308 research outputs found

    Assessment of aerial thermography as a method of in situ measurement of radiant heat transfer in urban public spaces

    Get PDF
    Una propuesta de nuevas estrategias para la mejora del medio ambiente urbano, usando termografía aérea para el cálculo de la temperatura media radianteUrban public spaces are an essential part of the urban environment, supporting social relationships and pro- moting a healthy lifestyle among citizens. However, the high value of urban land has led to an over-urbanisation of cities, increasing urban heat stress and decreasing the number and size of public spaces. Rising air temper- atures in cities – known as the urban heat island effect (UHI) - combined with global warming, make public spaces less comfortable. For these reasons, there has been a growing concern to improve the thermal comfort of urban spaces. Thermal radiation is a determining factor in urban thermal comfort and is normally summarised in a value called mean radiant temperature (TMRT). In the past, conventional methods have been used to calculate it, such as net radiometers and globe thermometers. In recent years, the scientific community has used ground- based handheld thermal cameras for its quantification. However, there is a lack of literature on the use of aerial thermography for this purpose (i.e. an unmanned aerial vehicle (UAV) equipped with a thermal infrared device). Given this gap in the literature and the advantages in time, versatility and accuracy of these systems, this paper presents a new method for assessing the measurement of radiant heat transfer in a pedestrian urban space using aerial thermography. From the surface temperatures of the infrared imagery collected by the UAV, TMRT was estimated at multiple points in a pedestrian area of a subtropical city (Huelva, Spain) during a typical summer day. In order to verify accuracy of the proposed method to estimate the TMRT, a microclimate urban simulation was carried out using ENVI-met v5. The comparative analysis of the measured and simulated dataset verified the applicability of aerial thermography for the measurement of radiant heat transfer (with R2 values of 0.98 for the data set and 0.8 for the data of each time period). To conclude, new strategies were proposed to improve urban thermal comfort and to make cities more sustainable.Funding for open access charge: Universidad de Huelva/CBUA. Proyecto SALTES (P20_00730): Smartgrid with reconfigurable Architecture for testing controL Techniques and Energy Storage priority. Programa Operativo FEDER 2014-2020 Junta de Andalucia

    Autonomous Monitoring of Litter using Sunlight

    Get PDF

    A Cost-Effective System for Aerial 3D Thermography of Buildings

    Get PDF
    Three-dimensional (3D) imaging and infrared (IR) thermography are powerful tools in many areas in engineering and sciences. Their joint use is of great interest in the buildings sector, allowing inspection and non-destructive testing of elements as well as an evaluation of the energy efficiency. When dealing with large and complex structures, as buildings (particularly historical) generally are, 3D thermography inspection is enhanced by Unmanned Aerial Vehicles (UAV-also known as drones). The aim of this paper is to propose a simple and cost-effective system for aerial 3D thermography of buildings. Special attention is thus payed to instrument and reconstruction software choice. After a very brief introduction to IR thermography for buildings and 3D thermography, the system is described. Some experimental results are given to validate the proposal

    Thermography to assess grapevine status and traits opportunities and limitations in crop monitoring and phenotyping – a review

    Get PDF
    Mestrado em Engenharia de Viticultura e Enologia (Double degree) / Instituto Superior de Agronomia. Universidade de Lisboa / Faculdade de Ciências. Universidade do PortoClimate change and the increasing water shortage pose increasing challenges to agriculture and viticulture, especially in typically dry and hot areas such as the Mediterranean and demand for solutions to use water resources more effectively. For this reason, new tools are needed to precisely monitor water stress in crops such as grapevine in order to save irrigation water, while guaranteeing yield. Imaging technologies and remote sensing tools are becoming more common in agriculture and plant/crop science research namely to perform phenotyping/selection or for crop stress monitoring purposes. Thermography emerged as important tool for the industry and agriculture. It allows detection of the emitted infrared thermal radiation and conversion of infrared radiation into temperature distribution maps. Considering that leaf temperature is a feasible indicator of stress and/or stomatal behavior, thermography showed to be capable to support characterization of novel genotypes and/or monitor crop’s stress. However, there are still limitations in the use of the technique that need to be minimized such as the accuracy of thermal data due to variable weather conditions, limitations due to the high costs of the equipment/platforms and limitations related to image analysis and processing to extract meaningful thermal data. This work revises the role of remote sensing and imaging in modern viticulture as well as the advantages and disadvantages of thermography and future developments, focusing on viticultureN/

