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Abstract: Three-dimensional (3D) imaging and infrared (IR) thermography are powerful tools in
many areas in engineering and sciences. Their joint use is of great interest in the buildings sector,
allowing inspection and non-destructive testing of elements as well as an evaluation of the energy
efficiency. When dealing with large and complex structures, as buildings (particularly historical)
generally are, 3D thermography inspection is enhanced by Unmanned Aerial Vehicles (UAV—also
known as drones). The aim of this paper is to propose a simple and cost-effective system for aerial 3D
thermography of buildings. Special attention is thus payed to instrument and reconstruction software
choice. After a very brief introduction to IR thermography for buildings and 3D thermography, the
system is described. Some experimental results are given to validate the proposal.

Keywords: infrared thermography; unmanned aerial vehicles; 3D modelling; energy efficiency;
cultural heritage

1. Introduction

Three-dimensional (3D) imaging [1] is an important tool in many fields, ranging from industrial
and architectural design to diagnostics of materials and artifacts, from medicine to entertainment
(cinema, video games) and the fruition of historical and artistic heritage (augmented reality, virtual
reconstruction).

Infrared (IR) thermography (IRT) [2] is also a technique that has grown very rapidly in recent
years, now characterized by increasingly advanced applications. Therefore, the joint use of these two
techniques is of great interest and potential and represents a very current research topic.

3D thermography can be very useful, for example, in structural diagnostics, energy efficiency
assessment of buildings, inspection and monitoring, and these evaluations may be enhanced by
performing them from UAVs (Unmanned Aerial Vehicles—also known as drones) [3].

IRT is based on the fact that all bodies having temperature above absolute zero emit radiation;
from this radiation, it is possible to trace the temperature of the body. Therefore, thermography is a
method capable of detecting the temperature of objects under investigation without contact.

A thermographic camera is a calibrated device capable of measuring the radiation emitted by
objects and calculating their temperature. The radiation measured by their sensor also depends on the
properties of the investigated surface (emissivity) and the environment (radiation absorbed or emitted
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by the atmosphere between sensor and object and contribution of other objects in the environment).
Basic principles are summarized in Figure 1.
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Figure 1. Basic principle of a thermal camera.

The result is an image of the object in which the color or gray levels correspond to the different
temperatures on the object’s surface. The measurement accuracy also depends on parameters such
as ambient temperature, wind or solar radiation. Possible variations in temperature may be due
to differences in materials surface finish (intrinsic or as a result of ageing/damage) or subsurface
defects [2].

Diagnostic capabilities can be enhanced by a quantitative analysis of the thermographic data.
Here, we are particularly interested in IRT for buildings, a flourishing application. An interrogation of
the database SCOPUS using the search term “thermography AND buildings” in “article title, abstract
and keywords” returned about 1725 papers, while the same interrogation only in “article title” returned
178 papers (data accessed 4 May 2020). Table 1 reports some recent references, identifying review
papers and the main topics discussed.

Table 1. A (not exhaustive) list of recent papers about infrared thermography (IRT) for buildings.

Authors Year Main Topic Notes

Garrido et al. [4] 2020 Post-processing Review
Huang et al. [5] 2020 Facades diagnostics

Teni et al. [6] 2019 Thermal transmittance Review
Bienvenido-Huertas et al. [7] 2019 Thermal transmittance Review

Soares et al. [8] 2019 Thermal transmittance Review
Glavaš et al. [9] 2019 Cultural heritage

Royuela-del-Val et al. [10] 2019 Air infiltration Neural network
Nardi et al. [11] 2018 Heat losses Review

Kirimtat et al. [12] 2018 Thermal performance Review
Baldinelli et al. [13] 2018 Thermal bridges

Lucchi [14] 2018 Energy audit Review
Lerma et al. [15] 2018 Air infiltration

O’Grady et al. [16] 2017 Heat losses
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Table 1. Cont.

