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Abstract

Litter has become a major concern worldwide due to human overpopulation,

deficient human practices and poor garbage collection systems. Existing

methods to overcome the problem of litter are mostly manual and require

human intervention. More sophisticated automated methods have also been

designed, but they have limited coverage and are difficult to scale and deploy

at large-scale. Indeed, automated approaches to identify litter automatically

require continuous supply and access to battery resources. In this work,

we develop LIZARD, a new innovative sensing approach that exploits sun-

light to recognize litter materials. LIZARD piggybacks sunlight radiation

absorbed by materials when lying on open areas. By analyzing the ther-

mal characteristics of these materials using off-the-shelf thermal cameras,

it is possible to identify and classify different types of litter materials. We

validate our approach through extensive empirical benchmarks, demonstrat-

ing that LIZARD can recognize different materials sizes and shapes using

sunlight. In addition, we integrate LIZARD with terrestrial unmanned au-

tonomous vehicles (UAVs) to demonstrate that our approach is lightweight

and easy to scale. Our solution paves the way towards new efficient and

green solutions to monitor litter in open areas, e.g., public spaces in a city.

CERCS: P170 Computer science, numerical analysis, systems, control

Keywords: thermal imaging, waste management, mobile computing, per-

vasive computing, recycling solutions, IoT

Inimesest eraldunud soojusliku kiirguse kasutamine



kokkuvõte: Tulenevalt ülerahvastusest, puudulikest käitumisharjumustest

ja viletsatest prügi kogumis- ja ladustamissüsteemidest on risustamisest

saanud tähtis globaalne probleem. Olemasolevad risuga tegelemise meeto-

did vajavad enamjaolt inimeste käsitsi sekkumist. On olemas ka peenemaid

automatiseeritud meetodeid, kuid need on alaliselt piiratud ulatusega ja su-

uremõõtmeliselt on neid keeruline rakendada. Näiteks vajavad automaatsed

lähenemised risu tuvastamisele pidevat ligipääsu akulaadimisvõrkudele. Käesol-

evas töös kirjeldame LIZARD süsteemi arendust, mis on innovatiivne lähen-

emine risu tuvastamisele kasutades ära päikesevalgust. LIZARD kasutab ära

risu materjalide UV-radiatsiooni imandumist valguse käes oleva prügi mater-

jalis. Analüüsides erinevate materjalide termilisi omadusi olemasolevate

termokaameratega on võimalik tuvastada ja liigitada erinevaid prügi liike.

Kontrollime oma lähenemist ulatuslike empiiriliste võrdlustega ja demon-

streerime, et LIZARD suudab ära tunda erinevaid materjale, suuruseid ja

kujusid päikesevalguse abil. Sellele lisaks integreerime LIZARD süsteemi

maapealsete mehitamata autonoomsete sõidukitega (UAV-d) demonstreer-

imaks meie lahenduse lihtsust ja skaleeritavust. Loodud lahendus sillutab

teed uutele tõhusatele ja jätkusuutlikele lahendustele risu jälgimiseks ava-

likus ruumis nagu näiteks linnaruumis.

CERCS: P170 Arvutiteadus, arvutusmeetodid, süsteemid, juhtimine

Märksõnad: termopildistamine, jäätmekäitlus, mobiilne andmetöötlus, kõike-

hõlmav andmetöötlus, ringlussevõtu lahendused, IoT
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1

Introduction

1.1 Introduction

Litter has become a major concern worldwide due to human overpopulation, deficient

human practices and poor garbage collection systems (1). The main problem of human

littering is that it causes pollution in natural ecosystems (2, 3). It also can be under-

stood as a social problem, whose behavior is easily spread out and cultivated into others

but rather difficult to eradicate - litter in public spaces causes more litter (4, 5). Litter

can easily persist into any environment once is introduced in it. Litter is problematic

as it blends in with the environment as the time goes by (6, 7). Indeed, as part of the

decomposition process of any litter object, either caused due to exposure to environ-

mental factors, e.g., sunlight; and urban induced degradation, e.g., damaged by human

activity; litter objects break apart over time into smaller pieces that are difficult to ex-

tract from the environment. Moreover, litter as former end products are manufactured

from materials that have long lifespan, e.g., plastics can last up to 50 years (8). As a

result, litter can be easily accumulated over time, aggravating the problem of pollution

silently.

Existing methods to remove litter from the environment rely mostly on volunteers

and human cleaning activities through visual and manual inspections. These activities

can be effective when performed regularly (before litter breaks). However, these activ-

ities are costly, require strong planning and logistics, e.g., campaigns. Thus, they are

not a long term solution (9, 10). In contrast, automated methods mostly rely on object

detection techniques to spot litter, such that it can be removed (11, 12). For instance,
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1. INTRODUCTION

mounting a camera in an aerial drone to identify litter in a location (13). While these

techniques can aid to overcome the problem of litter, they are difficult to scale and to

adopt for continuous monitoring. Indeed, object detection techniques are resource in-

tensive applications with low discriminatory power. Similarly, other available solutions

provide better recognition accuracy, but they have lower spatial coverage and cannot

be applied continuously over long time periods due to constrained resources, e.g., laser-

based classification (14). This suggests that a rich infrastructure ecosystem needs to be

also in place to support these applications. For instance, proximal computing support

though edge deployments and charging stations to power up batteries (15).

In this master thesis work, we propose LIZARD, an autonomous pervasive sensing

system that can sense and monitor litter though sunlight. LIZARD uses the fact that

litter in public spaces is exposed to sunlight over long periods of time. By piggybacking

the absorption of sunlight by the litter object, it is possible then to identify its type

and recognize its material. To achieve this, LIZARD analyzes the dissipation time of

absorbed thermal radiation using a thermal camera. In addition, when the litter object

is not clearly identifiable though its thermal dissipation, LIZARD also implements a

light-based mechanism to investigate further the characteristics of the object. This

mechanism obtains exploration instructions from the thermal analysis, such that the

area to analysis is reduced. We conduct rigorous evaluation to analyze the performance

of LIZARD to detect and identify litter of different sizes.

1.2 Contributions

The following sums up the contributions:

• Novel method: We develop LIZARD as a novel sensing approach for monitoring

litters using thermal dissipation footprints from sunlight.

• Novel insights: We demonstrate through extensive benchmarks that enough ther-

mal radiation (from sunlight) can be absorbed by materials, such that it is possible

to piggyback that absorption for recognizing materials of different sizes and shapes

(from plastics to micro-plastics).

• Improved performance: We conduct a rigorous evaluation that demonstrates that

our proposed approach is more efficient in terms of cost when compared with existing

state-of-the-art approaches that are based on light reflectivity.

4



1.3 Outline

1.3 Outline

This thesis is structured as follows:

• Chapter 2 reviews the state-of-the-art about infrared thermal imaging, its limi-

tations as well as its application in computer systems. Also, we review different

material recognition technologies and sustainable solutions for litter pollution.

