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ABSTRACT 

Unconstrained Monitoring of Sleep-Related 

Breathing Disorders and Sleep Stages Using  

A Polyvinylidene Fluoride Film Sensor 

 

Su Hwan Hwang 

The Interdisciplinary Program in Bioengineering 

The Graduate School 

Seoul National University 

 

In this study, unconstrained sleep-related breathing disorders (SRBD) and sleep 

stages monitoring methods using a polyvinylidene fluoride (PVDF) film sensor were 

established and tested. Subjects’ physiological signals were measured in an 

unconstrained manner using the PVDF sensor during polysomnography (PSG). The 

sensor was comprised of a 4×1 array, and the total thickness of the system was 

approximately 1.1 mm. It was designed to be placed under the subjects’ back and 

installed between a bed cover and mattress.   

In the sleep apnea detection study, twenty six sleep apnea patients and six normal 

subjects participated. The sleep apnea detection method was based on the standard 

deviation of the PVDF signals, and the method’s performance was assessed by 
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comparing the results with a sleep physician’s manual scoring. The correlation 

coefficient for the apnea-hypopnea index (AHI) values between the methods was 

0.94 (p < 0.001). For minute-by-minute sleep apnea detection, the method classified 

sleep apnea with average sensitivity of 72.9%, specificity of 90.6%, accuracy of 

85.5%, and kappa statistic of 0.60. 

In the snoring detection study, twenty patients with obstructive sleep apnea (OSA) 

participated. The power ratio and peak frequency from the short-time Fourier 

transform were used to extract spectral features from the PVDF data. A support 

vector machine (SVM) was applied to the spectral features to classify the data into 

either snore or non-snore class. The performance of the method was assessed using 

manual labelling by three human observers. For event-by-event snoring detection, 

PVDF data that contained “snoring” (SN), “snoring with movement” (SM), and 

“normal breathing” (NB) epochs were selected for each subject. The results showed 

that the overall sensitivity and the positive predictive values were 94.6% and 97.5%, 

respectively, and there was no significant difference between the SN and SM results. 

In the sleep stages detection study, eleven normal subjects and thirteen OSA 

patients participated. Rapid eye movement (REM) sleep was estimated based on the 

average rate and variability of the respiratory signal. Wakefulness was detected 

based on the body movement signal. Variability of the respiratory rate was chosen 

as an indicator for slow wave sleep (SWS) detection. The performance of the method 

was assessed by comparing the results with manual scoring by a sleep physician. In 



iii 
 

an epoch-by-epoch analysis, the method classified the sleep stages with average 

accuracy of 71.3% and kappa statistic of 0.48. 

The experimental results demonstrated that the performances of the proposed sleep 

stages and SRBD detection methods were comparable to those of ambulatory devices 

and the results of constrained sensor based studies. The developed system and 

methods could be applied to a sleep monitoring system in a residential or ambulatory 

environment. 
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CHAPTER 1. INTRODUCTION 

 

1.1. Background 

Sleep affects our physical and mental health and our daily functioning in many 

ways. Many previous studies have reported that sleep is associated with increased 

waste clearance in the brain [1], restoration [2, 3], ontogenesis [4-6], memory 

processing [7-10], preservation of memory [11, 12], etc. Because sleep plays a vital 

role in our lives, chronic sleep deprivation can lead to elevated mortality risk [13], 

increased risk of coronary events [14], obesity [15], and diabetes [16]. Other studies 

have found that sleep loss is related to metabolism [17, 18], immunity [19-21], and 

cardiovascular issues [13, 22, 23]. Thus, continuous sleep monitoring is very 

important to maintain a healthy life.  

Polysomnography (PSG) has been regarded as the standard method for general 

sleep monitoring. PSG results include sleep duration, sleep stages, sleep-related 

disorders, sleep fragmentation, and sleep quality. Even though PSG has been used 

for the assessment of sleep, monitoring sleep and sleep-related disorders using PSG 

has a few limitations. Firstly, PSG recording during sleep is an inconvenient 

experience for the sleeper because numerous sensors are attached to the sleeper’s 

body and face, as shown in Figure 1-1. Secondly, PSG recording requires well-

trained sleep experts, a controlled hospital environment, and a relatively long setup 

time, which results in high costs. Lastly, the manual scoring of sleep stages and 
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sleep-related events from PSG data is a very time consuming and laborious process. 

The drawbacks of sleep monitoring based on PSG recording limit its use in a 

specialized sleep laboratory. If sleep and associated events can be monitored based 

on an automated algorithm without attaching any sensors to the sleeper’s body, the 

convenience of sleep monitoring will be greatly increased, and make it suitable for 

residential or ambulatory monitoring purposes.  

 

 

 

 

Figure 1-1. Sensors for polysomnography. 
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1.2. Sleep Apnea  

Sleep apnea is a typical sleep related-breathing disorder (SRBD) characterized by 

frequent, abnormal cessation of respiration during sleep [24]. During the apneic 

period, there is an increased effort in breathing, leading to arousal and sleep 

fragmentation [25]. Thus, severe and frequent sleep apnea disrupts the sleep 

architecture of subjects and can lead to sleep disorders such as severe snoring [26], 

fatigue, daytime sleepiness [27], and systemic hypertension [28]. In addition, apnea-

induced hypoxia during sleep can cause stroke [29], arrhythmias [30], diabetes [31], 

and cardiovascular diseases [32]. Figure 1-2 shows the mechanism of sleep apnea.  

 

 

 

 

 

 

Figure 1-2. The mechanism of sleep apnea. 
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In previous study, Young et al. reported that approximately 2% of adult women and 

4% of adult men in the middle age range are affected by sleep apnea [33]. Kim et al. 

analyzed data to determine the prevalence of SRBD in 457 Korean adults aged 40–

69 years and 27% of men and 16% of women, respectively, had SRBD [34]. 

Furthermore, a recent study of SRBD in adults discovered the actual prevalence rates 

of SRBD representing substantial increase over the last two decades (10% among 

30–49-year-old men; 17% among 50-70-year-old men; 3% among 30-49-year-old 

women; and 9% among 50-70-yearold) [35].  

In recent years, many alternative methods without using PSG to detect apneic or 

hypopnic events have been proposed. These studies have involved sleep apnea 

detection based on several biosignals. For example, electrocardiogram (ECG) based 

studies have shown that RR interval or R peak amplitude based methods are useful 

for apnea detection [36-39]. A ballistocardiogram (BCG) based system measured the 

respiratory rate with high correlation using an air mattress with a balancing tube [40]. 

Pulse oximetry and respiratory signal based studies revealed a relatively high 

correlation coefficient (r > 0.9) between the apnea-hypopnea index (AHI) from PSG 

and the proposed one [41, 42]. Despite these efforts, a clearly superior method or 

system for fully unconstrained sleep apnea monitoring still does not exist. 

 

 

 

 



5 
 

1.3. Snoring 

Snoring is one of the SRBD characterized by loud, noisy respiratory sounds during 

sleep, caused by the vibration of the soft palate and the uvula [43]. The mechanism 

of snoring is shown in Figure 1-3. Snoring is common in the general population, and 

the prevalence of snoring varies widely among studies: 24-86% of men and 14-57% 

of women [44-47]. Some previous studies have shown that snoring is associated with 

excessive daytime sleepiness [48], and hypertension [49, 50]; however, it is difficult 

to ascertain how many of these health risks are attributable to snoring alone [51]. 

Nonetheless, snoring detection has clinical significance because snoring may 

indicate undiagnosed obstructive sleep apnea (OSA) [52]. Apnea-induced hypoxia 

during sleep can also lead to severe cardiovascular disease [32, 53]. Additionally, 

severe and frequent snoring can disrupt the spouse’s sleep [45]. 

 

 

 

Figure 1-3. The mechanism of snoring. 
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According to the manual issued by the American Academy of Sleep Medicine 

(AASM) for scoring sleep and associated events, an acoustic sensor (such as a 

microphone), piezoelectric sensor, or nasal pressure transducer are recommended for 

snoring monitoring during PSG [54]. Although PSG has been used for the 

assessment of SRBD, some PSG reports do not provide objective information about 

snoring (number of occurrences, duration, etc.) because snoring recording during 

PSG is optional [54] and is used to assess only the existence of snores rather than the 

details of snoring occurrences. 

To overcome these limitations, other previous studies have proposed acoustic 

snoring evaluation methods without PSG. Most of these methods implement one or 

more microphones placed on the trachea or a location close to the sleeper’s bed 

(freestanding, near the mouth, or over the head) [55-59]. Although snoring events 

were detected successfully by these methods (sensitivity ranging from 82.2% to 

94.8%), these microphone-based methods can be affected by ambient noise and their 

performance can vary depending on the position of the microphone [60]. 

Furthermore, microphone-based methods require a high sampling rate of over 10 

kHz to analyze the acoustic characteristics of the snoring sounds, and the high 

processing cost of the necessary microcontroller may render these methods 

unsuitable for residential or ambulatory monitoring devices. 

Alternative snoring detection methods without using microphones have also been 

investigated. Shin et al. evaluated the performance of noninvasively monitoring the 

events of snoring using an air mattress with a balancing tube system [61]. Although 
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the system unconstrainedly measured a subject’s snoring signals, a detection process 

was not applied on data acquired during real nocturnal sleep. Lee et al. proposed a 

snoring detection method based on a piezoelectric snoring sensor that measured the 

vibration related to snoring [62]. However, this piezoelectric snoring sensor was 

attached to the neck during PSG recording, and the attachment of the sensor could 

interrupt comfortable sleep. In brief, these alternative attempts did not provide a fully 

unconstrained snoring detection method. 
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1.4. Sleep Stages 

The AASM manual for sleep scoring [54] divides it into five stages: wake, rapid 

eye movement (REM), and N1–N3 (non-REM 1, 2, and 3). Stage N3 is also called 

delta sleep or slow wave sleep (SWS) [63]. These stages progress in a cycle from 

stage N1 to REM, and then the cycle starts over again with stage N1. A normal young 

adult spends almost 50% of their total sleep time in stage N2, about 20% in stage 

REM, and the remaining 30% in the other stages [51]. Non-REM (NREM) sleep and 

REM sleep alternate, usually with four or five periods of approximately 90 min per 

night [64]. Figure 1-4 shows a typical example of a normal adult’s hypnogram.   

 

 

 

 

 

Figure 1-4. A hypnogram of normal adult. 
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The sleep stages can be determined by an electroencephalogram (EEG), 

electrooculogram (EOG), and chin electromyogram (EMG). In order to measure 

these types of physiological signals during sleep, numerous sensors or electrodes are 

attached to the head, face, and body of the sleeper. However, the attachment of 

numerous types of sensors can interrupt comfortable sleep, which makes daily sleep 

monitoring difficult using EEG-based methods. 

To overcome these limitations, sleep stages detection methods using a minimum of 

sensors have been proposed in previous studies. Most of these methods implement 

heart rate variability (HRV) or ECG-derived respiration (EDR) features from an 

ECG signal to classify the sleep stages [65-68]. Another example is a method based 

on peripheral arterial tone (PAT) signal [69]. Although the sleep stages could be 

detected using these methods (with accuracies ranging from 56.0% to 72.6%), the 

attachment of the sensor to measure the physiological signal during sleep can still 

cause a great deal of inconvenience to the sleeper.  

Alternative sleep stages detection methods without any attachment of a sensor to 

the sleeper’s body have also been proposed. Watanabe et al. used a pneumatic bio 

measurement sensor to estimate the sleep stages thorough unrestrained means [70]. 

Although they showed the potential for unconstrained sleep monitoring, their overall 

epoch-by-epoch accuracy was only 42.8%. Kortelaine et al. evaluated the sleep 

structure using an electromechanical film (EMFIT) sensor [71]. They used a BCG 

and the movement activity obtained from a sensor to detect the sleep stages. Samy 

et al. described an unobtrusive method for sleep stages detection based on a pressure 
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sensitive bed sheet [72]. The respiration and leg movement signals were selected as 

features for sleep stages identification in that study. Although previous studies have 

proposed unconstrained sleep stages detection methods, all of these methods 

classified sleep into only three stages (wake, REM, and NREM; the macrostructure 

of sleep), which do not provide sufficient data for a microstructure analysis of sleep. 

Therefore, an unconstrained sleep stages monitoring method that provides data for 

at least a four stage analysis is required.  
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1.5. Polyvinylidene Fluoride Film Sensor 

Polyvinylidene fluoride (PVDF) film is a very thin and flexible film that is widely 

used in film transducer or speaker elements [73]. This piezoelectric polymer is good 

for applications where mechanical loads are applied [74]. In particular, it can be 

applied where signal-to-noise requirements influence very low mass loading by the 

sensors.  

