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Abstract—Sleep apnea is one of the most common sleep-related
breathing disorders. It is diagnosed through an overnight sleep
study in a specialized sleep clinic. This setup is expensive and
the number of beds and staff are limited, leading to a long
waiting time. To enable more patients to be tested, and repeated
monitoring for diagnosed patients, portable sleep monitoring
devices are being developed. These devices automatically detect
sleep apnea events in one or more respiration-related signals.
There are multiple methods to measure respiration, with varying
levels of signal quality and comfort for the patient. In this
study, the potential of using the bio-impedance (bioZ) of the
chest as a respiratory surrogate is analyzed. A novel portable
device is presented, combined with a two-phase Long Short-
Term Memory (LSTM) deep learning algorithm for automated
event detection. The setup is benchmarked using simultaneous
recordings of the device and the traditional polysomnography
in 25 patients. The results demonstrate that using only the
bioZ, an area under the precision-recall curve of 46.9% can
be achieved, which is on par with automatic scoring using a
polysomnography respiration channel. The sensitivity, specificity
and accuracy are 58.4%, 76.2% and 72.8% respectively. This
confirms the potential of using the bioZ device and deep learning
algorithm for automatically detecting sleep respiration events
during the night, in a portable and comfortable setup.

Index Terms—sleep apnea, HSAT, bio-impedance, deep-
learning

I. INTRODUCTION

SLEEP APNEA is one of the most common sleep-related
breathing disorders and consists of breathing pauses or

shallow breathing during the night, known as apneic events [1].
These events can be categorized as either obstructive sleep
apnea (OSA) when the airway is blocked by the throat muscles
or central sleep apnea (CSA) when the signals to control
the breathing are disturbed. When the breathing has become
shallow but is not yet fully disturbed, it is classified as obstruc-
tive or central hypopnea. The consequences of undiagnosed
sleep apnea can be severe, including hypertension, cardiac
arrhythmia, heart attacks and strokes [2], [3], [4]. It has also
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been shown that sleep apnea patients have an increased chance
of being involved in motor vehicle collisions [5].

Studies report that in some countries, over 50% of adults
suffer from sleep-disordered breathing [6]. Yet, many cases
remain undiagnosed as people are often unaware of their
condition. For diagnosis, patients are admitted in a dedicated
sleep clinic where they are monitored overnight using a
polysomnograph (PSG) which measures a variety of signals
pertaining to respiration, brain activity, sleep stages, heart rate,
oxygen saturation and others. Afterwards, the recordings are
analyzed by trained sleep technicians and annotated using
a reference manual such as the American Association of
Sleep Medicine (AASM) guidelines [7]. The condition of the
patient is summarized into an apnea-hypopnea-index (AHI)
representing the number of events per hour of sleep.

The complex PSG setup, and the limited number of beds
and staff in sleep clinics are leading to large costs [8] and a
long waiting time [9]. In addition, the PSG setup requires
many sensors attached to the patient and a night of sleep
in an unfamiliar hospital bed. This leads to an uncomfort-
able analysis and an inaccurate representation of an actual
night of sleep in the patients home [10], [11]. To allow
a more comfortable and representative analysis, while also
enabling more patients to be tested and diagnosed patients to
be continuously monitored, home sleep apnea tests (HSAT)
are being developed. This is the result of recent hardware
and algorithmic innovations leading to wearable devices for
automated precision monitoring [12] and for continuous and
longitudinal health monitoring [13].

As recommended by the AASM guidelines for portable
devices [14], these HSAT typically include a respiration mea-
surement. This can be based on typical PSG sensors such as
resistive bands around the chest or abdomen [15], and nasal
or oral airflow [16], [17], [15]. However, many other types of
sensor have been developed such as nearable sensors, which
require proximity but do not require patient contact. Examples
include load cells under the bed [18], film based sensors [19]
or mobility monitors [20]. Respiration can also be measured
directly through microelectronic systems (MEMS) [21] or
wearable piezo-electric bands [22]. In addition, respiration can
be extracted from other physiological measurements such as
ECG [23], [24] but this approach is susceptible to noise [25].
Other popular HSAT methods include the use of pulse oxime-
try [26], [27], [28], [29] or sound [30], [31], [32]. Lastly, there
are several devices that combine multiple signals [15], [33],
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[34]. These devices can by categorized using the SCOPER
system [35].

