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ABSTRACT

Patients sometimes suffer apnea during sedatiacefdwwes or after general anes-
thesia. Apnea presents itself in two forms: regpity depression (RD) and respiratory
obstruction (RO). During RD the patients' airwayapen but they lose the drive to
breathe. During RO the patients' airway is ocaluddile they try to breathe. Patients'
respiration is rarely monitored directly, but ifeav cases is monitored with a capnomet-
er. This dissertation explores the feasibilitynadnitoring respiration indirectly using an
acoustic sensor. In addition to detecting apnegeireral, this technique has the possibil-
ity of differentiating between RD and RO. Data eveecorded on 24 subjects as they
underwent sedation. During the sedation, subgqterienced RD or RO.

The first part of this dissertation involved detegtperiods of apnea from the
recorded acoustic data. A method using a paranestanation algorithm to determine
the variance of the noise of the audio signal waslbped, and the envelope of the audio
data was used to determine when the subject hapexdobreathing. Periods of apnea
detected by the acoustic method were comparedetpehiods of apnea detected by the
direct flow measurement. This succeeded with 91s8%&itivity and 92.8% specificity in
the training set and 100% sensitivity and 98% djoé#yi in the testing set.

The second part of this dissertation used the geraturing which apnea was
detected to determine if the subject was expemgn&D or RO. The classifications

determined from the acoustic signal were compaoethé¢ classifications based on the



flow measurement in conjunction with the chest anhdomen movements. This did not
succeed with a 86.9% sensitivity and 52.6% spetjifin the training set, and 100%
sensitivity and 0% specificity in the testing set.

The third part of this project developed a methmdetduce the background sounds
that were commonly recorded on the microphone. ithednoise was created to simulate
noise generated in typical settings and the nos® moved via an adaptive filter. This
succeeded in improving or maintaining apnea detecgiven the different types of

sounds added to the breathing data.
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CHAPTER 1

INTRODUCTION

1.1 Patient Safety in Sedated Care

Patients often undergo painful procedures that iregsedation. When such
procedures are performed in the physician's offaclverse events occur at a rate of 66
per 100,000 procedures as compared to 5.3 per A@@Mbcedures in an ambulatory
surgery center. Death occurs at a rate of 9.216r000 procedures in the physician's
office as compared to 0.78 per 100,000 proceduresiambulatory surgery center [1].
Mortality rate at an ambulatory surgery centeramparable to mortality rate at an inpa-
tient surgery center [2]. A significant sourcetlog increase in adverse events and deaths
is the significant difference in patient monitoringn an operating room and ambulatory
or inpatient surgery center, patients are intubaaédwing breath rate and volume to be
monitored and controlled directly. Another sigodnt difference is the absence of an
anesthesiologist in the physician's office. Guited on what monitoring equipment and
personnel are needed vary from state to stateatmutstill subject to ASA and OBA
guidelines [3]. More specifically, Domino et afl][state that a significant number of
adverse events and deaths could be prevented bgvet monitoring in the physician's
office.

The objective of this project is to develop a nesgpiratory monitor that will

detect the respiratory function from the sound reed at skin over the trachea. Sounds
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recorded at the skin over the trachea will be Bsed to detect periods of apnea. In
addition, an adaptive filter will be tested to reracany ambient sounds not related to

breathing so that apnea can be detected reliably.

1.2 The Need for Better Respiratory Monitoring

1.2.1 Current respiratory monitors

Respiratory monitors used in the physician's officelude pulse-oximetry,
thoracic-impedance plethysmography, and capnom@&irsect respiratory flow measure-
ments are not typically monitored because intulbatio a tight-fitting facemask are not

present in a procedure at the physician's offi¢e [

1.2.2 Pulse-oximetry

Pulse-oximetry measures the blood-oxygen saturahoough a transcutaneous
light measurement on an appendage. Pulse-oxinsesryery common and useful monit-
or because of its ability to continuously measine hlood-oxygen saturation and meas-
ure the patient's heart rate. Although it does suesthe blood-oxygen saturation it
cannot replace direct respiratory monitoring. Altiey well oxygenated patient, receiv-
ing oxygen via a facemask or nasal cannula, cgm Isteathing for 131 seconds before
the oxygen saturation falls below 92% and the alafthe pulse-oximeter sounds. This
amount of time can be increased up to 215 seconcasses where hypothermia and vaso-
constriction are present [6]. This means that isdvainutes can pass from the time that
the patient has stopped breathing to the timetheapulse-oximeter would show a notice-
able change in his/her blood-oxygen saturation.ririguperiods of apnea the oxygen

saturation falls, and the G@oncentration in the blood increases. Excessweentra-
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tions of CQ can cause metabolic acidosis of the blood, whath the patient at risk for

cardiac arrhythmias [7-9].

1.2.3_Plethysmography

Thoracic-impedance plethysmography uses ECG elesron the chest to meas-
ure the change in thoracic impedance. Less comisomespiratory inductance
plethysmography (RIP), which is measured by findimg change of inductance in wires
sewn into elastic bands that are placed on thet @meks abdomen [10]. Both forms of
plethysmography can measure the relative changehast and abdomen volume.
Plethysmography directly measures respiratory effat can be corrupted by body
movement of the patient. Plethysmography is divelaneasurement. The plethysmo-
graphy measurement can be calibrated to the chem@§gng volume measured by a
respiratory flow meter if a respiratory flow meamment is present. Using this calibra-
tion, change in chest and abdomen volume can lmatstl to be the change in lung
volume [11]. Although this is a useful measurem#ém calibration cannot be performed
unless the patient is wearing a tight-fitting faces or is intubated.

If a direct airway flow measurement is availableaidition to the plethysmo-
graphy signal, together they can be used to determhether periods of apnea are due to
respiratory obstruction (RO) or respiratory depiesgRD). In the case of RO the
plethysmography signal would show chest and abdam&arement with no airway flow
in the direct respiratory measurement. In the adsBD the plethysmography signal
would show no significant change in volume while tirect respiratory measurement
would show no significant flow. In the absenceaoflirect flow measurement, if a

patient's airway becomes obstructed, but the gati@mtinues to try to breathe, the meas-
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ured change in the calibrated plethysmography bignght be mistakenly counted as a
normal breath.  This can show that the patiettréathing normally but no valid gas

exchange occurs [12].

1.2.4 Capnometry

Capnometry measures the concentration of @@xpired air. The gas sample is
obtained through a nasal cannula placed in the. nGa@nometry is important because of
its ability to give a relative respiratory rate norasively. Capnometry cannot reliably
estimate breath volume based on the length of tharagory period and CO
concentration of each breath. Capnometry respyatae estimation also relies on the
assumption that the nasal passage is not occludadal cannula are also uncomfortable
and dislodge easily. If a patient stops breathforga short period of time, the GO
concentration within the lungs increases as the, €@centration in the venous blood
increases. The capnometer can be used to deteopiga because the Pa{ficreases
with decreased ventilation. Hypopnea is definedh gseriod of shallow breathing or a

period of low respiratory rate.

1.3 Acoustic Respiratory Monitoring

1.3.1 Current use of respiratory sounds by phasii

Since the development of the stethoscope in theckdtury, anesthesiologists
have relied on directly listening to the patiengdthing through an esophageal stetho-
scope or precordial stethoscope [13]. Today moststhesiologists use the pulse-
oximeter or capnometer rather than the esophaggakoordial stethoscope to continu-

ously monitor the respiratory activity of a pati¢hd]. Anesthesiologists listen to breath
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sounds to detect esophageal intubation, endobranaibation, and airway obstruction.
Listening to patients breathe can be laboriousisiatso not convenient for the anesthesi-
ologist to be tethered to the patient during a @doice. For this reason breath sounds
have been analyzed and modeled electronically usorgputer algorithms to detect
respiratory rate and classify breath sounds [15-ZI}is research has led to a recently
FDA approved acoustic respiratory monitor developgdMasimo Corporation (Irvine,
CA) [22]. Continued research is needed to impropenucurrent designs and technolo-

gies.

1.3.2 The source of respiratory sounds at the ¢é&@ch

Breathing sounds are created as the flow withintthehea becomes turbulent.
The turbulence occurs at the narrowest point inréispiratory path. The glottal opening
is the primary source of breath sounds [23]. Tiitecal flow for the tracheal turbulence
happens when the tracheal flow rate exceeds 7.2wiwch corresponds to a tracheal
Reynolds number of 1000 [23].

During normal breathing, airway flow is correlatedth the amplitude of the
sound [15,17,21]. This relationship is not lindaut it is possible to estimate flow from
the amplitude of the breath sound [21]. The retathip of flow to sound amplitude has
been modeled with the equatioA=kF***? wherek is a constant, A is the sound
amplitude in units of volts, and is the flow rate in liters per second [16,24]. Bemnd
Olson et al. [24] did not give some of the unitstfis equation. A more detailed explan-
ation is given in Chapter 2. Similarly, Kraman mead the relationship between
tracheal flow and sound amplitude in a model ofaaime respiratory airway [25].

Kraman concluded that the sound amplitude is dirgmbportional to the flow rate (I/s)
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squared. Calibration of the audio amplitude tofttw rate is necessary in order to make
a flow rate estimate using the audio signal. Tfibecause the size of the sub-glottal
opening near the trachea varies between patiebis & well as the amplitude of the
audio with respect to where the transducer is plamethe patient relative to the sound

source.

1.3.3 Measurement of respiratory rate from normaalheal sounds

Sierra et al. [19] estimated the respiratory breath from the acoustic sounds in
both healthy patients and those with pulmonaryadise Sierra et al. used a piezo-electric
film transducer placed on the neck to record breatinds. The methodology in Sierra et
al. involved estimating the respiratory rate frdme fautocorrelation function of the audio
envelope. Sierra et al. performed this by takingeation of the audio envelope and
calculating the autocorrelation of it. Sierra letlaen found the local maxima of the auto-
correlated signal. The number of samples betwaeh &cal maxima was used as the
number of samples between each breath and wastaissdculate a breath rate. This
algorithm worked well for the healthy patients, Wi = 0.99 when compared to the
respiratory rate measured by a pneumotachometechw$ the current gold standard.
This value dropped td=? = 0.87 for patients with pulmonary disease. Major ernoese
found to be related to low signal-to-noise ratia &mm sounds not related to breathing,
both external sounds like talking and internal stsulike swallowing. Sierra et al. also
compared a manually counted respiratory rate froendudio data to that of the gold
standard by manually counting the breaths of thdicawenvelope. This method
performed with similar results to the automaticedéibn algorithm. Although Sierra et

al. were successful in measuring an accurate egepyrrate from the audio envelope, the



ability of this algorithm to detect apnea was netedmined.

1.4 Classification of Snoring and Obstruction

1.4.1 Source of snoring and obstructive sounds

Snoring occurs when loose adipose tissue nearrtgharynx vibrates and slaps
against other tissue [26]. This generally only ipdyt occludes the airway but in severe
cases this turns into RO where the loose tissuelaiely occludes the airway [27,28].
RO that occurs in nonsedated patients as they $teeplled obstructive sleep apnea
(OSA). OSA poses a serious risk to an estimatéd 8Athe American population [26].
Because of the prevalence of OSA, research has dw®n to automatically record and
detect periods of OSA without the need of an ajhhistudy called polysomnography
[28-31]. Benumof et al. [26] state that patientslergoing medical procedures that are
suspected of having OSA are at higher risk fortlifieeatening occurrences during periop-
erative periods. The detection of apnea and éieatson of apnea as RO during a seda-

tion would be a valuable information to physicigesforming the procedure.

1.4.2 Literature review of methods for snore soclagsification

Hara et al. [29] attempt to decipher the diffeeehetween snore sounds gener-
ated by simple snorers versus those generatedtianisawith OSA. Hara et al. used a
Multidimensional Voice Program (MDVP) using input$ soft phonation index, noise
harmonics ratio, and power ratio in an attempteoigher between simple snore sounds
and obstructive snore sounds. Hara et al. deimagle snore sounds as snores that still
allow the subject to be normally ventilated. Hatal. concluded that the most promin-

ent difference between simple snore sounds anduslise snore sounds was the range



8
in the acoustic spectrum observed in obstructiv@essounds. Obstructive snore sounds
showed multiple harmonics in the spectrum up to04B@, while simple snore sounds
were observed to have spikes in the spectrum U@ Hz.

Jane et al. [28] used a multilayer neural networklécipher between obstructive
snore sounds and simple snore sounds. This neetabrk received 22 temporal and
spectral features from each sound segment as inpdene et al. used a large database of
sounds consisting of 625 pre-selected events. guhkis strategy, the neural network was
able to provide an 82% sensitivity and 90% spatyficf OSA snore detection.

Nakano et al. [30] provided a different approactclassifying periods of OSA.
Nakano et al. used the sounds recorded at theetmatth calculate the power spectral
density (PSD) per Hz. This produced a single valtidhe summed PSD spectrum
weighted by the inverse valued frequency in a $gecirequency band. Obstructive
snoring was classified if the peak value of the RfeDHz was over 70 dB per Hz within
the frequency band of 100-300 Hz. Obstructive isigowas defined as snore sounds that
preceded a period of RO. Nakano et al. classptibds of apnea into three categories:
RO, obstructive hypopnea, and RD. Nakano etusthér defined the tracheal sound-
respiratory disturbance index (TS-RDI) as the nunddel'S dips per hour of examina-
tion. ATS dip was as a drop of 12 dB in the movawgrage in the PSD per Hz value in
the band of 400-600 Hz.

In Nakano et al., RO was detected if the PSD pevadize was found to be in the
snoring classification area and was followed by@den drop in PSD per Hz. Periods of
hypopnea were identified when the PSD per Hz reethim the snoring range for

extended periods of time with no drop into the mnarmange. Periods of RD were
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defined as the PSD stayed in normal range, theppéh near zero. Periods of apnea
were identified and classified by performing polyswmgraphy on the data recorded.
Nakano et al. compared the performance of the D&4R the apnea-hypopnea (AHI)
index given by polysymnography with a high cornelatcoefficient of R=0.93. Nakano
then specified two values of the cutoff for the Abfi 5 and 15. The sensitivity and
specificity for the AHI cutoff value of 5 were calated at 93% and 67%, respectively,
and similarly with the AHI cutoff value of 15 at Z®and 95% respectively.

Ng et al. [31] used psychoacoustics of snore seuadscreen for OSA. The
psychoacoustics were qualitative characteristias wWere quantized using various equa-
tions. The qualitative characteristics includeddioess, sharpness, roughness, fluctuation
strength and annoyance. Each quality was usecémdiently to generate a receiver
operating characteristic (ROC) plot. The most sastul features were loudness, annoy-
ance, and roughness with sensitivities of 72-78% specificities of 82-92%. The work
of Ng et al. could be improved by using the comboraof two or more of these qualit-
ies to improve sensitivity and specificity. Ng at also used a subjective method to
select snore sounds before the psychoacousticsamalas performed, rather than using
the psychoacoustic data to classify a sound asoeesnAlthough equations for each
psychoacoustic quality were given, the use of humlassifications were used adding
subjectivity to the data classification process.

The research focused on sleep-disordered breadiioge is similar to the sleep-
disordered breathing that occurs during patienatsed. Many principles are common
for both situations, but sedation-induced apneaiesarmore risk because the patient

wakes up periodically during sleep-disordered Imiegtto breath but is unable to do this
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during a sedation procedure. The mechanisms thyattlse breathing are similar though,
and so the research regarding sleep disorderseaplied to sedative apnea in certain
circumstances.

Although these works support the theory that Imegt sounds can be used to
detect breathing and apnea, a comprehensive méthddtect breaths and define the
source of apnea has not been performed. This Isasnaver been done for sedated
patients rather than data collected from sleepecentThis research covers data collected
from subjects who were sedated and attempts tovendbe validity of novel approaches

to apnea detection and classification.

1.5 Sound Detection

Detecting signals in noisy environments is an ingoartask in signal detection
theory. Gazor et al. [32] attempt to detect vdicenversations in a noisy environment.
This is referred to as a voice activity detectoAlly. The VAD modeled the background
noise as the sum of multiple Gaussian distributgdads with zero mean, which is equal
to a single Gaussian distributed signal with zeeam The speech portion was modeled
as a Laplace distribution uncorrelated with thekigasund noise. Gazor et al. used a
maximum likelihood (ML) estimator for determiningth the standard deviation of the
combined Gaussian signals and the standard deviatithe Laplace signal. Gazor et al.
then used a hypothesis test to determine if spsepresent during that period. Gazor et
al. had a goal of creating a reliable VAD with loe@mputational complexity. Gazor's et
al. method performed better than a VAD outlinefBi8] and was lower in complexity.

Chapter 2 describes a method that uses a similateinto find the standard

deviation of the background noise and the standidation of the desired signal.
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Instead of using an ML estimator to find the partere a parameter estimation
algorithm will be implemented.

Chapter 3 describes the methods used that attemgassify breath sounds in
order to classify apnea as RD or RO when comparedstandard. A standard to classify
apnea as RD or RO has been developed that is basée flow rate and the chest and
abdomen movement of the subjects.

Chapter 4 describes the methods used to improvesehsitivity of the apnea
detection algorithm described in Chapter 2. Thas werformed by testing the validity of
using an adaptive filter to remove ambient souret®nded by the microphone at the
trachea.

Chapter 5 summarizes the results found in Chagteds and 4 and discusses the

success of algorithms that were developed. It sugmests directions for future work.

1.6 Project Objectives

This work will show the development of novel appioas to breath detection and
apnea detection. It will also attempt to clasgifriods of apnea detected by the apnea
detection algorithm. It will do this using a datat collected from volunteers for a
sedative sleep study.

The goal is to develop a novel respiratory monitbat overcomes the
shortcomings of the other monitors. It should blke &0 detect apnea sooner than a pulse-
oximeter, be easier to use than plethysmograpliynahneed a tight-fitting facemask in
the case of the direct flow measurement. In aalditit should be able to detect the

difference between RO and RD, which none of thetimead monitors can do.
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CHAPTER 2

DETECTION OF APNEA

2.1 Introduction

2.1.1 Apnea and its risks during sedation

Apnea is the cessation of lung ventilation for a defined period of time, from 15-20
seconds (see Section 2.1.2). Apnea can come in two primary forms: respiratory depres-
sion (RD) and respiratory obstruction (RO). Both problems pose a serious risk to the
patient if not detected and treated. Respiratory depression is caused by the lack of drive
to breathe although the airway may be open. RO is caused when tissues in the upper
airway relax and the upper airway is occluded. During RO the subject may be trying to
breathe, but no ventilation occurs. These types of apnea are discussed in greater detail in
Chapter 3. A sedated patient can suffer from either form of apnea depending on the
amount and type of drug used to sedate the patient. The goal of the physician is to use
enough drug to make the patient comfortable but still allow him/her to breathe on his/her
own. Clinical monitors help in ensuring that the patient continues to breathe, but depend-
ing on the clinical monitors available, not all periods of apnea are detected before adverse

events or even death occurs [1,2].
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2.1.2 Apnea detection and definition

An acoustic apnea detection monitor has been previously investigated as a simple
and effective monitor to detect apnea during procedures as described above. Several
attempts have already been made to detect breath rate, as described in Chapter 1. In Sierra
et al. [3], breath rate was measured from the sounds recorded on the neck near the trachea
via a piezo-electric film transducer. Great care was taken to measure the breath rate very
accurately, but the breath rates were not low enough that apnea would have been detec-
ted. The lowest measured breath rate by the gold-standard flow meter was ten breaths per
minute in healthy individuals, and five breaths per minute in patients with pulmonary
disease. Although it is important to detect breaths, it is far more important to be able to
detect periods of apnea accurately.

Apnea has been defined as the cessation of breathing for at least ten seconds in
[4,5]. Little physiological reasoning was given for this definition. In the case of pediat-
rics, apnea has been defined as a period lasting at least 15 seconds without breathing [6].
The defined length of apnea described in the literature is variable; for this study, a period
of fifteen seconds without a valid breath was defined as a period of apnea.

A valid breath is defined as a breath with enough breath volume to clear the
airway dead-space. The airway dead-space consists of the volume in the oral passage,
nasal passage, trachea, and bronchi. In the average adult, this volume is estimated to be

150 milliliters [7].

2.1.3 Correlation of breath sounds to flow rate

The envelope of normal breathing sounds is highly correlated to the flow rate, and

when properly calibrated and processed, breath sounds can predict flow rate [8,9]. Breath
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sounds are generated in adults when the flow rate exceeds approximately 7.2 liters per
minute given the Reynolds number of approximately 1000 for the anatomy of the trachea
of an adult [10]. As the rate of the flow increases, the amplitude of the sound also
increases. This relationship is not linear, and since flow during both inspiration and expir-
ation creates turbulence, direction of flow from the sound alone cannot accurately be
determined. Beck and Olson et al. [11,12] state that the relationship of flow to sound

F3 .0£0.2

amplitude is A=k where £ is a fitting constant, A4 is the amplitude of the sound and
F is the flow rate, but they did not indicate the units of &, F" or A. Using data selected
from that data set that will be described in Section 2.2, the plot shown in Figure 2.1 was
created that shows the comparison of flow rate in units of liters per minute and the audio
amplitude in units of volts. The audio envelope was calculated from the raw audio as will
be described in Section 2.3. The data between the markers at +/-7.2 1/m are observed to
have little variation which supports the claim by Ludwig that absolute flow rates below
7.2 I/m would not create turbulent noise. The value between these markers is not zero
and it is hypothesized that the signal that created this portion of the data is due to noise.
In addition, a model was fitted to the data with equation A=|kF”| where 4 is the audio
envelope amplitude in units of volts, F is the flow rate in units of 1/min, and £ is a fitting

constant with units of V/(L/min)’ and valued at k=1.5x10". The correlation coefficient of

the data with absolute flow rate greater than 7.2 1/m is R=0.8869.