In previous studies, a PVDF film was used as a sensor for recording several bio 

signals such as the respiration [75-77], heart rate [78], and BCG [79, 80]. 

Furthermore, PVDF based SRBD events or sleep stages detection methods have also 

been proposed in the literature. Berry et al. compared the capability of a PVDF 

thermal sensor attached to the upper lip with a pneumotachograph to detect 

respiratory events in OSA patients [81]. Koo et al. used PVDF incorporated belts 

surrounding the chest and abdomen to validate respiratory event classification during 

PSG [82]. Norman et al. evaluated a PVDF based contactless monitoring system 

(Sonomat) for the diagnosis of SRBD [83]. 

Although these studies constrainedly or unconstrainedly measured a subject’s 

physiological signals to evaluate SRBD events, to the best of my knowledge, fully 

unconstrained systems or methods for monitoring SRBD events with the sleep stages 

using signals measured by PVDF sensors have rarely been studied. 
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1.6. Purpose 

 As mentioned in the previous sections, there is a need for a sleep monitoring system 

and analytical methods to simultaneously analyze both the sleep stages and SRBD 

events. Furthermore, physiological signal measurement during sleep without the 

sleeper consciously feeling the presence of the installed sensor is essential for long-

term residential sleep monitoring purposes. 

Therefore, this study was conducted to establish a fully unconstrained sleep 

monitoring method using a PVDF sensor for the continuous and accurate monitoring 

of both the sleep stages and SRBD events.  

This study had the following three goals: 

1) The development of a sleep apnea monitoring method with highest level of 

performance, comparable to that of a commercial device; 

2) The development of a snoring monitoring method with low computational cost 

and robustness with regard to motion artifacts; 

3) The development of a sleep monitoring method that can classify sleep into four 

stages in an unconstrained manner. 
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CHAPTER 2. SLEEP APNEA DETECTION 

 

2.1. Signal Acquisition System 

The physiological signals of the subjects during sleep were measured using the 

PVDF film sensor. The sensor was composed of a 4 × 1 array positioned under the 

subject’s back. It was installed between a mattress cover and the mattress to avoid 

direct contact with the subject’s body. The shape and size of the sensor, and a 

conceptual diagram of the system installation, are shown in Figure 2-1 [84].  

 

 

Figure 2-1. Conceptual diagram of system size and installation. 



14 
 

The total thickness of the sensor and its protective silicon pad was 1.1 mm, which 

was sufficiently thin to prevent the subject from being consciously aware of its 

presence. The sensor was a 122μm thick silver ink metalized piezoelectric film 

sensor (part number: 3-1004-346-0, Measurement Specialties, Inc., Hampton, VA, 

USA). Its specifications are shown in Table 2-1. 

 

  

 

 

 

 

 

 

Table 2-1. Typical specifications of a commercialized PVDF film. 

Electro-Mechanical Conversion (1 direction) 23 x 10-12m/V, 700 x 10-6N/V 

Mechano-Electrical Conversion (1 direction) 12 x 10-3V per microstrain, 

400 x 10-3V/μm, 14.4V/N 

Capacitance 1.36 x 10-9F; Dissipation Factor of 0.018 @ 10 KHz; 

Impedance of 12 KΩ @ 10 KHz 

Maximum Operating Voltage DC : 280 V (yields 7 μm displacement in 1 direction) 

AC : 840 V (yields 21 μm displacement in 1 direction) 

Maximum Applied Force 6−9kgF (yields voltage output of 830 to 1275 V) 
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PVDF data were collected from July 2012 to October 2013, and the sensor’s 

durability over more than one year was verified. During the experiments, sweat did 

not affect signal quality because the PVDF sensor’s functionality is mainly based on 

its piezoelectric properties. After PSG recording, none of the subjects reported an 

uncomfortable feeling, and all responded that the sensor did not interfere with their 

sleep. Because the subjects did not experience physical or mental stress, it can be 

concluded that the proposed sensor is appropriate for unconstrained sleep monitoring. 

The Institutional Review Board (IRB) of Seoul National University Hospital 

(SNUH) approved all of these procedures. All of the participants were provided with 

information about the methods and purpose of the study and informed consent 

approved by the IRB was obtained. 
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2.2. Methods 

2.2.1. Participants and PSG Data 

Thirty-two subjects participated in this study. Twenty-eight nocturnal PSG datasets 

were collected at the SNUH Center for Sleep and Chronobiology. Four diurnal PSG 

datasets were additionally recorded for the relatively young (<30 years) participants. 

All of the PSG datasets were collected based on the standard PSG routine and scored 

by registered PSG technologist who has more than ten years’ experience in scoring 

human sleep records according to the criteria of AASM [54]. Additionally, scoring 

result were reviewed and confirmed once again by a trained sleep physician. Using 

the international 10–20 system, EEG electrodes were placed at the O2-A1 and C3-

A2 positions. In addition to the EEG data, bilateral EOG, EMG from the chin and 

bilateral tibialis anterior muscles, lead II ECG, oronasal airflow, abdominal and 

thoracic movement, snoring, and oxygen desaturation (SpO2) signals were also 

collected. During sleep, the subject’s respiratory signals from the PVDF film sensor 

were simultaneously recorded with the PSG data. All of the signals were measured 

using an NI-DAQ 6221 (National Instruments, Austin, TX, USA) data acquisition 

unit with a 250 Hz sampling rate. A summary of the subject and PSG-related 

parameters is presented in Table 2-2.  
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Table 2-2. Sleep related parameters of subjects for sleep apnea detection. 

AHI 

(events/hour) 

Normal 

<5 

Mild 

5-15 

Moderate 

15-30 

Severe 

>30 

Average AHI 3.3±0.8 10.4±2.3 22.4±3.4 41.2±7.9 

PSG (N/D) 5 (4/1) 10 (7/3) 7 (7/0) 10 (10/0) 

Gender (M/F) 4/1 10/0 5/2 9/1 

Age (years) 38.4±20.7 36.1±15.7 56.3±17.0 56.7±9.3 

BMI (kg/m2) 22.2±1.9 23.9±2.3 24.9±1.2 28.7±3.1 

Total sleep time (min) 372.9±149.7 291.7±144.5 437.5±21.0 410.3±40.8 

Total wake time (min) 37.2±36.3 26.1±20.8 14.0±8.6 14.5±6.5 

Sleep efficiency (%) 84.1±5.8 78.5±11.6 89.2±5.3 85.4±6.6 

Sleep latency (min) 13.6±12.1 20.7±29.1 7.3±5.1 5.2±3.7 

% stage 1 NREM 10.3±5.9 14.4±4.1 17.8±5.3 28.8±8.8 

% stage 2 NREM 48.6±9.1 45.8±10.2 52.5±9.1 37.9±8.9 

% stage 3 NREM 11.3±8.7 8.2±7.2 4.0±3.2 0.9±1.1 

% stage REM 17.9±3.4 16.0±6.9 15.9±4.0 18.8±5.9 

Ave. SpO2 (%) 97.4±1.2 96.7±1.6 96.2±1.6 94.8±1.6 

Min. SpO2 (%) 91.7±2.7 89.9±4.0 84.8±7.2 79.1±7.1 

AHI: apnea hypopnea index; BMI: body mass index; N: nocturnal;  

D: diurnal; NREM: non-rapid eye movement sleep;  

REM: rapid eye movement sleep; Ave.: average; Min.: minimum;  

SpO2: oxygen saturation 
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2.2.2. Apneic Events Detection  

The study about an unconstrained sleep apnea detection was published as a journal 

paper [85]. During the inhalation and exhalation respiratory phases, different levels 

of pressure caused by the volume change in the body were applied to the PVDF 

sensor. As a result, the output signals of the sensor reflect the normal or apneic 

breathing of the subjects.  

As shown in Figure 2-2, the signal outputs from the PVDF sensor included several 

types of physiological signals, including those for respiration, BCG, and body 

movement [85]. When an apneic event occurred, the change in the PVDF signal was 

relatively small compared with the other cases. Thus, to distinguish apneic events 

from normal breathing or body movement, the standard deviation of PVDF signals 

was used in this study. To determine a method for apnea monitoring, PSG and PVDF 

data from six subjects (approximately 20%) with normal to severe apnea were 

randomly selected as a training set. All of the detection procedures for apneic events 

are concisely described in Figure 2-3 [85]. All values used in the conditions in this 

figure were determined based on the training dataset. For example, Figure 2-4 shows 

value determination for the upper threshold of the apneic event decision. 
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Figure 2-2. Signal output from the PVDF sensor for sleep apnea detection. 
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Figure 2-3. Apneic event detection procedure. 
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Figure 2-4. Value determination for threshold of sleep apnea detection. 
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From the analysis of the training set, the data from PVDF channels #3 and #4, which 

reflected changes in the abdomen volume induced by breathing, were selected for 

the final analysis. At 60 s intervals, the raw signal (R_PVDF) data from each PVDF 

channel were low-pass filtered at 0.5 Hz (5th order, IIR Butterworth) and both 

channel respiratory signals (RESP) were obtained. After that, principal component 

analysis (PCA) was applied to R_PVDF and RESP, respectively. PCA is a well-

known method for feature extraction and is defined as an orthogonal linear 

transformation. PCA reduces the dimensionality of a data matrix to find new 

variables using the eigenvectors with the largest eigenvalues. These are sorted 

according to decreasing eigenvalue, and the eigenvalues with lower significance are 

discarded. In this way, the data dimensionality is decreased with a minimal loss of 

information [86]. Thus, to obtain a common feature between the two channels’ data 

and to reduce the noise contamination, PCA factor 1 (PC1) was extracted from the 

R_PVDF (PC1R_PVDF) and RESP (PC1RESP). 

After applying PCA, 60 s data sets from PC1R_PVDF and PC1RESP were divided into 

6 periods of 10 s each. Before the threshold determination, the standard deviation of 

each 10 s data set from PC1RESP was calculated. In the following (2-1), xm and xk 

denote a 10 s PC1RESP data set and 10 s PC1R_PVDF data set, and σm and σk represent 

the standard deviations of xm and xk, where m and k are segment numbers (1 ≤ m, k 

≤ 6). 

 

࢓࣌ ൌ ටࡱ൫࢓࢞૛ ൯ െ ሺࡱሺ࢓࢞ሻሻ૛, ࢑࣌			 ൌ ටࡱ൫࢑࢞
૛൯ െ ሺࡱሺ࢑࢞ሻሻ૛    (2-1) 
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To minimize the underestimation of apnea because of an increased threshold caused 

by body movement, the threshold was selected using the average of the remaining 

values, with the exception of the largest value, among σm. In this way, an adaptive 

threshold for PC1RESP for every 60 s period could be obtained. 

 

܌ܔܗܐܛ܍ܚܐܜ	܍ܞܑܜܘ܉܌ۯ ൌ 	
૚

૞
∑ ࢓࣌
૟
࢐ஷ࢓,ୀ૚࢓ ,       (2-2) 

࢐࣌	܍ܚ܍ܐܟ ൌ ሽ࢓࣌ሼܠ܉ܕ , ૚ ൑ ࢓ ൑ ૟  

 

Using σk and σm, each body movement, normal breathing, apneic event, or out of 

bed period was determined based on the following conditions, which are listed 

according to their priority. In this study, the maximum output voltage of the PVDF 

signals was 5 V. 

 

Condition 1: (for movement) 

σk > 0.4 × maximum output voltage  

 

Condition 2: (for normal breathing) 

σm > 0.7 × adaptive threshold  

 

Condition 3: (for apneic event) 

0.1 × adaptive threshold < σm < 0.7 × adaptive threshold  
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Condition 4: (for out of bed event) 

σm < 0.1 × adaptive threshold  

 

All the values used for the conditions were based on the training dataset. For 

instance, the upper threshold was determined by the mean performance evaluation 

of the training set for an apneic event decision. As shown in Figure 2-4, when the 

value for the upper threshold of an apneic event decision was 0.7, the mean 

performance was the highest. Interestingly, this 70% threshold level for an apneic 

event decision corresponded to standard hypopnea scoring rules [54]. In this analysis, 

Cohen’s kappa (k) coefficient was marked as the “mean performance.” All the 

analyses were performed using MATLAB software (MathWorks Inc., USA, R2015a 

version). 
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2.2.3. Statistical Analysis 

 To evaluate the AHI estimation performance, a linear regression analysis was used 

for the correlation coefficient, and the Bland-Altman method was used to assess the 

agreement [87]. In this analysis, statistical significance at the 5% level was used. In 

addition, the sleep apnea diagnosis was conducted based on three levels of AHI cut-

off values because there was no threshold value for AHI that clearly discriminated 

patients with and without sleep apnea [41]. 