The recorded data from these HSAT is processed through
automated methods ranging from threshold algorithms [36]
and rule-based algorithms [16] to support vector machines [37]
and artificial neural networks [38]. Recently, deep learning
algorithms have also been proposed and have demonstrated
good performance [39]. Commercial software for automated
processing of respiratory signals can also be used [40].

In various medical domains, bioZ measurements have al-
ready been suggested for measuring, among others, respiration
of the patient [41], [42]. However, the use of bioZ for sleep
apnea detection has not yet been thoroughly analyzed or
described. The key objective of this study is to analyze and
discuss the potential of using a bioZ measurement of the chest
as a respiratory surrogate for detecting sleep apnea events. A
novel portable device is presented with a combined two-phase
deep learning algorithm, and the performance is benchmarked
on a clinically gathered dataset.

The outline of this paper is as follows. In Section II, a device
is presented to directly measure the bioZ of the chest along
with ECG and acceleration of the patient. The deep learning
algorithm is presented in Section III. The experimental setup to
analyze this approach is presented in Section IV. In Section V,
the results are presented and in Section VI these results are
discussed. Finally, conclusions are made and future work is
considered in Section VII.

II. WEARABLE BIO-IMPEDANCE DEVICE

To analyze the possibility of using the bioZ to detect sleep
apnea events, a novel device, denoted as ROBIN, is proposed
which measures and records the bioZ of the chest, in addition
to ECG and acceleration. First, the hardware is discussed.
Then, an algorithm is presented for aligning the recordings of
the ROBIN with the PSG data to enable a comparison study.

A. ROBIN Device

The ROBIN was developed by imec (imec The Netherlands,
Eindhoven). A detailed schematic of the hardware setup is
shown in Fig. 1. The device itself is demonstrated in Fig. 2.

The device is able to measure and record several bio-
signals. In this study, the signals of interest are the ECG, bioZ
and motion of the patient. The ECG and bioZ are measured
directly by MUSEIC, a system on a chip (SoC) designed by
imec (imec The Netherlands, Eindhoven) [43]. Motion of the
patient is measured via a separate accelerometer IC and data
is transferred to MUSEIC for synchronization.

In order to measure bioZ, the tissue of the patient is
stimulated with an AC current from the current generator
of MUSEIC. The captured signal is demodulated to the
baseband and amplified with the instrumentation amplifier
(IA) and programmable gain amplifier (PGA) in the front-end
readout circuits of MUSEIC. The frequency and amplitude
of the current generator, and the gain of the amplifiers are
configurable for the target application. Afterwards, the signal is
digitized by an ADC, packetized in MUSEIC, and transmitted
to the external microcontroller. This microcontroller, an ARM
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Fig. 1: Detailed hardware schematic of the ROBIN device used
in this study.
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Fig. 2: ROBIN device used in this study. It is a compact
wearable with minimal discomfort for the patient. The device
is worn around the neck and is attached to the chest via
adhesive stickers.

Cortex M4F, is responsible for processing the data. Once the
microcontroller receives the data from the sensors, it stores
the data into the on-board memory to enable offline retrieval
for further processing and analysis.

In this study, the bioZ is measured at the chest to provide
a measurement of respiration. An in-depth discussion on bioZ
is provided in [41]. Details on the performance of the bioZ
measurement chip used in this work are provided in [43].
Skin surface electrodes provide the current stimulation and
voltage measurement. A tetrapolar electrode configuration is
used to avoid the effect of electrode-tissue impedance. Two
electrodes are dedicated to current stimulation, and the other
two electrodes are adopted for the voltage measurement. An
additional electrode is used to connect the patient to a fixed
DC voltage (0.6V) in order to keep the input bioZ signals
within the dynamic range of the amplifiers.

