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Preface

The application of unmanned aerial vehicles (UAVs) in environmental sciences has increased 
significantly in the last ten to fifteen years. We, as the editors of this book, have been and are still 
part of this development of increasing applications of UAVs in environmental studies, including 
the learning pathway. With the opportunities provided by UAVs, we are able to conduct research 
as never intended before. UAVs are causing a paradigm change in environmental sciences be-
cause it becomes possible to observe the Earth surface nearly continuously at spatial resolutions 
that change our measurement perspective from samples to continuums. Because of the nature 
of a ‘flying sensor’ and the mostly light-weight and affordable equipment, challenging and more 
difficult to access environments, such as deserts, wetlands, cliffy coasts, or alpine areas can be 
monitored for the first time or more easily than before. Compared to other surveying methods, 
such as terrestrial laser scanning or airborne (i.e. by plane) remote sensing, data can be achieved 
much easier, faster, and mostly with larger coverage or with higher temporal and spatial resolu-
tion. These advantages helped to establish a large group of researchers using UAVs for environ-
mental studies, enabling them to observe processes, patterns, and changes, for the first time due 
to unprecedented spatio-temporal resolutions. 

Using the same technology and working in the area of environmental sciences brought us 
together on several conferences, where we recognized that we are all stumbling at the same trip-
ping stones and pitfalls, such as choosing a suitable number and type of ground control points or 
preparing a task-specific flight plan and choosing the correct sensor. Thus, we started to realize 
that a comprehensive overview and teaching book for the application of UAVs in environmental 
sciences, that can prevent other researchers from repeating the same mistakes, is still missing. 
This book elaborates on the fundamental basics of applying UAVs in environmental research, 
reaching from essentials in planning and preparing UAV flights, sensor systems, data collection 
and processing, data analysis to numerous examples of possible fields of application. We hope 
that this work, which was intended to be openly available from the beginning, can be of great 
support when working with UAVs in environmental research, directly achieving optimal data 
for the myriads of applications worldwide. During the course of editing this book, all of us were 
surprised by the numerous applications represented in this book, which never seem to end.

Lately, the term ‘unmanned aerial vehicle’ is in discussion because this term can be considered 
as a not fully inclusive usage of language. Therefore, it has been proposed to use ‘unoccupied 
aerial vehicle’ or ‘uncrewed aerial vehicle’, giving the opportunity to stay with the same acronym. 
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Preface

Also, the usage of RPAS (Remotely Piloted Aircra� System) has been suggested. However, the 
community, who uses UAVs in environmental sciences has not �nalized its decision on what 
term to use. �us, we decided to allow for the usage of all three possibilities to de�ne UAV. Fur-
thermore, we would like to state that company names, e.g. in regard of so�ware, platforms or 
sensors are being used without speci�c recommendation.

We like to thank the authors for their contributions; without their input this book would of 
course not have been possible. �e authors cover a vast variety of scienti�c background and ex-
pertise spanning from engineering to photogrammetry, to geo-information science, to remote 
sensing, to geomorphology, to ecology, to hydrology and to geology, which very well underlines 
the diversity of the applicability of UAVs in environmental sciences. �e book would also not 
have been possible without the support by the reviewers, who assisted our editing process. �ey 
considered the chapters thoroughly and commented very supportively and helped to improve 
the book. We would like to thank Simon Buckley, Görres Grenzdör�er, Sören Hese, Eliisa Lotsa-
ri, David Mader, Berit Schmitz, Ellen Schwalbe and Christian �iele for providing their support 
and expertise. Furthermore, we want to express our gratitude towards Luise Hofmann. We thank 
the German Research Foundation (DFG) for its trust into a group of early career scientists and 
its support of the scientific network that allowed for regular meetings to advance our joint 
book editing. Last but not least, we are very thankful for the support of the publisher: wbg – 
Wissenschaftliche Buchgesellschaft.

This publication has been produced as part of the work of the co-editor Anette Eltner at the 
Technische Universität Dresden, Junior Professorship for Geosensor Systems, and has been 
financially supported by the Technische Universität Dresden.

Anette Eltner
Dirk Ho�meister

Andreas Kaiser
Pierre Karrasch
Lasse Klingbeil

Claudia Stöcker
Alessio Rovere
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1.1  Historical developments 
of UAV use in environmental sciences

Irene Marzol�

1.1.1  Unmanned aerial photography at the origins of remote sensing .........................................11

1.1.2  Developments in modern SFAP and UAV remote sensing techniques ...............................15

1.1.3  Terminology in UAV remote sensing today ............................................................................22

Ultra-high resolution earth observation data as well as their derivatives have become ubiquitous 
in environmental research and spatial applications of all kinds. �e proliferation of unmanned 
aerial vehicles, both professional and consumer-grade, together with new miniaturized sensors 
and 3D image-processing techniques has revolutionized centimetre-precision geodata acquisi-
tion within just a decade or so. �e concepts, applications and techniques of UAV remote sens-
ing, however, go back a long way, building on nearly 150 years of unmanned remote sensing with 
various types of sensors and platforms. Kites, balloons, blimps, paragliders, model airplanes and 
model helicopters are among the most common vehicles employed before the advent of modern 
drones. �eir characteristics vary greatly: tethered or free-�ying, powered or unpowered, aero-
static by buoyancy (lighter-than-air) or aerodynamic by means of �xed, �exible, or rotary wings 
(heavier-than-air), technically basic or highly sophisticated, endurance from minutes to hours, 
payloads from light to heavy. �e choice of system may therefore be matched to a large range 
of operational, logistic, legal and �nancial conditions. �is chapter traces the development of 
unmanned airborne remote sensing from its very beginning until today.

1.1.1  Unmanned aerial photography 
at the origins of remote sensing

For more than a century before the drone age, images of the Earth as seen from above have 
been taken with the aid of unmanned platforms by scientists, engineers and professional as 
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well as hobby photographers. Experiments with cameras attached to kites and balloons were 
made in the mid-19th century, as early as ten years a�er the invention of the daguerreotype, 
by Colonel Aimé Laussedat, a French engineer later considered the father of photogrammetry. 
More successful attempts at unmanned aerial photography using balloons were made in the 
1860s to 1880s in America, Germany, and France (Aber et al., 2019). �e kite, however, was to 
become the most widely adopted pilotless platform until the early 21st century for obtaining 
low-altitude images for the environmental and geo-sciences, for archaeological documentation 
and for landscape photography in arts and leisure. Tethered kites must have been the earliest 
aircra� in history and were already �own in China more than 2000 years ago. �eir successful 
use as a platform for scienti�c measurements, even before the earliest kite airphotos appear, 
is documented in publications by British and American meteorologists (e.g. Archibald, 1884, 
McAdie, 1885).

In 1890, the French photographer Arthur Batut published a 70-pages booklet on aerial 
photography with a kite and simple wooden box-camera entitled La photographie aérienne 
par cerf-volant (Aerial photography by kite) (Batut, 1890; Figure 1.1-1). In this publication, 
a UAV photographer will �nd even today a surprisingly up-to-date documentation of the 
techniques, concepts and pitfalls of unmanned low-altitude aerial photography. Batut’s pro-
gressive ideas on potential applications of such imagery include the use of a newly proposed 
method for measuring terrain heights from two overlapping photographs: �is method was 
to become stereo-photogrammetry and thus one of the main applications for UAV imagery 
today (see chapter 2.2). Batut also advocated kite photography as a promising means for envi-
ronmental monitoring, giving the example of mapping phylloxera infestations in vineyards. 
�is was a pressing issue in late 19th-century France, where wine production had dramati-
cally dropped to 25% following the introduction of this pest from America. �e activities of 
Arthur Batut and Émile Wenz, another French pioneer of kite aerial photography, gained 
considerable attention in the press, and the method was soon taken up in North America 
(Beau�ort & Dusariez, 1995). Spectacular photographs were taken by the Illinois photogra-
pher George R. Lawrence, who used a 22 kg panoramic camera suspended from a train of 
kites to document the ruins of San Francisco a�er the devastating 1906 earthquake (Aber et 
al., 2019).
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Figure 1.1-1: Wood-and-paper kite (approx. 2,5 m x 1,75 m) used by Arthur Batut for 
aerial photography since 1888. �e wooden box camera is �tted with a simple lens and 

its shutter was triggered with a slow match that was lit before launching the kite. 
Photography by A. Batut, 1890. Image credits: Collection Espace photographique 

Arthur Batut/Archives départementales du Tarn.

A�er the invention of motor-powered airplanes by Wilbur and Orville Wright at the turn of the 
20th century, the role of kites and balloons declined as more and more military and commer-
cial aerial photographs were taken from planes. Technical developments in cameras, �lms and 
photo analysis developed rapidly during World War I and again during World War II, spurred 
by the need for military reconnaissance and accurate cartographic measuring and mapping. 
Consequently, early publications on aerial photography were dominated by technical aspects, 
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such as Herbert E. Ives’s handbook on Airplane Photography (Ives, 1920) or Hermann Lüscher’s 
Photogrammetrie (Lüscher, 1920). However, non-military communities engaged in document-
ing, monitoring and interpreting landscape patterns and processes also bene�ted greatly from 
these developments during the �rst half of the 20th century. �e value of aerial photographs in 
geography, geology, archaeology and other disciplines was examined in numerous publications 
of the 1920s (e.g. Hamshaw, 1920, Lee, 1922, Crawford, 1923, Ewald, 1924, Perlewitz, 1926). 
In his landmark paper on airphotos for landscape ecology studies, the German geographer 
Carl Troll strongly advocated the development of a systematic research method based on aerial 
photographs and highlighted their potential for viewing the landscape as a spatial entity (Troll, 
1939).

A�er World War II, the expertise of military photographers and photointerpreters as well as 
surplus photographic equipment became available for furthering airphoto use in non-military 
and scienti�c applications (Colwell, 1997). Systematic aerial surveys and photogrammetric 
mapping became a standard task for land surveying agencies. �e development of satellite 
remote sensing during the Cold War moved Earth observation into new dimensions yet again, 
with unmanned platforms in orbital altitudes beyond the airspace and digital scanning sen-
sors providing a new type of imagery. �is type of remote sensing data became accessible for 
civilian use with the beginning of NASA’s Landsat programme in 1972, which still continues 
today.

By the 1970s, these developments had made not only image acquisition, but also image anal-
ysis by aerial photogrammetry and satellite image processing a professional task, carried out 
by trained specialists with access to dedicated and expensive equipment, hardware and so�-
ware. Obviously, this presented a rather intimidating barrier to many research endeavours in 
the Earth, environmental and (cultural) landscape sciences. In many cases, projects could have 
bene�tted greatly from using aerial photography for documenting and monitoring forms, pat-
terns and processes. However, they o�en required practicable, cost-e�ective image acquisition 
methods for taking local-site images at very detailed scale at exactly the right time. �e repeat 
rate of conventional aerial photography or the spatial resolution of satellite imagery – not to 
mention the considerable costs of such material – prevented their use in studies on small-area 
and o�en transitory features and on highly dynamic landscape processes, such as rill and gully 
erosion processes, coastal morphodynamics, �eld-based pest infection detection or local-scale 
vegetation encroachment. 

It is therefore not surprising that, at the same time that satellite remote sensing advanced, 
low-altitude aerial photography employing low-tech platforms and sensors began to make a 
slow but de�nite comeback during the 1970s and ’80s, paving the way for today’s discipline of 
UAV remote sensing.
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1.1.2  Developments in modern SFAP and 
UAV remote sensing techniques

Beginning in the early 1970s, consumer-grade small-format cameras were increasingly used for 
taking airphotos from low �ying heights in archaeology and cultural heritage studies, and also in 
forestry, agriculture, vegetation studies and physical geography. By the 1990s, the term small-for-
mat aerial photography or SFAP (Warner et al., 1996, ASPRS, 1997), sometimes also low-altitude 
aerial photography (LAAP), had become established for a niche remote-sensing technique that 
was pursued by a small community of enthusiasts willing to face the technical challenges in-
herent in using non-metric cameras for aerial photography in low �ying heights. Studies using 
manned small aircra� were soon outnumbered by those using unmanned platforms such as 
kites, balloons, helium blimps and other non-conventional, o�en custom-built aircra�. In par-
ticular, KAP (kite aerial photography) as a “sub-discipline” of SFAP became increasingly popular 
for scienti�c purposes (testi�ed by numerous publications until today; e.g. Bigras, 1997, Boike & 
Yoshikawa, 2003, Smith et al., 2009, Aber et al., 2020), but also for leisurely and artistic purpos-
es – similar to the coexistence of today’s scienti�c UAV remote-sensing community and hobbyist 
drone community. Kites are still valued as an unpowered alternative to UAVs in sensitive, windy, 
high-altitude or �ight-restricted environments (Du�y & Anderson, 2016, Feurer et al., 2018, 
Wigmore & Mark, 2018).
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Table 1.1-1: Most common constellations of sensors, platforms and image-analysis 
techniques for primary data generation used in unmanned aerial remote 

sensing since 1970. Dominant uses are formatted in italics.

Decade Sensors Platforms Image-analysis techniques

1970s analogue small and 
medium format 
�lm cameras
(VIS, NIR)

tethered kites, 
balloons, blimps

visual image interpretation (2D and 3D/
stereoscopic),
analogue sketch-mapping,
2.5D analogue photogrammetry

1980s tethered kites, 
balloons, blimps,
manually navigated 
model airplanes and 
model helicopters

1990s visual image interpretation,
2D digitized image processing and mapping, 
2.5D analogue photogrammetry 

2000s digital RGB camer-
as (VIS and NIR)

visual image interpretation, 
2D digital image processing and mapping, 
2.5D digital photogrammetryautopiloted �xed-

wing, multicopter
and hybrid VTOL 
UAVs, tethered kites

2010s digital RGB and 
multi-spectral 
cameras (VIS, NIR, 
MIR, TIR), hyper-
spectral sensors, 
LIDAR

visual image interpretation, 
2D digital image processing and mapping, 
3D analysis with Structure-from-Motion 
photogrammetry,
4D analysis of time-lapse imagery

Considering the 50 years since the revival of unmanned aerial photography in the early 1970s, 
an accelerating development in three  sectors can be identi�ed: sensors, platforms, and im-
age-analysis techniques (Table 1.1-1). For three decades, the most common sensor-platform 
combination comprised 35  mm small-format �lm cameras suspended from tethered kites, 
balloons or blimps (Figure  1.1-2). �ese image acquisition techniques changed little from 
Ullmann’s plastic-balloon photography of raised moors (Ullmann, 1971) to the author’s own 
SFAP beginnings with hot-air balloons (Marzol� & Ries, 1997). Various types of radio-con-
trolled rigs and mounts evolved for attaching the camera (or dual-camera stereo or multispec-
tral arrangements) to the kite line, balloon or blimp (Aber et al., 2019). �e technical chal-
lenges at that time included intermittent surveys with �lm-roll changes every 36 pictures, 
no quality control before �lm had been processed, and constraints to size and nature of the 
survey areas, as tethered platforms require direct access to the site and limit the survey range 
both horizontally and vertically. For lighter-than-air platforms, access to propane, helium or 
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(more dangerously) hydrogen as li�ing or fuelling gas was required – not all of them are read-
ily available throughout the world. Manually navigated model aircra� began to complement 
the tethered platforms in the 1980s (Przybilla & Wester-Ebbinghaus, 1979, Koo, 1993). How-
ever, they were less popular due to their strong vibrations, their technical complexity and the 
considerable pilot skills required.

Figure 1.1-2: Le�: Tethered hot-air blimp used by physical geographers of Freiburg and Frankfurt 
Universities for monitoring erosion and vegetation in northern Spain, 1996 (Marzol�, 1999). 

Right: Large rokkaku kite designed for li�ing a SLR camera with sledge-type rig (see inset) 
in light to medium winds; here seen during aerial survey of a gully site in South 

Morocco, 2006. Photographs by the author. Figure modi�ed a�er Figs. 7-14A 
and 7-21 in Aber et al. 2019; copyright Elsevier – all rights reserved.
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Figure 1.1-4: Le�: Topographic map of Gully Oursi, Burkina Faso, created in 2002. �e gully 
scarps, contour lines and height points were manually mapped as 3D vector data with ERDAS 

StereoAnalyst using a stereo-model from scanned 35-mm slides that was viewed with active 
shutter glasses on a stereo computer monitor. Right: TIN surface model computed 

from the 3D points and lines. Adapted from Marzol� et al. (2003).

Figure 1.1-3: Scanned 35-mm slide taken 
with an analogue Pentax SLR camera fitted 
with additional fiducial marks for digital 
photogrammetric processing. �is kite aerial 
photograph of archaeological excavations at 
Tell Chuera settlement mound, northeastern 
Syria, was taken by the author in 2003, the 
last year before digital cameras took over.
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While sensors and platforms changed little during this phase, image-analysis techniques (which 
had been traditionally analogue during the 1970s and 1980s) shi�ed towards digital processing 
of scanned negatives or slides in the 1990s (Figure  1.1-3). �e same image-processing tech-
niques already established in satellite remote sensing (e.g. �ltering, spectral transformations and 
ratioing, image classi�cation) were applied to the digitized colour and colour-infrared images 
(e.g. Fouché & Booysen, 1994, Bürkert et al., 1996, Marzol�, 1999). At the same time, photo-
grammetric analysis of SFAP remained mostly analogue, depending on access to professional 
equipment and expertise, and was predominantly used in archaeology and cultural heritage doc-
umentation (e.g. Wanzke, 1984, Summers & Summers, 1994).

Although digital cameras were already available in the 1990s (above all, the KODAK DCS se-
ries; e.g. Mills et al., 1996), camera price and image quality only began to compete with analogue 
photography in the mid-2000s. At the same time, so�copy photogrammetry became accessible 
to the non-specialist as hardware requirements and so�ware prices decreased. Small-format dig-
ital compact cameras and digital single-lens re�ex (DSLR) cameras then quickly replaced 35 mm 
�lm in unmanned aerial photography, considerably speeding up image acquisition. �e range 
of applications using digital image-processing techniques began to widen rapidly (e.g. Baker 
et al., 2004, Eisenbeiss, 2004, Hunt et al., 2005, Marani et al., 2006). Again, archaeology was 
the �rst discipline to take advantage of digital stereo-photogrammetric analysis with small-for-
mat airphotos (e.g. Karras et al., 1999, Altan et al., 2004). Its use in geomorphology – although 
this is the geoscienti�c discipline most interested in 3D forms – remained rare (Marzol� et al., 
2003, Marzol� & Poesen, 2009, Smith et al., 2009) due to the considerable photogrammetric 
expertise required, the high degree of manual stereo-mapping involved (Figure 1.1-4) and the 
comparatively low quality and density of point clouds extracted by automatic image matching 
(Figure 1.1-5). 

Analogue �lm cameras had become largely obsolete by 2010, but digital analysis of SFAP 
remained a challenge: image-processing and photogrammetry so�ware was still devised for 
far lower-resolution satellite imagery and (scanned) metric large-format airphotos with pre-
cise camera calibration, abundant ground control and highly regular vertical image-acquisition 
schemes – none of it typical for the output of an SFAP survey with a kite and compact camera 
on a windy day in the �eld. Also, geodata formats available for storing and analysing continuous 
surface information – TINs, raster elevation models – did not allow to model true 3D surfaces, 
but what is o�en termed 2.5D (one z value only per x/y location (chapter 3.4); Aber et al., 2019). 
By the mid to late 2000s, the potential of SFAP in high-resolution topographic data acquisition 
seemed exhausted. As the support hotline of a market-leader geospatial so�ware company put 
it to the author in 2004: “I fear that, given the special nature of your data, you have reached the 
limits of feasibility.”
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Looking back, this quotation marks the end of the “pre-UAV” and “pre-SfM” remote sensing 
era. From about 2005 onwards, GPS/INS �ight-stabilization systems and autopilot �ight con-
trollers found their ways into model aircra� (e.g. Hardin & Jackson, 2005), upgrading them to 
unmanned aerial vehicles. Before long, the rapid advancement both of platforms and so�ware 
pushed the aforementioned limits of feasibility far out of sight. �e literature on UAV-based re-
mote sensing for environmental applications has been growing exponentially since 2010 (Simic 
Milas et al., 2018; Aber et al., 2019). Major innovations in all three sectors listed in Table 1 are 
decisive for this development, which was also reviewed by Colomina & Molina (2014), Cum-
mings et al. (2017), Pajares (2015), Manfreda et al. (2018), Yao et al. (2019) and Tmušić et al. 
(2020):

Figure 1.1-5: Le�: Comparison of �ve point clouds built by state-of-the-art photogrammetry 
so�ware in 2004 and 2020 (note logarithmic scale of y axis). Film transparencies (scanned with 

1800 dpi; A & C) and simultaneous digital camera images (B, D & E), all with GSD 2.3 cm, were 
processed with traditional photogrammetry (Leica Photogrammetry Suite; A & B) in 2004 and 

again with Structure-from-Motion photogrammetry (Agiso� Metashape; C, D & E) in 2020. �e 
highest possible point-cloud resolution in LPS was 1 point/(3*GSD)² = 210 points/m², but gaps 

in surface reconstruction, particularly in shadowed and textureless areas, resulted in much lower 
average densities for �lm, and also for digital images (models A–B). In contrast, the 120 point/
m² target density (= “medium quality” tier of 1 point/(4*GSD)²) is easily surpassed by current 
SfM algorithms, which perform nearly identical for �lm and digital sensor (C & D). Model E is 
computed with SfM “ultrahigh quality” (1 point/1 GSD²). Photographs taken by the author with 

analog and digital Canon EOS cameras in 2004 at Gully Negratín 3, Southern Spain.
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• Platforms: �e recent technological advancements and price decline of GNSS and INS-based 
navigation and �ight-control systems for autopiloted unmanned aerial systems (chapter 1.3) 
have made drones of all varieties the prevalent means of Earth observation from low heights. 
�ey are employed not only for geo- and environmental research, but also in a wide range of 
civil, commercial and governmental applications concerned with surveying, mapping, mo-
nitoring, inspection and surveillance. Fixed-wing, multi-rotor and hybrid VTOL (vertical 
take-o� and landing) UAV in a wide range of prices, sizes and technical con�gurations are 
now available on the consumer and professional market (van Blyenburgh, 2018). Of these, 
the micro (or small) and mini UAV class, with maximum take-o� weights of 5 or 25 kg, re-
spectively, have become the most common in scienti�c use. Unlike traditional model aircra�, 
UAVs �y autonomously or in semi-automatic mode (where the human pilot is assisted by the 
�ight-control system). By the mid-2010s, professional-grade UAV with high-precision RTK/
PPK GNSS (real-time or post-processing kinematic global navigation satellite systems) beca-
me available, so ground control for georeferencing may be reduced or omitted (chapter 2.1). 
Platform hardware is complemented by a large choice of �ight-planning and ground-station 
so�ware. Although legislation amendments lag behind this development of UAV technology, 
unmanned aircra� have come increasingly under the control of airspace regulations  – an 
ongoing development challenging UAV use for research in many countries (see chapter 1.4).

• Sensors: In addition to an ever-increasing choice of RGB cameras suitable for UAVs (Aber et 
al., 2019), small-format to miniature multispectral sensors for near-infrared and short-wave 
infrared wavelengths and subsequently hyperspectral sensors have become widely available 
(Yang et al., 2017, Manfreda et al., 2018). Passive sensors speci�cally designed for UAS inclu-
de fully integrated on-board mini-cameras with electronic gimbals, mirrorless interchange-
able-lens cameras (MILC) without display and view�nder, multi-sensor arrays with synchro-
nized monochrome sensors sensitive to red, red-edge and near-infrared wavelengths, and 
combined visible and thermal imaging sensors (see chapter 2.4 and 2.5). 

