is the Gaussian distribution:
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and the Laplace distribution:

f XL� x��
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2b
e

	�x�
b .                                                 (2.31)

Applying Bayesian estimation to the Gaussian portion of the signal results in the equa-

tion:

P � z i�0��
pEST� f XG � y i��EST �

pEST� f XG� y i��EST �
�1	 pEST � f XL � y i�bEST �
                   (2.32)

where zi  is unobserved parameter that the sample yi is from the Gaussian distribution, and

�EST,  bEST, and pEST  are the current estimates of those parameters.  If this probability was

greater than 0.5, the sample yi  was placed in the Gaussian group of samples GVEC, other-

wise it was placed in the Gaussian group LVEC .

After all of the values were sorted into the vectors of GVEC and LVEC, the estimates

of the parameters of �, b, and p were found.  The value of �EST was calculated by finding

the maximum likelihood (ML) estimate of  the Gaussian distribution. This is  done by

taking the derivative of the log of the distribution and equating it to zero.  In the case of

the Gaussian distribution this is calculated by:
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and is then simplified further by calculating the mean of the vector x2 and has equation:

�2�
1

N
�n�0

N	1
x
2
.                                                   (2.34)

The input vector  x of equation 2.34 is the vector of samples of the overall input signal

that  are determined to be in the Gaussian portion of the distribution as calculated by

equation 2.32.  

The ML estimate of the Laplace distribution is calculated in a similar manner, by

finding the derivative of the log of the distribution and equating it to zero, and is calcu-

lated by:

�
�b

log�
1

2b
e

	�x�
b ��

�
�b

�log �
1

2b
�	

�x�
b
��

	1

b


�x�

b
2
�0                     (2.34) 

and is then simplified to:

b�
1

N
�n�0

N	1�x�.                                                    (2.35)

The implementation of the GE algorithm was performed as follows.  Figure 2.9

shows a block diagram of the general steps of the algorithm.

The first step was performed in the following manner.  The initial estimates of the

three parameters were used to estimate which samples belonged more to the Gaussian or

Laplace distribution using equation 2.32.

The second step was performed using the ML estimate from the two groups of

samples as described above.  The ML estimate of the standard deviation of the Gaussian

signal was calculated as  �EST��
1

K
�k�1

K
GVEC

2 �
1

2 where  K is the number of samples in

GVEC.  The ML estimate of the parameter of the Laplace distribution was calculated as
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Figure 2.9 Block diagram of the GE algorithm to estimate the parameters of �, b, and p.
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bEST�
1

L
� l�1

L �LVEC� where  L is the number of samples in  LVEC.   The value of  p was

estimated by taking the ratio of the number of samples in the Gaussian group to the over-

all number of samples. 

The E-step and M-step were then iterated until all of the parameters converged to

a value.  Convergence for this algorithm was defined when the estimate of the parameter

changed by less than 5% of its  value four consecutive times and was nonmonotonic.

When the iterations converged for all parameters the estimates were used as the measured

values of  p, �, and b.

2.3.5.4  Simulation testing the accuracy of the GE and EM algorithm

In order to determine the accuracy of the described GE and EM algorithms, a

simulation of a Gaussian-Laplace mixture random signal was created and then measured

using the GE and EM algorithms.  The simulation was made by providing the three para-

meters of  p, �, and b and using them to create a vector of data.  The data consisted of two

parts; the first was a pseudo-Gaussian signal produced from a random number generator

with standard deviation � that contained N×p values, where N is the number of values in

the vector.   This was concatenated with an additional  string of  N×(1-p)  values  of a

Laplace distributed signal with standard deviation �L�
�2b

2
.   The value of  p was held

constant at 0.5.  This simulation was also performed for values of p other than 0.5 as will

be described later.  Because both the GE and EM algorithms calculate the expected distri-

bution of each sample without respect to order, the order of the concatenation of the input

vector does not affect the estimates of the parameters.
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Using the simulated Gaussian-Laplace mixture signal, the value of � was set to 1

while the value of b was varied from 1.4 in steps of 0.1 to a value of 28.  This range was

chosen to make the ratio of the standard deviation of the Laplace distribution to the Gaus-

sian distribution from 1 to 20 .  The percent errors of pEST, �EST, and bEST  to the true values

of p, �, and b  were then calculated and plotted in Figure 2.10a for the GE algorithm and

2.10b for  the EM algorithm.    These  plots  show that  for  the estimates from the GE

algorithm to be within 10% of the actual value, the ratio of �L to � must be greater than 5.

The ratio can be less than this but the estimates will have a higher margin of error.  For

the EM algorithm the ratio needs to be greater than 3.5 to achieve the same accuracy.

This simulation was calculated for different values of p.  This was done as p was

varied from 0 to 1 in steps of 0.1 as the ratio of  �L to  � was varied from 1 to 20 as

performed above.  The percent errors of pEST, �EST, and bEST  to the true values of p, �, and

b  were then calculated.  The percent errors that were less than 10% are shown in white,

the percent errors that were between 10% and 20% are shown in gray, and the percent

errors greater than 20% are shown in black.  These values were calculated using both the

EM and GE algorithms.  Figure 2.11a shows the percent error in estimating the parameter

� using the EM algorithm.  Figure 2.11b shows the percent error in estimating the para-

meter � using the GE algorithm.  Figure 2.11c shows the percent error in estimating the

parameter b using the EM algorithm.  Figure 2.11d shows the percent error in estimating

the parameter b using the GE algorithm.  Figure 2.11e shows the percent error in estimat-

ing the parameter p using the EM algorithm.  Figure 2.11f shows the percent error in

estimating the parameter p using the GE algorithm.  From these figures it is evident that

the EM algorithm estimates the parameters within 10% of the actual values for a wider



52 

Figure 2.10 Percent error of the estimate to the actual value when calculating the 

parameters �, b, and p from a simulated model (a) for the GE algorithm (b) for the EM 

algorithm. 
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• Figure 2.11 Error of the estimates of parameters of σ, b and p using the EM and
GE algorithms (a) EM algorithm estimating σ (b) GE algorithm estimating σ (c)
EM algorithm estimating b (d) GE algorithm estimating b (e) EM algorithm es-

timating p (f) GE algorithm estimating p.
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range of values of the ratio of �L to � and p.  The EM algorithm has the most difficulty

estimating the parameter of  � when the value of  p  is close 0, meaning that few of the

samples in the simulated input were generated by a Gaussian process.  Similarly the EM

algorithm estimates the value of b with the highest amount of error when the value of p is

close to 1, meaning that few of the samples in the simulated input were generated by the

Laplace process.

Using the GE algorithm the estimate of the standard deviation of the Gaussian

distribution is more accurately estimated when  p is between 0.3 and 0.9.  Similarly the

value of  b  is  more  accurately  estimated  when  p is  between  0 and  0.7.   For  the  GE

algorithm to estimate the values of  p, �,  and b  with 10% accuracy does require tighter

tolerances for the input data.  Since the parameters of the input data cannot be chosen this

means an acceptance of a higher error for signals with a low ratio of �L to � for the GE

algorithm.  Since the parameters of the input stream are unknown this raises some ques-

tion if the GE algorithm is suitable for this application.  Despite this, the GE algorithm

was considered because the estimated values of the standard deviation of each distribu-

tion would be limited to the standard deviation of the input data.  This might affect the

threshold measurement, but because the signal would be in a period of detected sounds,

the variability in  the amplitude of the detected sounds would ensure a threshold that

would detect sounds.  Periods in which p is very high would be consistent with a period

of pause in breathing.  This period would measure the value of � with a higher amount of

accuracy than that of b.   The error that would occur in this situation would be the detec-

tion of signals during a period of apnea because the threshold was too low.  A method to

ensure that the noise threshold did not fall too low was created and is discussed in the
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next section.

2.3.5.5  Choice of parameter estimation algorithm

The EM algorithm performed much better than the GE algorithm in simulation

when the input data were known to be Gaussian and Laplace distributed signals.  The

estimation of these parameters was performed on data from the data set described.  Figure

2.12 shows the audio envelope of a typical period of breathing with an anomalous breath

sound with  a  much higher  amplitude  than the rest.   The moving window parameters

estimated from both the GE and EM algorithms are shown.  The GE algorithm estimates

the standard deviation of the noise with little variation despite the disturbance by the

anomalous breath sound in the detected signal.  The EM algorithm shows that the estim-

ate of the standard deviation of the noise jumps significantly due to the disturbance of the

detected signal caused by the anomalous breath sound.  This is likely due to the fact that

the Laplace distribution is  not a good model for the histogram of the detected signal

during this period.  Because the signal attributed to breathing is not a Laplace distributed

signal the EM algorithm cannot accurately estimate the standard deviation of the noise.

Because  the  amplitude  of  breathing  signals  are  unpredictable  and  anomalous

sounds were observed to be frequent, the EM algorithm may cause detections of apnea

when there is  none,  causing more frequent  false positive alarms.   The GE algorithm

appears to be able to estimate the standard deviation of the noise with a higher level of

consistency despite sudden changes of the detected signal.   For these reasons the GE

algorithm was used to estimate the parameters for the breath detection algorithm.

The GE algorithm was used to fit the mixture distribution model to the histogram

in Figure 2.7.  The estimates for this data were  p=0.44, �=3.58×10-4,  and b=2.9×10-3.
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Figure 2.12  Comparison of the GE algorithm to the EM algorithm in estimating 

parameters for a segment of audio. 
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The distribution model was then plotted over the histogram of the data in Figure 2.7 using

these estimates.

2.3.6  Using the model parameters to find an audio threshold

The threshold to decipher breath sounds from the noise can be determined using

just the parameter  � alone or by using it in conjunction with the value of  b.  Using  �

alone, a confidence interval of 96% can be achieved if the threshold is set to two times

standard deviation of the noise.  

Using both parameters, estimation theory can be used to determine threshold.  In

order  to  minimize  risk and  maximized detection the  minimax algorithm was  used to

determine the threshold.  The minimax algorithm makes no assumptions about the prior

probability of either distribution [21]. This is similar to a method in voice detection used

in [19].  

Using the  minimax  algorithm,  the  error  from both  distributions  needed  to  be

minimized.  The  tail  probability  eNF of  the  Gaussian  distribution  is

e NF���

� 1

��2��	
e


x
2

2�
2

dx , where � is the threshold between the two distributions.  Only

the positive tail of the distribution has been calculated because both the zero-mean Gaus-

sian distribution is  symmetric  about zero.   Figure 2.13a shows the error  probabilities

attributed to the tail probabilities in red.  The probability eBS of the Laplace distribution is

e BS��0

� 1

2b
e


�x�
b dx  where the error is attributed to the central probability.  Because this

distribution is symmetric about zero only the positive half needs to be calculated.  The
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b Figure 2.13 Probability distribution function showing error probabilities (a) 

Gaussian with tail error probabilities (b) Laplace with central error probability 
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error of the Laplace distribution is illustrated in Figure 2.13b where the error is the sum

of the central probabilities.  The minimax algorithm attempts to minimize the tail probab-

ility eNF and probability eBS  by equating them and solving for �.  Equating the two errors

results in the equation:

                          �
�

� 1

��2���
e

	 x
2

2�
2

dx
�
0

� 1

2b
e

	�x�
b dx                                   (2.36)

which can be simplified to

                                         	erf �
	�
�

�
e
	�
b                                                  (2.37)

where  erf( )  is defined as the error function with equation  erf �x �

2

����
�0

x

e
	t2

dt .

An analytic solution for � in equation 2.37 is not possible because the equation is already

in its simplest form and is transendental.  Instead of finding a direct value for �, a para-

meter estimation technique was used to find a reasonable value for �.  A vector of values

which would be common to  � was generated as will be described.  The vector created,

called �f, ranged from 0 to 1 in steps of 0.0001 with units of volts.  This range and step-

size was chosen because the known range of the audio envelope is below 1 and the lowest

noise observed was 0.0005.  The values of �f  were applied to the equations 	erf �
	�
�

�

and e
	�

b using the estimated values  �EST and bEST .  This resulted in two vectors of equal

length.  The difference of the two vectors was found and the value of �f with the absolute

minimum error was chosen as the estimate for �.    The values of the two vectors calcu-

lated crossed for the values of �f because the error probability for the Gaussian distribu-

tion is zero for  �f=0 and the error probability for the Laplace distribution is zero for  �f=1.
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Using the range of values for �f the vector for the error of the Gaussian distribution and

the error of the Laplace distribution meet between 0 and 1 given the limitation that the

input data is limited to be between -1 and 1.

The value for �f  is a good estimate for the noise threshold in most circumstances.

However, in periods in which there are no detectable signals, the estimate of the standard

deviation of the Laplace distribution becomes similar to the standard deviation of the

Gaussian distribution.  Thus the assumption that �<<b is not valid during long periods of

silence.  Using the value of � in this circumstance would allow for a lower breath detec-

tion threshold, which could possibly start detecting noise sounds as breaths.   Also during

times of extremely loud sounds the value of  b dominates the inequality thus making it

possible to raise the threshold above the envelope of some of signals that should be detec-

ted. In order to avoid these two problems the value of  � is limited by 1.44×�EST on the

lower end and  2.4×�EST on the upper  end.  These  values  were  chosen  as  values  with

confidence intervals of 85% and 98% of the Gaussian distribution.

In order to determine the validity of the noise threshold � chosen, a receiver oper-

ating characteristic (ROC) curve was generated from experimental data for the detection

of apnea found by the acoustic detection method and that  of  the gold standard.   The

determination of apnea periods for the acoustic detection method and the gold standard

will be described in later sections.  For this curve, the value of the noise threshold was

multiplied by a value from a vector ga that included values from 0.5 to 10 in steps of 0.1.

The probability of false alarm (pFA) and probability of miss (pMISS) were calculated from

the training data set for each value of ga, with the resulting ROC curve shown in Figure

2.14.  The optimal value of ga was 1.0 and it occurred where the value of pFA=0.094 and
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Figure 2.14 Receiver operating characteristics of acoustic breath detection to flow meter 

breath detection. 
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the value of pMISS =0.103 .  The value of  pFA is shown directly on the plot of Figure 2.14,

and the value of  pMISS  is the value  pMISS=1-pTP  from Figure 2.14.

2.3.7 Using the acoustic threshold to detect breath sounds

Using the threshold value and audio envelope as described above, crossings of the

audio  envelope  through  the  breath  detection  threshold  were  found.   A crossing  was

defined when two consecutive samples of the audio envelope were found in which one

was less than the breath detection threshold and the other was greater than the breath

detection threshold.  Each crossing in which the slope of the envelope was positive indic-

ated the beginning of a detected sound, and each crossing in which the slope of the envel-

ope was negative indicated the end of a detected sound.  Detected sounds shorter than 0.3

seconds were discarded.  The value of 0.3 seconds was calculated from the maximum

respiratory rate of a spontaneously breathing adult of 75 breaths per minute [22].  A rate

of 75 breaths per minute means that each breath would be 0.8 seconds in length.  Allow-

ing for  a  0.2  second expiratory pause and assuming equal  inspiratory and expiratory

times, the minimum breath sound length is 0.3 seconds.   The remaining sounds were

considered valid breaths.

Note that the the estimated parameters used to find  the threshold were not derived

from the envelope.  It was assumed that because both the parameters and the envelope

were directly derived from the filtered audio signal, they could be used together. 
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2.3.8  Detection of apnea by the gold standard

2.3.8.1  The need for multiple forms of apnea detection

The CosmoII+ monitor measured the flow rate directly in units of l/min.  This

monitor also marked the beginning of each breath with a marker.  Using the breath mark-

er and the flow rate, a breath volume signal was calculated by the CosmoII+ device for

each breath in units of mL.  The breath volume signal is simply the integral of the flow

rate signal.  The flow rate signal was not perfect and included some artifacts as described

next.  In addition, the flow rate signal occasionally had a DC offset that could be up to 5

l/min, as shown in Figure 2.15a.  The DC offset in the flow rate signal caused the breath

volume signal to integrate continuously, as shown in Figure 2.15b. Another problem with

the breath volume signal was that the initial value of the volume was not known, causing

a DC offset in the reported breath volume.  The value of the breath volume was periodic-

ally reset by the CosmoII+ monitor, but variations in the initial breath volume were often

observed.  The largest artifact observed on the flow rate signal was caused as the heart-

beat pushed air through the trachea in rates up to 10 l/min as seen in Figure 2.16.  Other

artifacts such as electronic noise were not as significant when measuring the flow rate

signal.