2.2 Data Set

2.2.1 Data collection process

In an IRB-approved study, 24 subjects were sedated by injecting a combination of

remifentinal and propofol intravenously. Remifentinal is a short acting opioid analgesic
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used to reduce pain sensed by the subject. Propofol is a sedative/hypnotic used to lessen
the awareness of the subject. The amount of each drug was varied according to the chart
in Figure 2.2, where the concentration of one drug was held constant and the other was
incremented. The drug-dosing for each subject was assigned randomly from a pre-de-
termined drug-dosing regimen. The randomized drug-dosing regimen would randomly
assign each drug as the first or second drug and the amounts of each drug to be used
according to predetermined sedation strategies. Each subject underwent three periods of
sedation. During the first period of sedation, the first drug concentration was incremen-
ted stepwise while the second drug concentration was held constant. In the second peri-
od of sedation, the concentration of the second drug was increased while repeating the
drug-incrementation regimen of the first drug from the first period. In the third period,
the concentration of the second drug was again increased while repeating the drug-incre-
mentation regimen of the first drug from the first and second sedation period. The
primary design of this study was to measure the alertness and pain tolerance of the
subjects for different concentrations of the two drugs.

The sedation method used for the study was target-controlled infusion (TCI). TCI
takes advantage of pharmacokinetic models to maintain a constant sedation level for the
patient [13]. Although several phamacokinetic models exist, the Minto model was used
for the remifentinal infusion and the Schnider model was used for the propofol infusion
to maintain the sedative level of the subjects of this study.

The subjects were monitored using both standard medical monitors (described
below) and by a board certified anesthesiologist to avoid any complications caused by the

injected drugs. Each subject was given an initial dosage of the two drugs and tests were
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performed at baseline as well as before increasing the drug amounts. The tests included
the observer's assessment of alertness and sedation (OAA/S), tetanic stimulus, pressure
algometry, and attempting to insert a bougie into the subjects' esophagus. OAA/S is
done as a nurse tries to communicate with the subject, and the nurse rates the amount of
interaction received for specific communication attempts. Tetanic stimulus is a controlled
electric shock to the leg. Pressure algometry is the application of a pressure generated by
a one square inch piston to the subjects' shin bone. A bougie is a rubber tube used to
simulate inserting an esophageal scope. The bougie test required the removal of the
facemask; thus data in these time periods did not record the flow through the tight-fitting
facemask. The use of the tight-fitting facemask is described in the next section.

The primary study using the data of the sedated subjects attempted to find specific
dosing combinations of remifentinal and propofol that would satisfy pain tolerances
while allowing the subjects to breathe without the need of ventilation. The study under-
taken in this dissertation was allowed to use the data recorded from the primary study and
was allowed to record the audio data from the subjects.

Of the twenty-four subjects participating, data from four of the subjects were
discarded. Two of the subjects' data were lost during data transfer of the audio data
between computers. Flow and respiratory inductance plethysmography (RIP) data from
another subject were lost during data transfer between two computers. One data set was
recorded with a different microphone than for the other recordings, leaving twenty sets to
be processed.

The monitoring equipment for each subject included respiratory flow, capno-

graphy, pulse-oximetery, RIP, bi-spectral EEG index, arterial blood pressure, and tracheal
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audio recording. Only a few of these were pertinent to this project, namely the respiratory

flow, RIP, and the tracheal audio recording.

2.2.2 Data measurement

2.2.2.1 Direct flow data measurement

The respiratory flow was measured by placing a tight-fitting facemask onto each
subject and measuring the flow rate via a differential pressure technique called pneu-
motachography implemented in the Cosmoll+ device (Respironics, Wallingford, CT).
This device measures flow rate directly in units of liters per minute (I/m). The device
calculates breath volume by integrating the flow rate on a breath-to-breath basis and
records it in units of milliliters (mL). This device also produced a breath marker at the
beginning of inspiration for each breath. The data were recorded directly to a computer
hard drive at a sampling rate of 100 Hz. Each sample recorded was accompanied with a
time-stamp.

Respiratory flow measured by the Cosmoll+ device served as the gold standard
for apnea detection for this study because it is a direct measurement of the subjects' vent-

ilation.

2.2.2.2 Plethysmography data measurement

True plethysmography is the measure of the change in body volume. This is
measured by placing the subject inside a chamber and having the subject breathe through
a tube to the open air and measuring the change in volume in the chamber [14].

Two common ways to estimate plethysmography without the need of a chamber

are thoracic impedance plethysmography and RIP. Thoracic impedance plethysmography
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measures the change of skin impedance through standard ECG leads. As the chest and
abdomen volumes change, the body impedance between the ECG leads changes and is
measured. RIP measures the change of inductance of bands placed on the chest and
abdomen of the patient. The bands are lined with elastic with a conducting element sewn
into the fabric. The conducting element is sewn into the bands in a “V” pattern, inducing
mutual inductance. As the chest and abdomen volumes change the circumference of the
bands change thus changing the inductance of the conducting elements. The RIP device
measures the changes in the inductance of the bands, which is proportional to the change
in chest and abdomen volume [15].

In this study RIP was used to measure the thoracic and abdominal circumference
change. The RIP device measured the change in the inductance of the bands as the
subject breathed. The change in inductance of the RIP can be calibrated to the change in
flow rate. The calibration is performed by comparing the change in the inductance to the
respiratory breath volume as calculated by the Cosmoll+ [16]. In this study the breath
volume of each breath, segmented by the Cosmoll+ device, was compared to the change
in inductance from the RIP. If the correlation coefficient of the breath volume segment
View and the RIP segment Lg,p was greater than 0.75 the best fit line of the two data
segments was calculated. This produced a gain m. and offset b... The values of m..,
and b., were averaged for every 10 minutes of data. The values were recorded as the
RIP calibration gain and offset.

The RIP measurements were recorded to the same hard drive as the flow measure-

ments were, at a 100 Hz sampling rate.
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2.2.2.3 Respiratory acoustic data measurement
Audio signals were recorded using a microphone (WM-56A103 Panasonic, NJ)
placed in a metal precordial stethoscope cup (Wenger #00-390-C, AINCA, San Marcos,
CA). The cup was affixed to the neck with a double-stick disc (#2181 3M, MN) just
below the larynx and above the supersternal notch of each subject. The audio signals
were digitized at 22 kHz onto a computer hard drive using an audio sound card (Sound-
Blaster Audigy, Creative, Singapore). Acoustic data were synchronized to the flow rate

and RIP data by recording the start time of the beginning of the acoustic recording.

2.3 Methods

2.3.1 Creation of the audio envelope

The term “envelope” can have many definitions in signal processing. This work
uses a basic template to build an acoustic envelope from a raw audio signal. Figure 2.3
shows a flowchart of the general steps of creating the acoustic envelope from the raw
audio. The steps of audio amplification, analog low pass filter and A/D conversion were
all performed by the audio sound card used to record these data (SoundBlaster Audigy,
Creative, Singapore).

The first step after digitization was to apply a bandpass filter to the raw audio
signal. An example of raw audio is shown in Figure 2.4a. The bandpass filter was
designed to remove both high frequency noise not related to the breathing sounds and low
frequency sounds, such as heartbeat and electronic noise. For this work the bandpass
filter passed frequencies from 75 Hz to 1500 Hz. 75 Hz was chosen as the low cutoff

frequency because of its ability to remove most of the heartbeat sounds [11] and common
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electronic noise at 60 Hz. The high cutoff at 1500 Hz was chosen because most informa-
tion about the breath sounds is within the range of 100-1400 Hz [17]. The resulting
signal is shown in Figure 2.4b.

The next step was to downsample the data. To avoid aliasing, this must done with
a sample rate at least two times the high cutoff frequency of the bandpass filter. The
audio was downsampled by a factor of five to 4410 Hz. Downsampling was performed
by keeping every fifth sample in the filtered signal.

The absolute value was then applied to the resulting signal. The absolute value-
doubles the frequency of the signal with an additional DC component. The DC compon-
ent is an indicator of signal amplitude in the band from 75 Hz to 1500 Hz. This also
creates a positive signal ensuring a positive envelope. The resulting signal is shown in
Figure 2.4c.

Finally, a lowpass filter with corner frequency of 43 Hz was applied. This filter
removed all high frequency content and left only a weighted average of the signal. The
value of 43 Hz was chosen because it is less than the Nyquist frequency for a signal
sampled at 100 Hz. This signal was then downsampled to 100 Hz to match the sample
rate of the accompanying flow and RIP data. The resulting envelope is shown in Figure

2.4d.

2.3.2 Synchronization of acoustic data with flow and RIP data

Data recorded from the RIP and the Cosmoll+ were recorded on the same
computer, and were thus synchronized. Data from the microphone were recorded at a
different rate and on a different computer. The start times of the audio recordings were

recorded at the beginning of data collection for each recording period. Each recording
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period lasted between one and four hours, and small errors in sampling rate or buffer
errors in the audio data were found to cause errors between the synchronization of the
audio data and the flow and RIP data. In order to ensure that the data were properly
synchronized, short sections of the audio envelope were compared to the absolute value
of the flow rate. Because of the high correlation of the flow rate to the audio envelope
[8,9,11] manual synchronization was possible. This was performed as the researcher
compared the envelope of the audio signal to the absolute value of the flow rate. Pauses
between breaths and significantly larger breaths allowed for a high level of confidence
that the synchronization was performed properly. In retrospect, the audio signal should
have been synchronized to the flow rate and RIP data by recording the time stamp from
the flow rate and RIP computer to a second channel of the audio data.

The data were divided into 10 minute segments to allow for ease of processing

and ease of finding and sorting of data.

2.3.3 Data separation for blinded testing

Of the 20 viable data sets, 10 were randomly selected to be held out for testing
purposes. The subjects' data sets were assigned an index number (1-20) in the order that
they were recorded. Twenty nonrepeating random numbers Ugy were generated using a
pseudo-random number generator, and were assigned an index number /zy (1-20) in the
order that they were generated. Izy was then sorted by the value of Ugy from lowest to
highest. The first 10 sorted values of Izy were used to select the data sets of the subjects
that would be held out as the testing set. The remaining 10 subjects' data were used as
the training set. The training set allowed for the researcher to develop algorithms to

detect apnea. The testing set allowed half of the data to be blinded against researcher bias
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before processing it with the algorithms.

2.3.4 Acoustic threshold modeling

The acoustic sounds recorded were composed of two primary sources, the noise
source 7n(?) and the signal source s(z). During times of breathing, vocalization, or snoring
the recorded signal x(?) was the summation of the two sound sources; otherwise the recor-
ded signal was made up entirely of the noise source as described by:

x(t)=n(t)+s(t), for periodsof detected signals 21
x(t)=n(t), for periods of silence 2.1

Equation 2.1 is the basis for the model that will be used to differentiate the noise from the

signal.

2.3.4.1 Description of the noise source

The noise was a wide sense stationary (WSS) signal recorded at the microphone.
This signal consisted of several additive sources. The two main sources of noise at the
microphone were thermal noise and ambient WSS room noise that was transmitted
through the precordial stethoscope. Thermal noise was the most significant source of this
signal. This was because the stethoscope cup shielded the microphone from any major
noise coming from outside the subject. Because the thermal noise made up the majority
of the noise, the noise was considered WSS and Gaussian [18].

The first attempt at finding the threshold of the noise involved modeling the histo-
gram of the audio envelope. The process of finding the parameters of this model are
described below. Although this method was eventually abandoned, it helped in the devel-

opment of the modeling of the raw audio signal to determine a threshold of the noise.
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2.3.4.2 Audio envelope histogram model

Using the methodology of calculating the sound envelope described above, an
envelope was created for each 10 minute segment of data.

Initially it was noticed that the histogram of the envelope amplitude had a distinct
pattern that would help in identifying noise threshold. A typical histogram of the envelope
is shown in Figure 2.5a. The portion shown by the thick line was hypothesized to be
noise of the audio envelope. This was hypothesized because it was observed that this
portion of the distribution would show little change after changing the window of the data
used to generate the histogram. The portion of the distribution with envelope exceeding
the presumed noise threshold, shown as a thin line, was hypothesized to be the desired
signal. This was hypothesized because this portion of the histogram fluctuated in
amplitude and samples in each bin as the audio envelope changed in amplitude, and it
also had a higher amplitude than the portion of the histogram attributed to noise. In most
cases it was observed that the portion of the distribution attributed to noise had a Gaussi-
an appearance. To test this, a portion of audio was found that contained no detected
sounds. This portion was identified by observation and confirmed that no breathing
occurred when compared to the flow rate measurement. The histogram of an example of
this signal with a best fit Gaussian curve is shown in Figure 2.5b. From the figure shown,
the histogram of the noise segment does not match the distribution of the fitted Guassian
primarily because the histogram is not symmetric about the mean.

The part of the distribution attributed to the detected sounds took on many forms.

The most commonly observed distribution was similar to an exponential distribution as
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seen in Figure 2.5a. This observation was based on the histogram displayed with a
logarithmic plot similar to the one shown in Figure 2.5a from ten normal breathing
segments. An exponential distribution on a logarithmic plot is a sloped line and was easy
for the primary investigator to identify histograms with a similar plot. This distribution
was observed on the ten normal breathing segments above the portion of the distribution
attributed to noise.

Using the model of Gaussian distributed noise with an exponentially distributed
breathing signal, a threshold can be determined from the standard deviation of the noise.
The mean of the Gaussian signal yyr was estimated as the bin number with the maximum
value of the entire histogram. This estimation is based on the assumption that the most
common signal during a recording was the noise.

Using the value of uyr as the center of the distribution, bins lower in amplitude
than pyr were summed until they made up 34% of the values between 0 and uy- The
value of 34% was used because in a Gaussian distribution 34% of the area of the curve is
found between the mean and one standard deviation of half of the distribution. The
difference between uyr and the lowest valued bin described was used as the estimate of
ovr. The threshold to divide the noise signal from the breathing signal was calculated to
be unr +3oyr such that the breathing portion of the signal would have to be at least three
standard deviations higher in envelope than the noise threshold for it to be detected.

The model described was developed using a small number of data sets. Initially
this appeared to be a very effective method of finding the noise threshold, but using a
broader pool of data it was observed that the model did not estimate the parameters of the

distributions as well as for the initial data sets. Common examples of this were when the
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portion of the histogram attributed to breathing sounds did not have an exponential distri-
bution. This was a common occurrence when the amplitude of the signals recorded satur-
ated the microphone. Another reason for poor estimation of the parameters was when the
assumption that the noise was most common sound was not true. In these cases the
portion of the histogram attributed to breathing sounds had a higher amplitude than the
portion of the histogram attributed to noise. This caused the estimate of uyr and oyr to be
too large and breathing sounds were missed.

The failure of this model and algorithm can be attributed to several reasons. The
first reason was that the maximum point of the distribution of a sound was not always the
maximum point of the Gaussian distribution as described above. The second reason was
the histogram of the noise of the envelope was assumed to be a Gaussian distribution, but
when compared to a Gaussian distribution it became apparent that this assumption was
not correct. In addition the calculation of the distribution of the envelope of the noise
could not be found. The third reason was the distribution of the detectable signal was not
always distributed as an exponential distribution as described above.

Another reason that this method was abandoned in favor of the method described
in Section 2.3.4.3 was that the sample rate of the audio envelope at 100 Hz required
several minutes of data to initially populate a histogram to be able to estimate the model

parameters when compared with the method that will be described.

2.3.4.3 Raw audio histogram model
The experimentation with the model of the distribution of the audio envelope led
to an investigation of the distribution of the raw audio. This investigation was prompted

because the raw audio would be able to populate a histogram using a shorter period of
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data, and the mean of the distribution would already be known to be zero. The distribu-
tion of the noise portion of the raw audio data could also be directly attributed to be
Gaussian signal rather than just assumed to be. This is because primary source of noise is
thermal noise and can be modeled as a Gaussian distribution. To further prove this model
a period was found that was confirmed by the flow meter to be a period of noise only.
The histogram of these data was calculated and a Gaussian distribution was fitted to it as
shown in Figure 2.6. The standard deviation of the Gaussian distribution fitted to this
model was 6=3.6x10". This histogram shows a high correlation to the Gaussian distribu-
tion with a correlation coefficient of R=0.9984.

The raw audio signal was first filtered using the bandpass filter and down-
sampled to a rate of 4410 Hz as shown in Figure 2.4b. An example of a histogram of this
signal can be seen in Figure 2.7. The noise has been modeled as a Gaussian random
signal with zero mean. The detected breathing signal was observed to have a distribution
with a much higher standard deviation and heavier tails than a Gaussian distribution. A
segment of the audio used to generate this histogram is shown in Figure 2.8.

The heavy-tailed distribution of signal that has been attributed to the breathing
signal, was modeled as a Laplace distribution with zero mean, based on observation.
Observations showed that the histograms of the sound attributed to breathing sounds
observed were very similar to the Laplace distribution. In addition, sounds such as
snoring and vocalization created heavy-tailed histograms. Gazor et al. [19] also modeled
the voiced periods of his voice-activity detector as a Laplace distribution. The noise and
breath signals can be considered nonoverlapping in time, since during periods of detect-

able signal it is assumed that the breathing signal has a standard deviation a factor of 10
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greater than the standard deviation of the noise that it does not contribute significantly to
the Laplace distribution. During times of breathing silence, the noise signal is the only
signal present. Because these two signals can be considered to be nonoverlapping in
time, the convolution of the two distributions does not need to be performed. The
assumption that the noise is insignificant in comparison to the detected signal modifies
the acoustic model to be:

x(1)=s(t), for periods of detected signals )
x(t)=n(t), for periods of silence (22)
The mixture of the models can be modeled simply as the summation of the two distribu-

tions in proportion to each other with the equation:

—x x|

P L,
fm(x)—\/me +(1 p)2be (2.3)

where f,(x) is the distribution of the mixture, x is the random variable in units of volts, p
is the probability that the signal only contains noise, o is the standard deviation of the

Gaussian distribution, and b is the parameter of the Laplace distribution. The standard

V25

deviation of the Laplace distribution is o =5

This model is based upon the assumption that the standard deviation of the
Laplace distribution o, is much greater than the standard deviation of the Gaussian distri-
bution ¢. If o, is less than or equal to o the signal to be detected would have less
amplitude than the noise and would not be audible. A breath sound signal with absolute
amplitude a factor of 10 times that of the standard deviation of the noise ensures that that
signal is greater than more than 99% of the noise samples. This is based on the assump-

tion that the noise is WSS Gaussian and that the standard deviation of the noise has been
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fitted accurately.

Using the raw signal was an advantage over the envelope for two reasons. The
number of samples was dramatically increased for a given period of time. This allows for
the histogram to be populated in a shorter period of time. This model bases the distribu-
tion of the noise signal on the known distribution of thermal noise and has further shown
that the noise can be accurately fit with a Gaussian distribution. This model also uses the
nature of the audio signal as a zero mean distributed signal to remove the need for calcu-

lating the mean of the two distributions.

2.3.5 Finding the model parameters

2.3.5.1 Finding the model parameters directly

Finding the parameters of the distribution mixture, namely p, g, and b, was the
next task. Because there are three unknowns to the above equation, three equations are
needed to find all of the parameters.

The initial attempt was to find the second, fourth, and sixth moments of a signal
and compare them to the mathematical model of the distributions. This method was
eventually abandoned, but shows the step made towards model parameterization.

The odd moments on a symmetric distribution are zero, thus the first three even
moments were selected. For the equations below, 4 is the second moment, B is the fourth
moment and C is the sixth moment calculated from the audio signal.

A=pc®+(1-p)2b°
B=p3c’+(1-p)24b’ (2.4)
C=pl156°+(1-p)720b°

This set of equations does not provide a close estimate for the parameters because the
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estimates of the fourth and sixth moments are noisy and that amplifies the amount of
noise in the estimates. In addition, the signal modeled by the Laplace distribution would
have to be nearly perfectly Laplace distributed for these equations to estimate the proper
values for p, o, and b. Because the actual signals can be distributed differently from the
model it is possible that this parameterization technique would fail. For these reasons a
different approach to finding the parameters was pursued.
2.3.5.2 Finding the model parameters using the
expectation maximization algorithm

The expectation maximization (EM) algorithm [20] was used to estimate the
values of p, 6, and b. The EM algorithm is an iterative method that uses initial estimates
of the parameters and iterates until the estimates of the parameters converge on a value.
The generalized EM algorithm has two major steps, the expectation step (E-step) and the
maximization step (M-step).

The general equations for the EM algorithm are given by Moon et al. [20]. The
first equation is the general form of the E-step:

0(0ve)=E[log 7 (xlO)ly, 6" (2.5)
where Q is defined as the O-function, f(x|®) is the differentiable pdf of the mixture, y is a
vector of observed values, x is the vector of the combination of unobserved values and
observed values, and @ is set of estimated parameters given the k" iteration of the
algorithm. The general equation for the M-step is given as:

@[k+1]:argmng(@|@m). (2.6)

The EM algorithm is based on the assumption that an observed value y; has an

accompanied unobserved value z;. The theoretical combination of these two values is x;
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where x;=/y;, z;] and x=/x;, x>...x,].

Considerable simplifications can be made if it can be proven that the distribution
model is in the exponential family of distribution. Moon et al. [20] define a distribution
as being part of the exponential family if it has the form:

[(x10)=b(x)e @ () 2.7)
where the superscript 7 denotes the vector transpose, a and b are scalar functions, and C
and ¢ are vector functions that need to be identified in the distribution in question. The
distribution used for this method is the Gaussian-Laplace Mixture:

2

) —l
f(x|@)=Hi":1{I(Zl:O)ﬁez”zwLI(zi:1)(lz_bp)e 51 (2.8)
T

where I is the indicator function that has value of 1 if the contents are true and zero if the
contents are false, and z; is the unobserved value that the observed value of y; is from the
distribution indicated by the indicator function. If z;=0 the accompanying value of y; is
created by the Gaussian process and if z;=/ the accompanying value of y; is created by the
Laplace process. In order to get equation 2.8 into the form of of equation 2.7, the
exponential form of all values within the product term were found as:

log(—=2—) % (-p), =lvl
V2ma®’ 20 +el(z,:1)e % )e b } (2.9)

flxl@)=m" ("¢
where ©=/o,b,p]. The exponent was then taken outside of the product creating a

summation shown as:

F(x]@)=exp| =" I(z,=0)(log y L |+
2o |2(|I 2.10)
+1<z,:1)(1og(“2_bp) +=2)|

From equation 2.10 the parameters of a, b, C, and ¢ can be assigned with a=1/, b=1, and:
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(2.11)

S I(z=1)yl]. 212

With this proof that the distribution model is in the exponential family, the simplified

version of the EM algorithm for this special case was pursued. Using the simplification

the E-step calculation becomes [20]:

and the M-step is [20]:

Since the value of a=1 the log of that term becomes zero.