• Image-analysis techniques: �e development of new and o�en open-source so�ware cou-
pling photogrammetric principles with computer-vision concepts and algorithms – speci�-
cally Structure from Motion-Multi-View Stereo or SfM-MVS (Smith et al., 2016, Eltner & 
So�a, 2020; see chapter 2.2) – has revolutionized high-resolution 3D geodata acquisition and 
orthophoto generation in terms of speed, ease and cost-e�ectiveness. �e main di�erences 
to classical photogrammetry are the speci�c focus on non-metric, small-format cameras, the 
higher �exibility regarding scales, image schemes and image orientations, the multi-view ste-
reo approach, more powerful image-matching algorithms (see Figure 1.1-5), the possibility 
of creating 3D models without ground control and a higher degree of work-�ow automation. 
A typical UAS image-processing so�ware now includes automatic bundle-block adjustment, 
extraction of 3D point clouds, interpolation into 2.5D DEMs or 3D meshes and creation of 
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orthophoto mosaics as well as – NIR imagery provided – vegetation index maps. UAV data-
processing modules have also become available for leading GIS and image-processing so�-
ware packages. In addition, numerous so�ware tools not speci�cally designed for UAV data 
facilitate advanced analyses of UAV-based 3D point clouds, meshes and (ortho-)imagery (see 
also chapter 3.2–3.5). Automated co-registration and image tracking approaches have begun 
to turn UAV remote sensing 4D, adding time to space for monitoring dynamic changes of 
soil, water and ice (e.g. Turner et al., 2015, Jouvet et al., 2018, Pinton et al., 2020).

�e developments of the last decade have also seen an increased integration of these three sec-
tors. For example, small quadcopter UAS with dedicated �ight-control so�ware connected to 
black-box cloud-processing services may allow a user with next to no specialist knowledge to 
conduct an aerial survey and generate decent DEMs and orthophotos all within an hour. While 
the quality and accuracies of these quick-and-easy products is limited and certainly not suit-
able for all research questions, many simpler applications may not require more precise and 
advanced data.

1.1.3  Terminology in UAV remote sensing today

�e term unmanned aerial vehicle or UAV appeared in scienti�c publications on Earth and 
environmental studies around 2005, corresponding to the technical developments outlined 
above. During the �rst years of transition, there remained some indecision whether the “vehi-
cle” should also include traditional tethered platforms such as kites and balloons (e.g. Eisenbeiss, 
2009), but de�nitions of “UAV” in the research literature soon agreed on free-�ying, powered 
aircra� that may be �own remotely by a pilot on the ground or programmed to �y autonomously 
along speci�ed routes to designated waypoints. Nevertheless, a confusing variety of terms and 
acronyms exists next to UAV, for which the following summary is based on an overview given by 
the author elsewhere (Aber et al., 2019). For a thorough review of the origins and chronology of 
terminology, the reader is referred to Granshaw (2018).

Undoubtedly, “drone” is the colloquial term most commonly used in everyday language for 
a small aircra� without an on-board human pilot. �is term was originally introduced in the 
1940s as the o�cial US Navy designation for unmanned target aircra� (Granshaw, 2018), but 
has been unpopular by many civilian users of UAV due to its association with o�en debated mil-
itary operations. �is ambivalent connotation of the term has faded away more recently as small 
consumer-grade quadcopters, in particular, have become ubiquitous in non-military uses of all 
kinds. Drone is now the preferred term in popular scienti�c contexts, governmental applications 
and leisure activities.
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In academic and professional usage, however, the most common terms remain UAV or UAS 
(unmanned aerial system or unmanned aircra� system), which includes remotely piloted and 
autonomously navigated aircra�. In little-used varieties of the term, the U may also stand for 
unpiloted or uninhabited. In the more regulatory context of the US Federal Aviation Admin-
istration (FAA) and the European Aviation Safety Agency (EASA), the “aircra� system” rather 
than “aerial” or “vehicle” is preferred, as the aircra� component stresses the need for airworthi-
ness, and the system includes ground-control stations, communication links, and launch and 
retrieval operations in addition to the vehicle (Dalamagkidis, 2015). Other common terms are 
RPA (remotely piloted aircra�), RPV (remotely piloted vehicle) and RPAS (remotely piloted 
aircra� system). �ese are seen as distinctive from UAS by the International Civil Aviation 
Organization (ICAO), as the latter includes fully autonomous aircra� not allowing pilot in-
tervention, which are primarily used in military contexts (ICAO, 2015; Granshaw, 2018). �e 
term RPAS is most commonly used in contexts of explicitly civilian aviation regulation. It is 
worth noting that none of the currently valid de�nitions by regulatory agencies  – not even 
those addressing the “system” (e.g. EASA, 2009) – includes any reference to cameras or other 
sensors carried by the unmanned, remotely or autonomously piloted aircra�. To the scientif-
ic communities engaged in Earth and environmental research, however, carrying the sensors 
used for geospatial data acquisition clearly is the main purpose of these platforms, whichever 
term is used for them.

One and a half centuries a�er its beginnings, unmanned aerial remote sensing has reached an 
unprecedented degree of automation from image acquisition to �nished geodata product – and 
also an unprecedented range of sophistication from simple visual interpretation of micro-drone 
airphotos to multi-sensor, arti�cial-intelligence and high-precision approaches for investigat-
ing, amongst many others, detailed soil-surface and riverbed structures (Onnen et al., 2020; 
Mandlburger et al., 2020), machine-learning classi�cation of trees (Xu et al., 2020) or modelling 
of canopy thermal emissions (Bian et al., 2021). Many of the questions we strive to answer as 
Earth and environmental scientists, however, have been part of this history all along  – even 
though Arthur Batut, �ying a kite with a wooden box-camera over the destroyed vineyards of his 
home region in 1890, could never have imagined the deep-learning segmentation approaches 
used for vine-disease detection by his French colleagues of today (Kerkech et al., 2020).

References for further reading
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Since the beginning of 1900, various platforms carried cameras mounted to collect images, to-
day satellites and UAVs acquire most of the data collected remotely. �e platforms indicate the 
structures or vehicles on which the remote sensing instruments are mounted. �anks to several 
platforms located far from the target, remote sensors can collect a large amount of data in a 
short time, ensuring rapid data acquisition even in large areas. �e remote sensing platform 
must be able to support the weight of a sensor, remain at a given altitude, remotely take a series 
of images at a speci�c time and then return those images for di�erent applications. �e po-
tential for environmental remote sensing using these platforms has been e�ectively supported 
by many authors, the purpose of this chapter is to de�ne what types of data/accuracies can be 
achieved with UAV vs. remote sensing and the pros/cons of UAV vs. satellite and aircra�-based 
platforms.
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1.2.1  Overview of remote sensing platforms

1.2.1.1  Satellite

Remote sensing from space-based orbital platforms for information collection had its begin-
nings in early 1960s, when it �rst became possible to place cameras in polar earth orbit to 
remotely photograph any point on the globe on a routine and predictable basis (Pabian, 2015). 
Among the �rst applications for satellite-based imagery collection was for military purpos-
es. Landsat satellite (1972) by US Government was the �rst open-source project provided the 
�rst publicly accessible imagery from space. �e Landsat-1 satellite carried digital scanning 
sensors covering four  multispectral bands that provided a spatial resolution of 80  m, while 
Landsat 7 (1999) and Landsat 8 (2013) in addition to having eight-multispectral 30 m bands, 
and two thermal 100 m infrared bands, also has a 15 m resolution panchromatic band. French 
SPOT-1 satellite launched in 1986 provided 20 m multispectral and 10 m panchromatic ground 
resolution. In early 2000, Ikonos, capable of providing electro-optical imagery at a resolution 
of less than 2 m, reaching up to 31 cm with WorldView-3 with the sharpest imagery currently 
available.

A revolution in terms of accessibility was made by the Copernicus programme of the Europe-
an Commission (EC), where the European Space Agency (ESA) launched in 2017 the Sentinel 
2B mission acquiring high spatial resolution (10 to 60 m) optical imagery. �e free, full and 
open data policy adopted for the Copernicus programme foresees access available to all users 
for the Sentinel data and o�ers an unprecedented combination of systematic global coverage of 
land and coastal areas, a high revisit of �ve days under the same viewing conditions, high spatial 
resolution, and a wide �eld of view (295 km) for multispectral observations from 13 bands in the 
visible, near infrared and short-wave infrared range of the electromagnetic spectrum (Drusch 
et al., 2012).

1.2.1.2  Aircra�

In recent years, the advent of UAVs has overshadowed the use of aircraft for many of the 
remote sensing activities. Although they are still widely used for large-scale monitoring 
for land-use and inspection purpose by public and private institutions, their peculiarities 
lead them to be considered a “middle way” between satellite and UAV. The main strength 
remains the payload capacity. In fact, they can carry much heavier sensors than UAV, such 
as LiDAR and a combination of sensors of various nature. A UAV that can only carry one 
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sensor at a time would have to go through multiple passes, thus increasing flight time and 
processing time, while a manned aircraft carrying multiple sensors could collect all data in 
one pass.

Aircra�s have many restrictions on their use, they must obtain airspace permits, plan ade-
quate take-o� and landing points, and comply with ever-changing �ight restrictions. Finally, 
as UAVs continue to improve, it will �y longer, withstand higher wind speeds, and carry more 
sophisticated payloads, the overlap between their mapping capabilities and those of manned 
aircra� will increase. �e next huge increase in the number of UAVs and their applications 
will come when national regulatory bodies will allow �ight beyond line of sight (BVLOS) in 
controlled airspace.

1.2.1.3  Unmanned Aerial Vehicles

The initial use of UAV systems and platforms was inspection, surveillance and mapping of 
military areas followed by geomatic applications. UAV photogrammetry opens up several 
new applications in the short-range aerial field and also introduces low-cost alternatives to 
classical manned aerial photogrammetry (Colomina et al., 2008). This development can be 
explained by the diffusion of low-cost platforms combined with RGB digital cameras and 
GNSS/INS systems, necessary to navigate the UAV with high precision to the predefined ac-
quisition points. The small size and low payload of some UAV platforms limit the transport 
of high quality IMU devices such as those coupled with aerial cameras or LiDAR sensors 
used for mapping. Simple, hand-launched UAVs operating autonomously using its autopi-
lot with GPS and, in general, an IMU sensor, are the most economical systems, although 
platform stability in windy areas could be a problem (Nex & Remondino, 2014). More sta-
ble systems, usually with a petrol engine, with a higher payload allow a more professional 
camera on board or even detection with LiDAR instruments. Typical domains were UAV 
images and 3D data derived from photogrammetry or orthoimagery are generally used in 
agriculture with the aim to produce maps with high spatial resolution for precision agricul-
ture applications support agronomic decision in different areas of the field (Matese & Di 
Gennaro, 2018). Assessments of woodlots, fires surveillance, species identification, volume 
computation and tree detection are the main applications in forestry (Wallace et al., 2012). 
Environmental surveying for land and water monitoring are also feasible. A large number 
of applications in the archaeology and cultural heritage domain exist, where 3D mapping of 
sites and structures are easily achieved with a low-altitude image-based survey (Remondino 
et al., 2011).
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1.2.2  Comparison of UAVs to other 
remote sensing platforms

Recent advances in UAV technologies have produced alternative monitoring platforms that o�er 
the opportunity to acquire spatial, spectral and temporal information in a wide range of applica-
tions at a relatively low cost. �ey o�er high versatility, adaptability and �exibility compared to 
other remote sensing techniques such as satellites or aircra� due to their potential to be rapidly 
and repeatedly used for high spatial and temporal resolution data. Despite the recent and rapid 
increase in the number and scope of satellites, the temporal resolution and availability of current 
satellite sensors with very high spatial resolution are neither su�cient nor �exible for many re-
mote sensing applications especially in forestry and agriculture. Moreover, most of the satellites 
are managed by commercial organizations and the cost of the images can be high if short survey 
times are required. Aircra� can provide both high spatial resolution and rapid revision times 
but their use is limited by operational complexity, safety, logistics and costs, it becomes feasible 
only on medium-sized areas and remains largely run by commercial operators, even if some 
countries do not have aircra� for this kind of acquisitions and remote areas are also di�cult to 
reach. In a comparison of the three monitoring platforms, UAVs are an economic technique on 
limited areas (5 ha), while for larger dimensions (50 ha), aircra� or satellite platforms can be 
more e�ective options. Obviously, the regulations limit the economic advantages linked to their 
use and some potential applications, even if operational adjustments are in the process of being 
evaluated that will certainly facilitate their use in the coming years.

�e vulnerability of UAVs to weather conditions (i.e. wind, rain) that can alter the monitoring 
quality is certainly a negative aspect even if the other platforms are neither immune to weather 
conditions in terms of operability and data quality (e.g. cloud coverage for satellites). One of the 
aspects that directly a�ects the area that can be detected is the limited �ight times of UAVs due 
to the payload and battery power supply. Most UAVs are powered by electric batteries, others 
by combustion engines that use gasoline as fuel. �e actual �ight time for a single monitoring 
may not be su�cient for a given application and careful mission planning is therefore required. 
However, this problem is currently solved by planning that allows the management of multiple 
�ights. Advances in the �eld of hardware technology o�er new solutions that will extend the 
�ight duration up to two hours, making the use of UAVs more competitive. 

�e recent and rapid developments in sensor miniaturization, standardization and cost reduc-
tion have opened up new possibilities for UAV applications, there are a large variety of sensors 
available for UAVs, from RGB cameras to multispectral and hyperspectral cameras, thermal 
cameras, GNSS RTK, IMU and LIDAR. �e most common sensor is the RGB camera that takes 
high quality images for interpretation or photogrammetry. Small multispectral cameras with 
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bands in the near-infrared range can be mounted on UAVs. �ermal infrared sensors are com-
monly used for inspections in urban areas but also in agriculture, while LiDAR sensors are avail-
able for use on UAVs for both urban and forestry purposes. Most UAVs provide real-time video 
transmission to the remote-control point, so that the operator can accurately track the �ight.

�e most common di�culties related to the acquisition of UAV imagery range from image 
blurring due to forward movement of the platform, resolution impacts due to variable �ight 
height, orthorecti�cation problems due to geometric distortion associated with inadequate im-
age overlap and spectral e�ects induced by variable lighting during the �ight, just to mention 
the main problems.

It is therefore essential to consider the best practices in mission planning and the sensor’s 
con�guration/setup before the �ight to bypass the previous issues. It is then opportune to con-
sider the various corrections and calibrations, radiometric, geometric and atmospheric before 
the mosaicking, georeferencing and orthorecti�cation procedures. Together, these aspects are 
crucial for data acquisition and post-processing, which provide the necessary starting point for 
subsequent application-speci�c analyses. However, despite the existence of consolidated work-
�ows in photogrammetry devoted to aircra� or satellite acquisitions, UAV systems introduce 
various additional complexities, which until now have not been fully addressed.

�e high spatial resolution of UAV data generates a strong demand for data storage and data 
processing capacity that results in the need to implement work-�ow procedures for pre- and 
post-processing. In fact, if for satellite applications they are generally associated with a process-
ing chain that guarantees the �nal data quality, in the case of UAVs all this is le� to the end user. 
For a pro�table data-processing work�ow, it is necessary to consider the whole computational 
chain from raw images to �nal products, allowing a better comparison of the three remote sens-
ing platforms. �e strengths of the UAV acquisition are obviously in the highest resolution and 
precision, but at the cost of a greater e�ort for the mosaicking and geocoding.

Large amounts of digital data can be acquired on a single UAV �ight. Collecting overlapping 
images of reasonable size over an area of 10 ha can result in thousands of individual images that 
need to be processed. Also, in order to obtain good results in terms of post-processing, overlaps 
of images are required, sometimes greater than 80 %.

�e problem does not concern computer storage but the processing phases, especially the mo-
saic, which requires computers with excellent computational features, especially for RAM and 
GPU. Obviously, this is if a minimum operating time for the production of results is needed, oth-
erwise good quality processing can be done even with slower computational times. Furthermore, 
while cloud service providers eliminate the need to think about hardware and so�ware, particu-
larly image processing, there is still a bottleneck regarding the image upload and return times. 

Most of the processing activities, in particular the new algorithms for image processing and 
computer vision, are developed as so�ware libraries that are user friendly but not easy to mod-
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ify. In agricultural applications (chapter 4.7), especially the radiometric correction remains a 
very delicate aspect, the multispectral sensors acquire RAW images in DN (Digital Number) 
which must then be converted into radiance and subsequently into re�ectance to be used in the 
calculation of various vegetation indices. Usually, irradiance sensors connected to the UAV are 
used to convert directly to re�ectance, or empirical calibrations are performed using Lambertian 
panels with known re�ectance placed on the ground before the �ight.

Flight or mission planning is the �rst essential step for UAV data acquisition and has a 
profound impact on the acquired data and processing work�ow (chapter 1.5). Similar to oth-
er remote sensing approaches, a set of parameters must be considered before �ying, such as 
platform speci�cations, extent of the study site (area of   interest), terrain sampling distance, 
payload characteristics, topography, study objectives, weather forecasts and local �ight reg-
ulations.

As for costs, of course, the additional advantage of the UAV platform is that the temporal 
resolution is limited only by the number of �ights (power supply/battery capacity), so any cost 
equivalence is quickly exceeded due to repeatability. �e costs for acquiring UAV data are gen-
erally derived from the initial investment, processing so�ware, data storage and associated �eld-
work costs. However, a�er the initial investment, the data sets can be supplied more o�en and 
with a higher resolution than any other system. In comparing the acquisition and processing 
costs of the three di�erent platforms (UAVs, aircra� and satellites), UAVs are identi�ed the most 
economical solution for �elds of 20 ha or less (Matese et al., 2015). A NDVI map (Normalized 
Di�erence Vegetation Index) derived from UAVs on a 5 ha �eld costs approximately, 2000 €, 
while on larger areas, the costs of acquisition, georeferencing and orthorecti�cation have a neg-
ative impact on the costs of images derived from UAV. 

Regarding the cost of satellite images, a wide spectrum ranges from free images of ESA with a 
maximum spatial resolution of 10 m, to satellite images with a resolution of 1 m but which are 
prohibitively expensive. Of course, it is not an equivalent evaluation to compare these platforms 
on an image-by-image basis, as it is the richness of the spatial and temporal resolution of UAV 
systems that makes their application so �exible. In addition to allowing the high resolutions re-
quired for many applications, sensors mounted on UAVs have numerous other advantages that 
are fundamental in a wide range of applications, providing quick access to environmental data, 
o�ering the near real-time functionality required. 

1.2.2.1  Strengths

�e most direct and important advantage of UAVs is the ability to acquire high-resolution im-
ages, which, depending on the �ight altitude and sensor spatial resolution, can reach a ground 
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sampling distance (GSD) of few millimetres. GSD is the distance between two consecutive pixel 
centers measured on the ground. �e bigger the value of the image GSD, the lower the spa-
tial resolution of the image and the less visible details. Using these high resolution and photo-
grammetric so�ware is possible to develop very high resolution 2D orthomosaics and 3D point 
clouds (Figure 1.2-1).

Figure 1.2-1: 3D point cloud of a vineyard developed using UAV imagery. 
All images were prepared by the authors for this chapter.

Another positive aspect of UAVs is ease of management. Using new control technologies UAVs 
can be managed by users with relatively minimal experience. Furthermore, they present much 
more manoeuvrability when �ying in areas that are di�cult to reach and at low altitudes. In 
addition, there are platforms on the market with “open” technology for rapid prototyping and 
there is therefore the possibility of designing and implementing platforms with di�erent types of 
sensors, also integrated (Figure 1.2-2). An aspect to be taken into account is the pilot certi�cates, 
in Europe, theory and practical training followed by an aeronautical tests and medical assess-
ments are required to obtain it. Even if the skills needed to became a pilot in terms of technical 
and aeronautical background knowledge are prerequisites, the perfect knowledge of regulation 
is mandatory. A pilot needs to perfectly know the operational limitation, risk management and 
administrative procedures to avoid incidents and failures.
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Figure 1.2-2: UAV equipped with di�erent cameras for precision agriculture applications.

Concerning operational times and costs, UAVs can acquire data very quickly as regards the 
mission planning and implementation times. As to the costs there are now very cheap platforms 
on the market, but also service companies that operate in all disciplines at relatively inexpensive 
charges per surface area. Moreover, it is easy to repeat the monitoring on the same area at dif-
ferent times to capture any changes. Using very powerful and inexpensive processing so�ware 
it is also possible to deliver the processed data within tight deadlines, useful for example for 
supporting decisions in agriculture or forestry (chapter 4.7 and chapter 4.4).

Poor weather conditions, can result in reduced visibility, loss of communication, or loss of 
control. �e in�uence of the wind on the UAV behaviour and onboard energy limitations are 
important parameters that must be taken into account, in fact, wind and turbulence play the 
largest role in aviation weather accidents. �e manual or semi-manual piloting of a UAV has 
proven to be tiring and stressing due to the constant need to compensate for perturbations due 
to meteorological phenomena, o�en reducing the quality of acquired image blocks (i.e. irregular 
overlaps). �e major ways in which wind a�ects UAV include changing the �ight trajectory, 
limiting control and reducing battery life. Extreme temperatures have negative implications for 
the physical components of an aircra� as well its aerodynamic performance. Precipitation a�ects 
UAVs in a variety of ways. Just as with fog and high levels of humidity, precipitation can reduce 
visibility and damage electronics. UAVs are very �exible in terms of cloud coverage, even if some 
sensors, for example, multispectral sensors for agricultural application require light conditions 
suitable because in the most of cases are passive optical sensor that measure crop radiance. 

UAVs equipped with GPS can be precisely programmed and piloted in exact positions, better 
if using RTK technologies. �is is particularly useful in precision farming, where UAVs are used 
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for a variety of needs such as spraying fertilizers and pesticides, identifying weed infestations 
and monitoring crop health (Figure 1.2-3). �ere are also models on the market that allow very 
large tanks for a greater operability of UAVs.

Figure 1.2-3: UAV prototype equipped with a tank for spraying application.

1.2.2.2  Weaknesses

�e greatest negative aspect in the use of UAVs is the limit of spatial coverage with a single �ight 
and therefore the �ight time and autonomy. Although �xed wing UAV can reach �ight times 
over one hour, the multirotor UAV have a short �ight time of 20 minutes to one hour, which 
limits the surface monitored.

An important example is a geometrical compromise between altitude and �ight coverage area, 
which results from the sensor’s �eld of view (FOV) and the limited UAV autonomy in terms of 



34

Alessandro Matese

energy, that determines its �ight time. �e higher the altitude, the greater the ground coverage. 
At the same time, higher altitudes lead to less images per unit area to be processed but low GSD 
and therefore the details that can be detected by the images. Obviously to optimize the e�ciency 
of the UAV detection it is a good idea to plan an accurate �ight mission considering the �ight 
altitude, weight of the payload and batteries used.

�e greatest advantage in using multi-rotors is the possibility of having a gimbal on which 
the di�erent sensors are installed, this allows stabilization of the sensors during �ight, but in 
the same time small UAVs can only carry light sensors and this is a limiting factor both on 
the type of sensors that can be installed and on the �ight times. Indeed, the choice of payload 
had to taking into account the autonomy (battery) and thus the �ight time, also the �ight 
stability.

Since the widespread use of UAVs is relatively new, legislation is still in the process of pro-
viding regulations, although legislation is already in place in more than 50 % countries of the 
world, that are both capable of maintaining security but also of allowing UAV operators to work 
�exibly. In fact, most countries already adopted risk-based approaches and provide good frame-
works to pursue safe UAV �ights.

�e UAV technology continues to improve and with it also the so�ware used to process the 
acquired data. However, the fact remains that the large amount of data acquired, compared to 
satellite images for example (considering the same area to survey), requires high computation 
times and processing power.

Table 1.2-1: Comparative characteristics for di�erent remote 
sensing platforms (+ positive, - negative, ns not signi�cant).