• Chapter 3 presents a feasibility analysis of using thermal radiation to recognize

different litter materials

• Chapter 4 demonstrates that thermal radiation can be used to recognize litter

materials of different sizes and shapes.

• Chapter 5 presents our overall LIZARD system evaluated in the wild. It also

demonstrates that thermal radiation that is absorbed by materials from sunlight

can be piggybacked to recognize materials.

• Chapter 6 discusses the implications and limitations of our work

• Chapter 7 presents the summary and conclusion of our work

5



1. INTRODUCTION
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2

State of the Art

This Chapter is a review on thermal imaging technology and other material sensing

applications, these broad concepts will be the foundation of this thesis. Some of recent

research advancements useful for our study will be reviewed. A background knowledge

on different sensory technologies will be highlighted, however the focus will be on ther-

mal sensing used in computer systems. We then review previous knowledge based on

material sensing and how they have been used to address litter pollution in the past. We

will also look to improve the studies that have shown little uniformity in litter detection

for subsequent extraction, and quantification (16).

2.1 Sensor devices

The purpose of a sensor is to respond to an input physical property (stimulus) and

to convert it into an electrical signal that is compatible with electronic circuits. All

sensors may be of two kinds: passive and active. A passive sensor does not need

any additional energy source and directly generates an electric signal in response to

an external stimulus. The active sensors require external power for their operation,

which is called an excitation signal. Examples of passive sensors include thermocouple,

photodiode, and infrared thermal imaging (17).

2.2 Thermal imaging

Infrared thermography is the science of detecting infrared energy emitted from an object,

converting it to an apparent temperature, and displaying the result as an infrared image

7



2. STATE OF THE ART

that is captured by a thermal camera. It is a very rapidly evolving field in science

as well as industry owing to the enormous progress made in the last two decades in

microsystem technologies of IR detector design, electronics, and computer science (18).

These cameras involved work in an environment without ambient light and can penetrate

thick fog such as smoke and haze. Thermal cameras record thermal infrared radiation

(TIR) unlike the digital photograghic cameras. Since all objects emit infrared radiation

in the long-range spectrum it becomes possible to capture images even at night with no

visible light (19). The visible light is defined by the sensitive range of the light receptors

in our eyes, only covers a very small range within this spectrum, with wavelengths

from 380 to 780 nm. There is an adjacent spectral region with wavelengths from 780

up to 1 mm which represents the infrared, followed by microwaves, RADAR, and all

electro-magnetic waves that are used for radio, TV, and so on (20). This range of

wavelengths corresponds to a frequency range of approximately 430 THz down to 300

GHz (21). Infrared waves are given off by all objects at temperature above absolute zero.

Thermal imaging determines an image temperature based on the absolute temperature

of the object. The image formed is based on the object’s heat signature and records

the items’ current signatures based on their heat pattern. When image analysis is

going on, the thermal infrared camera heats-up, therefore creating a thermal radiation

source. Radiometric calibration is performed by the inbuilt thermometer at regular

time intervals to leverage on the heat. During calibration, frames are recovered due

to a plate of known temperature is attached in front of the sensor. However, machine

learning applied to thermal imaging camera calibration allowed the recognition of its

digital information with high accuracy for the classification of individual temperature

values (22).

2.2.1 Thermal detection types

Thermal detection works on a principle that changes some of a material’s measurable

properties due to the rise in temperature of that material caused by electromagnetic

radiation absorption (23). The resistive bolometric effect, the pyroelectric effect, and its

modification (known as either the bias enhanced pyroelectric effect or the ferroelectric

bolometer) and the thermoelectric effect (23) are widely applicable. However, there

are several thermal detection mechanisms. Uncooled microbolometer is a common type

8



2.2 Thermal imaging

of thermal detector made of a metal or semiconductor material sensitive to tempera-

ture primarily developed with thermal and ferroelectric microbolometer detectors (using

Barium Strontium Titanate (BST) as detector material, which suffers from halo effect)

(24). Due to their advantages over ferroelectric detectors, microbolometers have more

economic value.

2.2.2 Advantages and limitations of thermal imaging

Thermal imaging does not require any additional lighting unlike visible light cameras.

This means that thermal cameras can be installed very discreetly while remaining highly

effective. This makes thermal cameras the ideal choice for surveillance and defense

applications. Again, unlike visible-light cameras, thermal cameras generate virtually no

maintenance costs. While the initial purchase price is often higher, over time, thermal

cameras are a more cost-effective. Fog and outdoor lighting do not affect the images.

In other words, performance is guaranteed in a variety of conditions. However, unlike

visible light, infrared radiation cannot go through water or glass. Infrared radiation is

reflected off glass, with the glass acting like a mirror. This is a major disadvantage for

uses like capturing images of individuals in cars. It can be used in detecting people

without identifying them, making sure privacy is intact. Also, another limitation is

their viewing angles cannot be easily avoided unlike other point-based methods(24).

2.2.3 Thermal imaging application in computer systems

With the growing influence of thermal imaging, this section briefly discusses thermog-

raphy as an applicable technology in different fields. It helps us to apply scientific

principles in a transparent way and to assess the performance results This detection

technique is used in computer systems, which uses sophisticated image analysis algo-

rithms and a computer to reconstruct the images to show heat patterns.

Medical thermography: Thermal imaging is presented as a diagnostic method, which

can detect thermal anomalies in medical analysis. Computer systems are being used for

image processing and monitoring of changes in thermal radiation. Thermography based

computer-assisted detection/diagnosis (CAD) systems help to screen for fever patients

in areas with a high influx of people, such as airports and border crossings (25, 26).

The early detection of the diabetic foot, specifically, CAD systems for diabetic foot

9



2. STATE OF THE ART

(27), help prevent complications and amputation. Early stage of tumors also has been

revealed, most notably breast cancer (28). Medical issues such as the behavior of ciliary

muscle of the human eye (29), the periodic fluctuation in skin temperature (30) or blood

flow rate measurement in superficial veins (31), and the assessment of environmental

conditions of detected corpses can be studied from thermal images(32).

Facial analysis: Faces of individuals are a biometric trait that can be used in an

automated computer-based security system for authentication purposes. Investigating

and developing methods for the improvement of face recognition by experts in this

field (33). Using the information gotten by face heat radiation, humans’ stress levels can

be detected using thermal imaging. The thermal facial analysis was used for deception

detection (34). Pavlidis et al. (35) also proposed how the technique can be used to

capture anxiety.

Fire detection and military: It is popularly used by the army and navy for border

surveillance and law enforcement. It is also used in ship collision avoidance and guidance

systems. In the aviation industry it has greatly mitigated the risks of flying in low light

and night conditions. They are widely used in military aviation to identify, locate, and

target the enemy forces. Recently, they are also being incorporated in civil aviation

for health monitoring of aircrafts (36). Mobile robots can be used for fire detection

systems (37) by locating the hot spots, the robot is placed in the direction of the

fire source. Arrue et al. (38) proposed an alternative real-time infrared-visual system

for forest fire detection, composed of both visual and thermal cameras coupled with

meteorological and geographical information. In the military, Price et al. (39) worked

on the Gunfire Detection and Location (GDL) system for military applications to detect

gunfire. Gunfire validated by acoustic events is detected in Mid-Wave IR (MWIR)

imager.