Apnea has been defined in this work as a period of at least 15 seconds where the

breath volume does not exceed 150 mL.  The value of 150 mL was used because this is

the average adult airway dead-space [7].  The example shown in Figure 2.15b shows the

problem with this definition given the data set.  Specifically this example shows the the

case when volume could exceed the threshold of 150 mL while no real gas exchange

occurs.  For this reason the flow rate signal was used in addition to the breath volume



64 

Figure 2.15 Example of the affect of a DC offset on the flow rate and the integrated 

breath volume, (a) Flow rate (l/min) (b) Flow Volume (mL). 
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Figure 2.16 Example of a flow rate affected by a strong heartbeat flow. 
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signal in detecting periods of apnea.  The threshold set on the flow rate signal was 7.5

l/min.  This value was chosen to eliminate the majority of the heartbeat flow rate artifacts,

and to detect periods of apnea even when a DC offset up to 7.5 l/min on the flow rate

signal was present.  More importantly, the peak value of 7.5 l/min corresponded to a tidal

volume (peak breath volume) of 150 mL for the subjects in this study as shown in Figure

2.17.  Figure 2.17 shows the comparison of the peak flow rate of a breath of the subjects

and the tidal volume for that breath.  The relationship on this plots shows the majority of

the breaths with volume less than 150 mL having a peak flow rate of 7.5 l/min.  The

outliers observed in this plot are attributed to flow volumes calculated from a DC offset

of the flow rate as shown in Figure 2.14b.  Additionally this is close to the flow rate at

which sound can be detected at the trachea of 7.2 l/min [10].

2.3.8.2  Flow rate apnea detection and breath volume apnea detection

Using the flow rate signal and breath marker, apnea was detected where the abso-

lute flow rate was below the threshold of 7.5 l/min for longer than 15 seconds.  

Using the breath volume signal, apnea was detected where the breath volume was

below 50 mL for more than 15 seconds.  The value of 50 mL was used because of the DC

offset associated with the calculation of the breath volume signal.  If the value of 150 mL

were used some apnea would be detected where there actually was none because the

initial volume of the breath was below -100 mL.  The decision in this case was to err on

the side of missing a period of apnea rather than detecting a period of apnea that did not

exist.  

If  either  of  the apnea detection methods described above detected a period of

apnea, that period was considered apnea.  This was done to detect periods of apnea by the
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Figure 2.17 Peak flow rate compared to tidal volume for the training data set. 
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breath volume method when artifact  on the flow rate signal caused it  to miss,  and to

detect periods of apnea when the breath volume signal integrated a DC offset of the flow

rate signal, but the flow rate signal detected the period of apnea.

Periods detected as apnea but determined to be times at which the tight-fitting-

facemask was not  present  were eliminated from the data set,  as  will  be described in

Chapter 3.

2.3.9  Comparing the acoustic apnea detection to the 

flow apnea detection method

Apnea  detected  by the  acoustic  method  and  the  flow method  were  compared

directly  as  follows.   First  the  periods  of  apnea  detected  by  the  flow  method  were

compared to the acoustic method.  If a period of apnea detected by the acoustic method

overlapped a period detected by the flow method, this period was considered a true posit-

ive.  If a period of apnea detected by the flow method did not overlap a period detected

by the acoustic method, the period of apnea was considered a false negative.  Next the

periods of apnea detected by the acoustic method were compared to the periods detected

by the flow method.  If the acoustic method detected a period of apnea but the period did

not overlap with a period detected by the flow method, the period was considered a false

positive.

In order to calculate a value for the number of true negatives, the average length

of all of the periods of apnea detected by the flow method was calculated.  The amount of

time found in which neither the acoustic apnea detection method or the flow apnea detec-

tion method detected apnea was divided by the average length of a period of apnea to find

the equivalent number of periods of true negative apnea detections.
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2.4  Results

The number of true positives, false negatives, false positives, and calculated true

negatives of detected apnea were calculated for both the training data set and later the

testing data set.  The results of the training data set are shown in Figure 2.18.  The results

of the testing data set are shown in Figure 2.19.  The data shown in the Figures 2.18 and

2.19 are summarized in Tables 2.1 and 2.2, respectively.

2.5  Discussion

The results  shown indicate that  the apnea detection by the acoustic  method is

relatively effective.  The training data set had a 92.8% sensitivity and a 91.8% specificity.

This is below the goal of 95% sensitivity and specificity as desired in the project proposal

of this work.  The testing set had a 98% sensitivity and a 100% specificity.  The improve-

ment of both specificity and sensitivity is likely due to the differences in the two data

sets.  The training set consisted of 21% apnea and the testing consisted of only 13% of

apnea.  Because the original data were randomly divided into two sets, the discrepancy in

the percentage of apnea in each set can probably be attributed to the random selection

process of the testing and training sets.

When the false positive apnea periods were observed, it was determined that a

significant number were caused by the acoustic breath signals being almost inaudible in

comparison to the noise signal.  This observation took place as the investigator listened to

sound segments  during  periods  of  apnea  classified  as  a  false  negatives.   The  breath

sounds recorded during these periods were faint and in some cases inaudible.  This could

have been because of poor placement of the stethoscope or because of an excess of noise
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Figure 2.18 Results of the comparison of the acoustic method of apnea detection to the 

flow method of apnea detection from the training data set. 
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Figure 2.18 Results of the comparison of the acoustic method of apnea detection to the 

flow method of apnea detection from the testing data set. 
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Table 2.1  Training set apnea detection data comparing flow method and acoustic apnea

detection.

Flow Meter

Normal

Acoustic

Normal

Apnea

Apnea
575

TP=91.8%

173

FP=6.2%

51

FN=8.2%

2238

TN=92.8%
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Table 2.2  Testing set apnea detection data comparing flow method and acoustic apnea

detection.

Flow Meter

Apnea Normal

Acoustic Apnea

Normal

472

TP=100%

65

FP=2%

0

FN=0%

3167

TN=98%
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on the microphone.  The probability of this happening could be reduced by identifying

optimal places to place the microphone that would increase the amount of breath sound

detected by the microphone.

The periods of false negative were caused primarily when a source of noise from

outside of the stethoscope was detected as a breath sound.  Depending on the placement

of the stethoscope, some external sounds were able to be recorded within the stethoscope

cup.  This was determined when the researcher listened to the audio during the apnea

periods identified as false negatives, and common ambient sounds were determined to be

the sounds that were detected as a breath.  A typical sound heard was the nurse assessing

the OAA/S score.   The nurses  voice could be clearly heard in  some instances.   The

number of periods of apnea missed by the acoustic method could be decreased in several

ways.  The first method would be to use an adaptive filter to reduce the ambient noise by

placing a reference microphone outside the stethoscope cup.  This method will be tested

in Chapter 4.  The other option to improve this is to classify the source of the sounds

based on their acoustics.

Because of the relatively large number of periods of false negative from the train-

ing data set, the acoustic method alone would be a risky method to determine patient

ventilation, especially in a noisy environment.  The periods of false positive are not as

dangerous, but do pose a threat of a clinician silencing the device if it repeatedly shows a

false positive alarm.  This method may be more useful in a clinical setting where the

patient is not as closely monitored.  During the data recording of this set, the subjects

were not allowed to be apneic for long periods of time due to the close observation of the

anesthesiologist present and the large amount of monitoring equipment. It may be that if
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the subjects were allowed to have been apneic for longer periods of time, the number of

periods  of  false  negatives  by the  acoustic  method  would  have  gone  down.   This  is

because  the periods  of  apnea  would be longer,  thus  allowing the  acoustic  method to

detect the periods of apnea.  The periods of apnea would be longer in a clinical setting

because the data collection setup during this study allowed for the anesthesiologist  to

give his entire  attention to the subject  and so periods of  apnea were not as  long,  as

opposed to a clinical setting where the patients are not monitored as closely by the physi-

cian.  In addition, a clinical setting does not normally monitor respiration directly, but

relies on the pulse-oximeter to determine apnea.  As noted in the introduction the time

difference between the onset of apnea and the alarm of the pulse-oximeter can be over

two minutes.

It  is  difficult  to compare the results  of  this work with those of  other  acoustic

respiratory monitors because no other monitor tried to identify apnea.  Other acoustic

apnea monitors have only reported the success in identifying a respiratory rate [3].
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CHAPTER 3

SOUND CLASSIFICATION

3.1 Introduction

3.1.1  Goals of sound classification

Chapter 2 focused on using the audio signal to detect apnea when compared to the

flow meter.  This chapter focuses on determining the source of the apnea, whether it be

from respiratory depression (RD) or respiratory obstruction (RO) based on the acoustic

signal.  The classification based on the acoustic signals is then compared to a standard

that has been developed using the CosmoII+ flow meter and the Respitrace respiratory

impedance plethysmography (RIP) device to determine the source of apnea.

The goal of the resarch work is to be able to determine the source of apnea detec-

ted with a 95% sensitivity and 95% specificity when compared to the standard.   The

standard will be described in Section 3.2.1.

3.1.2  Overview

This chapter  will  first  discuss the current  research into classification of breath

sounds.  This chapter will then discuss the basis and reasoning behind sound classifica-

tion.  It will also introduce the causes of RO and RD and the data set used to create and

test the classifier.  Section 3.2.1 then discusses the initial challenge of developing a stand-

ard to differentiate between RD and RO.  Because of the lack of a recognized standard 
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that  differentiates  between  RD and  RO,  a  method  using  the  classifications  of  three

researchers as they viewed the flow rate and RIP data will be discussed.  Section 3.2.2

discusses  the  proposed models  used  to  classify  the  different  sounds  recorded  at  the

trachea.  The models were created using observations of features of each sound.   The

models were also created using explanations of the physical aspects of what is creating

the sounds.  Section 3.2.3 then describes the methods used to classify the sounds based on

the models described.  Finally Section 3.3 shows the results and comparison of the stand-

ard to the method of classification and Section 3.4 discusses the results and conclusions

of this chapter.

3.1.3  Overview of breath sound classification techniques

The development of an algorithm to process tracheal sounds and classify them has

been pursued in recent years by several groups.  Four techniques and approaches will be

discussed, and the validity of applying each technique to the current application will be

discussed.

Ng et al. [1] describe a technique that uses psychoacoustic measures of sounds to

classify snoring sounds in an attempt to classify a subject as an obstructive or benign

snorer.  Ng et al. use five calculations of individual sounds independently to classify the

subject.  The five calculations of psychoacoustics were loudness, sharpness, roughness,

fluctuation strength, and annoyance.  Ng et al. give the equation used to calculate each

measure  from  the  segmented  audio  signal.   Twenty-five  researchers  were  asked  to

classify each snoring sound for each of the five psychoacoustic factors based on the

sound alone of each subject. The classification of the subjects and the classification of the

calculated  value  were  then  compared  using  a  receiver-operating  characteristic  chart.
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Using these, Ng et al. concluded that the highest correlating psychoacoustic measures

were   loudness,  annoyance,  and  roughness.   Although this  research  classifies  snore

sounds,  no  mention  is  made  of  normal  breath  sounds  and also  how they would  be

classified.  In addition, one of the primary signals used was loudness, which is arbitrary

because there is no absolute measure of loudness at the trachea.  The classification of a

subject being at risk for obstructive snoring is also not applicable in the case of sedation

because all subjects are at risk of obstruction given the concentrations of drugs being

used.  Since this research focused on nonsedated patients, it may not predict how sedated

patients sound or the changes that occur during sedation.

Jane et al.  [2] used a neural network to classify sounds into two categories of

presence or absence of snore.  Jane et al. trained the neural network using 625-selected

events including snores and other common sounds recorded at the trachea from sleeping

patients.  The neural network used 22 unspecified inputs from each sound.  Jane et al.

reported that the neural network classified on average 82% of the sound events correctly.

Although this work is relevant, Jane et al. failed to describe the inputs of the network.  In

addition, simple snoring was not differentiated from obstructive snoring.  The ultimate

goal of this dissertation is to classify periods of apnea as obstructive or depressive, so an

algorithm to translate the classification of individual sounds to the classification of an

entire period of apnea needs to be developed.

Hara et al.  [3]  recognized that the sounds from simple snorers might be easily

distinguishable from obstructive snorers.  Hara et al. then compiled snore sounds from

patients that were simple snorers and patients that were obstructive snorers and observed

the frequency spectrum produced by each.  The subjects were recorded during sleep
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studies.  Hara et al. noted that there were significant differences in the spectrum above

800 Hz between simple snorers and obstructive snorers.  Hara et al. concluded that using

a multidimensional voice program could be a viable solution to differentiating between

simple snore sounds and obstructive snore sounds.  Although the observation in this work

is valuable it did not find a threshold to use to differentiate the two types of sound, but

rather used observations and calculations to show that this may be possible.

Nakano et al. [4] took a different approach to classifying breath sounds.  Nakano

et al. used data from patients undergoing polysomnography (PSG) in conjunction with

audio data recorded at the trachea of each patient.  PSG is an analysis performed on

patients undergoing a sleep study to diagnose sleep apnea.  The PSG was performed for

each patient and produced the apnea-hypopnea index (AHI).  Instead of segmenting and

classifying each individual sound, Nakano et al. created a continuous index of what is

described  as  the  tracheal  sound-respiratory  distrubance  index  (TS-RDI).   This  was

calculated by summing the power spectra from 400 to 600 Hz of the audio data with a

rectangular windowing function of 0.2 seconds.  This value was placed in a moving

average and sharp changes of 12 dB per 18 seconds were defined as tracheal sound dips.

The number of  tracheal  sound dips per  hour  was calculated and called the  TS-RDI.

Nakano et  al.  used the TS-RDI to differentiate between obstructive apnea, hypopnea

(defined  as  shallow  breathing),  and  central  apnea  (described  in  this  dissertation  as

respiratory depression).  Nakano et al. then compared the AHI to the TS-RDI, finding that

it  had  a  correlation  coefficient  of  r=0.945.   Nakano et  al.  went  on to  use receiver-

operating characteristic curves to find the best cutoff for the TS-RDI to predict the AHI.

The threshold used yielded a sensitivity of 93% and specificity of 67% in diagnosing
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sleep apnea.  Nakano's et al. approach was distinguishably different because it classified

periods of apnea rather than an individual breath.  This approach is more useful because it

gains a more broad perspective into the patients' breathing state rather than just for a short

breath sound.  Despite the fact  that  the primary factor in diagnosing sleep apnea by

Nakano et al. was the amplitude of the sound, Nakano et al. did not provide a method for

calibration of the sound amplitude.  This could lead to unreproducible results if the sound

transducer was placed differently on different subjects.

In this research the audio has already been segmented as described in Chapter 2.

In contrast to the first three approaches shown, the individual sound classifications will

be used to classify an entire period of apnea.  In contrast to the approach of Nakano et al.,

this paper uses the individual breath sounds prior to apnea to classify that period as RD or

RO rather than a continuous index of the sound.  In addition, the research mentioned has

been done on nonsedated patients.  Since the patients in the data set for this dissertation

were sedated, the characteristics of the snoring sounds may be different.

  
3.1.4  Basis for sound classification

Personal observation during data collection has shown that the human ear can

decipher the difference between normal breath sounds and partially obstructed breath

sounds with little training.  If an algorithm could be developed to decipher the difference

between these sounds,  the automation of  apnea classification could help  in  not  only

identifying that a patient is not breathing but also in identifying the source of the cessa-

tion of breathing.    

An assumption of the breath detection algorithm described in Chapter 2 is that

every sound detected above the noise threshold is a valid breath. The data show that not
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all periods of apnea detected by the respiratory flow meter were detected by the acoustic

detection method. This is a result of sounds not related to breathing creating a sound

exceeding the noise threshold. Examples of sounds not generated by breathing are back-

ground sounds such as ambient talking or machine sounds. Additionally, some sounds

which are related to breathing, such as partial obstruction, indicate that sound is detected

but in fact the flow may be inadequate to clear the respiratory deadspace.  The respiratory

deadspace is the volume of air  between the avioli  and the mouth.   Ventilation is not

achieved if the respiratory deadspace is not cleared in a breath.  

During partial obstruction, some air passes through the respiratory tract causing

sounds to be detected at the trachea.  These sounds are louder than normal breathing

sounds  with similar respiratory flow rates.  This is due to a smaller airway, which gener-

ates a higher amplitude of sound.  In addition, adipose tissue slaps against other tissues to

produce more sound.  These sounds are produced by the same mechanisms that produce

snore sounds.  Because of the relationship of snore sounds to obstruction, snoring is

considered a precursor to  obstruction [3,1,2].

For this research snore sounds have been separated into two cases to distinguish

between snores that do not lead to obstruction and snores that do.  The first case is the

productive snore.  This happens as the upper pharynx closes partially so that adipose

tissue begins to slap against itself to produce the snore sound, but flow continues and has

a high enough volume to clear the respiratory deadspace during the breath.  The second

case is the obstructive snore.  This occurs as the pharynx becomes more closed and does

not allow sufficient ventilation to clear the respiratory deadspace.

Snoring is more commonly observed during the inspiratory phase of breathing.
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This is because the negative airway pressure produced by the contraction in lung volume

causes  loose tissue in  partially  occluded airways  to  become more  constricted.   This

constriction is either alleviated as the airway opens because of the force of the pressure,

or the constriction is not alleviated and no gas exchange takes place [5].  During expira-

tion the pressure within the lungs increases. If the airway is occluded during this time the

positive pressure opens the airway allowing for gas exchange.  This physiologic explana-

tion has led to the use of continuous positive airway pressure (CPAP) devices, the most

common solution to obstructive sleep apnea syndrome (OSAS) [6].  CPAP devices supply

a continuous positive airway pressure by forcing air into the nose and/or mouth as the

patient sleeps.  The patient's airway then stays open even during inspiration because the

air  pressure within his/her airway is greater than the ambient air pressure.  This is an

important factor to the sounds generated in a subject not using a CPAP device.  During a

productive snore breath the inspiratory breath sound has characteristics of a snore, where-

as the expiratory sound is a normal breath sound because it exerts a positive pressure on

the pharynx closure.  During a partially obstructed breath the inspiratory breath sound

still has characteristics of a snore but the expiratory sound is too quiet to be detected.