Applying equation 2.12 to equation 2.13 results in four values:

(=B 51 1(2,=0)

t(k+1| E[Z, A (z,= 0)’,|J’w ] Z:;lyf

(= E| X 1 (z,=1)

t[k+1]=

y[,@k]:zf

=1

yl,@] >

Elt(x)

O'F+= argmax[C(@)Tt[k“]—loga(@)}
(0]

n
i=1

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)



44

Z‘[4k+1] E[Zl II(Z_I |y1

Y, 0 =5 1y -l @18)

Since the values of y are known, and the values of o, b, and p are the estimates from the
initial condition or the previous iteration of the algorithm, # becomes a row vector of four
values.

Applying equations 2.11 and 2.12 to equation 2.14, the M-step becomes:

! ]—argmax t log L +t[k“] _12
V(2mo?) 20 (2.19)
1 -1 '
+t[3k”10g( 2bp 4 i )

In order to find the values of the parameters o, b, and p, the derivative of the contents of
the argmax() needs to be calculated and equated to zero. For the value of p this

calculation resulted in:

d
dp

pP

t{k+1|log
1
\/(2TFO'2)

k1] =1 k) 1—p
+1, +t 1
20° og( 2b

A p )=O (2.20)

and because two of the terms do not contain p this simplifies to:

d | k+1) p k+1] (1 p) ( k1) L ke —1 )
— |t log| —=—=—|+1; 'log T —+t,—— =0 2.21
dp( 1 Verd)| 2b p ' 1-p @21

and results in:

t|k+1\

1
Pesr=Tr e 2.22
EST t[1k+1\+t|3k+1\ ( )

where the values of 7,/ and #/**" are the values found by the E-step. Similarly the

derivative with respect to ¢ was performed:
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2

[k+1]
t, " 'log
1 (2mo”)

2b

k1] —1 [k+1] l1-p
+12+ F+t3+ log(— b

+t[4“”_—1):0 (2.23)

and because two of the terms do not contain ¢ this simplifies to:

d | | » | ‘ 1 t{k+1| t{k+1\
K+l k+1] — 1 2
—| ¢ | —— |t/ = + =0
da(l °% V(2mo?) ? 202) o’ o (2.24)

and results in:

tlzk +1]
O por— W (225)
1

The derivative with respect to b was also performed:

d | jk+1) p k1] —1 | k4] 1-p k+1]—1
L og | B | gk 2 R g g | A2 | gl 2 | =
db (tl > V(2mo?) . 20° s log 2b 4 b 0 (2.26)

and because two of the terms do not contain b this simplifies to:

[k+1] [k+1]
d | jk+1) 1—p h+1]—1 | 13 13
| o | —E |44 —|= + =0 .
and results in :
t|k+1\
4
bEST:t|k+1\' (2.28)
3

The implementation of this algorithm 1is straightforward by first finding initial

estimates of the three parameters o, b, and pr:  These were made by finding the
.. . . . . O—audio

standard deviation of the given audio signal c..u,=std(y) and setting o INIT:T and

binr=V20 44, and ppnr=0.5 These values were chosen because the breathing signal is

assumed to be highest amplitude of the two signals. The standard deviation of the noise is

assumed to be a factor of less than the standard deviation of the total sound signal. The
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probability pr was arbitrarily chosen assuming that the probability of being in a breath
sound signal or a pause sound was equally likely.

The equations to find the E-step and resulting vector #/ were then calculated
directly. The M-step was then calculated to find the new estimates of the parameters o,
b, and p. Because this is an iterative process the above steps were iterated until the
convergence criteria were met. Convergence was achieved when the difference of five
consecutive estimates of the parameters o, b, and p were within 5% of the estimates of
the values of o, b, and p. Moon et al. [20] state that convergence may be determined in
this way.
2.3.5.3 Finding the model parameters using the
Gaussian estimation algorithm

The initial attempt at calculating the EM algorithm resulted in an iterative method
to find the parameters of o, b, and p in a similar manner to the EM algorithm. Because
this method is not the EM algorithm, but is based on the intuitive definition of the EM
algorithm in finding the standard deviation of the noise of the signal it will be referred to
as the Gaussian estimation (GE) method. This method is being discussed because it was
the method used in the final algorithm to detect breaths. As will be discussed in Section
2.3.5.5, the GE algorithm was desirable for its ability to more closely estimate the stand-
ard deviation of the noise portion of the signal even when the histogram of the breath
sound signal was not a good fit to the Laplace distribution.

The GE algorithm used two primary steps in an iterative technique just as in the
EM algorithm. Initial estimates of o, b, and p were found in the same way as for the EM

algorithm. Using the estimates for g, b, and p the expected distribution of each sample of
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the input vector y was calculated by Bayesian estimation. The distribution mixture used

for this model is:

2

—x —lx]
o’ 1
f(-’d@):#e2 +(1—p)%e b (2.29)
To

This model is made of two primary components. The first is the Gaussian distribution:

2
—X

1 207
fxc(x):mez (2.30)
and the Laplace distribution:
1 =il
falx)=5pe” . (2.31)

Applying Bayesian estimation to the Gaussian portion of the signal results in the equa-

tion:

P[Z:O]— pESTXfXG(yilo-EST) (2.32)

l _pESTXfXG(yilo-EST)+(1_pEST)fXL(yi|bEST)
where z; is unobserved parameter that the sample y; is from the Gaussian distribution, and
oest, besr, and pgsy are the current estimates of those parameters. If this probability was
greater than 0.5, the sample y; was placed in the Gaussian group of samples Gygc, other-
wise it was placed in the Gaussian group Lygc.

After all of the values were sorted into the vectors of Gyecand Lygc, the estimates
of the parameters of g, b, and p were found. The value of ozsr was calculated by finding
the maximum likelihood (ML) estimate of the Gaussian distribution. This is done by
taking the derivative of the log of the distribution and equating it to zero. In the case of

the Gaussian distribution this is calculated by:

O log (e 27 =2 (10— ) L el U (2.33)
so " (amo?) So Vierd?) 20 T o
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and is then simplified further by calculating the mean of the vector x* and has equation:

02:% s 2.34)

The input vector x of equation 2.34 is the vector of samples of the overall input signal
that are determined to be in the Gaussian portion of the distribution as calculated by
equation 2.32.

The ML estimate of the Laplace distribution is calculated in a similar manner, by

finding the derivative of the log of the distribution and equating it to zero, and is calcu-

lated by:
—lxl
RN e Sl X[\ _ =1 |l _
6b10g(2be )_6b(10g(2b) 5 )= 2 + B =0 (2.34)
and is then simplified to:
p=L sV-1y. (2.35)
N n=0 .

The implementation of the GE algorithm was performed as follows. Figure 2.9
shows a block diagram of the general steps of the algorithm.

The first step was performed in the following manner. The initial estimates of the
three parameters were used to estimate which samples belonged more to the Gaussian or
Laplace distribution using equation 2.32.

The second step was performed using the ML estimate from the two groups of

samples as described above. The ML estimate of the standard deviation of the Gaussian

1
signal was calculated as O'EST:(%Z ,le Gf/EC)Z where K is the number of samples in

Gyec. The ML estimate of the parameter of the Laplace distribution was calculated as
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Figure 2.9 Block diagram of the GE algorithm to estimate the parameters of o, b, and p.
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1

b ESTZZZ,L:1|LVEC| where L is the number of samples in Lygc. The value of p was

estimated by taking the ratio of the number of samples in the Gaussian group to the over-
all number of samples.

The E-step and M-step were then iterated until all of the parameters converged to
a value. Convergence for this algorithm was defined when the estimate of the parameter
changed by less than 5% of its value four consecutive times and was nonmonotonic.
When the iterations converged for all parameters the estimates were used as the measured

values of p, o, and b.

2.3.5.4 Simulation testing the accuracy of the GE and EM algorithm

In order to determine the accuracy of the described GE and EM algorithms, a
simulation of a Gaussian-Laplace mixture random signal was created and then measured
using the GE and EM algorithms. The simulation was made by providing the three para-
meters of p, o, and b and using them to create a vector of data. The data consisted of two
parts; the first was a pseudo-Gaussian signal produced from a random number generator
with standard deviation o that contained N xp values, where N is the number of values in

the vector. This was concatenated with an additional string of Nx(1-p) values of a

Laplace distributed signal with standard deviation o, = The value of p was held

ol
.W‘

constant at 0.5. This simulation was also performed for values of p other than 0.5 as will
be described later. Because both the GE and EM algorithms calculate the expected distri-
bution of each sample without respect to order, the order of the concatenation of the input

vector does not affect the estimates of the parameters.
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Using the simulated Gaussian-Laplace mixture signal, the value of o was set to 1
while the value of b was varied from 1.4 in steps of 0.1 to a value of 28. This range was
chosen to make the ratio of the standard deviation of the Laplace distribution to the Gaus-
sian distribution from 1 to 20 . The percent errors of pgsr, ors; and bgsr to the true values
of p, g, and b were then calculated and plotted in Figure 2.10a for the GE algorithm and
2.10b for the EM algorithm. These plots show that for the estimates from the GE
algorithm to be within 10% of the actual value, the ratio of g, to o must be greater than 5.
The ratio can be less than this but the estimates will have a higher margin of error. For
the EM algorithm the ratio needs to be greater than 3.5 to achieve the same accuracy.

This simulation was calculated for different values of p. This was done as p was
varied from 0 to 1 in steps of 0.1 as the ratio of o, to ¢ was varied from 1 to 20 as
performed above. The percent errors of prs;; grs; and besr to the true values of p, g, and
b were then calculated. The percent errors that were less than 10% are shown in white,
the percent errors that were between 10% and 20% are shown in gray, and the percent
errors greater than 20% are shown in black. These values were calculated using both the
EM and GE algorithms. Figure 2.11a shows the percent error in estimating the parameter
o using the EM algorithm. Figure 2.11b shows the percent error in estimating the para-
meter ¢ using the GE algorithm. Figure 2.11c shows the percent error in estimating the
parameter b using the EM algorithm. Figure 2.11d shows the percent error in estimating
the parameter b using the GE algorithm. Figure 2.11e shows the percent error in estimat-
ing the parameter p using the EM algorithm. Figure 2.11f shows the percent error in
estimating the parameter p using the GE algorithm. From these figures it is evident that

the EM algorithm estimates the parameters within 10% of the actual values for a wider
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Figure 2.10 Percent error of the estimate to the actual value when calculating the
parameters o, b, and p from a simulated model (a) for the GE algorithm (b) for the EM
algorithm.
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range of values of the ratio of g, to ¢ and p. The EM algorithm has the most difficulty
estimating the parameter of ¢ when the value of p is close 0, meaning that few of the
samples in the simulated input were generated by a Gaussian process. Similarly the EM
algorithm estimates the value of b with the highest amount of error when the value of p is
close to 1, meaning that few of the samples in the simulated input were generated by the
Laplace process.

Using the GE algorithm the estimate of the standard deviation of the Gaussian
distribution is more accurately estimated when p is between 0.3 and 0.9. Similarly the
value of b is more accurately estimated when p is between 0 and 0.7. For the GE
algorithm to estimate the values of p, g, and b with 10% accuracy does require tighter
tolerances for the input data. Since the parameters of the input data cannot be chosen this
means an acceptance of a higher error for signals with a low ratio of o, to ¢ for the GE
algorithm. Since the parameters of the input stream are unknown this raises some ques-
tion if the GE algorithm is suitable for this application. Despite this, the GE algorithm
was considered because the estimated values of the standard deviation of each distribu-
tion would be limited to the standard deviation of the input data. This might affect the
threshold measurement, but because the signal would be in a period of detected sounds,
the variability in the amplitude of the detected sounds would ensure a threshold that
would detect sounds. Periods in which p is very high would be consistent with a period
of pause in breathing. This period would measure the value of ¢ with a higher amount of
accuracy than that of 5. The error that would occur in this situation would be the detec-
tion of signals during a period of apnea because the threshold was too low. A method to

ensure that the noise threshold did not fall too low was created and is discussed in the
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next section.

2.3.5.5 Choice of parameter estimation algorithm

The EM algorithm performed much better than the GE algorithm in simulation
when the input data were known to be Gaussian and Laplace distributed signals. The
estimation of these parameters was performed on data from the data set described. Figure
2.12 shows the audio envelope of a typical period of breathing with an anomalous breath
sound with a much higher amplitude than the rest. The moving window parameters
estimated from both the GE and EM algorithms are shown. The GE algorithm estimates
the standard deviation of the noise with little variation despite the disturbance by the
anomalous breath sound in the detected signal. The EM algorithm shows that the estim-
ate of the standard deviation of the noise jumps significantly due to the disturbance of the
detected signal caused by the anomalous breath sound. This is likely due to the fact that
the Laplace distribution is not a good model for the histogram of the detected signal
during this period. Because the signal attributed to breathing is not a Laplace distributed
signal the EM algorithm cannot accurately estimate the standard deviation of the noise.

Because the amplitude of breathing signals are unpredictable and anomalous
sounds were observed to be frequent, the EM algorithm may cause detections of apnea
when there is none, causing more frequent false positive alarms. The GE algorithm
appears to be able to estimate the standard deviation of the noise with a higher level of
consistency despite sudden changes of the detected signal. For these reasons the GE
algorithm was used to estimate the parameters for the breath detection algorithm.

The GE algorithm was used to fit the mixture distribution model to the histogram

in Figure 2.7. The estimates for this data were p=0.44, 6=3.58%107, and b=2.9x103.
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The distribution model was then plotted over the histogram of the data in Figure 2.7 using

these estimates.

2.3.6 Using the model parameters to find an audio threshold

The threshold to decipher breath sounds from the noise can be determined using
just the parameter ¢ alone or by using it in conjunction with the value of . Using o
alone, a confidence interval of 96% can be achieved if the threshold is set to two times
standard deviation of the noise.

Using both parameters, estimation theory can be used to determine threshold. In
order to minimize risk and maximized detection the minimax algorithm was used to
determine the threshold. The minimax algorithm makes no assumptions about the prior
probability of either distribution [21]. This is similar to a method in voice detection used
in [19].

Using the minimax algorithm, the error from both distributions needed to be

minimized. The tail probability ey of the Gaussian distribution s

2
—X

e = ff ;ez"2 dx , where 7 is the threshold between the two distributions. Only

V2mo)

the positive tail of the distribution has been calculated because both the zero-mean Gaus-

sian distribution is symmetric about zero. Figure 2.13a shows the error probabilities

attributed to the tail probabilities in red. The probability ezs of the Laplace distribution is

. =l
€ ps= f . %e b dx where the error is attributed to the central probability. Because this

distribution is symmetric about zero only the positive half needs to be calculated. The
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error of the Laplace distribution is illustrated in Figure 2.13b where the error is the sum
of the central probabilities. The minimax algorithm attempts to minimize the tail probab-
ility eyr and probability ezs by equating them and solving for 7. Equating the two errors

results in the equation:

= =«

»__ 1 207 1
= — d 2.36
J. Jero) & Jigpe " & (2.36)

which can be simplified to
—-T ’TT

- —)= 2.37
erf (—)=e (2.37)

. . . . _ 2 r -7
where erf{ ) is defined as the error function with equation erf (x )——m fo e dri.

An analytic solution for 7 in equation 2.37 is not possible because the equation is already
in its simplest form and is transendental. Instead of finding a direct value for 7, a para-
meter estimation technique was used to find a reasonable value for 7. A vector of values
which would be common to t was generated as will be described. The vector created,
called t;, ranged from 0 to 1 in steps of 0.0001 with units of volts. This range and step-

size was chosen because the known range of the audio envelope is below 1 and the lowest

noise observed was 0.0005. The values of 7, were applied to the equations —erf’ (%T)

T . . . .
and % using the estimated values ogsr and bgsr. This resulted in two vectors of equal

length. The difference of the two vectors was found and the value of 7, with the absolute
minimum error was chosen as the estimate for 7. The values of the two vectors calcu-
lated crossed for the values of 7, because the error probability for the Gaussian distribu-

tion is zero for /=0 and the error probability for the Laplace distribution is zero for 7=1.
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Using the range of values for 7, the vector for the error of the Gaussian distribution and
the error of the Laplace distribution meet between 0 and 1 given the limitation that the
input data is limited to be between -1 and 1.

The value for 7/ is a good estimate for the noise threshold in most circumstances.
However, in periods in which there are no detectable signals, the estimate of the standard
deviation of the Laplace distribution becomes similar to the standard deviation of the
Gaussian distribution. Thus the assumption that ¢<<b is not valid during long periods of
silence. Using the value of 7 in this circumstance would allow for a lower breath detec-
tion threshold, which could possibly start detecting noise sounds as breaths. Also during
times of extremely loud sounds the value of » dominates the inequality thus making it
possible to raise the threshold above the envelope of some of signals that should be detec-
ted. In order to avoid these two problems the value of 7 is limited by /.44 xaggsr on the
lower end and 2.4 xogsr on the upper end. These values were chosen as values with
confidence intervals of 85% and 98% of the Gaussian distribution.

In order to determine the validity of the noise threshold 7 chosen, a receiver oper-
ating characteristic (ROC) curve was generated from experimental data for the detection
of apnea found by the acoustic detection method and that of the gold standard. The
determination of apnea periods for the acoustic detection method and the gold standard
will be described in later sections. For this curve, the value of the noise threshold was
multiplied by a value from a vector g, that included values from 0.5 to 10 in steps of 0.1.
The probability of false alarm (pg() and probability of miss (puss) were calculated from
the training data set for each value of g,, with the resulting ROC curve shown in Figure

2.14. The optimal value of g, was 1.0 and it occurred where the value of pg=0.094 and
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the value of pyuss =0.103 . The value of pg,is shown directly on the plot of Figure 2.14,

and the value of pyuss is the value pyuss=1-prp from Figure 2.14.

2.3.7 Using the acoustic threshold to detect breath sounds

Using the threshold value and audio envelope as described above, crossings of the
audio envelope through the breath detection threshold were found. A crossing was
defined when two consecutive samples of the audio envelope were found in which one
was less than the breath detection threshold and the other was greater than the breath
detection threshold. Each crossing in which the slope of the envelope was positive indic-
ated the beginning of a detected sound, and each crossing in which the slope of the envel-
ope was negative indicated the end of a detected sound. Detected sounds shorter than 0.3
seconds were discarded. The value of 0.3 seconds was calculated from the maximum
respiratory rate of a spontaneously breathing adult of 75 breaths per minute [22]. A rate
of 75 breaths per minute means that each breath would be 0.8 seconds in length. Allow-
ing for a 0.2 second expiratory pause and assuming equal inspiratory and expiratory
times, the minimum breath sound length is 0.3 seconds. The remaining sounds were
considered valid breaths.

Note that the the estimated parameters used to find the threshold were not derived
from the envelope. It was assumed that because both the parameters and the envelope

were directly derived from the filtered audio signal, they could be used together.
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2.3.8 Detection of apnea by the gold standard

2.3.8.1 The need for multiple forms of apnea detection

The Cosmoll+ monitor measured the flow rate directly in units of I/min. This
monitor also marked the beginning of each breath with a marker. Using the breath mark-
er and the flow rate, a breath volume signal was calculated by the Cosmoll+ device for
each breath in units of mL. The breath volume signal is simply the integral of the flow
rate signal. The flow rate signal was not perfect and included some artifacts as described
next. In addition, the flow rate signal occasionally had a DC offset that could be up to 5
1/min, as shown in Figure 2.15a. The DC offset in the flow rate signal caused the breath
volume signal to integrate continuously, as shown in Figure 2.15b. Another problem with
the breath volume signal was that the initial value of the volume was not known, causing
a DC offset in the reported breath volume. The value of the breath volume was periodic-
ally reset by the Cosmoll+ monitor, but variations in the initial breath volume were often
observed. The largest artifact observed on the flow rate signal was caused as the heart-
beat pushed air through the trachea in rates up to 10 I/min as seen in Figure 2.16. Other
artifacts such as electronic noise were not as significant when measuring the flow rate
signal.

Apnea has been defined in this work as a period of at least 15 seconds where the
breath volume does not exceed 150 mL. The value of 150 mL was used because this is
the average adult airway dead-space [7]. The example shown in Figure 2.15b shows the
problem with this definition given the data set. Specifically this example shows the the
case when volume could exceed the threshold of 150 mL while no real gas exchange

occurs. For this reason the flow rate signal was used in addition to the breath volume
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signal in detecting periods of apnea. The threshold set on the flow rate signal was 7.5
/min. This value was chosen to eliminate the majority of the heartbeat flow rate artifacts,
and to detect periods of apnea even when a DC offset up to 7.5 1/min on the flow rate
signal was present. More importantly, the peak value of 7.5 1/min corresponded to a tidal
volume (peak breath volume) of 150 mL for the subjects in this study as shown in Figure
2.17. Figure 2.17 shows the comparison of the peak flow rate of a breath of the subjects
and the tidal volume for that breath. The relationship on this plots shows the majority of
the breaths with volume less than 150 mL having a peak flow rate of 7.5 I/min. The
outliers observed in this plot are attributed to flow volumes calculated from a DC offset
of the flow rate as shown in Figure 2.14b. Additionally this is close to the flow rate at

which sound can be detected at the trachea of 7.2 1/min [10].

2.3.8.2 Flow rate apnea detection and breath volume apnea detection

Using the flow rate signal and breath marker, apnea was detected where the abso-
lute flow rate was below the threshold of 7.5 I/min for longer than 15 seconds.

Using the breath volume signal, apnea was detected where the breath volume was
below 50 mL for more than 15 seconds. The value of 50 mL was used because of the DC
offset associated with the calculation of the breath volume signal. If the value of 150 mL
were used some apnea would be detected where there actually was none because the
initial volume of the breath was below -100 mL. The decision in this case was to err on
the side of missing a period of apnea rather than detecting a period of apnea that did not
exist.

If either of the apnea detection methods described above detected a period of

apnea, that period was considered apnea. This was done to detect periods of apnea by the
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breath volume method when artifact on the flow rate signal caused it to miss, and to
detect periods of apnea when the breath volume signal integrated a DC offset of the flow
rate signal, but the flow rate signal detected the period of apnea.