Aerial thermography: Recent advances in the sophistication of thermal cameras,

the reliability of commercial drones, and the growing power of photogrammetric soft-

ware packages can collect, process, and analyze aerial thermal imagery. Various studies

have investigated methods of using drones for problem-solving, be it in the delivery

service industry(40), video surveillance(41), rescue(42), which can produce the output

with increasing levels of complexity which is sometimes beyond the scope of danger to

humans. Thermal sensors have been coupled into some UAVs for tracking and super-

vising the behavior of certain physical property and temperature changes over time.

10



2.3 Material recognition

Remote sensing in Unmanned aerial vehicle (UAV) which aids data collection has de-

veloped rapidly from a researching stage to a more practical approach, which is applied

in various fields(43). The authors in(44), used aerial thermography to perform dense

crowd detection effectively. They proposed region of interest (ROI) extraction and a

two-stage blob-based approach for pedestrian detection, by first extracting pedestrian

blobs using the regional gradient feature and geometric constraints. The detected blobs

are classified utilizing Support vector machine (SVM) technique with a hybrid descrip-

tor. Furthermore, in archaeology, UAVs collect aerial imagery from specific altitudes

at different weather conditions at any given time. In energy conservation, it can be

used to locate sources of energy losses and wasteful energy management practices. The

map outlines the key environmental conditions conductive to obtaining reliable aerial

thermography. The map is developed from defined visual and heat loss discrimination

criteria which are quantized based on flat roof heat transfer calculations(45).

2.3 Material recognition

Recognizing material properties of surfaces and objects is a fundamental aspect of visual

perception (46). Automatic material recognition can be useful in a variety of appli-

cations, including robotics, product search, and image editing for interior design (47).

The use of different light spectrum parts and measuring either reflection or absorption

at different frequencies is quite a common material sensing approach. A good exam-

ple is the use of green light sensing to detect plastic waste (14). Also, proposed deep

learning approaches for detecting different material types from reflection patterns at

different wavelengths have been tried (48). Other works have used smartphone cameras

to identify liquids’ (49, 50).

Laser technology: Laser is an artificial light source obtained by the amplification

of light by radiation emitted by activating the elements of a corresponding physi-

cal medium (51).The nature of the active substance in each set up is used for their

classification(52).We have solid state, gas, liquid, semiconductor and fiber lasers(53),

Laser Diode (LD) is a semiconductor device with p-n junction which emit laser radia-

tion (range from infra-red to the UV spectrum) by applying a current in a stimulated

emission process compared to LEDs. This technique allows measurement and profile

of transparent materials like glass, lenses, and liquids(54). With the improvement in

11



2. STATE OF THE ART

laser sensor technology, the size and cost of sensors have decreased, which has led to

the robust use of laser sensors in many areas. Aerial laser scanning requires, receiving

and registration of a signal (pulse) reflected from the object’s surface, determination

of the distance from the reflection point and coordinates setting computation of the

reflection point laser scanning point. In addition to traditional manufacturing industry

applications, laser sensors are increasingly used in robotics, surveillance, autonomous

driving and biomedical areas(55, 56). It has also been found that laser’s light can be

modified in anticipation of the way it will travel through the disordered environment

so that it hits its target on the other side with sufficient coherence for making accurate

measurements(57).

Electrostatic sensing technology: This is purely based on electrostatic signal on any

contact material to be identified, compared to the existing recognition methods, It is

not influenced by light, electromagnetic, pressure and other factors(58). The difference

of surface resistivity of different materials leads to different degrees of inhomogeneity of

electrostatic charge distribution on the surface of materials(59). The conductivity of the

material with low resistivity is good indicating distribution of the electrostatic charge

on the surface is not uniform, while high resistivity is poor means the distribution of

electrostatic charge on the surface is higher.

Hyperspectral imaging: This imaging technology is based on collecting and pro-

cessing information from across the electromagnetic spectrum(60). The purpose of

hyperspectral imaging is to obtain the spectrum for each pixel in the image of a scene,

with the purpose of detection and identification different objects(61). Hyperspectral

imaging (HSI), combined with chemometrics, was recently and successfully applied to

the microplastics characterization(62). The primary advantage to hyperspectral imag-

ing is that an entire spectrum can be acquired at each point while disadvantages are

the cost and complexity.

RGB model: True color sensors are based the common RGB model (red, green, blue).

A large percentage of the visible spectrum can be created using these three primary

colors. Many color sensors can sense more than one color for multiple color sorting

applications(63). Depending on the difficulty of the sensor, it can be programmed to

know only one color, or multiple color types or shades for categorization and identifica-

tion operations. They are widely used in applications in displays, photography, scanning

and electronics.
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Computer vision: Computer vision tasks include methods for acquiring, processing,

analyzing and understanding digital images, and extraction of high-dimensional data

from the real world in order to produce numerical or symbolic information(64, 65). It

involves the development of a theoretical and algorithmic basis to achieve automatic

visual understanding(66). For example, It is the most common IoT-based approach in

waste management (67, 68). The fact that it can be trained with numerous convolutional

neural networks (CNNs) makes it a valuable material recognition technology in different

fields(69).

FTIR and raman microscopy: The combination of both technologies is believed to

best when detecting microplastics and their respective polymer. This is best described

by Kappler et al. (70). both spectroscopic methods in combination with optical particle

recognition. The Gepard Enabled Particle Detection (GEPARD) program package was

developed for this combination of methods to be able to carry out the measurements

largely automatically(71). The program first determines all particles on a filter opti-

cally and segments not isolated particles with different algorithms. The coordinates

(x,y,z), the optical image and the size of each particle are recorded. The coordinates

are automatically transferred to the FTIR and/or Raman microscope, where all parti-

cles are automatically measured and identified using spectra databases. All results can

be transferred to national and international databases (e.g., the “Marine Plastic Data

Base”) and comfortably output by the GEPARD program.

2.4 Sustainable solutions to litter monitoring

Litter pollution is a huge problem which threatens to get bigger with waste accumula-

tion in different landfills and oceans every year(72). There have been various techniques

proposed and currently in use to mitigate the litter issue especially in the marine which

has posed the greatest threat(73). Also, standards for the collection, storing and pro-

cessing of observations of plastics at different environments are lacking. Some of these

techniques include manual sorting, density separation, electrostatic processes, and var-

ious optical systems, including optical inspection using photodiodes or charge-coupled

device (CCD) machine vision, near infrared (NIR), ultraviolet (UV), X-ray analysis,

and fluorescent light or laser radiation(74). Density separation systems are used to sep-

arate particles with higher densities than water from buoyant ones. Here, the density of
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particles must significantly differ(74, 75). Electrostatic separation systems are used to

separate a mixture of debris that can acquire different charges through triboelectrifica-

tion. It is not suitable for sorting complex mixtures and the particles must be clean and

dry(74, 76). Beach litter monitoring practices like Marlin and OSPAR have been used

in the Baltic because of it cost effectiveness and seasonal variation data capturing(77).