According to the minute-by-minute analysis, if apneic events occurred more than 

once (up to 6), the current minute was considered to be an “estimated apnea minute 

(ApneaEST).” The same rule was applied to the apneic events from PSG (ApneaPSG), 

and minute-by-minute statistical analyses between ApneaEST and ApneaPSG were 

performed. The sensitivity, specificity, and accuracy were used for these statistical 

analyses. 

 In the analysis, the sensitivity denoted the proportion of correctly identified apnea 

minutes, while the specificity denoted the proportion of other correctly identified 

states. In addition, the performance of the proposed method was quantified using 

Cohen’s kappa, which is very commonly used for studies that measure the agreement 

between two separate evaluators [88]. 
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2.3. Results 

2.3.1. AHI Estimation 

 To evaluate the performance of the system, the algorithm determined by the 

training dataset was applied to the test dataset, and the apneic event estimation results 

were compared with the ones from PSG. The AHI from the proposed method 

(AHIEST) was compared with the one from PSG (AHIPSG). As shown in Figure 2-5(a) 

[85], a significant correlation (Pearson’s correlation coefficient = 0.94, p < 0.001) 

was found between AHIEST and AHIPSG. Figure 2-5(b) shows the agreement between 

AHIEST and AHIPSG, which was evaluated by using the Bland-Altman method. In this 

figure, the mean difference between the AHI values was 2.3 events/h (no significant 

difference) and approximately 96% (25 of 26) of the cases were within the dashed 

lines (95% confidential interval, from –15.0 to 10.2).  

 

 



27 
 

 

 

Figure 2-5. Relationship between AHIs from PSG and proposed method.  
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Table 2-3 shows a comparison between the AHI estimation results from the 

proposed method and those from previous methods. The results from the oronasal 

airflow based [42] and PVDF thermal sensor based methods [37] had similar 

performances compared with proposed ones. In other studies, a nasal airflow based 

method [89] showed a higher correlation coefficient than proposed method, while a 

peripheral arterial tonometry based method [41] showed a lower correlation 

coefficient than the one from proposed method. In Table 2-3, concordance means 

the ratio of cases that were within 2 standard deviations in the Bland-Altman plot. 

 

 

 

 

Table 2-3. Comparisons of sleep apnea detection results with previous studies. 

Author (year) Method N R p Concordance 

Han (2008) Nasal Airflow 21 0.98 < 0.01 20/21 

Ayas (2003) 
Peripheral arterial 

tonometry, SaO2 
30 0.87 < 0.001 26/30 

White (1995) 

Oronasal airflow, SaO2, 

chest & abdominal 

motion 

30 0.94 < 0.001 n/a 

Nakano (2007) PVDF thermal sensor 299 0.94 < 0.001 n/a 

Koo (2011) PVDF impedance belts 50 0.91 n/a n/a 

Hwang (2015) PVDF sensor 26 0.94 < 0.001 25/26 

N: number of participants; R: Pearson’s correlation coefficient; p: P-value 
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2.3.2. Diagnosing Sleep Apnea 

With AHI thresholds of 5, 15, and 20 events per hour, the sleep apnea diagnosis 

results for the test dataset were assessed using various statistical values. As shown 

in Table 2-4, for all of the AHI thresholds, the kappa statistic revealed almost perfect 

agreement (k > 0.8), and the area under the receiver operating characteristics curve 

(ROC) was greater than 0.98. At AHI thresholds of 5 and 15, there was one false 

positive in each case. However, the estimated AHIs slightly exceeded each AHI cut-

off level (5.1 and 15.3 events/hour). 

 

 

 

 

Table 2-4. Diagnostic results at three AHI threshold levels. 

Parameter AHI > 5 AHI > 15 AHI > 20 

Sensitivity (%) 100 100 92.3 

Specificity (%) 75 91.7 92.3 

PPV (%) 95.7 93.3 92.3 

NPV (%) 100 100 92.3 

Accuracy (%) 96.2 96.2 92.3 

Kappa statistic 0.84 0.92 0.85 

ROC AUC 0.98 0.99 0.98 

AHI: apnea hypopnea index; PPV: positive predictive value;  
NPV: negative predictive value;  
ROC AUC: area under the receiver operating characteristics curve 



30 
 

2.3.3. Minute-By-Minute Sleep Apnea Detection 

The minute-by-minute sleep apnea detection results are shown in Table 2-5. From 

the test dataset, each statistical result was calculated depending on the severity of 

AHI. From the normal (AHI < 5) to severe level (AHI > 30), the specificity and 

accuracy were gradually decreased. A kappa statistical analysis revealed a borderline 

case between substantial (0.6 < k < 0.8) and moderate agreement (0.4 < k < 0.6), 

whereby the overall k = 0.6 [90].  
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Table 2-5. Minute-by-minute sleep apnea detection. 

Set Group N 
Sensitivity 

(%) 

Specificity 

(%) 

Accuracy 

(%) 

Kappa 

statistic 

Training Total 6 69.4±6.3 91.1±7.3 84.5±7.3 0.58±0.06 

Test Total 26 72.9±10.9 90.6±6.5 85.5±6.6 0.60±0.10 

 

Apnea 

Severity 

Normal 4 72.7±9.6 96.9±1.0 95.4±1.2 0.63±0.07 

 Mild 8 68.8±15.6 92.4±3.1 88.4±3.2 0.57±0.12 

 Moderate 5 74.1±7.0 88.7±4.8 82.9±2.2 0.63±0.04 

 Severe 9 75.9±8.7 87.3±8.5 80.0±5.4 0.59±0.11 

N: number of participants; AHI: apnea hypopnea index 
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Figure 2-6 shows apnea minute estimation results for the best case (Figure 2-6(a), 

subject #5) and worst case (Figure 2-6(b), subject #21) from the nocturnal data [85]. 

In the best case, AHI, sensitivity, specificity, accuracy, and kappa statistic were 46.2 

events/h, 91.9%, 88.7%, 90.8%, and 0.79, respectively. In the worst case, the 

corresponding values were 5.1 events/h, 82.9%, 87.7%, 87.3%, and 0.45, 

respectively. 
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Figure 2-6. Minute-by-minute sleep apnea detection results for the best and 

worst cases. 
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2.4. Discussion 

2.4.1. Agreement between Proposed Method and PSG 

The apnea detection process was based on the following steps: 1) extraction of the 

respiratory signal from the PVDF data; 2) principal component extraction and data 

segmentation; 3) threshold determination; and 4) apneic event decisions. When the 

proposed method was applied to the test dataset, it was shown that the estimated AHI 

from the proposed method was significantly correlated with the one from PSG 

(Figure 2-5(a)). In the minute-by-minute analysis (Table 2-5), for all of the subjects, 

the kappa statistics revealed greater than moderate agreement (k > 0.4). Furthermore, 

about half (12 of 26) of the subjects showed substantial agreement (k > 0.6) in the 

test set. Other results (Table 2-4) showed that the proposed algorithm could 

accurately diagnose the sleep apnea patients based on the high accuracy and 

agreement of the results. Consequently, it can be concluded that the results of sleep 

apnea detection method were comparable to those of PSG. Because the PVDF film 

based method is simple and does not require trained experts, if combined with signal 

processing unit, it can be used for ambulatory sleep apnea monitoring. Moreover, it 

can support apnea event detection during PSG recording. 

 

2.4.2. Comparisons with Previous Studies 

The proposed sleep apnea detection method had an accuracy similar to that for the 

ambulatory device that is currently used in clinical practice or constrained PVDF 

based methods (Table 2-3). For instance, Ayas et al. used a wrist-worn device that 



35 
 

combines PAT, actigraph, and arterial oxygen saturation to diagnose OSA [41]. Even 

though the device used the attenuation of the PAT signal amplitude, which is 

strongly correlated with apnea [91], along with the blood oxygen saturation (SaO2) 

signal, which directly reflects the absence of breathing, the correlation coefficient 

between PSG AHI and the wrist-worn device was lower than that of the proposed 

one. Another example is the NightWatch (NW) system, which records the SaO2, 

oronasal airflow, and chest and abdominal wall motion using sensors attached to the 

patient’s face and body [42]. White et al. assessed the accuracy of the NW system 

used at home and in the lab to monitor sleep apnea. Although NW collected many 

physiological signals for apnea detection, its AHI estimation performance was 

similar to results from this study. Han et al. also detected apneic events using a single 

nasal airflow channel from PSG data [89]. The performance of their method was 

found to be better than the proposed one in a linear regression analysis of AHI, while 

the concordance on the Bland-Altman plot calculated in this study was slightly 

higher than that found in their study. 

Koo et al. detected respiratory events using PVDF impedance belts surrounding the 

patient’s chest and abdomen [82], and their method was comparable to standard 

respiratory inductance plethysmography in determining respiratory events during 

PSG. Nakano et al. monitored oronasal airflow using a PVDF thermal sensor, and 

found that an airflow monitor could be used to detect sleep-disordered breathing [37]. 

Berry et al. compared the readings from a PVDF thermal sensor attached to the upper 

lip with a mask pneumotachograph and accurately detected respiratory events 
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compared with the detection accuracy of pneumotachograph in patients with OSA 

[81]. Even though they used belts or a thermal sensor that could directly measure the 

respiratory-induced signals, there were no significant differences in the AHI 

estimation results between the constrained methods and the proposed method. In 

particular, the apnea diagnostic ability at a fixed AHI threshold of the proposed 

method performed better in relation to the sensitivity, specificity, kappa statistics, 

and area under the ROC than the other methods with a PVDF sensor [37, 82]. 

Moreover, the greatest disadvantage of these previous systems was the necessity for 

the subject to wear or attach the PVDF sensor to their body or face during sleep, 

which could interrupt their normal sleep architecture.  

 

2.4.3. Validation of PVDF Film Sensors 

In this study, the PVDF sensors were uniformly oriented under the subject’s back 

position in a particular direction. To ensure the validity and reliability of the 

respiratory signal measurements, the PVDF sensors were aligned horizontally as 

shown in Figure 2-1, because subjects tend to move more often from side to side 

than in the longitudinal planar direction (up and down) during sleep. Sensors that are 

similar in shape and size to proposed one can easily be found in several 

commercialized sleep monitoring devices. For example, SleepScan SL-501TM 

(TANITA; Tokyo, Japan) is a device that collects numerous kinds of physiological 

signals during sleep, including the pulse rate, respiratory rate, and body motion data, 

and it is designed to be long in the horizontal direction. Other analogous examples 
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are the EarlySense SystemTM (EarlySense; Massachusetts, USA) and Nemuri (which 

means “Sleep”) SCAN NN-1300TM (PARAMOUNT BED; Tokyo, Japan). Using 

PVDF sensors, not only respiratory signals, but also BCG signals could be measured 

(Figure 2-2). Moreover, when the PVDF sensor was aligned horizontally, the best 

signal-to-noise ratio (SNR) for the BCG signal was revealed in the preliminary test. 

It is speculated that blood ejection-induced vibration was transferred more strongly 

along a particular axis to the sensor through the bed mattress during the recording.  

 

2.4.4. Validation of Sleep Apnea Detection Algorithm 

During PSG recording, the respiration patterns were different for the various subjects 

and varied depending on the position in bed and the sleep posture. To consider these 

things, adaptive thresholds were set based on the standard deviation of the PVDF 

signals for every minute for each subject in the apnea detection algorithm. As a result, 

accurate AHI estimation results could be obtained compared with PSG AHI. 

However, proposed method tended to underestimate apneic events at higher AHI 

level, as shown in Figure 2-5(a) and (b). At this level, apneic events occurred 

frequently in a short period, and the apneic event detection was ineffective under 

these conditions. In this study, the apnea detection algorithm was developed based 

on a “fixed time window” in consideration of real-time processing for ambulatory or 

home monitoring purposes. Apnea can persist for more than 30 s (1 epoch) in patients 

with severe apnea, and these durations can be diagnosed as normal breathing in the 

algorithm because the apnea threshold was set based on a change in the standard 
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deviation of the PVDF data in the fixed time window. This is why a 60 s analysis 

window was used instead of 1 epoch, which is the most widely used time scale in 

sleep studies. Despite these efforts, the increased baseline of the threshold due to the 

restricted time window made it difficult to detect consecutive multiple apneic events. 

In contrast, proposed method tended to overestimate apneic events at the lower AHI 

level. One could speculate that it may misestimate a respiratory signal drop as an 

apneic event that does not meet the standard scoring criteria. Moreover, other SRBD 

such as snoring, respiratory event-related arousals (RERAs), upper airway 

obstruction, and Cheyne-Stokes breathing could occur in patients with sleep apnea 

[25]. These can also influence the amplitude decrease in the respiratory signals and 

might be estimated to be sleep apnea or hypopnea in the system. Moreover, PVDF 

signals may be distorted by motion artifacts that cannot be removed completely from 

the analysis process, which is one of the reasons that algorithm overestimates apneic 

events at a lower AHI. Despite these shortcomings, the overall apnea detection 

performance showed a high relationship between AHIs (R = 0.94). 