Authors Year Main Topic Notes

Barreira et al. [17] 2017 Air leakage
Fox et al. [18] 2016 Diagnostics

Nardi et al. [19] 2016 Thermal transmittance
Djupkep Dizeu et al. [20] 2016 Indoor conditions

Barreira et al. [21] 2016 Moisture
Sfarra et al. [22] 2016 Cultural heritage Solar heating

Fox et al. [23] 2015 Diagnostics
Albatici et al. [24] 2015 Thermal transmittance

Kylili et al. [25] 2014 Diagnostics Review
Nardi et al. [26] 2014 Thermal transmittance

Krankenhagen et al. [27] 2014 Cultural heritage Solar heating
Paoletti et al. [28] 2013 Cultural heritage
Dall’O’ et al. [29] 2013 Energy audit

The breadth of applications gives a fair idea of the current importance of IRT in buildings
diagnostics and evaluations.

A further step ahead relates to 3D imaging. 3D imaging and displays are getting more and more
important. For a general review of the topic, the interested reader is referred to References [1,30]: a
comprehensive handbook and a recent extensive tutorial.

The great interest in 3D technologies also flourished in cultural heritage and buildings
studies [31–34]. All this naturally leads to 3D thermography that is usually realized by combining 3D
geometric data and two-dimensional (2D) thermographic data [35], and different setups are available
according to the different 3D geometric acquisition systems and the different data fusion. Thus, for
example, 3D geometry and 2D thermal images can be simply compared [36], infrared images can
be mapped to 3D point clouds [37,38], integrated at different times in a Building Information Model
(BIM) [39] or associated with a high-quality color laser scanner for cultural heritage monitoring and
documentation [40].

The idea for the present work stems from the observation that several economical yet reasonably
well-performing thermal cameras are on the market. They are integrated in smartphones (e.g.,
CAT S60 and CAT S61) or can be added to them as external modules (e.g., FLIR One and Seek
Thermal) and available as stand-alone devices (e.g., FLIR C2). As their prices are typically within
$1000, they help to increase the spread of IRT applications in many fields, such as, for example,
biomedicine [41,42], agriculture [43], buildings inspection [44], cultural heritage diagnostics [45] and
mass human temperature screening [46].

In this work, we propose a simple and cost-effective system to perform 3D aerial thermography of
buildings. Particular attention is devoted to the choice of instruments and software for reconstruction.
The article is structured in the following way: we describe the proposed system, with details on the
choice of instruments, calibration and reconstruction software. The system was validated in a virtual
environment. Finally, we show some experimental results.

2. Materials and Methods

2.1. A Cost-Effective System

This paper is devoted to proposing a simple and cost-effective system for aerial 3D thermography
of buildings.

To this aim, some key features of the system can be defined:

1. Thermal and geometric data should be recorded by the same device and in a single
measurement process.

2. This device should be commercially available and cost-effective.
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3. The reconstruction software should not require images taken by more than one recording device.
4. The reconstruction software should be as simple as possible without many parameters to tune.

2.2. Choice of Recording Device

Recent developments in sensor technology led to the production of miniaturized bolometers with
LWIR (Long Wavelength Infrared band: 8–14 µm) sensitivity that are commercially available as camera
core or mounted in compact thermal cameras. Two thermal cameras were chosen from the FLIR family
of compact ones with visible light imaging: FLIR C2 and FLIR Duo R, and their respective features are
summarized in Table 2. FLIR C2 was presented as the “world’s first full-featured, pocket-sized thermal
camera designed for building industry experts and contractors” [47], while FLIR Duo R was presented
as “the world’s first compact, lightweight, radiometric thermal and visible light imager designed for
drone applications” [48]. Currently, the FLIR Duo R camera is no longer on the market and a new
version is available (FLIR Duo Pro R). Figure 2 shows the two recording devices. The important feature
is the simultaneous acquisition of a dual visible-thermal image dataset. The larger field of view and
sensor size of the Duo R makes it more suitable for thermal acquisition of large-scale objects, and the
higher resolution of the visible sensor allows for capturing a reliable dataset for 3D reconstruction.