Remote sensing methods have been considered for detection using both passive and

active sensing approaches(78). The passive method using the near infrared and short-

wave infrared spectrum while the active method involved laser induced optical features

or radar. However, these methods are limited to the upper ocean layer monitoring (79).

The most used technique for plastic litter monitoring depend extensively on in-situ

visual census approach(80). In situ research infrastructures (RIs) currently have the

potential to ensure autonomous long-term monitoring, which would also provide cru-

cial data along with the manual systems already in place. The advancement in optical

sensing technology could see optical monitoring as one of the primary tools in terms

of microplastic monitoring in different environment(81). Specific requirements for any

technique deployed in our environment include calibration, operation and maintenance

and power.

High spatial resolution imaging: Generally, this technique is applied to the visible

spectrum (400–700 nm) by making true color RGB composite images. Visible images

have been used, for example, to study the dynamics of rafts of marine debris(82). Litters

are monitored using high-resolution cameras on fixed platforms, ship-borne, airborne

and satellites(82, 83, 84). With a low-cost RGB camera onboard an unmanned aerial

system (UAS), very low altitude images can be captured which are used in characterizing

litters on a sandy beach(85). This is very efficient for macro litters alone(86). While

military satellite technology can provide higher resolution, commercial products are

limited to 25 – 50 cm, restricting their utility to several meters-sized objects. True

color RGB images provide crucial information about the apparent color and shape

of litter that can be used to, for example, discriminate man-made objects from marine

organisms, such as kelp or whales. However, the RGB images do not provide information

on the physical and chemical composition of the litter(87).

Optical spectro-radiometric techniques: The Spectro-radiometric analysis from

ultraviolet to distant infrared spectrum has opened new ways of detecting and charac-

terizing of plastic and other types of marine debris(88). The absorption features of the
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near and short-wave infrared spectrum show apparent color or polymer type of plastic

particles, suggesting that these features have potential applications in remote detection

of ocean plastics under various backgrounds, including vegetation. The technique shows

the possibility to detect the reflectance of floating ocean plastics, depending on sensor

capability(88, 89). A more in-depth technique to observe submerged debris is using a

light detection and ranging system (LIDAR) that can measure the onboard laser lights

backscattered from the ocean. Other applications are based on fluorescence and Raman

spectroscopy although the latter utilizes a low signal which is presently challenging to

detect from current satellites missions(87).

Unmanned autonomous vehicles (UAV) and litter monitoring: UAV (Un-

manned Aerial Vehicle) and Deep neural network was proposed to overcome the disad-

vantage of the thresholding method that requires applying threshold to images captured

using a webcam(90).The detection process of the beach litter using the method is com-

posed of 3 steps (Image acquisition and preprocessing, detection using neural network

and postprocessing)(91). The camera on the UAV was a 1-inch CMOS with a reso-

lution of 20MP. The images obtained through UAV are produced as orthoimages and

input into a pre-trained neural network algorithm. The Deep Neural Network used for

Beach litter detection removed the fully connected layer from the convolutional neural

network for semantic segmentation(90). Similarly, a novel method, APLASTIC-Q al-

gorithm which is based on CNN technology has also been developed which outperforms

many systems with respect to various classification performance metric(92). It is quite

easy to adapt for fast and automated detection as well as quantification of floating

or washed ashore plastic litter from aerial, high-altitude pseudo satellites and space

missions using APLASTIC-Q (90, 92).

2.5 Summary

In this Chapter, we discussed several views of past authors on state-of-the-art infrared

thermal imaging, sustainable solutions to marine litter and material recognition meth-

ods. Thermal cameras were introduced, also their detection types and modes were

discussed. Thermal cameras with thermal and quantum detectors, where the uncooled

microbolometers are the most common types. Although thermal cameras have little dis-

advantages, compared to their strengths, one of which is their ability to see in dark or
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foggy conditions. Night vision systems, where they can be used to identify and greatly

magnify tiny quantities of visible light. Some breakthrough solutions to marine litter

problems were discussed involving mostly optical and visual technologies. Furthermore,

we explored how existing methods have been used for material recognition. Most tech-

niques are applicable for characterizing and sorting materials in different environment.

Developing a standard procedure and application for plastic at beaches and in the en-

vironment could rapidly increase the information available on global scale. Using drone

or aerial surveys would require large costs and should be an option in priority areas.

There is a need to develop templates and tools for the collection of information on beach

debris. It is important to apply intelligent algorithms to identify and quantify plastics

in images are needed, and artificial intelligence (AI) approaches to pattern recognition

are the latest ventures. However, techniques like FTIR and Raman microscopy have

been used widely to further characterization due to their noninvasive nature and can be

applied directly on the filter holding the extracted particles in different environment.

The common initiative in most techniques is different physical and chemical character-

ization can be made due to method sophistication. Finally, to intensify our research

work on material sensing, we explore and evaluate whether our state-of-the-art thermal

imaging or the ability of any other material recognition technology to travel through

disordered environment can be used to detect litters autonomously, in the next Chapter,

we introduce the feasibility of this approach.
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Feasibility Analysis

Previous work has demonstrated that thermal imaging can be used to characterize

different objects materials. Indeed, thermal radiation can be transferred from humans

to objects as a person interacts with objects (through touch) (93). In this Chapter,

we demonstrate further that thermal imaging can be used to characterize materials

from the same type. In particular, we show that thermal imaging can be used to

distinguish between a large number of different plastics. In addition, we also show that

thermal imaging provides better performance when compared with existing state-of-

the-art approaches based on light reflectivity.

3.1 Materials selection

We next describe the selected object materials for our experiment. We focus on plastics

materials primarily as recent studies have shown that urban spaces can be polluted by

them from different sources, e.g., atmospheric micro-plastic (3). We rely on a plastic set

with 20 different types of plastics1. Each plastic in the set is manufactured using the

same mold and the same process. Thus, differences between plastics are mainly based

on their inherent material characteristics. Figure 3.1 shows the overall plastic set. In

addition, Table 3.1 shows the overall characteristics of the plastics.

1https://www.materialsampleshop.com/products/plastics-sample-set
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Figure 3.1: Different types of plastic materials A- TPE-S, B- PVC soft, C- PS, D- LDPE,
E- PBT, F- HDPE, G- PP random, H- PC/ABS, I- EVA, J- PBT+ 30GF, K- POM, L-
PPS+ 40GF, M- PPMA, N- PA 6, O- ABS, P- PSU, Q- PA66+ 30GF, R- PC, S- pPA+
50GF, T- PP+ 30GF

3.2 Light reflectivity characterization (Baseline)

We proceed to use state-of-the-art techniques based on light reflectivity to characterize

plastics. We use this approach as baseline to compare the performance of our proposed

approach based on thermal imaging.

Experimental setup: We next characterize plastic materials using light reflectivity.