Periods detected as apnea but determined to be times at which the tight-fitting-
facemask was not present were eliminated from the data set, as will be described in
Chapter 3.

2.3.9 Comparing the acoustic apnea detection to the
flow apnea detection method

Apnea detected by the acoustic method and the flow method were compared
directly as follows. First the periods of apnea detected by the flow method were
compared to the acoustic method. If a period of apnea detected by the acoustic method
overlapped a period detected by the flow method, this period was considered a true posit-
ive. If a period of apnea detected by the flow method did not overlap a period detected
by the acoustic method, the period of apnea was considered a false negative. Next the
periods of apnea detected by the acoustic method were compared to the periods detected
by the flow method. If the acoustic method detected a period of apnea but the period did
not overlap with a period detected by the flow method, the period was considered a false
positive.

In order to calculate a value for the number of true negatives, the average length
of all of the periods of apnea detected by the flow method was calculated. The amount of
time found in which neither the acoustic apnea detection method or the flow apnea detec-
tion method detected apnea was divided by the average length of a period of apnea to find

the equivalent number of periods of true negative apnea detections.
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2.4 Results
The number of true positives, false negatives, false positives, and calculated true
negatives of detected apnea were calculated for both the training data set and later the
testing data set. The results of the training data set are shown in Figure 2.18. The results
of the testing data set are shown in Figure 2.19. The data shown in the Figures 2.18 and

2.19 are summarized in Tables 2.1 and 2.2, respectively.

2.5 Discussion

The results shown indicate that the apnea detection by the acoustic method is
relatively effective. The training data set had a 92.8% sensitivity and a 91.8% specificity.
This is below the goal of 95% sensitivity and specificity as desired in the project proposal
of this work. The testing set had a 98% sensitivity and a 100% specificity. The improve-
ment of both specificity and sensitivity is likely due to the differences in the two data
sets. The training set consisted of 21% apnea and the testing consisted of only 13% of
apnea. Because the original data were randomly divided into two sets, the discrepancy in
the percentage of apnea in each set can probably be attributed to the random selection
process of the testing and training sets.

When the false positive apnea periods were observed, it was determined that a
significant number were caused by the acoustic breath signals being almost inaudible in
comparison to the noise signal. This observation took place as the investigator listened to
sound segments during periods of apnea classified as a false negatives. The breath
sounds recorded during these periods were faint and in some cases inaudible. This could

have been because of poor placement of the stethoscope or because of an excess of noise
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Figure 2.18 Results of the comparison of the acoustic method of apnea detection to the
flow method of apnea detection from the training data set.
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Figure 2.18 Results of the comparison of the acoustic method of apnea detection to the
flow method of apnea detection from the testing data set.
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Table 2.1 Training set apnea detection data comparing flow method and acoustic apnea
detection.

Flow Meter
Apnea Normal
575 173

Acoustic Apnea TP=91.8% FP=6.2%

51 2238

Normal FN=8.2% | TN=92.8%
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Table 2.2 Testing set apnea detection data comparing flow method and acoustic apnea
detection.

Flow Meter
Apnea Normal
472 65

Acoustic Apnea TP=100% FP=2%

0 3167

Normal FN=0% TN=98%
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on the microphone. The probability of this happening could be reduced by identifying
optimal places to place the microphone that would increase the amount of breath sound
detected by the microphone.

The periods of false negative were caused primarily when a source of noise from
outside of the stethoscope was detected as a breath sound. Depending on the placement
of the stethoscope, some external sounds were able to be recorded within the stethoscope
cup. This was determined when the researcher listened to the audio during the apnea
periods identified as false negatives, and common ambient sounds were determined to be
the sounds that were detected as a breath. A typical sound heard was the nurse assessing
the OAA/S score. The nurses voice could be clearly heard in some instances. The
number of periods of apnea missed by the acoustic method could be decreased in several
ways. The first method would be to use an adaptive filter to reduce the ambient noise by
placing a reference microphone outside the stethoscope cup. This method will be tested
in Chapter 4. The other option to improve this is to classify the source of the sounds
based on their acoustics.

Because of the relatively large number of periods of false negative from the train-
ing data set, the acoustic method alone would be a risky method to determine patient
ventilation, especially in a noisy environment. The periods of false positive are not as
dangerous, but do pose a threat of a clinician silencing the device if it repeatedly shows a
false positive alarm. This method may be more useful in a clinical setting where the
patient is not as closely monitored. During the data recording of this set, the subjects
were not allowed to be apneic for long periods of time due to the close observation of the

anesthesiologist present and the large amount of monitoring equipment. It may be that if
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the subjects were allowed to have been apneic for longer periods of time, the number of
periods of false negatives by the acoustic method would have gone down. This is
because the periods of apnea would be longer, thus allowing the acoustic method to
detect the periods of apnea. The periods of apnea would be longer in a clinical setting
because the data collection setup during this study allowed for the anesthesiologist to
give his entire attention to the subject and so periods of apnea were not as long, as
opposed to a clinical setting where the patients are not monitored as closely by the physi-
cian. In addition, a clinical setting does not normally monitor respiration directly, but
relies on the pulse-oximeter to determine apnea. As noted in the introduction the time
difference between the onset of apnea and the alarm of the pulse-oximeter can be over
two minutes.

It is difficult to compare the results of this work with those of other acoustic
respiratory monitors because no other monitor tried to identify apnea. Other acoustic

apnea monitors have only reported the success in identifying a respiratory rate [3].
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CHAPTER 3

SOUND CLASSIFICATION

3.1 Introduction

3.1.1 Goals of sound classification

Chapter 2 focused on using the audio signal to detect apnea when compared to the
flow meter. This chapter focuses on determining the source of the apnea, whether it be
from respiratory depression (RD) or respiratory obstruction (RO) based on the acoustic
signal. The classification based on the acoustic signals is then compared to a standard
that has been developed using the Cosmoll+ flow meter and the Respitrace respiratory
impedance plethysmography (RIP) device to determine the source of apnea.

The goal of the resarch work is to be able to determine the source of apnea detec-
ted with a 95% sensitivity and 95% specificity when compared to the standard. The

standard will be described in Section 3.2.1.

3.1.2 Overview

This chapter will first discuss the current research into classification of breath
sounds. This chapter will then discuss the basis and reasoning behind sound classifica-
tion. It will also introduce the causes of RO and RD and the data set used to create and
test the classifier. Section 3.2.1 then discusses the initial challenge of developing a stand-

ard to differentiate between RD and RO. Because of the lack of arecognized standard
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that differentiates between RD and RO, a methodgushe classifications of three
researchers as they viewed the flow rate and Ri& @l be discussed. Section 3.2.2
discusses the proposed models used to classifydifferent sounds recorded at the
trachea. The models were created using obsergatibfeatures of each sound. The
models were also created using explanations opliysical aspects of what is creating
the sounds. Section 3.2.3 then describes the nietig®ed to classify the sounds based on
the models described. Finally Section 3.3 showsdisults and comparison of the stand-
ard to the method of classification and Sectiondis¢usses the results and conclusions

of this chapter.

3.1.3 Overview of breath sound classification teghes

The development of an algorithm to process track@ahds and classify them has
been pursued in recent years by several groupst techniques and approaches will be
discussed, and the validity of applying each tegiaito the current application will be
discussed.

Ng et al. [1] describe a technique that uses ps@bhustic measures of sounds to
classify snoring sounds in an attempt to classifyubject as an obstructive or benign
snorer. Ng et al. use five calculations of indiatlsounds independently to classify the
subject. The five calculations of psychoacousivese loudness, sharpness, roughness,
fluctuation strength, and annoyance. Ng et ale ghe equation used to calculate each
measure from the segmented audio signal. Twenmgy-fesearchers were asked to
classify each snoring sound for each of the fivgcheacoustic factors based on the
sound alone of each subject. The classificatia@fsubjects and the classification of the

calculated value were then compared using a recep@rating characteristic chart.
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Using these, Ng et al. concluded that the highestetating psychoacoustic measures
were loudness, annoyance, and roughness. Althdlighresearch classifies snore
sounds, no mention is made of normal breath sowamdk also how they would be
classified. In addition, one of the primary signaked was loudness, which is arbitrary
because there is no absolute measure of loudneke &tachea. The classification of a
subject being at risk for obstructive snoring iscahot applicable in the case of sedation
because all subjects are at risk of obstructioremgithe concentrations of drugs being
used. Since this research focused on nonsedatiedtsait may not predict how sedated
patients sound or the changes that occur duringtieed

Jane et al. [2] used a neural network to classiiynds into two categories of
presence or absence of snore. Jane et al. trieedeural network using 625-selected
events including snores and other common soundsdeg at the trachea from sleeping
patients. The neural network used 22 unspecifipdits from each sound. Jane et al.
reported that the neural network classified on ayer82% of the sound events correctly.
Although this work is relevant, Jane et al. faitedlescribe the inputs of the network. In
addition, simple snoring was not differentiatednfr@bstructive snoring. The ultimate
goal of this dissertation is to classify periodsaphea as obstructive or depressive, so an
algorithm to translate the classification of indiwval sounds to the classification of an
entire period of apnea needs to be developed.

Hara et al. [3] recognized that the sounds frompse snorers might be easily
distinguishable from obstructive snorers. Haralethen compiled snore sounds from
patients that were simple snorers and patientswhed obstructive snorers and observed

the frequency spectrum produced by each. The aisbjegere recorded during sleep
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studies. Hara et al. noted that there were swanti differences in the spectrum above
800 Hz between simple snorers and obstructive ssioftdara et al. concluded that using
a multidimensional voice program could be a viadution to differentiating between
simple snore sounds and obstructive snore soulitisough the observation in this work
is valuable it did not find a threshold to use tffedentiate the two types of sound, but
rather used observations and calculations to shawthis may be possible.

Nakano et al. [4] took a different approach to sifyang breath sounds. Nakano
et al. used data from patients undergoing polys@raphy (PSG) in conjunction with
audio data recorded at the trachea of each pati®@G is an analysis performed on
patients undergoing a sleep study to diagnose sipepa. The PSG was performed for
each patient and produced the apnea-hypopnea (Ad#l). Instead of segmenting and
classifying each individual sound, Nakano et atated a continuous index of what is
described as the tracheal sound-respiratory disted index (TS-RDI). This was
calculated by summing the power spectra from 4000@ Hz of the audio data with a
rectangular windowing function of 0.2 seconds. sThalue was placed in a moving
average and sharp changes of 12 dB per 18 secardsdefined as tracheal sound dips.
The number of tracheal sound dips per hour wasulzdéd and called the TS-RDI.
Nakano et al. used the TS-RDI to differentiate leetw obstructive apnea, hypopnea
(defined as shallow breathing), and central aprissdribed in this dissertation as
respiratory depression). Nakano et al. then coetptire AHI to the TS-RDI, finding that
it had a correlation coefficient aF=0.945. Nakano et al. went on to use receiver-
operating characteristic curves to find the besbf€dor the TS-RDI to predict the AHI.

The threshold used yielded a sensitivity of 93% apdcificity of 67% in diagnosing
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sleep apnea. Nakano's et al. approach was dighaply different because it classified
periods of apnea rather than an individual bredthis approach is more useful because it
gains a more broad perspective into the patierggthing state rather than just for a short
breath sound. Despite the fact that the primaggofain diagnosing sleep apnea by
Nakano et al. was the amplitude of the sound, Nalaral. did not provide a method for
calibration of the sound amplitude. This coulddléa unreproducible results if the sound
transducer was placed differently on different suts.

In this research the audio has already been segohastdescribed in Chapter 2.
In contrast to the first three approaches shownjrtividual sound classifications will
be used to classify an entire period of apneacohirast to the approach of Nakano et al.,
this paper uses the individual breath sounds poiapnea to classify that period as RD or
RO rather than a continuous index of the soundadpttion, the research mentioned has
been done on nonsedated patients. Since the {gatiethe data set for this dissertation

were sedated, the characteristics of the snoringdsomay be different.

3.1.4 Basis for sound classification

Personal observation during data collection hasvehthat the human ear can
decipher the difference between normal breath sowardl partially obstructed breath
sounds with little training. If an algorithm coub@ developed to decipher the difference
between these sounds, the automation of apneaificlassn could help in not only
identifying that a patient is not breathing butoais identifying the source of the cessa-
tion of breathing.

An assumption of the breath detection algorithmcdbed in Chapter 2 is that

every sound detected above the noise thresholdiadich breath. The data show that not
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all periods of apnea detected by the respiratawy fineter were detected by the acoustic
detection method. This is a result of sounds nlated to breathing creating a sound
exceeding the noise threshold. Examples of sountigenerated by breathing are back-
ground sounds such as ambient talking or machinaedso Additionally, some sounds
which are related to breathing, such as partiafrobson, indicate that sound is detected
but in fact the flow may be inadequate to clearrdspiratory deadspace. The respiratory
deadspace is the volume of air between the aviadi the mouth. Ventilation is not
achieved if the respiratory deadspace is not aleiawra breath.

During partial obstruction, some air passes throtinghrespiratory tract causing
sounds to be detected at the trachea. These sawadsuder than normal breathing
sounds with similar respiratory flow rates. Tisiglue to a smaller airway, which gener-
ates a higher amplitude of sound. In additionpask tissue slaps against other tissues to
produce more sound. These sounds are producedtelsatne mechanisms that produce
snore sounds. Because of the relationship of seousds to obstruction, snoring is
considered a precursor to obstruction [3,1,2].

For this research snore sounds have been sepamntdetvo cases to distinguish
between snores that do not lead to obstructionsaindes that do. The first case is the
productive snore. This happens as the upper pharlgses partially so that adipose
tissue begins to slap against itself to producestiore sound, but flow continues and has
a high enough volume to clear the respiratory deacks during the breath. The second
case is the obstructive snore. This occurs aptiaeynx becomes more closed and does
not allow sufficient ventilation to clear the raspiory deadspace.

Snoring is more commonly observed during the irgpny phase of breathing.



84
This is because the negative airway pressure peadbyg the contraction in lung volume
causes loose tissue in partially occluded airwayddcome more constricted. This
constriction is either alleviated as the airwayrapbecause of the force of the pressure,
or the constriction is not alleviated and no gashaxge takes place [5]. During expira-
tion the pressure within the lungs increases.dfdlmway is occluded during this time the
positive pressure opens the airway allowing for @ashange. This physiologic explana-
tion has led to the use of continuous positive aypressure (CPAP) devices, the most
common solution to obstructive sleep apnea syndi@SAS) [6]. CPAP devices supply
a continuous positive airway pressure by forcingiraio the nose and/or mouth as the
patient sleeps. The patient's airway then stags @ven during inspiration because the
air pressure within his/her airway is greater thla@ ambient air pressure. This is an
important factor to the sounds generated in a stibj@t using a CPAP device. During a
productive snore breath the inspiratory breath ddhas characteristics of a snore, where-
as the expiratory sound is a normal breath soucduse it exerts a positive pressure on
the pharynx closure. During a partially obstructedath the inspiratory breath sound
still has characteristics of a snore but the expiyasound is too quiet to be detected.
During periods of complete obstruction neither $here sound nor the breath sound can

be detected on either phase of breathing becaaseithno flow through the trachea.

3.1.5 Data set

The data set used for the sound classificationigodf this project was the same
data set described in Chapter 2. In addition, plodion of the project uses the audio
segmentation markers generated by the algorithrssritbed in Chapter 2. It is also

important to note that during the recording of dag¢a set the author listened to the audio
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data and observed the other data recorded for #jerity of the subjects such as meas-
ured respiratory flow rate, blood-oxygen saturgtimmd RIP values. These observations
gave the author insight into the sounds that odaung RO and RD before the data were

processed and algorithms developed.

3.2 Methods

3.2.1 RD and RO classification standard

3.2.1.1 Definition of respiratory obstruction

The current standard for identifying a period of R@ physician's observation of
the patient and monitors at the time of the obstrageriod or during polysomnographic
(PSG) analysis [7]. Due to the cost of having gsptian perform PSG on all 20 full data
sets, an alternative method of differentiating RId 0 was performed.

Identification of periods of obstruction was baseda physiological definition of
RO using respiratory inductance plethysmographyPjRind flow rate monitors. The
RIP device measures the change in chest and abdcincemference by measuring the
inductance of wires sewn into elastic bands plamethe chest and abdomen. Physiolo-
gically, RO occurs when the airway becomes cornsttibut the drive to breathe contin-
ues. RO is identified when the flow rate showsvabtd breaths but the RIP monitor
shows volume changes up to approximately 180 mlhe Tse of 180 mL will be

explained in Section 3.2.1.3

3.2.1.2 Definition of respiratory depression
Respiratory depression occurs as the patient khgedrive to breathe. In the case

of this study RD occurred as a result of the comfoom of drugs used to sedate the
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subject. Physiologically, RD becomes evident &athr volume of the subject decreases.
The breath rate may also decrease, but the air@ragins open. This continues until the
subject does not take a breath for the designaeddoof time of fifteen seconds.

Using the flow rate measurement and chest and a&aneasurements, RD is
identified when both signals show no valid bredthrsthe designated period of fifteen
seconds or longer. Before the period of apneaflolevolume and RIP signals show a
correlated signal. In addition, the calibrateduwié measured by the RIP remains correl-

ated with the calculated volume from the flow rate.

3.2.1.3 Lung volume change during obstruction

During a period of RO, the RIP can measure chamgé#se volume of the chest
and abdomen that are not detected by the flow métas is believed to be caused by the
change in volume due to the change in pressurdegkby the subject. The maximum
amount of lung volume change by suction pressurgasfduring inspiratory obstruction
has been estimated to be 180 mL, correspondinigetonaximum suction pressure of 60
cmH,O that the lungs will exert in normal circumstanf&s Using this value converted
to atmospheres results in the value of 0.058 athmygpchange of pressure within the
lungs. The data were recorded in Salt Lake Cifly,dt)an approximate altitude of 1288
m. The atmospheric pressure at this altitude igragmately 0.857 atmospheres.
Assuming that the air breathed can be modeled afeahgas and that the temperature of
the gas was constant, the ideal gas law was usealdolate the change in lung volume
due to suction pressure. The ideal gas law folltwesequatiorPV=nRT,whereP is the
pressure within the lungs in atmospheiéss the volume within the lungs in liters,is

the number of moles in the lung voluni®js the gas constant with units of Joules per
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Kelvin mole, andT is the absolute temperature in Kelvin. The funwioresidual capa-
city (FRC) or the lung volume after expiration im @dult can range from 2 to 4 liters [9].
For this calculation an FRC value of 2.5 liters waed. Since the initial valueséf and
P, were known anah, R,andT did not change, the valuesmfR andT were considered
one constant with the valueRT=2.5x0.857=2.142%tmosphere liters. The maximum
change in volume was calculated using this equation

Vi-V,=nRT/P-nRT/R (3.1)
Substituting thenRTvalue in equation 3.1 results in a change of 18lamthe maximum

volume change due to suction pressure within thgdu

3.2.1.4 Manual classification of apnea

It was hypothesized that, using data from the floeter and the RIP, a manual
classification of the periods of apnea would besitdda. The classification was blinded to
the author for the testing set. The physiologiR@f and RD as explained in Section 3.1.4
was used as the basis of this classification.

Using the breath detection markers described inp@na2 all periods of apnea
detected that were longer than 15 seconds in lengtk classified as RO, RD, or period
of “mask off” (see below) in the following manneFor each period of apnea the flow
rate, breath volume, and calibrated RIP volume waeed, including 5 seconds prior to
the apnea and 5 seconds after the apnea. Thre&rebers who were not involved in
developing any of the algorithms in this reseanctiependently classified each period of
apnea as described next.

RO was the classification if, during the periodapihea, the investigator determ-

ined that the flow rate signal showed no breathsRiB volume showed breath volume
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change up to 180 mL. RD was classified if, dutting period of apnea, the investigator
determined the flow rate signal showed no breatiisthe RIP volume also showed no
significant volume change that would be consistdgtit a breath. A period of “mask off”
was classified if the flow rate showed no breaths the RIP volume showed volume
changes greater than 180 mL in volume, since avBllilme change greater than 180 mL
during a period deemed apnea by the flow metercatds that the mask that measures
respiratory flow was removed. These periods weneoved from the data set.

The resulting classifications of the apnea from tinee researchers were then
analyzed in the following way: If a classified jpel was classified the same way by two
or more of the researchers, the classificationrgive those researchers was chosen for
that period of apnea. Periods that were classdigdrently by all three researchers were
displayed before all three researchers at the dam® The three researchers then
decided as a group which of the three classifioatiwas the best fit. In the event that the
researchers did not agree, the period in questauridibe removed from the data set. Of
the 645 periods to be classified the three reseaschigreed 395 times and at least two
agreed a total of 622 times. Of the 23 periods dhéeast two researchers did not agree,
all were able to be agreed upon in a collaboraeténg.

The results of the classification performed byrégearchers was compared to the
statistical probabilities of three randomly assmjneassifications. Given the three
possible options, each with three independentstaald all equally likely, there aré 3
classification possibilities. First the probalyildf three independent classifiers choosing
the same classification will be found. Three @& &Y possibilities result in a unanimous

decision. A reasonable assumption was that thiassifying the sounds did not have a
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prior expectation of each of the three possibgitiecause those classifying these events
were not told the likelihood of each of the thressbilities. Using this assumption each
decision can be treated as a binomial random psoeéh two possibilities: unanimous
decision or non-unanimous decision. The probahiigss function (PMF) is:

P (k)= 1/9.k=3 Unanimous
“ 8/9,k<3  Non-unanimous

(3.2)
wherePk(k) is the PMF of the binomial distribution, akds the number of agreements
from the three classifiers, arifl is the binomial random variable denoting unanimous
decision. The mean value forX is given by the mean of the binomial distribution
E[X]=np, wheren is the number of independent triglss the probability of the unanim-
ous decision, which is 1/9 in this case, anid the random variable [10]. Given this, the
mean value is 71.66 out of the 645 trials. Thdaavexe of a binomial distribution is
VAR(X¥np(1-p)wherenis the number of independent tirglsis the probability of unan-
imous decision an¥ is the random variabld0]. For this case the standard deviation is
7.98. The number of periods of apnea classifie@himously by the researchers was 395
times out of the 645. This value is over 40 staddkaviations better than for independent
uniform random trials.