During periods of complete obstruction neither the snore sound nor the breath sound can

be detected on either phase of breathing because there is no flow through the trachea.

3.1.5  Data set

The data set used for the sound classification portion of this project was the same

data set described in Chapter 2.  In addition, this portion of the project uses the audio

segmentation markers generated by the algorithms described in Chapter 2.  It  is also

important to note that during the recording of the data set the author listened to the audio
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data and observed the other data recorded for the majority of the subjects such as meas-

ured respiratory flow rate, blood-oxygen saturation, and RIP values.  These observations

gave the author insight into the sounds that occur during RO and RD before the data were

processed and algorithms developed.

3.2 Methods  

3.2.1  RD and RO classification standard

3.2.1.1  Definition of respiratory obstruction

The current standard for identifying a period of RO is a physician's observation of

the patient and monitors at the time of the obstructive period or during polysomnographic

(PSG) analysis [7].  Due to the cost of having a physician perform PSG on all 20 full data

sets, an alternative method of differentiating RD and RO was performed.

Identification of periods of obstruction was based on a physiological definition of

RO using respiratory inductance plethysmography (RIP) and flow rate monitors.  The

RIP device measures the change in chest and abdomen circumference by measuring the

inductance of wires sewn into elastic bands placed on the chest and abdomen.  Physiolo-

gically, RO occurs when the airway becomes constricted but the drive to breathe contin-

ues.  RO is identified when the flow rate shows no valid breaths but the RIP monitor

shows  volume changes  up  to  approximately  180 mL.   The  use of  180  mL will  be

explained in Section 3.2.1.3

3.2.1.2  Definition of respiratory depression

Respiratory depression occurs as the patient loses the drive to breathe. In the case

of this study RD occurred as a result of the combination of drugs used to sedate the
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subject.  Physiologically, RD becomes evident as breath volume of the subject decreases.

The breath rate may also decrease, but the airway remains open.  This continues until the

subject does not take a breath for the designated period of time of fifteen seconds.

Using the flow rate measurement and chest and abdomen measurements, RD is

identified when both signals show no valid breaths for the designated period of fifteen

seconds or longer.  Before the period of apnea, the flow volume and RIP signals show a

correlated signal.  In addition, the calibrated volume measured by the RIP remains correl-

ated with the calculated volume from the flow rate.

3.2.1.3  Lung volume change during obstruction

During a period of RO, the RIP can measure changes in the volume of the chest

and abdomen that are not detected by the flow meter.  This is believed to be caused by the

change in volume due to the change in pressure exerted by the subject.  The maximum

amount of lung volume change by suction pressure of gas during inspiratory obstruction

has been estimated to be 180 mL, corresponding to the maximum suction pressure of 60

cmH2O that the lungs will exert in normal circumstances [8].  Using this value converted

to atmospheres results in the value of 0.058 atmosphere change of pressure within the

lungs.  The data were recorded in Salt Lake City, UT at an approximate altitude of 1288

m.   The  atmospheric  pressure  at  this  altitude  is  approximately  0.857  atmospheres.

Assuming that the air breathed can be modeled as an ideal gas and that the temperature of

the gas was constant, the ideal gas law was used to calculate the change in lung volume

due to suction pressure.  The ideal gas law follows the equation PV=nRT, where P is the

pressure within the lungs in atmospheres, V is the volume within the lungs in liters, n is

the number of moles in the lung volume,  R is the gas constant with units of Joules per
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Kelvin mole, and T is the absolute temperature in Kelvin.  The functional residual capa-

city (FRC) or the lung volume after expiration in an adult can range from 2 to 4 liters [9].

For this calculation an FRC value of 2.5 liters was used.  Since the initial values of V1 and

P1 were known and n, R, and T did not change, the values of n, R, and T were considered

one constant with the value nRT=2.5×0.857=2.1425 atmosphere liters.  The maximum

change in volume was calculated using this equation:

 V1-V2=nRT/P1-nRT/P2                                               (3.1)

Substituting the nRT value in equation 3.1 results in a change of 181 mL as the maximum

volume change due to suction pressure within the lungs.

3.2.1.4  Manual classification of apnea

It was hypothesized that, using data from the flow meter and the RIP, a manual

classification of the periods of apnea would be feasible.  The classification was blinded to

the author for the testing set.  The physiology of RO and RD as explained in Section 3.1.4

was used as the basis of this classification. 

Using the breath detection markers described in Chapter 2 all periods of apnea

detected that were longer than 15 seconds in length were classified as RO, RD, or period

of “mask off” (see below) in the following manner:  For each period of apnea the flow

rate, breath volume, and calibrated RIP volume were viewed, including 5 seconds prior to

the apnea and 5 seconds after the apnea.  Three researchers who were not involved in

developing any of the algorithms in this research, independently classified each period of

apnea as described next.  

RO was the classification if, during the period of apnea, the investigator determ-

ined that the flow rate signal showed no breaths but RIP volume showed breath volume
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change up to 180 mL.  RD was classified if, during the period of apnea, the investigator

determined the flow rate signal showed no breaths and the RIP volume also showed no

significant volume change that would be consistent with a breath.  A period of “mask off”

was classified if the flow rate showed no breaths but the RIP volume showed volume

changes greater than 180 mL in volume, since a RIP volume change  greater than 180 mL

during a period deemed apnea by the flow meter indicates that the mask that measures

respiratory flow was removed.  These periods were removed from the data set.

The resulting classifications of the apnea from the three researchers were then

analyzed in the following way:  If a classified period was classified the same way by two

or more of the researchers, the classification given by those researchers was chosen for

that period of apnea.  Periods that were classified differently by all three researchers were

displayed before  all  three researchers  at  the  same time.   The  three researchers  then

decided as a group which of the three classifications was the best fit.  In the event that the

researchers did not agree, the period in question would be removed from the data set.   Of

the 645 periods to be classified the three researchers agreed 395 times and at least two

agreed a total of 622 times.  Of the 23 periods that at least two researchers did not agree,

all were able to be agreed upon in a collaborative setting.

The results of the classification performed by the researchers was compared to the

statistical  probabilities  of  three  randomly  assigned  classifications.   Given  the  three

possible options, each with three independent trials and all equally likely, there are 33

classification possibilities.  First the probability of three independent classifiers choosing

the same classification will be found.  Three of the 27 possibilities result in a unanimous

decision.  A reasonable assumption was that those classifying the sounds did not have a
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prior expectation of each of the three possibilities because those classifying these events

were not told the likelihood of each of the three possibilities. Using this assumption each

decision can be treated as a binomial random process with two possibilities: unanimous

decision or non-unanimous decision. The probability mass function (PMF) is:

PK k={1/9,k=3 Unanimous
8/9,k3 Non−unanimous

                                     (3.2)

where PK(k) is the PMF of the binomial distribution, and k is the number of agreements

from the three classifiers, and  K  is the binomial random variable denoting unanimous

decision.  The mean value for k=3 is given by the mean of the binomial distribution

E[X]=np, where n is the number of independent trials p is the probability of the unanim-

ous decision, which is 1/9 in this case, and X is the random variable [10].  Given this, the

mean value is 71.66 out of the 645 trials.  The variance of a binomial distribution is

VAR(X)=np(1-p) where n is the number of independent tirals, p is the probability of unan-

imous decision and X is the random variable [10].  For this case the standard deviation is

7.98.  The number of periods of apnea classified unanimously by the researchers was 395

times out of the 645. This value is over 40 standard deviations better than for independent

uniform random trials.

Since the classification was based on two or more researchers agreeing, the statist-

ical probability of the having at least two independent sources agree was also calculated

and compared with the results from the researchers.  The probability of two or more of

three independent trials agreeing given three equally likely possibilities is seven out of

nine.  Treating this as a binomial random process as in the previous case the PMF of this

is:
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PK k={7/9,k≥2
2/9,k2

                                                     (3.3)

where PK(k) is the PMF of the binomial distribution and k is the number of classifiers in

agreement.  The mean number of at least two classifiers in agreement given 645 inde-

pendent trials is 501.66, and the standard deviation is 10.56.  At least two of the research-

ers classified 622 of the 645 periods in agreement, which is over 11 standard deviations

better than for independent uniform random trials.

The assumption that each classification is equally likely was made because the

actual probabilities of how often each classification occurs is not known.  Since these

probabilities are not known, the number of classifications found in the training set will be

used as a secondary statistical comparison.  From the training set, the total number of

apnea periods classified as RD were 564 out of a total of 821.  The total number of apnea

periods classified as RO were 28 out of a total of 821.  The total number of apnea periods

determined to be a period of mask off were 195 out of a total of 821.  Comparing the

number of unanimous agreements made by the researches to three independent trials of

the probability of randomly choosing unanimous agreement results in the probability of 

PK k={ p1
3 p2

3p3
3 k=3 Unanimous

1− p1
3 p2

3 p3
3 k3 Non−unanimous

          (3.4)

where  PK(k) is the PMF of the binomial distribution, k is the number of classifiers in

agreement, p1 is the probability of choosing RD as the classification,  p2 is the probability

of choosing RO as the classification, and  p3 is the probability of choosing mask off as the

classification.  Given the statistics of the training set classification, the probability of

unanimous decision is 40%.  In order to reach the number of unanimous decisions made

by the researchers the value of p1 would have to be increased to 89.44 while setting the
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values of p2=0 and p3 =1-p1. The values of p2  and p3 are adjusted this way to maximize

the probability of unanimous decision given the random variables.

For the case of having two out of three classifiers correct, and using the same stat-

istics as for the unanimous decision, the probability of choosing two out of three in agree-

ment is 96.4%.  This is compared to the percentage of agreements made by the research-

ers two out of three times of 96.4%.  Because the probability of randomly choosing two

out of three to agree is the same percentage found by the researchers, this shows a statist-

ical weakness of this method of classification.

The comparison of the statistics of  actual  classification to the probabilities of

random classification shows that the human classifier performed significantly better than

if periods were randomly classified for unanimous decision but the same for a random

classifier for getting two out of three to agree.  Because the unanimous classification by

the  researchers  performed  significantly  better  than the  random  classification,  it  is

believed by the author that this shows an overall reliability of this classification method.

3.2.2 Proposed sound source models

The three most prominent sounds recorded during the data collection procedure

were normal breathing, snoring, and vocalization.  In order to differentiate between these

three sources, the cause of the sound being generated must be understood.  To better

understand these sounds, each was modeled based on observations of sound features, and

simulation models were created based on these observations of the features and an under-

standing of the physics of what created it.  One feature that was hypothesized to differen-

tiate sounds based on the physics of how it was created was the histogram of that sound.

It  was hypothesized that  a normal  breath sound normalized by its standard deviation
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would  have  a  Gaussian  distribution  because  of  the  source  of  the  sound,  as  will  be

described in Section 3.2.2.1, whereas a snore sound would have a distinguishably differ-

ent distribution.  Vocalization would also have a distinct distribution.  Thus, each sound

was  modeled  using  a  distribution  model  of  the  dominant  sound  that  was  observed.

Because the histogram of a sound removes all time dependence of the input signal, an

additional method to find the periodicity of the incoming signal was developed.  Period-

icity is believed by the author to be a feature that can differentiate between productive

snore sounds and obstructive snore sounds.  In Section 3.2.3.5 the combination of these

two feature classifications will be discussed.

Sounds recorded at the trachea are different from sounds used in speech recogni-

tion because when the sounds pass through the tracheal wall they are filtered.  Like most

physical barriers, the tracheal wall acts as a low-pass filter and, thus, higher frequencies

used in speech recognition are not able to be detected.  In addition, the articulation that

occurs above the pharynx during vocalization cannot be heard at the trachea because it is

filtered by the stethoscope cup and tracheal wall.  For this reason, methods of classifying

the breath sound using nontraditional features were developed and used.  The choice of

features was based on the differences of the sounds observed during the data collection

process that will be described in the next section.

Each of the three sound categories described will now be discussed.  In addition, a

model for each sound was created and will also be discussed.

3.2.2.1  Normal breath sound model

The most common sound recorded in the data set was the normal breath sound.

Both inspiratory and expiratory sounds in  a  normal  breath  are very similar,  and  are
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caused by the  same mechanism.  These sounds  are  created by the turbulent  air  flow

through the trachea when the flow rate exceeds the threshold associated with the Reyn-

old's number for the tracheal geometry. The flow rate corresponding to this in adults is

estimated at 7.2 l/min  [11].  Although the amplitude of the audio envelope of normal

breathing sounds is highly correlated with the flow velocity [12], sounds such as vocaliz-

ation and snoring do not have this same correlation.  This is because the amplitude of the

sounds generated by vocalization and snoring are much louder than normal breaths for

the same flow rate.  This means that sounds with similar amplitudes can have a wide

range of breath volumes.

Kompis et al. [13] use a model that simulates breath sounds as band-limited white

noise modulated by the amplitude of a breath phase.  Kompis et al. did not explicitly

define the waveform for the amplitude of the breath phase.  Kompis et al. also did not

give an equation for this model, rather a description and block diagram.  In this project,

normal breath sounds were modeled as Gaussian-distributed noise multiplied by a half-

cycle sinusoid, as shown in Figure 3.1.   A half-cycle sinusoid was chosen for simplicity

in modeling one respiratory phase of breathing.  Both inspiration and expiration were

modeled using the same model. The simulation of the sound for a normal breath ynb had

the following equation:

ynb(t)=ab sin(2πfbt)·Νt,1(0,1)                                              (3.5)

where  t  is time in seconds,  ab is the peak amplitude of the sinusoid in volts,  fb is the

respiratory phase rate in Hz, and  Nt,1(0,1) is a vector of  normally distributed random

samples with a mean of zero and standard deviation of one.

In  the case of  normal  breathing,  the only other  sound that  would be additive
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Figure 3.1 Simulated normal breath sound. 
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would be background noise due to a combination of electronic noise and ambient sound

filtered by the stethoscope cup.  The background noise was modeled in Chapter 2 as a

wide-sense stationary Gaussian-distributed model.  A more complete model of normal

breathing including the background noise would be:

ynb(t)=absin(2πfbt)·Νt,1(0,1)+Nt,2(0,an
2)                                      (3.6)

where an is the standard deviation of the background noise and Nt,2(0,an
2) is a vector of

normally distributed samples with zero mean.

This model  was created to simulate the band limited white noise heard when

listening to normal breath sounds as they are modulated by the respiratory cycle.  This is

very similar to the Kompis et al. model with the exception that the modulating signal is

specified in this case as a half-cycle sinusoid and the additive white noise is added. 

Normal breathing heard at the trachea appears to be “white noise” to the casual

observer, similar to sounds generated by rushing wind or water.  The observation of the

breath sound appearing “white” led to finding the actual distribution and band energy of a

normal breath. Data were used from the data set described in Chapter 2.  Some typical

breaths were analyzed to find what type of distribution and band energy they would

display.   In  most  instances  the histogram of  normal breath sounds from raw signals

formed a Gaussian distribution, as seen in Figure 3.2a. In other instances, however, they

were heavier tailed, as shown in Figure 3.2b. The change in the distribution seemed to

change from being Gaussian to more heavy-tailed than Gaussian from breath to breath.

During observation of the envelope of the signal and the distribution of the signal, a

pattern emerged.  It was observed that sounds that had a higher variance of the audio

envelope created a heavier tailed distribution, and breaths which had a relatively uniform
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Figure 3.2 Distributions of normal sounding breaths displaying a distribution similar to 
(a) a Gaussian distribution and (b)  a Laplace distribution. 
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audio envelope amplitude demonstrated a more Gaussian distribution.  The heavier tailed

distributions were observed to be similar to a Laplace distribution. Flow rates during a

single breath vary, and since during normal breathing the flow rate is related to the sound

amplitude, the amplitude of the breath sounds varies over the course of a breath sound.  It

was hypothesized that since the amplitude of the flow rate signal was varying, the distri-

bution of the audio signal would not be Gaussian.  

These observations led to  an  investigation  of  normalizing the  amplitude of  a

breath  sound  to  improve  classification  by  means  of  histogram matching  as  will  be

described later in Section 3.2.3.1.

Because the band energy and shape is a common feature to differentiate sounds,

the band energy of a normal breath will be discussed, even though it was not used as a

method of classification.  The band energy observed in a normal breath is not exactly

white because it is not a uniform amplitude across all frequencies.  An example of the

band energy of a normal breath is shown in Figure 3.3.  In most cases the band energy

had a similar spectrum to the one shown.  There were rarely any significant spikes in the

band energy,  and the signals'  maximum frequencies were around 800 Hz.  This  was

initially explored as a classification feature but was often indistinguishable from the spec-

trum created by a snore and was abandoned.