The stimulation frequency of the ROBIN can be configured
between 8kHz and 160kHz. For the sleep apnea study, the
stimulating alternating current in the form of a pseudo sine
wave is set to 160kHz as this enables good sensitivity and
linearity against impedance changes. The current amplitude
can be configured at four different values (25, 50, 75, and
100uApp, corresponding to 8.8, 17.7, 26.5, and 35.4uArms).
The international safety standard of medical electrical equip-
ment (IEC 60601-1) states a maximum current of 50uArms
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at 160kHz for stimulating tissues. In this study, 100uApp
(35.4uArms) is used to maximize the signal-to-noise ratio.
The stimulating current will generate a voltage potential in
the region of interest, proportional to the impedance of the
tissue. This induced voltage is captured by the amplifiers and
demodulated to the baseband. In this way, only impedance
changes without any stimulation current components remain
in the final bioZ data.

With these configuration settings, the bioZ sensor of the
ROBIN can detect impedance changes as small as 0.1Ω. The
measurable impedance range is from -150Ω to 120Ω, where a
negative sign of the impedance indicates the opposite polarity
of stimulation current and measured voltage. Depending on the
measurement subject, impedance changes due to respiration
are 1-2Ω, meaning that the bioZ sensor of the ROBIN device
can measure the respiration effectively.

The bioZ measurements are recorded at 1024Hz as
complex-valued time-series data. For further analysis as a
respiration surrogate, the magnitude is computed and the data
is downsampled to 125Hz for storage on the offline processing
server of the study.

Two electrodes are used to collect single lead ECG data
from the measurement subject with a sampling frequency of
512Hz. Although limited respiration information can also be
extracted from ECG data, the focus of this study is on the
direct and full respiratory measurement using the bioZ sensor.
The ECG data is used for data alignment. The ROBIN device
also includes an accelerometer sensor which is used to measure
dynamic movement of the patient to enable visual inspection
of the data for verification of the recording.

B. PSG Alignment of ROBIN data

To enable a comparison of the ROBIN data with the gold
standard PSG data and the PSG annotations of the trained
sleep technicians, the recordings of the ROBIN and PSG need
to be synchronized. As there can be an offset on the starting
time of the recording, an initial delay needs to be estimated. In
addition, due to small differences in actual sampling frequency,
the recordings of both devices can start drifting apart. Even a
minimal difference in sampling frequency can lead to a large
drift after a couple of hours of recording. For example, a
difference of 0.1Hz in a sampling frequency of 50Hz can lead
to a drift of 57.6 seconds after an eight hour recording.

The ECG of the patient is recorded by both devices. As QRS
complexes in simultaneously recorded ECG measurements
should occur in a synchronized way, the ECG signals provide
a straightforward base to align the recordings. A possible
approach for alignment is by consecutively resampling the
signals and estimating the delay. In a first step, both ECG
recordings are resampled to 50Hz based on their listed sam-
pling frequency. Then, an iterative process starts in which the
starting delay and sampling frequency drift are computed and
evaluated based on the cross-correlation between the two ECG
signals. This process is repeated until convergence, which
typically occurs after two iterations.

The alignment is only required for the analysis of the
hardware and algorithms in this study. In practical settings,

when the device is deployed, the PSG data is no longer
recorded and hence, no alignment is needed.

III. AUTOMATED SLEEP APNEA DETECTION ALGORITHM

In this section, an algorithm is presented to automatically
detect sleep apnea events in respiratory data based on long
short-term memory (LSTM) neural networks [44] which are
trained in two separate phases: training phase 1 and training
phase 2. First, the extraction and preprocessing of epochs of
respiratory data is discussed. Next, the deep learning model is
presented.

A. Epoch Creation

To filter noise and extract respiratory information, the
recorded signal, either from the PSG or the ROBIN, is passed
through a fourth order zero-phase-shift Butterworth low-pass
filter with a cutoff frequency of 0.7Hz. The resulting signal
is filtered with a moving average filter of four seconds to
reduce motion artifacts and to limit baseline wander. Finally,
the signal is downsampled to 5Hz for further processing. This
final downsampling is done in two stages, each followed by an
eight order Chebyshev type I zero-phase-shift filter to reduce
resampling artifacts.