We rely on a a photoresistor connected to the analog input pin of an Arduino MEGA

ADK. The photoresistor captures light changes based on its resistance exposure to the

light intensity of the reflected material. As a light source, we rely on a red laser diode

(wavelength 650 nm). The object was located 2 cm and 5 cm away from the light

source, depicting a practical usage of the sensor in transport belts and smart bins (67).

We took measurements during 1 min from the polish part of the plastic sample, which

depict the end result of the material when used in an end-product.

Results: Figure 3.2 shows the results of the characterization with light. From the re-

sult, we can observe that the distance between the photoresistor and the target material

influences the overall characterization process. This means that the limitation of this
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3.3 Thermal imaging characterization

Id Acron. Plastic name Color
Common
Eng.

Polyolefins Polyamides Polyesters
High

temperature
Common
Hous.

Semi
crystaline

Amorphous TPE

1 POM Polyoxymethylene black X

2 pPA+GF Polyamides black X X

3 PPS+GF
Glass-reinforced

polyphenylene sulfide
black X X

4 PP+GF Polypropylene black X X

5 PBT+GF
Glass-reinforced

polybutylene terephthalate
black X X X

6 PA66+GF
Glass-reinforced

polyamide
black X X X

7 PMMA Polymethyl methacrylate transparent X

8 PC Polycarbonate transparent X X

9 PSU Polysulfone transparent X

10 PP(copo) Polypropylene transparent X X

11 PBT
Polybutylene
terephthalate

white X X X

12 EVA
Ethylene vinyl

acetate
white X X

13 ABS
Acrylonitrile

butadiene styrene
white X X

14 PC/ABS Blend polycarbonate white X X

15 PS Polystyrene yellow X X

16 LDPE
Low density
polyethylene

red X X

17 PVC,soft Polyvinyl chloride gray X

18 PA6 polyamide green X X X

19 HDPE
High density
polyethylene

blue X X

20 TPE-S Thermoplastic elastomer pink X

Table 3.1: Plastic samples considered in the experiments along with their family proper-
ties.

approach is that it requires a short distance between material and sensor for accurate

classification.

3.3 Thermal imaging characterization

We then analyze the performance of thermal imaging for characterizing plastics of dif-

ferent types. Besides relying on the most common plastics defined by their RIC (Resin

Identification Code), we also rely on variations of different plastics.

Experimental setup: We measure the dissipation time of a thermal footprint in differ-

ent plastic materials. Thermal dissipation time can be defined as the time that it takes

for an object to reach thermal equilibrium with the temperature of the environment.

We then correlate this thermal dissipation information with the emissivity coefficient of

plastics. Plastics have well known emissivity coefficients ranging from ε=0.90 to 0.97.

In the experiments, we first place the plastic sample inside a fridge with a constant

temperature of 5 °C, to obtain a baseline temperature for comparison. To measure dif-

ferent temperatures, we use a constant heat source (lamp bulb of 60W) to heat the

plastic samples. The lamp is placed at a fixed distance of 10 cm from the samples to

19



3. FEASIBILITY ANALYSIS

 200

 300

 400

 500

 600

 700

 800

 900

LD
PE

PB
T
PV

C

H
D

PE PS
PSU PC

PM
M

A
A

B
S PP

PC
/A

B
S
PP66

EV
A

PP+30
G

F S
C
PA

6

TPE-S

PO
M

 S
C

PB
T+30

G
F S

C

pP
A

+50
G

F S
C

PPS+50
G

F S
C
PET

L
ig

h
t 

re
fl

ec
ti

v
it

y
 v

al
u

e

(a) Distance = 2cm

 200
 250

 300
 350
 400

 450
 500
 550
 600

 650
 700

LD
PE

PB
T
PV

C

H
D

PE PS
PSU PC

PM
M

A
A

B
S PP

PC
/A

B
S
PP66

EV
A

PP+30
G

F S
C
PA

6

TPE-S

PO
M

 S
C

PB
T+30

G
F S

C

pP
A

+50
G

F S
C

PPS+50
G

F S
C
PET

L
ig

h
t 

re
fl

ec
ti

v
it

y
 v

al
u

e

(b) Distance = 5cm

Figure 3.2: Light reflectivity values of different plastic samples according to RIC.

avoid burn damage while ensuring they are exposed to sufficient amounts of thermal

radiation. We consider different heating periods (1, 2, 3 and 4 minutes) to correspond

to differing initial temperatures and measure the dissipation of the thermal footprint.

We selected up to 4 minutes as previous work as shown that four minutes is enough to

correlate materials with their emissivity coefficient (93) During the experiments, am-

bient temperature oscillated from 22 °C to 24 °C. We estimate the thermal footprint

dissipation time using a CAT S60 (video footage was also recorded). The device was

located 30− 35 cm away from each sample.

Results: The results in Figure 3.3 show that the thermal footprint dissipation varies

across the plastics materials. The (Spearman) correlation between dissipation time

and emissivity coefficient of the materials was found statistically significant (ρ = 0.66,

p< .05), indicating that the dissipation characteristics indeed provide information about

the material of the object. This also have been reported by previous works (93).

3.4 Thermal dissipation characterization with sunlight

In the previous section, we demonstrate that heat from a bulb can be used to transfer

thermal radiation to plastics. In this section, we analyze further whether the plastic

samples can rely on heat from sunlight to characterize their type.

Experimental setup: For this experiment, we rely on seven plastics samples repre-

senting the most common types of plastics used in end-products. Specifically, we rely
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Figure 3.3: Characterization of plastics using thermal imaging and a light bulb as a
source of heat radiation.

on high density polyethylene (HDPE), low density polyethylene (LDPE), Polystyrene

(PS), soft Polyvinyl chloride (PVC), Polypropylene (PP), Polybutylene terephthalate

(PBT), and Polyethylene terephthalate PET (bottle form). These selected materials

were exposed to sunlight for 15 minutes. Once the exposure time is completed, we then

locate a sunshield to block the sunlight and measure the thermal dissipation time. We

placed the thermal camera at a fixed distance of 20 cm in each experiment. In addi-

tion, ambient temperature of environment was taken into consideration to determine

the effect they have on dissipation times.

Results: Figure 3.4 shows the results of dissipation time when each plastic sample

is exposed to sunlight. From the results, we can observe that the plastic samples

can absorb enough heat from sunlight, such that it is possible to characterize their

type via thermal dissipation analysis. Also, we observe that ambient temperature of

the environment affects thermal dissipation time, at higher temperatures, the thermal

dissipation time takes longer.
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Figure 3.4: Thermal dissipation time of selected materials under sunlight at two different
ambient temperatures

3.5 Summary

In this Chapter, we showed the feasibility study of the thermal imaging analysis and light

reflectivity analysis on characterizing plastic materials. We analysis both methods using

a plastic set of twenty (20) different plastic types. The result showed both methods can

be used effectively. Light reflectivity analysis shows that light can characterize plastic

materials of different physical and chemical properties, but it is noteworthy to point that

for reliable results, the distance between the sensor and the plastic material must be

small. We conduct controlled thermal experiments for the plastic materials and results

showed different behaviors of materials on exposure different heating periods (1, 2, 3

and 4 minutes). Moreover, we selected seven plastic materials from the plastic set and

determine their thermal dissipation in sunlight for more real result analysis. The result

showed that different plastic materials had different average dissipation times. This

enough gives us further proof that thermal radiation can be used to classify different

type of plastic materials.
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Characterization of litter materials
using sunlight

In previous Chapter, we demonstrated that sunlight can be used to characterize different

types of plastics. In this Chapter, we explore further how shape and size influence this

characterization process. Moreover, since the background area, where the material is

located is also exposed to sunlight. We also analyze the influence of this area in the

characterization process. To achieve this, we conduct controlled experiments where

sand is incrementally added in the background, where the material is placed.