In Chapter 2 it was hypothesized that the breathing signal formed a Laplace distri-

bution.  This hypothesis seems to be contradictory to the hypothesis that normal breath

sounds have a Gaussian distribution.  The variation in the amplitude of the normal breath

sound  causes  the  distribution  of  the  breath  sound  to  become  more  heavy-tailed.

Appendix A gives the calculation of distribution of the modulation of a Gaussian random
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Figure 3.3 Spectrum of a typical normal breath sound. 
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signal by a sinusoidal signal.  As it will be discussed later in this section, the histograms

of the breathing sounds do appear to have a Gaussian distribution after the envelope of

the sound has been used to normalize the sound or by using a smaller section of the

breath sound where there is less variation of the amplitude of the sound.  The calculations

shown in Appendix A and Section 3.2.2.2 support the claims made in Chapter 2 that the

continuous breathing sound can be modeled by a distribution with a central peak and

heavier tails than a Gaussian distribution.  These distribution models will also be defined

and used in the automated classifier in Section 3.2.3.3.

3.2.2.2 Breath sound histogram simulation

To test the effects of modulation on a Gaussian signal distribution, a simulated

breath signal was generated using the model of equation 3.5.  A pseudo-random number

generator (MATLAB) was used to create a vector  Νsim(n) with a length of  M=50,000

samples and a Gaussian distribution.  This length was chosen because of the length of a

normal breath (approximately 2.2 seconds) at a sampling rate of 22 kHz.   A second

vector Ssim(n) that was a single period of a sine wave was created with the same number

of  samples  as  Νsim(n).   The  dot-product  of  the  two  vectors  was  calculated  as

Bsim(n)=Ssim(n)·Νsim(n).  The envelope Esim(n) of Bsim(n) was then calculated as described in

Chapter 2.  The simulated breath sound Bsim(n) was then divided by the envelope to create

an  amplitude-normalized  signal,  Lan(n)=Bsim(n)/Esim(n).   This  method  of  dividing  the

original signal by its envelope will be referred to as the amplitude normalization method.

The histograms of the signals Νsim(n), Bsim(n), and Lan(n) were calculated using 1000 bins.

This number of bins allowed for an average of 50 samples per bin.  The histograms of the

three signals can be seen in Figure 3.4.  This shows that a Gaussian distributed signal
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Figure 3.4 Histograms of the simulation of a Gaussian signal, sinusoidally modulated 
Gaussian signal and amplitude-normalized Gaussian noise. 
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modulated by a sinusoid can return to a Gaussian distribution through amplitude normal-

ization.  This is important because, if the histogram of a signal is to be classified, the

signal should be either divided by its envelope to show the amplitude normalized histo-

gram of the signal, or be divided into short sections to be classified individually to avoid

large changes of amplitude over a breath sound.  

Another  option  to  amplitude  normalization  is  the  use  of  short  segments  of  a

breathing sound in which the variability of the envelope of a breath sound would be

small.  This method of using short segments from a breath sound was used for the classi-

fier described in Section 3.2.3.3.

To test the segmentation method, the vector Bsim(n) was divided into 22 sections of

2205 samples each.  The histograms of each of the segments appeared to have a Gaussian

distribution except for those where the signal Ssim(n) included a segment passing through

zero. The absolute slope of a sinusoid is greatest at the zero crossings, thus causing the

variation in the amplitude to be greatest during the segments that contain zero crossings

of  the modulating signal.   Because of the background noise and the breath detection

method described, the nonsimulated breath sounds will not have this problem.  The histo-

grams of the segments from the simulation are displayed in comparison to a Gaussian

distribution in Figure 3.5. 

The distribution of a Gaussian signal modulated by a sinusoid can be calculated

analytically.  The distribution of this signal is [14]:

 f Z  z =
1

2
[e

−z 2

4 K0
z2

4
] ,                                       (3.7)

where z is the random variable, and K0  is the order zero modified Bessel function of the

second kind.  The method for  deriving this distribution is  given in Appendix A.  An
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Figure 3.5 Comparison of these segments of modulated Gaussian signals to a Gaussian 
probability density function. 
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example of the distribution with a simulation is shown in Figure 3.6.  This distribution is

heavier-tailed than the distribution of the original signal Νsim(n).  In addition, this distribu-

tion has a pointed central peak when compared to a Gaussian distribution.  These two

differences are important because it will be shown in Section 3.2.2.3 that the distribution

of a snore sound is heavy-tailed when compared to a Gaussian distribution and has a

central  peak,  even when amplitude normalization is  performed.   These  are important

differentiators between normal breath sounds and snore sounds.

In contrast to the simulation of a normal breath sound, actual data was used to test

the amplitude-normalization method.  An example of a heavy-tailed normal breath sound

was found, as shown in Figure 3.7a.  The envelope of the sound and the original signal

was divided by the envelope of the sound.  The histogram of the amplitude normalized

breath  sound  is  shown  in  Figure  3.7b  compared  to  a  Gaussian  distribution.   The

amplitude normalization technique does help the normal breath sound appear to be Gaus-

sian.

A second important feature used to classify sounds as normal breath sounds was

the periodicity of the sound.  Normal breath sounds are not periodic because there is

nothing resonating or vibrating to create a repeated sound.  A method to determine the

periodicity of the sounds will be described in Section 3.2.3.4.

3.2.2.3  Snore sound model

As noted in the introduction there are two different kinds of snore sounds that are

important  to  classification.   The  first  is  a  productive  snore  that  allows  adequate  gas

exchange to the lungs.  The second is an obstructive snore sound that does not allow for

adequate gas exchange to the lungs.  Both are caused by the same mechanism and have
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Figure 3.6 Normalized histogram of a sinusoid modulated Gaussian random signal 
overlaid with the PDF for the signal. 
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Figure 3.7 Distribution of a normal breath sound (a) before envelope normalization and 
(b) after envelope normalization with Gaussian model. 
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been modeled similarly, as will be described.

The loudest sound produced during a snore sound is the slap sound of the adipose

tissue.  This sound was modeled in this dissertation as a repeated drumbeat sound with

variable repetition rate and amplitude.  Each drumbeat was modeled as an exponential

decay modulated by a sinusoid.   This  model  is  based on the sound produced by the

oropharynx as the tissue slaps against itself.  This tissue has a harmonic component after

the initial slap similar to that of a drum.  The simulation of the sound for a snore slap ydb

has the following equation:

ydbt =c e
−t
d⋅a sin 2 f n t                                              (3.8)

where t is time in seconds, c is the amplitude of the individual slap in volts, d is the decay

time constant of the slap, a is the amplitude of the sinusoid, and fn is the frequency of the

slap in Hz.  One possible improvement of this model is if  fn  is not constant.  A varying

value of  fn would mean that  the frequency would change over time, thus producing a

spectrum that is not a single peak.  An example of a snore signal from the recorded data

set  displaying this property is shown in Figure 3.8.  This models a single snore slap;

multiple snore slaps can be simulated by concatenating  several slaps together with differ-

ing values of c assuming that the other parameters stay constant through one breath.

Normal breath sounds are present in all sounds that have a breath flow rate that

becomes turbulent.   This is because sounds that have a high enough flow velocity to

create turbulence will generate the sounds that create the normal breath sound in addition

to the primary source of the sound that is modeled.  

If  there is a high enough flow velocity to create turbulence,  the normal breath

sounds as described above also contribute to the model.  In addition the background noise
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Figure 3.8 Repeated snore slap waveform from a snoring signal. 
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is present in every sound.  A more complete model including the turbulent noise and the

background noise with the snore slap is

ydbt=ce
−t
d⋅a sin 2 f n t N t ,10,an

2anb
2                   (3.9)

where  anb is the standard deviation of the noise generated by the normal breath and the

other  parameters are the same as previously defined.  It  is  important  to note that  the

modulation of  the normal  breath  by a sinusoid is  not  present.   This  is  because  it  is

assumed that the length of a snore slap is short enough that the amplitude of this sound

for the period of a snore slap can be considered constant.

From observations early in the research process, the distribution of a snore sound

commonly had a heavier-tailed distribution when compared to the Gaussian distribution.

Two features that differentiated the distribution of a snore sound from the normal breath

sound distribution after amplitude normalization were a peak at the mean rather than a

rounded point, and tails that were more pronounced than a Gaussian distribution.  These

differences were more easily identified when viewing a semilog plot of the distributions

as shown previously in Figure 3.4.  The model chosen for this distribution was a Laplace

distribution.  This was chosen  for several reasons.  It displays many of the same charac-

teristics observed in the snore sound distributions and it is based in the exponential family

of distributions like the Gaussian distribution.  Because the Gaussian and Laplace distri-

butions  are in the exponential  family,  mixtures and other  derivations  are more easily

calculated.

To explain the distribution associated with snoring, the distribution of an individu-

al snore slap of equation 3.8 was calculated as
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h v ={ d
 lv real sin−1 v

ace−l /d −sin−1 v
ac  , for −acvac

0, otherwise

              (3.10)

where c is the initial amplitude of the snore slap, d is the decay time constant of the expo-

nential decay, v is the random variable, a is the amplitude of the sinusoid portion of the

signal, and l is the length of the snore slap.  The derivations of this distribution is given in

Appendix B.  This distribution is a combination of a distribution in the Pareto distribution

family and an inverse sine  distribution.   In  cases  where  l  is  much greater  than  d,  it

displays a distribution heavier tailed than a Gaussian distribution with a peak in the center

of the distribution.  In cases where  l  is much smaller than  d  it  displays a distribution

similar  to  a  sinusoidal  distribution.   Examples  of  these  distributions  are  shown  in

Appendix B.  It is assumed from these distributions of the snores and from Figure 3.8

that, under normal circumstances, l is greater than d.  This distribution has a more similar

behavior  to the Laplace distribution chosen for  the histogram classification algorithm

than to the Gaussian distribution chosen for the normal breath sound model.

As noted, both a productive and obstructive snore slap sound have been modeled

by equation 3.9.  The difference between the two has two aspects.  The first difference is

the length of time of each slap sound.  In a productive snore the length of time of each

slap is nearly uniform because of continuous flow being interrupted by the slaps.  In an

obstructive snore the slaps are not uniform because of the lack of continuous flow.  In

addition the time between the slaps is  longer and can be more variable.   The second

difference is the normal breath sound portion of the model in equation 3.9.  During a

productive  snore  sound,  the  amplitude  of  the  normal  breath  portion  of  the  model  is

audible  just  before  and  after  the  snore  because  of  the  relationship  of  flow to  audio
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amplitude.  During an obstructive sound the normal breath portion of the model is inaud-

ible because there is not adequate flow.  In the case of the productive snore, the distribu-

tion would be formed by the summation of the signals that create both the distribution of

equation 3.10 and the Gaussian distribution signal before and after the snore sound.  

When either the amplitude normalization method or segmentation method was

used on a distribution from a snore sound, the distribution appeared much the same as

before the transformation.  This was both observed and tested in Section 3.2.3.3.  The

distribution not changing through segmentation or amplitude normalization may be due

to the  fact  that  the amplitude of  the envelope  of  a  snore slap for  an  individual  slap

remained unchanged because of the short length of the slap.

The second feature used to classify snore sounds was the periodicity of the snore

sound.  As described above, a productive snore sound has a regular slap period and would

be periodic.  An obstructive sound would not be periodic because of the lack of a continu-

ous flow that would regulate the repetition of the snore slap.  This was an observation

made during data recording by the author.  In addition this assumption will be tested by

the comparison of the classification standard described to that of the two-dimensional

classifier that will be discussed further in Section 3.2.3.5.

3.2.2.4  Vocalization model

Vocalization is the loudest sound recorded at the trachea.  Vocalization was so

loud that it often saturated the microphone in the stethoscope cup.  Vocalization is caused

as the vocal  chords are stretched across the trachea.   Vocalization from an individual

other than the subject being recorded can also be detected at the microphone, but this

sound is not as loud as the vocalization from the subject and is mixed with other sounds
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such as noise.  The vocal chords vibrate in a harmonic pattern, depending on the tight-

ness,  and  produce  harmonic  sounds.   There  are two distribution models  used  in  this

dissertation for vocalization, one for when the microphone is not saturated and another

when the microphone becomes saturated.  

The first model is a modification of the model proposed by Gazor et al. [15] as a

Laplace distribution for speech.  However, the histogram observed from vocalization  had

a distribution that appeared to be Gaussian, and the distribution model used for vocaliza-

tion was the Gaussian distribution.  This apparent inconsistency is explained by the signal

recorded at the trachea being filtered physically by the tracheal wall and skin, and digit-

ally by the filter described in Chapter 2.  Both of these filters are considered low-pass

filters.  To demonstrate how this would effect the distribution of a vocalization, the filter

described in Chapter 2 was applied to a simulated Laplace signal.  Figure 3.9 shows the

normalized histogram of the simulated Laplace random signal, the normalized histogram

of the signal after it has been filtered and downsampled, and a Gaussian distribution with

a mean of zero and standard deviation of the filtered signal.  From this figure it is evident

that the Gaussian distribution is a good fit for the filtered signal.  This also supports early

observations of nonsaturating vocalizations that  have a histogram that  appeared to be

Gaussian distributed.  

As noted, the vocalization is not the only sound present, but because the other two

additive signals from the background noise and normal breath sound also have Gaussian

distributions, a combination of these sounds with the Gaussian distributed vocalization

signal is simply a Gaussian distribution.

The second distribution model occurs when the microphone is saturated by the
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Figure 3.9 Comparison of the distributions of a Laplace random signal, a filtered Laplace 
random signal, and a Gaussian distribution. 

−6 −4 −2 0 2 4 6

10
−2

10
−1

Amplitude (V)

P
ro

ba
bi

lit
y 

de
ns

ity

 

 
Laplace RV
Filtered Laplace RV
Gaussian distribution



113

amplitude of the sounds recorded at the trachea.   A strong saturation creates a signal

similar to a square wave with 50% duty cycle and positive value of m and negative value

of -m where m is the absolute saturated value.  A perfect square wave has a distribution

that is an impulse at m and at -m as described by

s X  x=x−m xm                                                  (3.11)

where m is the saturation level of the signal and x is the random variable.  Microphone

saturation does not create a perfect square wave, and in addition, the signal used was

filtered by a low-pass filter to be downsampled to 4410 Hz.  The square wave has a

Fourier series:

f  x =
4
∑n=1,3,5. ..

∞ 1
n

sin n x
L                                    (3.12)

where x is the independent variable, n is the number of the harmonic, and L is the length

of a half period of the square wave.  The Fourier series indicates that the spectrum of a

square wave is made up of the odd harmonics and has a decreasing amplitude as the

frequency increases.  The low-pass filter implemented by the tracheal wall and digital

filter removes the  higher frequency formants.  If the low-pass filter removes all but the

primary harmonic of the square wave it becomes a sinusoidal signal as shown in Figure

3.10.  Thus the second distribution model used  for vocalization is the sinusoidal distribu-

tion with the equation [14]

f X x ={
1

 a2− x2
, for∣x∣a

0, otherwise
                                   (3.13)

where a is the amplitude of the sinusoid and x is the random variable.

In both saturated and nonsaturated cases of the vocalization models the distribu-
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Figure 3.10 Square wave and resultant sine wave after application of a low-pass filter. 
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tion seemed unchanged when either performing the amplitude normalization method or

segmentation.  In cases of saturation, this can be attributed to the amplitude of the audio

envelope being uniform.

In both cases of the vocalization models, the signal is expected to be periodic

because of the repetitive nature of a vocalized sound.  This further differentiates vocaliza-

tion from an obstructive snore sound.

3.2.3  Classification using the sound source models

3.2.3.1 Distribution comparison models

The method of histogram classification pursued here compared the histogram of a

sound to several distribution models.  The models given as a Gaussian distribution for

normal breathing, equation 3.10 for snoring,  and a Gaussian distribution or equation 3.13

for vocalization were used to create distribution mixture models, as will  be described

next.

Twenty-one distribution models were made using two mixture models. The first

was a mixture of Laplace and Gaussian distributions.  These two distributions were used

to differentiate between normal breath sounds and snoring breath sounds.  This mixture's

equation is

P x , ph=ph×
1

2
e

− x2

2


1−ph×
1

2
e−2∣x∣                          (3.14)

where  ph is the probability of the Gaussian distribution and  x  is the random variable.

This mixture was used because each breath sound was made up of portions of different

kinds of sounds independently in time.  For example a nonobstructive snore typically

begins as a normal  breath and then changes to a snore sound as the pharynx closes.
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Assuming that the snore sound is significantly louder than the normal breath sound, these

two sounds can be considered sequential. Using the values of x and ph, a matrix MGL was

created with dimensions of 11×101.  To create this matrix, ph was incremented from 0 to 1

in steps of 0.1 and x  was varied from -3 to 3 in steps of 0.06.    Each of the 11 rows

corresponded to a different distribution of the mixture for each value of ph.  An overlay of

the eleven models is shown in Figure 3.11.  