The filtered signal is split into epochs of 30 seconds each,
with a stride of 1 second between consecutive epochs. The
binary ground truth labels are provided by the annotations in
the PSG data. If at the end of the epoch an apnea event was
annotated, the entire epoch is labeled as positive.

The data of each epoch is scaled to the interval [−1, 1]
to increase the learning capacity of the LSTM nodes of the
network. Instead of computing the normalization factors based
on the minimum and maximum value of each epoch as in [39],
the normalization factors are computed over the duration of
the last M epochs, including the current epoch. This enables
the inclusion of long-term contextual information into a single
epoch. The full process is demonstrated in Fig. 3.

PSG Annotation
BioZ Respiration

30 epochs
for phase 2

of model
training

epoch Xi of 30 seconds

M epochs for adaptive normalization

...

Fig. 3: Creating epochs from the recorded sleep apnea data.
Labels are determined based on the annotation at the end of
the epoch. The adaptive normalization procedure uses the last
M epochs for computation of the scaling factors. In training
phase 2 of the deep learning model, 30 epochs are used for
the event detection in epoch Xi.
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B. Deep Learning Model

The two-phase deep learning model is based on LSTM
neural networks which are a type of recurrent neural network.
Such models have been successfully applied across several
medical domains, including sleep apnea [45], [46], [47], [48].
A theoretical discussion on LSTM neural networks can be
found in [44].

In recent work [39], balanced bootstrapping [49] was pro-
posed as a method to include all samples of an imbalanced
dataset in a final model by training multiple models on the
generated subdatasets. Each subset is used to train a separate
LSTM model. During the prediction step, each separate model
generates a prediction which is then combined through an
aggregation metric such as averaging. In this work, this is
denoted as training phase 1 and instead of averaging over
the multiple predictions, they are used as inputs for training
phase 2 LSTM models. This second training phase effectively
replaces the initial averaging as aggregation method. By taking
into account the variations in predictions across the different
training phase 1 LSTM networks, and across time within
a single epoch, more contextual information can be used
in the final prediction. The complete two-phase approach is
demonstrated in Fig. 4.

During training phase 1, N LSTM models are constructed
using the N balanced bootstrap datasets (BB1 - BBN ) as
discussed in [39]. Each of the N models computes a series of
outputs ki−29 up to ki for epoch i. This results in N times 30
estimates, containing the prediction of each balanced bootstrap
model at each point during the epoch, providing additional
context over only a single epoch. This method uses data from
the current epoch and the previous 29 overlapping epochs,
leading to 59 seconds of data being used. The 30 estimations
of the N balanced bootstrapped networks are combined into
a single time-varying N × 30 matrix which is used by the
training phase 2 network.

All LSTM networks in the model follow a similar architec-
ture as introduced in [39]. The LSTM layers are succeeded by
a dropout layer to reduce overfitting and encourage generaliza-
tion. The resulting network has several hyperparameters that
need to be tuned. For this, Bayesian Optimization (BO) is used,
which is a powerful method for tuning the hyperparameters
of machine learning models [50], [51]. Each phase of the
model has a separate set of parameters and the range of these
hyperparameters is shown in Table I.

TABLE I: Boundaries of the hyperparameters for the entire
model, used during the Bayesian optimization procedure.

parameter meaning min max
n1 & n2 number of LSTM nodes 10 200
p1 & p2 dropout probability 0.1 0.5
M normalization range [seconds] 1 300

IV. EXPERIMENTAL SETUP

A. Data Acquisition

Data was gathered in a clinical setting from patients enrolled
for an overnight PSG analysis at Ziekenhuis Oost-Limburg, a
hospital in Belgium. The study was conducted in accordance

with the Declaration of Helsinki and was approved by the
Ethical Committee before study onset (CME ZOL, reference:
16/042U). All participants provided written informed consent
before inclusion.

The PSG and ROBIN recorded data simultaneously. After-
wards, the PSG data was annotated by trained sleep technicians
using AASM guidelines [7].