4.1 Apparatus

We simulated the heat energy source from the sun with an incubator (JANOEL 18S)

to provide the heat required. The incubator has an adjustable thermostat which can be

set to different temperature in the range of 30 °C to 42 °C in the incubator, depending

on the time deviation required on preset. We rely on a caterpillar smartphone (s60)

with integrated thermal imaging cameras. The device is capable of measuring thermal

temperature directly from the surface of materials. The CAT s60 main features are

thermal Resolution (Pixels) 60×80 pixels, temperature Range -20◦C to 120◦C, thermal

sensitivity (MRDT) 150mk, accuracy typically ±5◦C or ±5% of the difference between

ambient and scene temperature, thermal sensor 17µm pixel size, 8 − 14µm spectral

range. The CAT s60 camera was placed on a tripod at a distance of 30 − 35 cm from

the object and calibrated after thermal equilibrium has been attained when exposing to
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the room temperature of 22−23.5℃. Video footage was recorded with the CAT s60 and

before start of experiments, room’s ambient temperature was collected using a Netatmo

weather station (https://www.netatmo.com). We also collect the dissipation time of

the thermal footprint manually using a stopwatch timer.

Testbed: We designed a testbed to obtain clean measurement of thermal dissipation.

We also designed a sample container of unique dimension to have a concise area of

analysis. The sample container is made of black color to material to avoid reflection

of light. The weight of the sample container bed was 2 grams with a surface area

of 64 cm2. One gram of plastic samples was weighed and added to the container for

each experiment using a professional scale device. We measured the dissipation time of

thermal footprint in different plastic sizes under varying conditions to obtain the results

of thermal dissipation.

4.2 Procedure

The procedure of thermal radiation transferred from heat energy from incubator and

our plastic samples is illustrated in Figure 4.1. In the experiments, we first placed

each different type sizes of plastics inside the incubator with a constant temperature of

ranging 36− 38℃, in order to achieve baseline temperature (also to simulate sunny day

conditions). We set a time of exposure between 14-16 minutes to give samples enough

time to absorb thermal radiation. We then located the thermal phone in a vertical fixed

distance (15 − 18 cm) using a tripod stand ranging and proceed to measure thermal

dissipation time. Ambient temperature during experiments varied around 22-24℃. Once

a period is completed, the researcher removes the heat source and measure each sample’s

thermal footprint dissipation using the CAT s60 to record. The fixed distance from

the samples to the camera was maintained by marker drawn on the table. Also the

background of the table was designed to be black to obtain clean thermal footage and

reduce light interference from the surface as shown in Figure 4.2.

4.3 Material selection

Litter consists of waste products that have been disposed improperly, thereby consti-

tute environmental nuisance. They vary in size, shape, nature and unique properties.
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4.3 Material selection

Figure 4.1: The simple procedure of experiment from A, weighing of samples to B, heating
of samples in incubator to C, observing the dissipation time

Figure 4.2: Researcher using the experimental tesbed
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Figure 4.3: Micro-plastic types

Moreover, given the fast rate of production and single use advantage, plastic materials

have been found to be the most littered materials. As a result, in our study, we focus

on analyzing plastics.

Size selection of plastics: To analyze whether thermal imaging can be used further

to characterize materials of different sizes, we obtained real samples of micro-plastics

and proceed to analyze them rigorously1. We used these samples as they depict the real

condition sizes of materials that can be found in real situations. Available sizes ranged

from the smallest Type I (less than 0.5cm), to Type II (less than 1.5cm) and Type III

(greater than 1.5cm). Figure 4.3 shows the samples.

4.4 Light reflectivity of micro-plastics (Baseline)

Analysis done based on light reflectivity is a highly adopted technique used in the

characterization of different materials. We proceed with analysis of our available micro-

plastics to have an idea of what is obtainable in relation to thermal imaging technique.

Experiment setup: The setup was similar to the characterization with the plastic

set. The photoresistor decreases resistance with respect to receiving light signals on the

micro-plastic surfaces. The red laser diode was our light source, and each micro-plastic

1These samples were obtained with special instruments by our collaborators in Italy
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was placed at 2 cm and 5 cm away from the light source. Measurement was made during

1 min from the larger surface area of each micro-plastics.

Results: Figure 4.4 shows the results for both analysis based of the two different

distances to the surface of the micro-plastics. We can observe that light can be used

to characterize these plastics with their small sizes. Although it becomes difficult for

accurate analysis as the distance from sensor gets farther away (as in the case of 5 cm

distance). Some of the micro-plastics did not show enough distinction in their analysis

at distance of 5 cm away. This suggests that the light reflectivity requires to take

measurements from materials very closely.
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Figure 4.4: Light reflectivity values of different Micro-plastics of different sizes.

4.5 Thermal dissipation of micro-plastics

We next demonstrate that thermal radiation can be used to characterize plastics ma-

terials of different sizes. To achieve this, we first rely on a controlled experiment with

fixed levels of temperature. In addition, we also analyze in a controlled experiment how

background materials influence the overall identification of small size plastics.

Experiment design: We analyze the amount of thermal radiation transferred to small

size materials using an incubator. We used an incubator to set fixed levels of tempera-

ture in our analysis, and to make results comparable in different conditions. To study

how small size materials absorbed thermal radiation, we consider two conditions. Each

condition analyzes different arrangements of plastics. The first conditions considers
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Figure 4.5: The two different arrangement of the samples, agglomerated arrangement
AA and dispersed arrangement DA

when small plastics are agglomerated (Agglomerated arrangement), whereas the second

conditions considers when small plastics are distributed (Dispersed arrangement). Fig-

ure 4.5 shows the two conditions. Overall, the controlled experiment follows a 2 × 3

within-subject design with thermal radiation transfer type and object type as indepen-

dent variables. Thermal radiation types had two (2) variables; Dispersed arrangement

(DA) and Agglomerated arrangement (AA) while for the objects we had 3 variables

Type I (less than 0.5cm in size), Type II (less than 1.5cm) and Type III (greater than

1.5cm). This resulted in six experimental conditions: TYPE I-DA, TYPE II-DA, TYPE

III-DA, TYPE I-AA, TYPE II-AA, TYPE III-AA. Figure 4.6 shows the six experimen-

tal conditions.