The second mixture model was the mixture of the Laplace distribution,  fX(x)=1/

(2b)e-|x|/b 
, with a sinusoidal distribution, f XS x =

1

1− x2
rect 

x
2
.  This model was

useful in the detection of vocalization versus snoring sounds.  Vocalization is typically

sequentially spaced with another sound source such as a normal breath sound, so the

distribution of the sinusoidal random variable was mixed with that of the Laplace distri-

bution.  This produces the mixture

P x , pS= pS×
2
2

e−2∣x∣1− pS×
1

1−x2
rect 

x
2
              (3.15)

where pS  is the probability of the Laplace distribution, that was incremented from 0 to 0.9

in increments of 0.1, and x is the random variable, that was incremented from -3 to 3 in

steps of 0.06.  This created a matrix MLS with dimensions of 10×101.  The overlay of the

10 models can be seen in Figure 3.12. 

Concatenating matrix MLS with matrix MGL created a matrix MGLS with dimensions

of 21×101, where each of the 21 rows represented a different mixture model.
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Figure 3.11 Overlay of 11 distribution models from the described Gaussian-Laplace 
mixtures of equation 3.12. 
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Figure 3.12 Overlay of 10 distribution models from the Laplace-sinusoid mixtures of 
equation 3.13. 
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3.2.3.2 Sound Segmentation 

To ensure that the no pauses between breath sounds were missed and that  the

loudest portion of each breath sound was used for classification, each segmented sound

found by the breath detection algorithm was further subdivided by removing the quarter

of the samples with the lowest amplitude of the envelope of the segment.  This was done

by finding a quarter of the samples of the envelope of the signal that were the lowest in

amplitude, and removing the corresponding samples of the signal from the sound to be

classified.   If  there were any additional pauses that resulted from this removal of the

samples,  the  resulting  segments  were  considered  independent  sounds.   The  resulting

segment or segments will be referred to as subsegments.  As mentioned in Section 3.1.4

the sounds from inspiration to expiration can vary from an obstructed sound to a normal

breath sound.  This additional segmentation was performed to isolate different sounds to

be classified.  An example of a segmented audio envelope is shown in Figure 3.13a.  The

subsegments were required to be greater than 0.3 seconds in length or they would be

discarded.  This was done because it was observed that pauses between inspiration and

expiration were missed by the breath detection algorithm if the inspiratory pause was too

short.  An example of this is shown in Figure 3.13b.  This also ensured that the loudest

portion of the segment was used to classify the signal and exclude any pause sounds.

Differentiation between individual sounds is important to breath classification because

the sound during inspiration can be significantly different from the sound during expira-

tion in the case of snoring or vocalization, and if classified together could result in  a mis-

classification  of  a  period  of  normal  breathing  for  that  of  respiratory  obstruction.

Although differentiation between inspiration and expiration was not performed, this step
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Figure 3.13 Filtered audio showing segmentation markers (a) Segmented breath sound. 
(b) Segmented breath sound with subsegments. 
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Figure 3.13 cont’d (c) Mini segmentation of a subsegmented breath sound. 
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helped insure that inspiratory sounds and expiratroy sounds were separated for classifica-

tion purposes.  Chapter 2 did not attempt to differentiate inspiratory sounds from expirat-

ory sounds, instead breaths were detected in order to find periods of apnea.  Because of

this some detected breaths included both the inspiratory and expiratory sound.

3.2.3.3 Histogram classification procedure

The signal used to classify the sound was the filtered signal that was described in

Chapter 2 with the example shown in Figure 2.4b.  To summarize this process, the input

signal of 22 kHz was first filtered by a digital low pass filter with a cutoff frequency of

1500 Hz and then down-sampled to 4410 Hz.  This signal was then filtered with a high-

pass filter with corner frequency of 75 Hz to remove heartbeat sounds and other noise.

Each sound subsegment was further divided into uniform 0.1-second segments

consisting of 441 samples that were called  mini segments, as shown in Figure 3.13c. The

mean and standard deviation for each mini segment were calculated.  As stated in Section

3.2.2.2 the smaller segments were used instead of the amplitude normalization method.

Both were successful in removing the variation of the envelope from the signal.  In addi-

tion the  mini  segments  provided  a  uniform-length  signal  to  classify.   The mean  was

subtracted from the mini segment signal and the result was divided by the standard devi-

ation to normalize the sound segment.  The histogram of the normalized mini segment

signal was then calculated using 101 bins ranging in value from -3 to 3 in steps of 0.06.

The value in each bin was then divided by 441 and divided by the bin width of 0.06 to

normalize the area of the histogram to unity. The histogram was then compared to the 21

model distributions described above.  The comparison was made by summing the abso-

lute difference between each of the 101 points of the model and the histogram of the
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audio segment. The model that had the lowest summed difference was classified as the

closest model.       

As a preliminary test a subjective test was used to determine if this classifier could

differentiate between snore sounds and normal breath sounds.  The 843 segmented breath

sounds were classified by the author.  The segments were classified using the audio signal

alone.  He listened to each segment and classified it as either related to snoring or related

to normal breathing.  He classified 263 of these sounds as related to snoring.  Each of the

sound  segments  was  then  classified  using  the  Laplace-Gaussian  mixture  only.   The

comparison of  the classifiers  is  shown in  Figure  3.14 where the classification of  the

author is shown as a black bar graph for normal breath sounds and a light-gray bar graph

for snore sounds.   When a decision threshold of  ph=0.7 was selected as the decision

threshold, the classifier performed with an overall error rate of 7.24%.  This method of

testing had a subjective testing standard.  This test was only meant to gain confidence in

the validity of this classifier.   The final  classifier  used for  this project  was classified

against human classifications based on flow and chest movement, not on sounds classi-

fied manually.  Although this preliminary test only involved the classification of snoring

to normal breathing and did not include other sounds such as vocalization, the results will

be used in the final classifier to differentiate between some breath sounds.

3.2.3.4 Periodicity classifier 

Histogram classification has been shown to be able to classify the difference in

most cases of a snore sound when compared to a normal breath sound.  The histogram

classifier  does  not,  however,  differentiate  between  productive  snores  and  obstructive

snores.  One shortcoming of a histogram classifier is that it removes all dependence on
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Figure 3.14 Classification of sounds by closest distribution when compared to human 
standard. 
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the sequence of the signal.  It was hypothesized that the overall outcome of classification

could be improved if a second classifier was used.  Because of the lack of dependence on

time of the histogram classifier, methods of classification using the time domain as an

indicator were considered.

Comparing the models of the productive snore sound, the obstructive snore sound

and the normal breath sound, one feature stood out.  In a normal breath sound there was

no repetitive sound that was distinguishable as with the obstructive snore sound.  In a

productive snore sound, the slap sound was observed to repeat.  To take advantage of this

difference in the sounds, a novel approach to find the repetitive nature of a sound was

formulated.  A tonal signal repeats itself and can be spectrally identified by a spike at the

frequency of the fundamental component.  However, if the  repeating signal is not tonal

the signal may have many spikes throughout the spectrum of the signal.  However, a

nontonal periodic signal can also be easily identified using the circular autocorrelation of

the signal.

Circular autocorrelation is a specific  form of circular convolution.  In  discrete

circular convolution two signals of the same length, x1(n) and x2(n), are convolved in the

following manner.  Given that both  x1(n)  and  x2(n)  have  N  samples, the output of the

circular convolution is  x3(n)=circconv(x1(n) ,x2(n)),  where circonv()  denotes the circular

convolution of the two values input. This operation is performed by [16]:

xc n=∑
l=0

N−1

x l x n−l N                                           (3.16)

where x((n)N) denotes a periodic repeating signal with period N.  Circular autocorrelation

uses the same equation as stated above with the special case that x1(n)=x2(N-n).  Circular

autocorrelation is an advantage over linear autocorrelation because it makes use of the
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entire length of x1(n) rather than padding the input vectors with zeros as in linear autocor-

relation.  

Circular autocorrelation was performed on the mini segments described, where

xC(n)=circconv(x1(n),x1(N-n)).  The standard deviation σC of xC(n) was calculated and the

ratio of  σC to the absolute maximum of  xC(n) was calculated. Some assumptions of the

input signal x1(n) were that it had a mean of zero and that it was real valued.  The maxim-

um used for this value in this dissertation is 2
2

 because a perfectly correlated periodic

signal such as a sine wave produces a circular autocorrelation that is a perfect sine wave

and no signal was observed to have a value greater than this.  The standard deviation of a

sine   wave is   sine=
2
2
×a sine where  asine is  the maximum amplitude of  xC(n).   The

theoretical minimum for this ratio for a zero-mean segment of 441 samples is 0.0476,

which happens when xC(n) is a vector of  440 zeros with one value of one.  This excludes

the  possibility  that  this  is  a  vector  of  440  zeros,  in  which  case  the  ratio  would  be

undefined  because  the  standard  deviation  would  be  zero  and  the  absolute  maximum

would be zero.  Because the segments were taken from detected sounds with noise, the

scenario of having all zeros was not considered a possibility.

The value calculated by this ratio is a measure of how periodic the input signal is

and was called the periodicity index.  A productive snoring signal would exhibit a more

periodic value and would have a value closer to the maximum of the periodicity index.  A

nonperiodic signal such as a breath sound would have a value that is closer to the theoret-

ical minimum.  The threshold chosen for this classifier was a ratio of 0.25.  This value
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was chosen by observation of the values produced by snore sounds versus the values

produced by a normal sound in the training set of data.  This threshold was identified as

sounds were played and listened to by the author as the periodicity index was displayed.

3.2.3.5 Two-dimensional classifier 

Using the values returned from both the periodicity classifier and histogram clas-

sifier, a series of points was created.  Because each subsegment to be classified contained

multiple mini segments, the classification of the subsegment had to be classified from

multiple  mini  segment  classifications.   The x-axis  on Figure  3.15 corresponds to  the

index of the closest histogram to the mini segment classified.  The index has 21  possibil-

ities of the closest distribution mixture described in Section 3.2.3.1.  The y-axis is the

periodicity index as described in Section 3.2.3.4.    The five regions shown in Figure 3.15

correspond to five classifications of sound.  If the classification of the mini segment falls

into region I, the mini segment has a predominantly Gaussian distribution and is predom-

inantly nonperiodic.   If the classification of the mini segment falls into region II, the mini

segment has a predominantly Gaussian distribution and is predominantly periodic. If the

classification of the mini segment falls into region III, the mini segment has a predomin-

antly Laplace distribution and is predominantly non periodic.  If the classification of the

mini segment falls into region IV, the mini segment has a predominantly Laplace distribu-

tion and is predominantly periodic.   If  the mini segment falls into region V, the mini

segment  has  a  partially  sinusoidal  distribution  because  the  distribution  of  this  mini

segment  is  correlated  with  a  distribution  model  that  is  a  mixture  of  a  sinusoid  and

Laplace distribution.

Examples of sounds classified in the regions described were found by the author
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Figure 3.15 Regions of the two-dimensional classifier. 
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from the training data set.  The classification of the mini segments by the two-dimension-

al classifier is shown for each region for each given sound.  The author described the

sounds  as  a  normal  breath,  nonsaturated  vocalization,  saturated  vocalization,  non-ob-

structive snoring, and obstructive snoring.  Each sound described here was classified by

the author by listening to the audio signal and viewing flow and RIP data from the train-

ing set. Listening to the audio signal was used to determine if the signal was a normal

breath, vocalization, or snore sound.  The RIP and flow data were used to determine if the

snore sounds were obstructed snores or non-obstructive snores.  The decision boundaries

of Figure 3.15 were found in the following manner:  The rightmost vertical boundary was

chosen based on the preliminary study of Section 3.2.3.3.  The vertical boundary separat-

ing Region V from Region IV and Region III was chosen so that if the sound showed

saturation by having a histogram that most closely matched any of the distributions of

equation 3.15 it fell into Region V.  The horizontal boundary was chosen based on  the

observations from listening to the audio sound while viewing the flow and RIP data in

this manner:  The author listened to segmented sounds from the training set.  If the sound

was determined to be a snoring sound by the author, the flow and RIP signals were then

observed.  Using these data the author  decided whether the sound provided the flow

volume to clear the 180 mL respiratory deadspace.  From the observations of several

sounds from the training set, the author set a boundary separating the obstructive sound

from the nonobstructive sound as seen in Figure 3.15.   Region I is consistent  with a

normal breath because it has a predominantly Gaussian classified distribution and very

little periodicity of the signal.  An example of the classifications of  the mini segments for

a normal breath sound is seen in Figure 3.16 in dark-blue markers.  It is noted that not all
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Figure 3.16 Examples of classifications of mini segments of five different types of sounds 
by the two-dimensional classifier.  Dark-blue markers are from mini segments of a 
normal breath sound.  Green markers are from mini segments of a non-saturating 

vocalization sound.  Magenta markers are from mini segments of a productive snore 
sound.  Light-blue markers are from mini segments of an obstructive snore sound.  Black 
markers are from mini segments of a saturated vocalization sound.  The x-axis represents 

the index of the closest matching histogram from a series of mixtures. The y-axis 
represents the periodicity index of each mini segment classified. 
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of the classifications of the mini segments are within the boundary set for this sound.

The majority of the signals, however, do lie within this region, just as with the rest of the

examples.  Region II is consistent with vocalization because it has high periodicity but is

more correlated with a Gaussian distribution than a Laplace distribution.   An example of

the classifications of  the mini segments for a vocalized sound is seen in Figure 3.16 in

green markers.  Region III is consistent with a productive snoring sound.  The sound in

this case has a predominantly Laplace distribution and is predominantly periodic.   An

example of the classifications of  the mini segments for a productive snore sound is seen

in Figure 3.16 in magenta markers.  Region IV is consistent with an obstructive snore

sound.  The sound has a heavy-tailed distribution and is not periodic, meaning that the

airway closed and opened randomly during the mini segment.  Previously it was believed

that the periodicity would differentiate this sound from a normal breath, but the lack of

periodicity differentiates it from the productive snoring sound.  It  is believed that the

difference comes from a steady flow during a nonobstructive snore versus a varying rate

flow during partial obstruction.   An example of the classifications of  the mini segments

for an obstructive snore sound is seen in Figure 3.16 in light-blue markers.  Region V is

consistent  with  saturated  vocalization.   An  example  of  the  classifications  of  mini

segments for a saturated vocalization are shown in Figure 3.16 in black markers.

The method of finding the decision boundaries for this classification method was

performed for several sounds deemed to belong to each kind of sound by the author.

These sounds were then viewed to see what features the sound had.  This observation

method led to the selection of the decision boundaries for the sounds described.  This was

not performed for all sounds in the training set because of the number of sounds recorded.
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Instead sounds were selected that preceded the periods of apnea detected by the breath

detection method and also other periods that were known to have vocalization or product-

ive snoring.

If over half of the classified mini segments from the sub-segment were found to

be in Region I, II,  III, and V the sub-segment was classified as a normal state.  This is

because the sounds associated with these regions are consistent  with a patient  that  is

breathing with an open airway or is awake. If over half of the classified  mini segments

fell into region IV the sound was deemed to be related to obstruction and the markers

segmenting the breath segment were removed from the breath marker set.   Using the

minimum of half of the markers in the region was chosen based upon the observations of

the groupings of the classification markers.  As shown in Figure 3.16, the classification

markers for a single sound were not always consistent with one region.  This prompted

the use of the majority of the markers in a combination of Regions I, II, III, and V or the

majority of the markers in Region IV as the classification of the sound.  The apnea detec-

tion algorithm then found any additional periods of apnea due to segmentation markers

being removed.  If an existing period of apnea became longer, or a new period of apnea

was found due to the removal of obstruction sounds, the period was classified as RO;

otherwise the existing period was classified as a RD.

3.3  Results

Using the  data  from Chapter  2,  the  periods  of  apnea  were  divided  into  three

categories using the two-dimensional automated acoustic classifier and the classification

standard as described in Section 3.2.2.  The three classification categories were RD, RO

and Normal.  The comparison between the two classifiers creates nine possible categories
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and is shown in Figure 3.17 for the training set and 3.18 for the testing set.  Figure 3.18

does not show all nine categories because not all possible combinations had a value great-

er than zero.  These categories also produce a three by three truth table as shown in Table

3.1 for the training set and Table 3.2 for the testing set.

3.4  Discussion

 In the project proposal of this project the goal of 95% sensitivity and specificity

in differentiating RO from RD was set.  The automated acoustic classification method did

not perform as well as hoped.  The results in Tables 3.1 and 3.2 show that the automated

acoustic classifier misclassified 47.4% of the periods identified as RO by the classifica-

tion standard as RD in the training set.  It also did not classify any periods identified as

RO by the classification standard as RO in the testing set.  Only one of the areas was

classified within the goal of the project proposal. This was the periods classified as RD in

the testing set. 

Despite the large error in the differentiation between types of apnea, the classifica-

tion of the breath sounds does not decrease the overall reliability of detecting apnea.  The

automated acoustic classifier did not mis-classify periods of normal breathing as obstruct-

ive periods, which would make the overall apnea detection less reliable.  Since normal

breathing sounds were the most common sound recorded, the majority of the sounds clas-

sified were classified in a way that did not degrade the performance of the apnea detec-

tion algorithm described in Chapter 2.