In addition, as shown in Table 2-5, the sensitivity was significantly lower than the 

specificity in the normal and mild severity groups. In these groups, the apnea 

detection sensitivity could be reduced considerably by only a few wrong estimates 

because the percentage of sleep apnea occurrences was markedly less than that of 

normal breathing. Thus, the kappa statistic was also used to evaluate the apnea 

detection performance. In particular, the difference between the sensitivity and 

specificity of the normal group was approximately 10% less than that of the moderate 
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severity group, but there was no difference between the overall kappa statistics. 

Therefore, it could be concluded that the proposed method showed similar apnea 

detection performances in all of the groups. In this study, the algorithm performed 

poorly when subjects slept in a lateral posture. During the respiratory cycle, 

respiration-induced vertical (frontal axis) pressure was effectively transferred from 

the body to the PVDF sensors in a supine or prone posture. However, respiration-

related vertical pressure was transferred horizontally to the PVDF sensor in the 

lateral posture, and the respiratory signal measured by the sensor was significantly 

attenuated or distorted. As a result, the apnea detection performance in the lateral 

posture was relatively low and reflected a trade-off between detection accuracy and 

unconstrained monitoring.  

 

 

 

 

 

 

 

 

 



40 
 

CHAPTER 3. SNORING DETECTION 

 

3.1. Methods 

3.1.1. Participants and PSG Data 

 Twenty OSA patients participated in this study, and overnight PSGs were 

conducted at SNUH Center for Sleep and Chronobiology. On the basis of the 

standard PSG routine [54], data were collected from an EEG; bilateral EOG; EMG 

from the mandible and bilateral tibialis anterior muscles, oronasal airflow, 

abdominal and thoracic movement; lead II ECG; SpO2; body position; and a 

reference snoring signal from a piezoelectric vibration sensor (Cadwell, Kennewick, 

WA, USA) placed on the neck. Snoring signals from the PVDF sensor were 

simultaneously recorded with the PSG data. All of the signals were collected using 

a NI-DAQ 6221 (National Instruments, Austin, TX, USA) device with a 250 Hz 

sampling frequency. After PSG recording, sleep stages and associated events 

including sleep apnea were scored by a registered PSG technologist according to the 

established criteria [54]. Table 3-1 summarizes the parameters related to the subjects 

and PSG results. 
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Table 3-1. Sleep related parameters of subjects for snoring detection. 

Parameters  

Gender (Male/Female) 17/3 

OSA severity (Mild/Moderate/Severe) 1/7/12 

Parameters Mean ± S.D 

AHI (events/h) 41.8±19.3 

Age (years) 49.4±13.6 

BMI (kg/m2) 28.2±3.7 

Sleep latency (min) 6.2±4.0 

Stage N1 & N2 (%) 63.7±9.9 

Stage N3 (%) 4.5±7.0 

Stage REM (%) 16.7±4.9 

Total sleep time (h) 8.1±0.5 

Sleep efficiency (%) 86.1±8.0 

S.D.: standard deviation; AHI: apnea hypopnea index; BMI: body mass index; 
REM: rapid eye movement; N: non-REM sleep 
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3.1.2. Feature Extraction for Snoring Event Detection 

 The study about an unconstrained snoring detection was published as a journal 

paper [84]. As shown in Figure 3-1, the signal outputs of the PVDF sensor include 

three types of physiological signals, including respiration, BCG, and snoring [84]. 

During snoring occurrences, the vibration of respiratory structures caused by the 

obstructed air movement was detected by the PVDF sensor, and the output signals 

of the sensor reflected the snoring of the subjects. When snoring occurred, the sensor 

signal was relatively noisy and had no standard waveform compared to the other bio-

signals. Thus, this study used spectral features to distinguish snoring events from 

normal breathing, body movement, or other physiological signals. 

 

 

Figure 3-1. Signal output from the PVDF sensor for snoring detection. 



43 
 

The unprocessed data from four channels were averaged and band-pass filtered 

with a pass band of 10 to 100 Hz, which is the recommended filter band for snoring 

recordings from the AASM manual [54]. The data were also notch filtered at 60 Hz 

to remove power line noise. After filtering, two spectral features were extracted 

using a short-time Fourier transform (STFT). The STFT is expressed as follows:  

 

,ܖሾ܆ ሿܓ ൌ ∑ ࢔ሾ࢞ ൅࢓ሿ࢝ሾ࢓ሿ࢐ିࢋቀ
૛࣊
ࡺ
ቁିࡸ࢓࢑૚

ୀ૙࢓          (3-1) 

 

where n is the sample number, x[n] is the filtered PVDF data, w[m] is the 128 point 

sliding Kaiser window function, k is the frequency index, and L is the length of the 

analysis window. The STFT analysis was conducted using a 256 fast Fourier 

transform (FFT) length with 10 overlapping samples. The type and length of the 

sliding window, FFT length, and overlapping samples were set experimentally. 

Figure 3-2 shows the band-pass filtered PVDF signals and their spectrograms during 

snoring without movement, snoring with movement, breathing without movement, 

and breathing with movement [84]. As shown in Figure 3-2(a) and (b), when snoring 

occurred, the PVDF spectrum included significant frequency components and peak 

frequency of over 25 Hz, whereas these frequency characteristics did not occur 

during movement or breathing, as shown in Figure 3-2 (c) and (d). In this figure, 

dashed lines in the spectrograms indicate 25 Hz and dashed squares indicate body 

movement occurrences. 
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Figure 3-2. Band-pass filtered PVDF signals and their spectrograms. 
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Additionally, previous literature reported that PVDF signals containing periodic 

components with fundamental peak frequency from 20–30 Hz to approximately 

250–300 Hz were manually scored as snore events [83]. With these criteria, the 

following two spectral features were selected to detect snoring events. The first 

spectral feature was the power ratio (PR), which is the ratio of the sum of power 

produced at greater than 25 Hz to the sum of power produced at less than 25 Hz. 

 

࢔ࡾࡼ ൌ ∑ ,࢔ሾࢄ ૚ିࡺୀ࢑ሿ࢑
ୀ૛ૠ࢑ ∑ ,࢔ሾࢄ ୀ૛૟࢑ሿ࢑

ୀ૙ൗ࢑          (3-2) 

 

The other feature was peak frequency (PF), which is the maximum value among 

the frequency (k) values in each fixed time (n), as described by (3-3). 

 

࢔ࡲࡼ ൌ              (3-3)                          ,࢞ࢇ࢓࢑

,࢔ሾࢄ	|	܍ܚ܍ܐܟ	 |	ሿ࢞ࢇ࢓࢑ ൌ ,࢔ሾࢄ	|	࢞ࢇ࢓  |	ሿ࢑

 

Examples of the PR and PF are shown in Figure 3-3 [84]. As shown in the Figure, 

there were no significant changes in either PR or PF when body movement occurred, 

whereas both increased during snoring. After feature extraction, PR and PF were 

used as the input to the support vector machine (SVM) for classification. In this study, 

only these two spectral features were used to establish a fast and simple snoring 

detection algorithm. 
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3.1.3. Data Selection and Reference Snoring Labelling 

 To establish the snoring detection algorithm, 50 epochs of PVDF data composed of 

20 “snoring” (SN), 20 “snoring with movement” (SM), and 10 “normal breathing” 

(NB) epochs were randomly selected for each subject (total 1000 epochs of data). 

The descriptions of the SN, SM, and NB epochs are: 

 

SN: only snoring occurred in an unmoving state 

SM: both snoring and body movement occurred 

NB: normal breathing without snoring 

 

Figure 3-3. Spectral features of the PVDF data.  
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In this study, the EMG signal from the tibialis anterior muscle was applied as a 

reference for assessing body movement. If the output voltage of the EMG signal 

exceeded 4.5 V (almost saturated), the signal was scored as body movement. 

Because there is no clear definition for a “snoring event,” reference snoring events 

were visually and aurally observed by three healthy human observers without any 

recognised auditory impairments. First, each observer saw only the reference snoring 

signal waveform from the PSG snoring sensor on an LCD monitor (SyncMaster 

T240HD, Samsung, Korea) to confirm the snoring events. A consensus was reached 

if each observer’s labelling concurred within 1 s of each other, and the labelling 

results from all of the observers were combined into a single label by applying a 

logical AND operation. In other words, the overall event result became a non-snore 

if at least one the observers scored the data as a non-snore. For events on which the 

observers did not concur, the observers reconfirmed the events by listening to the 

converted audio files using headphones (EH-150, Sennheiser, Germany). The results 

of each observer’s labelling process were not revealed to the other observers. 
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3.1.4. Snoring Event Classification Based on the SVM 

 The SVM is a supervised machine learning model used for classification or 

regression analysis. The SVM constructs a maximum margin hyperplane between 

the two classes, and the support vectors indicate the feature points that are closest to 

the hyperplane [92]. An equation of the separating hyperplane for binary 

classification can be described as 

 

ሻܠሺ܌ ൌ ܟ ∙ ܠ ൅ ሻܢሺܛܛ܉ܔ܋							,܊ ൌ  ሻ       (3-4)	ሻܠሺ܌	ሺܖ܏ܑܛ

 

where x is the feature vector, w is the normal vector to the hyperplane, • denotes the 

dot product, and b is the bias. Through the machine learning process, the margin 

maximizing values of w and b are obtained. The SVM can be effectively applied to 

nonlinear classification by mapping the feature data into higher dimensions, where 

it exhibits linear patterns, which is called the “kernel trick” [93]. Therefore, the 

selection of the proper kernel function is critical because classification performance 

can vary for the same data. To generalize and simplify the algorithm, a linear kernel 

function of the SVM was used in this study. Figure 3-4 shows the distribution of the 

sample data in the feature space before (a) and after (b) transformation using the 

linear kernel function [84]. As shown in Figure 3-4(b), snore classes were separated 

from the other classes by the hyperplane of the SVM in the transformated space. 

Figure 3-4(c) shows enlargement of dashed rectangular box in Figure 3-4(b). 
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Figure 3-4. Scatter plot of three categorized classes in the feature space. 
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Using the SVM classification, each result was first classified into two categories: 

“snore” or “non-snore.” In this study, non-snore events included all but the snore 

events, including normal breathing, body movement, and silence. Finally, two post-

processing steps were conducted to prevent overestimation of the snore events. First, 

a snore event decision was made if there were two or more consecutive snore events. 

Second, if two distinct snore events occurred within 1 s, they were considered 

together as a single snoring event. All snoring detection procedures are shown 

schematically in Figure 3-5 [84]. Process was performed with the following steps: 1) 

extraction of the snoring signal; 2) extraction of spectral features; 3) classification of 

snore events; 4) performance evaluation. 
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Figure 3-5. Snoring detection procedure.  
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3.2. Results 

3.2.1. Event-By-Event Snoring Detection 

 For the validation of the algorithm, the SVM was trained and tested on the basis of 

the leave-one-out cross validation (LOOCV) technique. In other words, 950 epochs 

of data from 19 subjects were used as a training set for the SVM and 50 epochs (20 

SN, 20 SM, and 10 NB) of data from one subject were selected as a test set, and this 

procedure was repeated 20 times for each subject. After applying LOOCV, the 

snoring event detection results were compared with those from the reference snoring 

labelling. To evaluate the performance of proposed algorithm, sensitivity and 

positive predictive value (PPV) were used. Sensitivity is defined as TP/ (TP + FN) 

and PPV is defined as TP/ (TP + FP), where TP, FN, and FP denote true positive, 

false negative, and false positive, respectively. In the study, TP represents the 

number of events correctly classified as snore events. Table 3-2 shows the SN, SM, 

and NB classification results for all 1000 epochs. From the Mann–Whitney–

Wilcoxon test, there were no significant differences in the sensitivity (p = 0.461) and 

PPV (p = 0.072) values between the SN and SM results from proposed method and 

those from the reference labelling. 

Examples of snore event detection for the SN, SM, and NB epochs are shown in 

Figure 3-6 [84]. As shown in Figure 3-6(b), snore-related PVDF data were correctly 

classified as snore events whereas body movement events were correctly classified 

as non-snore events. 
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Table 3-2. SN, SM, and NB classification results for all epochs. 