Table 2. Comparison of selected recording devices.

Imaging Specifications FLIR C2 FLIR Duo R

IR sensor 80 × 60 pixels 160 × 120 pixels
Thermal sensitivity <0.10 ◦C <0.050 ◦C (*)

Field of view 41◦ × 31◦ 57◦ × 44◦

Spectral range 7.5–14 µm 7.5–13.5 µm
Accuracy ±2 ◦C ±5 ◦C

Digital camera 640 × 480 pixels 1920 × 1080 pixels
Operating temp. range −10 to +50 ◦C 0 to +50 ◦C
Weight (incl. battery) 0.13 kg 0.084 kg

Size 125 × 80 × 24 mm3 59 × 41 × 29.6 mm3

(*) nominal sensitivity of the Lepton core sensor https://www.flir.com/products/lepton/.
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2.3. Calibration Procedure of Visible-Thermal Sensors

The calibration boils down to the solution of a geometric problem: the estimation of the relative
spatial position of the imaging sensors (visible and thermal). The key aspect here is that visible and
thermal images are acquired in a single measurement process, therefore the calibration target must be

https://www.flir.com/products/lepton/
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suitable for the two imaging modalities, namely the reflective- and the emissive-based. A multi-step
procedure is adopted only in the processing phase.

2.3.1. The Calibration Passive Target

Calibration targets can be of different types depending on (i) the markers used (corners, circles, etc.),
(ii) their arrangement (structured or unstructured) and (iii) the working principle (active, passive) [49].
In this paper, a simple target (shown in Figure 3) was chosen to be cost-effective and easy to deploy.
According to the previous taxonomy, it is based on squared features (grid pattern), and it is structured
and passive (it does not require external energy sources, e.g., lightbulbs).
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Figure 3. The calibration target.

The target has been properly designed for the calibration of both the visible and the LWIR thermal
sensor. A layer of material with a known emissivity value is covered by a second material, with
cropped squares, having very different emissivity, giving rise to a geometric pattern, like a chessboard.
The difference in emissivity in the two zones results in two different radiation values emitted, creating
distinguishable zones in the thermal images. In particular, the masked layer is made by aluminum
paper well laid and painted black (emissivity around 0.3), and the cover is white cardboard (emissivity
around 0.9). The use of two separate physical layers, i.e., not of a painted pattern on single support,
allowed limiting the blurring due to thermal diffusion at the interfaces, thus producing a sharper
pattern. The problem of the specular reflection in the thermal range was addressed by applying a
finishing (micro-roughness) to the aluminum to obtain a diffusive surface at LWIR wavelengths. This
was simply done by pressing the foil on a sandpaper with a course grid size.

2.3.2. The Calibration Algorithm

The extraction of salient features from the visible images is straightforward, thanks to the high
contrast and sharpness of the pattern and the imaging performance of CCD (Charge-Coupled Device)
cameras. The identification of the internal regions was carried out by applying an intensity-based blob
detection algorithm [50] to find the square centroid of each grid element. Clearly, besides the limited
size of the bolometric sensor, the thermal images are less sharp than visible ones due to the nature of
LWIR imaging itself. Thermal contrast is affected by the contribution of the environment that causes
spurious reflections and makes feature extraction more difficult to achieve. Figure 4 shows an example
of the target recorded at the same time in the two different bands.

Some specular contributions on the aluminum squares still occur in both the thermal and visible
range and the problem was treated with a dedicated pipeline in the calibration phase, as detailed in
the following.
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Figure 4. The target recorded in the visible (left) and in the thermal bands (right) in a single measurement.