    Characterization of Envelopes Thermal Transmittance based on a mixed approach

    Get PDF
    In Wallonia, there are many buildings and houses built in the 1960s, after World War II, that have envelopes and facades with many heat losses. Due to the poverty of the envelopes of these buildings, they are very energetically inefficient buildings (Attia et al., 2021) that need to be overheated in cold seasons to be comfortable inside. For this matter, it has been developed a methodology through infrared thermography in order to detect the poorest elements of the envelopes of these buildings for a possible renovation. This study takes as a reference a building of the University of Liege residence built in 1968. The first stage of the work consists of making a 3D model of the building. This model has been made from images obtained by drone and printing it with a 3D printer to evaluate the accuracy of the method. The second part of the work consists of estimating the thermal transmittance (U-value) of the facade of the residence through infrared thermography. This method will be compared with real monitoring of the U-value using measurement sensors and the calculation of the Uvalue following the ISO 9869 standard. The study aims to compare the three methods in terms of accuracy, speed, usability, and cost. The main results of this study have been to obtain the U-value by the three developed methods and the detailed comparison of these. A 3D modelling method has also been developed through images captured with the drone where good accuracy is achieved. This study provides an interesting basis for future research using drones equipped with thermal cameras to develop 3D thermal models of buildings

    Concepts and tools to improve the thermal energy performance of buildings and urban districts - diagnosis, assessment, improvement strategies and cost-benefit analyses

    Get PDF
    Retrofitting existing buildings to optimize their thermal energy performance is a key factor in achieving climate neutrality by 2045 in Germany. Analyzing buildings in their current condition is the first step toward preparing effective and efficient energy retrofit measures. A high-quality building analysis helps to evaluate whether a building or its components are suitable for retrofitting or replacement. Subsequently, appropriate combinations of retrofit measures that create financial and environmental synergies can be determined. This dissertation is a cumulative work based on nine papers on the thermal analysis of existing buildings. The focus of this work and related papers is on thermography with drones for building audits, intelligent processing of thermographic images to detect and assess thermal weaknesses, and building modeling approaches to evaluate thermal retrofit options. While individual buildings are usually the focus of retrofit planning, this dissertation also examines the role of buildings in the urban context, particularly on a district level. Multiple adjacent buildings offer numerous possibilities for further improving retrofits, such as the economies of scale for planning services and material procurement, neighborhood dynamics, and exchange of experiences between familiar building owners. This work reveals the opportunities and obstacles for panorama drone thermography for building audits. It shows that drones can contribute to a quick and structured data collection, particularly for large building stocks, and thus complement current approaches for district-scale analysis. However, the significant distance between the drone camera and building, which is necessary for automated flight routes, and varying recording angles limit the quantitative interpretability of thermographic images. Therefore, innovative approaches were developed to process image datasets generated using drones. A newly designed AI-based approach can automate the detection of thermal bridges on rooftops. Using generalizations about certain building classes as demonstrated by buildings from the 1950s and 1960s, a novel interpretation method for drone images is suggested. It enables decision-making regarding the need to retrofit thermal bridges of recorded buildings. A novel optimization model for German single-family houses was developed and applied in a case study to investigate the financial and ecological benefits of different thermal retrofit measures. The results showed that the retrofitting of building façades can significantly save energy. However, they also revealed that replacing the heating systems turns out to be more cost-effective for carbon dioxide savings. Small datasets, limited availability of technical equipment, and the need for simplified assumptions for building characteristics without any information were the main challenges of the approaches in this dissertation

    Technical Challenges for Multi-Temporal and Multi-Sensor Image Processing Surveyed by UAV for Mapping and Monitoring in Precision Agriculture

    Get PDF
    Precision Agriculture (PA) is an approach to maximizing crop productivity in a sustainable manner. PA requires up-to-date, accurate and georeferenced information on crops, which can be collected from different sensors from ground, aerial or satellite platforms. The use of optical and thermal sensors from Unmanned Aerial Vehicle (UAV) platform is an emerging solution for mapping and monitoring in PA, yet many technological challenges are still open. This technical note discusses the choice of UAV type and its scientific payload for surveying a sample area of 5 hectares, as well as the procedures for replicating the study on a larger scale. This case study is an ideal opportunity to test the best practices to combine the requirements of PA surveys with the limitations imposed by local UAV regulations. In the field area, to follow crop development at various stages, nine flights over a period of four months were planned and executed. The usage of ground control points for optimal georeferencing and accurate alignment of maps created by multi-temporal processing is analyzed. Output maps are produced in both visible and thermal bands, after appropriate strip alignment, mosaicking, sensor calibration, and processing with Structure from Motion techniques. The discussion of strategies, checklists, workflow, and processing is backed by data from more than 5000 optical and radiometric thermal images taken during five hours of flight time in nine flights throughout the crop season. The geomatics challenges of a georeferenced survey for PA using UAVs are the key focus of this technical note. Accurate maps derived from these multi-temporal and multi-sensor surveys feed Geographic Information Systems (GIS) and Decision Support Systems (DSS) to benefit PA in a multidisciplinary approach