Since the classification was based on two or mesearchers agreeing, the statist-
ical probability of the having at least two indegdent sources agree was also calculated
and compared with the results from the research&he probability of two or more of
three independent trials agreeing given three éqlikély possibilities is seven out of
nine. Treating this as a binomial random procesis @ahe previous case the PMF of this

is:
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P (k): 7/9,k=2
: 2/9,k<2

(3.3)
wherePk(K) is the PMF of the binomial distribution akds the number of classifiers in
agreement. The mean number of at least two dessiih agreement given 645 inde-
pendent trials is 501.66, and the standard dewiasid0.56. At least two of the research-
ers classified 622 of the 645 periods in agreemehich is over 11 standard deviations
better than for independent uniform random trials.

The assumption that each classification is equétbly was made because the
actual probabilities of how often each classificatioccurs is not known. Since these
probabilities are not known, the number of clasations found in the training set will be
used as a secondary statistical comparison. Fhentr&ining set, the total number of
apnea periods classified as RD were 564 out ofeh @b 821. The total number of apnea
periods classified as RO were 28 out of a tot&2if. The total number of apnea periods
determined to be a period of mask off were 195afua total of 821. Comparing the

number of unanimous agreements made by the ressatchthree independent trials of

the probability of randomly choosing unanimous agrent results in the probability of

P (k)= P+ P+ P k=3 Unanimous
(k)=
1-(p+ po+ pd) k<3 Non—unanimous

(3.4)
where Pg(K) is the PMF of the binomial distributiokjs the number of classifiers in
agreementp; is the probability of choosing RD as the classtfma, p. is the probability

of choosing RO as the classification, apgs the probability of choosing mask off as the
classification. Given the statistics of the tragset classification, the probability of

unanimous decision is 40%. In order to reach thmber of unanimous decisions made

by the researchers the valugpofvould have to be increased to 89.44 while settieg t
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values ofp,=0 andp; =1-p;. The values op, andp; are adjusted this way to maximize
the probability of unanimous decision given thed@n variables.

For the case of having two out of three classifoensect, and using the same stat-
istics as for the unanimous decision, the prokglnli choosing two out of three in agree-
ment is 96.4%. This is compared to the percenthggreements made by the research-
ers two out of three times of 96.4%. Because thbgbility of randomly choosing two
out of three to agree is the same percentage foymide researchers, this shows a statist-
ical weakness of this method of classification.

The comparison of the statistics of actual clasaiion to the probabilities of
random classification shows that the human classgerformed significantly better than
if periods were randomly classified for unanimowidion but the same for a random
classifier for getting two out of three to agre®ecause the unanimous classification by
the researchers performed significantly better tiia@ random classification, it is

believed by the author that this shows an oveedithbility of this classification method.

3.2.2 Proposed sound source models

The three most prominent sounds recorded duringl#ite collection procedure
were normal breathing, snoring, and vocalizatiomorder to differentiate between these
three sources, the cause of the sound being gedenatist be understood. To better
understand these sounds, each was modeled basddenvations of sound features, and
simulation models were created based on these\atsers of the features and an under-
standing of the physics of what created it. Orauie that was hypothesized to differen-
tiate sounds based on the physics of how it westetdewas the histogram of that sound.

It was hypothesized that a normal breath sound alized by its standard deviation
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would have a Gaussian distribution because of thecse of the sound, as will be
described in Section 3.2.2.1, whereas a snore seontt have a distinguishably differ-
ent distribution. Vocalization would also haveistidct distribution. Thus, each sound
was modeled using a distribution model of the d@minsound that was observed.
Because the histogram of a sound removes all tieperiblence of the input signal, an
additional method to find the periodicity of theaming signal was developed. Period-
icity is believed by the author to be a featuret tten differentiate between productive
snore sounds and obstructive snore sounds. Ino8exP.3.5 the combination of these
two feature classifications will be discussed.

Sounds recorded at the trachea are different frmunds used in speech recogni-
tion because when the sounds pass through theettaglall they are filtered. Like most
physical barriers, the tracheal wall acts as apass filter and, thus, higher frequencies
used in speech recognition are not able to be @etedn addition, the articulation that
occurs above the pharynx during vocalization cafeobeard at the trachea because it is
filtered by the stethoscope cup and tracheal wadir this reason, methods of classifying
the breath sound using nontraditional features wereloped and used. The choice of
features was based on the differences of the soolpsksrved during the data collection
process that will be described in the next section.

Each of the three sound categories described ouM Ipe discussed. In addition, a

model for each sound was created and will alsodmidsed.

3.2.2.1 Normal breath sound model
The most common sound recorded in the data setthveanormal breath sound.

Both inspiratory and expiratory sounds in a norrbedath are very similar, and are
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caused by the same mechanism. These sounds atedct®athe turbulent air flow
through the trachea when the flow rate exceedshifeshold associated with the Reyn-
old's number for the tracheal geometry. The flote @orresponding to this in adults is
estimated at 7.2 |/min [11]. Although the amplitudethe audio envelope of normal
breathing sounds is highly correlated with the fieslocity [12], sounds such as vocaliz-
ation and snoring do not have this same correlatidms is because the amplitude of the
sounds generated by vocalization and snoring arehrmauder than normal breaths for
the same flow rate. This means that sounds withlai amplitudes can have a wide
range of breath volumes.

Kompis et al. [13] use a model that simulates breaunds as band-limited white
noise modulated by the amplitude of a breath phasempis et al. did not explicitly
define the waveform for the amplitude of the brealfase. Kompis et al. also did not
give an equation for this model, rather a desaiptind block diagram. In this project,
normal breath sounds were modeled as Gaussiamdistl noise multiplied by a half-
cycle sinusoid, as shown in Figure 3.1. A halfleysinusoid was chosen for simplicity
in modeling one respiratory phase of breathing.thBaospiration and expiration were
modeled using the same model. The simulation osthend for a normal breath, had
the following equation:

Yno(t)=ap sin(2rfst) -Vi2(0,1) (3.5)
wheret is time in secondsg, is the peak amplitude of the sinusoid in volt,is the
respiratory phase rate in Hz, ahg,(0,1) is a vector of normally distributed random
samples with a mean of zero and standard deviafione.

In the case of normal breathing, the only othernslothat would be additive
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Figure 3.1 Simulated normal breath sound.
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would be background noise due to a combinationexftenic noise and ambient sound
filtered by the stethoscope cup. The backgroundenwas modeled in Chapter 2 as a
wide-sense stationary Gaussian-distributed modelmore complete model of normal
breathing including the background noise would be:

Yno(t)=absin(2rfot)-V; 1(0,1)+N; 2(0,a.%) (3.6)
wherea,is the standard deviation of the background naisENg,(0,a?) is a vector of
normally distributed samples with zero mean.

This model was created to simulate the band limitéite noise heard when
listening to normal breath sounds as they are nabeldilby the respiratory cycle. This is
very similar to the Kompis et al. model with thecegtion that the modulating signal is
specified in this case as a half-cycle sinusoidtaecadditive white noise is added.

Normal breathing heard at the trachea appears tovbiée noise” to the casual
observer, similar to sounds generated by rushinglwer water. The observation of the
breath sound appearing “white” led to finding tlotual distribution and band energy of a
normal breath. Data were used from the data sefided in Chapter 2. Some typical
breaths were analyzed to find what type of distidsyu and band energy they would
display. In most instances the histogram of norbwalath sounds from raw signals
formed a Gaussian distribution, as seen in Figuza.3n other instances, however, they
were heavier tailed, as shown in Figure 3.2b. Thenge in the distribution seemed to
change from being Gaussian to more heavy-tailed Gaussian from breath to breath.
During observation of the envelope of the signal #ime distribution of the signal, a
pattern emerged. It was observed that soundshémhta higher variance of the audio

envelope created a heavier tailed distribution, lar@éths which had a relatively uniform
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audio envelope amplitude demonstrated a more Gaudsstribution. The heavier tailed
distributions were observed to be similar to a hapl distribution. Flow rates during a
single breath vary, and since during normal breattihe flow rate is related to the sound
amplitude, the amplitude of the breath sounds saner the course of a breath sound. It
was hypothesized that since the amplitude of thw flate signal was varying, the distri-
bution of the audio signal would not be Gaussian.

These observations led to an investigation of nbmng the amplitude of a
breath sound to improve classification by meanshistogram matching as will be
described later in Section 3.2.3.1.

Because the band energy and shape is a commonmefeatdifferentiate sounds,
the band energy of a normal breath will be disalilsegen though it was not used as a
method of classification. The band energy obseiwed normal breath is not exactly
white because it is not a uniform amplitude acrasdrequencies. An example of the
band energy of a normal breath is shown in FiguBe 3n most cases the band energy
had a similar spectrum to the one shown. There wamely any significant spikes in the
band energy, and the signals' maximum frequenciexe around 800 Hz. This was
initially explored as a classification feature ks often indistinguishable from the spec-
trum created by a snore and was abandoned.

In Chapter 2 it was hypothesized that the breathiggal formed a Laplace distri-
bution. This hypothesis seems to be contradictorthe hypothesis that normal breath
sounds have a Gaussian distribution. The variatidhe amplitude of the normal breath
sound causes the distribution of the breath soundodcome more heavy-tailed.

Appendix A gives the calculation of distribution tble modulation of a Gaussian random
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signal by asinusoidal signal. As it will be discussed later in this section, the histograms
of the breathing sounds do appear to have a Gaussian distribution after the envelope of
the sound has been used to normalize the sound or by using a smaller section of the
breath sound where there is less variation of the amplitude of the sound. The calculations
shown in Appendix A and Section 3.2.2.2 support the claims made in Chapter 2 that the
continuous breathing sound can be modeled by a distribution with a central peak and
heavier tails than a Gaussian distribution. These distribution models will & so be defined

and used in the automated classifier in Section 3.2.3.3.

3.2.2.2 Breath sound histogram simulation

To test the effects of modulation on a Gaussian signal distribution, a simulated
breath signal was generated using the model of equation 3.5. A pseudo-random number
generator (MATLAB) was used to create a vector Nsir(n) with a length of M=50,000
samples and a Gaussian distribution. This length was chosen because of the length of a
normal breath (approximately 2.2 seconds) at a sampling rate of 22 kHz. A second
vector Sin(Nn) that was a single period of a sine wave was created with the same number
of samples as Nsm(n). The dot-product of the two vectors was calculated as
Bsim(N)=Ssim(N) -Nsim(N). The envelope Esin(n) of Bsin(N) was then calculated as described in
Chapter 2. The ssimulated breath sound Bsir{n) was then divided by the envelope to create
an amplitude-normalized signal, Lan(n)=Bsin(n)/Esr(n). This method of dividing the
original signal by its envelope will be referred to as the amplitude normalization method.
The histograms of the signas Nsir(N), Bi(n), and Las(n) were caculated using 1000 bins.
This number of bins allowed for an average of 50 samples per bin. The histograms of the

three signals can be seen in Figure 3.4. This shows that a Gaussian distributed signal
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modulated by a sinusoid can return to a Gaussian distribution through amplitude normal-
ization. This is important because, if the histogram of a signal is to be classified, the
signa should be either divided by its envelope to show the amplitude normalized histo-
gram of the signal, or be divided into short sections to be classified individually to avoid
large changes of amplitude over a breath sound.

Another option to amplitude normalization is the use of short segments of a
breathing sound in which the variability of the envelope of a breath sound would be
small. This method of using short segments from a breath sound was used for the classi-
fier described in Section 3.2.3.3.

To test the segmentation method, the vector Bsn(n) was divided into 22 sections of
2205 samples each. The histograms of each of the segments appeared to have a Gaussian
distribution except for those where the signal Si(n) included a segment passing through
zero. The absolute slope of a sinusoid is greatest at the zero crossings, thus causing the
variation in the amplitude to be greatest during the segments that contain zero crossings
of the modulating signal. Because of the background noise and the breath detection
method described, the nonsimulated breath sounds will not have this problem. The histo-
grams of the segments from the simulation are displayed in comparison to a Gaussian
distribution in Figure 3.5.

The distribution of a Gaussian signal modulated by a sinusoid can be calculated

analytically. Thedistribution of thissignal is[14]:

1 -~ 7
fZ(Z)_Wm[e Ko(z)]’ (3.7)

where zis the random variable, and K, isthe order zero modified Bessal function of the

second kind. The method for deriving this distribution is given in Appendix A. An
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example of the distribution with a simulation is shown in Figure 3.6. This distribution is
heavier-tailed than the distribution of the original signal Nsw(n). In addition, this distribu-
tion has a pointed central peak when compared to a Gaussian distribution. These two
differences are important because it will be shown in Section 3.2.2.3 that the distribution
of a snore sound is heavy-tailed when compared to a Gaussian distribution and has a
central peak, even when amplitude normalization is performed. These are important
differentiators between normal breath sounds and snore sounds.

In contrast to the smulation of anormal breath sound, actual data was used to test
the amplitude-normalization method. An example of a heavy-tailed norma breath sound
was found, as shown in Figure 3.7a. The envelope of the sound and the original signa
was divided by the envelope of the sound. The histogram of the amplitude normalized
breath sound is shown in Figure 3.7b compared to a Gaussian distribution. The
amplitude normalization technique does help the normal breath sound appear to be Gaus-
sian.

A second important feature used to classify sounds as normal breath sounds was
the periodicity of the sound. Norma breath sounds are not periodic because there is
nothing resonating or vibrating to create a repeated sound. A method to determine the

periodicity of the sounds will be described in Section 3.2.3.4.

3.2.2.3 Snore sound model

As noted in the introduction there are two different kinds of snore sounds that are
important to classification. The first is a productive snore that allows adequate gas
exchange to the lungs. The second is an obstructive snore sound that does not alow for

adeguate gas exchange to the lungs. Both are caused by the same mechanism and have
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been modeled similarly, as will be described.

The loudest sound produced during a snore sound is the slap sound of the adipose
tissue. This sound was modeled in this dissertation as a repeated drumbeat sound with
variable repetition rate and amplitude. Each drumbeat was modeled as an exponential
decay modulated by a sinusoid. This model is based on the sound produced by the
oropharynx as the tissue slaps against itself. This tissue has a harmonic component after
the initial slap similar to that of adrum. The simulation of the sound for a snore dap b

has the foll owing equation:

—t

ye(t)=ce? asin(2m f t) (3:8)
wheret istimein seconds, ¢ isthe amplitude of the individual slap in volts, d is the decay
time constant of the dap, a is the amplitude of the sinusoid, and f, is the frequency of the
dlap in Hz. One possible improvement of this moddl isif f,is not constant. A varying
value of f, would mean that the frequency would change over time, thus producing a
spectrum that is not a single peak. An example of a snore signal from the recorded data
set displaying this property is shown in Figure 3.8. This models a single snore slap;
multiple snore slaps can be simulated by concatenating several daps together with differ-
ing values of ¢ assuming that the other parameters stay constant through one breath.

Normal breath sounds are present in al sounds that have a breath flow rate that
becomes turbulent. This is because sounds that have a high enough flow velocity to
create turbulence will generate the sounds that create the normal breath sound in addition
to the primary source of the sound that is model ed.

If there is a high enough flow velocity to create turbulence, the normal breath

sounds as described above also contribute to the model. In addition the background noise
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IS present in every sound. A more complete model including the turbulent noise and the

background noise with the snore dlap is

—t

yo(t)=ce?-asin(2m f t)+ N, ,(0,(a’+a%)) (39
where a,, is the standard deviation of the noise generated by the normal breath and the
other parameters are the same as previously defined. It is important to note that the
modulation of the normal breath by a sinusoid is not present. This is because it is
assumed that the length of a snore dap is short enough that the amplitude of this sound
for the period of a snore slap can be considered constant.

From observations early in the research process, the distribution of a snore sound
commonly had a heavier-tailed distribution when compared to the Gaussian distribution.
Two features that differentiated the distribution of a snore sound from the normal breath
sound distribution after amplitude normalization were a peak at the mean rather than a
rounded point, and tails that were more pronounced than a Gaussian distribution. These
differences were more easily identified when viewing a semilog plot of the distributions
as shown previously in Figure 3.4. The model chosen for this distribution was a Laplace
distribution. This was chosen for several reasons. It displays many of the same charac-
teristics observed in the snore sound distributions and it is based in the exponential family
of distributions like the Gaussian distribution. Because the Gaussian and Laplace distri-
butions are in the exponential family, mixtures and other derivations are more easily
calcul ated.

To explain the distribution associated with snoring, the distribution of an individu-

a snore slap of equation 3.8 was calculated as



109

4 real [ sin [ —~—||-sin (|, for —ac<v<ac
h(v)={mlv ace ¢ ac/|’ (3.10)

0, otherwise

where c istheinitial amplitude of the snore slap, d is the decay time constant of the expo-
nential decay, v is the random variable, a is the amplitude of the sinusoid portion of the
signal, and | isthe length of the snore dap. The derivations of this distribution is givenin
Appendix B. Thisdistribution isacombination of adistribution in the Pareto distribution
family and an inverse sine distribution. In cases where | is much greater than d, it
displays a distribution heavier tailed than a Gaussian distribution with a peak in the center
of the distribution. In cases where | is much smaller than d it displays a distribution
similar to a sinusoidal distribution. Examples of these distributions are shown in
Appendix B. It is assumed from these distributions of the snores and from Figure 3.8
that, under normal circumstances, | is greater than d. This distribution has a more similar
behavior to the Laplace distribution chosen for the histogram classification agorithm
than to the Gaussian distribution chosen for the normal breath sound model.

As noted, both a productive and obstructive snore slap sound have been modeled
by equation 3.9. The difference between the two has two aspects. The first differenceis
the length of time of each slap sound. In a productive snore the length of time of each
slap is nearly uniform because of continuous flow being interrupted by the slaps. In an
obstructive snore the daps are not uniform because of the lack of continuous flow. In
addition the time between the daps is longer and can be more variable. The second
difference is the normal breath sound portion of the model in equation 3.9. During a
productive snore sound, the amplitude of the normal breath portion of the model is

audible just before and after the snore because of the relationship of flow to audio
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amplitude. During an obstructive sound the normal breath portion of the model is inaud-
ible because there is not adequate flow. In the case of the productive snore, the distribu-
tion would be formed by the summation of the signals that create both the distribution of
equation 3.10 and the Gaussian distribution signal before and after the snore sound.

When either the amplitude normalization method or segmentation method was
used on a distribution from a snore sound, the distribution appeared much the same as
before the transformation. This was both observed and tested in Section 3.2.3.3. The
distribution not changing through segmentation or amplitude normalization may be due
to the fact that the amplitude of the envelope of a snore slap for an individua slap
remained unchanged because of the short length of the slap.

The second feature used to classify snore sounds was the periodicity of the snore
sound. As described above, a productive snore sound has a regular slap period and would
be periodic. An obstructive sound would not be periodic because of the lack of a continu-
ous flow that would regulate the repetition of the snore dap. This was an observation
made during data recording by the author. In addition this assumption will be tested by
the comparison of the classification standard described to that of the two-dimensional

classifier that will be discussed further in Section 3.2.3.5.

3.2.2.4 Vocalization model

Vocalization is the loudest sound recorded at the trachea. Vocalization was so
loud that it often saturated the microphone in the stethoscope cup. Vocalization is caused
as the vocal chords are stretched across the trachea. Vocalization from an individual
other than the subject being recorded can also be detected at the microphone, but this

sound is not as loud as the vocalization from the subject and is mixed with other sounds
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such as noise. The voca chords vibrate in a harmonic pattern, depending on the tight-
ness, and produce harmonic sounds. There are two distribution models used in this
dissertation for vocalization, one for when the microphone is not saturated and another
when the microphone becomes saturated.

The first model is a modification of the model proposed by Gazor et a. [15] as a
L aplace distribution for speech. However, the histogram observed from vocaization had
a distribution that appeared to be Gaussian, and the distribution model used for vocaliza-
tion was the Gaussian distribution. This apparent inconsistency is explained by the signal
recorded at the trachea being filtered physically by the tracheal wall and skin, and digit-
aly by the filter described in Chapter 2. Both of these filters are considered |ow-pass
filters. To demonstrate how this would effect the distribution of a vocalization, the filter
described in Chapter 2 was applied to a simulated Laplace signal. Figure 3.9 shows the
normalized histogram of the smulated L aplace random signal, the normalized histogram
of the signal after it has been filtered and downsampled, and a Gaussian distribution with
amean of zero and standard deviation of the filtered signal. From thisfigure it is evident
that the Gaussian distribution is a good fit for the filtered signal. This aso supports early
observations of nonsaturating vocalizations that have a histogram that appeared to be
Gaussian distributed.

As noted, the vocalization is not the only sound present, but because the other two
additive signals from the background noise and normal breath sound also have Gaussian
distributions, a combination of these sounds with the Gaussian distributed vocalization
signal is simply a Gaussian distribution.

The second distribution model occurs when the microphone is saturated by the
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amplitude of the sounds recorded at the trachea. A strong saturation creates a signa
similar to a square wave with 50% duty cycle and positive value of m and negative value
of -m where mis the absolute saturated value. A perfect square wave has a distribution
that isan impulse at m and at -m as described by

Sy(X)=68 (x—m)+5(x+m) (3.12)
where m is the saturation level of the signal and x is the random variable. Microphone
saturation does not create a perfect square wave, and in addition, the signal used was
filtered by a low-pass filter to be downsampled to 4410 Hz. The square wave has a

Fourier series;

f <x>=§211,3,5__%s'n($) (3.12)

where x is the independent variable, n is the number of the harmonic, and L is the length
of a half period of the square wave. The Fourier series indicates that the spectrum of a
square wave is made up of the odd harmonics and has a decreasing amplitude as the
frequency increases. The low-pass filter implemented by the tracheal wall and digital
filter removes the higher frequency formants. If the low-pass filter removes all but the
primary harmonic of the square wave it becomes a sinusoidal signal as shown in Figure
3.10. Thus the second distribution model used for vocalization is the sinusoidal distribu-

tion with the equation [14]

1
— _, for|x|<a
0= g (319
0, otherwise

where a is the amplitude of the sinusoid and x is the random variable.