UAV Aircra� Satellite

Resolution +++ + --

Management and Development ++ --- ns

Operational time and cost + --- --

Weather conditions - -- ---

Actuators + + ns

Flight Time and Range -- ++ ns

Payload -- +++ +++

Legislation and Safety - - ns

Computational time - + +++
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UAV or drone technology is nowadays increasingly plug and play, ready to �y (RTF), and af-
fordable. It makes airborne platforms available to all, opening up new possibilities for research, 
observation, and data acquisition. �e number of UAV models available on the market is in-
creasing rapidly. It is therefore essential to correctly de�ne requirements in order to choose the 
right model. 

�is chapter describes the technical basics necessary to understand the fundamental charac-
teristics of UAVs. Here we will discuss only those UAVs with take-o� weights between 1 kg and 
25 kg and capable of carrying scienti�c payloads up to 5 kg, with detailed descriptions also 
provided in the following chapters. �ese types of UAVs are subject to speci�c regulations and 
require a drone pilot licence to operate them (see chapter 1.4 for more details on regulations). 
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�is chapter is divided into three parts: (1) di�erent types of UAVs, (2) their main components, 
and (3) �ight operations.

1.3.1  Types of UAVs

�ere are two main types of UAVs: �rstly, those equipped with propellers providing li� and thrust 
(helicopter and multirotor) and, secondly, those equipped with �xed wings and a propeller for thrust. 
�ere are also ‘hybrid’ UAVs inspired by both types. �is section provides an overview of the di�erent 
types of existing UAVs. Table 1.3-1 summarizes the advantages and disadvantages of each type.

1.3.1.1  Rotorcra�: multirotor and helicopter UAVs

Multirotor and helicopter UAVs are drones li�ed by propeller rotors, the rotors being located on 
a horizontal plane. A helicopter UAV is a rotorcra� with one or two rotors, and can be powered 
by an electric motor or an internal combustion engine. A multirotor UAV can have four, eight or 
twelve  rotors, which are exclusively electrically powered. Rotorcra� UAVs have two  speci�c 
�ight characteristics that di�erentiate them from other types of drones: 

• Vertical Take O� and Landing (VTOL) for reduced spaces (cities, cli�s, etc.). 
• Hover mode, o�ering the possibility of 360° observations from a �xed point, typically used 

for the monitoring and inspection of speci�c sites at close range (engineering structures, cli�s, 
forests, farmland) and for activities requiring contact or sampling (gas, rock, water, etc.).

�e main criterion when selecting a multirotor UAV is the payload carrying capacity according to 
scienti�c requirements and �ight autonomy. �e latter is di�cult to precisely determine, with ob-
servations in the �eld that o�en di�er from manufacturer values. Actual �ight autonomy depends 
on the energy capacity of the batteries, the total take-o� weight1 (including empty UAV weight, 
battery weight and payload weight), the �ight scenario to be carried out2 and the wind condition.

Flight autonomy is speci�c to each UAV; it can be re�ned with �ight experience and optimised 
with suitable battery management (see chapter 2.2). At the end of a �ight, it is essential to ensure 

1 For the same battery capacity, a UAV with no payload or a very-light payload (e.g. a small integrated 
camera) may �y for up to 30 minutes, whereas with a payload of �ve kg the same UAV may �y for less 
than 10 minutes.

2 For the same �ight duration and altitude, hover �ights will consume much more energy than linear, 
level �ights.
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a margin of 15–20 % of remaining battery capacity. Indeed, the autonomy curves depending on 
payload weights provided by manufacturers constitute a maximum limit under optimal condi-
tions. 

�ere are many RTF (ready to �y), compact and light (< 2 kg) multirotor UAVs on the market 
today (Figure 1.3-1A). �ey usually carry a single pre-integrated sensor (digital, thermal, or mul-
tispectral camera). �ey are mass-produced drones for the general public, their cost becoming 
a�ordable to specialize them around one type of sensor. �e priority is thus on simplicity of use 
and piloting for general public drones. �ey are equipped with pilot assistance functions such 
as automatic take-o� and landing, return path memory with obstacle avoidance, and propeller 
protection. �eir light weight and small size make them suitable for use in urban environments.

Figure 1.3-1: UAVs in use at IUEM’s Ocean Geosciences Laboratory. (A) Compact RTF multirotor 
UAV (DJI Phantom) with an integrated image sensor. (B) Custom-built multirotor UAV in �ight 

with its gyro-stabilized hyperspectral sensor payload in a waterproof case. (C) Custom-built 
helicopter UAV (190 cm rotor diameter) equipped with side instrument pods (in white), a Re�ex 
camera, and a thermal camera synchronized with a RTK-GPS. (D) SenseFly eBee commercial 

RTF �xed-wing UAV with an integrated image sensor. Image credits: (A) Jérôme Ammann LGO, 
CNRS – UBO. (B) Christophe Prunier LGO, CNRS – UBO. (C) Philippe Grandjean 

Univ-Lyon1. (D) Mouncef Sedratti LGO, CNRS – UBS.
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However, these small drones are not adequate for all the scienti�c requirements outlined in this 
book, particularly when the payload is comprised of complex instrumentation such as several 
sensors (e.g., LiDAR, hyperspectral camera, thermal camera, various probes, sample collector, 
etc.). Currently, there are few RTF drones capable of carrying 3–5 kg of payload; this would oth-
erwise incur very limited autonomy. Multi-sensor multirotor UAVs (Figure 1.3-1B) are thus spe-
ci�cally designed around the scienti�c payload and mission-speci�c requirements. Some UAVs 
now permit a take-o� weight of up to 25 kg. �ey are generally produced in limited or medium 
series, or can be custom-built, depending on users’ needs. �e cost is thus higher compared to 
an RTF drone.

Caution: not all RTF or custom drones o�er the same reliability. It is important to consult 
feedbacks on specialised forums and to think in terms of the quality of the components used.

The advantage of the helicopter UAV (Figure 1.3-1C) is that it is a versatile carrier. It is 
possible to mount one or more sensors of different types (digital, thermal, or multispectral 
camera, and sampling system) without having to redesign the whole system or to add addi-
tional power. The flight autonomy of the helicopter UAV is dependent on its motorization 
and more particularly on the rotor-motor or rotor-engine energy efficiency, with internal 
combustion engines remaining the most efficient in terms of autonomy for this type of 
UAV.

Example: for the same helicopter UAV, one hour of level �ight will require 1.5 litres of fuel 
(fuel weight: 1.2 kg) for an internal combustion engine, twelve litres of fuel (fuel weight:10 kg) 
for a turbosha� engine, and 8 kg of Lithium-Polymer batteries for an electric motor.

While the helicopter UAV equipped with an internal combustion engine appears to be more 
energy e�cient and o�ers a level of autonomy of over one hour, it is noisy and produces un-
wanted vibrations, against which payloads must be protected. �e assembly of the UAV and its 
permanent tuning require the expertise of a quali�ed technician. It is o�en an artisanal drone of 
custom design or, more rarely, small series production. It is also relatively complex to �y a heli-
copter UAV, meaning that they require the experience of a quali�ed drone pilot. �e helicopter 
UAV is not a ready to �y drone. 

1.3.1.2  Fixed-wing UAVs

Fixed-wing UAVs (Figure 1.3-1D) are very aerodynamic and fast. One reason being that the 
payload is integrated into the fuselage, which considerably reduces drag. �anks to their aerody-
namics and large li�-over-drag ratio (vertical/horizontal speed ratio in glide), �xed-wing UAVs 
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have the ability to �y for a long time (autonomy generally ranging from one to several hours). 
On the other hand, unlike multirotor, they are not able to hover (i.e., to stand still in the air).

�e �ight principle of a �xed-wing UAV is constrained by the wing loading. �is is the ratio 
between the weight of the UAV and the surfaces of the air foil (wings, stabilizer), the angle of 
attack that the wing forms with the level �ight position (with the fuselage horizontal), and the 
�ight envelope comprised between the stalling speed and the never-exceed speed, the latter 
inducing a risk of disintegration of the UAV if exceeded. �e normal operating horizontal speed 
must be well above the stalling speed to ensure a safe �ight. 

Like multirotor UAVs, there are light (< 2 kg) and compact �xed-wing UAVs of the RTF type 
(Figure 1.3-1D), equipped with a single on-board sensor pre-integrated into the fuselage (digi-
tal, thermal, or multispectral camera). �e structure of these light UAVs is mainly composed of 
expanded polypropylene (EPP). �ey are set going by a propeller driven by an electric motor. 
�e �ight speed is generally between 40 and 70 km/h. Models with autonomy of one hour can 
cover more than 50 km in linear �ight. Fixed-wing UAVs are typically equipped with piloting 
assistance functions, all stages of the �ight being managed by the autopilot. �ey are launched 
by hand and perform gliding and belly landing. �e main constraint of compact and light �xed-
wing UAVs is the need for a clear, unobstructed environment during take-o� and landing.

In the case of �xed-wing UAVs with several sensors, as for their multi-sensor multirotor coun-
terparts, it is generally complicated to integrate the complete instrumentation into the fuselage 
and UAV dimensions have to increase in proportion. For those UAVs, the wingspan can reach 
more than 2 m while maintaining a weight of less than 25 kg. �ey are capable of travelling long 
distances (over 100 km), propelled by an internal combustion engine. However, in the absence of 
wheel landing gear, and as they become too heavy to be launched by hand, a catapult is generally 
used for take-o�, while recovery will require a net or a sling. In the event of use on-board a ship, 
the catapult and sling are indispensable. �e use of this type of UAV can require special quali-
�cations for both the pilot and the UAV itself, a subject that is beyond the scope of this chapter. 

1.3.1.3  Hybrid and multipurpose UAVs

Combining the advantages of the VTOL of rotary wing (rotorcra�) UAVs and the large autono-
my of �xed-wing models, hybrid UAVs have recently become available. In that case, an electric 
motor/rotor ensures the VTOL phases, while the wings are used for horizontal and level �ights 
using either an electric motor or an internal combustion engine.

To increase the �ight autonomy of a multirotor UAV, it can also be made captive by contin-
uously powering it from the ground via an electric cable. �e cable can also be used to recover 
large data �ows (increasing image quality in real time) and to avoid the risk of the drone �ying 



42

away. Flight is then only possible in hover mode. �is sort of UAVs can be used for remote sur-
veillance and telecommunication relay applications. It is nevertheless possible to increase the 
range of a UAV by installing the winch and the operator on-board a moving vehicle (car or boat).

Finally, to allow �ights under heavy rain or snow, it is necessary to reinforce the water tight-
ness of UAVs and their components, or to choose a UAV designed for this purpose. It is possible 
to �nd amphibious drones capable of operating both underwater and in the air. However, the si-
multaneous use of such UAVs for both environments constitutes a compromise that diminishes 
the performances obtained in either environment.

To sum up this �rst chapter content, in order to choose the right type of UAV, it is important to 
precisely de�ne the scienti�c requirements and, in particular, the main sensor to be used. �en, 
using easy-to-collect information on the operating environment, it is possible to de�ne the type 
of UAV required by following the indications given in Table 1.3-1 below (for UAVs up to 25 kg).

Table 1.3.-1: Summary of the autonomy, load, constraints, 
and advantages of each type of UAV.

Vectors Multi-rotor UAV Fixed-wing UAV

Compact Multi-sensor Compact Multi-sensor

Maximum Take-
o� weight

< 2 kg =< 25 kg < 2 kg =< 25 kg

Payload < 200 g < 10 kg < 200 g < 5 kg

Autonomy 30 mins 10–15 mins de-
pending on payload 
weight

~ 1 hr > 1 hr

Flying Pro-
gramme (versa-
tility)

VTOL*
RTF**
Automatic �ight

VTOL* Launched by 
hand
Gliding and belly 
landing
RTF
Automatic �ight

Catapult or 
track for take-
o�
Net or sling for 
recovery

Constraints 
(�ight limits)

Flexibility of the 
rotors

Forbidden in cities 
or needs special 
authorization; 
needs parachute, 
airbag, etc.

Site with clear sky, 
su�cient space 
for take-o� and 
landing

Forbidden in 
cities or needs 
special authori-
zation 
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Implementation RTF**
Automatic �ight
Easy to carry 
(drone case or 
backpack)

Several cases RTF**
Automatic �ight
Easy to carry 
(drone case or 
backpack)

Wingspan 
> 2 m
Several cases

Energy Electric Electric Electric Petrol

COST Large choice on 
the market
0.5–3 k€

RTF** 6 k€ , Cus-
tomised : 40 k€

10–30 k€ 50–150 k€

*VTOL: Vertical Take-O� and Landing – **RTF: Ready To Fly

1.3.2  Components

Historically, airborne data acquisition like aerial photography was performed using aircra�s pi-
loted by a person on board. In order to reduce mission cost, and to access the aerial domain 
regardless of location, weather conditions and conventional aircra� availability, model aircra�s 
carrying a self-triggering camera were conceived. At �rst, model aircra�s were radio-controlled 
remotely from the ground without any assistance on board (Figure 1.3-2). Even with the sup-
port of an experienced pilot, issues such as a poor �ight stability preventing good pictures to be 
obtained and large geolocation uncertainty were common. In the end, this technique generated 
more waste than useful data (~80 % of low-quality photos). �us, in order to retrieve the stability 
of the traditional aircra�, it became essential to ‘put the pilot back on board’ but in an electronic 
form. �e autopilot was born and with it, the drone. Today, using the latest generations of auto-
pilots and associated UAVs, it is possible to achieve almost 99.9 % of good photos exploitable in 
photogrammetry.
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Figure 1.3-2: Feedback and pilot principles for a manned remote-control aircra�. 
Image credits: Jérôme Ammann LGO, CNRS – UBO.

UAVs or drones are basically model aircra� equipped with a programmable autopilot and a 
navigation system (based on GNSS) that render them virtually automated (Figure 1.3-3). It has 
thus been possible for them to be developed very rapidly for the civilian and, more particularly, 
scienti�c communities. Faced with the rapid expansion of UAVs that are freely available for ci-
vilian use, civil aviation authorities have had to regulate their use and their �ight areas in order 
to integrate them into air tra�c (e.g., French DGAC, 2012, European EASA, 2021). UAVs are 
today considered as air users in the same way as other aircra�. �eir use is therefore subject to 
constraints (declaration of the UAVs and pilots, activities, and incidents), and their equipment 
and components are subject to a duty of reliability.
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Figure 1.3-3: Feedback and autopilot principles for an Unmanned Aircra� Vehicles (UAV). 
Image credits: Jérôme Ammann LGO, CNRS – UBO.

A UAV for scienti�c applications comprises �ve basic components:

• an autopilot controlling the stability and positioning of the drone, and its trajectory in the air;
• a communication and telemetry system providing the link between the pilot on the ground 

and the drone;
• a motorisation system allowing the drone to be moved in three dimensions;
• a platform for payloads (scienti�c instrumentation);
• an independent system ensuring safety in the event of a major drone failure.

�ese di�erent components are detailed in the following sections.
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Architecture and functions. �e autopilot behaves like a real on-board pilot. In other words, 
it must �rst and foremost ensure �ight stability in all conditions and pilot the UAV to a desired 
destination. Even in the event that the connection with the drone pilot on the ground is lost, the 
autopilot is able to continue along its programmed �ight plan. Physically, the autopilot is a pro-
grammable microcontroller (Figure 1.3-4) that manages �ight controls and data �ows from the 
on-board sensors. It comprises one or more printed circuit boards (PCB). �e autopilot controls 
the UAV stability (attitude) by analysing the data coming from the Inertial Motion Unit (IMU) 
several times per second.

Figure 1.3-4: Overview of autopilot operation. 
Image credits: Jérôme Ammann LGO, CNRS – UBO.

�e IMU comprises a set of motion and orientation sensors: a gyroscope for angular rotation 
movements, an accelerometer for linear movements, and a magnetometer for orientation with 
respect to the magnetic north, i.e., a total of nine sensors for the three �ight axes (pitch, roll and 
yaw). �e autopilot positions the UAV in a terrestrial frame of reference and measures its speed 
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using a GNSS receiver (GPS (USA), GLONASS (Russia), Galileo (Europe), BeiDou (China)). 
�e accuracy of the positioning is metric (autonomous accuracy: ~5 m corresponding to the 
intrinsic value of the absolute GNSS; the accuracy can be improved up to 1 cm along the hori-
zontal axis and ~2 cm along the vertical axis through the use of a Real Time Kinematic GPS 
system (RTK-GPS)) (more details in chapter 2.1).

�e pressure sensor allows the precise measurement of the UAV’s relative altitude to the take 
o� point (to within a few tens of centimetres). Some autopilots also incorporate optical, laser 
and ultrasonic sensors capable of detecting �xed or moving obstacles as well as ground location.

Figure 1.3-5: Di�erence between �xed wing and multirotor UAVs. 
Image credits: Jérôme Ammann LGO, CNRS – UBO.

In order to control the motion of the UAV, the drone pilot on the ground sends a direction 
change command to the UAV, which is materialized by an electrical signal transmitted to the 
autopilot. �e autopilot acts on the motorization and on the control surfaces (air foils) of the 
three �ight axes (pitch, roll and yaw) (Figure 1.3-5). In the case of an electric multirotor UAV, 
the autopilot controls the speed of rotation of the electric motors in accordance with the attitude 
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provided by the IMU. Upon receiving a change of direction command, the autopilot changes the 
rotational speed of some of the motors to create a movement in the desired direction. Hence, 
we can say that motorisation and three axis �ight control are mixed together (Figure 1.3-5). In 
the case of a helicopter or �xed-wing UAV, the autopilot commands the control surfaces of each 
�ight axis also on the basis of the attitude data provided by the IMU. Since the control surfaces 
are mechanical structures and the autopilot is a PCB, the autopilot transmits its commands to 
the control surfaces via electro-mechanical transducers called servomotors. �ere are as many 
servomotors as there are control surfaces. We can see here that the control/command technolo-
gy of multirotor UAVs is simpler than that of helicopter and �xed-wing UAVs. �is has greatly 
contributed to the rapid uptake and success of multirotor drones.

Open-source autopilots o�er total freedom in the design of the �ight functionalities. Indeed, 
the developer, o�en a drone pilot, can implement his/her own UAV behaviour functions. Devel-
opers have federated into a large online community where functions, programs, interfaces, and 
information are exchanged to encourage and facilitate the development of their technology. Some 
open-source autopilots go beyond primary �ight management functions, using communication 
protocols such as MAV-Link (Micro Air Vehicle Link) to interface with compatible user sensors.

Black box autopilots (Figures 1.3-6 and 1.3-7) are pre-programmed by the manufacturer for 
speci�c uses depending on the type of UAV. �e user does not have access to the development of 
the primary �ight management functions. �e manufacturer provides access to certain parame-
ters only for installing the autopilot on the UAV and programming �ight plans. To ensure proper 
use, the manufacturer provides detailed documentation and html interfaces for programming 
and implementation from the ground.

Figure 1.3-6: (A) One-piece version of a black box autopilot (all the functions of the autopilot 
are in the same box). (B) Modular version of a black box autopilot (each function has 

its own box, here in grey). Image credits: Jérôme Ammann LGO, CNRS – UBO.
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Failsafe mode and redundancy. What happens in the event of an autopilot failure? Imposed by 
the regulations as an autopilot safety function, the failsafe mode switches the UAV operation to 
a speci�c behaviour in the event that a failure is detected. Depending on the developers’ choice, 
this behaviour can notably be a return to the point of origin at a speci�c altitude (return to 
home), an emergency landing at the UAV’s location, or a looped �ight of the UAV at a speci�c 
altitude. To ensure the correct operation of the UAV throughout the mission, some manufactur-
ers prefer to increase the reliability of their autopilot systems by doubling, or even tripling, all of 
the associated functions and sensors (Figure 1.3-7). �is is known as redundancy.

Figure 1.3-7: Push-pull motorized UAV equipped with an autopilot with triple function and 
navigation redundancy (three IMUs and three GNSSs, two RTK-GPS, advanced diagnostic 

algorithms, compass capable of resisting magnetic interference from metal structures). Image 
credits: Jérôme Ammann LGO, CNRS – UBO.

Caution. �e programmed obsolescence by some manufacturers of their autopilot systems re-
duces the service life of the UAVs concerned. �is can notably be the case of mass-produced 
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black box autopilots. We �nd here the logic of certain computer operating systems, where the 
manufacturer no longer maintains either the �rmware version of the autopilot or the compati-
bility with the ground station so�ware, and sometimes both. In this way, the user is encouraged 
to replace the autopilot, and even the whole UAV in the case of RTF type drones. For both 
open-source and black box autopilots, it is essential to check the validity of the �rmware version 
before updating it. �is can be done by consulting the manufacturer’s documentation and user 
websites. If the drone system is working well, then it is perhaps not worth taking the risk of 
updating the �rmware.

1.3.2.2  Communication system

�e communication system must be able to transmit the �ight controls and �ight plan to the 
UAV, and to control the payload. It must also be able to receive data on the status of the UAV and 
the telemetry values (UAV position, alarms, remaining battery capacity, the voltage, current and 
fuel levels for internal combustion engines, motor/engine speed of rotation, etc.), video feedback 
(good continuity of images), and payload measurements. �e transmission system can be im-
plemented by one or more transceiver units, preferably point-to-point (P2P) for UAV piloting 
or via relay stations to increase the operational distance. Below, we present the main frequencies 
and power levels that are used for UAV data transmission.

�e 2.4 GHz band (2400–2483.5 MHz) is freely usable for wideband data transmission type 
equipment (sub-class 22) compliant with European standard EN 300 328, which includes new 
technology radio control units with spectrum extension. Since 2012, the permitted power level 
is 100 mW.

�e 5.8 GHz band with a power limit of 25 mW is used for the transmission of video feedback 
and First-Person View (FPV) �ight. �e range can be improved by increasing the gain of the 
omnidirectional quarter-wave dipole antennas to 2  dBi (decibels-isotropic) by lobe antennas 
with better gain (5 dBi, 8 dBi, etc.).

�e WiFi 802.11 standard (2.4 GHz and 5.8 GHz bands) o�ers a data rate of several hundred 
Mbps and a range limited to 100 m. By correctly tuning the antenna gain and by reducing the 
data rate to 150 Mbps, as is the case with WiFi Air Max 802.11n, ranges of several kilometres can 
be reached in free-�eld conditions (output power 27 dBm).

�e 4G LTE (Long Term Evolution) standard set up for mobile telephony to ensure very 
high-speed wireless access to Internet (150 Mbit/s) allows communication with the UAV with-
out any distance concerns. Flying the UAV via the Internet can pose security problems (network 
stability, latency, hacking). It is, therefore, advisable to use it only for piloting the on-board pay-
load.
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1.3.2.3  Motorization

Propeller motorization principle. Most of the UAVs described above are powered by one or 
more propellers. �e propeller is the interface between the engine or motor and the air in which 
the UAV is �ying. It provides the thrust required to move the UAV. �e motor provides the nec-
essary power for the propeller to convert its power into thrust. To obtain the best performances, 
it is necessary to ensure that the propeller lets the motor/engine run at its maximum power 
rating. In general, it is the motor/engine manufacturers who size the drive unit with a small 
range of propellers according to a speci�c range of use. It is important to respect that and not to 
try changing only the size of propellers sizes to improve UAV performances. For the latter, it is 
best to change the complete propeller motor/engine block. �e advent of the electrical brushless 
motor has revived the use of electric motors to power UAVs. �is type of motor delivers high 
power and has a high-speed dynamic. Its magnets are light and e�cient. As it has no manifold, 
there is no friction between the rotor and the stator. �is results in low inertia and is the reason 
why the motor is designated as ‘brushless’.

Principle of veri�cation of the correct motorization of a UAV. A UAV in level �ight should 
not use more than 50 % of the throttle. In other words, the thrust exerted by all of the motors at 
50 % of their rotating speed (rpm) must allow the total weight of the UAV to be li�ed at take-o�. 
Total take-o� weight includes everything: empty UAV weight, payload weight in operational 
con�guration, and weight of all of the batteries necessary to ensure the desired autonomy. �ese 
data allow for estimating, in theory, whether the UAV is correctly motorized.