First, the images are segmented using the Maximum Stable Extremal Region blob detector
(MSER) [50]. For each image, the resulting blob set, which may contain outliers, is refined, imposing a
set of shape constraints on each element. The resulting set is then dilated in order to isolate the single
connected component containing the calibration pattern. Using the Hough transform, a set of lines
is fitted along the edges of the connected component and the homography matrix is estimated. The
image perspective is corrected by applying the homography transformation and, if the squares are not
fully detected in the initial phase, an auxiliary search routine is applied around the first neighbors of
the detected square. This routine applies a local clustering using an adaptive k-means and searches for
corrupted squares. Assuming to have a good estimation of the square size, this auxiliary procedure
clusters the grey level around each neighbor into higher and lower intensities with respect to the
calibration mask grey level. These clusters are then merged, and the resulting region is checked against
a set of shape constraints. If this new region satisfies the constraints, it is assumed to be a new square
and added to the detected set. The procedure is iteratively applied until the detected set is full or the
maximum iteration is reached. If the image is not rejected, a set of horizontal of vertical lines are fitted
into the points and the set of square centroids is substituted with the corresponding line intersections.
The last step is to apply the stereo intrinsic and extrinsic estimation proposed in Reference [51]. The
proposed calibration procedure allowed to mitigate the possible reflections on the calibration target
in the visible and thermal bands, which have their own characteristics (see Figure 5) and degrade
the effectiveness of a classical geometric calibration at a different level. Combining state-of-the-art
computer vision algorithms, it was possible to recover the corrupted square regions, reducing the
number of the undetectable images. This allowed to reduce the calibration time and to perform the
calibration in an uncontrolled environment with a passive target, without the need of heating sources.

J. Imaging 2020, 6, x FOR PEER REVIEW 6 of 14 

 

 

Figure 4. The target recorded in the visible (left) and in the thermal bands (right) in a single 

measurement. 

Some specular contributions on the aluminum squares still occur in both the thermal and visible 

range and the problem was treated with a dedicated pipeline in the calibration phase, as detailed in 

the following. 

First, the images are segmented using the Maximum Stable Extremal Region blob detector 

(MSER) [50]. For each image, the resulting blob set, which may contain outliers, is refined, imposing 

a set of shape constraints on each element. The resulting set is then dilated in order to isolate the 

single connected component containing the calibration pattern. Using the Hough transform, a set of 

lines is fitted along the edges of the connected component and the homography matrix is estimated. 

The image perspective is corrected by applying the homography transformation and, if the squares 

are not fully detected in the initial phase, an auxiliary search routine is applied around the first 

neighbors of the detected square. This routine applies a local clustering using an adaptive k-means 

and searches for corrupted squares. Assuming to have a good estimation of the square size, this 

auxiliary procedure clusters the grey level around each neighbor into higher and lower intensities 

with respect to the calibration mask grey level. These clusters are then merged, and the resulting 

region is checked against a set of shape constraints. If this new region satisfies the constraints, it is 

assumed to be a new square and added to the detected set. The procedure is iteratively applied until 

the detected set is full or the maximum iteration is reached. If the image is not rejected, a set of 

horizontal of vertical lines are fitted into the points and the set of square centroids is substituted with 

the corresponding line intersections. The last step is to apply the stereo intrinsic and extrinsic 

estimation proposed in Reference [51]. The proposed calibration procedure allowed to mitigate the 

possible reflections on the calibration target in the visible and thermal bands, which have their own 

characteristics (see Figure 5) and degrade the effectiveness of a classical geometric calibration at a 

different level. Combining state-of-the-art computer vision algorithms, it was possible to recover the 

corrupted square regions, reducing the number of the undetectable images. This allowed to reduce 

the calibration time and to perform the calibration in an uncontrolled environment with a passive 

target, without the need of heating sources. 

 

Figure 5. The reflections affecting the target, in the visible (left) and in the thermal bands (right). Figure 5. The reflections affecting the target, in the visible (left) and in the thermal bands (right).