The classifier failed most commonly when differentiating RO as identified by the

classification standard from other signals.  The total number of periods of apnea classi-

fied as RO by the standard was a small percentage of the total periods of apnea.  The
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 Figure 3.17 Classification results of the training data set. 
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Figure 3.18 Classification results of the testing data set. 
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Table 3.1  Training set apnea classification data comparing the classification standard to
automated acoustic classification.

Classification Standard
Normal RD RO

Normal 2238 42 9

RD 135 483 9

RO 41 73 10

Automated 
acoustic 
classification
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Table 3.2  Testing set apnea classification data comparing the classification standard to
automated acoustic classification.

Classification Standard
Normal RD RO

Normal 3167 0 0

RD 65 446 26

RO 0 0 0

Automated 
acoustic 
classification
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small  sample  size of  RO periods  makes  it  difficult  to  accurately create  a functional

algorithm and be able to test its validity.

One reason the classifier may have failed in differentiating RO from RD was the

procedure during an obstructive period.   Subjects were allowed to obstruct until their

blood oxygen saturation dropped to 85%.  Obstructive sounds were heard by the author

leading up to these periods of RO.  The anesthesiologist present alleviated the RO by

performing a jaw thrust maneuver.  The subject would then breathe normally again.  The

anesthesiologist would then attend to other duties and allow the subject to obstruct again.

The sudden drop of the jaw did not allow for periods of partial obstruction and no sounds

associated  with  obstruction  were  recorded.   The  classification  standard  would  have

defined these periods as obstruction because of the chest and abdomen movements, but

the automated acoustic method would have only heard normal breathing followed by a

period of silence.  Obviously the anesthesiologist was aware of the source of apnea at this

point, and the mis-classification would have caused little confusion in a clinical setting.

However, this would lead to a high overall classification error rate.

Considering the mis-classifications and the procedures used to record the data,

classification is unlikely to be performed using the acoustic signal alone.  In addition the

reliance upon only the audio signal for apnea detection is very risky because sounds from

the trachea are not the only sounds that can be detected.  Examples of sounds that are not

generated at  the trachea are ambient  talking,  music,  or  machine noises that  are loud

enough to be detected at the microphone within the stethoscope cup.

Compared to the other approaches presented in Section 3.1.3 this approach uses a

combination of the primary forms of classifying individual breaths and classifying peri-
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ods of apnea.  It  also uses data that were recorded from sedated subjects rather than

patients undergoing PSG in a non-sedated state.  
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CHAPTER 4

ADAPTIVE NOISE CANCELLATION

4.1  Introduction

4.1.1  Goal of adaptive noise cancellation

The third goal of this project was to find the validity of using noise cancellation to

reduce ambient  sounds recorded within the precordial  stethoscope.   Noises  generated

outside of the stethoscope that are not wide sense stationary (WSS) can cause signals to

be recorded within the stethoscope that  are loud enough to  be counted as  a  detected

breath.  If these sounds are recorded during a period of apnea the acoustic signal will not

be able to detect it as a period of apnea and it is classified as a period missed by the

acoustic apnea detection algorithm. 

For this reason a method to reduce disturbances caused by ambient sounds was

explored.  The method used was an adaptive filter requiring a secondary microphone to

record ambient sounds.

4.1.2  Use of precordial stethoscope to limit ambient noise

The stethoscope cup used was a heavy precordial cup shown in Figure 4.1.  The

stethoscope cup was designed to amplify signals detected within the cup.  Physiologically

the skin within the stethoscope cup creates a diaphragm that acts like a loudspeaker for

the vibrations on the skin.  The metal stethoscope attenuates external signals from 
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Figure 4.1  Metal stethoscope cup used to attenuate ambient sounds and amplify tracheal
sounds.
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entering the cup.  Acoustics of a stethoscope cup attenuation and amplification can be

characterized   through  experimentation  [1],  but  this  can  change  depending  on  the

placement of the stethoscope cup on the skin, the tightness of the skin within the cup, and

the placement of the stethoscope cup on the trachea.  Observations from Chapter 2 have

shown that sounds such as talking or machine alarms can be loud enough to be detected

as breath sounds. 

4.1.3  Overview of adaptive noise cancellation

4.1.3.1  Adaptive noise cancellation

Adaptive noise cancellation is a method of signal processing that uses multiple

sources of signal to produce a desired signal.  A simple adaptive filter has two inputs,

with block diagram as shown in Figure 4.2.  Signal d is the primary input and signal x is

the reference input.  The reference input is then filtered by the weights w of the adaptive

filter and an estimate of d is created called y.  The difference of the filtered signal y and

desired signal  d is then calculated to create the error signal  e=d-y.  The error signal is

then used as an input to the adaptive filter to update the filtering weights  w as will be

described the next section [2].

4.1.3.2  Least-mean-square adaptive filtering

The adaptive filter algorithm chosen to  adapt the weights  w can be calculated

using the least-mean-square (LMS) algorithm.  The LMS algorithm is the most widely

used adaptive filter algorithm due to its stability, robustness and simplicity [2].  This filter

has many variants,  including the simplified LMS algorithm and the normalized LMS

algorithm.
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Figure 4.2 Block diagram of a two-input adaptive filter.
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The classic LMS algorithm updates the weights w by

w(n+1)=w(n)+2µe(n)x(n)                                                (4.1)

where w(n+1) is the new vector of filtering weights with length N,  w(n) is the current

vector of filtering weights with length N,  µ  is the step size parameter,  e(n) is the error

signal, and x(n) is a vector of recorded signals with length of N.

The simplified LMS algorithm has three forms and is similar to the classic LMS

algorithm.   The three forms shown here are the sign,  signed-regressor,  and sign-sign

algorithms respectively:

w(n+1)=w(n)+2µ sign(e(n))x(n)                                          (4.2a)

w(n+1)=w(n)+2µ e(n)sign(x(n))                                          (4.2b)

w(n+1)=w(n)+2µ sign(en)sign(x(n))                                     (4.2a) 

The signed-regressor algorithm is favored for its ability to adapt similarly to the classic

LMS but requiring fewer computations.  The sign algorithm and the sign-sign algorithm

do not converge as quickly [2] but are not much less computationally expensive than the

signed-regressor algorithm.

The  normalized  LMS  (NLMS)  algorithm  adds  some  complexity  in  order  to

improve stability.  The general form of the NLMS algorithm is

w n1=w n 

xT n x n
enx n                              (4.3)

where  is the step size parameter and ψ is a small value to ensure that the denominator

of the equation is never zero.  The NLMS algorithm improves stability of the adaptation

at the expense of computation.  The step size parameter is normalized to the values of the

input ensuring that if  is properly chosen the output will never become unstable.
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4.1.3.3 Stability of adaptive filters

The step size parameter  µ in the LMS algorithm is the value that controls how

quickly the filter adapts.  If this value is too high the filter can become unstable and the

output of  the filter  becomes useless.   If  its  value is  too low the filter  will  not  adapt

quickly  to  changes  in  the  input  signals.   The  maximum value  that  µ can  be  while

maintaining the stability of the filter can be calculated as follows [2]:

MAX=
1

3tr [R]
                                                        (4.4)

where R is the autocorrelation of the input calculated by:

R=E[ x(n)x(n)T]                                                          (4.5)

and tr[] is the trace of a matrix, defined as the sum of the diagonal of the matrix  [2].

Although  this  can  be  calculated  for  every  sample  of  the  signal  being  filtered  it  is

computationally expensive.

4.1.4 Use of adaptive noise cancellation in stethoscopes

Adaptive noise cancellation in stethoscopes has been performed for very noisy

environments.   Patel  et  al.  [3] used an adaptive filtering algorithm to filter helicopter

noise from cardiac and breathing sounds through a diaphragm stethoscope cup with a

second microphone to record ambient sounds.   Data were recorded on a subject  in a

soundproof room using this stethoscope and also using a pneumotachometer to measure

respiratory flow rate.  Sounds simulating being inside a helicopter were played inside the

soundproof room.  A real-time adaptive filter was used to monitor the progress of the

filter.   Postprocessing  was  performed  using  both  an  LMS  algorithm with  N=40 and

µ=0.02 and an NLMS algorithm with  N=40 and  =1.2 .  Patel found that the NLMS
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algorithm provided a significant improvement over both non-filtered data and the LMS

filtered data.  

Although  the  work  done  in  [3] is  closely  related  to  the  noise  cancellation

performed in this project, there are significant differences in the methods performed.  The

comparison of the respiratory rate of the acoustic data to that of the respiratory flow data

was not discussed by Patel.  In addition the adaptive filter was not applied when the refer-

ence signal was in a quiet environment.  In a quiet enough setting the signal detected by

the reference input can be uncorrelated with the additive noise on the primary input.

When the two input signals of the adaptive filter are uncorrelated the reference input can

increase the noise on the output when compared with the primary input.  This dissertation

defines  this  phenomenon as  contamination.   Another  difference between the research

performed in [3] and the current research was that Patel only used one kind of additive

noise at one amplitude.  The helicopter noise also did not change drastically and may be

considered WSS.  In this dissertation several different types of additive noise were used

at several different additive gain amplitudes.  An increase in the number of different kinds

of sources and the amplitudes of these sources allows for the production of a more robust

adaptive filter.   Finally,  this  research uses an automatic breath detection algorithm to

determine the validity of the adaptive filtering algorithm rather than a subjective argu-

ment.
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4.2 Methods

4.2.1  Data set

4.2.1.1  Respiratory data set

Ideally the data used to test the adaptive filter algorithm would be recorded at the

trachea on a subject as he/she lies in an anechoic chamber, as different sounds are played

and recorded in the stethoscope cup while the subject performs breath-hold periods.  This

method was not pursued due to necessity of obtaining IRB approval, the lack of time to

receive that approval, and budget constraints.  Instead, data recorded from the data set as

described in Chapter 2 were used to test the adaptive filter algorithms.  From the periods

of apnea identified by the respiratory flow meter and confirmed as true positives by the

acoustic method, forty periods of apnea were selected on a manual basis.  The periods

were selected if the signal fifteen seconds prior to the apnea showed normal breathing on

the flow rate signal.   The data used included the respiratory flow rate from the CosmoII+

(Respironics, Wallingford, CT) and the raw acoustic signal recorded at the trachea in the

stethoscope cup described. 

Each data segment was marked as the breathing period and the apnea period.  This

distinction was made so that during breath detection the number of breaths detected could

be counted toward a period of breathing or a period of apnea.

The standard deviation of  the noise  σNF was  calculated for  each breath  sound

segment using the method described in Chapter 2.  The standard deviation of the noise

served as a reference for the amplitude of the additive noise sound that will be described

in the next section.
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4.2.1.2  Additive noise signal data

The audio data in the 40 sets described in section 4.2.1.1 were assumed to be free

of any major ambient artifact such as talking, machine sounds, or music.  These data were

also recorded without the use of a second reference microphone to record the disturb-

ances coming from outside of the stethoscope cup.  For this reason additive noise was

recorded at a different time using two microphones and a phantom material representing

human tissue.  The additive noise was added to the acoustic breathing signal after the

recordings were finished.  This method allowed for the original signal to be known before

noise was added and also allowed for different amplitude levels of additive noise to be

tested without the need of multiple recordings.  This method is also similar to a common

image processing technique where an image assumed to be noise free is corrupted with

noise, and filtering algorithms are tested by comparing the filtered image to the original

image.

Two channels were recorded for each additive noise signal.  One channel was the

from the microphone within the stethoscope cup and the other channel was recorded from

the  reference  microphone.   Eight  sound  segments  were  used  consisting of  simulated

Gaussian noise, talking,  and several kinds of music.  These sounds were chosen because

they are common in an operating room environment.  

A microphone (WM-56A103 Panasonic) was placed inside the stethoscope cup

(Wenger #00-390-C, AINCA, San Marcos, CA) as was done during the recording of the

breathing sounds.  The cup was affixed by a double-stick disk (#2181 3M, MN) to a

gelatin  phantom made of  edible  gelatin  formed  inside  a  latex  balloon.   Gelatin  was

chosen as phantom that has similar properties to human soft-tissue.  The balloon was
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suspended above a table with the second microphone resting outside the stethoscope cup.

Speakers  were  placed  on  a  second  table  approximately  25  cm from the  microphone

assembly.   The balloon suspension and use of  two separate  tables  was an attempt to

minimize mechanical  coupling of the loudspeakers to the microphones.  The speakers

played the eight noise segments described above.  The amplitude of the sound played by

the speakers was adjusted to ensure that the external microphone was not saturated and

that the signal  was detected by the microphone inside the stethoscope cup.  The data

recorded  at  the  microphones  were  digitized  via  an  audio  soundcard  (SoundBlaster

Audigy, Creative, Singapore) at a sample rate of 22 kHz directly to a computer hard-

drive.  A diagram of this setup is shown in Figure 4.3a.

4.2.1.3  Mixing the additive noise

The standard deviation σIN of the additive noise segment with signal AIN(n) recor-

ded inside the stethoscope cup was calculated for each of the eight segments. The corres-

ponding  reference  input  will  be  called  AOUT(n).  The  segment  AIN(n)  and  the  segment

AOUT(n) were divided by σIN to normalize the sounds recorded inside the stethoscope.  The

signal AIN(n) was additionally divided by the standard deviation of the noise of the breath-

ing signal σNF described above to normalize the amplitude of the additive noise signal to

the amplitude of the noise of the breathing signal.

The normalized sound AIN(n) was added to the breathing sound B(n), resulting in

X(n) as follows:

X(n)=B(n)+Gi× AIN(n)                                                  (4.6)

where  Gi is the gain applied to the additive noise.  The gain  Gi  was not applied to the

reference input AOUT(n) so that the reference signal was a consistent input to the adaptive
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Figure 4.3  Diagram of the setup used to record the additive noise. (a) Reference
microphone in open-air environment.  (b) Reference microphone in stethoscope cup.
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filter.  The adaptive filter was processed with Gi having values of 0, 2, 4, 6, and 8.  The

value of 0 was chosen to test the effect of having an uncorrelated signal as the reference

input.  The other values of Gi were chosen to add a range of sound amplitudes that would

be detected by the breath detection algorithm.

4.2.1.4  Filtering the mixed signals

 The adaptive filter used will be described in Section 4.2.2.  After performing the

adaptation using this filter on the data described, it was noticed that the type of additive

noise affected how well the filter performed.  The sound sources that performed better

were Gaussian noise, talking, and symphonic music.  The method for determining how

well the filters performed will be described in Section 4.2.3.  Rock music caused some

problems because of contamination of the signal even when the gain Gi was zero.  After

looking directly at the resulting waveforms and listening to them, the sounds that were

not able to be filtered were strong impulses related to a drum beat or similar high-fre-

quency  sound.   It  was  concluded  that  the  impulse  disturbance  had  a  high  enough

frequency that the adaptive filter could not adapt quickly enough to remove the sound.

An additional problem that was noticed was that the signal of the reference micro-

phone contained much higher frequency signals than the microphone inside the stetho-

scope cup.  It  was also hypothesized that  the stethoscope cup attenuates  signals in a

nonlinear manner.  This is a problem because the filter used to match the attenuation of

the stethoscope cup is a linear filter. Matching a nonlinear filter such as the stethoscope

cup has considerable challenges.  Although this is possible, a single-order linear filter

such as the NLMS adaptive filter algorithm described would not be sufficient.  A nonlin-

ear  adaptive  filter  such  as  an  adaptive  polynomial  filter  could  be  a  solution  to  this
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problem [4], but it was decided that physically filtering the reference signal with a similar

stethoscope cup would be a simpler solution. 

The additive noise was recorded again as described above, with the one differ-

ence. The difference was that the reference microphone was placed inside an identical

stethoscope  cup  as  contains  the  primary  microphone  and  affixed  to  the  back  of  the

primary microphone cup via a double-stick disk.  A diagram of this setup is shown in

Figure 4.3b.  This setup did not test the amount of desired sound signal such as breathing

that would pass through the primary stethoscope cup to the reference microphone.  It is

assumed that the reference microphone and cup can be sufficiently isolated to eliminate

any of the sounds recorded on the trachea.  The most important features of the reference

microphone in this situation are that it is in proximity of the primary microphone, physic-

ally filtered similarly to the primary microphone, and the same kind of microphone as the

primary microphone.   This  is  because  the  additive  noise  is  easiest  to  filter  from the

primary source when the reference source is as close as possible to the additive noise

signal.

4.2.2 Adaptive filter

An NLMS adaptive filter was used to filter additive noise from the signal  X(n).

The NLMS algorithm was chosen over the others to ensure stability of the filter.  Using

the adaptive filter shown in Figure 4.2, the signal  X(n) was used as the primary input d

and the signal AOUT(n) was used as the reference input x.  The output signal of the adapt-

ive filter was the error signal  e.  This configuration of the adaptive filter works for the

following reasons.   If  the reference signal  AOUT(n) was perfectly filtered to match the

external noise signal within the stethoscope cup AIN(n), the error signal between y and the
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input signal  X(n) would result in just the breathing signal, B(n).  