Caution. �e autonomy values announced for a UAV with a free payload (other than a com-
pact UAV) may be biased.

• �ey do not always account for the payload weight (test performed without payload).
• �e maximum permissible payload weight may require additional batteries to advantageous-

ly increase autonomy.
• �e maximum autonomy duration corresponds to the moment when the battery is comple-

tely run down (0 %). At 0 %, the drone falls out of the sky. It is, therefore, essential to always 
factor in a margin of 15–20 %.

In the case of your application with a particular payload, the autonomy will be well below that 
estimated by the manufacturer. Recalculating the theoretical autonomy from all the known data 
(weights, propeller thrust, number of motors/engines, normal or push-pull assembly, etc.) will 
make it possible to decide whether the proposed UAV is undersized with respect to the initial 
requirement. Brushless motors require little maintenance other than listening for unusual nois-
es. �ese noises can mean that an attachment screw is coming loose, or that the propeller is 
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forcing too much and creating play in the motor. It is important to deal with these issues quickly 
to avoid a crash.

Batteries. Among the existing battery technologies (NiCd, NiMH, Li-ion, LiPo, LiFe, Pb, etc.), 
we will mainly focus on lithium batteries for UAVs because, at equal voltage and capacity, they 
are the lightest. �e cells of a lithium polymer or LiPo battery (Figure 1.3-8) are connected in a 
stack of layers in which the power is concentrated. �is technology can provide a high current 
without destruction. �ere are two important battery parameters:

�e numbers of S and P. �e battery pack is an assembly of parallel-connected (P) and se-
ries-connected (S) cells. It is designated by the number of associated cells.

Example: 4S2P thus corresponds to a combination of four series-connected cells and two 
parallel-connected cells. If one cell has a voltage of 3.7 V and a capacity of 6,000 mAh, then 
the pack designated 4S2P will have a resulting voltage of 4 x 3.7 = 14.8 V and a total capacity 
of 2 x 6,000 = 12,000 mAh.

�e number of ‘C’s indicated on the battery multiplied by the nominal value of the charge cor-
responds to the instantaneous current that can be delivered.

Example: a battery with a charge of 6,750 mAh means that it can deliver this current for one 
hour. Multiplied by the number 25C indicated, it is capable of instantaneously supplying 25 
x 6,750 or 168,750 A.

As lithium is a �ammable material, it is considered a class nine product. Precautions must 
thus be taken when using these batteries, and notably (a) never exceeding the indicated 
charging current and (b) recharging in safety bag, in a ventilated area and under supervision. 
In all cases, users should consult the maintenance and user booklet supplied with the UAV 
and the battery usage instructions. Finally, when batteries are not use during several days, 
it is recommended to storage them (use the storage function of the loader that manage bat-
tery charge to ~30–40 %); this recommendation increases the battery life time. Some kind 
of battery known as ‘Intelligent Professional Battery (IPB)’ are equipped with a microcon-
troller that estimates the level of charge le� in the battery and activates storage mode a�er 
three days of non-use.
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Figure 1.3-8: How to read a battery sticker. 
Image credits: Jérôme Ammann LGO, CNRS – UBO.

Generally speaking, lithium batteries o�er little autonomy for multirotor type UAVs (under 
40 minutes for a compact UAV weighing less than 2 kg, and under ten minutes for UAV weigh-
ing 25 kg). Unlike the weight of the fuel of a combustion engine which decreases during the 
�ight and can improve a little autonomy, the weight of the on-board battery remains constant 
throughout the �ight even though the battery runs down. Depending on the UAV model, the 
weight of the battery represents between 22 % and 35 % of total weight at take-o�. 

1.3.2.4  Internal and external safety

Geofencing is a geolocation technology that allows creation of a virtual perimeter over a real 
geographical area that is commonly used to restrain UAV movements within a prede�ned pe-
rimeter. Associated with the UAV’s GNSS, the geofencing function will trigger an alert or an ac-
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tion (UAV shutdown) as soon as the virtual border of the authorized zone is crossed. Geofencing 
zones are of two types:

1. �e zone created voluntarily by the user (Figure 1.3-9A): �e majority of advanced UAV con-
trol so�ware includes a geofencing function that allows for determining, prior to each �ight, 
a zone from which the UAV will not be able to deviate. �is function can be very practical in 
the event of a �ight close to a prohibited or sensitive area.

2. �e zone created by the UAV manufacturers (Geo Fly zones) (Figure 1.3-9B): Some market 
leaders have integrated geofencing zones into their control so�ware. �ese zones, close to air-
ports, nuclear power plants and all sensitive places such as sports stadiums, Temporary Flight 
Restriction Zones, etc., do not even allow the UAV to take o� (engine blockage). However, 
some of these zones can be temporarily unblocked on demand a�er the manufacturer has 
identi�ed your UAV.

Figure 1.3-9: (A) Example of user-de�ned geofencing zone. �is geofencing allows the UAV to �y 
over the river but prevents it from �ying over the group of houses. (B) Example of a geofencing 

zone imposed by the UAV manufacturer. �e colours indicate the degree of restriction (blue: 
authorization via website; orange and red: authorization via provision of o�cial documents). 
Image credits: (A) Philippe Grandjean, Univ-Lyon1. (B) Jérôme Ammann LGO, CNRS – UBO.

Anti-collision sensors allow the avoidance of obstacles as well as the maintenance of a safe alti-
tude for the UAV with respect to the ground. �ey also assist piloting inside buildings when sat-
ellites are inaccessible. Anti-collision sensors use a number of complex technologies that work 
together to create a global system. �ere are many sensors that can be linked with each other 
by so�ware programming, and include mathematical modelling and algorithms for real-time 
orientation (e.g. Simultaneous Localization and Mapping, SLAM).
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Table 1.3-2: Anti-collision sensor technologies. �e combination of these various systems 
makes it possible to cumulate the advantages of the di�erent technologies 

and eliminate the weaknesses associated with each system.

Anti-colli-
sion sensor 
system

Optical Ultrasonic Radar Infrared Laser

Function-
ality

3D vision 
highly de-
pendent on 
re�ectivity 
and ambient 
light.

Detects large 
obstacles, �at 
surfaces, trans-
parent objects, the 
ground, and fol-
lows topography. 
Not in�uenced by 
brightness. 

Precise and 
stable detec-
tion, little 
disturbed by 
other sys-
tems.

Detects me-
dium-sized 
objects. Is sen-
sitive to direct 
sunlight, and 
does not detect 
transparent 
obstacles.

E�cient 
processing 
speed under 
di�cult con-
ditions (tur-
bulence). 

Measuring 
range

1–40 m 20–500 cm 100–400 cm 20–500 cm 25 cm–100 m

Resolution 
distance

1 mm–10 cm 1 cm 10 cm 1 cm 1 cm

Opening 
angle

60° hori-
zontal x 45° 
vertical

100° horizontal x 
40° vertical

100° 5°–35° 1°–45°

Emergency safety device against Fly Away. A Fly away is an incident due to unintended and 
unwanted behaviour on the part of the autopilot sending the UAV away from the �ight zone 
and beyond the control of the pilot on the ground. To mitigate this risk, aviation regulations 
on UAVs require the implementation of an emergency safety device that can be executed by 
the drone pilot without any link to the general control system. An emergency safety device 
manifests itself in the instantaneous shutdown of the motors/engines, thus causing the UAV to 
fall out of the sky. However, a parachute can be added to this device to limit the impact on the 
ground.

Air tra�c detection system. Automatic detection of airplanes or helicopters �ying in the 
vicinity of a UAV will soon be possible. Indeed, UAVs will be equipped (from 2020) with a 
receiver that will detect ADS-B signals transmitted by airplanes and helicopters. As soon as an 
aircra� enters the range of the UAV, the drone pilot will be warned and will be able to see its 
exact position on a map.
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Parachute. �e main criterion for the choice of a parachute is its surface area, which, depend-
ing on the weight of the UAV, will determine the rate of fall. �e latter must be calculated to 
avoid any bodily injury during a UAV landing. However, the UAV and especially the on-board 
sensors can be damaged during deployment of a parachute.

Table 1.3-3: Advantages and disadvantages of parachute extraction systems.

Extraction
system

Mechanical  Pyrotechnic

Operation An actuator releases a spring from its 
housing (tube or plate), causing the 
parachute to be ejected.

A small pyrotechnic charge explodes in a 
cavity located under the parachute, causing 
high instantaneous pressure to eject the 
parachute.

Advantages Simple and reliable (high rate of 
successful deployment).

Total opening of the canopy in under one 
second; e�ective even at low altitudes (be-
tween 5 and 8 m).

Disadvantages Ejection time (1.5 s), leaving 10 to 
15 m of free fall before the parachute 
becomes e�ective.

High cost, delicate handling, and shelf life of 
pyrotechnic charges.

Example: for a 4 m² parachute, the rate of fall will range from 2.6 m/s for a UAV weighing 
2 kg to 4.4 m/s for a UAV weighing 7 kg. �e impact energy will be between six and 68 joules.

Airbag technology is still very little developed in the UAV world. Airbags are a complement to 
parachute protection. �ey are mainly developed to protect the payload. Indeed, with the in-
creasingly high value of on-board sensors, it is necessary to protect them in the event of damage 
to the UAV. A watertight box can also be used for equipment that has to �y over water.

Caution. these safety devices are not considered by the manufacturer at the time of design, 
except in the speci�c case of custom UAVs. �e weight of these devices will add to the total take-
o� weight and will reduce the �nal autonomy of the UAV.

1.3.2.5  Adaptation of the payload on the UAV

During �ight, the voluntary or involuntary movements of the UAV generate vibrations that af-
fect the on-board sensor. To compensate for this and to ensure the optimum functioning of the 
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sensor, two- or three-axis pods can be used to stabilize it. A two-axis pod pivots on two axes, 
roll (X) and pitch (Y), while a three-axis pod adds an additional axis, yaw (Z). Each type of pod 
comprises at least one mechanical stabilization (silent block) to dampen the vibrations, located 
at the interface between the UAV and the pod. �e movements are also compensated by either 
servomotors or brushless motors. Servomotors are used more on two-axis pods or for sensors 
that require less accuracy. Brushless motors o�er a movement accuracy better than 1/100th of 
a degree and allow rotation through 360°. �ey are ideal for three-axis pods and for stabilizing 
high-frequency acquisition sensors (video, LiDAR, hyperspectral, etc.).

�e main characteristics of a pod include the:

• number of motion axes (usually two or three);
• axis travel and stabilization accuracy (in degrees);
• type of motor (servo or brushless);
• payload capacity (maximum weight and dimensions);
• electronics managing the stabilization (speci�c IMU or autopilot);
• speci�c position functionalities (nadir, follow-me, video tracking, etc.);
• power supply and consumption;
• intrinsic dimensions (length, width, height, weight).

1.3.3  Operation

1.3.3.1  Flight modes

Manual mode. Visual �ight depends on the size and distance of travel of the UAV. It is used 
primarily for the take-o� and landing phases. By managing the climb and descent path properly, 
the pilot can save battery time compared with landing in automatic mode. �e pilot can follow 
�ight parameters displayed on a screen interface known as IOSD (Figure 1.3-10A and 1.3-10B). 
Manual �ight in First Person View (FPV) allows the UAV to be �own as if the drone pilot were 
on board. �e pilot is equipped with a head-mounted display (Figure 1.3-10C) that integrates 
his/her entire view into the UAV. With this mode, the pilot can easily extend the distance and 
forget the point of origin. It is thus recommended to have two pilots in FPV mode. �e second 
pilot, not equipped with a head-mounted display, monitors the UAV behaviour in direct view 
and its movement on the map to avoid risks due to distance of travel (disorientation, loss of the 
radio link, etc.) and collisions.

Automatic Mode. �is is recommended for scienti�c operations (measurements, photographs, 
etc.). �e UAV �ies in a more stable and regular manner than in manual mode. It follows its �ight 



58

plan by linking a succession of GNSS waypoints programmed during the mission-planning phase. 
Flying in automatic mode controls all actions during �ight like sensor triggering at waypoints. 

Figure 1.3-10: Interface On-Screen Display (IOSD): (A) It contains some �ight indicators like 
heading, speed, attitude, turn and slip, numbers of GNSS received and geographic position, 

battery voltage level, UAV distance from ground station, map, �ying mode. (B) IOSD on tablet 
screen. C) IOSD on helmet for FPV �ight, comprising 2 radio antennas for connecting 

with the UAV. Image credits: Jérôme Ammann LGO, CNRS – UBO.

Speci�c Mode. Some UAVs o�er speci�c �ight modes, such as turning around an object at 
a �xed distance and directing the camera or sensor at the object (turn around function), or 
following a person wearing a transmitter (follow-me function). All these speci�c modes are 
nothing more than �ights in automatic mode where the form of the �ight plan is pre-set by the 
manufacturer’s so�ware application.

1.3.3.2  Mission planning

Mission planning is the �ight preparation phase. In this phase, all the data required is gathered 
(�ight zones, authorizations, resolution, and accuracy required, on-board sensors, UAVs to be 
used, �ight altitudes, weather, back planning of operations, etc.) and the �ight plans are developed.

Flight plan and so�ware interfaces. Most ground station so�ware o�ers touch interfaces that 
can be used on a tablet or smartphone. (Figure 1.3-11) �e �ight plan is programmed on a geo-
normed image by tracing the limits of the plan or via a KML �le (Google Earth®). �e waypoints 
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are automatically positioned according to the sensor swath and the image overlap rate, the UAV’s 
speed, and the �ight altitude, which can be user de�ned.

Figure 1.3-11: Creation of a �ight plan via a tablet or smartphone compatible with the �ight 
interface: (A) DJI GS PRO (works only with Apple IOS). (B) Litchi (works also with 

IOS and Android OS). Image credits: Jérôme Ammann LGO, CNRS – UBO.

It is important to consider the terrain topography when deciding �ight altitude and take-o� site 
especially in the case of steep terrains. Altitude zero is set at the take-o� place. �e �ight altitude 
determines the spatial extent and resolution of the survey. (Figure 1.3-12)

Figure 1.3-12: Adapt the �ight altitude to the local topography. 
Image credits: Jérôme Ammann LGO, CNRS – UBO.
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It is also possible to orient the �ight lines in relation to the terrain, the wind direction, or the re-
�ection of the sun on the water (sun glint), with the so�ware automatically readjusting the �ight 
plan. In principle, the UAV’s speed is controlled to remain constant in relation to the ground. 
�e autopilot adjusts the UAV’s speed and movements depending on the instantaneous wind 
conditions. In the event of strong winds, it is advisable to postpone the �ight. In principle, the 
manufacturer provides a maximum limit value for the operating wind speed.

Most ground station so�ware applications require an internet connection to retrieve the top-
ographic base. �is is memorized a�er saving the �ight plan. �e so�ware prompts the pilot to 
choose three parameters (Figure 1.3-13): the image sensor model proposed in the list, the over-
lap rate between two images, and the desired ground resolution in pixel per cm. Depending on 
these three parameters, the so�ware calculates all the others (�ight altitude and distance, UAV 
speed, duration of the �ight plan, etc.). �e total duration of the �ight, considering the time to 
climb to and descend from the working altitude remains to be estimated in order to evaluate the 
battery or fuel autonomy. It is important to increase the �ight time to ensure a safety margin for 
energy autonomy (20 % of energy remaining). It will therefore sometimes be necessary to divide 
the site into several �ight plans.

Figure 1.3-13: Setting autopilot’s user parameters for mapping. 
Image credits: Jérôme Ammann LGO, CNRS – UBO.
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Checklist when planning a �ight. �e checklist process starts in the o�ce and continues in the 
�eld before the �ight, then a�er the �ight once back in the o�ce. Here is a summary table of the 
relevant actions in chronological order.

Table 1.3-4: Checklist of steps to prepare, carry out and complete a UAV �ight.

Steps Actions Who 

In the o�ce/
workshop

Preparation of the plans and the �ight zone (loading of the 
topographic base, geo-�ying zone authorizations). Charging of 
the batteries, equipment check, functional test of the UAV and 
payload. Monitoring of the weather. 

UAV pilot and 
scienti�c mission 
leader

In the �eld,
pre-�ight

Estimation of the �ight conditions (environment, weather, wind 
speed). Ground beacons (markers for measurements, public 
information on the presence of UAVs). Equipment check (as-
sembly, battery level, functional test of the UAV and payload, 
the parachute system, etc.). 

UAV pilot and 
participants

During the 
�ight

Take-o�. Basic �ight behaviour test. Loading of the �ight plan 
followed by its execution. Piloting the payload. Landing. 

UAV pilot
Payload pilot

In the �eld,
post-�ight

Ensuring the security of the UAV hardware and data. Logging 
of events and technical parameters (battery consumption, etc.). 
Recovery of the ground beacons.

UAV pilot and 
participants

In the o�ce/
workshop

Archiving. Storage. Flight debrie�ng. Data pre-processing and 
organization of data processing.

UAV pilot and 
scienti�c mission 
leader
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Increasing operational capabilities of UAVs as well as improved hard- and so�ware compo-
nents are raising severe concerns about public safety, privacy and data protection. �erefore, 
more and more national and international authorities introduced legal provisions that regu-
late the use of UAVs. Such regulations signi�cantly impact how, where, when and by whom 
UAV-based data can be captured. �is chapter is based on Stöcker et al., 2017 and Stöcker, 
2021 and provides an overview of past and present developments as well as important aspects 
of current regulatory frameworks.

1.4.1  Development of UAV regulations

1.4.1.1  From past to present at a global scale

�e history of UAV regulations dates back to manned aviation and the emergence of aeroplanes 
during World War II. In 1944, the international community established the �rst globally ac-
knowledged aviation principles—the Chicago Convention. Besides the main focus on require-
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ments for safe and secure �ights in manned aviation, one article addresses pilotless aircra� and 
highlights the need for special authorisation of UAV operations. 

“No aircra� capable of being �own without a pilot shall be �own without a pilot over the 
territory of a contracting State without special authorisation by that State and in accordan-
ce with the terms of such authorisation. Each contracting State undertakes to ensure that 
the �ight of such aircra� without a pilot in regions open to civil aircra� shall be controlled 
as to prevent danger to civil aircra�.” Article 8 (ICAO, 1944)

Due to the early developments of UAVs in the form of manipulated model aircra�, UAV opera-
tions were usually conducted under respective regulations for model aircra�. In the 2000s—a�er 
years of technological research and innovation—UAVs developed into a commercially workable 
system for a wide �eld of applications. Hence, in 2006, the International Civil Aviation Organi-
zation (ICAO) identi�ed and declared the need for international harmonised terms and princi-
ples of the civil use of UAVs (ICAO, 2015). To strengthen the operation of UAVs throughout the 
world in a safe manner, ICAO published Circular 328 AN/190 in 2011 as a �rst step to provide 
a fundamental international regulatory framework through standards and recommended prac-
tices. In 2016, the same organisation published an online toolkit that delivers general guidance 
for regulators and operators. ICAO further issued recommendations to the safe integration of 
UAVs into controlled airspace. In those, UAVs are “(…) envisioned to be an equal partner in 
the civil aviation system [that is] able to interact with air tra�c control and other aircra� on a 
real-time basis” (ICAO, 2015). As this manual mainly focuses on global harmonisation of UAVs 
in air tra�c-controlled environments, lower priority is granted to visual line-of-sight (VLOS) 
operations (ICAO, 2015).

At a national level, the UK and Australia were the �rst nations that promulgated regulations in 
2002. Some European countries, as well as the US, Canada, Brazil, and Russia, followed during 
the next years. As visualised in Figure 1.4-1, the vast majority of countries – particularly in Asia 
and Africa – remained without regulations during that time. Only a�er 2012, aided by guiding 
documents of the ICAO as well as a continually growing UAV market, the number of countries 
with enacted UAV rules and regulations increased signi�cantly.
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Figure 1.4-1: Worldwide overview of the �rst release of UAV regulations 
(source: Stöcker, 2021).

As of October 2019, more than 50 % of all nations have documents containing speci�c instruc-
tions for the use of UAVs (Figure 1.4-2). Most of these documents refer to regulations which 
are enforced by law whilst a few countries published only guidelines or public notices as the 
law-making process is still in progress. In 2019, six nations banned the use or even the import 
of UAVs in the country (Kenya, Egypt, Uzbekistan, Brunei Darussalam, Cuba and Morocco).

Figure 1.4-2: Status of national UAV regulations at a global level.

Internet sources of relevant international UAV organisations or crowd-sourced platforms pro-
vide useful links and precompiled overviews to derive general information on the status of na-
tional UAV regulations, a shortlist of related resources is listed in Table 1.4-1. Due to the rapid 
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emergence of and ongoing changes to UAV regulations, none of the collections provides a relia-
ble, complete and coherent picture of regulations and before undertaking any UAV mission in a 
country, the information should always be validated with o�cial documents of national aviation 
authorities.

Table 1.4-1: Overview of online compiled lists handling UAV regulations.

Internet Presence Content

http://jarus-rpas.org/regulations 
Joint Authorities for Regulation of Unmanned Systems 
(JARUS): list 30 national UAV regulations and provide a de-
tailed comparison 

https://droneregulations.info 

Collaborative wiki: global UAV Regulations Database which is 
comprised of a country directory with summaries of national 
drone laws, links to original regulatory documents and addi-
tional resources.

https://dronerules.eu 
Co-funded by the European Union, the portal informs about 
the basic requirements and applicable drone-related laws and 
regulations across the EU, Norway and Switzerland.

Besides the o�cial ‘hard’ law regulations, so� law is increasingly gaining importance in guiding 
the development of the UAV market as well. As an example, in 2019, the international stand-
ardisation organisation has published the �rst UAV-related standard (ISO, 2019) which speci�es 
internationally agreed and accepted requirements for safe commercial UAV operations. �is 
standard includes protocols on safety and security, data protection, the operator, the airspace, 
facility and equipment, requirements, operations, and maintenance; and will support shaping 
future UAV legislation.

1.4.1.2  European e�orts towards harmonised UAV regulations

Besides national e�orts to introduce UAV regulations, international organisations took initia-
tives in parallel. At the European level, the European Commission set up the European RPAS 
steering group (ERSG)—a gathering of organisations and experts in this �eld. A critical step 
towards the integration of civil UAVs into the European aviation system was made with the pub-
lication of the Riga Declaration on Remotely Piloted Aircra� in 2015. �is declaration highlights 
�ve main principles that should guide the regulatory framework in Europe (EASA, 2015): 
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1. Drones need to be treated as new types of aircra� with proportionate rules based on the 
risk of each operation;

2. EU rules for the safe provision of drone services need to be developed now;
3. Technologies and standards need to be developed for the full integration of drones in the 

European airspace;
4. Public acceptance is key to the growth of drone service;
5. �e operator of a drone is responsible for its use.

Regulation of UAVs below 150 kg was handled by all member states individually until August 
2018, when with Regulation (EU) 2018/1139, the European Commission received the order 
to regulate all sizes of UAVs (European Parliament, 2018). Following its mandate, EASA pub-
lished the �rst common European UAV rules in Summer 2019, which has come into e�ect as 
of January 1st 2021 and will replace existing national provisions (European Commission, 2019). 
Ultimately, this regulatory reform allows to harmonise the European UAV market and enables 
UAV pilots to easily accomplish UAV �ights in the EU without struggling with heterogeneous 
national legislation. While aiming primarily at ensuring safe operations of UAVs, the European 
regulatory framework will also facilitate the enforcement of citizen’s privacy rights and contrib-
ute to addressing security issues and environmental concerns. �e current approach is risk-
based (1.4.2.1) and distinguishes three main categories applicable for commercial and recrea-
tional users alike: the low risk “open category”, the “speci�c category”, and the high risk “certi�ed 
category”. Speci�cations are outlined in Figure  1.4-3. In this scheme, European and national 
aviation authorities share responsibilities for authorisation. �e regulations are planned to be 
fully implemented by national aviation authorities by January 2023.