 SN SM NB Total 

TP 2050 1342 0 3392 

FN 104 88 0 192 

FP 33 38 15 86 

Sensitivity (%) 95.2 93.8 - 94.6 

PPV (%) 98.4 97.2 - 97.5 

SN: snoring; SM: snoring with movement; NB: normal breathing;  
TP: true positive; FN: false negative; FP: false positive;  
PPV: positive predictive value 

 

Figure 3-6. Snore event detection for SN, SM, and NB epochs.  
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 Table 3-3 shows a comparison between the snore event detection results from the 

proposed method and those from previous studies. The snore event detection 

sensitivity from the ambient microphone-based methods had lower performance 

(1.5%-12.4%) compared with the proposed one [55, 56, 58, 59], except for one case 

[57]. In other studies, air mattress [61] and piezo snoring sensor based [62] methods 

showed a slightly lower sensitivity than the proposed method.  
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Table 3-3. Comparisons of snoring detection results with previous studies. 

Author (year) Sensor Class N Labelling Sensitivity (%) 

Duckitt (2006) Mic 
Snore/ 
others 

6 snores Manually 82.2 

Cavusoglu (2007) Mic 
Snore/ 
non-snore 

18 snores,  
12 OSA 

ENT specialist 90.2 

Yadollahi (2010) 
Mic (ambient) Snore/ 

breathing 
23 OSA 

Auditory 
& visual 

94.8 
Mic (tracheal) 98.3 

Shin (2010) Air mattress 
Snore/ 
breathing 

6 normal Simulation 93.0 

Azarbarzin (2011) 
Mic (ambient) Snore/ 

non-snore 
7 snores,  
23 OSA 

Auditory 
& visual 

93.1 
Mic (tracheal) 98.6 

Emoto (2012) 2 Mic 
Snore/ 
breathing 

4 normal,  
4 OSA 

Listening 89.2 

Lee (2013) Piezo snoring 
Snore/ 
silence 

21 OSA Technician 93.3 

Hwang (2015) PVDF 
Snore/ 
non-snore 

20 OSA 
Auditory 
& visual 

94.6 

OSA: obstructive sleep apnea; ENT: ear-nose-throat; Mic: microphone 
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3.2.2. Snoring Event Detection and Sleep Posture 

 Snoring detection performance was also evaluated by sleep posture. During PSG, 

the sleep posture of each subject was obtained using a sleep position sensor (SPL 

Lite, Pro-Tech, USA). The sleep position sensor provided four categories of posture 

(supine, prone, right lateral, and left lateral). After SVM classification, snoring 

detection results were classified according to the sleep posture, as shown in Table 3-

4. A Kruskal–Wallis one-way analysis of variance (ANOVA) test [94] was then used 

to assess the difference in results between different postures; there were no 

significant differences in the sensitivity (p = 0.194) and PPV (p = 0.649) values. 

 

 

 

 

 

 

 

Table 3-4. Snoring detection performance based on sleep postures. 

 Supine Right Left Prone 

No. of epochs 657 90 52 1 

Sensitivity (%) 94.6 95.0 94.0 - 

PPV (%) 97.9 98.4 97.5 - 

Right: right lateral; Left: left lateral; PPV: positive predictive value 
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3.2.3. Epoch-By-Epoch Snoring Detection 

 Snoring detection performance was also evaluated using one entire night of PVDF 

data. Overnight data from 10 randomly selected participants (out of 20 total 

participants) were subjected to epoch-by-epoch analysis. For the analysis, if snoring 

events occurred more than once in one epoch of PVDF data, that epoch was 

considered to be an “estimated snore epoch.” The same rule was applied to reference 

snore signals, and epoch-by-epoch statistical analysis between the “estimated snore 

epoch” and a “reference snore epoch” was performed. The epoch-by-epoch results 

are shown in Table 3-5. A kappa statistical analysis revealed a borderline case 

between almost perfect (0.8 < k < 1) and substantial agreement (0.6 < k < 0.8), 

whereby the overall k = 0.8 [90]. Figure 3-7 shows the snore epoch estimation results 

for the best case (Figure 3-7(a), subject #2) and the worst case (Figure 3-7(b), subject 

#1) [84]. In the best case, the sensitivity, specificity, accuracy, and kappa statistic 

were 98.3%, 86.0%, 94.9%, and 0.87, respectively. In the worst case, the 

corresponding values were 95.9%, 75.8%, 87.6%, and 0.74, respectively. 
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Table 3-5. Epoch-by-epoch snoring detection. 

No. of 

epoch 

Sensitivity 

(%) 

Specificity 

(%) 

Accuracy  

(%) 

Kappa 

statistic 

953±62 95.7±3.6 84.2±5.9 91.2±2.1 0.80±0.04 

 

Figure 3-7. Epoch-by-epoch snore detection results for the best and worst cases. 
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3.3. Discussion 

3.3.1. Agreement between Proposed Method and Reference Snoring 

The snoring event detection process was performed with the following steps: 1) 

extraction of the snoring signal from the PVDF data; 2) extraction of spectral features 

using STFT; 3) classification of snore events with training of the SVM classifier. For 

algorithm evaluation, LOOCV was adopted, and it was shown that the detected snore 

events strongly concurred with those from the reference snore signals. As a result, a 

total of 3392 snore events were correctly detected using the proposed method. In the 

epoch-by-epoch analysis (Table 3-2), for all participants, the kappa statistic was 

greater than substantial agreement (k > 0.6). In addition, more than half (6 of 10) of 

the participants exhibited almost perfect agreement (k > 0.8); thus, the overall k was 

in a borderline case between almost perfect and substantial agreement [90]. 

Consequently, it can be concluded that proposed method can be used for snoring 

detection in a sleep monitoring system. 

 

3.3.2. Comparisons with Previous Studies 

 The proposed snoring detection method had a higher or similar performance 

compared with previous microphone-based or constrained PVDF based methods 

(Table 3-3). For example, Duckitt et al. used a freestanding microphone to monitor 

snoring automatically on the basis of hidden Markov models (HMMs), and the 

results were compared with manually obtained annotations [58]. That method 

classified snore events with 82.2% sensitivity, which was approximately 10% lower 



60 
 

than results from this study and was vulnerable to detecting a snore in regular 

breathing sounds or ambient noises. Cavusoglu et al. used a microphone that was 

placed over the subject’s head to detect snoring episodes for simple snorers and OSA 

patients[59]. An analysis accounting for ambient noise during sleep was not 

conducted in that study, and snoring detection performance was lower than that of 

the proposed one in OSA patients.  

Yadollahi et al. used two microphones, one placed over the trachea and the other 

hung in the air (ambient microphone) to distinguish the normal breathing and snore 

sounds [57]. Azarbarzin et al. also used two microphones (tracheal and freestanding) 

to extract the snore sound from the respiratory sound signals of simple snorers and 

OSA patients [56]. In both of those studies, better snoring detection performance 

was observed when data from tracheal sound recordings were used. However, for 

tracheal sound recordings, the microphone must be attached or placed over the 

trachea, and this can cause a great deal of disturbance and inconvenience to sleeping 

subjects. In addition, noise or vibration caused by body movement could be an 

important issue for tracheal sound recordings; nevertheless, this was not considered 

in either study. Emoto et al. used a matched pair of microphones for breathing and 

snoring episode detection in sleep sounds [55]. Although they used only eight 

subjects’ data and two microphones, the overall snoring detection sensitivity was 

approximately 5% lower than results of this study.  

In other previous studies, Shin et al. used an air mattress with a balancing tube as a 

snoring detection sensor [61]. Although they were able to monitor snoring events on 
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the basis of an unconstrained measure, the subjects were instructed to simulate 

snoring while awake to validate the detection algorithm, and no simple snorers or 

OSA patients participated in the experiment. Lee et al. also used a piezoelectric 

sensor in order to establish a snoring detection method based on HMMs [62]. 

However, the sensor used in their experiments was attached to the neck during an 

overnight PSG recording, and this could affect the subjects’ normal sleep because of 

the inconvenience of the direct electrode attachment. The proposed method showed 

better performance, as well as the convenience of unobtrusive measurements 

compared to the piezoelectric sensor method.  

Norman et al. analysed 62 subjects’ PSG data to evaluate the Sonomat, which uses 

a PVDF film sensor, with regard to its capability for diagnosing SRBD, and they 

verified that the Sonomat can be a reliable device for the detection of snoring events 

[83]. However, although they used a PVDF sensor for snoring detection, all Sonomat 

events were manually scored in the same manner as PSG scoring because the focus 

of their research was the validation of the sensor. Object of this study was focused 

on the development of a method for snoring detection using a PVDF sensor. 

 

3.3.3. Validation of the Snoring Detection Algorithm 

 In the previous studies using PVDF films as nonintrusive physiological sensors, 

motion artifacts were considered an important issue because the films are sensitive 

to minute movements and external vibrations [76, 80]. In this study, an accurate 

snoring detection method robust to the occurrence of motion artifacts was established. 
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From Table 3-2, the proposed method classified snore events with an average 

sensitivity of over 90%, and PPV of over 95%, for both “snoring” and “snoring with 

movement” epochs. Furthermore, there was no significant difference in the snore 

event detection results between the SN and SM epochs. One could speculate that the 

two selected spectral features (PR and PF) were proper features for snore event 

detection and motion artifact event rejection. The frequency band of the motion 

artifact was relatively low compared to that of snoring, and acceptable results for 

each SN and SM epoch were able to obtained using this spectral information. 

SVM was originally designed for binary classification and is known to perform best 

for two group classification problems [92, 95, 96]. Based on the previous researches, 

SVM was selected, rather than other possible classifiers such as the HMM or 

artificial neural network, for the binary classification of snore/non-snore events. As 

a result, only two spectral features and a linear SVM classifier were used to establish 

a simple, fast, and generalized snoring detection algorithm. Two complementary 

spectral features were selected, and proposed method was able to correctly classify 

snore events with 94.6% sensitivity, despite using only two simple features. 

With regard to the sampling rate of the analysis data, the snoring-related vibration 

from a PVDF sensor can be measured with a 250 Hz sampling rate, whereas the 

microphone-based studies that were referenced in this study required at least a 10 

kHz sampling rate for snoring sound recording, which may be unsuitable for 

residential or ambulatory monitoring devices. Quantitatively, proposed method 

required approximately 4.5 s to process one entire night (approximately 8 h) of 
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PVDF data, whereas a previous microphone-based study required approximately 6 

min to process 6 h of data[59]. Less than 5 s can be considered as an acceptable 

processing time for the data from one entire night.  

Proposed method tended to overestimate snore events in the epoch-by-epoch 

analysis (Table 3-5, and Figure 3-7). It is considered that algorithm does not entirely 

reject motion artifacts that influenced the PVDF signals. As shown in Figure 3-4(c), 

spectral features during body movement were relatively close to the SVM 

hyperplane, relative to those from normal breathing. This means that body movement 

can be more easily misclassified as a snore event in some SVM classifications. In 

addition, wakefulness during sleep can be related to misclassification of non-snore 

events because wakefulness is similar to a motion artifact. Another suitable feature 

that could be selected for motion artifact or wakefulness detection, such as a motion-

related frequency band (relatively low-frequency), may improve method’s accuracy 

for ‘real’ snoring detection. Alternatively, one could speculate that the proposed 

method may have misclassified non-detectable levels of snoring signals that were 

not noted by the observers. Despite these deficiencies, the average snore epoch 

detection accuracy for one entire night of data was over 90%, and it can be regarded 

that almost all motion artifact periods were effectively excluded in the analysis 

process.  

During sleep, snoring signal patterns can vary depending on the subject or sleep 

posture [97]. To consider these aspects, the snoring detection algorithm was analysed 

according to three sleep postures (supine, left and right lateral), and there were no 
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significant differences in the snore event detection results among these sleep postures 

(Table 3-4). From the PVDF data, there was only one snoring or non-snoring epoch 

of prone posture, and it can be concluded that it is difficult to sleep in a prone posture 

during PSG because many electrodes are attached to the subject’s face and body. 
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CHAPTER 4. SLEEP STAGES DETECTION 

 

4.1. Methods 

4.1.1. Participants and PSG Data 

 Eleven healthy subjects and thirteen OSA patients participated in this experiment. 

Nocturnal PSG was conducted at the SNUH Center for Sleep and Chronobiology. 

All of the PSG data were collected based on the following standard PSG routine [54]: 

EEGs at the C3-A2 and O2-A1 positions based on the international 10–20 system, 

EMGs from the chin and bilateral tibialis anterior muscles, bilateral EOGs, lead II 

ECG, nasal airflow, abdominal and thoracic movements, snoring, and SaO2. The 

sleep stages were scored by a registered PSG technologist according to the criteria 

developed by the AASM [54]. Based on the AHI (events/hour) results, three mild, 

nine moderate, and one severe OSA patients were determined. A summary of the 

parameters related to the subjects and PSG results is presented in Table 4-1. 