Results: Figure 4.7 shows the results. From the figures, we can observe that a thermal

footprint dissipates differently in different sample types and arrangement. The bigger

the sizes the more the dissipation time, type III recorded highest dissipation time. It

was observed that longer dissipation times were also recorded for the agglomerated

arrangement compared to the dispersed arrangement. Average time found in each trial

is shown in Figure 4.8.

4.5.1 Thermal dissipation of micro-plastics in sand

After observing the dissipation time of different samples using the incubator testbed,

we then analyze how the background area influences the dissipation thermal footprint

of small size samples. Thus, this this experiment demonstrates further the effectiveness

of our method in a real-life scenario.
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Figure 4.6: Available sizes of samples in different arrangement type I-AA, type II-AA,
type III-AA, type I-DA, type II-DA and type III-DA

Experimental design: Beach sand was gradually introduced into our controlled ar-

rangement conditions described previously. The sand was added to our conditions in

an incremental rate from 1 gram up to 5 grams for each plastic types (as shown in

Figure 4.9). Thermal dissipation time was measured after sand was added. Five exper-

iments were conducted for each gram.

Results: From the Figure 4.10, we can observe the average dissipation time for different

sample types and arrangement. This illustrates that with increase in sand in different

sample types, dissipation time reduces. However, the biggest effect was seen on the type

I plastics which account for very low dissipation time when sand was introduced. This

can be attributed to the influence of sand being heated up rather than the samples, due

to their smaller sizes.

4.6 Comparison of the state of art thermal imaging ap-
proach to baseline approach

This section compares both approaches that have been used for sensing litter. We inves-

tigate the baseline approach of light reflectivity and our approach of thermal imaging
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Figure 4.7: Different dissipation time recorded for agglomerated and dispersed samples
for Type I-AA, Type I-DA, Type II-AA, Type II-DA, Type III-AA and Type III-DA

Figure 4.8: Average dissipation times recorded for agglomerated and dispersed samples
for Type I-AA, Type I-DA, Type II-AA, Type II-DA, Type III-AA and Type III-DA
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approach

Figure 4.9: Type I sample with the addition of some grams sand

Figure 4.10: Average dissipation times in minutes and respective behavior to addition of
different grams of sand
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to consolidate the effectiveness of both. The results from both approaches have shown

advantages that thermal imaging has over light reflectivity in the terms of the following.

Distance between sensor and material: From chapter 3 and figure 4.4, we showed

results from light reflectivity analysis of materials, it shows the approach requires a short

distance between material and sensor for accurate classification. However, the thermal

footprint videos can be captured at longer distances as detailed in the experimental

designs.

Energy requirement: Energy can be measured either in different forms e.g., thermal

or electromagnetic. It is defined by the amount of work that can be done by a force

per unit time. In our work we have been able to demonstrate the use light reflectivity

using a laser diode and also thermal imaging to characterize different plastic litter. We

consider a specified surface area containing litter. Using the light reflectivity method,

energy density of approach is modelled such that the residence time is a function of the

beam diameter and scanning speed of the laser. These two quantities will be responsible

for the amount of energy required to finish a scanning area. For a large surface area

filled with microplastics, it means the sensor regardless of its power is largely dependent

on beam diameter which will be quite small and tedious. But for thermal imaging

approach, energy density is modelled only from the thermal dissipation footprint video

footage that utilizes a very limited amount of time.

4.7 Summary

This Chapter presented a preliminary analysis of the thermal dissipation of different

sample types of plastics using heat radiation from an incubator and also dissipation time

of selected materials on field using sun radiation. We measured the dissipation time of a

thermal footprint in various sample types when placed in the incubator for a period. The

controlled experiment was done using a thermal phone CAT S60. The samples are then

placed 15cm away from thermal camera vertically. The sample types were type I (less

than 0.5cm in size), type II (less than 1.5cm in size) and type III (greater than 1.5cm

in size). Measurements were also done in two different arrangements: agglomerated

arrangement AA and dispersed arrangement DA. The result of the experiment shows

that a thermal footprint dissipates differently in different sample types and arrangement.

Furthermore, the feasibility analysis adding varying sand weights to different sample
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types was also done. The procedure for this followed the same for experiments for

without sand. The only difference is the carefully weighted sand in samples and results

showed drastic reduction in thermal dissipation time for type I sample due to sand

being heated up and taking off energy off the samples largely due to their smaller sizes.

Our findings continue to show that various samples can be distinguished by thermal

radiation regardless of sizes and shapes. We compare thermal imaging technique with

existing baseline approach of light reflectivity and observed thermal imaging is more

economical in terms of energy and more accurate results can be gotten regardless of the

distance between materials and sensor.
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5

LIZARD: Development and
Evaluation

In previous Chapter, we demonstrate that sunlight can be used to identify materials

of different sizes. We showed that thermal dissipation can be measured from materials

- even in the cases where materials have micro-plastics size level. However, we also

showed that there are several issues to overcome as the materials get smaller. Thus,

our approach is more effective with litter of bigger sizes. In this Chapter, we introduce

the applicability of our approach. We envision our approach to monitor early stages of

litter mostly. We conduct experiments to demonstrate the potential of our approach

when combined with unmanned autonomous vehicles (UAVs).

5.1 Overview of LIZARD

We developed LIZARD as a combination of three major components, a land UAV, a

sunshield and a thermal camera device in a special arrangement. Figure 5.1 shows the

overall representation of the LIZARD system.

5.1.1 Apparatus

To build LIZARD, we rely on a thermal phone CAT s60 and a terrestrial land drone,

DFRobot Romeo V2. We also designed a sunshield made of cardboard, which is also

covered with a black surface (like the one in our controlled testbed), such that it is

possible to reduce the reflectance of light from surface. The sunshield of LIZARD is
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5. LIZARD: DEVELOPMENT AND EVALUATION

Figure 5.1: LIZARD overview.

Figure 5.2: Different angles of the LIZARD system taken under the sun

also designed in such a way that the shield is flexible enough to be turned against the

sun radiation while in operation. Our thermal camera s60 CAT, is in an enclosed plate

on the land UAV. Figure 5.2 shows the LIZARD prototype in action from different

angles.

5.1.2 Material selection

We thus far have demonstrated that thermal radiation can be used to characterize

different materials and even materials of different sizes. However, best performance is

obtained when using bigger size materials (litter in early stages). As a result, we next

explore how our LIZARD prototype can be used to recognize different big size litter in
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the wild1. Asides the plastic materials that have been discussed earlier, we will highlight

a few other types of materials including rubber and cotton materials which are seen as

common litters in the environment.

Rubber material: Natural rubber is used extensively in many applications and prod-

ucts, either alone or in combination with other materials. In most of its useful forms, it

has a large stretch ratio and high resilience, and also is waterproof. Due its versatility

in function, it has contributed to a high volume of waste in the environment. Some of

waste generated by rubber include balloons, rubber gloves, condoms, etc.