Figure 1.4-3: Categorisation of UAV operations according to Commission 
Implementing Regulation 2019/947, based on EU, 2020.
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1.4.2  Content of UAV regulations

Besides the great advantage of UAV applications, two main risks are associated with its op-
eration; �rstly the collision with other airspace users and secondly the impact of UAVs with 
the ground and objects on the ground. Generally speaking, UAV regulations exist to manage 
associated risks and to minimise potential harm to people and property to an acceptable level. 
As to that, requirements towards operators, UAVs and pilots (1.4.2.2) as well as operational lim-
itations for �ying (1.4.2.3) are inherent parts of UAV regulations. With an intensifying societal 
debate about privacy and the potential misuse of UAV technology to seriously violate privacy, 
an increasing number of UAV regulations also include provisions about privacy, ethics and data 
protection (1.4.2.4).

1.4.2.1  Regulatory approaches

Di�erent regulatory approaches can be taken to maintain air safety and public safety. In the 
early days and to some extent even at present, UAV regulations are based on case-by-case au-
thorisation in which civil aviation authorities treat every application for a �ight mission as a 
stand-alone exercise. However, this approach is very time-consuming and mostly fails to provide 
regulatory certainty as deemed necessary to accelerate the UAV industry. As an example of the 
United States in 2010, (Rango & Laliberte, 2010) concluded that the regulations by the Federal 
Aviation Authority are restricting the progress in UAV natural resources mapping. 

Pushed by the quick development of numerous UAV applications and increasing demand for 
more e�cient and practical regulatory procedures, most countries follow a risk-based approach 
nowadays. Regulations set out proportionate requirements following the rational of the level of 
operational risk posed by a UAV (Washington et al., 2019). Most aviation authorities distinguish 
risk categories based on the weight, the site, or the operational complexity. As a rule of thumb, 
the higher the risk category, the stricter the operational conditions under which a �ight author-
isation is granted. 

Figure 1.4-4 shows the example of the Canadian regulatory approach illustrating the di�erent 
risk categories at hand. All UAVs under 250 g are exempted from the regulations. In the weight 
category of 1 kg to 25 kg, sub-categories are distinguished according to the site of the UAV op-
eration. Remote areas are categorised at a lower danger level than built-up areas as well as areas 
close to aerodromes. Independent of the weight, Beyond Visual Line of Sight operations are all 
rated with a high-risk category which adds operational complexity as the third dimension to the 
risk assessment.
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Figure 1.4-4: Canadian UAV risk categorisation as an example of a risk-based 
regulatory approach. Based on a graphic representation by Spectral Aviation 

Canada 2020 (http://spectralaviation.com/en/summary-new-drone-regulation/).

1.4.2.2  Requirements towards UAV, UAV operator and UAV pilot

Depending on the associated risk of the �ight operation, requirements towards the UAV, the UAV 
operator and the UAV pilot are part of all UAV regulations. Predominantly for commercial purposes 
but increasingly also for recreational uses, most regulators call for formal registration as well as iden-
ti�cation marks on the UAV. Even though compliance to a minimum level of technical airworthiness 
is deemed necessary in most regulatory frameworks, special airworthiness certi�cates as mandatory 
for manned aircra� are less relevant for small UAV up to 25 kg, except operated under special con-
ditions (cf. Federal Aviation Administration (2016)). Besides general airworthiness, most legislative 
contexts require automated procedures to terminate the �ight in case of system failure. Such emer-
gency cases can be caused by, e.g. breakdown of essential components for a safe �ight (motor loss 
or damage to wings), loss of data link or insu�cient battery to complete the mission. Measures to 
deal with such situations are called fail-safe systems or �ight termination systems and must be able 
to allow for human independent system guidance and ensure that all safety objectives are achieved. 

Particularly for UAV �ights that are not for recreational purposes, UAV regulators o�en an-
ticipate speci�c approval of the UAV operator, which is seen as the superior unit (such as a 
company or a university) managing the UAV �ights. �e preparation of an operational manual 
is vital for such organisations to become a UAV operator and is seen as a kind of contract be-



70

Claudia Stöcker and Jaap Zevenbergen

tween the national civil aviation authority and the organisation. �e main content includes risk 
and site assessments, emergency procedures, technical details and operational limitations of all 
UAVs as well as documentation of UAV pilot quali�cations. In most cases, the proof of su�cient 
third-party liability insurance is mandatory for UAV operators. Besides the UAV and the UAV 
operator itself, many regulations include demands upon the UAV pilot. Here, practical training, 
theoretical knowledge tests, aeronautical tests, and medical assessments encompass the most 
common requirements (Stöcker et al., 2017). In most countries, the level of required pilot skills 
tends to depend on the risk category of the �ight mission.

1.4.2.3  Operational aspects

Operational limitations refer to elements that pose certain restrictions towards UAV �ight mis-
sions. Most prominently are so-called no-�y zones, which must not be entered by a UAV. Typ-
ically, no-�y zones are de�ned around airports and airstrips, natural protection areas, repre-
sentative buildings, or congested areas. In addition to permanent restricted areas, emergency 
situations such as police operations or �re brigades might be subject to temporal UAV �ight 
restrictions in other areas, too.

To ensure clear segregation between manned and unmanned aircra�, UAVs are usually al-
lowed to operate only in uncontrolled airspace (airspace class G) which is not managed by air 
tra�c control (ATC). In contrast, controlled airspace around airports (airspace class B, C, D) 
and at speci�c altitudes (airspace class A, E) is subject to ATC service provisions and designated 
for manned aircra�. �us, controlled airspace is commonly considered as a no-�y zone, and the 
accomplishment of commercial or recreational UAV �ights would require special authorisation 
or a waiver (see Figure 1.4-5).
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Figure 1.4-5: Airspace guidance for UAV operators in the United States 
Image credits: Federal Aviation Administration, 2018.

Another aspect that can be found in almost all UAV regulations worldwide refers to the maxi-
mum �ight height. Despite a few exemptions, an altitude of 120 m (400 �) above ground level 
(AGL) is considered as the upper bound of permitted UAV �ight height. �is homogenous 
criterion is closely linked to the minimum safe altitude for aircra� which is typically 150 m 
(500 �) AGL in non-congested areas and 300 m (1000 �) above �eld elevation in congested 
areas. Besides the precise de�nition of a maximum �ight height, the horizontal distance be-
tween the UAV pilot and the UAV is also a typical yet di�erently de�ned aspect in national 
UAV regulations (Stöcker et al., 2017). As shown in Figure  1.4-6, three ranges can be dis-
tinguished: visual line of sight (VLOS), extended visual line of sight (EVLOS) and beyond 
visual line of sight (BVLOS). In VLOS conditions, the pilot must be able to maintain direct 
unaided visual contact with the UAV. If not amended by a speci�c distance, the required VLOS 
range can be subject to various interpretations. EVLOS involves an additional person as an 
observer during the UAV mission and extends the horizontal distance to the distance that the 
external observer can keep visual contact with the UAV. �e observer communicates critical 
�ight information and supports the pilot in maintaining a safe distance from other airspace 
users. BVLOS refers to the range outside VLOS but still within the radio line of sight which is 
required to keep full (manual) control over the UAV. Further operational limitations can in-
clude temporal aspects (day/night operation) or distances to people, vessels and infrastructure 
amongst others.
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Figure 1.4-6: Schematic distinction between UAV �ight ranges: visual line of sight (VLOS), 
extended visual line of sight (EVLOS) and beyond visual line of sight (BVLOS). 

Image from Stöcker et al., 2017 (license: Creative Commons Attribution 
http://creativecommons.org/licenses/by/4.0/).

1.4.2.4  Privacy and ethics-related aspects

�e aspect of privacy and data protection in relation to the increasing use of UAVs under-
lines one currently widely discussed topic (Marzocchi, 2015; Nelson et al., 2019). As shown 
in chapter 1.3, UAVs can be equipped with multiple payloads such as imaging equipment or 
transmitters which can easily capture and record data of people, houses or other objects and 
thus potentially violate the privacy and data protection rights of a citizen. In a survey, (Finn 
& Wright, 2016) identi�ed particularly private users and law enforcement as the category of 
drone operators that pose a high risk to privacy, data protection and ethics. In 2017, the in-
clusion of privacy and ethics-related aspects in national UAV regulations remained very low 
(Stöcker et al., 2017). However, during the past two years (2019 and 2020), this issue gained 
importance, and an increasing number of UAV regulations refer to existing national and inter-
national data protection and related privacy regulations such as the General Data Protection 
Regulation in Europe. 
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1.4.3  Joint responsibility

�e key challenge appears to be to �nd an optimum balance between the demands of the various 
actors; allowing for innovation on the one hand, but at the same time ensuring recognition and 
support for safety, fundamental human rights and civil liberties. �e future development of civil 
UAV use will ultimately involve multiple interest groups and various motivations (Rao et al., 
2016). Government institutions and regulatory bodies holding political mandates want to en-
sure public safety and security, civil liberties, but also to promote UAV innovation and technol-
ogy innovation more generally. Stakeholders in research strive for UAV technical advancement. 
Hardware and so�ware manufacturers aim to sell products and are interested in lowering mar-
ket barriers and opening up new application areas. End users have their own needs and market 
interests according to their priorities.

It can be predicted, that over the next decade, technology, societal acceptance and regulation 
are converging. As showcased in this chapter, remarkable progress has already been made as 
more and more countries are establishing risk-based regulations as a fundamental basis to un-
lock the full potential of UAVs for their economies. 

�e bottom line is that all users should comply with the rules and regulations, even though 
compliance assessment and compliance �nding might be in the early stages of development 
(Washington et al., 2019). Otherwise, if widely publicised incidents happen, the risk-based sys-
tem might get jeopardised, and the current balance for regulating UAV missions might be revis-
ited and even lead to a ‘no, unless …’ system in many more cases.
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Every UAV mission should be planned and prepared carefully, to ensure safe operations and to 
maximise the likelihood of successful data acquisition. Project aims and �ight goals should be 
de�ned �rst, from which suitable equipment can be identi�ed and the necessary information 
sourced for mission planning. Short missions may bene�t from the portability and manoeuvra-
bility of small, battery-powered multi-copter-style UAVs, whilst larger mapping missions may 
require the extended range of long-endurance �xed wing systems. Flight permissions, safety and 
pre-�ight checklists, as well as data acquisition and processing protocols, are essential pre-req-
uisites for e�ective UAV missions, and the importance of suitably trained and experienced pilot 
and observer should not be underestimated.
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1.5.1  Flight settings

1.5.1.1  Pre-�ight planning

�e pilot must be familiar with the region in which the UAV will be used. If they are not already 
experienced in the area through previous work, then maps, satellite and aerial images can be 
studied to locate suitable areas for launch and landing, and to identify hazards such as power 
lines. Any no-�y zones near the area need to be located and plans developed to ensure they are 
avoided. For georeferencing data, good ground control point (GCP) locations can be estimated 
whilst in the o�ce to ensure optimal coverage of the area of interest. 

�e expected environmental conditions for each �ight should be assessed beforehand. For 
instance, elevated atmospheric salt concentrations might be considered for �ights over a littoral 
zone, forests can make ensuring visible line of sight challenging, and sand can damage engines 
and rotors in desert environments. Weather is an important consideration and suitable mission 
dates should be identi�ed from forecasts of appropriate �ight conditions, i.e. low wind speed, no 
rain and, ideally, overcast cloud conditions for UAV photogrammetry. Of course, the prevailing 
weather conditions should be continuously reviewed up to and during a �ight. GNSS signal 
availability should also be assessed (including possible interference from geomagnetic activity) 
because this can in�uence the reliability of aircra� control. Multiple apps are available to deter-
mine the suitability of weather and GNSS conditions for UAV �ights (e.g. UAV Forecast3).

Prior to each �ight, all legal obligations must be met, keeping in mind that national and inter-
national regulations can be updated frequently (chapter 1.4). Where required, �ight permissions 
must be acquired and fully documented. �e use of safety and pre-�ight checklists, which in-
clude personnel information as well as mission details, UAV settings and safety issues, is highly 
recommended. James et al. (2020a) provide examples4 (see their supplementary material for a 
‘UAV Project Aviation Safety Plan and Signatures’ form from the USGS, and a pre-�ight check-
list) which can be adapted to individual requirements. Furthermore, a detailed documentation 
of the data acquisition and subsequent processing should form part of any scienti�c UAV mis-
sion and an example protocol5 is provided by Eltner et al. (2016). Immediately prior to each 
�ight, and continuously during it, the vicinity should be checked for the presence of people 

3 www.uavforecast.com.
4 https://doi.org/10.30909/vol.03.01.67114.
5 https://doi.org/10.5194/esurf-4-359-2016.
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and other aircra�. Again, apps are available to monitor �ight activity and �ight zones (e.g. UAV 
Forecast3, Airmap6).

1.5.1.2  Flight plan

An appropriate �ight plan will optimise data acquisition under safety, environmental and equip-
ment constraints (e.g. maximum �ight duration). �ese constraints will vary from site to site and 
from mission to mission, so here we’ll consider only the initial data acquisition aspects. In most 
scenarios, UAV data acquisition should be carried out in autopilot mode to facilitate controlled 
data capture. Data acquisition should be planned to generate suitable overlap (along and across 
�ight lines) to satisfy data processing requirements and to avoid data gaps. �e recommended 
overlap will vary depending on the sensor used; for example, UAV laser scanning (ULS, chap-
ter  2.6) has di�erent requirements to those for UAV photogrammetry (chapter  2.2) or UAV 
multispectral sensing (chapter 2.5).

UAV photogrammetry is widely used in environmental sciences, so we provide some speci�c 
�ight plan recommendations for acquiring suitable imagery. �e science objectives guide survey 
design by determining the smallest features needing to be detectable in imagery, or the spatial 
accuracy needed within topographic products. For instance, mapping soil surface roughness 
may require sub-centimetre resolution, whereas quantifying large magnitude river bank erosion 
may require only decimetre spatial resolution and accuracy. �ese requirements will allow the 
survey’s ground sampling distance (GSD) to be estimated, but note that the GSD in�uences, but 
does not de�ne, the survey accuracy (which is also a function of the photogrammetric image 
network and georeferencing, chapter 2.3). Horizontal survey accuracy can o�en achieve a value 
smaller than the GSD, but vertical accuracy is usually substantially poorer. However, carefully 
acquired, high-quality image networks, that are well supported by GCPs, can achieve vertical 
errors smaller than the GSD.

Considering GSD as the size of an image pixel on the ground relates it to the selection of cam-
era (e.g. focal length and pixel pitch) and �ying height:

pixel pitchGSD = flying height
focal length

6 www.airmap.com.
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In many practical cases, there may be a limited or no choice in UAV or camera, and �ight height 
may be the only variable. For example, if a GSD of 2 cm is required and the available camera has 
a focal length of 5 mm and a pixel pitch of 1.7 µm, then a �ying height of about 60 m is needed. 

�e camera and �ight height de�ne the size of the image footprint on the ground, from which 
the distance between image acquisitions (i.e. the base, Figure  1.5-1) is determined to ensure 
overlap between adjacent images. Along a �ight line, image overlap should be a minimum of 
60 % and, between adjacent parallel �ight lines, overlap should be a minimum of 20 %. How-
ever, signi�cantly higher overlaps along (80 %) and between (60 %) �ight lines are usually rec-
ommended to increase the number of matched image points for photogrammetric processing. 
Higher overlaps enable the same object point to be observed in more images with similar views, 
which usually increases image matching success. �is can be especially important in otherwise 
di�cult-to-match images, such as those from areas of extensive vegetation cover.

Figure 1.5-1: (a) In�uence of �ying height, pixel pitch and focal length on ground sampling 
distance (GSD) and image overlap. For a constant base (the distance between camera projection 

centres), image overlap decreases with increasing focal length (a to b) and increases with 
increasing �ying height (b to c). All images were prepared by the authors for this chapter.

�e most accurate topographic models are achieved from ‘strong’ photogrammetric image 
networks in which the position and orientation of each captured image can be estimated relia-
bly, as well as the camera calibration parameters. Conventional aerial surveys (e.g. Figure 1.5-
2a) tend to result in a relatively weak image network, but networks can be strengthened by 
capturing each feature in more images from a wider range of di�erent camera orientations 
and by including di�erent viewing distances within the survey. Consequently, a �ight plan 
will usually represent a trade-o� between spatial coverage and the strength of the resulting 
image network.
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In general, �ight planning should consider the most appropriate camera calibration strategy, 
taking into account the accuracy demands and �ight path options, which will be di�erent for 
�xed wing and rotor-based UAVs. If the UAV has su�cient �ight endurance, additional cross-
strip �ight lines should be carried out (Figure 1.5-2b). �ese increase the strength of the image 
network geometry, and they can be particularly useful in directly georeferenced surveys (where 
GCPs are not used; e.g. Gerke and Przybilla, 2016). A strong image network geometry is widely 
recommended due to it facilitating the most accurate results by enabling a high-quality ‘on-the-
job’ camera calibration (chapter  1.5.2.4). Such calibrations are an e�ective approach because 
they are based on the survey images themselves (so calibrations are optimised for the speci�c 
surveys) and they don’t require additional �ights or image sets solely for calibration. �e �ight 
plan can strengthen the image network geometry further by including multiple �ying heights 
(especially over �at terrain or for images captured from high altitudes above the surface) and 
convergent images where possible, to decrease the likelihood of systematic errors in 3D surface 
models (chapter 2.3). 

Figure 1.5-2: Flight planning for UAV photogrammetry, considering (a) overlap along the 
�ight direction and across the �ight strips, (b) improving the stability of the image network by 
performing cross-strip �ights, (c) decreasing the potential of systematic errors (such as domes) 

by capturing convergent images (red) in addition to nadir images (green), 
(d) improving focal length estimation by �ying at di�erent altitudes.
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1.5.1.3  Georeferencing

In most scenarios, survey georeferencing is required to enable scaled measurements and 
multi-temporal analysis (chapter  2.1). Some sensors require direct georeferencing, which 
is based on knowledge of the sensor position and orientation, i.e. ULS (chapter 2.6). Other 
sensors, such as RGB and TIR cameras, can also be used with indirect georeferencing, which 
relies on GCPs. For some applications, the use of a locally de�ned coordinate system can 
be su�cient (for instance, de�ned by stable targets for which the inter-target distances are 
known).

�e choice of type and distribution of GCPs is important, particularly for photogrammetry. 
�e best results are usually achieved by using arti�cial (i.e. manufactured) targets as GCPs 
rather than natural features in the scene. In this case, GCPs should be sized such that they 
have widths of between ~5 and 20 pixels in the images, to provide good visibility and to enable 
precise measurement of their centre. �erefore, GCP size should be considered once the GSD 
has been determined for the �ight. Di�erent sensors (e.g. multi- and hyperspectral sensors, 
chapter 2.5) will require di�erent materials to ensure a strong GCP contrast against the image 
background within measured wavelength bands. For instance, for a thermal sensor, materi-
al should be selected based on its radiance in the thermal spectral range (chapter 2.4). One 
option is using black velvet, which is strongly absorbing, in front of a strongly re�ecting heat 
foil (Westfeld et al., 2015). Natural features can also be used as GCPs, but they do not usually 
achieve the same accuracies as arti�cial targets due to their lower contrast and distinctiveness 
in the images.

�e use of consumer-grade sensors and platforms introduces substantially more variability 
into UAV photogrammetric image networks than in conventional (survey-grade) aerial pho-
togrammetry. �is limits the application of the direct relationships between GCPs and expect-
ed survey accuracy that have been developed for conventional aerial photogrammetry (e.g. 
Kraus, 2007). Consequently, generalised recommendations cannot be provided to determine 
the number, density or quality of GCPs required to achieve a speci�c UAV survey accuracy. 
Survey accuracy will depend on the location, �ight pattern, environmental conditions and the 
sensor.

In the ideal scenario, GCPs should be distributed equally across the full survey area to 
provide valuable constraints for the shape estimated by the photogrammetry, as well as for 
georeferencing. However, this is rarely implemented because GCP deployment is typical-
ly limited by practical considerations (e.g. di�culties accessing the entire survey area and 
limited �eld time). Minimal GCP deployments can be based on conventional aerial pho-
togrammetry guidelines (e.g. Kraus, 2007), with GCPs in each corner of the survey area 
and also along the area edges. Additional GCPs within the survey area are likely to strongly 
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improve the height accuracy of any 3D model. If increasingly complex �ight plans are used 
to strengthen the image network geometry (which generally improves the shape accuracy of 
topographic models, Figure 2.5-2c, d), the number of GCPs can usually be decreased. Nev-
ertheless, wherever possible, more GCPs should be deployed than are needed, so that some 
can be used as independent check points (CP). CPs are not included within the photogram-
metric processing, but are essential for providing unbiased estimates of the photogrammetric 
accuracy. 

1.5.2  Camera settings

Sensor settings (hardware and so�ware) should always be checked for optimised data capture. 
�is can be particularly important when images are being acquired for photogrammetry, where 
areas of poor data quality can impact the overall accuracy of results (O’Connor et al., 2017; 
Mosbrucker et al., 2017).

1.5.2.1  Sensor size and image format

If the UAV allows the use of di�erent cameras, then camera selection o�en primarily considers 
camera type, weight and cost. Sensor size within the camera should also be considered due to its 
in�uence on image quality. Larger sensors, with larger pixel sizes, should be preferred because 
they generally have less image noise (larger pixels can collect more photons, to give a better 
signal to noise ratio).

For many applications, recording image data in compressed �le formats (such as JPG) will 
be su�cient. Nevertheless, if possible, capturing images in a larger RAW format should be 
considered, even if their subsequent processing is more involved. RAW imagery preserves 
all the originally captured information and allows enhancements, such as exposure correc-
tion, where necessary. �us, particularly for �eld campaigns with challenging light condi-
tions, RAW format is bene�cial. Furthermore, use of RAW format makes it possible to avoid 
the in-camera distortion corrections that many systems automatically implement in their 
compressed image output, but which may have implications for photogrammetric processing 
(James et al., 2020b).
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1.5.2.2  Lens and focus

If the UAV camera allows di�erent lenses to be selected, then the optimum focal length can be 
considered. For a given sensor size, a shorter focal length gives a wider �eld of view, so fewer 
images are required to maintain the same overlap for any particular �ying height. �e resulting 
larger distances between image acquisitions lead to observations from wider angles, which can 
improve the height accuracy of photogrammetric products. However, this advantage is o�set by 
accuracy reductions due to the increased GSD, and image matching tends to be less successful 
because the appearance of objects changes more strongly between images from wider view-
points. However, fewer images will have to be captured to cover the survey area (Figure 1.5-3).

Wider-angle lenses usually display increasingly complex lens distortions that may be decreas-
ingly well represented by the distortion model used in most image-based 3D reconstruction 
so�ware. In most scenarios, greater distortion will just underscore the need for careful consid-
eration of camera calibration for accurate measurements (chapter 1.5.2.4). However, in extreme 
cases such as �sheye lenses, alternative distortion and projection models may be required.

Figure 1.5-3: In�uence of the focal length to �ying height ratio and the base on ray intersection 
angles. For a similar image overlap from a given �ying height, a smaller focal length (a) enables 

a larger base compared to a larger focal length (b). However, this leads to smaller angles 
between intersecting rays (b), which weakens height measurement accuracy 

with respect to the GSD, when compared to larger bases.

�e camera focus should be set to manual to avoid focus varying during the mission, which 
would alter the camera’s interior geometry. �is is important because photogrammetric process-
ing usually assumes that the camera model, which represents the camera’s interior geometry, is 
the same (constant) for all images. In most data capture scenarios, the focus should to be set to 
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in�nity, except for very close-range �ights, or if very large focal lengths are used. Lenses with a 
�xed focal length are preferred over zoom lens because they generally o�er a better geometric 
stability (Eltner & Schneider, 2015). If the geometric stability of the camera and lens is of a con-
cern, then photogrammetric processing can be carried out using independent camera models 
for each image, but this does run the risk of over-parameterization, and results are usually im-
proved if a �xed focal length lens can be used.