 To develop a sleep stages detection method for PVDF data, data from five subjects 

(approximately 20%) with a normal to severe OSA were randomly selected as a 

training set. To evaluate the algorithm performance, an epoch-by-epoch sleep stages 

detection was conducted for 19 test datasets, and the results were compared with 

those from the PSG. 
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Table 4-1. Sleep related parameters of subjects for sleep stages detection. 

 Normal OSA 

N 11 13 

AHI (events/hour) 1.3±0.9 21.5±9.3 

Gender (M/F) 7/4 8/5 

Age (years) 38.6±19.9 50.2±15.3 

BMI (kg/m2) 23.5±1.7 25.9±3.2 

Sleep latency (min) 13.6±11.7 9.8±9.6 

Stage Wake (%) 18.7±10.0 14.1±8.2 

Stage N1 & N2 (%) 57.5±12.2 63.4±6.9 

Stage N3 (%) 9.6±9.2 5.6±5.3 

Stage REM (%) 14.3±4.5 16.9±4.5 

Total sleep time (h) 8.4±0.4 8.2±0.5 

Sleep efficiency (%) 82.4±9.8 85.9±8.2 

OSA: obstructive sleep apnea; N: number of participants; 
AHI: apnea hypopnea index; BMI: body mass index; REM: rapid eye movement 
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Figure 4-1 shows the signal output from the PVDF sensor for several physiological 

signals, including respiration, BCG, and body movement at the start of PSG and 

middle of the night. However, Figure 4-1 shows that the BCG signal quality was not 

kept constant because it could be easily influenced by the sleep position or contact 

problem. Poor BCG signal quality can be a limitation for the HRV based sleep 

staging method. On the other hand, the PVDF data continuously reflected the 

respiratory-related signal of a subject during an overnight PSG recording. Thus, this 

study used respiration and body movement signal for reliability of the sleep stages 

estimation method. 

 

 

 

 

 

Figure 4-1. Signal output from the PVDF sensor for sleep stages detection. 
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4.1.2. REM Sleep Detection 

In a previous study, a method for estimating REM sleep using the dynamics of the 

respiratory signal from a thermocouple sensor was reported [98]. In this study, that 

algorithm was modified to estimate REM sleep based on the average rate and 

variability of a respiratory signal unconstrainedly measured using the PVDF sensor 

[99].  

First, the process of extracting the common respiratory components reflected in 

the four channels of the PVDF data was conducted. The PVDF data of each channel 

were normalized to have zero mean and unit variance, and PCA was applied to the 

normalized PVDF data to extract the principal components. Thereafter, to obtain a 

common respiratory feature between the four data channels, PC1 was extracted and 

band-pass filtered with a passband of 0.1–0.5 Hz.  

Second, the average respiratory rate of each epoch (30 s) was determined using an 

autocorrelation method [98]. The equation of the autocorrelation method can be 

described as follows: 

 

ሻ࣎ሺ࢞࢞ࡾ ൌ
૚

ࡺ
∑ ࢓ሾ࢙ሿ࢓ሾ࢙ ൅ ૚ି࣎ିࡺሿ࣎
ୀ૙࢓          (4-1) 

 

where R, N, τ, and s denote the autocorrelation, total number of samples in an epoch, 

time delay, and respiratory signal from PC1, respectively. By detecting the first peak 

of the autocorrelation function, the average respiratory rate of each epoch was 

obtained using the following equation: 
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ࢋ࢚ࢇ࢘ࢌ ൌ ࢙ࢌ ⁄࢑ࢇࢋ࢖࣎                    (4-2) 

 

where frate denotes the estimated respiratory rate, fs denotes the sampling rate of the 

signal, and τpeak denotes the delay of the first peak of the autocorrelation, respectively.  

 Third, the parameters and thresholds for the REM sleep estimation were calculated 

[98]. The descriptions for these parameters and thresholds are given in Table 4-2. As 

a smoothing technique, the “robust locally weighted regression” method was 

selected among the smoothing methods available in the MATLAB software 

(MathWorks Inc., USA, R2015a version). This method is a type of weighted linear 

least square regression, and it can be described as follows: 

 

܁ ൌ ∑ ࢏࢘࢏࢏ࢃ
૛ࡹ

ୀ૚࢏                      (4-3) 

 

where W is a weight matrix, and r is the average respiratory rate [100]. 

To modify an existing algorithm for the PVDF data, the data from five subjects 

(approximately 20%) with normal to severe OSA were randomly selected as a 

training set. As a result of the training procedure, the length of the smoothing 

window was changed from 300 epochs (9000 s) to 250 epochs (7500 s). Figure 4-2 

shows respiratory rate and smoothed rate of subject during whole night of sleep 

(Figure 4-2(a)), absolute difference of rate and smoothed absolute difference of rate 

(Figure 4-2(b)), smoothed rate and adaptive threshold 1 (Figure 4-2(c)), and 

smoothed absolute difference of rate with two different threshold levels (Figure 4-



70 
 

2(d)). In this figure, gray regions indicate REM sleep epochs scored by a sleep 

physician. 

 

 

 

Table 4-2. Parameters and thresholds for REM sleep detection. 

Parameters Description 

Respiratory rate Average respiratory rate in an epoch 

obtained by the autocorrelation method 

Smoothed rate Smoothed value of ‘respiratory rate’ with 

30 epochs (900 s) 

Absolute difference 

  of rate 

Absolute value of  

‘respiratory rate’ – ‘smoothed rate’ 

Smoothed absolute 

difference of rate 

Smoothed value of ‘absolute difference of 

rate’ with 30 epochs (900 s) 

Thresholds Description 

Fixed threshold Mean value of ‘smoothed absolute 

difference of rate’ for all training set during 

non-REM sleep (=0.4) 

Adaptive threshold 1 Smoothed value of ‘respiratory rate’ with 

250 epochs (7500 s) + ‘fixed threshold’ 

Adaptive threshold 2 Smoothed value of ‘absolute difference of 

rate’ with 250 epochs (7500 s) 



71 
 

 

 

 

 Finally, candidates for the REM sleep periods were selected when the parameters 

satisfy all the following conditions: 

 

Condition 1: smoothed rate > adaptive threshold 1 

Condition 2: smoothed absolute difference of rate > fixed threshold 

Condition 3: smoothed absolute difference of rate > adaptive threshold 2 

 

 For the selected REM sleep period candidates, the final REM sleep period was 

determined using two post-processing methods.  

 

 

Figure 4-2. The parameters and thresholds for estimating REM sleep. 
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Post-processing 1: 

The estimated REM sleep periods during the first 60 min after sleep onset were 

rejected because an REM sleep period typically occurs 90–120 min after sleep onset 

[51].  

 

Post-processing 2: 

 The estimated REM sleep periods shorter than 5 min were rejected because REM 

sleep tends to occur continuously [51].  

 

All of the REM sleep detection procedures are schematically shown in Figure 4-3.  
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Figure 4-3. REM sleep detection procedure.  
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4.1.3. Wakefulness Detection 

 Body movement signals from the PVDF data were chosen as an indicator for a 

wakefulness detection method. First, each channel of the PVDF data was band-pass 

filtered with a passband of 0.05–0.1 Hz to extract the body movement from the 

PVDF data. After filtering, the absolute value of each channel of the body movement 

signal was calculated. Feature extraction for the wakefulness detection was done by 

taking the square root of the product of the absolute values. This feature extraction 

procedure can be described by the following equation: 

 

܅۴ ൌ ඥሺ|ࢎࢉࡹ࡮૚| ൈ |૛ࢎࢉࡹ࡮| ൈ |૜ࢎࢉࡹ࡮| ൈ  ૝|ሻ      (4-4)ࢎࢉࡹ࡮|

 

where FW denotes the “feature for wakefulness detection,” and BM represents the 

“body movement signal from each channel of PVDF data.” The difference between 

the sleep and wakefulness FW from the normal subject #4 is shown in Figure 4-4. 

The wakefulness state is usually accompanied by a relatively high value of FW, as 

seen in the top figure. The bottom panel shows the hypnogram for comparison. 
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 After the feature extraction, the mean values of FW for every 30 s window were 

calculated for an epoch-by-epoch analysis.  

 

࢓ࢃࡲ ൌ ࢓	ࢋࢎ࢚	ࢌ࢕	ࢃࡲ	ࢌ࢕	ࢋ࢛࢒ࢇ࢜	࢔ࢇࢋ࢓ െ  (4-5)      ࢎࢉ࢕࢖ࢋ	ࢎ࢚

 

 For the wakefulness detection, FWm was compared with the threshold for 

wakefulness, which is expressed as equation (4-6).  

 

࢙࢙ࢋ࢔࢒࢛ࢌࢋ࢑ࢇ࢝ࢊ࢒࢕ࢎ࢙ࢋ࢘ࢎࢀ ൌ ૚ ൈ
૚

ࡺ
൫∑ ࢓ࢃࡲ

ࡺ
ୀ૚࢓ ൯,        (4-6)           

  ܛܐ܋ܗܘ܍	܎ܗ	ܚ܍܊ܕܝܖ	ܔ܉ܜܗܜ	:ۼ

Figure 4-4. Feature for wakefulness detection and hypnogram during PSG.  
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Here, the mth epoch was considered as wakefulness if FWm exceeded the 

wakefulness threshold; otherwise, it was considered as sleep. The value used for the 

wakefulness threshold was based on the training dataset. As shown in Figure 4-5, 

when the value for the wakefulness detection threshold was one, the mean 

performance was the highest. In this analysis, Cohen’s kappa (k) coefficient was 

marked as the “mean performance.” 

 

 

 

 

 

 

 

Figure 4-5. Value determination for threshold of wakefulness detection. 
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The final wakefulness epoch was determined using three post-processing steps.  

 

Post-processing 3: sleep onset 

The first 20 epochs (10 min) after the start of the PSG were fixed as the wakefulness 

epoch.  

 

Post-processing 4: sleep offset 

 The end of the epoch was fixed as a wakefulness epoch. 

 

Post-processing 5: out of bed period 

 Out of bed periods were determined based on the standard deviation of the 

respiratory signals from the PVDF data, which were used for REM sleep detection. 

If the standard deviation of the respiration of the mth epoch (σm) satisfied the 

following conditions, this out of bed period was fixed as a wakefulness epoch. 

 

࢓࣌	܎ܑ ൏ ૙. ૚ ൈ
૚

ࡺ
∑ ࢓࣌
ࡺ
ୀ૚࢓ ,                     (4-7)	

ܕ െ ܐ܋ܗܘ܍	ܐܜ ൌ  ܌ܗܑܚ܍ܘ	܌܍܊	܎ܗ	ܜܝܗ

 

where N denotes the total number of epochs. Figure 4-6 shows an example of an 

estimated out of bed period and SpO2 signals from the normal subject #3. Periods 

with SpO2 values of less than 50% indicated actual out of bed periods during the 

PSG. Figure 4-7 schematically shows all wakefulness detection procedures. 
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Figure 4-6. Correlation between estimated out of bed period and SpO2 during 

PSG. 
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Figure 4-7. Wakefulness detection procedure.  
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4.1.4. SWS Detection 

 Figure 4-8 shows the average respiratory rate and hypnogram during PSG from the 

OSA patient #4. In this figure, the gray dashed squares indicate SWS periods. As 

shown in the figure, the variability of the respiratory rate during SWS (stage N3) is 

relatively stable compared with those of the other stages. On the basis of this 

phenomenon, the variability of the respiratory rate from the PVDF data was chosen 

as a feature for the SWS detection method.  

 

 

 

 

 

 

 

 

Figure 4-8. Average respiratory rate and hypnogram during PSG. 
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First, the average respiratory rate of each epoch (rrate) was obtained using the same 

method as used to detect REM sleep. After the respiratory rate was obtained, the 

differences between adjacent elements of rrate were calculated, and then these values 

were then squared. The feature used for the SWS detection from the respiratory rate 

(frate) can be described by the following equation: 

 

ሿ࢔ሾࢋ࢚ࢇ࢘ࢌ ൌ ሼࢋ࢚ࢇ࢘࢘ሾ࢔ሿ െ ࢔ሾࢋ࢚ࢇ࢘࢘ െ ૚ሿሽ૛            (4-8) 

 

where rrate[n] denotes the respiratory rate of the nth epoch. After the feature 

extraction, the smoothed signal (srate) of frate was obtained by using the moving 

average filter with 10 epochs (300 s). In equation form, this is written as follows: 

 

ሿ࢔ሾࢋ࢚ࢇ࢘ࡿ ൌ
૚

ࡹ
∑ ࢋ࢚ࢇ࢘ࢌ
૚ିࡹ
ୀ૙࢑ ሾ࢔ ൅  ሿ              (4-9)࢑

 

where M is the number of points in the average. Examples of rrate, frate, and srate from 

the OSA patient #4 are shown in Figure 4-9. 
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For the SWS detection, srate was compared with the threshold for SWS, which is 

described by the following equations: 

 

ۻ ൌ
૚

ࡺ
∑ ሻ࢔ሺࢋ࢚ࢇ࢙࢘
ࡺ
ୀ૚࢔                    (4-10) 

ሻܖሺܓ ൌ ൜
૚,						ࢋ࢚ࢇ࢙࢘ ൏ ࡹ
૙,						ࢋ࢚ࢇ࢙࢘ ൒  (4-11)              					ࡹ

ۺ ൌ
૚

ࡺ
∑ ሼࢋ࢚ࢇ࢙࢘ሺ࢔ሻ ∙ ሻሽ࢔ሺ࢑
ࡺ
ୀ૚࢔              (4-12) 

ࡿࢃࡿࢊ࢒࢕ࢎ࢙ࢋ࢘ࢎࢀ ൌ  ૞                 (4-13)/ࡸ	

 

 The nth epoch was determined as SWS if srate was less than thresholdsws; otherwise, 

it was non-SWS. The value used for thresholdsws was based on the training dataset. 