This study included all patients which had a successful ECG
recording in both devices, as required for the alignment algo-
rithm, and for which there was a successful bioZ recording,
i.e. there was no saturation in the bioZ signal. A saturation
in the bioZ signal occurs when the device is not properly
tuned to a specific patient’s characteristics. This can easily be
circumvented in a following recording by changing the ROBIN
settings.

In total, 25 patients were used in this study. Table II shows
the patient characteristics. The patient was allowed to sleep
in a hospital bed as desired and was able to change position
during the night.

TABLE II: Overview of patient characteristics.

male female
number 22 3
numbernormal 7 1
numbermild 15 2
AHI 7.5± 3.3 5.4± 1.9
age 57.9± 12.7 56.7± 2.9
BMI 30.2± 3.7 28.1± 3.4

The PSG device recorded the typical signals used for a full
sleep study in a sleep clinic. The recorded PSG respiration
measurements included in this study are:

• PSGabd. belt: Abdominal respiratory belt below the lower
edge of the left ribcage.

• PSGthor. belt: Thoracic respiratory belt below left armpit.
The ROBIN recorded chest bioZ, ECG and acceleration

as discussed in Section II-A. The bioZ respiration signal is
denoted as ROBINbioZ

B. Device and Model Performance Evaluation

All recorded data was visually inspected in multiple stages.
First, the PSG data was analyzed by the trained staff to provide
annotations. Then, ROBIN recordings were analyzed to check
recording success. Finally, the quality of the ECG recording
of both devices was inspected for subsequent alignment.

The PSG data with annotations from trained staff and the
ROBIN data were aligned as discussed in Section II and
preprocessed as discussed in Section III. In total, there were
4647 OSA epochs, 2851 CSA epochs, 19469 hypopnea epochs
and 92096 epochs without sleep apnea.

The gold-standard PSG respiratory recordings were used to
construct two models: PSGabd. belt and PSGthor. belt. The bioZ
data from the ROBIN was used to construct ROBINbioZ. This
enables a comparison of the automated detection algorithm
versus the annotations of trained staff as well as a comparison
of the bioZ measurement versus PSG recordings.

For each model, the data was split across a five-fold
per-patient cross-validation setup. Within each iteration, 15
patients were used for training the two-phase deep learning
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Fig. 4: Two-phase deep learning model for automated detection of sleep apnea events. The input X is passed through each of
the N balanced bootstrapped networks of training phase 1, resulting in an intermediate result k. These results are then used
in the training phase 2 model to refine and enhance the prediction performance.

model, five patients were used for validation of the model
and five patients were used as a separate test set for final
performance evaluation. This was repeated for each fold,
which enables a statistical analysis of the results. Patients were
randomized but the order is static across the three models to
ensure a fair comparison.

Analysis of sleep apnea algorithms is done using several
metrics for binary classification problems. The performance is
analyzed using the sensitivity, specificity and accuracy metrics
which are based on the number of True Positives (TP), False
Positives (FP), True Negatives (TN) and False Negatives (FN).

sensitivity = TP/(TP + FN)

specificity = TN/(TN + FP)

accuracy = (TP + TN)/(FP + TN + TP + FN)

The goal of the algorithm is to achieve a high score across
all these metrics. However, the binary classifier outputs a
probability of an event occurring, and as such, the final values
of these metrics can easily be influenced by changing a
decision threshold 0 ≤ τ ≤ 1. To analyze the performance
of the model across all possible thresholds, the Receiver Op-
erator Characteristic (ROC) curve, demonstrating the balance
between sensitivity and specificity, and the associated area
under it (AUROC) are computed.

Another factor influencing the analysis of the model is the
imbalance in the dataset. When working with highly imbal-
anced datasets, sensitivity and specificity scores can provide
misleading insights [52]. As the number of apnea epochs in
the data is much less than the number of non-apnea epochs,
this imbalance has to be taken into account. For this, the

precision, also known as the positive-predictive-value (PPV)
and the negative-predictive-value (NPV) metrics are used.

precision = TP/(TP + FP)

NPV = TN/(TN + FN)

To analyze the performance of the imbalanced dataset across
a range of decision thresholds, the precision-recall (PR) curve
and associated area under the curve (AUPRC) are computed.
This AUPRC metric is the main analysis point of this study,
and is used as a driving metric for the BO of the model
hyperparameters.