1.5.2.3  Exposure

In most scenarios, the camera ISO setting should be as low as possible to minimise image noise, 
but using the auto ISO option is usually su�cient. Only under low light conditions might higher 
ISO values be suitable. �e shutter speed should also be as fast as possible to avoid motion blur 
whilst maintaining an acceptable image exposure. �e aperture should be set to a high aperture 
number (i.e. a small aperture) to have a su�cient depth of �eld whilst, again, being aware of the 
risk of under exposure if the aperture is too small. Finally, and particularly for photogrammetric 
work, cameras with a global shutter (that exposes the image sensor all at once) should be preferred 
over cameras with rolling shutter (that sequentially exposes the sensor pixels row-wise). Rolling 
shutters can cause image distortions that can be especially problematic on fast moving platforms.

1.5.2.4  Geometric camera calibration

�e geometric camera calibration strategy should be evaluated prior the UAV �ight, with options 
considered for either independent pre- and/or post-�ight calibration, or ‘on-the-job’ self-cali-
bration (Gruen & Beyer, 2001; chapter 2.2). In general, on-the-job calibration is preferred, but 
this requires strong image network geometries and, usually, a good distribution of accurately 
measured GCPs, for reliable results. For a strong image network geometry, the UAV �ight pat-
tern should include nadir and inclined images at di�erent �ight heights, and cross-strips for 
images rotated around the Z-axis (Hastedt & Luhmann, 2015). If a gimballed camera system is 
used and the survey area is not too extensive, point of interest (POI) �ight paths can be adapted 
to provide spatial coverage with a wide range of oblique imagery, resulting in high-quality pho-
togrammetric products due to the image network strength (Sanz-Ablanedo et al., 2020).

However, if �ight pattern options are more limited, and the image network geometry is likely 
to be weak (e.g. a single image strip, or multiple parallel strips at the same altitude, with only few 
GCPs over low-relief topography), it can be bene�cial to perform additional camera calibration 
to avoid systematic errors in the reconstructed 3D model (Hastedt & Luhmann, 2015; Harwin 
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et al., 2015; Eltner & Schneider, 2015). One such scenario might be a directly georeferenced 
survey with no GCPs (chapter 2.1), for which re- and/or post-�ight camera calibration could be 
performed using a test object of known 3D coordinates (a test-range calibration; Fraser, 2001). 
A more �exible option is to use a temporary calibration �eld (Figure 1.5-4), which is imaged 
from di�erent distances, angles and with camera rotations, to form a very strong geometry for a 
self-calibrating image network (Luhmann et al., 2019).

Figure 1.5-4: Example image capture arrangement for pre- or post-�ight camera calibration 
with a temporary calibration �eld (for more details see Luhmann et al., 2019).
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In order to provide a spatial context of the information gathered with the UAV, the measure-
ments taken with the airborne sensor or the products derived from it have to be georeferenced 
in some way. �is can be realized by the determination of the position and the rotation of the 
sensor directly, by the knowledge of the location of speci�c points in the observed environment, 
or by a mixture of both. �is chapter introduces a variety of coordinate systems, which are used 
in praxis and it describes di�erent methods to assign these coordinates to the data. 

A major goal in UAV based environmental monitoring is to collect spatially distributed sensor 
data and to derive useful information from those data. In most cases, this information consists of 



88

Lasse Klingbeil

geometrical representations of the environment, such as 2D maps (e.g. orthomosaics), 2.5D maps 
(e.g. digital surface models) or 3D maps (3D models or point clouds). Please note, that within this 
chapter all of the above examples are called maps. O�en these maps are augmented with spectral in-
formation, such as colour or temperature or spectral re�ectance. Although there are many di�erent 
sensors and processing methods available to generate these maps, a common requirement is usually, 
that the maps are provided in a well-de�ned coordinate system. �is is necessary for the integration 
of di�erent data sources and models, as well as for the analysis of multi-temporal data sets.

Although any coordinate system with a given de�nition of the origin, the axis, and the coor-
dinate type may be suitable for this, it has some advantages to use global geodetic coordinates 
systems, such as the ITRS (International Terrestrial Reference System). Because many di�erent 
coordinate systems are usually involved in a measurement campaign (sensor coordinate sys-
tems, national mapping coordinate systems, Global Navigation Satellite System (GNSS) coordi-
nates), it is useful to get an overview of their concepts and relationships. 

�e process of assigning geodetic coordinates to the data of interest (in our case the resulting 
map) is called georeferencing. �ere are two general concepts of georeferencing: 

Indirect Georeferencing. Here, objects or features with known geodetic coordinates are in-
tegrated into the map generation procedure or are used to transform a local map into a global 
coordinate system in a post processing step. An example of indirect georeferencing is the classi-
cal aero-triangulation with clearly visible dedicated targets at known positions (Ground Control 
Points), as it is realized in most so�ware packages for UAV data processing. 

Direct Georeferencing. Here, the global position and orientation parameters of the mapping 
sensor (e.g., a camera or a LIDAR) at the time instances of their measurements is determined 
and used during the map generation process. �is method is usually used in airborne laser scan-
ning, where the position and orientation of the laser scanner are determined using an advanced 
multi-sensor setup (GNSS/IMU unit, see below) in order to transform all laser measurements 
into the global coordinate system. 

Sometimes, the two concepts are combined in integrated approaches. An example is GNSS-aid-
ed aero-triangulation, where GNSS coordinates of the UAV at each image location are recorded 
and integrated into the map generation process together with a set of ground control points. 

�e particular realization of these georeferencing concepts depends strongly on the used map-
ping sensor, available other sensors, and the application. In this chapter, we will give an overview 
of the concepts and about the aspects, which are common to all of them, without going too much 
into the details of certain mapping sensors. We will focus on the sensors which are used to deter-
mine position and orientation of the UAV, as they are used in direct and integrated approaches, 
but also on sensors that are o�en used in indirect approaches. Details on the map generation 
process, which also include georeferencing aspects, can be found in the chapters, which are fo-
cussing on Structure from Motion (chapter 2.2) or airborne laser scanning (chapter 2.6).

Lasse Klingbeil
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Another term, which is o�en used in the context of georeferencing, is ‘registration’. Registra-
tion means in most cases the transformation of a set of spatial data (e.g. a point cloud as a result 
of a laser scanner) from one coordinate system into another. If a point cloud taken with a ter-
restrial laser scanner from a certain position is ‘registered’ to a point cloud taken from another 
position, then this means usually

• the determination of the transformation parameters between two point clouds using met-
hods such as ICP (iterative closest points) or using distinct 3D points, such as targets or 
feature points and

• the transformation of one of the point clouds using these estimated parameters.

If the target coordinate system of the registration process is a global geographic system, then this 
can be seen as a method for indirect georeferencing as described above. Even in the case, where 
the transformation parameters are determined using sensor data, as in the case of direct georef-
erencing, the term registration is sometimes used. In the rest of the chapter we will no more use 
the term registration, but the reader should be aware of its relation to georeferencing, especially 
in the context of laser scanning.

�e chapter is organized as follows. Firstly, di�erent coordinate systems are described, which 
are usually involved in the mapping process with UAV systems. �is also includes a very quick 
overview about global reference frames, heights, and map projections. Secondly, di�erent sensors 
are described, that are usually used within the georeferencing process. A major focus is on giving 
an overview about the principles of GNSS receivers, but also inertial sensors as well as methods to 
calculate the position and rotation of a UAV are shortly reviewed. 

2.1.1  Coordinates

As the purpose of georeferencing is the determination of the coordinates of sensor data or a 
derived product in some sort of global or at least common coordinate system, it is useful to un-
derstand the variety of coordinate systems and frames and the underlying concepts. �is section 
aims to provide a very brief overview of this equally important and confusing topic.

2.1.1.1  Coordinate systems

Coordinate systems are de�ned by their origin and their coordinate axis. In the context of UAVs, 
the involved coordinate systems are:
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Earth Centred Earth Fixed: Global system attached to the Earth. �e origin is in the mass 
centre of the Earth, the z-axis is parallel to the Earth rotation axis, the x-axis is going through 
the intersection of Greenwich meridian (0° longitude) and the equatorial plane, the y-axis is 
completing a right-handed coordinate system. Coordinates in this system, as for example the 
position of a UAV, are usually written as pe.

Body frame: Local system attached to the UAV. �e origin is some point on the vehicle, e.g. 
the centre of mass, the x-axis is pointing forward, the z-axis is pointing down and the y-axis is 
completing the right-handed system (pointing to the right). Please note, that ground vehicles 
o�en have a di�erent de�nition with z pointing up and y pointing to the le� and that this is also 
o�en applied to UAVs. Coordinates in this system, as for example the position of a sensor on the 
platform, are usually written as lb.

Sensor frame: Local system attached to the sensor. Raw sensor readings are given in this 
system. Its de�nition strongly depends on the type of sensor. Coordinates in this system, as for 
example the position of an object detected by a scanner, are usually written as xs.

Navigation frame: Local topocentric system. �e origin is the same as for the body frame, the x-axis 
is pointing towards North, the z-axis is pointing down (parallel to gravity), the y-axis is completing the 
right-handed system, pointing East. �is system is also called NED (North-East-Down). �e rotation 
information about the UAV is usually given as a rotation Rn

b between the body frame and the naviga-
tion frame. If the UAV is levelled and the x-axis is pointing North, then the three rotation angles (roll, 
pitch, yaw) are (0,0,0). Please note, that if the body frame is de�ned in a (Forward-Le�-Up) mode, as it 
is usually for ground vehicles, then the navigation frame is usually de�ned as (East-North-Up).

Figure 2.1-1: Coordinate frames involved in the georefrencing of sensors data, taken with a moving 
platform (e.g. UAV). Unless otherwise stated, all images were prepared by the author for this chapter.
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2.1.1.2  Global reference frames

�e above de�nition of the Earth-Centred-Earth-Fixed coordinate system is a theoretical con-
cept and the question arises, how these coordinates can be actually measured, as the centre of 
mass of the Earth is not physically accessible and neither are the axes. Apart from that, these pa-
rameters change over time due to continental dri�s and other geophysical e�ects. To account for 
this issue, the IAG (International Association of Geodesy) maintains the ITRF (International 
Terrestrial Reference Frame), which realizes a global coordinate system by de�ning up to 1000 
reference coordinates all over the planet and updating their values every few years based on 
space geodesy methods. �ese methods (e.g. Very Long Baseline Interferometry, Satellite Laser 
Ranging, and GNSS) use astronomical or celestial objects (satellites, quasars) as tie points to 
determine the coordinates of points on the Earth surface. Due to the regular updates, the values 
of a set of global coordinates need to be given with a frame description, which includes a year 
number. �e current version is ITRF2014. However, the changes between the di�erent versions 
are in the order of a few millimetres up to a centimetre and therefore mostly not relevant for 
most UAV applications.

Another important global reference frame is the WGS84 (World Geodetic System). It is the 
o�cial reference frame of the Global Positioning System (GPS) and coordinates determined 
with GPS receivers are usually using this convention. Although the system is maintained by the 
National Imagery and Mapping Agency (NIMA) of the United States, it is nowadays very similar 
to the current version of the ITRF and the coordinate values can be treated as identical. Please 
note, that although WGS84 has the year number 84 in its name, it is still constantly updated 
without changing this number. �is is done for maximum confusion.

2.1.1.3  Geodetic coordinates

While the ITRF is represented in Cartesian coordinates (x,y,z), global coordinates can also be 
given in geodetic coordinates, which are longitude, latitude and height (Figure 2.1-1). Here, the 
Earth �gure is represented as an ellipsoid, and a point on the Earth is described by two angles, 
describing the east-west position (longitude, starting from the Greenwich meridian) and the 
angle between the local normal and the equatorial plane (latitude). �e third coordinate com-
ponent is the height above the ellipsoid. It is important to understand, that the values of these 
coordinates depend on the de�nition of the ellipsoid parameters (e.g. length of the two half-ax-
es), and that these have to be known when using geodetic coordinates. In the example of GPS 
coordinates, the used ellipsoid is the GRS80 ellipsoid. Ellipsoid parameters are usually de�ned 
within a reference frame.
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2.1.1.4  Map projections and local coordinate systems

A very common type of coordinates is UTM coordinates (Universal Transverse Mercator). 
UTM coordinates are the result of a so-called map projection, where the curved surface of the 
ellipsoid is projected to a plane, in order to create a 3-dimensional metric coordinate system. 
�e x-y (East-North) plane represents the ellipsoid surface and the z-axis codes the orthogonal 
deviation from that surface. Each longitudinal strip of the Earth �gure (6° width) creates a new 
projection plane, therefore the strip number needs to be part of the coordinate values (see ex-
ample below). Because the UTM projection only describes the projection method, the reference 
frame and the ellipsoid parameters still need to be speci�ed.

One of the main sources of confusion in the world of coordinates systems is that many coun-
tries or continents de�ne their own ellipsoids, as they locally approximate the Earth �gure better 
than a global ellipsoid. �is then also leads to di�erent UTM coordinates. �ere are also local 
reference frames, addressing the speci�c needs of certain regions. As an example, the ETRS89
(European Terrestrial Reference System) is a European reference frame. It is derived from the 
ITRF in the year 1989 and has been kept nearly �x by then because mostly there are no continen-
tal dri�s within Europe. It also uses the GRS80 as the reference ellipsoid and together with the 
UTM projection it de�nes the o�cial coordinate system of the Cadastre in Germany and some 
other European countries. Note, that due to the regular updates of the ITRF (and the WGS84) 
since 1989, which also considers continental dri�, there is an o�set of about 75 cm between the 
o�cial GPS system and the o�cial European system, which does not so much considers conti-
nental dri�.

2.1.1.5  Heights

In all the descriptions above, the ellipsoid is the reference surface for the height. �is height 
de�nition is called ‘ellipsoidal height’ and it is usually the output of GNSS receivers. Another 
de�nition of height is the ‘orthometric height’, describing the height above an equipotential 
surface of the Earth’s gravity �eld, which is called the Geoid. �e shape of the Geoid is rather 
irregular compared to the ellipsoid, as density variations within the Earth and other geophysical 
e�ects lead to irregularities. �e ellipsoid serves as a simpli�ed model of the Geoid. However, 
while no water can �ow between two points with the same orthometric height, this is possible 
for points with the same ellipsoidal height. �is fact may also illustrate the importance of or-
thometric height values for many geodetic or geographic applications. �ere are models for the 
di�erence between the orthometric and ellipsoidal heights, which is called the geoundulation. 
�e geoundulation depends on the position on the Earth and it can vary between -100 m and 
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+100 m. In small areas (~km) the value is nearly constant. It is very important to understand, 
which height value is provided by any source of coordinates. National coordinates systems most-
ly use orthometric heights, while GNSS receivers usually provide ellipsoidal heights. Sometimes 
GNSS receivers also provide orthometric heights using a simple model for the geoundulation.

2.1.1.6  Examples

To demonstrate the issues of di�erent coordinate systems, we pick the tip of the Ei�el tower in 
Paris and show its coordinate in di�erent versions.

Cartesian coordinates Xe [m] Ye [m] Ze [m]

current WGS84/ITRF2014 4201189.03 168293.93 4780529.15

WGS84@1994/ITRF90 4201189.07 168293.95 4780529.13

Given, that continents (e.g. Europe and America) have moved away from each other roughly 
25 cm between the 2 realizations of the coordinate system, the values are still the same within 
the orders of centimetres, which nicely shows the bene�t of regular updates. 

UTM coordinates Strip East [m] North [m] Ellipsoidal height [m] orthometric height [m]

current WGS84 31 448212.12 5411973.40 403.55 359.00

current ETRS89 31 448211.55 5411972.90 403.55 359.00

It can be seen here, that there is a signi�cant di�erence between the o�cial European reference 
system and the global system, which is for example provided via GNSS measurements. Similar 
e�ects can be expected for other local systems. Also shown here is the di�erence between the 
ellipsoidal height and the orthometric height. �is di�erence (44.55 m at the Ei�el tower) can be 
treated as constant in local areas, but changes for larger distances (e.g. 46.90 m at the Cologne 
Cathedral, ~400 km away). 

Geographic 
coordinates

latitude
[degree]

longitude
[degree]

Ellipsoidal 
height [m]

orthometric height 
[m]

current WGS84 48.8585630 2.2939539 403.55 359.00

current ETRS89 48.8585584 2.2939463 403.55 359.00
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Of course, the geographic coordinates also di�er between the two systems. It is helpful to 
remember, that the 5th to 7th digits in a degree coordinate correspond to variations between 
1 cm and 1 m depending on the location on the Earth and the actual direction (longitude or 
latitude).

2.1.2  Sensors for georeferencing

In this section we describe sensors, which are o�en used during the georeferencing process. We 
start with geodetic measurement equipment, which is usually used on the ground to determine 
coordinates of speci�c points or features. We proceed with an overview about GNSS, which can 
be used on the ground and also on the UAV. Finally, we describe other sensors, such as inertial 
sensors to determine the full position and orientation parameters of the UAV. 

2.1.2.1  Terrestrial geodetic measurement equipment

We shortly introduce some of the geodetic measurement equipment, that can be used for de-
termination of object coordinates on the ground. A detailed introduction into surveying tech-
niques and instruments can be found for example in (Breach & Scho�eld, 2007).

GNSS Receivers have antennas, which are mounted on tripods or poles and they receive sig-
nals from the Global Navigation Satellite Systems in order to determine a point’s position in a 
global coordinate frame (Figure 2.1-2 le�). Because UAVs also contain GNSS receivers, their 
functionality and measurement principle are described in more detail in the next section.

Total Stations are instruments which can determine the direction and the distance of points 
in the direct line of sight of the instrument using electro-optical distance measurements. �ese 
points are o�en re�ector prisms mounted on a vertical pole, which then can be used to measure 
points on the ground. However, the re�ecting object can also be an arbitrary surface patch. �e 
range can be up to hundreds of meters with an accuracy in the order of millimetres, depend-
ing on the type of the instrument, on the re�ecting surface and on environmental parameters. 
Following the notion from the section ‘coordinate systems’, the total station measures a 3D co-
ordinate in its own sensor coordinate system. If an absolute (global) coordinate is needed, the 
position and orientation of the total station system needs to be known in the global system. 
�erefore, a total station cannot directly deliver global coordinates, but in combination with 
multiple distance and direction measurements between multiple points (geodetic network), 
where some points have known absolute coordinates, georeferencing of the full network is pos-
sible. �e latter procedure is called network adjustment.
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Figure 2.1-2: Le� : Terrestrial Geodetic measurement equipment on tripods (from le�  to right: 
GNSS Antenna, Terrestrial Laser Scanner, Total Station). Right: Ground Control Point 

(GCP) for indirect georeferencing. Image credits: Christoph Holst.

Terrestrial Laser Scanners (TLS) measure also directions and distances to points on surfaces 
and therefore provide coordinates in the local scanner coordinate system (Figure 2.1-2, mid-
dle). Compared to total stations they are usually a bit less accurate and they also do not aim to 
measure distinct points, but rather sample the full surrounding with a high data rate, leading 
to a dense grid of measurements. Laser scanners usually provide the data of interest, similar as 
airborne LIDAR in chapter 2.6. In order to georeference the data, known points, visible in the 
scans, are necessary and a network adjustment as in the case of total station measurements needs 
to be performed.

 2.1.2.2  Global Navigation Satellite Systems (GNSS)

One of the main methods for generating global coordinates is the use of GNSS receivers. � is 
is the case for indirect georeferencing methods, where points in the object space are measured 
using GNSS devices, as well as for direct methods, where the position of the sensing system (e.g. 
the UAV) is determined directly. � is section gives a brief overview of the basic principles of 
GNSS by explaining, how it is possible to achieve centimetre level accuracy and what e� ects lead 
to measurement errors. Further information on GNSS and their functionality can be found for 
example in (Ho� man-Wellenho�  et al. 2008).

While the Global Positioning System (GPS), which is owned and operated by the United 
States, serves as the system for the explanation in this chapter, other GNSS such as the Russian 
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GLONASS, the European GALILEO or the Chinese BEIDOU follow the same measurement 
principles.

Basic Concept �e basic concept of GNSS is that a number of satellites in space with known 
positions synchronously transmit radio signals, which are received by some device on Earth. 
�e time of �ight of the signal, and by knowing that it travels with the speed of light, the dis-
tances between the receiver and the satellites are determined. �en, multiple distances to mul-
tiple known satellite positions allow the calculation of the receiver position using a trilateration 
method.

Satellites �e so called ‘Space Segment’ of GPS consists of about 30 satellites orbiting the 
Earth two times per day in a height of 20 000 km (corresponding to a time of �ight of the signal 
of about 70 msec). Each of the satellites carries an atomic clock to create a common time base 
and to allow for the synchronous transmission of signals. �e whole system is monitored and 
controlled by a collection of ground stations, which is called the ‘Ground Segment’. �e ground 
segment also determines the exact position of the satellites and potential clock o�sets between 
individual satellites. Both are important for the operability of the system.

Correlation. �e measurement principle to determine the time of �ight of the signal between 
the satellites and the receivers (the collection of all receivers is called ‘User Segment’) is based 
on correlation. Based on the knowledge about the signal structure of all satellites, the receiver 
internally creates a replica of the satellite signal at every time of transmission and then measures 
the time shi� between the received and the created signal using cross-correlation. Assuming, 
that the receiver clock is synchronized with the satellite clock, this time shi� corresponds to the 
time of �ight of the signal. In reality, the user and the satellite clocks are not synchronized, lead-
ing to a ‘receiver’ or ‘user’ clock o�set, which needs to be known. As this o�set is changing fast 
and unpredictable (receivers do not have an atomic clock), it is actually an unknown parameter, 
which has to be estimated every time the position of the receiver is determined. 

Code Observations. In order to have a sharp correlation peak in the above-mentioned cor-
relation process, the signal needs to have a small autocorrelation coe�cient, as it is the case 
for random signals. Furthermore, the transmitted signal needs to be unique for each satellite 
in order to distinguish di�erent satellites. To achieve both, the signal is realized as a so-called 
pseudo-random-noise (PRN) code. �is code is a noise-like but deterministic digital sequence, 
which is unique for each satellite. �e sequence consists of 1023 chips (zeros and ones), and it 
repeats every millisecond. �e chips (each of them having a length of about 300 m in vacuum) 
are modulated on a carrier wave with a wavelength of about 20 cm. In the code-based measure-
ment, this code is reconstructed from the signal and then used for the actual correlation process. 
Its ‘wavelength’ of 300 m determines the possible correlation accuracy of 1–10 m. �e result 
of a code observation is called ‘pseudo-range’ because it still contains the unknown receiver 
clock-o�set.
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Most GPS satellites transmit two di�erent codes (C/A and P/Y) on two di�erent carrier fre-
quencies (L1: 1575.42 mHz & L2: 1227.60 MHz). �e C/A code can be used by all GNSS receiv-
ers, while the P/Y is encrypted and can be used only by military users. Its shorter chip length 
(10 m) leads to a higher correlation accuracy (0.1–1 m). While the above signals are speci�c to 
GPS, other GNSS have similar signals and similar carrier frequencies.

Navigation Message. In addition to the capability of measuring the time-of-�ight, the receiver 
also needs information about the position of the satellites. �is data is also modulated on the 
signal with the PRN code, but with a much lower bit rate. �e so-called navigation message 
contains information about the satellite’s own position (accuracy ~1 m) and other status pa-
rameters, such as satellite clock o�sets. �e navigation message also contains the positions of all 
other satellites (the so-called ‘Almanac’), which are needed before a receiver is able to provide a 
position (‘cold start’).