J. Imaging 2020, 6, 76 7 of 13

The calibration method has been successfully applied both indoors and outdoors, obtaining
comparable estimation error, and a relative rotation between the sensors of zero, as expected. The very
small calibration error allows the 3D reconstruction to be effectively performed, as shown later.

2.4. Validation on Virtual Environment

To validate the reconstruction algorithm, a virtual environment was initially used. The simulator
used during the testing for the aerial 3D reconstruction was CoppeliaSim, an open-source robotics
simulator with interfaces to multiple programming languages. The simulation environment (shown in
Figure 6) was composed of a teleoperated quadrotor, a multi-texturized model of a building, a model
of a stereo vision system and a virtualized GPS.
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Figure 6. The virtual environment with the texture for the visible (left) and for the thermal bands
(right).

The vision system has been configured to mimic the behavior of a realistic thermographic camera
setup, specifically by setting the nominal field of view, sensor size and frame rate of the FLIR Duo,
together with the results from the geometric calibration for the relative positioning of the visible and
thermal sensors. Finally, to simulate the appearance of the building in the reflective and emissive
imaging modes, we applied two specific textures which are then “seen” either by the visible or by the
thermal simulated sensor, respectively. The simulator has been interfaced to MATLAB, from where
we computed and controlled the drone trajectory and the image acquisition. Figure 7 shows the 3D
reconstruction using the images acquired by the simulated drone.
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2.5. 3D Reconstruction Pipeline

The Structure from Motion (SFM) technique was chosen as the reconstruction algorithm.
SFM [52–59] is a photogrammetry technique able to reconstruct a sparse 3D model of a static target
from several 2D images of the same object taken from different points of view. To get a dense 3D
reconstruction, the resulting sparse model must be further elaborated using a multi-view stereo
(MVS) [59] algorithm. The SFM and MVS methods used for the reconstruction were provided by the
open-source projects OpenMVG (Open Multiple View Geometry) [60] and CMVS (Clustering Views
for Multi-View Stereo), respectively.

The proposed reconstruction methodology uses the visible images for building the full 3D object
reconstruction by SFM and MVS. Then, thanks to the geometric calibration of the dual visible-thermal
sensor, for each 3D point of the reconstructed model, the corresponding radiometric thermal value is
computed. This is accomplished by keeping track, for each 3D point, of the pair of images from which
it has been triangulated and then projecting it back into the image plane of one of them. Once in the
image plane, its coordinates (in pixels) are transformed from the visible image frame into the related
thermal frame (through the homogeneous transformation estimated with the geometric calibration
presented in Section 2.3), where the radiometric value can be obtained. By performing this reprojection
for each 3D point, it is possible to derive the final radiometric 3D thermal model. Clearly, due to the
different sensor resolution, the thermal mapping is not bijective anymore. In our approach, the thermal
images are not subjected to any super sampling or other interpolation technique, and multiple pixels
of the visible images are simply mapped into a single thermal pixel and, consequently, to the same
temperature. The advantage of this approach is that the temperatures mapped in the point cloud are
the real values recorded by the thermal sensor.

In order to build the visible 3D model, the first step is to extract the conjugated features for each
image. The discriminative capabilities of these features heavily affect the performance and the quality
of the overall Structure from Motion. In our method, we adopted A-KAZE (Accelerated KAZE), a fast
multi-scale feature detection and description method based on nonlinear scale spaces [61].

2.6. Mission Planning and Drone Control

The trajectory for the image acquisition is planned before the mission using Pyfplanner, an
open-source software, developed by the authors in Python, and available online at https://gitlab.com/

npiccinelli/pyfplanner. The aim of the software is to provide a sequence of commands to later be
sent to the Unmanned Aerial Vehicle (UAV) through the open-source ground station software Mission
Planner (https://ardupilot.org/planner/index.html). Table 3 lists the available commands.

Table 3. Mission planning and Unmanned Aerial Vehicle (UAV) control command list.