Statistical analysis for comparing the ROBINbioZ against the
baseline PSGabd. belt and PSGthor. belt is done using a paired
two-tailed T-test across the different fold results with target
significance level of p < 0.05. In addition, the statitical
significance of any improvement due to the second phase
model is also analyzed using a paired two-tailed T-test with
target significance level of p < 0.05. All tests are based on
the AUPRC metric.

Unless otherwise mentioned, all metrics are computed using
the predictions of the L2 models and binary classification
metrics are reported at the decision threshold pevent > 0.5
which was learned during training.

V. RESULTS

Fig. 5 presents a snapshot comparison between the different
PSG respiratory signals (PSGabd. belt and PSGthor. belt) and the
ROBIN bioZ signal (ROBINbioZ.). There is a clear visual
similarity between the three different signals. Note that in
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Fig. 5d, there is no sleep apnea event even though there is
a disturbance or change in respiration across the three signals
at the 40 second mark.

The main analysis point of this study is the PR curve,
which is shown in Fig. 6 in addition to the ROC curve for the
three different models. There is a similarity across all models.
The PSGabd. belt leads to the largest area under the curve.
This summary of the PR curve is also visualized in Fig. 7
and Fig. 8 where the AUPRC metric is shown for the train,
validation and test dataset of the first and second training phase
which resulted in L1 models and L2 models respectively. The
analysis across the different datasets demonstrates the stability
and generalizability of the results. After the second training
phase, the ROBINbioZ achieves similar performance as the
PSGthor. belt model. The relative improvement due to the second
training phase is shown in Fig. 9. The ROBINbioZ model
benefits the most from this addition. The improvement is
not substantial for the PSGabd. belt and the PSGthor. belt models.
The performance on the training dataset increases but the
performance of the test dataset remains the same, indicating
that the models struggle to generalize the additional knowledge
in the models. However, the ROBINbioZ model is able to
effectively generalize to new patients, as reflected by the large
improvement on the test dataset.

In addition to the AUPRC, other typical metrics were
computed. A full overview of all recorded metrics, evaluated
on the test set as per-epoch classification performance, is
provided in Table III. All metrics are reported at the decision
point (pevent > 0.5) learned during training of the model. The
statistical significance of these results is analyzed based on the
AUPRC as described in Section IV. Comparing ROBINbioZ
versus PSGabd. belt and ROBINbioZ versus PSGthor. belt results in
p-values of 0.03 and 0.71 respectively. These results show
that there is a statistically significant difference between
ROBINbioZ and PSGabd. belt but that no statistically significant
difference between ROBINbioZ and PSGthor. belt can be proven.
Statistical significance of using the two-phased approach is
analyzed by comparing the L1 and L2 models for ROBINbioZ
which results in a p-value of 0.03, demonstrating a statistically
significant improvement in performance.

To accurately interpret these results, a detailed analysis of
the model errors is required. The various types of model error
are shown in Fig. 10. When the respiratory disturbance of the
apnea event is of short duration (type A error), the model will
return a false positive result as only apnea events longer than
10 seconds are scored in polysomnography annotations [53].
In practical settings, type A errors can be reduced by only
taking into account model activations that are longer than
10 seconds. Sometimes, the model output does not activate
sufficiently (type B error). This happens when the event
is not clear in the respiratory data, for example when the
breathing has been shallow for a longer period than the model
window. The annotations in the polysomnography data can
not be interpreted as an exact boundary. However, the analysis
metrics require an exact event cut-off time. This leads to false
positive errors due to early detection (type C error) or due
to the model overshooting the annotation boundary (type D
error). Although type C and type D errors negatively impact

the model scores, they are not relevant in practical settings as
the sleep apnea event was correctly detected and hence such
errors do not influence the diagnostic AHI score.

Finally, the performance of the models across the different
types of apnea is analyzed by computing the accuracy of the
models for each type separately. These results are shown in
Table IV. For all models, OSA classification has the best
performance.