Navigation solution. If a receiver determines its own absolute position based on code 
measurements (pseudo-ranges) and the data from the navigation message, then this is called 
‘Single Point Positioning’ and the result is called the ‘navigation solution’. For each measure-
ment epoch (1–10 times per second), the receiver uses at least four satellites (leading to four 
‘observation’) to estimate its position and the current receiver clock o�set (four unknowns). 
�e absolute accuracy is in the order of 3–15 m depending on the measurement conditions. 
�is measurement mode is the standard mode for consumer grade GPS receivers as it is used 
in mobile phones, navigation devices and most autopilots for UAVs. Note, that no other 
information than what is transmitted by the satellite is needed to calculate the navigation 
solution.

Geodetic grade positioning. When cm accuracy is needed, as it is usually the case for direct 
and indirect georeferencing of UAV data, the navigation solution is not su�cient. In this case 
other measurement techniques, such as RTK (Real time Kinematic), PPK (Post Processing 
Kinematic) or PPP (Precise Point Positioning) are applied. �ese techniques use carrier phase 
observations and di�erential processing (except in the case of PPP) to achieve higher accu-
racies.

Carrier Phase Observations. During the correlation process in the receiver, a�er the PRN 
code has been removed from the carrier wave, the actual correlation procedure can addition-
ally be performed directly on the carrier wave, determining the phase shi� between transmit-
ted and simulated signal from the satellite and receiver, respectively. �is leads to a very high 
correlation accuracy in the order of millimetres. �ese measurements are called carrier phase 
observations, and the higher accuracy comes with some drawbacks. �e main problem is that 
due to the short wavelength of 20 cm, the determined time shi� is highly ambiguous. We only 
observe a fraction of a full wavelength, while the number of full cycles between the satellite and 
the receiver remains unknown. �ese so-called integer ambiguities have to be resolved, which 
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puts additional requirements to the receiver, the measurement process, and the processing al-
gorithm. 

Observation errors. Both, code, and carrier phase observations are prone to measurement 
errors. �ese result from various e�ects, which can be classi�ed as satellite, transmission, and 
receiver environment e�ects.

�e major satellite e�ect is the uncertain position of the satellite at signal transmission time. 
�e position provided via the navigation message is only 1–2 m accurate, limiting the potential 
accuracy of the �nal result. 

Transmission e�ects are due to the refraction of the signal in the Earth Ionosphere and Trop-
osphere. �e Ionospheric refraction mainly depends on the sun activities and leads to distance 
errors of up to 100 m and can be reduced to about 20 m when the refraction is modelled based 
on the knowledge about current parameters provided with the navigation message. �e tropo-
spheric refraction depends on humidity, pressure, and temperature (weather) and introduces 
errors below a meter. Both errors are the bigger, the lower the satellite is above the horizon, due 
to the longer path through the atmosphere. 

�e major receiver environment errors are due to the so called multipath and non-line-of-sight 
e�ects. In the case of multipath, the signal from a satellite interferes at the receiver with a ver-
sion of itself, which has been delayed due to re�ection at a surface, such as the ground, a water 
surface, or a building wall. In the non-line-of-sight case, the direct path between the satellite and 
the receiver is blocked, but the signal still arrives with a delay at the antenna due to re�ection 
or refraction at a building wall or corner. Multipath errors can reach values of several tenth of 
meters for pseudo-ranges and they are periodic with typical periods around10 to 30 minutes, 
depending on the distance between the antenna and the re�ecting surface (thus, building the 
mean over a su�cient observation time, e.g. one hour or longer, can reduce this e�ect if the an-
tenna is static). Non-line-of-sight errors can be even larger and they are more di�cult to detect 
at the antenna.

Relative Positioning. �e key to cm accuracy is the usage of the more accurate carrier 
phase observations, but only if the ambiguities inherent with these measurements are solved. 
In order to do so, it is necessary to reduce all observation errors to a minimum. �is can be 
achieved by relative positioning, which includes the usage of two receivers with a maximum 
distance of about 10 km. �e so-called master or base station is usually placed at a known 
and �xed position and the so-called rover is placed at the position of interest. By building 
di�erences between the observations of one satellite at the two receivers (single di�erences) 
and by building di�erences between the single di�erences of two satellites (double di�erenc-
es), all satellite and transmission related errors can be removed or reduced. �e di�erencing 
procedure, however, leads to the loss of absolute information in the subsequent position 
determination process, which then provides only the so-called base line vector between the 
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master and the rover. However, this is possible with an accuracy of a few centimetres, if the 
already mentioned integer ambiguities could be �xed successfully. Please note, that in order 
to derive a precise rover position in real-time, the rover needs the observations from the base 
station also in real-time, leading to the need for some sort of communication between the 
two. �e whole procedure is then called RTK (Real-Time Kinematic) GNSS. If there is no 
communication between the two receivers, but all observations from the rover and the base 
are processed later in a post processing phase, the procedure is o�en called PPK (Post-Pro-
cessing Kinematic).

Reference services. An alternative option to setting up an own base station for relative po-
sitioning is the usage of a so-called reference service. Reference service providers maintain a 
network of base stations over large areas (or even the whole world). A receiver connects to 
the service via the internet to be provided with observations from a close base station. As the 
distance between single base stations is usually too large, the service uses a network of them 
and some interpolation procedures to simulate the observations of a base station, which is very 
close to the receiver. �is simulated base station is also called Virtual Reference Station (VRS). 
Reference services are sometimes provided by o�cial state authorities (e.g. in Germany ‘SA-
POS’ by the O�cial German Surveying and Mapping) or by companies, such as Trimble, Leica, 
or John Deer.

Please note, that the global coordinate frame of the resulting coordinate is determined by 
the reference service. As the relative positioning procedure only estimates the relative vector 
between the reference position and the receiver, the resulting absolute position provided by the 
receiver is derived by adding this relative vector to the absolute coordinate of the base station. 
If this coordinate, for example, is provided by the service provider in the ETRS89 coordinate 
frame with orthometric heights, then the receiver results are also valid in this system. Please 
be aware of this, as the receiver might not know about the reference system of the reference 
station and it might state, that the results are in WGS84 with ellipsoidal heights as it does not 
know it better.

PPP. In areas, where no base station observations are available, it is still possible to calcu-
late precise position information using carrier phase observations. �is procedure is called PPP 
(Precise Point Positioning) and it does not rely on building di�erences to reduce observation 
errors. �e main idea is to model all observation errors, which usually leads to the need for 
a large number of model parameters that can quickly change over time and space. �eses pa-
rameters need to be provided by a PPP service provider. Additionally, the process of ambiguity 
�xing takes more time. As a result, cm accuracy can be achieved, but sometimes only a�er an 
observation time of about 10–20 minutes or even longer. In recent years, there has been a huge 
progress in real-time PPP, so it can be assumed, that in the future PPP services will o�er a similar 
performance to RTK services.
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Figure 2.1-3: Basic principle of relative GNSS measurements. In order to achieve cm level 
accuracy, observations from a second receiver (master) or a reference network is necessary. 

Without these additional observations, only a navigation solution with 
a meter level accuracy is possible.

GNSS Receivers. Mobile phones, navigation devices and nearly all autopilot units in UAVs use 
code based absolute positioning. � e receivers are small, lightweight, and cheap. So far, geodetic 
grade receivers, which are able to process carrier phase observations on multiple frequencies 
and which provide communication interfaces to other receivers or to reference services, have 
been in a cost range of about 10,000 € and were only used by professional surveyors. However, 
most recently, geodetic grade receivers have become available for less than 1,000 €. � is has been 
taken up by the UAV industry and nowadays RTK/PPK receivers are commercially available on 
small UAVs for direct georeferencing. Remember, that in any case where cm accuracy is needed, 
it is necessary, that (a) the receiver is able to receive carrier phase observations, and that (b) 
additional GNSS observations from a second GNSS receiver at a known position or a reference 
service (RTK or PPK) or (3) very speci� c information about current and local observation errors 
(PPP) are needed.
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2.1.2.3  Sensors for rotational information

While GNSS receivers provide information to locate objects in a global reference frame, the 
rotation between the body frame and the navigation frame of the UAV needs to be derived from 
other sensor modalities. �erefore, UAVs contain inertial sensors (gyroscopes and accelerom-
eters) and some of them use also magnetometers or dual antenna GNSS receivers to estimate 
rotations. 

Gyroscopes. Gyroscopes or angular rate sensors measure the angular rate i
s  of the sensor 

around its sensitive axis with respect to the inertial frame. �e inertial frame is the coordinate 
system, which is assumed to be �xed in the universe. As a consequence, a gyroscope lying 
motionless on the ground would still measure the Earth rotation rate i

e . However, most gy-
roscopes, especially the ones used on UAVs are not sensitive enough to measure the Earth 
rotation. Starting from a known orientation and assuming that the gyroscope sensor coordi-
nate frame is identical to the body frame, the data from a three-axis angular rate sensor can be 
integrated over time to derive the orientation n

bR  of the UAV with respect to the navigation 
frame. Due to the fact, that also measurement errors are integrated, the error of resulting an-
gles grows over time and needs to be corrected using sensor fusion methods described below. 
Details about working principles and properties of gyroscopes can be found for example in 
(Titterton & Weston, 2004).

Accelerometers. Accelerometers measure the speci�c force i
sf  acting on the sensor along 

its sensitive axis with respect to the inertial frame. �e speci�c force is the non-gravitational 
force per unit mass, which is basically an acceleration. A three-axis accelerometer attached 
to a UAV free falling from the sky would measure 0 m/s2 in any direction. An accelerometer 
standing motionless on the ground measures 9.81 m/s2  antiparallel to gravity, as this is the 
speci�c force of the ground acting on the UAV to prevent it from falling further down along 
the gravitational �eld of the Earth. �e readings of a three-axis accelerometer can be used 
in two ways. In the case of a non-accelerating platform, it is possible to calculate two angles 
between the platforms z-axis and the gravity vector n

gravg  (rotations around the gravity vector 
are not observable). In the case of an accelerating platform, the gravitational and the transla-
tional acceleration components can be separated if the rotation of the platform is known and 
the translational component can be integrated twice to derive the position of the platform. For 
further reading regarding on the working principles and properties of accelerometers, please 
refer to (Titterton & Weston, 2004).

Magnetometers. A three-axis magnetometer, measuring the vector s
magm  of the Earth mag-

netic �eld n
magm  in the local sensor frame, serves as a compass and provides information about 

the rotation of the platform around the gravity axis, which cannot be observed by accelerome-
ters. �is is the reason, why magnetometers are integrated into most inertial measurement units 
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(IMUs). A combination of gyroscope, accelerometer, and magnetometer theoretically allows for 
the derivation of all three angles of rotation between the body frame and the navigation frame. 
However, the Earth’s magnetic � eld in the close vicinity to UAVs is heavily disturbed by metallic 
components of the platform or superimposed by other mostly stronger � eld sources such as high 
currents driving the engines. � erefore, the usage of magnetic � eld sensors on UAVs is usually 
avoided.

Dual Antenna GNSS Receivers. By attaching a GNSS master and rover antenna to the UAV 
(Figure 2.1-4) with a distance of about 20–100 cm to the UAV, it is possible to determine the 
baseline vector e

GNSSb  between these antennas, given in the global coordinate system and with 
cm accuracy using RTK processing. From this vector it is possible to derive 2 angles of the 
rotation of the UAV with respect to the global coordinate system. � e third angle, which is the 
rotation around the baseline vector itself, remains unobserved. � e angle accuracy depends 
on the baseline length. � ere are GNSS receivers on the market, which are equipped with 
two antenna inputs to derive these orientation angles automatically along with the position 
information. However, because a proper carrier phase processing chain is needed, there are 
so far not available in the low-cost segment. Please note, that for cm position accuracy the 
UAV also needs to contain a GNSS receiver, which serves as a rover, forming a longer baseline 
with a master station somewhere on the ground or a virtual reference station. � is rover of 
the long baseline for positioning is usually the master for the short baseline for orientation 
determination.

Figure 2.1-4: I nertial sensors and a dual GNSS receiver can measure 
the rotational state of the UAV.
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2.1.2.4  Trajectory estimation

For direct georeferencing and integrated approaches, the full 6D pose information of the aircra� 
and therefore of the mapping sensor needs to be known at each time a measurement (e.g. an 
image or laser scan) is taken. In most cases this realized by integrating readings from GNSS 
receivers and inertial sensors (gyroscopes and accelerometer) as they are described above, using 
recursive sensor fusion algorithms such as the Kalman Filter.

Strapdown Integration. Starting from known rotation angles, the orientation of a vehicle 
can be updated using the relative information from consecutive gyroscope readings. Using this 
orientation, the readings from an accelerometer can be corrected by the not measured gravita-
tional components, resulting in translational acceleration values, which can be integrated twice 
to absolute position information, assuming known starting values for velocity and position. 
�is procedure to derive the trajectory of a vehicle is known as Strapdown Integration. �e 
drawback of the method is, that starting values are needed and that sensor errors lead to grow-
ing orientation and position errors over time. �is is especially the case for low-cost sensors 
that are usually implemented on UAVs. To reduce these dri� e�ects, strapdown integration is 
o�en combined with GNSS readings sensor fusion and �ltering algorithms, such as the Kalman 
Filter.

Kalman Filter. A Kalman Filter estimates the current state (and its uncertainty) of a system, by 
combining knowledge about the system’s evolution (and its uncertainty) with all sensor observa-
tions (and their uncertainties) about the systems state up to the current time in a statistically opti-
mal way. In the case of UAV trajectory estimation, the state consists of the position and the orien-
tation of the vehicle, and the observations are given by the measurements from the GNSS receiver, 
the inertial sensors, as well as from potential further sensors such as magnetometers. �e current 
pose estimation is recursively updated every time a new sensor reading is available, leading to 
a full trajectory estimation. �ere are many variants of Kalman Filter implementations, which 
depend mainly on available sensors and their quality (measurement models) and on knowledge 
about the motion of the vehicle (system model). Kalman Filters are implemented in most autopi-
lot systems to provide position and orientation in real-time for navigation and �ight control. For 
these purposes, an accuracy in the order of meters and a few degrees is usually su�cient. Aerial 
LIDAR based sensor units also use Kalman Filters for fusing GNSS and inertial sensors, but due 
to the usually higher quality of the sensors and the missing requirement of a real-time estimation, 
the �lter can be realized in a di�erent way, leading to more accurate results in the order of cen-
timeters and sub-degrees. �is is necessary for direct georeferencing of LIDAR data as described 
below and in chapter 2.6. A detailed introduction into trajectory estimation using GNSS, inertial 
sensors strapdown integration and Kalman Filtering can be found in (Groves, 2013).
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2.1.3  Georeferencing concepts

2.1.3.1  Direct georeferencing

�e most prominent example of the usage of direct georeferencing is airborne laser scanning. 
�e position and orientation of the aircra� is determined using the sensors and algorithms de-
scribed above. �is information is used to transform the range and distance measurements of 
the scanner into the global coordinate system. Another example of direct georeferencing is the 
use of the aircra�s position and orientation parameters within the structure from motion pro-
cessing chain, in order to derive a georeferenced point cloud without the use of any ground 
control point.

We use the geometric model of mobile laser scanning here to demonstrate the concept of 
direct georeferencing (see also chapter 2.6). If a laser scanner measures an object point xs in its 
sensor coordinate system, then the relationship between this measurement and the same object 
point xe in the global coordinate system is given by the georeferencing equation:

( ) ( ) ( ) ( ) ( )( )= + +e e n b b s
n b st t R t R t R tex p l x .

pe, ( )e
nR t  and ( )n

bR t  are results from the trajectory estimation, describing the position 
and rotation parameters of the platform with respect to the global frame. Even when these 
parameters are provided with accuracies in the order of centimetres and millidegrees, it is 
still a challenging task to link these data spatially and temporally correct to the actual map-
ping sensor data. One reason for this is, that the transformation between the georeferencing 
sensor unit coordinate system and the mapping sensor coordinate system has to be known. 
The translational component of this transformation is called lever arm lb and the rotation-
al components are called boresight angles (building the rotation matrix b

sR  in the above 
equation). The process of estimating these parameters is called system calibration. It aims 
to reduce the systematic errors, which otherwise would be introduced into the resulting 
map during the direct georeferencing process. There are many methods to derive lever arm 
and boresight angles within dedicated calibration flights or procedures, assuming that the 
parameters do not change over time. There are also methods, which use observations from 
the actual mission to perform an in-situ calibration, which is especially of interest if the 
parameters cannot be considered as temporally constant. Most of the calibration procedures 
use objects with known coordinates or scales, such as control points, planes or features in 
the environments to detect and correct misalignments induced by wrong calibration pa-
rameters.
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Figure 2.1-5: Position error (y- axis) corresponding to a synchronization error (x-axis) between 
the trajectory and the mapping sensors, depending on the velocity of the vehicle.

Sensor synchronisation. Another important aspect in direct georeferencing is the temporal re-
lation between the georeferencing sensor and the mapping sensor. In the georeferencing equa-
tion, the laser measurement and the trajectory parameters have to be known at the exact same 
time t. � e velocity of the platform directly determines the in� uence of synchronisation errors. 
If for example the sensor displacement error should be in the order of a view centimetres and the 
platform moves with a speed of 50 km/h, then the synchronization error should be below 2 msec 
(see Figure 2.1-5). � is accuracy is not trivial to achieve without time deterministic processing 
components on the UAV. � ere are two main concepts of synchronisation between mapping 
sensors and GNSS/IMU units. One approach, which is o� en used with high performance laser 
scanners, is to feed in the so-called PPS (pulse per second) signal, which usually can be extract-
ed from GNSS receivers. It corresponds to the time base of the GNSS/IMU unit and hence the 
trajectory data. � e scanner synchronizes its internal clock with this signal to directly assign 
correct time stamps to the laser measurements. � e second approach, which is mostly used with 
cameras, is to extract a trigger signal from the mapping sensor in the exact moment, when it per-
forms the measurement, and then to feed this signal into the GNSS/IMU unit. � e GNSS/IMU 
unit stores the reception time of the signal with its own clock. A disadvantage of this method is 
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that the association of the mapping measurement and the recorded time requires some assump-
tions on the reliability of the mapping sensor. It is further not always easy to extract a signal from 
the mapping sensor. Consumer cameras can generate this signal via the hot shoe. Low-cost laser 
scanners sometimes provide a signal which is synchronized with the internal measurement rate.

2.1.3.2  Indirect georeferencing

In the indirect georeferencing concept, the trajectory of the mapping sensor is not directly es-
timated as in the direct georeferencing case, but features or points with known coordinates in 
object space are used to georeference the data. 

Map transformation. A simple example for this approach is to �rst generate a (potentially 
unscaled) map (3D or 2D) in an arbitrary local coordinate system using a sensor system and the 
needed processing steps. A�erwards, a seven parameter Helmert transformation (three trans-
lational, three rotational and potentially one scale parameter) is used to transform the map to 
the target coordinate system. �e transformation parameters can be estimated by linking known 
coordinates in the global coordinate system with local coordinates of the corresponding map 
points. �is approach is o�en used with terrestrial laser scanners, as they create point clouds 
with a high internal accuracy. Also, orthophotos, which do have no or an insu�cient georefer-
ence can be transformed to a global coordinate system in this way (e.g. using only four parame-
ters in this case: two translational, one rotational and scale). 

Aerial Triangulation. However, in the case of UAV imagery and SfM based mapping, things 
become a bit more complicated because the known coordinates of points or features in the real 
world need to be incorporated into the actual mapping algorithm. As described in more detail 
in chapter 2.2, ground control points (GCPs) are distributed over the whole mapping area and 
their position is determined using GNSS or other geodetic measurement equipment. �e GCPs 
are detected and localized in the images and then used in the SfM pipeline. As a result, the re-
constructed map, and the derived products (e.g. orthophotos or digital surface models) are rep-
resented in the coordinate system of the GCPs. Additionally, the trajectory of the vehicle in the 
form of a sequence of external camera orientation parameters (position and rotation, also in the 
GCP coordinate system) is an output of this procedure. Using GCPs also helps to improve the 
accuracy of the map by avoiding systematic reconstruction errors, such as dri� or bowl e�ects, 
which are inherent to the SfM procedure (see also chapter 2.2 and 2.3). Given a su�cient image 
geometry, the mapping result can be georeferenced simply with only GCPs and no knowledge 
about the vehicle trajectory. However, nowadays most UAVs comprise GNSS receivers leading 
to image positions with an accuracy of at least several meters. �erefore, integrated approaches, 
utilizing these data, have become the standard processing approach.
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2.1.3.3  Integrated approaches

In integrated approaches, observations of the object space, which come from the actual mapping 
sensor, are combined with on-board navigation sensor data (IMU, GNSS) from the UAV, in 
order to generate a georeferenced map and simultaneously estimate the trajectory of the UAV 
in the global coordinate system. �e combination of known targets on the ground (GCPs) and 
image positions recorded with on-board GNSS receivers is the most prominent example for this 
approach (GNSS aided Arial Triangulation). Any combination between ‘no’ and ‘many’ GCPs 
with ‘cm-level’ or ‘m-level’ on-board GNSS accuracy is possible and has been investigated e.g. in 
(Gerke & Przybilla, 2016) or (Benjamin et al., 2020). 

If the on-board GNSS is using only code observations, as it is the case in most UAV auto-pilot 
systems, the accuracy of the position is in the order of several meters. �erefore, without any 
GCPs, the absolute accuracy of the mapping result can also not be better. Furthermore, the in-
ternal accuracy of the 3D point cloud may su�er from systematic e�ects, such as the bowl e�ect 
(see chapter 2.3). �e additional usage of GCPs will increase the absolute and relative accuracy, 
depending on the accuracy and the distribution of the GCP positions. 

�e usage of high accuracy di�erential carrier-phase based GNSS receiver on the drone o�ers 
the potential of cm accurate results, even without any GCPs. However, the usage of a few GCPs 
still provides a higher robustness and improves the estimation of the internal camera param-
eters, which is in most cases part of the reconstruction process. Especially in missions with a 
constant �ight height, reconstruction algorithms have di�culties to separate the camera focal 
length parameter from the object distance and therefore a single GCP, which provides a good 
measure of the object distance, will help.

�e position of a very slow �ying drone (e.g. walking speed = 1 m/s) changes about 10 cm 
between two GNSS measurements. In the example of a vertical distance of 30 cm between the 
GNSS antenna and the camera, a tilt angle of the drone of 20° degrees leads to a horizontal 
shi� of the camera position of about 10 cm. �ese two examples show, that the usage of RTK 
GNSS receivers on the drone in order to derive camera coordinates with an accuracy of 1–3 cm 
comes with some technical challenges. �e synchronization between the GNSS observations 
and the actual time stamp of the image exposure, as well as the current spatial relation between 
the GNSS antenna and the camera focal point (lever-arm) have a signi�cant in�uence on the 
accuracy. 

�e accuracy of UAV LIDAR systems can also be improved by integrated approaches. As de-
scribed in chapter 2.6 overlapping laser observations, e.g. from various �ight strips, can be used 
to improve the trajectory estimation and therefore the overall result. 
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2.1.3.4  Available systems

�e applicability of direct georeferencing and integrated approaches mainly depends on the 
accuracy of the on-board georeferencing sensors and the level of integration of the mapping 
sensors. Some researchers presented prototype systems already in 2013, where on-board RTK 
GNSS receivers were used to track the position of the UAV (e.g. Turner et al., 2013; Eling et 
al., 2014; Rehak et al., 2014). �ese systems where custom designed solutions and required a 
deep understanding of the technical and algorithmic integration. In recent years more and more 
commercial systems became available, which o�er the possibility of tagging the images with 
RTK GNSS generated coordinates. �ese systems, however, mostly do not allow the integration 
of custom sensors or other cameras than the ones provided by the vendor. �ese are mostly 
closed systems, where a sensor or a camera cannot easily be changed. �e reason is, as men-
tioned above, that a proper spatial and temporal relationship between the mapping sensor and 
the navigation sensors need to be maintained. However, it can be expected, that the number of 
commercially available system will increase even more in the future and that the modularity of 
these systems will increase as well, enabling the usage of arbitrary sensors. 
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�is chapter provides a general overview and a simpli�ed description of the basics of photo-
grammetry for image-based 3D reconstruction. It starts with a brief introduction of the main 
principles that are essential to the understanding of photogrammetry. �e second and main part 
of the chapter explains the classical work�ow, including image orientation, image matching and 
the generation of 3D point clouds, DSM and orthomosaics. In this context, traditional as well 
as modern approaches are presented. In-text references are provided for further reading and 
deeper insights into technical details. For a more complete explanation on the technical and 
mathematical details of photogrammetry please refer to (Förstner & Wrobel, 2016, Kraus, 2007, 
Mikhail et al., 2001).
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2.2.1  Principles of photogrammetry

Photogrammetry is the science of using 2D image measurements to extract 3D information 
about the position and the geometry of an object as it is shown in Figure 2.2-1. �e goal of pho-
togrammetric multi-image approaches is to revert the transformation process, which takes place 
when a 3D-scene is projected into a 2D camera image. �e basic input of photogrammetry is 
given by two or more images acquired from di�erent positions in space and visualising the same 
part of a static scene7.