UAV Commands Parameters Description

HOME (latitude, longitude, altitude) Define the home position for the UAV controller
WAYPOINT (latitude, longitude, altitude) Define a new waypoint to the current flight plan

CAMROT (yaw, pitch, rool) Set a camera rotation relative to the forward
direction

SHOT none Trigger the shot command to the FLIR Duo R

CYAW (yaw, pitch, rool) Define the forward direction of the camera with
respect to the initial rotation

LOITER (latitude, longitude, altitude) Keep the UAV in the commanded position
LAND none Start the landing procedure

The trajectory generated by the software is on the plane along the vertical direction of the line
connecting the initial and the final position. The positions are defined in geographic coordinates. The
maximum height of the trajectory is defined in meters with respect to a ground offset in order to avoid
an undesired hovering effect. If the camera field of view (FOV) and the acquisition distance are known
in advance, it is possible to derive the waypoint distance based on the desired overlap percentage

https://gitlab.com/npiccinelli/pyfplanner
https://gitlab.com/npiccinelli/pyfplanner
https://ardupilot.org/planner/index.html


J. Imaging 2020, 6, 76 9 of 13

between neighbor images. Otherwise, the software allows to set the vertical and horizontal traverse
steps manually. In the case of a visible-thermal stereo system with different FOVs (e.g., such as the
FLIR Duo R), to guarantee the full coverage by the two sensors, the FOV used to plan the trajectory
should be the smaller one.

3. Results and Discussion

The goal of this work was to propose an effective and simple-to-use workflow for 3D thermography
of buildings by exploiting dual visible-thermal sensors mounted on Unmanned Aerial Vehicles. The
method has been validated using only the FLIR Duo R model because even if the FLIR C2 is a dual
visible-thermal camera, the limited size of the visible sensor does not provide enough spatial resolution
when applied in the field of aerial 3D reconstruction. In fact, to have a dense 3D reconstruction,
imaging resolution must be high enough to capture the texture of the reconstructed surface. At a typical
distance of 5 m from the building, the FLIR C2 cannot guarantee a good enough reconstruction; to be
more specific, the size of the image cell at object plane, at a distance of 5 m, is about 8 mm for the FLIR
C2 and 4 mm for the Duo R, corresponding to a minimum resolved detail of 16 and 8 mm respectively,
according to Nyquist. Moreover, as the FLIR Duo R has been specifically designed to be carried around
with a drone, it has a ready-to-use interface with the drone communication system MAVLink.

3.1. Experimental Setup

The proposed solution was experimentally validated in a noncontrolled environment by
performing the outdoor 3D reconstruction of a building under restoration. The image acquisition
was done near the city of Verona (Italy) in mid-April 2019, with cloudy conditions and atmospheric
temperature between 9 and 13 ◦C. The UAV used was a custom-made quadrotor controlled through a
Pixhawk running ArduPilot, an open-source project based on the Arduino framework. The quadrotor
was also provided with an electronic gimbal to control the rotation of the vision system. The UAV
flight plan was made using Pyfplanner and uploaded in the UAV controller using Mission Planner.

The trajectory was designed to provide a sequence of vertical and horizontal images with 80%
of overlap, a façade distance of 10 m, for safety reasons, and maximum height of 8 m. The acquired
dataset is composed of 37 pairs of visible and thermal images (an example is shown in Figure 8). The
whole measurement process took 5 min. The 3D reconstruction and the thermal mapping run on a i7
8700 with 32 GB of RAM and took about 15 min to accomplish the dense reconstruction.
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Figure 8. Images from the dataset. Picture of the building in the visible band (left) and same view
captured in the thermal band (middle and right). The thermal range is between 3 and 14 ◦C.