In both saturated and nonsaturated cases of the vocalization models the distribu-
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Figure 3.10 Square wave and resultant sine wave after application of alow-passfilter.
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tion seemed unchanged when either performing thaeitude normalization method or
segmentation. In cases of saturation, this caatiokuted to the amplitude of the audio
envelope being uniform.

In both cases of the vocalization models, the sigha&xpected to be periodic
because of the repetitive nature of a vocalizesch@dod his further differentiates vocaliza-

tion from an obstructive snore sound.

3.2.3 Classification using the sound source models

3.2.3.1 Distribution comparison models

The method of histogram classification pursued leerapared the histogram of a
sound to several distribution models. The modelsrgas a Gaussian distribution for
normal breathing, equation 3.10 for snoring, am&@hassian distribution or equation 3.13
for vocalization were used to create distributionxtore models, as will be described
next.

Twenty-one distribution models were made using migture models. The first
was a mixture of Laplace and Gaussian distributiofisese two distributions were used
to differentiate between normal breath sounds awdirsg breath sounds. This mixture's
equation is

P(X,p,)=p x;e(§)+(1— P )xie*‘@'x' (3.14)
1 Mh h \/(2_’_‘_) h \/2 .

where p, is the probability of the Gaussian distributiondanis the random variable.
This mixture was used because each breath soundnads up of portions of different
kinds of sounds independently in time. For exangleonobstructive snore typically

begins as a normal breath and then changes tora soand as the pharynx closes.
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Assuming that the snore sound is significantly Eruhan the normal breath sound, these
two sounds can be considered sequential. Usingahes ofx andp,, a matrixMg_ was
created with dimensions of 11x101. To creatertasrix, p,was incremented from 0 to 1
in steps of 0.1 and was varied from -3 to 3 in steps of 0.06. Eathhe 11 rows
corresponded to a different distribution of the e for each value gqf. An overlay of
the eleven models is shown in Figure 3.11.

The second mixture model was the mixture of theld@g distribution, fx(x)=1/

1 X
(2b)e™® with a sinusoidal distribution, xs(X)=m rect(E). This model was

useful in the detection of vocalization versus smpisounds. Vocalization is typically
sequentially spaced with another sound source asch normal breath sound, so the
distribution of the sinusoidal random variable vmaiged with that of the Laplace distri-

bution. This produces the mixture

V2

P(X, Pe)= Pox € P+ (1 pg)x ——=

I X
‘IT\/(].—XZ) rect(

2

) (3.15)

whereps is the probability of the Laplace distributionatiwas incremented from 0 to 0.9
in increments of 0.1, anxlis the random variable, that was incremented f8rto 3 in
steps of 0.06. This created a matvixs with dimensions of 10x101. The overlay of the
10 models can be seen in Figure 3.12.

Concatenating matriki._s with matrix Mg_created a matrideg s with dimensions

of 21x101, where each of the 21 rows representifiesient mixture model.
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3.2.3.2 Sound Segmentation
To ensure that the no pauses between breath sounds were missed and that the
loudest portion of each breath sound was used for classification, each segmented sound
found by the breath detection algorithm was further subdivided by removing the quarter
of the samples with the lowest amplitude of the envelope of the segment. This was done
by finding a quarter of the samples of the envelope of the signa that were the lowest in
amplitude, and removing the corresponding samples of the signal from the sound to be
classified. If there were any additional pauses that resulted from this removal of the
samples, the resulting segments were considered independent sounds. The resulting
segment or segments will be referred to as subsegments. As mentioned in Section 3.1.4
the sounds from inspiration to expiration can vary from an obstructed sound to a normal
breath sound. This additional segmentation was performed to isolate different sounds to
be classified. An example of a segmented audio envelope is shown in Figure 3.13a. The
subsegments were required to be greater than 0.3 seconds in length or they would be
discarded. This was done because it was observed that pauses between inspiration and
expiration were missed by the breath detection algorithm if the inspiratory pause was too
short. An example of this is shown in Figure 3.13b. This aso ensured that the loudest
portion of the segment was used to classify the signal and exclude any pause sounds.
Differentiation between individual sounds is important to breath classification because
the sound during inspiration can be significantly different from the sound during expira-
tion in the case of snoring or vocalization, and if classified together could result in amis-
classification of a period of norma breathing for that of respiratory obstruction.

Although differentiation between inspiration and expiration was not performed, this step
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helped insure that inspiratory sounds and expiratroy sounds were separated for classifica-
tion purposes. Chapter 2 did not attempt to differentiate inspiratory sounds from expirat-
ory sounds, instead breaths were detected in order to find periods of apnea. Because of

this some detected breaths included both the inspiratory and expiratory sound.

3.2.3.3 Histogram classification procedure

The signal used to classify the sound was the filtered signal that was described in
Chapter 2 with the example shown in Figure 2.4b. To summarize this process, the input
signal of 22 kHz was first filtered by a digital low pass filter with a cutoff frequency of
1500 Hz and then down-sampled to 4410 Hz. This signal was then filtered with a high-
pass filter with corner frequency of 75 Hz to remove heartbeat sounds and other noise.

Each sound subsegment was further divided into uniform 0.1-second segments
consisting of 441 samples that were called mini segments, as shown in Figure 3.13c. The
mean and standard deviation for each mini segment were calculated. As stated in Section
3.2.2.2 the smaller segments were used instead of the amplitude normalization method.
Both were successful in removing the variation of the envelope from the signal. In addi-
tion the mini segments provided a uniform-length signal to classify. The mean was
subtracted from the mini segment signal and the result was divided by the standard devi-
ation to normalize the sound segment. The histogram of the normalized mini segment
signal was then calculated using 101 bins ranging in value from -3 to 3 in steps of 0.06.
The vaue in each bin was then divided by 441 and divided by the bin width of 0.06 to
normalize the area of the histogram to unity. The histogram was then compared to the 21
model distributions described above. The comparison was made by summing the abso-

lute difference between each of the 101 points of the model and the histogram of the
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audio segment. The model that had the lowest summed difference was classified as the
closest model.

Asapreliminary test a subjective test was used to determine if this classifier could
differentiate between snore sounds and normal breath sounds. The 843 segmented breath
sounds were classified by the author. The segments were classified using the audio signal
alone. Helistened to each segment and classified it as either related to snoring or related
to normal breathing. He classified 263 of these sounds as related to snoring. Each of the
sound segments was then classified using the Laplace-Gaussian mixture only. The
comparison of the classifiers is shown in Figure 3.14 where the classification of the
author is shown as a black bar graph for normal breath sounds and a light-gray bar graph
for snore sounds. When a decision threshold of p,=0.7 was selected as the decision
threshold, the classifier performed with an overall error rate of 7.24%. This method of
testing had a subjective testing standard. This test was only meant to gain confidence in
the validity of this classifier. The fina classifier used for this project was classified
against human classifications based on flow and chest movement, not on sounds classi-
fied manually. Although this preliminary test only involved the classification of snoring
to normal breathing and did not include other sounds such as vocalization, the results will

be used in the final classifier to differentiate between some breath sounds.

3.2.3.4 Periodicity classifier

Histogram classification has been shown to be able to classify the difference in
most cases of a snore sound when compared to a normal breath sound. The histogram
classifier does not, however, differentiate between productive snores and obstructive

snores. One shortcoming of a histogram classifier is that it removes al dependence on
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the sequence of the signal. It was hypothesized that the overall outcome of classification
could be improved if a second classifier was used. Because of the lack of dependence on
time of the histogram classifier, methods of classification using the time domain as an
indicator were considered.

Comparing the models of the productive snore sound, the obstructive snore sound
and the normal breath sound, one feature stood out. In a normal breath sound there was
no repetitive sound that was distinguishable as with the obstructive snore sound. In a
productive snore sound, the slap sound was observed to repeat. To take advantage of this
difference in the sounds, a novel approach to find the repetitive nature of a sound was
formulated. A tonal signal repeats itself and can be spectrally identified by a spike at the
frequency of the fundamental component. However, if the repeating signa is not tonal
the signal may have many spikes throughout the spectrum of the signal. However, a
nontonal periodic signal can also be easily identified using the circular autocorrelation of
the signal.

Circular autocorrelation is a specific form of circular convolution. In discrete
circular convolution two signals of the same length, x;(n) and xx(n), are convolved in the
following manner. Given that both x;(n) and x,(n) have N samples, the output of the
circular convolution is xs(n)=circconv(x.(n) ,x.(n)), where circonv() denotes the circular

convolution of the two valuesinput. This operation is performed by [16]:

(m)= 2 x(1)x((n=1),) (3.16)

where x((n)n) denotes a periodic repeating signal with period N. Circular autocorrelation
uses the same equation as stated above with the special case that x;(n)=xx(N-n). Circular

autocorrelation is an advantage over linear autocorrelation because it makes use of the
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entire length of x,(n) rather than padding the input vectors with zeros asin linear autocor-
relation.

Circular autocorrelation was performed on the mini segments described, where
Xc(n)=circconv(x;(n),x:(N-n)). The standard deviation oc of Xc(n) was calculated and the
ratio of oc to the absolute maximum of xc(n) was calculated. Some assumptions of the

input signal x;(n) were that it had a mean of zero and that it wasreal valued. The maxim-

V2

um used for this value in this dissertation is - because a perfectly correlated periodic

signal such as a sine wave produces a circular autocorrelation that is a perfect sine wave
and no signal was observed to have avalue greater than this. The standard deviation of a

. . 2
sne wave is crs,<ne:£><asjn

> where agpe is the maximum amplitude of xc(n). The

e

theoretical minimum for this ratio for a zero-mean segment of 441 samples is 0.0476,
which happens when xc(n) is a vector of 440 zeros with one value of one. This excludes
the possibility that this is a vector of 440 zeros, in which case the ratio would be
undefined because the standard deviation would be zero and the absolute maximum
would be zero. Because the segments were taken from detected sounds with noise, the
scenario of having all zeros was not considered a possibility.

The value calculated by this ratio is a measure of how periodic the input signal is
and was called the periodicity index. A productive snoring signal would exhibit a more
periodic value and would have a value closer to the maximum of the periodicity index. A
nonperiodic signal such as a breath sound would have a value that is closer to the theoret-

icad minimum. The threshold chosen for this classifier was a ratio of 0.25. This vaue
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was chosen by observation of the values produced by snore sounds versus the vaues
produced by a normal sound in the training set of data. This threshold was identified as

sounds were played and listened to by the author as the periodicity index was displayed.

3.2.3.5 Two-dimensional classifier

Using the values returned from both the periodicity classifier and histogram clas-
sifier, a series of points was created. Because each subsegment to be classified contained
multiple mini segments, the classification of the subsegment had to be classified from
multiple mini segment classifications. The x-axis on Figure 3.15 corresponds to the
index of the closest histogram to the mini segment classified. The index has 21 possibil-
ities of the closest distribution mixture described in Section 3.2.3.1. The y-axis is the
periodicity index as described in Section 3.2.3.4. Thefive regions shown in Figure 3.15
correspond to five classifications of sound. If the classification of the mini segment falls
into region I, the mini segment has a predominantly Gaussian distribution and is predom-
inantly nonperiodic. If the classification of the mini segment fallsinto region Il, the mini
segment has a predominantly Gaussian distribution and is predominantly periodic. If the
classification of the mini segment falls into region 11, the mini segment has a predomin-
antly Laplace distribution and is predominantly non periodic. If the classification of the
mini segment fallsinto region 1V, the mini segment has a predominantly Laplace distribu-
tion and is predominantly periodic. If the mini segment falls into region V, the mini
segment has a partially sinusoidal distribution because the distribution of this mini
segment is correlated with a distribution model that is a mixture of a sinusoid and
L aplace distribution.

Examples of sounds classified in the regions described were found by the author
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from the training data set. The classification of the mini segments by the two-dimension-
al classifier is shown for each region for each given sound. The author described the
sounds as a normal breath, nonsaturated vocalization, saturated vocalization, non-ob-
structive snoring, and obstructive snoring. Each sound described here was classified by
the author by listening to the audio signal and viewing flow and RIP data from the train-
ing set. Listening to the audio signal was used to determine if the signal was a normal
bresth, vocalization, or snore sound. The RIP and flow data were used to determine if the
snore sounds were obstructed snores or non-obstructive snores. The decision boundaries
of Figure 3.15 were found in the following manner: The rightmost vertical boundary was
chosen based on the preliminary study of Section 3.2.3.3. The vertical boundary separat-
ing Region V from Region IV and Region |1l was chosen so that if the sound showed
saturation by having a histogram that most closely matched any of the distributions of
equation 3.15 it fell into Region V. The horizontal boundary was chosen based on the
observations from listening to the audio sound while viewing the flow and RIP data in
this manner: The author listened to segmented sounds from the training set. If the sound
was determined to be a snoring sound by the author, the flow and RIP signals were then
observed. Using these data the author decided whether the sound provided the flow
volume to clear the 180 mL respiratory deadspace. From the observations of severd
sounds from the training set, the author set a boundary separating the obstructive sound
from the nonobstructive sound as seen in Figure 3.15. Region | is consistent with a
normal breath because it has a predominantly Gaussian classified distribution and very
little periodicity of the signal. An example of the classifications of the mini segments for

anormal breath sound is seen in Figure 3.16 in dark-blue markers. It is noted that not all
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Figure 3.16 Examples of classifications of mini segments of five different types of sounds
by the two-dimensional classifier. Dark-blue markers are from mini segments of a
normal breath sound. Green markers are from mini segments of a non-saturating
vocalization sound. Magenta markers are from mini segments of a productive snore
sound. Light-blue markers are from mini segments of an obstructive snore sound. Black
markers are from mini segments of a saturated vocalization sound. The x-axis represents
the index of the closest matching histogram from a series of mixtures. The y-axis
represents the periodicity index of each mini segment classified.
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of the classifications of the mini segments are within the boundary set for this sound.
The majority of the signals, however, do lie within this region, just as with the rest of the
examples. Region Il is consistent with vocalization because it has high periodicity but is
more correlated with a Gaussian distribution than a Laplace distribution.  An example of
the classifications of the mini segments for a vocalized sound is seen in Figure 3.16 in
green markers. Region Il is consistent with a productive snoring sound. The sound in
this case has a predominantly Laplace distribution and is predominantly periodic. An
example of the classifications of the mini segments for a productive snore sound is seen
in Figure 3.16 in magenta markers. Region IV is consistent with an obstructive snore
sound. The sound has a heavy-tailed distribution and is not periodic, meaning that the
airway closed and opened randomly during the mini segment. Previoudly it was believed
that the periodicity would differentiate this sound from a normal breath, but the lack of
periodicity differentiates it from the productive snoring sound. It is believed that the
difference comes from a steady flow during a nonobstructive snore versus a varying rate
flow during partial obstruction. An example of the classifications of the mini segments
for an obstructive snore sound is seen in Figure 3.16 in light-blue markers. Region V is
consistent with saturated vocalization. An example of the classifications of mini
segments for a saturated vocalization are shown in Figure 3.16 in black markers.

The method of finding the decision boundaries for this classification method was
performed for severa sounds deemed to belong to each kind of sound by the author.
These sounds were then viewed to see what features the sound had. This observation
method led to the selection of the decision boundaries for the sounds described. This was

not performed for all soundsin the training set because of the number of sounds recorded.
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Instead sounds were selected that preceded the periods of apnea detected by the breath
detection method and also other periods that were known to have vocalization or product-
Ive snoring.

If over half of the classified mini segments from the sub-segment were found to
be in Region I, II, 11, and V the sub-segment was classified as a normal state. Thisis
because the sounds associated with these regions are consistent with a patient that is
breathing with an open airway or is awake. If over half of the classified mini segments
fell into region 1V the sound was deemed to be related to obstruction and the markers
segmenting the breath segment were removed from the breath marker set. Using the
minimum of half of the markers in the region was chosen based upon the observations of
the groupings of the classification markers. As shown in Figure 3.16, the classification
markers for a single sound were not always consistent with one region. This prompted
the use of the majority of the markersin a combination of Regions|, Il, 111, and V or the
majority of the markersin Region IV as the classification of the sound. The apnea detec-
tion algorithm then found any additional periods of apnea due to segmentation markers
being removed. If an existing period of apnea became longer, or a new period of apnea
was found due to the removal of obstruction sounds, the period was classified as RO;

otherwise the existing period was classified asa RD.

3.3 Results
Using the data from Chapter 2, the periods of apnea were divided into three
categories using the two-dimensional automated acoustic classifier and the classification
standard as described in Section 3.2.2. The three classification categories were RD, RO

and Normal. The comparison between the two classifiers creates nine possible categories
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and is shown in Figure 3.17 for the training set and 3.18 for the testing set. Figure 3.18
does not show all nine categories because not all possible combinations had a value great-
er than zero. These categories also produce a three by three truth table as shown in Table

3.1 for the training set and Table 3.2 for the testing set.

3.4 Discussion

In the project proposal of this project the goal of 95% sensitivity and specificity
in differentiating RO from RD was set. The automated acoustic classification method did
not perform as well as hoped. The results in Tables 3.1 and 3.2 show that the automated
acoustic classifier misclassified 47.4% of the periods identified as RO by the classifica-
tion standard as RD in the training set. It also did not classify any periods identified as
RO by the classification standard as RO in the testing set. Only one of the areas was
classified within the goa of the project proposal. This was the periods classified as RD in
the testing set.

Despite the large error in the differentiation between types of apnea, the classifica-
tion of the breath sounds does not decrease the overall reliability of detecting apnea. The
automated acoustic classifier did not mis-classify periods of normal breathing as obstruct-
ive periods, which would make the overall apnea detection less reliable. Since normal
breathing sounds were the most common sound recorded, the majority of the sounds clas-
sified were classified in a way that did not degrade the performance of the apnea detec-
tion algorithm described in Chapter 2.

The classifier failed most commonly when differentiating RO as identified by the
classification standard from other signals. The total number of periods of apnea classi-

fied as RO by the standard was a small percentage of the total periods of apnea. The
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Figure 3.17 Classification results of the training data set.
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Figure 3.18 Classification results of the testing data set.
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Automated
acoustic

classification

Normal
RD
RO

Classification Standard

Normal RD RO
2238 42 9
135 483 9
41 73 10

136

Table 3.1 Training set apnea classification data comparing the classification standard to
automated acoustic classification.



Automated
acoustic

classification

Normal
RD
RO

Classification Standard

Normal RD RO
3167 0 0
65 446 26
0 0 0
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Table 3.2 Testing set apnea classification data comparing the classification standard to
automated acoustic classification.
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small sample size of RO periods makes it difficialtaccurately create a functional
algorithm and be able to test its validity.

One reason the classifier may have failed in affidating RO from RD was the
procedure during an obstructive period. Subjease allowed to obstruct until their
blood oxygen saturation dropped to 85%. Obstrectisunds were heard by the author
leading up to these periods of RO. The anestlogssil present alleviated the RO by
performing a jaw thrust maneuver. The subject wabén breathe normally again. The
anesthesiologist would then attend to other daresallow the subject to obstruct again.
The sudden drop of the jaw did not allow for pesi@dl partial obstruction and no sounds
associated with obstruction were recorded. Thesdiaation standard would have
defined these periods as obstruction because athest and abdomen movements, but
the automated acoustic method would have only hearthal breathing followed by a
period of silence. Obviously the anesthesiologs$ aware of the source of apnea at this
point, and the mis-classification would have caulg#iéd confusion in a clinical setting.
However, this would lead to a high overall clagsifion error rate.

Considering the mis-classifications and the proceslwsed to record the data,
classification is unlikely to be performed using tcoustic signal alone. In addition the
reliance upon only the audio signal for apnea dieteds very risky because sounds from
the trachea are not the only sounds that can leetdet Examples of sounds that are not
generated at the trachea are ambient talking, muosienachine noises that are loud
enough to be detected at the microphone withirsth#oscope cup.

Compared to the other approaches presented ino8e&k:t.3 this approach uses a

combination of the primary forms of classifying mdual breaths and classifying peri-
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ods of apnea. It also uses data that were recorded from sedated subjects rather than

patients undergoing PSG in a non-sedated state.
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CHAPTER 4

ADAPTIVE NOISE CANCELLATION

4.1 Introduction

4.1.1 Goa of adaptive noise cancellation

The third goal of this project was to find the validity of using noise cancellation to
reduce ambient sounds recorded within the precordial stethoscope. Noises generated
outside of the stethoscope that are not wide sense stationary (WSS) can cause signals to
be recorded within the stethoscope that are loud enough to be counted as a detected
breath. If these sounds are recorded during a period of apnea the acoustic signal will not
be able to detect it as a period of apnea and it is classified as a period missed by the
acoustic apnea detection a gorithm.

For this reason a method to reduce disturbances caused by ambient sounds was
explored. The method used was an adaptive filter requiring a secondary microphone to

record ambient sounds.

4.1.2 Use of precordia stethoscope to limit ambient noise

The stethoscope cup used was a heavy precordia cup shown in Figure 4.1. The
stethoscope cup was designed to amplify signals detected within the cup. Physiologically
the skin within the stethoscope cup creates a diaphragm that acts like a loudspeaker for

the vibrations on the skin. The meta stethoscope attenuates external signals from
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Figure4.1 Meta stethoscope cup used to attenuate ambient sounds and amplify tracheal
sounds.
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entering the cup. Acoustics of a stethoscope cup attenuation and amplification can be
characterized through experimentation [1], but this can change depending on the
placement of the stethoscope cup on the skin, the tightness of the skin within the cup, and
the placement of the stethoscope cup on the trachea. Observations from Chapter 2 have
shown that sounds such as talking or machine alarms can be loud enough to be detected

as breath sounds.

4.1.3 Overview of adaptive noise cancellation

4.1.3.1 Adaptive noise cancellation

Adaptive noise cancellation is a method of signal processing that uses multiple
sources of signal to produce a desired signal. A simple adaptive filter has two inputs,
with block diagram as shown in Figure 4.2. Signal d is the primary input and signal x is
the reference input. The reference input is then filtered by the weights w of the adaptive
filter and an estimate of d is created called y. The difference of the filtered signal y and
desired signal d is then calculated to create the error signal e=d-y. The error signa is
then used as an input to the adaptive filter to update the filtering weights w as will be

described the next section [2].