VI. DISCUSSION

The aim of this study was to thoroughly analyze and
investigate the use of bioZ as a respiratory surrogate for the
automated detection of sleep apnea events. The results show
that this approach can reach a similar performance as an
automated model based on respiratory data from the PSG. In
addition, the model performance is stable across the various
folds of the dataset, demonstrating generalizability. The main
advantage of the bioZ compared to the conventional PSG
methods is the smaller form factor and increase in patient
comfort. In addition, the use of the bioZ does not require
a respiration derivation algorithm as is necessary for ECG
derived respiration. These derivation algorithms struggle when
patients suffer additional conditions such as arrhythmia. The
main disadvantage of the bioZ is the reduced accuracy for the
detection of CSA events as shown in Table IV.

Other methods for HSAT respiration measurements have
also been proposed. Table V provides an overview of the
recorded metrics for some reference works. None of these
studies reports the AUPRC metric. The results of these devices
and algorithms need to be carefully interpreted. In some cases,
the presented metrics are based on a per-patient classification
whereas in others these are presented as per-epoch scores.
In addition, the studies are performed with different patients,
different setups and different scoring and analysis criteria.
There are several works in which these devices and algorithms
are compared with each other and analyzed [54], [55], [56],
[57], [58], [59]. To fully compare the bioZ approach with these
devices, a large further clinical study is required.

There are several limitations to this study which warrant
careful interpretation of the results. First, the patients that were
included in the study had, in general, low AHI scores. A more
relevant set of patients would include several high AHI scores.
However, as this study includes patients that come to the
sleep clinic for testing, the AHI of the patients to be included
cannot be determined upfront. The low AHI represents a
challenge for the algorithms as the data imbalance is further
enlarged, impacting the metrics. Second, the presented device
is not compatible with AASM guidelines as several other
physiological signals need to be measured as well. Oxygen
desaturations and arousals linked to apnea events are important
for relevant insights. In this initial study, the aim was to
analyze and discuss the use of bioZ as a respiratory surrogate.
Further research should focus on combining this bioZ signal
with the other required signals. The next generation of the
ROBIN device will be equipped with PPG functionality. As
significant oxygen desaturation mostly occurs in long (≥ 10
seconds) apnea events, the amount of type A errors would
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(a) Obstructive apnea event.

0 10 20 30 40 50 60
0

1

PS
G 

ab
d.

 b
el

t

0 10 20 30 40 50 60
0

1

PS
G 

th
or

. b
el

t

0 10 20 30 40 50 60
time (s)

0

1

RO
BI

N 
Bi

oZ

(b) Central apnea event.
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(c) Hypopnea event.
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(d) No apnea event.

Fig. 5: Example of respiration traces recorded with PSGabd. belt, PSGthor. belt and ROBINbioZ sensors for the different event
types. Each event occurs at the 30 seconds mark. Note that in Fig. 5d, there is no sleep apnea event even though there is a
visual disturbance in the respiration. All three signals capture the respiration pattern of the patient and there is an observable
similarity between the different signals.

(a) PR PSGabd. belt. (b) PR PSGthor. belt. (c) PR ROBINbioZ.

(d) ROC PSGabd. belt. (e) ROC PSGthor. belt. (f) ROC ROBINbioZ.

Fig. 6: ROC and PR curves for the three different models. The dashed line indicates the performance of a model with random
predictions based on the imbalance in the training data.
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TABLE III: Overview of all recorded measures, expressed as percentages, for all three signals, evaluated on the separate test
dataset. The PSGabd. belt measured using the gold standard PSG device results in the best overall performance. The compact
wearable ROBINbioZ. is also able to accurately detect sleep apnea events in respiratory data and has a performance comparable
to PSGthor. belt. The binary classification metrics are reported at the decision threshold pevent > 0.5 which was learned during
training