The  value  of    was  chosen  experimentally by performing adaptation  on  the

signals of  AIN(n)  and  AOUT(n)  before adding the additive noise to the respiratory sound.

The signal  AIN(n)  was used as the primary signal d and the signal AOUT(n) was used as the

reference signal x.  The output signal used was the error signal e.  

The filtration process was calculated using each of the eight noise signals and

varying the value of  from 0 to 2 in steps of 0.01.  The standard deviation of the filtered

signal  e was  calculated.   The  value  of   corresponding  to  the  minimum  standard

deviation of  the output  was chosen as  the optimal value.   The optimized value of  

ranged from 0.3 to 0.8 for the eight types of additive noise.  The value of 0.65 was chosen

to be the optimal value for the step parameter based on the mode of the optimized values

for the eight types of additive noise.  The length N of the filter was chosen to be 51 from

experimental observations.  Figure 4.4 shows an example of the original signal  AIN(n)

and the output signal e(n) after filtering.

After the samples were filtered they were compared to the original sample.  The

output sample  e(n) was compared to the input sample  X(n).   If  |X(n)|<|e(n)|,  then the

value of the sample from input stream X(n) was chosen as the output sample rather than

the filtered signal  e(n).  This was done to minimize contamination of the output signal

with the reference signal.  Contamination is clearly evident when the gain Gi is 0 and the

output signal  e(n) is not the same as the input signal  X(n).  For the purposes of breath

detection this is a problem only when the amplitude of the contamination increases the

absolute amplitude of the signal.  Using this technique works well for breath detection,

but because of the sudden jumps due to switching between the value of X(n) as the output
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Figure 4.4 Example of noise cancellation of the adaptive filter. 
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to e(n) as the output, this signal is not optimal for classification or for human hearing.

4.2.3  Breath detection

Breath detection was performed exactly as described in Chapter 2.  The standard

deviation of the noise σNF and the standard deviation of the detected signal σS were calcu-

lated using the parameter estimation algorithm.  The breath detection threshold  τ was

calculated from the two signals  σNF and  σS. An audio envelope was calculated for the

original audio signal X(n), and also for the filtered signal e for each audio segment, gain

Gi, and additive noise signal.  Sounds were detected as breaths when they had an envel-

ope that rose above the noise threshold for 0.3 seconds or more.  The breath detection

calculated  using  the  original  respiratory signal  X(n) was  used  as  a  reference  for  the

number of sounds detected in the breathing period and apnea period before noise was

added and the adaptive filter algorithm was performed.  The number of sounds detected

were counted during the breathing period of each segment, and the number of sounds

detected were counted during the apnea section of each segment.  The number of sounds

detected in each period was compared to the number of sounds detected when it was not

filtered, when it was filtered using an open-air reference signal, and when using a refer-

ence signal inside a stethoscope cup.

4.3 Results

 The number of detected signals in each period of apnea  for each gain and addit-

ive  noise  filter  were  counted  and  calculated  as  a  percentage  of  missed  detections  of

apnea.  The percentages for unfiltered, filtered with an open-air microphone and filtered

with a microphone in a stethoscope cup for a given gain and type of additive noise signal
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are shown in Table 4.1.  The improvement of percentage of the two filtering techniques

over the unfiltered apnea detection is shown in Table 4.2.

The number of detected signals in each segment for the breathing period was also

calculated.  If there were no sounds detected the period was considered a period of apnea.

The percent of breathing periods detected as apnea by the acoustic method are shown in

Table 4.3.

4.4 Discussion

The data in Tables 4.1 to 4.3 show that not only does the cupped reference micro-

phone adaptation improve or maintain the apnea detection for all forms of additive noise

at  all  additive  gain  levels,  but  it  also improves  or  maintains  the  breath detection for

periods of breathing when compared to the unfiltered breath detection.   The open-air

microphone does improve or maintain the apnea detection and breath detection in most

cases, but not in all cases.  In the case of zero gain the open-air microphone degrades the

performance of the apnea detection.  This can be attributed to the dissimilarities in the

additive noise signal and the open-air signal causing contamination when the adaptive

filter  was  performed,  as  well  as  the high frequency noise picked up by the open-air

microphone.  The open-air microphone also degraded apnea detection for higher gains

using the Gaussian additive noise signal.

Both the open-air microphone and the cupped microphone detected all periods of

breathing as breathing periods as compared to the unfiltered approach.  The unfiltered

data did not detect sounds during the additive high gain Gaussian noise due to the model

used to detect  the breath sounds.   The additive Gaussian had a high enough standard

deviation that the Gaussian-Laplace mixture became simply a Gaussian signal and no
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Table 4.1 Percent measure of missing an apnea period due to additive noise.

A No filtering performed

B Filtering with reference microphone in open air 

C Filtering with reference microphone in stethoscope cup

Type of additive noise
Gaussian Talking Symphonic Jazz Jazz VocalRock Rock

0 0 0 0 0 0 0 0 0
2 0 2.5 0 0 0 0 0 0

4 0 15 5 2.5 2.5 10 2.5 10
6 0 40 27.5 17.5 30 30 2.5 25
8 0 57.5 32.5 32.5 45 42.5 10 37.5

Gain Gi

Type of additive noise
Gaussian Talking Symphonic Jazz Jazz Vocal Rock Rock

0 0 0 0 0 0 0 0 0
2 0 52.5 7.5 37.5 60 100 95 92.5

4 0 82.5 32.5 75 92.5 100 97.5 100
6 0 92.5 47.5 85 100 100 97.5 100
8 0 92.5 50 90 100 100 100 100

Gain Gi

Type of additive noise
Gaussian Talking Symphonic Jazz Jazz Vocal Rock Rock

0 17.5 2.5 20 42.5 100 90 22.5 92.5
2 17.5 2.5 20 42.5 100 90 22.5 92.5

4 25 2.5 20 42.5 100 90 22.5 92.5
6 67.5 2.5 20 42.5 100 90 22.5 92.5
8 82.5 2.5 20 42.5 100 90 22.5 92.5

Gain Gi
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Table 4.2  Improvement of percentage using  adaptive filter when compared to non-
filtered signal.

A Improvement when filtering with reference microphone in open air 

B Improvement when filtering with reference microphone in stethoscope cup

Type of additive noise
Gaussian Talking Symphonic Jazz Jazz Vocal Rock Rock

0 -17.5 -2.5 -20 -42.5 -100 -90 -22.5 -92.5
2 -17.5 50 -12.5 -5 -40 10 72.5 0

4 -25 80 12.5 32.5 -7.5 10 75 7.5
6 -67.5 90 27.5 42.5 0 10 75 7.5
8 -82.5 90 30 47.5 0 10 77.5 7.5

Gain Gi

Type of additive noise
Gaussian Talking Symphonic Jazz Jazz Vocal Rock Rock

0 0 0 0 0 0 0 0 0
2 0 50 7.5 37.5 60 100 95 92.5

4 0 67.5 27.5 72.5 90 90 95 90
6 0 52.5 20 67.5 70 70 95 75
8 0 35 17.5 57.5 55 57.5 90 62.5

Gain Gi
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Table 4.3 Percent error in detecting a period of breathing as apnea.

A No filtering performed

B Filtering with reference microphone in open air 

C Filtering with reference microphone in stethoscope cup

Type of additive noise
Gaussian Talking Symphonic Jazz Jazz Vocal Rock Rock

0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0

4 2.5 0 0 2.5 0 0 0 0
6 20 0 0 0 0.05 0 0 0
8 32.5 0 0 0 0.1 0 0 0

Gain Gi

Type of additive noise
Gaussian Talking Symphonic Jazz Jazz Vocal Rock Rock

0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0

Gain Gi

Type of additive noise
Gaussian Talking Symphonic Jazz Jazz VocalRock Rock

0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0

Gain Gi
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breath sounds were detected.  The other additive noise signals are assumed to have a non-

Gaussian distribution and therefore the additive signal improves the signal-to-noise ratio

although it be with corruptive noise.

Because of these results it is believed that the best option to reduce the effect of

external sounds is an adaptive filter using a reference microphone in a similar stethoscope

cup to the one detecting the breath signals.  The reference microphone in such a situation

would record ambient signals as close as possible to the additive noise on the primary

microphone.  The NLMS adaptive filter also allows for the filtering to be stable.

The selection of audio output where the output value was chosen as the minimum

of |X(n)| and |e(n)| as described in Section 4.2.2  is important for automatic breath detec-

tion because it reduces the effect of contamination.  This does not produce a consistent

sound because the final output can jump between being a sample from the unfiltered data

to being a sample of the filtered data.  This implementation works well for the automated

breath detection but not for human listening because it adds high frequency noise.

This work is also an improvement over what was performed by Patel  [3].  The

results are consistent with what Patel found, but introduces multiple variables to improve

the robustness of the filter.  It also uses an automatic breath detection algorithm to test the

validity of the adaptive filter in this application.  In addition the approach of putting the

reference microphone in a stethoscope similar to the one recording the desired signal

improved the results over simply using an open-air microphone.
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CHAPTER 5

SUMMARY, CONCLUSIONS AND FUTURE WORK

5.1  Summary

5.1.1  Data set

The data set was recorded from 24 volunteers in an IRB approved study.  Each

subject was sedated by a licensed anesthesiologist.  During the sedation, data were collec-

ted from each subject  using direct  flow respiratory measurement  with  the CosmoII+

monitor, Respitrace (RIP) bands, and a microphone in a stethoscope cup placed on the

trachea.  The data were recorded directly to computer hard drives.  During the sedation all

subjects developed respiratory depression (RD) or respiratory obstruction (RO).

5.1.2 Apnea detection

Detecting periods of apnea using acoustic sounds was one goal of this study.  The

apnea detection was performed by creating a distribution model of the histogram of the

sounds.  The model was a Laplace-Gaussian mixture distribution where the Guassian

signal represented the noise portion of the signal and the Laplace distribution represented

the breathing signal.  

The model was fitted to the audio data by using the Gaussian estimation (GE)

algorithm.  The  GE  algorithm estimated  the  values  of the  standard  deviation  of  the

Laplace and Gaussian portion of the signal.  Using the standard deviation of the two 



165

portions of the signals a threshold was calculated using the minimax algorithm.  Limits

were put on the minimax threshold to ensure that the threshold would not be lower than

the standard deviation of the noise.

An audio envelope was calculated from the audio signal by a series of filters and

signal processing manipulations.  This envelope, was divided into breathing segments and

periods of pause using the threshold described.  The length of each pause was measured

and pauses with length greater than 15 seconds were defined to be periods of apnea.

The gold standard based on the direct flow measurement identified periods of

apnea. The flow measurement was used to determine periods of flow below a certain

threshold for a period longer than 15 seconds.  This  threshold was determined from

physiologic  calculations of  average adult  airway deadspaces.  These periods of  apnea

were used as the standard to test against the acoustic apnea detection algorithm.

5.1.2  Breath sound classification

In  an attempt  to  determine the cause of  apnea,  a breath sound classifier  was

created.  Apnea can be caused by either RD or RO.  Each breath sound was classified to

identify the source of apnea and additionally any periods of apnea missed by the acoustic

method due to the sounds produced during partial obstruction.

Each sound was  classified  using a  two-dimensional  classifier.  One dimension

compared the histogram of each sound detected to 21 different distribution models.  The

models included a Laplace-Gaussian mixture and a Laplace-sinusoidal mixture.  

The second dimension of the classifier was a test of the segment's periodicity.

The periodicity of each signal was calculated by finding the ratio of the maximum of the

circular autocorrelation to the standard deviation of the circular autocorrelation.  The ratio
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ranged from 2
2

 being completely periodic to 0.0476 being non-periodic based on the

fact that the segments were 441 samples in length. Sound distributions were classified

against a Laplace-Gaussian distribution mixture with varying percentages of Laplace and

Gaussian components.  Segments with distributions that were closer in value to the Gaus-

sian distribution that are nonperiodic were classified as normal breath sounds.  Segments

with distributions that were closer in value to the Laplace distribution that were non-peri-

odic were classified as obstructive sounds and removed as segmented breath sounds.

Segments with distributions that were closer in value to a sinusoidal distribution were

classified as vocalization and considered normal.  Segments with distributions that were

close to either  Laplace or Gaussian distributions that were periodic were either vocaliza-

tion  or  light  snoring  and  considered  normal  breaths.   The  segmentation  markers  of

sounds that were classified as obstructive were removed from the data set, and periods of

apnea were recalculated given the removed breath detection markers.  In addition the

periods of apnea found using the detection algorithm described were classified as either

RO or RD based on the classification of the sounds preceding the apnea.  If any sound in

the prior five seconds or within the period of apnea were classified as obstruction, the

period of apnea was classified as RO.  The period of apnea was classified as RD other-

wise.

5.1.3 Adaptive filtering of sounds from the stethoscope cup

One of the causes of periods of apnea being missed by the acoustic algorithm was

ambient sounds such as talking being detected through the stethoscope cup.  An adaptive

filter was constructed to test the validity of using noise cancellation to remove sounds
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created from external sources.

The data set described was not recorded using a reference microphone that would

be needed to perform the noise cancellation.  For this reason an alternative method to test

the validity of using a noise-cancellation technique was devised.  Forty of the periods of

apnea detected by the flow meter and confirmed by the acoustic method were selected.

Each period of apnea was accompanied by the period of breathing prior to the apnea.

Additive noise was used to simulate external sounds. The additive noise was added to

each breathing and apnea period at five different amplitudes.  The different sounds used

as additive noise were white noise, talking, vocal music, rock music and jazz music.  The

additive noise was recorded with the primary microphone in a stethoscope cup attached

to a phantom material and the reference microphone in proximity.  The standard deviation

of the noise floor of the breathing data was calculated.  The additive noise was normal-

ized by its standard deviation and added to the breathing sound by proportions of 0, 2, 4,

6 and 8 times the standard deviation of the noise floor of the breathing sounds.  Each of

the 40 segments was combined with the additive noise at each gain level.  The adaptive

filter was then applied to produce a filtered output.

The breath detection algorithm was applied to all 40 segments using the 5 differ-

ent gains and the different types of additive noise for both the unfiltered and filtered

output of the adaptive filter.  If  sounds were detected during the period of apnea, the

apnea was counted as a false negative, otherwise it was counted as a true positive.  If

there were sounds detected during breathing segments the period was counted as a true

negative, otherwise it was counted as a false positive.  The performance of the filtered

output was compared to the unfiltered signal.  The filtered signal did not perform better
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than the unfiltered data in some circumstances.  For this reason the additive noise was re-

recorded, placing the reference microphone in a second stethoscope cup to attenuate the

reference signal similar to the additive signal.  Placing the reference microphone inside a

stethoscope  cup  coupled  to  the  back  of  the  primary  stethoscope  cup  improved  the

performance  of  the  adaptive  filter  so  that  it  performed  the  same or  better  than  the

unfiltered data in all cases.

5.2  Summary of Observations

5.2.1  Apnea detection

The model used to perform the sound detection for apnea detection proved to be

accurate.  It worked well enough that the methods described could be used for applica-

tions such as a voice activity detector (VAD).  A VAD is a detection algorithm used to

detect voice so that only voice is transmitted on a communication line and not silence.

The histogram model  worked mainly because of the known distribution of  the noise.

Although the Laplace distribution  may not be a perfect fit for the breathing signal, the

measure of the standard deviation of this signal is enough to differentiate the noise signal

from the breathing signal.

The minimax algorithm used to determine the noise threshold was not novel but

the application of this was useful for varying noise levels and breath signal amplitudes.

The wide range of amplitudes of the detected signal made the threshold more specific to

each type of audio data.
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5.2.2  Classification

Personal observation from the classification of sounds showed that the histogram

classifier performed very well on normal breath sounds.  Sounds that did not display a

Gaussian distribution were not as reliably classified.  It  was observed that if  a breath

sound distribution was classified as Gaussian with low periodicity, it was reliably classi-

fied as normal breath sound.  The only other classification that was extremely reliable

was the sinusoidal distribution reliably predicting vocalization.

5.2.3  Adaptive filtering

Using the adaptive filter  to reduce ambient  noise proved useful  in the testing

method described.  Whether it will work in a real-world application has yet to be tested.

The most important finding of the adaptive filter was the importance of the placement of

the reference microphone.  In this case the best position of the reference microphone was

within a second stethoscope.  This attenuated the ambient noise to the reference micro-

phone similar to the ambient noise received at the primary microphone.

5.3  Concurrent Work

While this work was underway I  learned of similar work being performed by

Andromed Corporation.   Andromed used a piezo-electric film as a transducer on the

trachea.  Adnromed was subsequently purchased by Masimo Corporation.  Masimo has

now produced an FDA-approved device that uses the piezo-electric film transducer as a

respiratory monitor [1].  This device is used in conjunction with a Rainbow SET® pulse-

oximeter.  This device shows the need of an acoustic respiratory monitor.  The Masimo
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device has also established FDA approval on an acoustic respiratory monitor that allows

for a precedent in approving future acoustic respiratory monitors.

The Masimo product uses a piezo-electric film rather than a conventional micro-

phone inside a sthethoscope cup.  This makes it subject to lower frequency vibrations.