4.1.3.2 Least-mean-square adaptive filtering

The adaptive filter algorithm chosen to adapt the weights w can be calculated
using the least-mean-square (LMS) algorithm. The LMS algorithm is the most widely
used adaptive filter algorithm due to its stability, robustness and simplicity [2]. Thisfilter
has many variants, including the simplified LMS agorithm and the normalized LMS

algorithm.
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Figure 4.2 Block diagram of atwo-input adaptive filter.
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The classic LM S algorithm updates the weights w by
w(n+1)=w(n)+2ue(nX(n) (4.2
where w(n+1) is the new vector of filtering weights with length N, w(n) is the current
vector of filtering weights with length N, u is the step size parameter, e(n) is the error
signal, and x(n) is avector of recorded signals with length of N.
The smplified LMS algorithm has three forms and is similar to the classic LMS

algorithm. The three forms shown here are the sign, signed-regressor, and sign-sign

algorithms respectively:
w(n+1)=w(n)+2u sign(e(n)x(n) (4.29)
w(n+1)=w(n)+2u e(n)signk(n)) (4.2b)
w(n+1)=w(n)+2u sign(en)sigr{(n)) (4.29)

The signed-regressor algorithm is favored for its ability to adapt similarly to the classic
LMS but requiring fewer computations. The sign algorithm and the sign-sign algorithm
do not converge as quickly [2] but are not much less computationally expensive than the
signed-regressor agorithm.

The normalized LMS (NLMS) agorithm adds some complexity in order to

improve stability. The general form of the NLMS algorithm is

w(n+1)=w(n)+ e(n)x(n) (4.3)

where [i is the step size parameter and  is a small value to ensure that the denominator
of the equation is never zero. The NLMS algorithm improves stability of the adaptation
at the expense of computation. The step size parameter is normalized to the values of the

input ensuring that if fi is properly chosen the output will never become unstable.
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4.1.3.3 Stability of adaptive filters
The step size parameter 1 in the LMS agorithm is the value that controls how
quickly the filter adapts. If this value is too high the filter can become unstable and the
output of the filter becomes useless. If its value is too low the filter will not adapt
quickly to changes in the input signads. The maximum value that x can be while
maintaining the stability of the filter can be calculated as follows [2]:

_ 1
b= 3 R (44

where R is the autocorrelation of the input calculated by:
R=E[x(n)x(n)'] (4.5)
and tr[] is the trace of a matrix, defined as the sum of the diagonal of the matrix [2].

Although this can be caculated for every sample of the signa being filtered it is

computationally expensive.

4.1.4 Use of adaptive noise cancdlation in stethoscopes

Adaptive noise cancellation in stethoscopes has been performed for very noisy
environments. Patel et al. [3] used an adaptive filtering algorithm to filter helicopter
noise from cardiac and breathing sounds through a diaphragm stethoscope cup with a
second microphone to record ambient sounds. Data were recorded on a subject in a
soundproof room using this stethoscope and also using a pneumotachometer to measure
respiratory flow rate. Sounds simulating being inside a helicopter were played inside the
soundproof room. A real-time adaptive filter was used to monitor the progress of the
filter. Postprocessing was performed using both an LMS agorithm with N=40 and

©=0.02 and an NLMS agorithm with N=40 and [i=1.2. Patel found that the NLMS
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algorithm provided a significant improvement over both non-filtered data and the LM S
filtered data
Although the work done in [3] is closely related to the noise cancellation
performed in this project, there are significant differences in the methods performed. The
comparison of the respiratory rate of the acoustic data to that of the respiratory flow data
was not discussed by Patel. 1n addition the adaptive filter was not applied when the refer-
ence signal was in a quiet environment. In a quiet enough setting the signal detected by
the reference input can be uncorrelated with the additive noise on the primary input.
When the two input signals of the adaptive filter are uncorrelated the reference input can
increase the noise on the output when compared with the primary input. This dissertation
defines this phenomenon as contamination. Another difference between the research
performed in [3] and the current research was that Patel only used one kind of additive
noise at one amplitude. The helicopter noise aso did not change drastically and may be
considered WSS. In this dissertation severa different types of additive noise were used
at severd different additive gain amplitudes. An increase in the number of different kinds
of sources and the amplitudes of these sources allows for the production of a more robust
adaptive filter. Finally, this research uses an automatic breath detection algorithm to
determine the validity of the adaptive filtering algorithm rather than a subjective argu-

ment.
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4.2 Methods
4.2.1 Dataset
4.2.1.1 Respiratory data set

Ideally the data used to test the adaptive filter algorithm would be recorded at the
trachea on a subject as he/she lies in an anechoic chamber, as different sounds are played
and recorded in the stethoscope cup while the subject performs breath-hold periods. This
method was not pursued due to necessity of obtaining IRB approval, the lack of time to
receive that approval, and budget constraints. Instead, data recorded from the data set as
described in Chapter 2 were used to test the adaptive filter algorithms. From the periods
of apnea identified by the respiratory flow meter and confirmed as true positives by the
acoustic method, forty periods of apnea were selected on a manua basis. The periods
were selected if the signal fifteen seconds prior to the apnea showed normal breathing on
the flow rate signal. The data used included the respiratory flow rate from the Cosmol I+
(Respironics, Wallingford, CT) and the raw acoustic signal recorded at the trachea in the
stethoscope cup described.

Each data segment was marked as the breathing period and the apnea period. This
distinction was made so that during breath detection the number of breaths detected could
be counted toward a period of breathing or a period of apnea.

The standard deviation of the noise one Was calculated for each breath sound
segment using the method described in Chapter 2. The standard deviation of the noise
served as a reference for the amplitude of the additive noise sound that will be described

in the next section.
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4.2.1.2 Additive noise signal data

The audio data in the 40 sets described in section 4.2.1.1 were assumed to be free
of any major ambient artifact such as talking, machine sounds, or music. These datawere
also recorded without the use of a second reference microphone to record the disturb-
ances coming from outside of the stethoscope cup. For this reason additive noise was
recorded at a different time using two microphones and a phantom material representing
human tissue. The additive noise was added to the acoustic breathing signal after the
recordings were finished. This method allowed for the original signal to be known before
noise was added and aso alowed for different amplitude levels of additive noise to be
tested without the need of multiple recordings. This method is also similar to a common
image processing technique where an image assumed to be noise free is corrupted with
noise, and filtering algorithms are tested by comparing the filtered image to the original
Image.

Two channels were recorded for each additive noise signal. One channel was the
from the microphone within the stethoscope cup and the other channel was recorded from
the reference microphone. Eight sound segments were used consisting of simulated
Gaussian noise, talking, and several kinds of music. These sounds were chosen because
they are common in an operating room environment.

A microphone (WM-56A103 Panasonic) was placed inside the stethoscope cup
(Wenger #00-390-C, AINCA, San Marcos, CA) as was done during the recording of the
breathing sounds. The cup was affixed by a double-stick disk (#2181 3M, MN) to a
gelatin phantom made of edible gelatin formed inside a latex balloon. Gelatin was

chosen as phantom that has smilar properties to human soft-tissue. The balloon was
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suspended above a table with the second microphone resting outside the stethoscope cup.
Speakers were placed on a second table approximately 25 cm from the microphone
assembly. The balloon suspension and use of two separate tables was an attempt to
minimize mechanical coupling of the loudspeakers to the microphones. The speakers
played the eight noise segments described above. The amplitude of the sound played by
the speakers was adjusted to ensure that the external microphone was not saturated and
that the signal was detected by the microphone inside the stethoscope cup. The data
recorded at the microphones were digitized via an audio soundcard (SoundBlaster
Audigy, Creative, Singapore) at a sample rate of 22 kHz directly to a computer hard-

drive. A diagram of this setup is shown in Figure 4.3a.

4.2.1.3 Mixing the additive noise

The standard deviation oy of the additive noise segment with signal An(n) recor-
ded inside the stethoscope cup was calculated for each of the eight segments. The corres-
ponding reference input will be caled Aour(n). The segment An(n) and the segment
Aour(n) were divided by o)y to normalize the sounds recorded inside the stethoscope. The
signal An(n) was additionally divided by the standard deviation of the noise of the breath-
ing signal onr described above to normalize the amplitude of the additive noise signal to
the amplitude of the noise of the breathing signal.

The normalized sound An(n) was added to the breathing sound B(n), resulting in
X(n) asfollows:

X(n)=B(n)+Gix An(n) (4.6)

where G; is the gain applied to the additive noise. The gain G; was not applied to the

reference input Aout(n) so that the reference signal was a consistent input to the adaptive
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Figure 4.3 Diagram of the setup used to record the additive noise. (a) Reference
microphone in open-air environment. (b) Reference microphone in stethoscope cup.
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filter. The adaptive filter was processed with G; having values of 0, 2, 4, 6, and 8. The
value of 0 was chosen to test the effect of having an uncorrelated signal as the reference
input. The other values of G; were chosen to add a range of sound amplitudes that would

be detected by the breath detection a gorithm.

4.2.1.4 Filtering the mixed signals

The adaptive filter used will be described in Section 4.2.2. After performing the
adaptation using this filter on the data described, it was noticed that the type of additive
noise affected how well the filter performed. The sound sources that performed better
were Gaussian noise, talking, and symphonic music. The method for determining how
well the filters performed will be described in Section 4.2.3. Rock music caused some
problems because of contamination of the signal even when the gain G; was zero. After
looking directly at the resulting waveforms and listening to them, the sounds that were
not able to be filtered were strong impulses related to a drum beat or similar high-fre-
quency sound. It was concluded that the impulse disturbance had a high enough
frequency that the adaptive filter could not adapt quickly enough to remove the sound.

An additional problem that was noticed was that the signal of the reference micro-
phone contained much higher frequency signals than the microphone inside the stetho-
scope cup. It was also hypothesized that the stethoscope cup attenuates signals in a
nonlinear manner. This is a problem because the filter used to match the attenuation of
the stethoscope cup is alinear filter. Matching a nonlinear filter such as the stethoscope
cup has considerable challenges. Although this is possible, a single-order linear filter
such as the NLMS adaptive filter algorithm described would not be sufficient. A nonlin-

ear adaptive filter such as an adaptive polynomial filter could be a solution to this
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problem [4], but it was decided that physically filtering the reference signal with asimilar
stethoscope cup would be a ssimpler solution.

The additive noise was recorded again as described above, with the one differ-
ence. The difference was that the reference microphone was placed insde an identical
stethoscope cup as contains the primary microphone and affixed to the back of the
primary microphone cup via a double-stick disk. A diagram of this setup is shown in
Figure 4.3b. This setup did not test the amount of desired sound signal such as breathing
that would pass through the primary stethoscope cup to the reference microphone. It is
assumed that the reference microphone and cup can be sufficiently isolated to eliminate
any of the sounds recorded on the trachea. The most important features of the reference
microphone in this situation are that it isin proximity of the primary microphone, physic-
ally filtered similarly to the primary microphone, and the same kind of microphone as the
primary microphone. This is because the additive noise is easiest to filter from the
primary source when the reference source is as close as possible to the additive noise

signal.

4.2.2 Adaptivefilter

An NLMS adaptive filter was used to filter additive noise from the signal X(n).
The NLMS algorithm was chosen over the others to ensure stability of the filter. Using
the adaptive filter shown in Figure 4.2, the signa X(n) was used as the primary input d
and the signal Aour(n) was used as the reference input X. The output signal of the adapt-
ive filter was the error signa e. This configuration of the adaptive filter works for the
following reasons. If the reference signa Aour(n) was perfectly filtered to match the

external noise signa within the stethoscope cup Ain(n), the error signal between y and the
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input signal  X(n) would result in just the breathing signal, B(n).

The value of [i was chosen experimentally by performing adaptation on the
signals of An(n) and Aout(n) before adding the additive noise to the respiratory sound.
Thesignal An(n) was used as the primary signal d and the signal Aour(n) was used as the
reference signal x. The output signal used was the error signal e.

The filtration process was calculated using each of the eight noise signals and
varying the value of fi from O to 2 in steps of 0.01. The standard deviation of the filtered
signa e was caculated. The value of [i corresponding to the minimum standard
deviation of the output was chosen as the optimal value. The optimized value of [i
ranged from 0.3 to 0.8 for the eight types of additive noise. The value of 0.65 was chosen
to be the optimal value for the step parameter based on the mode of the optimized values
for the eight types of additive noise. The length N of the filter was chosen to be 51 from
experimental observations. Figure 4.4 shows an example of the origina signal An(n)
and the output signal e(n) after filtering.

After the samples were filtered they were compared to the original sasmple. The
output sample e(n) was compared to the input sample X(n). If [X(n)|<|e(n)|, then the
value of the sample from input stream X(n) was chosen as the output sample rather than
the filtered signal e(n). This was done to minimize contamination of the output signa
with the reference signal. Contamination is clearly evident when the gain G; is 0 and the
output signal e(n) is not the same as the input signal X(n). For the purposes of breath
detection this is a problem only when the amplitude of the contamination increases the
absolute amplitude of the signal. Using this technique works well for breath detection,

but because of the sudden jumps due to switching between the value of X(n) as the output
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Figure 4.4 Example of noise cancellation of the adaptive filter.
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to e(n) as the output, this signal is not optimal for classification or for human hearing.

4.2.3 Breath detection

Breath detection was performed exactly as described in Chapter 2. The standard
deviation of the noise oy and the standard deviation of the detected signal os were calcu-
lated using the parameter estimation algorithm. The breath detection threshold z was
caculated from the two signals one and os. An audio envelope was calculated for the
original audio signal X(n), and aso for the filtered signal e for each audio segment, gain
Gi, and additive noise signal. Sounds were detected as breaths when they had an envel -
ope that rose above the noise threshold for 0.3 seconds or more. The breath detection
calculated using the origina respiratory signal X(n) was used as a reference for the
number of sounds detected in the breathing period and apnea period before noise was
added and the adaptive filter algorithm was performed. The number of sounds detected
were counted during the breathing period of each segment, and the number of sounds
detected were counted during the apnea section of each segment. The number of sounds
detected in each period was compared to the number of sounds detected when it was not
filtered, when it was filtered using an open-air reference signal, and when using a refer-

ence signal inside a stethoscope cup.

4.3 Results
The number of detected signals in each period of apnea for each gain and addit-
ive noise filter were counted and calculated as a percentage of missed detections of
apnea. The percentages for unfiltered, filtered with an open-air microphone and filtered

with a microphone in a stethoscope cup for a given gain and type of additive noise signa
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are shown in Table 4.1. The improvement of percentage of the two filtering techniques
over the unfiltered apnea detection is shown in Table 4.2.

The number of detected signals in each segment for the breathing period was also
calculated. If there were no sounds detected the period was considered a period of apnea.
The percent of breathing periods detected as apnea by the acoustic method are shown in

Table 4.3.

4.4 Discussion

The datain Tables 4.1 to 4.3 show that not only does the cupped reference micro-
phone adaptation improve or maintain the apnea detection for all forms of additive noise
at al additive gain levels, but it also improves or maintains the breath detection for
periods of breathing when compared to the unfiltered breath detection. The open-air
microphone does improve or maintain the apnea detection and breath detection in most
cases, but not in al cases. In the case of zero gain the open-air microphone degrades the
performance of the apnea detection. This can be attributed to the dissmilarities in the
additive noise signal and the open-air signal causing contamination when the adaptive
filter was performed, as well as the high frequency noise picked up by the open-air
microphone. The open-air microphone also degraded apnea detection for higher gains
using the Gaussian additive noise signal.

Both the open-air microphone and the cupped microphone detected all periods of
breathing as breathing periods as compared to the unfiltered approach. The unfiltered
data did not detect sounds during the additive high gain Gaussian noise due to the model
used to detect the breath sounds. The additive Gaussian had a high enough standard

deviation that the Gaussian-Laplace mixture became smply a Gaussian signa and no



Table 4.1 Percent measure of missing an apnea period due to additive noise.

A No filtering performed

Type of additive noise
Gaussian Talking Symphonic Jazz Jazz Vocal Rock Rock

0 0 0 0 0 0 0 0 0
2 0 52.5 7.5 375 60 100 95 925
Gain G, 4 0 82.5 32.5 75 925 100 97.5 100
6 0 92.5 47.5 8 100 100 97.5 100
8 0 92.5 50 90 100 100 100 100
B Filtering with reference microphone in open air
Type of additive noise
Gaussian Talking Symphonic Jazz Jazz Vocal Rock Rock
0 175 2.5 20 42,5 100 90 225 925
2 175 25 20 425 100 90 225 925
GainG, 4 25 2.5 20 425 100 90 225 925
6 675 25 20 425 100 90 225 925
8 825 2.5 20 42,5 100 90 225 925
C Filtering with reference microphone in stethoscope cup
Type of additive noise
Gaussian Talking Symphonic Jazz Jazz VocalRock Rock
0 0 0 0 0 0 0 0 0
2 0 25 0 0 0 0 0 0
GainG 4 o 15 5 25 25 10 25 10
6 0 40 27.5 175 30 30 25 25
8 0 57.5 325 325 45 425 10 375
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Table 4.2 Improvement of percentage using adaptive filter when compared to non-

filtered signal.

Gain G,

Gain G,

Improvement when filtering with reference microphone in open air

Type of additive noise

Gaussian Talking Symphonic Jazz Jazz Vocal

-17.5
-17.5

-25
-67.5
-82.5

ook~ NO

-2.5
50
80
90
90

-20 -42.5 -100
-12.5 -5 -40
125 325 -75
275 425 0
30 47.5 0

-90
10
10
10
10

Rock Rock
-22.5 -925
72.5 0
75 7.5
75 7.5
775 7.5

160

Improvement when filtering with reference microphone in stethoscope cup
Type of additive noise

oo~ NO

Gaussian Talking Symphonic Jazz Jazz Vocal

OO o oo

0
50

67.5
52.5
35

0 0
7.5 37.5

275 725
20 67.5
175 57.5

0
60

90
70
55

Rock Rock
0 0 0
100 95 925
90 95 90
70 95 75
57.5 90 62.5
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Table 4.3 Percent error in detecting a period of breathing as apnea.

A No filtering performed

Type of additive noise
Gaussian Talking Symphonic Jazz Jazz Vocal Rock Rock

0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0
Gain G, 4 25 0 0 25 0 0 0 0
6 20 0 0 0 0.05 0 0 0
8 325 0 0 0 o1 0 0 0
B Filtering with reference microphone in open air
Type of additive noise
Gaussian Talking Symphonic Jazz Jazz Vocal Rock Rock
0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0
GainG, 4 o 0 0 o 0 o 0 0
6 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0
C Filtering with reference microphone in stethoscope cup
Type of additive noise
Gaussian Talking Symphonic Jazz Jazz VocalRock Rock
0 0 0 0 0 0 0 0
Gain G,

oo~ NO
O O o o
o O o o
O O o o
o O o O
O O o o
o OO O
o O o O
O O o o
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breath sounds were detected. The other additiige rsignals are assumed to have a non-
Gaussian distribution and therefore the additigmal improves the signal-to-noise ratio
although it be with corruptive noise.

Because of these results it is believed that tist dgtion to reduce the effect of
external sounds is an adaptive filter using a ezfee microphone in a similar stethoscope
cup to the one detecting the breath signals. €hfe@ence microphone in such a situation
would record ambient signals as close as possibtéd additive noise on the primary
microphone. The NLMS adaptive filter also allows the filtering to be stable.

The selection of audio output where the output&akas chosen as the minimum
of |[X(n)| and|e(n)| as described in Section 4.2.2 is important fooeaatic breath detec-
tion because it reduces the effect of contaminati®his does not produce a consistent
sound because the final output can jump betweerglesample from the unfiltered data
to being a sample of the filtered data. This imp@atation works well for the automated
breath detection but not for human listening beeaadds high frequency noise.

This work is also an improvement over what was qrened by Patel [3]. The
results are consistent with what Patel found, butbduces multiple variables to improve
the robustness of the filter. It also uses anraat@ breath detection algorithm to test the
validity of the adaptive filter in this applicationin addition the approach of putting the
reference microphone in a stethoscope similar é&oahe recording the desired signal

improved the results over simply using an openvacrophone.
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CHAPTER 5

SUMMARY, CONCLUSIONS AND FUTURE WORK

5.1 Summary
5.1.1 Data set
The data set was recorded from 24 volunteers itR&approved study. Each
subject was sedated by a licensed anesthesioldgising the sedation, data were collec-
ted from each subject using direct flow respiratongasurement with the Cosmoll+
monitor, Respitrace (RIP) bands, and a microphona stethoscope cup placed on the
trachea. The data were recorded directly to coerphard drives. During the sedation all

subjects developed respiratory depression (RD@spiratory obstruction (RO).

5.1.2 Apnea detection

Detecting periods of apnea using acoustic soundsona goal of this study. The
apnea detection was performed by creating a digioibb model of the histogram of the
sounds. The model was a Laplace-Gaussian mixtistaebdition where the Guassian
signal represented the noise portion of the signdlthe Laplace distribution represented
the breathing signal.

The model was fitted to the audio data by using @aissian estimation (GE)
algorithm. The GE algorithm estimated the valuesthwd standard deviation of the

Laplace and Gaussian portion of the signal. Uthegstandard deviation of the two
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portions of the signals a threshold was calculat®dg the minimax algorithm. Limits
were put on the minimax threshold to ensure thatttineshold would not be lower than
the standard deviation of the noise.

An audio envelope was calculated from the audioaitpy a series of filters and
signal processing manipulations. This envelopes aveided into breathing segments and
periods of pause using the threshold describece I@imgth of each pause was measured
and pauses with length greater than 15 secondsdeéreed to be periods of apnea.

The gold standard based on the direct flow measeméendentified periods of
apnea. The flow measurement was used to detern@inedp of flow below a certain
threshold for a period longer than 15 seconds. s Thieshold was determined from
physiologic calculations of average adult airwaydipaces. These periods of apnea

were used as the standard to test against thetaxcapsea detection algorithm.

5.1.2 Breath sound classification

In an attempt to determine the cause of apnea.eatibrsound classifier was
created. Apnea can be caused by either RD or R&h breath sound was classified to
identify the source of apnea and additionally aegiquls of apnea missed by the acoustic
method due to the sounds produced during partethodttion.

Each sound was classified using a two-dimensiotedsidier. One dimension
compared the histogram of each sound detected thff2tent distribution models. The
models included a Laplace-Gaussian mixture andoéatca-sinusoidal mixture.