 

Figure 4-9. Respiratory rate, feature from respiratory rate, and smoothed feature 
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As shown in Figure 4-10, when the value for the threshold of the SWS detection was 

five, the mean performance was the highest. In this analysis, Cohen’s kappa (k) 

coefficient was marked as the “mean performance”. The final SWS epoch was 

determined through the post-processing. 

 

Post-processing 6:  

Estimated SWS sleep periods shorter than 10 min were rejected. 

 

All of the SWS detection procedures are shown schematically in Figure 4-11. 

Figure 4-12 shows conceptual diagram of hierarchical classification of sleep stages. 

 

 

Figure 4-10. Value determination for threshold of SWS detection. 
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Figure 4-11. SWS detection procedure.  



85 
 

 

 

 

 

 

 

 

Figure 4-12. Diagram of hierarchical classification of sleep stages. 
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4.2. Results 

4.2.1. REM Sleep Detection 

The statistical results of the epoch-by-epoch REM sleep detection from the test 

dataset are listed in Table 4-3. In the results, sensitivity represents the proportion of 

correctly estimated REM sleep epochs, whereas specificity represents the proportion 

of correctly estimated NREM sleep epochs. From the Mann-Whitney-Wilcoxon test, 

no significant differences were observed in the sensitivity (p = 0.98), specificity (p 

= 0.67), accuracy (p = 0.58), and kappa values (p = 0.96) among the groups. The 

kappa statistical analysis revealed a substantial agreement (0.6 < k < 0.8) between 

the proposed method and the PSG for the normal, OSA, and the whole group. Figure 

4-13 shows the durations of REM sleep from the proposed method and PSG. Based 

on the independent sample t-test, there was no significant difference in the REM 

sleep times between these two methods. Table 4-4 lists the results of a comparison 

of the REM sleep detection results from the proposed method and those from 

previous studies. As shown in the table, the proposed method has the highest REM 

sleep detection accuracy. 
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Table 4-3. Epoch-by-epoch REM sleep detection. 

Set 

 

Group 

 

N 

 

Sensitivity 

(%) 

Specificity 

(%) 

Accuracy 

(%) 

Kappa 

 

Training Total 5 76.6±18.2 93.8±3.6 91.2±3.3 0.62±0.13 

Test Total 19 66.7±15.4 94.1±4.1 89.5±4.8 0.61±0.13 

 Normal 9 67.3±15.6 94.6±4.2 90.4±4.5 0.62±0.13 

 OSA 10 66.2±16.0 93.7±4.3 88.8±5.2 0.61±0.15 

N: number of participants; OSA: obstructive sleep apnea 

 

Figure 4-13. Durations of REM sleep from PSG and proposed method. 



88 
 

Table 4-4. Comparisons of REM sleep detection results with previous studies. 

Author (year) Signal Sensor N (Normal/OSA) Accuracy (%) 

Watanabe (2004) Movement, BCG Pneumatic 12 (12/0) 38.3 ± 20.3 

Xiao (2013) ECG Ag/AgCl 45 (45/0) 59.8 ± 19.9 

Kortelainen (2010) BCG EMFIT 18 (18/0) 80.0 ± 9.0 

Tanida (2013) ECG Ag/AgCl 10 (10/0) 80.3 ± 4.2 

Chung (2009) Respiration Thermocouple 22 (13/9) 87.7 ± 4.9 

Chung (2009) Respiration Belt type 22 (13/9) 88.1 ± 5.0 

Hwang (2015) Respiration PVDF 19 (9/10) 89.5± 4.8 

OSA: obstructive sleep apnea; BCG: ballistocardiogram; ECG: electrocardiogram; EMFIT: electromechanical film;  
PVDF: polyvinylidene fluoride 
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4.2.2. Wakefulness Detection 

 The epoch-by-epoch results of the wakefulness detection are listed in Table 4-5. A 

kappa statistical analysis revealed a moderate agreement (0.4 < k < 0.6) between the 

proposed method and PSG for each training and test set. For the test set with more 

than 80% sleep efficiency, the average sensitivity of the wakefulness detection 

increased from 54.5% to 59.3%. Figure 4-14 shows the wakefulness detection results 

for the best case from the OSA patient #12. In this case, the sensitivity, specificity, 

accuracy, and kappa statistic were 68.0%, 96.9%, 93.3%, and 0.68, respectively. In 

this figure, the sleep/wake patterns from the PSG recording are shown for reference. 
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Table 4-5. Epoch-by-epoch wakefulness detection. 

Set 

 

N

 

Sensitivity 

(%) 

Specificity 

(%) 

Accuracy 

(%) 

Kappa 

 

Training 5 64.4±22.1 93.2±4.6 85.7±7.0 0.46±0.17 

Test 19 54.5±14.7 93.6±3.0 86.6±4.6 0.46±0.10 

S.E. > 

80% 
12 59.3±15.0 93.0±3.4 89.0±3.3 0.46±0.09 

N: number of participants; S.E.: sleep efficiency 

 

Figure 4-14. Epoch-by-epoch wakefulness detection results for best case. 
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 The results from the proposed method are compared with those of other sleep/wake 

detection methods in Table 4-6. The results from an actigraphy based method [101] 

show a sensitivity similar to the proposed method. In other cases, the EMG based 

[102] and heart rate based methods [103] showed higher sensitivity and specificity 

than the PVDF based method. However, for EMG and heart rate recordings, the 

Ag/AgCl electrode must be attached to the body of the sleeper, and this can interrupt 

comfortable sleep. 

 

 

 

 

 

 

 

 

Table 4-6. Comparisons of wakefulness detection results with previous studies. 

Method Actigraphy AT EMG Heart rate PVDF 

N 15 12 15 19 

Sensitivity (%) 54.3 72.0 76.8 54.5 

Specificity (%) 95.3 99.0 99.9 93.6 

Accuracy (%) 90.7 79.0 n/a 86.6 

Kappa n/a 0.62 n/a 0.46 

N: number of participants; AT EMG: anterior tibialis electromyography 
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4.2.3. SWS Detection 

The epoch-by-epoch results of the SWS detection are listed in Table 4-7. The kappa 

statistical analysis revealed a fair agreement (0.2 < k < 0.4) between the proposed 

method and the PSG for each training and test set. However, 10 subjects had less 

than 40 epochs of SWS, and 6 subjects had less than 20 epochs of SWS in the test 

set. For the test set with over 20 SWS epochs, the average kappa value of the SWS 

detection increased from 0.33 to 0.41, and the corresponding value increased up to 

0.48 for the test set with over 40 epochs. Figure 4-15 shows the SWS detection 

results for the best case from the OSA patient #4. In this case, the sensitivity, 

specificity, accuracy, and kappa statistic were 69.0%, 97.8%, 93.3%, and 0.72, 

respectively. In this figure, SWS/NSWS patterns from the PSG recording are shown 

for reference. 
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Table 4-7. Epoch-by-epoch SWS detection. 

Set 

 

N 

 

Sensitivity 

(%) 

Specificity 

(%) 

Accuracy 

(%) 

Kappa 

 

Training 5 45.9±22.6 97.0±4.8 93.3±5.7 0.36±0.20 

Test 19 40.7±25.6 96.5±3.2 92.4±5.2 0.33±0.26 

SWS >  

20 epochs 
13 40.3±25.5 96.8±3.3 90.9±5.4 0.41±0.25 

SWS >  

40 epochs 
9 44.8±20.1 97.2±3.7 89.7±6.0 0.48±0.20 

N: number of participants; SWS: slow wave sleep 

 

Figure 4-15. Epoch-by-epoch SWS detection results for best case. 
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4.2.4. Sleep Macro- and Microstructure Detection 

The sleep stages of each subject were obtained from the REM sleep, wakefulness, 

and SWS detection results. For the estimated epoch, if the detection results 

overlapped, wakefulness had a higher priority than SWS, and REM sleep had a 

higher priority than wakefulness. Based on the PSG data scoring, the reference sleep 

stages were divided into four categories: SWS, light sleep, wakefulness, and REM 

sleep. Stages 1 and 2 were considered as light sleep. Stage 3 was considered as SWS. 

For the sleep macrostructure, the sleep stages were divided into three categories: 

NREM sleep, wakefulness, and REM sleep. Stages 1, 2, and 3 were considered as 

NREM sleep. 

 The epoch-by-epoch sleep stages detection results are listed in Table 4-8. From 

the Mann-Whitney-Wilcoxon test, no significant differences were observed in the 

accuracy (p = 0.60) and kappa values (p = 0.84) between the normal and OSA groups 

for the three stage classification. For the four stage classification, the corresponding 

values also showed no significant differences (p = 0.13, and p = 0.18) between the 

two groups. Table 4-9 presents a confusion matrix of all the subjects. The numbers 

in the table refer to the amounts of the corresponding epochs. 
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Table 4-8. Epoch-by-epoch sleep stages detection. 

No. of 

stages 

Set 

 

Group 

 

N 

 

Accuracy (%) 

 

Kappa 

 

3 

Training Total 5 78.9±8.0 0.53±0.13 

Test Total 19 78.6±5.7 0.54±0.12 

 Normal 9 79.1±6.7 0.54±0.13 

 OSA 10 78.1±4.9 0.53±0.11 

4 

Training Total 5 72.9±8.1 0.48±0.10 

Test Total 19 71.3±7.7 0.48±0.12 

 Normal 9 68.6±9.7 0.46±0.15 

 OSA 10 73.7±4.7 0.50±0.08 

N: number of participants; OSA: obstructive sleep apnea 

Table 4-9. Confusion matrix of all test dataset. 

Overall 
Estimation 

SWS Light Wake REM Total 

Reference

SWS 1139 842 66 5 2052 

Light 611 8643 748 436 10438 

Wake 70 1202 1436 176 2884 

REM 0 925 173 1748 2846 

Total 1820 11612 2423 2365 18220 

SWS: slow wave sleep; REM: rapid eye movement 
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Table 4-10 lists the results of the comparison between the sleep stages detection 

results from the proposed method and those from previous methods. For the 

macrostructure (three stage) detection, the sleep stages detection performance of the 

ECG based methods [65, 68] was lower than that of the proposed method. In other 

studies [70-72], the EMFIT based methods showed a slightly higher accuracy than 

the proposed method, but the kappa value was lower than that of the PVDF based 

method [71]. For the microstructure (four stage) detection, the ECG based methods 

[66, 67] had lower accuracies and kappa values than the proposed method. The PAT 

based method [69] showed a similar kappa value compared with the proposed 

method, but the accuracy was lower than that of the proposed method. 

Figure 4-16 shows the sleep stages detection results for the best case (Figure 4-

16(a), OSA patient #1) and worst case (Figure 4-16(b), normal subject #11). In the 

best case, the accuracy and kappa statistics were 88.3% and 0.75, respectively. In the 

worst case, the corresponding values were 61.2% and 0.26, respectively. 
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Table 4-10. Comparisons of sleep stages detection results with previous studies. 