From my observations using piezo-electric films the signal-to-noise ratio is not as high

using a piezo-electric film as compared to a conventional microphone inside a stetho-

scope cup.  From the observations of colleagues at demonstrations of the Masimo product

it was noted that it did not work well in an acoustically noisy environment.  It does have

the advantage of being easily applied and there is no need for a thick metal stethoscope.

Unfortunately it  does  not  appear  to  have a  noise-cancellation  feature.   The Masimo

device also might rely heavily on the pulse-oximeter to detect apnea.  The device also has

no mention of its ability to differentiate RO from RD.

5.4  Suggestions for Future Work

5.4.1  Create a synchronized data collection system

One of the problems described in the current work was the lack of automatic

synchronization between the flow data and the acoustic signals.  The solution to this is to

devise a way to record the audio signal with a time stamp from the computer recording

the flow data, or to have all of the data recorded on the same computer and have a time

stamp attached to all samples taken. 
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5.4.2  Create a standard for apnea classification

Because there  is  no simple standard  or  measurement  tool  that  determines the

source of apnea, the construction of a standard would be a useful tool for future research.

Since the current standard of care for identifying obstruction is polysomnography, this

would have to be performed by a licensed professional on either the data recorded or on a

new data set.  An automated classification standard would then have to be constructed

and tested against the physician classification.

I believe that using both the flow meter data and the RIP data, a reliable auto-

mated apnea detection and classification algorithm can be constructed.  This could be

constructed using the existing data set as the training set and then testing it on a second-

ary data set recorded in a patient care center or from a paid subject study.  When the flow

meter shows no valid flow and the calibrated RIP volume shows no valid volume change

then the patient is in  RD.  When the flow meter shows no valid flow and the calibrated

RIP shows volumes less than approximately 180 mL  but are detected as breaths by the

RIP, these periods would be considered RO.  Although this algorithm seems simple, there

are technical issues that arise from both the RIP monitor and the flow meter that require

special attention.  Some of these were addressed in Chapter 3.

5.4.3 Manual audio classification testing

The primary difficulty in classification of breath sounds was the wide variation of

sounds that can be present for any given state.  It was concluded that RO and RD cannot

be reliably discerned by sounds alone.  This can be confirmed by classifying periods of

apnea based on the sounds preceding them by a trained researcher and comparing them to
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the already classified periods of apnea described in Chapter 3.  This method is subjective

and the outcome is not scientifically based, but it would support claims made about the

methods of recording the data for this project.

5.4.4 Use of tomography and acoustics to differentiate RO and RD

From my observation of the data from the RIP, flow, and acoustic monitors used, I

believe that given the data from any two of the three monitors, apnea and its source can

be identified reliably.  It has already been described how the combination of the RIP and

the flow measurement can be used to identify the difference between RO and RD.  I

believe that using the acoustic signal and the flow meter, RO can be identified when the

breath sounds are loud and the flow shows little to no flow.  When the flow signal and

breath sounds are correlated prior to a period of apnea the period would be RD.  Similarly

RO would be identified using the RIP and acoustic measurement when the RIP signal

showed breaths but the acoustic flow detected no breaths.  RD would be detected when

both the RIP and acoustic measurement showed no flow.

Because RIP bands are uncomfortable and difficult to place, an alternative method

to measure chest  and abdomen excursions has been hypothesized.  Griffith et  al.  [2]

performed electrical impedance tomography on the pharynx using an array of sixteen

hydrogel electrodes.  The tomography was able to image the pharynx as subjects swal-

lowed.  This is related to performing chest impedance plethysmography.  I believe that

using two or three electrodes on the trachea near the stethoscope cup, changes in the

trachea due to changing pressures can be measured and would be similar in nature to the

RIP measurement described.  In addition, during obstruction the tracheal diameter would
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change even more due to the increase in pressure.  This could be tested further by insert-

ing a tracheal pressure probe past the pharynx while comparing the pressures exhibited to

the change in tracheal electrical impedance.

5.4.5  Further testing of adaptive filter to remove ambient sounds

The adaptive filter was tested using additive noise that was recorded separately

from the breathing data.  There are many acoustic differences between this method and a

method that would record the additive noise while recording breathing sounds.  Two

methods are suggested to perform further tests.

The first method would be to create a simulated trachea that is capable of creating

breath sounds through a phantom material.  The sounds recorded in the stethoscope cup

and the reference microphone would then be used to test the adaptive filter against addit-

ive noise created by external  sources.   The second method would be to  get  an IRB

approved study and have subjects perform breath holds as recorded noise is played in the

room.  

5.4.6  Create algorithm to improve adaptive filter

One problem that  occurred during the adaptive filtering research was that  the

reference microphone could corrupt the output of the adaptive filter if the reference signal

was uncorrelated with the primary input and if the frequency was high enough.  In order

to reduce this it is proposed that the adaptive filter is only used when needed.  The filter is

only needed when there is a signal detected above the noise floor on both the reference

microphone  and  the  primary  microphone.   In  order  to do  this  the  breath  detection
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algorithm needs to be performed on the reference input and only periods that are detected

on both inputs will be filtered using the adaptive filter.  This will not only reduce the

amount of corruption from the reference microphone, but it will reduce the computing

power needed to perform the algorithms described.

5.4.7  Testing of different stethoscope cups

The use of a thick metal stethoscope cup helped in the attenuation of the ambient

sounds, but the heavy stethoscope is bulky.  Two stethoscope cups attached to provide for

the adaptive filtration is long and heavy and will likely not be held by a single double-

stick disk.  The weight and awkwardness of the stacked cups is not ideal in real-world

applications.  In order to alleviate this, smaller and thinner stethoscope cups made of both

metal and plastic need to be tested using the adaptive filter.  This will allow for a more

practical apparatus that can be held to the trachea using a double stick-disk.

5.4.8  Recording  data from patient volunteers

The best test of the apnea monitor is the use of a version of the software on patient

volunteers undergoing sedation procedures.  In order to do this IRB approval would have

to be obtained and the data recording process would have to be perfected.  Use of this

technology in a patient application could also be a step towards FDA approval for an

acoustic respiratory monitor.  The data could be performed on patients undergoing sedat-

ive procedures such as a colonoscopies.
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5.4.9  Implementation of algorithms into a integrated device

Up until  this  point  the  data  have  been  recorded  and processed  offline  using

modern computers and programming software such as MATLAB.  The ultimate goal of

this project would be to implement the algorithms that have been described as well as the

algorithms that will be developed into a microcontroller and process the data in real time.

This will  be a final step toward getting the device ready to be a marketable medical

device.
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APPENDIX A

HISTOGRAM OF A MODULATED GAUSSIAN SIGNAL

Mathematically the distribution of a Gaussian signal modulated by a sinusoid can

be calculated as shown in Cain et al. [1].  They modulated five common random signals

(sinusoid, uniform distribution, Gaussian distribution, Rayleigh distribution, and Laplace

distribution) by a sinusoid.  They started by giving the probability density function (PDF)

of the sinusoidal process:

f X x =
1

1−x2
rect 

x
2
                                                   (A.1)

where x  is the random variable.  The common method of finding the distribution of the

multiplication of two random variables with known distributions is performed using the

equation [1]:

f Z  z =∫
−∞

∞ 1
∣y∣

f X  z
y  f Y  y dy                                            (A.2)

where f X  z
y   is the distribution of the first random variable with a modification to

the input variable, and  fY(y) is the distribution of the second random variable.  Because

one of the distributions is the Gaussian distribution and contains the term of  e x 2

, the

integral cannot be solved directly.  Instead of solving this directly, Cain et al. [1] used the

Fourier transform of the sinusoidal distribution to find the resulting distribution. First,

they perform the Fourier transform of equation A.1 to get
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      X =J 02                                                         (A.3)

where J0 is the zeroth-order Bessel function of the first kind, β is the frequency, and ΦX

represents the Fourier transform of equation A.1.  They then used a lesser known relation-

ship to find the Fourier transform of the modulated signal, which has the equation

Z =∫−∞

∞
 X  f Y d                                              (A.4)

where  fY(ν)  is the distribution of the second random variable, in this case the Gaussian

distribution.  They then substituted equation A.3 into equation A.4 directly and substi-

tuted the Gaussian distribution for fY(ν).  The result of this was

Z =e−
2


2

I 0
22                                                  (A.5)

where I0  is the zeroth-order modified Bessel function of the first kind.  Using the Camp-

bell and Foster Fourier transform and adding a scaling factor, the modulation of a Gaussi-

an signal was shown to be [1]

 f Z  z =
1

2
[e

−z 2

4 K0
z2

4
] ,                                       (A.5)

where z is the random variable, and K0  is the order zero modified Bessel function of the

second kind.  They go further and compare a simulation to the distribution of the data.

The simulation was created by taking the dot product of a vector of a Gaussian distrib-

uted signal and a vector of  a  full-wave sinusoid of the same length,  then finding the

normalized histogram of this signal.  A comparison of this model to simulated data is

shown in Figure A.1.
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Figure A.1 Normalized histogram of a sinusoid modulated Gaussian random signal 
overlaid with the PDF for the signal. 

 

−3 −2 −1 0 1 2 3

10
−3

10
−2

10
−1

10
0

10
1

Amplitude

P
ro

ba
bi

lit
y 

de
ns

ity

 

 
Histogram of sinusoid modulated Gaussian signal
PDF of model



180

References

[1] K. G.D. Cain, K.V. Lever and A.Yardim, “Probability density functions of amplitude-
modulated random signals,” IEEE Electronics Letters,  vol. 34, 1998, pp. 1560-1561.



APPENDIX B

SNORE SLAP DISTRIBUTION CALCULATIONS

In an attempt to understand what caused the distribution displayed by a snoring

sound, a snore model was created.   This model was a simplistic model of an individual

snore slap and has the following equation:

ydbt=ce
−t
d⋅a sin 2 f n tn                                        (B.1)

where t is time, c is the amplitude of the individual slap, d is the decay of the slap, fn is

the frequency of the slap, a is the amplitude of the sinusoid, and Φn is a random phase of

the frequency of that slap.  The random phase is not present in the model presented in

Chapter 3.  In a physical setting, a phase of  Φ   being anything but zero would not be

possible because it would require an instantaneous jump from zero to the first value of

the signal described by equation B.1.  This term was added for the sake of calculating the

distribution of the slap.  It ensures that the distribution model for a sinusoid can be used

for the models described.  Although this is different from the actual histogram produced

by the sound, the discrepancy is believed to be small when comparing the distributions.

The phase is a single term added for each individual snore slap and is uniformly distrib-

uted in the range of 0<Φ<π.  Using this model, the distribution for a series of snore slaps

with uniform amplitude and length can be calculated.  The distribution is calculated by

finding the distribution of the multiplication of two random variables.  The first variable
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is the exponential decay ydbe:

ydbet =c×e
−t
d                                                   (B.2)

where t is time, c is the initial amplitude of the exponential decay, and d is the decay time

constant of the signal. The distribution of equation B.2 can be found by the Jacobian

transformation to find the PDF of a function.  The Jacobian transformation is performed

by taking the absolute value of the derivative of the inverse of the function.  Solving the

inverse of equation B.2 and substituting y for ydbe(x), yields

 t=-d×ln(y/c),                                                               (B.3)

and calculating the derivative of this function yields

t'=cd/y.                                                                   (B.4)

In addition, this equation is unbounded as  y  approaches zero.  To avoid an unbounded

distribution, the length of the slap was limited to 0≤t≤l.  The limitation on t in equation

B.2 means that the amplitude of  y  in equation B.4 is limited to  ce-l/d≤y≤c.  Thus, the

distribution of an exponential decay after normalization is

f ZE z={ d
l z

, for ce−l /d≤z≤c

0, otherwise
                                    (B.5)

The second part of the model is the modulating sinusoid ydbs:

ydbs(t)=a sin(2πfnt+Φn).                                                  (B.6)

where t is time, a is the amplitude of the sinusoid, fn is the frequency of the modulating

sinusoid and Φn is a random phase of the modulating sinusoid.  The distribution of equa-

tion B.6 is given in [1] as:
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f YS y={ 1

a2−y2 for−aya

0 otherwise
               (B.7)

Now that the distributions of the two parts of the snore slap model are known they will be

used to find the distribution of the snore slap.  The distribution of the multiplication of

two variables is well known and using the variables of y and z as examples is given in [1]

as

f X x=∫−∞

∞ 1
∣y∣ f Z  x

y
 f Y  ydy.                                (B.8)

However, this is only valid for distributions that extend across all real values.  Glen et al.

[2] describe a method to calculate the distribution of the multiplication of two bounded

random variables.  Glen et al. state that, for the two distributions, the first distribution,

f(x), with limits of r and s where 0<r<s<∞, and the second distribution, g(x), with limits

of t and u where 0<t<u<∞, the distribution of the multiplication of the two distributions

can be found.  In this case the first distribution is the sinusoid distribution and does not

meet these criteria.  In order to fit the criteria, the symmetry of the sinusoid distribution

was used.  The random phase of each snore slap ensures the symmetry of the distribution

and the multiplication of the exponential decay distribution ensures that the end distribu-

tion will be symmetrical.  For this reason, the distribution of equation B.7 was modified

to the positive half of the distribution with equation:

f YSH y={ 2

a2−y2 for 0≤ya

0 otherwise

.                     (B.9)

Although the lower limit of this distribution is now zero, it can be assumed to be very

close to zero to satisfy the criteria set by Glen.  Once the distribution of the positive half
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of the model is found, the negative half can be found through symmetry.  Glen et al. [2]

then give three cases for the possible distributions computed in a piece-wise style.  The

first is if  ru<st, the second is if  ru=st, and the third is if  ru>st.  In this case, since the

lower limit of the sinusoid distribution denoted by r is very close to zero when compared

to u, s, and t, the first case is used for this calculation.  The distribution is calculated by:

hv={∫r

v/t
g  v

x
 f x 1

x
dx , for rsvru

∫v/u

v/ t
g  v

x
 f x 1

x
dx , for ruvst

∫v/u

s
g  v

x
 f x 1

x
dx , for stvsu

.                              (B.10)

where h(v) is the resultant distribution and v is the resultant random variable. Because the

value for  r  is assumed to be very close to zero the first case spans a range that is very

close to zero and has been ignored thus leaving two cases.  In fact  r  can be set to zero

with no adverse effects to the distribution when compared to the simulation as will be

shown. Applying equations B.5 as g(x) and B.9 as f(x) to equation B.10 and using arbit-

rary limits results in

hv=∫n

m x
v

d
l

2

a2−y2
1
x

dx                                       (B.11)

where m and n are  arbitrary limits for the integral.  This equation then simplifies to

hv= 2d
 lv∫n

m 1

a2−y2 dx.                                            (B.12)

The general form of the integral can be solved as

hv= 2d
 lv sin−1m

a −sin−1n
a .                                      (B.13)

Applying the limits of equation B.10 two cases are shown:
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hv={ 2d
 lv sin−1 v

ace−l /d −sin−1 v
ac , for0vace−l /d

2d
 lv 2−sin−1 v

ac , for ace−l /dvac

0, otherwise

                   (B.14)

where a, c, d, and l have already been defined.  Since this is a symmetrical distribution,

the model for the values from -ac<v<ac is:

hv={ d
 lv −

2
−sin−1 v

ac , for −acv−ace−l /d

d
 lv sin−1 v

ace−l /d −sin−1 v
ac, for −ace−l /dvace−l /d

d
 lv 2 −sin−1 v

ac, for ace−l /dvac

0, otherwise

    (B.15)

Using the fact that the real value of the function of sin-1() for values greater than 1 is π/2

and less than -1 is – π/2 the distribution can be simplified to one single case:

hv={ d
 lv realsin−1 v

ace−l /d −sin−1 v
ac , for −acvac

0, otherwise

     (B.16)

where real() denotes the real values of the function.

A simulation using a vector of 100 simulated snore slap signals and a=0.3, c=0.5,

d=0.1, and l=0.1 at a sample rate of 22050 Hz was created and the normalized histogram

was calculated from that signal.  The values were applied to the distribution model shown

in equation B.11 and compared to the histogram of the simulation as shown in Figure

B.1a and B.1b.   It can be seen that the distribution matches the simulation with very little

error.  Similarly, the distributions and normalized simulation histograms for the values of

a=0.3,  c=0.5,  d=1,  and  l=0.1, and  a=0.3,  c=0.5,  d=0.015,  and  l=0.1  are shown in
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Figure B.1 Normalized histograms of a repeated slap sound with the PDF model for (a)
semilog plot with a=0.3, c=0.5, d=0.1, and l=0.1 (b) linear plot with a=0.3, c=0.5,

d=0.1, and l=0.1 (c)  semilog plot with a=0.3, c=0.5, d=1, and l=0.1 (d) linear plot with
a=0.3, c=0.5, d=1, and l=0.1 (e) semilog plot with a=0.3, c=0.5, d=0.015, and l=0.1 (f)

linear plot with a=0.3, c=0.5, d=0.015, and l=0.1.
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Figures B.1c through B.1f to show the extreme values for the ratio of l to d.
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