The second dimension of the classifier was a tesh® segment's periodicity.
The periodicity of each signal was calculated logliing the ratio of the maximum of the

circular autocorrelation to the standard deviatbthe circular autocorrelation. The ratio
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ranged from7 being completely periodic to 0.0476 being non-gdid based on the

fact that the segments were 441 samples in lel@ghnd distributions were classified
against a Laplace-Gaussian distribution mixturdnwarying percentages of Laplace and
Gaussian components. Segments with distributioaiswere closer in value to the Gaus-
sian distribution that are nonperiodic were clasdifis normal breath sounds. Segments
with distributions that were closer in value to tteplace distribution that were non-peri-
odic were classified as obstructive sounds and veoh@as segmented breath sounds.
Segments with distributions that were closer irugalo a sinusoidal distribution were
classified as vocalization and considered norng#gments with distributions that were
close to either Laplace or Gaussian distributityas were periodic were either vocaliza-
tion or light snoring and considered normal breathBhe segmentation markers of
sounds that were classified as obstructive wer@venhfrom the data set, and periods of
apnea were recalculated given the removed bred#ctdsn markers. In addition the
periods of apnea found using the detection algorittescribed were classified as either
RO or RD based on the classification of the soymdseding the apnea. If any sound in
the prior five seconds or within the period of aprveere classified as obstruction, the
period of apnea was classified as RO. The pericabnea was classified as RD other-

wise.

5.1.3 Adaptive filtering of sounds from the stettmse cup

One of the causes of periods of apnea being misgdlde acoustic algorithm was
ambient sounds such as talking being detected ghrthe stethoscope cup. An adaptive

filter was constructed to test the validity of uginoise cancellation to remove sounds
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created from external sources.

The data set described was not recorded usingzeerefe microphone that would
be needed to perform the noise cancellation. lismréason an alternative method to test
the validity of using a noise-cancellation techmiguas devised. Forty of the periods of
apnea detected by the flow meter and confirmedhlyacoustic method were selected.
Each period of apnea was accompanied by the pefiddeathing prior to the apnea.
Additive noise was used to simulate external soufitie additive noise was added to
each breathing and apnea period at five differemléudes. The different sounds used
as additive noise were white noise, talking, vanabkic, rock music and jazz music. The
additive noise was recorded with the primary mitipe in a stethoscope cup attached
to a phantom material and the reference microphopeoximity. The standard deviation
of the noise floor of the breathing data was calied. The additive noise was normal-
ized by its standard deviation and added to thatbireg sound by proportions of 0, 2, 4,
6 and 8 times the standard deviation of the ndcsw bf the breathing sounds. Each of
the 40 segments was combined with the additiveenaiseach gain level. The adaptive
filter was then applied to produce a filtered otitpu

The breath detection algorithm was applied to @lségments using the 5 differ-
ent gains and the different types of additive nd@eboth the unfiltered and filtered
output of the adaptive filter. If sounds were detd during the period of apnea, the
apnea was counted as a false negative, otherwigasitcounted as a true positive. If
there were sounds detected during breathing segntleatperiod was counted as a true
negative, otherwise it was counted as a false ipesitThe performance of the filtered

output was compared to the unfiltered signal. filbered signal did not perform better
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than the unfiltered data in some circumstances.ttis reason the additive noise was re-
recorded, placing the reference microphone in arsgstethoscope cup to attenuate the
reference signal similar to the additive signalacihg the reference microphone inside a
stethoscope cup coupled to the back of the prinsdeyhoscope cup improved the
performance of the adaptive filter so that it perfed the same or better than the

unfiltered data in all cases.

5.2 Summary of Observations

5.2.1 Apnea detection

The model used to perform the sound detection foea detection proved to be
accurate. It worked well enough that the methastscdbed could be used for applica-
tions such as a voice activity detector (VAD). AIVis a detection algorithm used to
detect voice so that only voice is transmitted ocommunication line and not silence.
The histogram model worked mainly because of thewkndistribution of the noise.
Although the Laplace distribution may not be afgerfit for the breathing signal, the
measure of the standard deviation of this signahmsugh to differentiate the noise signal
from the breathing signal.

The minimax algorithm used to determine the ndmeshold was not novel but
the application of this was useful for varying rlsvels and breath signal amplitudes.
The wide range of amplitudes of the detected sigrade the threshold more specific to

each type of audio data.
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5.2.2 Classification

Personal observation from the classification ofrgtsushowed that the histogram
classifier performed very well on normal breathrsgi Sounds that did not display a
Gaussian distribution were not as reliably claedifi It was observed that if a breath
sound distribution was classified as Gaussian ieith periodicity, it was reliably classi-
fied as normal breath sound. The only other diassion that was extremely reliable

was the sinusoidal distribution reliably predictvcalization.

5.2.3 Adaptive filtering

Using the adaptive filter to reduce ambient noiseved useful in the testing
method described. Whether it will work in a realld application has yet to be tested.
The most important finding of the adaptive filteasvthe importance of the placement of
the reference microphone. In this case the bestipio of the reference microphone was
within a second stethoscope. This attenuated rit@esmt noise to the reference micro-

phone similar to the ambient noise received aptiraary microphone.

5.3 Concurrent Work

While this work was underway | learned of similaorw being performed by
Andromed Corporation. Andromed used a piezo-atedéim as a transducer on the
trachea. Adnromed was subsequently purchased symdaCorporation. Masimo has
now produced an FDA-approved device that uses igmoelectric film transducer as a
respiratory monitor [1]. This device is used imgmction with a Rainbow SETpulse-

oximeter. This device shows the need of an aaouesipiratory monitor. The Masimo
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device has also established FDA approval on ansticotespiratory monitor that allows
for a precedent in approving future acoustic regpiy monitors.

The Masimo product uses a piezo-electric film rathan a conventional micro-
phone inside a sthethoscope cup. This makes jecuto lower frequency vibrations.
From my observations using piezo-electric films signal-to-noise ratio is not as high
using a piezo-electric film as compared to a cotiveal microphone inside a stetho-
scope cup. From the observations of colleagudsrabnstrations of the Masimo product
it was noted that it did not work well in an acacslly noisy environment. It does have
the advantage of being easily applied and then® iseed for a thick metal stethoscope.
Unfortunately it does not appear to have a noise@ation feature. The Masimo
device also might rely heavily on the pulse-oximétedetect apnea. The device also has

no mention of its ability to differentiate RO froRD.

5.4 Suggestions for Future Work

5.4.1 Create a synchronized data collection system

One of the problems described in the current wods the lack of automatic
synchronization between the flow data and the doosignals. The solution to this is to
devise a way to record the audio signal with a tsteanp from the computer recording
the flow data, or to have all of the data recordadhe same computer and have a time

stamp attached to all samples taken.
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5.4.2 Create a standard for apnea classification

Because there is no simple standard or measuretoehthat determines the
source of apnea, the construction of a standarddamia useful tool for future research.
Since the current standard of care for identifyglggtruction is polysomnography, this
would have to be performed by a licensed profession either the data recorded or on a
new data set. An automated classification standandld then have to be constructed
and tested against the physician classification.

| believe that using both the flow meter data amel RIP data, a reliable auto-
mated apnea detection and classification algoritam be constructed. This could be
constructed using the existing data set as theitigaiset and then testing it on a second-
ary data set recorded in a patient care centeoor & paid subject study. When the flow
meter shows no valid flow and the calibrated RIRIn® shows no valid volume change
then the patient is in RD. When the flow metesvgd no valid flow and the calibrated
RIP shows volumes less than approximately 180 noilt abe detected as breaths by the
RIP, these periods would be considered RO. Althabg algorithm seems simple, there
are technical issues that arise from both the RoRitor and the flow meter that require

special attention. Some of these were addressétapter 3.

5.4.3_Manual audio classification testing

The primary difficulty in classification of brea#tounds was the wide variation of
sounds that can be present for any given stateadtconcluded that RO and RD cannot
be reliably discerned by sounds alone. This candmdirmed by classifying periods of

apnea based on the sounds preceding them by adnaeearcher and comparing them to
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the already classified periods of apnea describéghiapter 3. This method is subjective
and the outcome is not scientifically based, butauld support claims made about the

methods of recording the data for this project.

5.4.4 Use of tomography and acoustics to diffeat@tkRO and RD

From my observation of the data from the RIP, flamgl acoustic monitors used, |
believe that given the data from any two of th@éhmonitors, apnea and its source can
be identified reliably. It has already been ddsaatihow the combination of the RIP and
the flow measurement can be used to identify tHierdnce between RO and RD. |
believe that using the acoustic signal and the fhogter, RO can be identified when the
breath sounds are loud and the flow shows littl@ddlow. When the flow signal and
breath sounds are correlated prior to a periogpoéa the period would be RD. Similarly
RO would be identified using the RIP and acousteEasurement when the RIP signal
showed breaths but the acoustic flow detected maths. RD would be detected when

both the RIP and acoustic measurement showed wo flo

Because RIP bands are uncomfortable and diffioytlace, an alternative method
to measure chest and abdomen excursions has beethésized. Griffith et al. [2]
performed electrical impedance tomography on tharystx using an array of sixteen
hydrogel electrodes. The tomography was able @gerthe pharynx as subjects swal-
lowed. This is related to performing chest impexaplethysmography. | believe that
using two or three electrodes on the trachea rearstethoscope cup, changes in the
trachea due to changing pressures can be measutesoald be similar in nature to the

RIP measurement described. In addition, duringrobson the tracheal diameter would
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change even more due to the increase in pres3ims.could be tested further by insert-
ing a tracheal pressure probe past the pharynxewbiinparing the pressures exhibited to

the change in tracheal electrical impedance.

5.4.5 Further testing of adaptive filter to remawebient sounds

The adaptive filter was tested using additive nais was recorded separately
from the breathing data. There are many acousterences between this method and a
method that would record the additive noise whéeording breathing sounds. Two
methods are suggested to perform further tests.

The first method would be to create a simulatechiea that is capable of creating
breath sounds through a phantom material. Thedsotetorded in the stethoscope cup
and the reference microphone would then be uséestdhe adaptive filter against addit-
ive noise created by external sources. The secoetthod would be to get an IRB
approved study and have subjects perform breattslad recorded noise is played in the

room.

5.4.6 Create algorithm to improve adaptive filter

One problem that occurred during the adaptiveriiite research was that the
reference microphone could corrupt the output efataptive filter if the reference signal
was uncorrelated with the primary input and if theguency was high enough. In order
to reduce this it is proposed that the adaptiverfis only used when needed. The filter is
only needed when there is a signal detected abbmv@dise floor on both the reference

microphone and the primary microphone. In orderdto this the breath detection
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algorithm needs to be performed on the referenmetiand only periods that are detected
on both inputs will be filtered using the adaptiieer. This will not only reduce the
amount of corruption from the reference microphdmd, it will reduce the computing

power needed to perform the algorithms described.

5.4.7 Testing of different stethoscope cups

The use of a thick metal stethoscope cup helpekerattenuation of the ambient
sounds, but the heavy stethoscope is bulky. Teth@scope cups attached to provide for
the adaptive filtration is long and heavy and Wkely not be held by a single double-
stick disk. The weight and awkwardness of thek&daups is not ideal in real-world
applications. In order to alleviate this, sma#ead thinner stethoscope cups made of both
metal and plastic need to be tested using the @éajiiter. This will allow for a more

practical apparatus that can be held to the trachie® a double stick-disk.

5.4.8 Recording data from patient volunteers

The best test of the apnea monitor is the usevefsion of the software on patient
volunteers undergoing sedation procedures. Inrdaddo this IRB approval would have
to be obtained and the data recording process wuaNe to be perfected. Use of this
technology in a patient application could also bstep towards FDA approval for an
acoustic respiratory monitor. The data could bdéopamed on patients undergoing sedat-

ive procedures such as a colonoscopies.
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5.4.9 Implementation of algorithms into a integrhtlevice

Up until this point the data have been recorded pratessed offline using
modern computers and programming software such ABELMB. The ultimate goal of
this project would be to implement the algorithmatthave been described as well as the
algorithms that will be developed into a microcofiar and process the data in real time.
This will be a final step toward getting the devieady to be a marketable medical

device.
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APPENDIX A
HISTOGRAM OF A MODULATED GAUSSIAN SIGNAL

Mathematically the distribution of a Gaussian signal modulated by a sinusoid can
be calculated as shown in Cain et a. [1]. They modulated five common random signals
(sinusoid, uniform distribution, Gaussian distribution, Rayleigh distribution, and Laplace
distribution) by a sinusoid. They started by giving the probability density function (PDF)
of the sinusoidal process:

)

1 rect(=

f =
« (X) g >

(A.1)

where x is the random variable. The common method of finding the distribution of the
multiplication of two random variables with known distributions is performed using the

equation [1]:

fz<z>=f:|—§|fx(§)fy<y>dy (A2

where f X(%) is the distribution of the first random variable with a modification to

the input variable, and f\(y) is the distribution of the second random variable. Because

one of the distributions is the Gaussian distribution and contains the term of e*', the
integral cannot be solved directly. Instead of solving this directly, Cain et al. [1] used the
Fourier transform of the sinusoidal distribution to find the resulting distribution. First,

they perform the Fourier transform of equation A.1 to get
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D, (B)=J,(2mB) (A.3)

where Jo is the zeroth-order Bessel function of the first kind, g is the frequency, and &
represents the Fourier transform of equation A.1. They then used alesser known relation-

ship to find the Fourier transform of the modulated signal, which has the equation

o, (=], @x(vB) T, (v)dv (A-4)
where fy(v) is the distribution of the second random variable, in this case the Gaussian
distribution. They then substituted equation A.3 into equation A.4 directly and substi-
tuted the Gaussian distribution for fy(v). The result of thiswas

,(B)=e"" 14(r*67) (A.5)
where |, is the zeroth-order modified Bessel function of the first kind. Using the Camp-
bell and Foster Fourier transform and adding a scaling factor, the modulation of a Gaussi-

an signal was shown to be [1]

2

1 - 7
fZ(Z)_Wm[e KO(Z)]' (A-S)

where z is the random variable, and K, is the order zero modified Bessel function of the
second kind. They go further and compare a simulation to the distribution of the data.
The simulation was created by taking the dot product of a vector of a Gaussian distrib-
uted signal and a vector of a full-wave sinusoid of the same length, then finding the
normalized histogram of this signal. A comparison of this mode to smulated data is

shown in FigureA.1.
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Figure A.1 Normalized histogram of a sinusoid modulated Gaussian random signal
overlaid with the PDF for the signal.
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APPENDIX B
SNORE SLAPDISTRIBUTION CALCULATIONS

In an attempt to understand what caused the distribution displayed by a snoring
sound, a snore model was created. This model was a ssmplistic model of an individual

snore slap and has the following equation:

t

ydb(t)=ce:’_~asin(2rr f.t+o,) (B.1)
where t istime, c is the amplitude of the individual slap, d is the decay of the dap, f, is
the frequency of the dap, a is the amplitude of the sinusoid, and @, is a random phase of
the frequency of that slap. The random phase is not present in the model presented in
Chapter 3. In a physical setting, a phase of @ being anything but zero would not be
possible because it would require an instantaneous jump from zero to the first vaue of
the signal described by equation B.1. Thisterm was added for the sake of calculating the
distribution of the slap. It ensures that the distribution model for a sinusoid can be used
for the models described. Although this is different from the actual histogram produced
by the sound, the discrepancy is believed to be small when comparing the distributions.
The phase is a single term added for each individual snore dap and is uniformly distrib-
uted in the range of 0O<@<z. Using this model, the distribution for a series of snore slaps
with uniform amplitude and length can be calculated. The distribution is calculated by

finding the distribution of the multiplication of two random variables. The first variable
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is the exponential decay.

—t

Yano(t)=Cx € B.%)
wheret is time,c is the initial amplitude of the exponential decarydd is the decay time
constant of the signal. The distribution of equat®.2 can be found by the Jacobian
transformation to find the PDF of a function. Tyecobian transformation is performed
by taking the absolute value of the derivativeha inverse of the function. Solving the
inverse of equation B.2 and substitutinfpr ya.dX), yields

t=-dxIn(y/c), (B.3)
and calculating the derivative of this functionlgie
t'=cdly. (B.4)
In addition, this equation is unboundedyaapproaches zero. To avoid an unbounded
distribution, the length of the slap was limitedO&t<l. The limitation ont in equation
B.2 means that the amplitude wfin equation B.4 is limited toce"<y<c. Thus, the

distribution of an exponential decay after normetian is

d _1/d
(=117’ force ""<z<c (B.5)

0, otherwise

The second part of the model is the modulatingsitygps
Yandt)=a sin(2zf t+ dy). (B.6)
wheret is time,a is the amplitude of the sinusoifi,is the frequency of the modulating
sinusoid andp, is a random phase of the modulating sinusoid. disigibution of equa-

tion B.6 is given in [1] as:



183

e for—a<y<a
fyvslY)=! (@ y?) Y (B.7)
0 otherwise

Now that the distributions of the two parts of #more slap model are known they will be
used to find the distribution of the snore slaphe Wistribution of the multiplication of
two variables is well known and using the varialiég andz as examples is given in [1]

as

o 1 X
= f_(Z)f(y)dy.
Tyl z(y) v(y)dy (B.8)

fy(x)=[
However, this is only valid for distributions thesttend across all real values. Glen et al.
[2] describe a method to calculate the distributbdrihe multiplication of two bounded
random variables. Glen et al. state that, fortihe distributions, the first distribution,
f(x), with limits of rand swhereO<r<s<oo, and the second distributiog(x), with limits
of t andu whereO<t<u< =, the distribution of the multiplication of the twasttibutions
can be found. In this case the first distributizrthe sinusoid distribution and does not
meet these criteria. In order to fit the criteti® symmetry of the sinusoid distribution
was used. The random phase of each snore slapesribe symmetry of the distribution
and the multiplication of the exponential decaytrihsition ensures that the end distribu-

tion will be symmetrical. For this reason, thetdlmition of equation B.7 was modified

to the positive half of the distribution with eqiget

2
_ forO<y<a
fysulY)= m(a®—y?) = (B.9)
0 otherwise

Although the lower limit of this distribution is mozero, it can be assumed to be very

close to zero to satisfy the criteria set by Gl€nce the distribution of the positive half
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of the model is found, the negative half can bentbthrough symmetry. Glen et al. [2]
then give three cases for the possible distribsticomputed in a piece-wise style. The
first is if ru<st, the second is ifu=st, and the third is ifu>st. In this case, since the
lower limit of the sinusoid distribution denoted bys very close to zero when compared

tou, s, andt, the first case is used for this calculation. disribution is calculated by:

Mot iax, forrsv<ru
r X X
h(v)= f:j:g(i)f(x)%dx, for ru<v<st. (B.10)
s v 1
v/ug(x)f(X)XdX, for st<v<su

whereh(v) is the resultant distribution ands the resultant random variable. Because the
value forr is assumed to be very close to zero the first sps@s a range that is very
close to zero and has been ignored thus leavingcases. In fact can be set to zero
with no adverse effects to the distribution whempared to the simulation as will be
shown. Applying equations B.5 g¢x) and B.9 ad(x) to equation B.10 and using arbit-

rary limits results in

mx d 2 1
h(v)= A2 dx B.11
anl _n_\/(aZ_yZ)X ( )
wheremandn are arbitrary limits for the integral. This egoatthen simplifies to
_2d pm 1
h(v)__n_lv fn \/(aTyz)dX (B].Z)
The general form of the integral can be solved as
h(v)=ﬁ(sin‘l(m)—sin‘l(ﬂ)). (B.13)
ud\Y a a

Applying the limits of equation B.10 two cases sihewn:
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h(v)= 2d [t . 4 v 1 /d (B.14)
—(—=-=sin | —|], forace " <v<ac
miv | 2 ac
0, otherwise

wherea, c, d,and| have already been defined. Since this is a synwaéttistribution,

the model for the values fromc<v<acis:

B ek QPR T A , for —ac<v<—ace "
mlv| 2 ac
d . \Y Y IRV —1/d —I/d
h(v)= W(sm l(—ace”d)_sm 1(5)), for —ace''<v<ace (B.15)
A7 gint L , for ace'“<v<ac
vi2 ac
0, otherwise

Using the fact that the real value of the functidrsin®() for values greater than 1 2

and less than -1 is#2 the distribution can be simplified to one singlsea

a4 real [ sin Y ——— || —sin }[-= |, for —ac<v<ac
h(V)= v ace ' ac/|’ (B.16)

0, otherwise
wherereal() denotes the real values of the function.

A simulation using a vector of 100 simulated sraleg signals and=0.3, ¢c=0.5,
d=0.1,andl|=0.1 at a sample rate of 22050 Hz was created and timeatiaed histogram
was calculated from that signal. The values wpmied to the distribution model shown
in equation B.11 and compared to the histogramhefsimulation as shown in Figure
B.1a and B.1b. It can be seen that the distribution matches tmeilgsition with very little
error. Similarly, the distributions and normalizgchulation histograms for the values of

a=0.3, ¢=0.5, d=1,and1=0.1, and a=0.3, c=0.5, d=0.015and |=0.1 are shown in



—
o—l

-
o
o

'
-

Probability density
=

—
, ©
o n
N

-0.1 0

[[&]

0.2

-
o

—
oﬂ

o

Probability density
o

—
oI

SRS
[\

-0.1 0

-
o
(SN

0.2

-
o
N

-
o
o

Probability density

-
o

S
N

-0.1 0
Amplitude (V)

0.1

0.2

186

300

200

100

L

-0.2 -0.1 0 0.1 0.2
Amplitude (V)

Figure B.1 Normalized histograms of arepeated slap sound with the PDF model for (a)
semilog plot with a=0.3, c=0.5, d=0.1, and |=0.1 (b) linear plot with a=0.3, c=0.5,
d=0.1, and 1=0.1 (c) semilog plot with a=0.3, c=0.5, d=1, and 1=0.1 (d) linear plot with
a=0.3, c=0.5,d=1, and I=0.1 (e) semilog plot with a=0.3, c=0.5, d=0.015, and 1=0.1 (f)
linear plot with a=0.3, c=0.5, d=0.015, and 1=0.1.
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Figures B.1c through B.1f to show the extreme values for the rdltito af
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