Cotton material: Cotton is used to make several textile products. This ranges from

terrycloth for highly absorbent bath towels and robes; denim for blue jeans and so

on. They are produced in several millions of tonnes per year and however add to the

growing list of waste materials in the world. A good example now will be face masks

which have been mandatory in most part of the world to fight against the current

COVID-19 pandemic.

5.1.3 LIZARD evaluation

Baseline experiment: Before evaluating LIZARD, we measure the dissipation time

of some of the common litters in the environment. We consider materials that often ac-

count for waste in the environment as described previously. They include a transparent

plastic bottle (A), coffee cup (B), face mask (C), hand gloves (D), Milk pack (E) and a

takeaway box (F) are shown in the Figure 5.3

We then followed the similar steps we used for the plastic sample types to capture

the video footage of thermal footprints of the different materials. We exposed these

materials into sunlight for 15 minutes each and shielded from the sun afterwards we

capture the residual thermal radiation left in each material using our smartphone camera

CAT S60 for this purpose. Ambient temperature was also recorded for each experiment.

However, to determine the extent of light intensity available from the sun for each

material, we recorded values of light intensity using a smartphone LUX application on

another smartphone device. We recorded these values for each material when exposed

to sunlight and when shielded away from the sun. A detailed description of set up is

provided in Figures 5.4 and 5.5.
1light reflectivity techniques could be integrated to recognize smaller materials and generalized our

approach
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Figure 5.3: Selected litters for experiment when exposed to sunlight and under shield;
Plastic bottle A, Coffee cup B, Face mask C, Hand gloves D, Milk pack E and Takeway
box F

Figure 5.4: Procedure for experiment when exposed to sunlight

This experiment was carried out six different times for each material. This was

achieved by changing the positions of the materials for different experiments and getting

a variance of data for each.

LIZARD results: Baseline results mirror the performance of LIZARD when identi-

fying materials. Overall, Figure 5.6 shows the result of the dissipation time for each

material, with some materials like the hand gloves and coffee cup having high dissipa-

Figure 5.5: Procedure for experiment when shield from sunlight
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5.2 Summary

Figure 5.6: Dissipation time in minutes of the selected materials in six different positions
in relation to ambient temperatures

tion times due to their material intrinsic properties. Also the light intensity pattern

and values with respect to ambient temperatures for different materials is shown in Fig-

ure 5.7 and Figure 5.8 with an SI unit of lux. It is also observed that at higher ambient

temperatures, thermal dissipation times are longer for all materials.

5.2 Summary

In this Chapter, we introduced a LIZARD system for autonomous monitoring of different

litter materials. We selected six different material types and conducted experiments on

thermal radiation response. Thermal footprints of different materials were monitored

and recorded using the smartphone s60 CAT thermal camera. Materials were exposed

in the sun for a period of 15 minutes, while temperature of the environment and light

intensity of the sunlight was recorded when exposed and under shield. The fixed distance

from the surface of the ground and camera was 20 cm which was due to coverage for

large materials. There is also an indication that temperature and light intensity values

of the environment have a linear relationship with the dissipation time of each material.

All in all, our finding indicates that autonomous solutions for monitoring litter can be

easily created by exploiting sunlight.
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Figure 5.7: Light intensity value pattern for different materials

Figure 5.8: Light intensity values with respect to ambient temperatures for different
materials
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Discussion

This Chapter will give insights on the implications and limitations of our work.

6.1 From big to micro size materials

While we demonstrate that our approach can be used to identify materials of bigger

sizes (litter that has just being disposed), it could be possible to generalize our approach

to different sizes by integrating light reflectivity techniques. In this context, thermal

imaging can provide information about the areas that were not monitored accurately,

such that light reflectivity can be used instead. While we showed that both approaches

can be used in our experiments, this integration is not explored in this work. Thus, we

are interested to explore further their integration.

6.2 Energy conservation

Energy is always conserved by improving efficiency through technological innovation and

improved operation. Several methods are also being used to classify litter materials.

In this work we took a closer look on how light reflectivity is used in monitoring litter

materials. It proved to be an effective method but it requires substantial energy to

power a laser diode over a large surface area. We are able to demonstrate that by

piggybacking on the free energy of sunlight we can cover large surface areas, with lesser

energy through thermal imaging.
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6.3 Improving recycling efforts

Existing methods of recycling plastic materials start from manual evacuation of plastics

such as handpicking and suction devices. With our LIZARD system, thermal radiation

analysis of plastics can be carried out to determine and characterize plastic materials to

ease the recycling process of plastic materials. Humans involved in evacuation can easily

sort these materials on the spot during evacuation with this approach. This increases

the economic security by reducing the length of chain events involved in recycling.

6.4 Room for improvement

With the massive growth of the drone Internet of Things (IoT) (94), we demonstrated

how UAVs equipped with commercial and off-the-shelf (COTS) thermal cameras can

be used to implement the service of characterizing litter materials in open areas. The

trajectory planning which coordinates the optimal road path of the device between the

starting point and the ending point (95) is not covered in the scope of our work. The

major constraint is usually to establish a path directory with the optimal cost function

value (95). Also, there are certain materials and environments that will be difficult

to evaluate through thermal footprints. We intend to analyze different environmental

medium of where litter exist on terrestrial surfaces with increased sophistication by

adding other sensors.

6.5 Waste reduction

Climatic conditions are not constant, and our functional ecosystem needs to be sustained

for long periods. By effective characterization of litters with sunlight powered by thermal

imaging, we reduce the enormous quantity in landfills. We then lessen their impact on

our agriculture and freshwater locations. With the global pattern of microplastics in

commercial food-grade salts (96), human ingestion of microplastics-type litter can also

be reduced.
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6.6 Pervasive solution to testing methods

Testing and investigation methods of materials involves to searching and examining the

properties of materials in an attempt to learn the facts about them for development and

design. Our thermal dissipation approach from sunlight can be used by manufacturing

industries to finding properties of composite material. For example, a composite plastic

material can be characterized just by exposure to sunlight for a period. Investigation

of other materials can be done with corresponding algorithm designs.

6.7 Influence of weather and climate

The little amount of the average sunlight per year in countries like Estonia impacts

the use of our LIZARD system. Since our method exploits sunlight as our provider

of energy, it proved to be a limitation to the use of the device when the weather is

mostly humid. Extreme winter weather which brings about precipitation in the form

of ice crystals (snow) prevents the workability of this approach. Also, the presence

of occasional strong winds during warmer periods affects the stability of litters being

monitored.
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7

Summary and conclusions

In this work, we presented LIZARD, a novel innovative sensing approach that uses

sunlight to recognize litter materials in public open areas. LIZARD exploits the fact that

litter is exposed to sunlight when is located in open areas. By analyzing the absorption

of sunlight radiation by covering the material with a sunshield and using a thermal

camera, it is possible to identify the type and characteristics of the litter material

through its thermal dissipation fingerprint. We conducted rigorous experiments that

demonstrate the feasibility of our approach. Moreover, we also compared our approach

against existing state-of-the art approach based on light reflectivity, demonstrating that

our approach not just has higher coverage, but also is more efficient in terms of energy

consumption.
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