PSGabd. belt PSGthor. belt ROBINbioZ.
L1 L2 L1 L2 L1 L2

AUPRC 53.7± 7.8 56.7± 7.4 45.8± 8.3 47.8± 9.2 41.6± 11.2 46.9± 8.5
AUROC 80.3± 2.9 80.1± 2.2 74.1± 4.3 74.0± 4.7 72.5± 7.5 73.6± 3.7
sensitivity 71.5± 7.9 66.5± 8.6 64.5± 8.2 56.4± 8.6 67.5± 8.9 58.4± 12.7
specificity 74.5± 4.4 79.0± 6.7 70.0± 5.1 77.5± 5.0 66.2± 11.4 76.2± 8.7
precision 45.1± 6.3 48.6± 4.1 38.7± 8.7 42.5± 9.7 38.1± 8.9 42.2± 6.6
accuracy 74.1± 2.4 76.6± 3.8 68.5± 3.4 72.3± 3.3 66.8± 7.8 72.8± 4.4
NPV 90.1± 3.2 89.3± 1.8 87.1± 3.9 85.7± 4.6 87.9± 2.4 86.7± 2.2
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Fig. 7: AUPRC scores for the three different sensors, evaluated
at the first layer (L1) of the model. All three models are
capable of automatically detecting sleep apnea events.
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Fig. 8: AUPRC scores for the three different sensors, evaluated
at the second layer (L2) of the model. With the addition of
the second training phase, the ROBINbioZ model performance
is comparable to that of the PSGthor. belt model.

reduce. Third, there are other possible respiratory disturbances,
such as movements or coughs, which are not necessarily sleep
apnea and which can impact the results. However, the model
is trained to detect sleep apnea patterns in the respiration by
using the clinical annotations provided by the nurse. As the
analysis is also based on these annotations, the performance
for detecting such sleep apnea events is measured.
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Fig. 9: Relative improvement of AUPRC score through the
introduction of the second training phase. The ROBINbioZ
scores demonstrate a significant improvement through the
introduction of the second model layer.

TABLE IV: Overview of classification accuracy for the differ-
ent sleep apnea types and different tested models.

PSGabd. belt PSGthor. belt ROBINbioZ.
obstructive 80.7± 3.4 72.5± 4.7 74.8± 1.8
central 94.2± 1.2 88.5± 2.4 64.6± 8.7
hypopnea 59.2± 2.3 51.6± 2.9 56.3± 2.1
non-event 80.8± 2.1 76.8± 1.7 77.5± 1.5

This study confirms that the use of bioZ is a promising
option for automated sleep apnea detection using a comfort-
able wearable and that it could potentially serve as a basis for
future home monitoring devices.

TABLE V: Comparison of metrics for different HSAT devices
reported in literature. None of the studies report the AUPRC
metric.

Study sensitivity specificity accuracy AUROC
[18] 77 94 / /
[19] 72.9 90.6 85.5 /
[20] / / 72.1 /
[38] 100 85.9 / /
[22] / / 81.8 /
[36] 92.4 88.3 / /
[60] 90 96 / /
[16] 80 54.5 / /
[17] / / / 71
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Fig. 10: Example of the model prediction output for a given respiration sequence. The input signal is the ROBINbioZ. The
red dotted line indicates the decision boundary on which the model was trained (pevent > 0.5). The model output mimics the
annotations of the trained sleep technicians which are based on the full PSG. However, there are some erroneous outputs as
indicated by A, B, C and D. A: false-positive event due to short-term respiratory disturbance, B: false negative event due to
insufficient activation of model output, C: false positive event due to early detection, D: false positive event due to overshoot.

VII. CONCLUSION AND FUTURE WORK

In this work, the use of bioZ as a respiratory surrogate for
detecting sleep apnea was analysed and discussed. A novel
method was proposed consisting of a wearable device, com-
bined with a deep learning algorithm. The compact wearable
is capable of capturing a respiration surrogate by use of a
direct bio impedance measurement of the chest. The recorded
data is then processed by an extended two-phase deep learning
algorithm to automatically detect the sleep apnea events.
The results demonstrate that the performance of the setup is
comparable to automated detection using gold-standard PSG
respiration data. This setup offers a powerful basis for the
future development of portable home sleep apnea monitors. In
future work, this approach should be extended with additional
signals such as oxygen saturation to improve the robustness
of the detection.
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