    Verbesserte Dokumentation des kulturellen Erbes mithilfe digitaler Photogrammetrie mit sichtbaren und thermischen Bildern von unbemannten Luftfahrzeugen (UAV)

    Get PDF
    There is always need for reliable and accurate data for documentation of cultural heritage including archaeological areas. The development in 3D data acquisition has let some technologies use for getting a complete documentation. Close range photogrammetry and terrestrial laser scanning are among the most common used techniques which help to get 3D data acquisition, with high level of detail, accuracy and effective results. However, these techniques are not always the most suitable ones for large archaeological areas, yet aerial images may help to provide a general overview of the area which is fundamental for interpretation and documentation of archaeological sites. Because of the limitations in aerial photogrammetry, UAVs (Unmanned Aerial Vehicles) has become an optimal solution for archaeological areas documentation with its potentials in the context of costs and abilities. To cover large areas at different altitudes, to be able to fly at different altitudes, under different weather conditions, to acquire image with high resolution are among the main advantages of this technology which make it usable and preferable for archaeological documentation. Since UAVs have been rapidly improving in sophistication and reliability, its possibilities aid in archaeological research have recently generated much interest, particularly for documenting sites, monuments and excavations. In this case study several aerial surveys will be conducted with a UAV mounted thermal camera on an archaeological area. After acquiring aerial images, they will be processed for producing both color and thermal-imagery in related software. Next step will be the alignment of the images in order to build an accurate and georeferenced 3D and mesh model of surveyed area. Then colored and thermal orthophoto mosaics as well as digital surface model (DSM) will be obtained for the documentation. The datasets of thermal images and color images will be collected and compared in order to detect archaeological remains on and under the ground.Es besteht immer Bedarf an zuverlässigen und genauen Daten für die Dokumentation des kulturellen Erbes, einschließlich archäologischer Gebiete. Die technischen Entwicklungen in der 3D-Datenerfassung haben erst die vollständige Dokumentation ermöglicht. Nahbereichsphotogrammetrie und terrestrisches Laserscanning gehören zu den am häufigsten verwendeten Techniken, die 3D-Datenerfassung mit hohem Detaillierungsgrad, Genauigkeit und effektive Ergebnissen ermöglichen. Diese Techniken sind jedoch nicht immer die am besten geeigneten für große archäologische Gebiete, dennoch können Luftbilder helfen, einen allgemeinen Überblick über das Gebiet zu geben, was für die Interpretation und Dokumentation archäologischer Stätten von grundlegender Bedeutung ist. Aufgrund der Einschränkungen in der Luftbildvermessung sind UAVs (Unmanned Aerial Vehicles) zu einer optimalen Lösung für die archäologische Geländedokumentation mit ihren Potenzialen im Kontext von Kosten und Fähigkeiten geworden. Hauptvorteile dieser Technologie sind u.a. große Gebiete in verschiedenen Höhen abzudecken und unter verschiedenen Wetterbedingungen fliegen zu können, Bilder mit hoher Auflösung aufzunehmen, die dann auch für die archäologische Dokumentation nutzbar und damit auch anderen Verfahren vorzuziehen sind. Da sich die UAVs in Bezug auf Entwicklungsgrad und Zuverlässigkeit rasant verbessert haben, haben ihre Möglichkeiten zur Unterstützung der archäologischen Forschung in jüngster Zeit großes Interesse geweckt, insbesondere bei der Dokumentation von Stätten, Denkmälern und Ausgrabungen. In dieser Fallstudie werden mehrere Kampagnen von Luftaufnahmen mit einer UAV-Wärmebildkamera auf einem archäologischen Gebiet durchgeführt. Nach der Bildaufufnahme die Farb- und Wärmebilder in einer entsprechenden Software verarbeitet. Der nächste Schritt wird die Verknüpfung der Bilder sein, um ein genaues und georeferenziertes 3D- und Netzmodell des vermessenden Bereichs zu erstellen. Anschließend werden farbige und thermische Orthophoto-Mosaike sowie digitale Oberflächenmodelle (DSM) für die Dokumentation abgeleitet. Die Datensätze von Wärme- und Farbbildern werden gesammelt und verglichen, um archäologische Überreste auf und unter dem Boden zu erkennen

    UAVs for the Environmental Sciences

    Get PDF
    This book gives an overview of the usage of UAVs in environmental sciences covering technical basics, data acquisition with different sensors, data processing schemes and illustrating various examples of application
    corecore