No. of stages 

 

Author (year) 

 

N 

 

Sensor 

 

Signal 

 

Accuracy 

(%) 

Kappa 

 

3 

(Macro 

structure) 

Watanabe (2004) 12 Air cushion 
BCG, respiration, 

movement 
42.8 n/a 

Redmond (2006) 37 Ag/AgCl ECG 67.0 0.32 

Kortelaine (2010) 9 EMFIT BCG, movement 79.0 0.44 

Xiao (2013) 45 Ag/AgCl ECG 72.6 0.46 

Samy (2014) 7 
Pressure 

sensitive bed 
Respiration, movement 72.2 n/a 

Hwang (2015) 19 PVDF Respiration, movement 78.6 0.54 

4 

(Micro 

structure) 

Hender (2011) 227 Watch-PAT100 PAT, PPG, actigraphy 65.6 0.48 

Isa (2011) 16 Ag/AgCl ECG 60.3 0.26 

Tanida (2013) 23 Ag/AgCl ECG 56.0 n/a 

Hwang (2015) 19 PVDF Respiration, movement 71.6 0.48 

N: number of participants; EMFIT: electromechanical film; PVDF: polyvinylidene fluoride; BCG: ballistocardiogram;  
ECG: electrocardiogram; PAT: peripheral arterial tone; PPG: photoplethysmogram 
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Figure 4-16. Sleep stages detection results for the best and worst cases. 
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4.3. Discussion 

4.3.1. Agreement between Proposed Method and PSG 

 The sleep stages detection process was based on the following steps: 1) extraction 

of the respiratory rate and body movement signal from the PVDF data; 2) REM sleep 

detection from the dynamics of the respiratory signal; 3) wakefulness detection from 

the body movement signal; 4) SWS detection from the variability of the respiratory 

rate; and 5) sleep stages determination using the estimated REM sleep, wakefulness, 

and SWS epoch. To evaluate the algorithm, the proposed method was applied to the 

test dataset. In the epoch-by-epoch analysis (Table 4-8) for sleep macrostructure 

detection, the average value of the kappa statistics revealed greater than moderate 

agreement (k > 0.4), whereas the overall accuracy was 78.6%. For the sleep 

microstructure detection, the corresponding values were 0.48 and 71.3%, 

respectively. As listed in Table 4-8, no significant differences were observed in the 

sleep stages detection performance between the normal and OSA groups. This result 

demonstrated that the proposed sleep stages detection method is applicable not only 

to normal subjects but also to OSA patients. 

 

4.3.2. Comparisons with Previous Studies 

 The proposed sleep stages detection method had a higher than or similar 

performance to previous ECG based methods or unconstrained sleep stages detection 

methods (Table 4-10). The ECG based sleep macrostructure detection methods 

showed the possibility of sleep stages detection based on HRV analysis [65, 68]. 
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Even though these methods employed a constrained style using an Ag/AgCl 

electrode, no significant differences were observed in the sleep stages detection 

results between the ECG based and the proposed methods. In addition, the ECG 

based methods tended to use a larger number of features (25-27 features). 

Sleep macrostructure detection methods via unconstrained techniques have also 

been proposed in previous studies. Watanabe et al. showed the possibility of sleep 

stages detection using noninvasive and unrestrained means [70]. They used a 

pneumatic bio measurement sensor to estimate the sleep stages, but their overall 

accuracy was only 42.8%. Kortelainen et al. used the signals acquired through a bed 

sensor, which was composed of multiple pressure sensitive EMFIT foil electrodes, 

for sleep staging [71]. Even though they used a computerized hidden Markov model 

classifier to detect the sleep macrostructure, they arrived at a kappa value of only 

0.44, which was approximately 0.1 lower than the result obtained in this study. In 

addition, they only applied their system to healthy female subjects. Samy et al. 

proposed an unobtrusive method for sleep stages classification based on a high 

resolution pressure sensitive e-textile bed sheet [72]. In that study, the overall sleep 

stages detection accuracy was approximately 6% lower than the results in this study.  

Sleep microstructure detection methods have also been proposed in the literature. 

In these studies, to the best of my knowledge, only constrained sensor based methods 

were applied. Isa et al. applied kernel dimensionality reduction to classify the sleep 

stages from an ECG signal [66]. They differentiated sleep into four stages (wake, 

light, REM, and SWS) based on the HRV features using a random forest classifier, 
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but the overall kappa value was only 0.26, which was approximately 0.2 lower than 

the result obtained by the proposed method. Tanida et al. compared a sleep analysis 

method based on power spectral indexes of the HRV data with PSG [67]. Even 

though they analyzed the sleep stages at a lower time resolution (minute-by-minute, 

the overall accuracy of the classification was 56.0%, whereas the method proposed 

in this study showed an overall accuracy of 71.3% for sleep microstructure detection. 

Hedner et al. proposed a sleep staging algorithm using signals derived from a 

portable monitoring device (Watch-PAT 100), which is based on PAT, pulse rate, 

and actigraphy [69]. Although they collected many physiological signals for sleep 

staging, its sleep stages detection accuracy was lower than the result obtained in this 

study. However, the number of analyzed datasets in this study was less than those of 

the PAT based study, and proposed sleep stages detection performance could be 

different when larger datasets are used. 

In summary, the previous methods for the detection of the macrostructure or 

microstructure of sleep arrived at lower agreement results than this method. Even 

though the previous studies showed the possibility of sleep stages detection based on 

the use of a cardiorespiratory signal, sleep apnea or snoring detection methodologies 

were not provided in the mentioned studies, which may be a great novelty factor of 

the method proposed in this study.  

 

 

 



102 
 

4.3.3. Validation of Sleep Stages Detection Algorithm 

 As listed in Table 4-10, many of the sleep stages analysis studies categorized sleep 

into three stages: NREM sleep, REM sleep, and wakefulness. One could speculate 

that detecting SWS is relatively difficult compared with other sleep stages. 

Nevertheless, a sleep stages detection method that includes the SWS stage was 

established and tested in this study using PVDF data.  

For the REM sleep detection, the respiratory rate of each subject was 

unconstrainedly obtained from the PVDF data, and REM sleep was estimated based 

on the respiratory related features. In OSA patients, the respiratory rate during sleep 

can be affected by the absence of breathing. Therefore, the REM detection results 

from the OSA patients were compared with those from normal subjects (Table 4-3). 

However, according to the result, no significant differences were observed in the 

sensitivity, specificity, accuracy, and kappa values between the groups. One could 

speculate that relatively long time based adaptive thresholds (7500 s, Table 4-2, 

which were unaffected by the changes in the instantaneous respiratory rate by the 

OSA occurrence, were appropriate for both normal subjects and OSA patients. 

Consequently, the proposed REM sleep detection method could accurately detect 

REM sleep without being affected by the severity of breathing disorders. 

As mentioned earlier, thermocouple sensor based REM sleep detection method [98] 

was modified for the PVDF data. The thermocouple sensor used in a previous study 

was attached to the philtrum during an overnight PSG recording, and this could affect 

the normal sleep of a subject because of the inconvenience due to the direct electrode 
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attachment. In this study, sleep could be classified into “four stages,” including REM 

sleep in an unconstrained manner, using the PVDF sensor, which is the main 

differentiating factor of this study from the previous one. Quantitatively, the REM 

sleep detection accuracy from the PVDF data (89.5%) showed similar performance 

compared with that from the nasal airflow signal (88.6%) for the same subjects. This 

result demonstrated that the proposed REM sleep detection method is applicable to 

respiratory signals from various sensors. 

 For the wakefulness detection, the threshold was set according to the PVDF data 

amplitude and variance. Therefore, an individual threshold could be applied to each 

subject. As listed in Table 4-5, the sensitivity of the wakefulness detection was lower 

than the specificity. When a subject was in a waking state without any movement, 

the proposed algorithm wrongly estimated the status because the wakefulness epoch 

was estimated based on the body movement signals from the PVDF data. This 

drawback of the movement based methods was also reported in the previous 

actigraph based methods [101, 104, 105], which reflected a trade-off between the 

sleep/wake detection performance and unconstrained monitoring. Therefore, the 

proposed method showed a performance similar to that of the previous actigraph 

based method [101]. 

 For the SWS detection, the variability of the respiratory rate from the PVDF data 

was chosen as an indicator for the method. In short, a period during which the 

variability was relatively stable compared with the other periods was estimated as an 

SWS epoch. Regular and stable respiratory patterns in SWS have been reported in 
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the literature [106, 107]. As listed in Table 4-7, 10 of the 20 subjects had less than 

20 min (40 epochs) of SWS. In these cases, the kappa values were considerably 

reduced despite a few wrong estimations only. Furthermore, two (OSA #7 and 

normal #6) among the test set subjects slept with no SWS epoch, and the kappa value 

was inevitably calculated to be zero in these cases. Actually, the kappa value 

remarkably increased up to 0.48 for the cases with SWS > 40 epochs. Despite these 

deficiencies, the overall SWS epoch detection accuracy was greater than 90%, 

whereas a previous sleep microstructure detection method revealed an accuracy of 

80% for SWS classification from other sleep stages [67].  
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CHAPTER 5. CONCLUSION 

 

PSG has been regarded as a standard method for the assessment of sleep; however, 

this method has a few limitations. To overcome these, many alternative sleep 

monitoring methods have been attempted to analyze sleep without PSG. However, 

most of these methods had limitations such that they could not unconstrainedly 

measure physiological signals, which made them unsuitable for daily sleep 

monitoring. Even though unconstrained sleep monitoring methods have also been 

proposed, they showed significantly lower sleep monitoring performance when 

compared with constrained sensor methods. Furthermore, integrated sleep 

monitoring methods that can simultaneously analyze both the sleep stages and SRBD 

events have rarely been studied.  

In this study, new sleep stages and SRBD monitoring methods using a PVDF sensor 

were proposed. These methods can measure respiration, snoring, and body 

movement signals from subjects unconstrainedly. Using a single setup of this PVDF 

sensor, sleep apnea, snoring, and the sleep microstructure could be monitored 

simultaneously. The sleep apnea monitoring method revealed a high correlation 

coefficient (r = 0.94) between the AHI from PSG and the AHI from the proposed 

method. The snoring monitoring method classified snore events with 94.6% 

sensitivity and with 97.5% PPV. The sleep stage monitoring method showed that 

sleep can be divided into four stages from the PVDF data, with an average accuracy 

of over 70%. Experimental results demonstrated that the sleep stage and SRBD 



106 
 

detection performances were comparable to those of ambulatory devices and 

constrained sensor studies. Furthermore, the proposed method requires neither 

complex processing nor trained sleep experts. In conclusion, the developed system 

and methods could be applied to a sleep monitoring system in a residential or 

ambulatory environment. 
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국문 초록 

 

PVDF 필름 센서를 사용한 수면관련 호흡장애  

및 수면 단계의 무구속적 모니터링 

 

이 연구에서는 PVDF 필름 센서를 사용하여 무구속적으로 수면관련 

호흡장애 및 수면 단계를 모니터링 할 수 있는 기법을 개발하였다. PVDF 

센서는 4 x 1 배열로 구성되었으며, 센서 시스템의 총 두께는 약 1.1mm 

였다. PVDF 센서는 침대보와 매트리스 사이에 위치시켜 참가자의 몸에 

직접적인 접촉이 없도록 하였다. 

수면무호흡증 검출 연구에는 26 명의 수면무호흡증 환자와 6 명의 

정상인이 참가하였다. PVDF 신호의 표준편차에 근거하여 수면무호흡증 

검출 방법을 개발하였고, 추정된 수면무호흡증 검출 결과를 수면 

전문의의 판독 결과와 비교하였다. 추정된 결과와 판독 결과 간의 수면 

무호흡-저호흡 지수 상관계수는 0.94 (p < 0.001) 이었다.  

코골이 검출 연구에는 총 20 명의 수면무호흡증 환자가 참가하였다. 

PVDF 신호를 단시간 푸리에 변환하여 얻은 파워 비율과 최대 주파수를 

주파수 영역 특징으로 추출하였다. 추출된 특징들을 서포트 벡터 머신 

분류기에 입력하였고, 분류기의 검출 결과에 따라 코골이 또는 코골이가 



119 
 

아닌 구간으로 나누었다. 제안된 방법에서 추정한 코골이 검출 결과를 

정상 성인 3 명의 청각 및 시각 기반 코골이 판독 결과와 비교하였다. 

코골이 검출에 대한 평균 민감도 및 양성예측도는 각각 94.6% 및 97.5% 

이었다.  

수면 단계 검출 연구에는 11 명의 정상인과 13 명의 수면무호흡증 

환자가 참가하였다. 렘 (REM) 수면 구간은 호흡의 주기와 그 변동률에 

근거하여 추정하였다. 깸 구간은 움직임 신호에 근거하여 추정하였다. 

깊은 수면 구간은 분당 호흡수의 변화폭에 기반하여 추정하였다. 각 

수면 단계 검출 결과를 통합하여 최종 결과를 수면 전문의의 판독 

결과와 비교하였다. 30 초 단위로 수면 단계를 검출하였을 때, 평균 

정확도는 71.3% 이었으며 평균 카파 값은 0.48 이었다.  

연구에서 제안된 PVDF 센서와 알고리즘을 통하여 상용화된 수면 

모니터링 장치에 비교할 수 있을 만한 수준의 성능을 확보하였다. 이 

연구 결과가 가정환경 기반 수면모니터링 시스템의 활용도와 정확도를 

높이는데 기여할 수 있을 것으로 기대한다.  
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