3.2. 3D Reconstruction

The resulting 3D reconstruction is shown in Figure 9, and even without a quantitative evaluation of
the mapping accuracy, it can be seen how the proposed method is able to map the thermal information
over the 3D reconstruction with acceptable accuracy.
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Figure 9. Different views of the building from the aerial 3D reconstruction in the visible band (left
column) and thermal band (right column). The thermal range of the 3D reconstruction was adjusted
between 11 and 13.5 ◦C.

4. Conclusions

3D thermography can be an unparalleled tool for building diagnostics. When used by drones, it
can allow safe inspection of parts that are difficult to reach or that would be difficult to examine in
any other way (such as roofs). Applications can range from structural or maintenance diagnostics to
the investigation of large archaeological sites and energy audits. 3D thermography, generally always
associated with a 3D representation of the building in the visible band, has the key feature of allowing
an accurate location of the thermal map.

In this article, we have proposed a simple system to realize an aerial 3D thermography of buildings.
The system consists of a single device, which takes 2D images simultaneously in the visible and
long infrared bands. After calibration, it is possible to reconstruct the 3D in the visible band with
SFM techniques and then add the thermal information. The system has been validated during a real
measurement campaign from a drone on a civil building.

Laser scanning can provide a great amount of data, in the form of a point cloud dataset, but
instrumentation is costly and requires a highly skilled operator. Also, LiDAR (Light detection and
Ranging) instruments can provide 3D data with high spatial precision but once again, at a high
cost. Although the obtained results cannot compete with those provided by these more sophisticated
instrumentations, we also consider the performance of the proposed simple and cost-effective system
very interesting in the continual monitoring of historical buildings and 3D objects, e.g., statues.
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57. Özyeşil, O.; Voroninski, V.; Basri, R.; Singer, A. A survey of structure from motion. Acta Numer. 2017, 26,
305–364. [CrossRef]

58. Saputra, M.R.U.; Markham, A.; Trigoni, N. Visual SLAM and Structure from Motion in Dynamic Environments:
A Survey. ACM Comput. Surv. 2018, 51, 1–36. [CrossRef]

59. Hartley, R.; Zisserman, A. Multiple View Geometry in Computer Vision, 2nd ed.; Cambridge University Press:
Cambridge, UK, 2004; ISBN 9780521540513.

60. Moulon, P.; Monasse, P.; Perrot, R.; Marlet, R. Openmvg: Open multiple view geometry. In International
Workshop on Reproducible Research in Pattern Recognition; Springer: Cham, Switzerland, 2016; pp. 60–74.

61. Alcantarilla, P.F.; Nuevo, J.; Bartoli, A. Fast explicit diffusion for accelerated features in nonlinear scale spaces.
IEEE Trans. Patt. Anal. Mach. Intell. 2011, 34, 1281–1298.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.burns.2017.04.006
http://dx.doi.org/10.3390/s18041050
http://dx.doi.org/10.3390/s18072003
http://dx.doi.org/10.1117/12.2527560
http://dx.doi.org/10.1364/AO.388313
https://flir.netx.net/file/asset/7595/original
https://flir.netx.net/file/asset/10905/original
http://dx.doi.org/10.1016/j.imavis.2004.02.006
http://dx.doi.org/10.1007/BF00128525
http://dx.doi.org/10.1098/rspb.1979.0006
http://www.ncbi.nlm.nih.gov/pubmed/34162
http://dx.doi.org/10.1364/JOSAA.8.000377
http://www.ncbi.nlm.nih.gov/pubmed/2007912
http://dx.doi.org/10.1016/j.geomorph.2012.08.021
http://dx.doi.org/10.1017/S096249291700006X
http://dx.doi.org/10.1145/3177853
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	A Cost-Effective System 
	Choice of Recording Device 
	Calibration Procedure of Visible-Thermal Sensors 
	The Calibration Passive Target 
	The Calibration Algorithm 

	Validation on Virtual Environment 
	3D Reconstruction Pipeline 
	Mission Planning and Drone Control 

	Results and Discussion 
	Experimental Setup 
	3D Reconstruction 

	Conclusions 
	References