Figure 2.2-1: From UAV images to 3D information 
(illustrated with dataset from James et al., 2020).

�e photogrammetric work�ow allows processing a set of images to generate 3D geo-spatial 
information. �e following paragraphs provide insights into the main theoretical principles that 
ground photogrammetry. 

2.2.1.1  Pinhole camera model

�e pinhole camera model describes the mathematical relationship between the coordinates of 
a 3D point in the object space and its projection into the image plane (Figure 2.2-2). �e pinhole 
camera model assumes that the images capture central perspective projections of the scene. In 
the central perspective, the light of a scene converges into a single central point inside the sensor 
lens, called projection centre. In the perspective projections, the point of the object scene (A), 

7 Please note that dynamic scenes can also be reconstructed in 3D acquiring synchronized images with 
dedicated multi-camera systems. 
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the corresponding point in the image (a) and the projection centre (O) are arranged along the 
same line. �ese three points are also called collinear as they stand together on the imaging ray 
(from Latin: co = together and Linea = line). 

2.2.1.2  Principle of collinearity

�e collinearity principle is the basis of photogrammetry as it establishes a mathematical func-
tion between each point in the image and the corresponding point in the object space. �e 
collinearity equations are:

( ) ( ) ( )
( ) ( ) ( )

+ +
= +

+ +
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Where:

• x and y are the image coordinates in the camera system, 
• U, V, W are the ground/object coordinates of the point,
• c, xpp and ypp are the interior orientation parameters of the camera: focal length, and principal 

point coordinates, respectively
• r11, r12, r13, r21, r22, r23, r31, r32, r33, are the elements of a rotation matrix and are computed from 

the three rotation angles omega, phi, kappa rotating around W, V and U, respectively
• Uo, Vo, Wo are the coordinates of the image projection centre within the ground/object co-

ordinate system
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Figure 2.2-2: Collinearity principle. Unless otherwise stated, all images were 
prepared by the authors for this chapter.

An important �nding is that while a 3D-point from the scene will be projected to a distinct point 
in the image (as it can be inferred from Equations 1), an observation in the image will lead to an 
in�nite viewing ray in object space: this means that a single image cannot be used to de�ne the 
position of points in the 3D object space.

2.2.1.3  Single image orientation – spatial resection

�e spatial position and orientation of an image can be determined through the spatial resec-
tion, using a set of points of known coordinates on the ground and their corresponding coordi-
nates in the image as input. As spatial resection is not a linear process, existing methods (such 
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as Direct Linear Transform, DLT) linearise the collinearity equations and determine the �nal 
solution according to an iterative process.

2.2.1.4  Stereo-pair images

Two images can de�ne a so-called stereo-pair. Given an object point visible in both images, its 
3D coordinates can be determined by exploiting the collinearity principle and intersecting cor-
responding imaging rays in space (Figure 2.2-3, right). �e intersection of two or more imaging 
rays in the space is called forward intersection.

Figure 2.2-3: Single image and stereo pair: why photogrammetry needs at least two images.

2.2.1.5  Ground Sampling Distance (GSD)

�e Ground Sampling Distance is the size of the image pixel projected in the object space. �e 
bigger the GSD size, the lower is the spatial resolution of the image. Typical UAV-based projects 
have a GSD in the range between one to 5 cm. 

2.2.2  Photogrammetric work�ow

�e photogrammetric work�ow can be divided into three main steps: (i) the image orienta-
tion, (ii) the point cloud extraction and surface modelling and (iii) the orthophoto genera-
tion. �e image orientation determines the positions and the attitude of the images in the 3D 
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object space. �e point cloud extraction produces dense point clouds that allow generating 
detailed 3D models and meshes, i.e. surface models, while the orthophoto generation steps 
produce an orthoimage (or orthophoto) that can be directly used as a base for topographic 
mapping. In the following paragraphs, a detailed description of each of these steps will be 
given.

2.2.2.1  Image orientation – classical approaches

�e image orientation is the process of establishing the relationship between the camera cap-
turing the image, the image itself and the terrain, thus establishing the relationship between the 
image coordinate system and the ground/space coordinate system. �e image orientation is the 
prerequisite to extract any geometric information from the images. In the image orientation 
process, three di�erent types of coordinate systems can be de�ned:

1. Image coordinate system: �is is a le�-handed Cartesian 2D coordinate system, de�ned as 
pixel addresses by row and column numbers (r,c). �e origin point of the system is on the 
upper le� of the image, with the positive x-axis to the right and the positive y-axis downwards 
(Figure 2.2-4a) and the unit is normally expressed in pixel. In analogue cameras, distances 
between points in the image were measured in millimetres, de�ning the origin of this referen-
ce system in the centre of the image. For this reason, most commercial so�ware still reports 
both image coordinate systems.

Figure 2.2-4: Image (a), camera (b) and ground (c) coordinate systems.

2. Camera coordinate system: �is is a 3D Cartesian, right-handed coordinate system. �e ori-
gin point is the projection centre O, the (x, y) plane is parallel to the image plane, the positive 
x-axis is parallel to the �ight direction, and the z-axis is the optical axis. �e z value for any 
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image point in the camera coordinate system is equal to -c (calibrated focal length), as shown 
in Figure 2.2-4b. �e unit is usually expressed in millimetre (or number of pixels). 

3. Ground (terrain/object) coordinate system: �is is a 3D Cartesian, right-handed coordinate 
system (U, V, W). It can be the national mapping system of the country or just a local coordi-
nate system (Figure 2.2-4c) while the unit is usually expressed in meter (chapter 2.1). 

�e image orientation process can be divided into two main steps: (i) estimation of the interior 
orientation and the (ii) exterior orientation (Figure 2.2-5). �e interior orientation de�nes the 
geometry “inside” the camera, while the exterior orientation determines the position (given by 
its coordinates Uo, Vo, Wo) and attitude of the camera (given by three angles around the carte-
sian axes �, �, � ) in the object space. �e exterior orientation process can further be divided in 
(i) relative orientation and (ii) absolute orientation. 

In the �rst step, the relative position of the images is determined. Neither scale nor positioning 
of the images in the object space is determined: the images are placed in the so-called photo-
grammetric relative model. In the absolute orientation, the position and attitude of the images is 
determined in the real object space: the measures and the positions recovered from an absolutely 
oriented image block correspond to reality.

Figure 2.2-5: Interior and exterior orientation.

a) Interior orientation
�e camera model relates back to the pinhole camera assumption, resembling a perspective 

projection. To perform geometric computations, e.g. as shown above in the collinearity equation, 
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three main parameters of the idealised pinhole system must be known: �e principal distance (or 
focal length in case the focus is at in�nity) describes the orthogonal distance from the projection 
centre to the image plane (i.e. along the optical axis). �e point where this virtual axis intersects 
with the focal plane is called principal point – since this point is a 2D entity, two parameters are 
needed to describe it. Only when those three parameters are known for the camera, the geometry 
of the so-called bundle of rays, passing through the projection centre and imaged on the focal 
plane can be described mathematically. �ose parameters need to be computed for each camera/
lens individually, e.g. in a lab, or during bundle adjustment (self-calibration; see below). 

�e pinhole model, however, is an idealised model. In practice, the lines in the image do not 
resemble straight lines within the optical system, the image plane might be deformed, or pixels 
might not be strictly quadratic. �erefore, an additional set of distortion parameters are de�ned 
and computed for each camera individually, as well. In sum, the interior orientation is composed 
of the following parameters:

• Principal distance or focal length (c): the distance between the projection centre (O) and the 
focal plane.

• Principle point (pp): the orthogonal projection of the projection centre (O) with respect to 
the focal plane (also called image plane).

• Lens distortions: these distortions can be radial, a�ne and decentring. �ey model the de-
formations of the image plane comparing it to a regular array made of squared pixels of the 
same size. �ey are usually no dimensional, and their values depend on the model adopted 
for the camera calibration.

To convert pixel and metric units, the sensor size or pixel size needs to be known for digital 
cameras. For metric airborne cameras, all these parameters are usually provided by the camera’s 
manufacturer through camera calibration reports. �ese parameters can be directly adopted for 
the image orientation as they are supposed to be valid for any �ight performed with this camera. 
Camera calibration parameters are valid for some years, and they are updated from time to time. 
On the other hand, the cameras installed on a UAV are usually no metric cameras. It means that 
the parameters determined in a calibration procedure are not stable over time as they can change 
every time the camera is shut down. �is circumstance makes the self-calibration procedure 
necessary, where the camera parameters of the interior orientation are estimated together with 
the exterior orientation process. 

b) Relative orientation (of a stereo-pair)
Let’s consider the case of a simple stereo-pair. �e unknown parameters of a stereo-pair are twelve 

in total (i.e. six exterior orientation parameters for each image), but its relative orientation can be 
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de�ned using only �ve parameters. �is is possible by �xing the positions and orientations of one 
of the images (six parameters) and constraining the movement of the second image along the line 
connecting the two projection centres (base distance). �e remaining parameters in the 3D space 
are the three rotations and two translations along the line of the second image. �e relationship 
between images is established by determining corresponding object points in the two images. �ese 
corresponding points, known as tie-points, must have known images coordinates but still unknown 
ground/object space coordinates. It is important to understand that the scale within the relative 
oriented stereo model is arbitrary and proportional to the mentioned base distance. �e interesting 
fact is thus that the seven remaining parameters (from �ve for relative orientation to twelve for full 
exterior orientation) resemble a similarity transform, i.e. 3D-shi� and rotation and a unique scale.

To compute the relative orientation, a minimum of �ve tie-points are needed in the overlap-
ping area of both images. �e distribution of the tie-points should be as much homogenous as 
possible. As discussed in the following paragraphs, this process is nowadays performed auto-
matically thanks to the use of algorithms capable of extracting hundreds (or even thousands) 
tie-points in each stereo-pair.

As depicted in Figure 2.2-6, the two straight lines (L’ and L”) and the base distance (i.e. line 
connecting the two projection centres O’ and O”) lay on a unique plane called epipolar plane. 
�e epipolar plane properties and its use in the automated processing will be discussed in more 
detail in the following sections.

Figure 2.2-6: Epipolar plane and coplanarity of O’-O”-A.
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c) Relative orientation (of an image block)
UAV acquisitions usually generate a huge collection of images: several hundred images can be 

easily acquired in one �ight. �e images are typically acquired according to regular pattern and 
overlaps, as discussed in the image acquisition section (chapter 1.5). �e assembly of many over-
lapping images together is usually called an image block. Each image must be “connected” to one 
or more images of the block through a su�cient number of tie-points. �is allows propagating 
the relative orientation of the images among the image block. 

Bundle Block Adjustment in a nutshell
�e orientation of the images is further re�ned using the BBA. �is is a uni�ed process that 

simultaneously estimates the interior and exterior camera parameters as well as the 3D tie-point 
coordinates in a statistically optimal manner (Förstner & Wrobel, 2016). BBA is a non-linear 
process, and hence needs as initial (starting) orientation the “approximate” solution generat-
ed by the previous relative orientation. �e mathematical backbone is given by the collinearity 
equations (Equation 1), and the whole process aims at minimising the re-projection error on the 
tie-points. �e optimal solution is reached by iteratively converging to the optimal estimation 
of the parameters. 

�e minimum inputs of the BBA are the images, the set of tie-points extracted from the 
images of the block and their approximate exterior (and interior) parameters (either in a local 
reference system or in absolute coordinates given by the on-board GNSS and IMU in the object 
space. In most BBA-approaches, the interior parameters can be estimated within the BBA, in 
case the cameras are not strictly metric (self-calibration, see also above). �e outputs of the 
BBA are the six parameters of the exterior orientation for each image of the block, the coordi-
nates of the tie-points with relative coordinates, and the interior orientation parameters (if not 
given as input).

d) Absolute orientation 
�e absolute orientation is the process to locate the relative model obtained from images into 

an absolute (cartographic) reference system, i.e. to de�ne the datum. In this step, seven param-
eters are determined to scale (one parameter), shi� (three parameters) and rotate (three param-
eters) the relative model into the ground coordinate system. Figure 2.2-7 illustrates the absolute 
orientation concept.



119

2.2  Principles of image-based 3D reconstruction

Figure 2.2-7: From relative to absolute orientation (a) and use of GNSS 
information to absolutely position the images (b).

�e absolute orientation can be achieved in two di�erent ways: (i) using a set of GCP or (ii) 
using the coordinates of the projection centres given by GNSS installed on-board (chap-
ter 2.1). 

i) �e use of GCPs is the traditional way to de�ne the absolute orientation of an image block 
and can be referred to as indirect sensor orientation. GCPs are points of known coordinates in 
the ground reference system that are visible in at least two images of the block. �e absolute 
orientation needs to scale, translate (along X, Y and Z) and rotate (around the three axes) the 
relative orientation, determining a total of seven unknown parameters. It means that at least 
three GCPs are needed to perform an absolute orientation. �ree  is the minimum, but more 
GCPs are required to produce an accurate absolute orientation. �ere is no general recommen-
dation on the number of GCPs as this largely depends on various aspects such as terrain, �ight 
conditions, �ight planning, land cover and camera speci�cations. It is, however, the case that 
GCPs are not only required to de�ne the datum of the image block but also to stabilise its inner 
geometry (Gerke & Przybilla, 2016). GCPs help to minimise a so-called block deformation: 
e�ects which are caused by remaining uncertainties and which lead to a distortion of the block 
geometry (chapter 2.3).

It is essential to mention that the seven unknown parameters can be determined a�er the 
relative orientation independently (so-called free-network process) or they can be added as un-
known in a BBA (being optimised together with all the other parameters). �is latter approach 
is the one implemented in most of the commercial solutions. In this case, the GCPs are therefore 
added in the BBA process, inserting their image and corresponding ground coordinates. With 
this information, a relation (i.e. transformation) between the relative and absolute reference sys-
tem can be established. �e mentioned e�ect of GCPs helping to minimise block deformation 
can only be derived with this option. 
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ii) The position given by the navigational unit of UAVs can also be used to determine 
the absolute orientation. Typically, UAVs have an on-board positioning unit exploiting one 
or more satellite constellations (GPS, Glonass, Galileo, BeiDou, etc.). In most cases, the 
camera trigger is synchronised with the on-board GNSS, storing the position where each 
image has been acquired. The accurate position of the images would allow georeferencing 
the scene, making the acquisition of further GCPs obsolete. However, most of the UAVs are 
equipped with low-cost receivers that can provide an approximate position of the UAV, with 
a few meters accuracy. In this case, the absolute orientation is not accurate enough to allow 
for a good georeferencing. A growing number of UAVs installs GNSS with RTK correction, 
providing solutions with few centimetres accuracies. However, this theoretical accuracy can 
be often worsened by the insufficient synchronisation accuracies between camera trigger 
and satellite receiver that introduces systematic shifts in the coordinates (Gerke & Przybilla, 
2016) or by the incorrect assessment of the relative position between GNSS and camera (i.e. 
lever-arm and boresight alignment). The size of these errors depends on the UAV and can 
potentially prevent the accurate georeferencing. Thus, it is recommended to use a few GCPs, 
even when accurate RTK or PPK corrections are used: four GCPs in the four corners of the 
image block are often sufficient to adjust and relocate the position of the block. The use of 
GCPs is also recommended to improve the camera self-calibration (especially when using 
long focal lengths). One should also keep in mind that even with RTK or PPK corrections, 
a good synchronisation and the lever-arm calibration, the absolute positioning will not be 
better than 2–3 cm in all three coordinate axes. The inner accuracy, however, of the image 
block might be much better, i.e. in the order of 1 GSD or even smaller. In some project, 
thus, a GCP survey of better quality, using total stations and a surveying network might be 
necessary.

2.2.2.2  Image orientation – modern approaches

�e development of automated algorithms in Computer Vision has changed the paradigm 
of image orientation in the last years. �e focus of research in the Computer Vision domain 
has been oriented on how to derive scene geometry from uncalibrated cameras without any 
pre-knowledge of the camera parameters. �e concepts described in the previous sections are 
still valid and in use, but many parts of the photogrammetric processing have been modi�ed and 
improved. �e main di�erences between the traditional and modern approach are re�ected in 
higher �exibility and automation in the image orientation process. In the following sections, a 
brief description of the main aspects of contemporary methods is given. 
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a) Automated tie-point extraction
�e manual extraction of tie-points on large datasets, like the ones acquired by UAVs, re-

quests a huge amount of time that is completely incompatible with productive requests. For this 
reason, the development of algorithms like SIFT (Lowe, 2004), SURF (Bay et al. 2006), BRISK 
(Leutenegger et al., 2011), etc. has given a signi�cant contribution in the automation of large im-
age blocks processing. �ese algorithms work according to the three following steps: (i) feature 
extraction, (ii) feature description and (iii) feature matching. �e �rst step allows to identify 
the most proper points (also called key-points) to be used as tie-points in the orientation; the 
second step de�nes a descriptor that gives a unique description of the area around each of these 
key-points; comparing the descriptors from overlapping images, the points are �nally matched 
in the third (and last) step. 

Feature extraction. �is step should select points that are particularly suitable for their 
matching in other images. In particular, two typologies of points can be detected: corners or 
blobs. Corners represent a well-de�ned radiometric discontinuity identi�ed by an image gra-
dient in two perpendicular directions (Figure 2.2-8a, b). Blobs are small image regions, which 
share similar image properties such as brightness or colour (Figure 2.2-8c, d) and have at least 
one radiometric extreme, positive or negative (i.e. bright or dark). �e size of the blob is de�ned 
by the intensity in the region.

Figure 2.2-8: Example of a corner (a) and corner detection in an image (b); 
an example of a blob (c) and blob extracted in the same image (d).

�e great majority of recent approaches are extracting blobs instead of corners as these regions 
are more invariant to scale, illumination and (partial) geometric transformations of the same 
region in images acquired from di�erent positions. While corners are extracted searching for 
radiometric gradients on the input image, the extraction of blobs is usually performed on the 
so-called image octaves and image scales. As an example, in the SIFT algorithm (Lowe, 2004), 
image octaves are progressive down-samplings of the original image (Figure 2.2-9a). An im-
age scale is then a sequence of images generated by applying repeated and progressively larger 
smoothing (Gaussian) �lters on the input image (Figure 2.2-9b). �e blob is usually detected 
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considering the di�erence of adjacent images in the same scale (Figure 2.2-9c) and then search-
ing for local extremes across scales, (Di�erence of Gaussian DoG) (Figure 2.2-9d).

Figure 2.2-9: Example of octaves (a), image scales (b), Di�erences of Gaussians (c) 
and local extremes search across three image scales (d).

Feature description. Once the features have been extracted in the images, a description must 
be used to allow the identi�cation of the same points in images depicting the same area. In 
general, a descriptor should contain/summarise information about the immediate neigh-
bourhood of a feature and transform it into a compact vector of numbers. Descriptors are ex-
tracted considering either radiometric gradients or intensity comparisons on these regions. 
Two main typologies of descriptors exist; �oat and binary descriptors, according to the way 
the information is stored in the vector. Float descriptors are a collection of �oating numbers, 
while binary descriptors are a string of binary numbers. According to the implementation, 
descriptors can be rotation, illumination, scale and (partially) a�ne invariant. �e size of the 
area considered to generate the descriptor and the way to build it depends on the considered 
implementation. 

Feature matching. Once a complete set of key-points and their corresponding descriptors 
have been generated, the corresponding points (i.e. tie-points or homologous points) in overlap-
ping images need to be matched. Here, each descriptor of one image should be compared to all 
the descriptors of the other image. �e similarity is usually computed considering the “distance” 
(i.e. the di�erence) between each corresponding number of the descriptor. As an example, in 
the SIFT algorithm, each descriptor is composed by 128 numbers: each of these numbers is 
compared with the corresponding number of the other descriptor and the Euclidean distance is 
computed summing these di�erences together. 

b) Fundamental matrix
�e relative orientation of a stereo-pair is de�ned by �ve parameters. In the modern approach, 

the relative orientation of a stereo-pair can be “summarised” in a 3x3 matrix called Fundamental 
Matrix (Faugeras & Maybank, 1990). �is matrix is able to map the position of the homologous 
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points in the two images, embedding part of the interior orientation (image distortions are not 
included) in this process. 

�e fundamental matrix embeds the concept of the epipolar lines. According to this principle, 
homologous points and their corresponding point in the space lay on a unique plane. Given 
two relatively oriented images and their corresponding Fundamental matrix, for each point in 
the �rst image, we will not be able to determine the position of the corresponding point in the 
second image, but we will be able to de�ne the line (called epipolar line) where that point will 
be projected in the second image. �is concept is explained earlier and depicted in Figure 2.2-6. 

�e computation of the Fundamental matrix can be formed using the 8-point algorithm as 
described in detail by (Hartley & Zisserman, 2004). �e general idea encompasses that the tie-
points generated by feature extraction and matching allow the determination of putative corre-
spondences between the two images: these correspondences can then be used to estimate the 
Fundamental Matrix.

c) RANSAC (Random Sample Consensus)
Points matched using features and descriptors can o�en be wrong because of the presence of 

repetitive patterns (i.e. windows on a building façade, etc.), bad image quality, lack of distinctive 
features in the image, etc. �ese wrong matches can negatively a�ect the estimation of the Fun-
damental matrix and, therefore, need to be removed. In this regard, several statistical approaches 
have been implemented to perform this task. Among them, RANSAC (Fischler & Bolles, 1981) 
is a general approach that allows eliminating outliers reliably and robustly. �e starting point of 
RANSAC is a mathematical model (in this case, the one given by the Fundamental matrix esti-
mation) that de�nes the “behaviour” that the points should follow. RANSAC works according 
to an iterative approach: at each iteration, a minimum number of points (i.e. eight points) are 
used to estimate the Fundamental matrix. A�erwards, the number of inliers is counted. A pair 
of matched points is considered as inlier if – using the computed Fundamental matrix and the 
position of the point in the �rst image – the epipolar line computed in the second image is close 
to the corresponding homologous point. A�er many iterations, the solution with the largest 
number of inliers is selected as the correct one: all outliers are �nally removed from the dataset. 
RANSAC allows to remove up to the 40 % of outliers from the dataset and, although the algo-
rithm is almost 40 years old, it is still one of the most used solutions.

d) Structure-from-Motion (SfM)
Structure from Motion is the technique to relatively orient a sequence of images together, to 

generate an image block. �e outputs of SfM are the orientation parameters of the images (i.e. 
Motion) de�ned in a relative system, the interior camera parameters due to camera self-calibra-
tion (if needed) and the position of the matched tie-points (i.e. structure) in the object space that 
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de�nes a 3D model of the scene structure. �ere are very di�erent implementations of SfM, but 
the easiest implementation can be divided into four subsequent steps (according to Pollefeys et 
al., 2004):

• Match or track points over the whole image sequence. �is process usually performs the 
already described feature extraction and matching.

• Initialise the structure using two images, suitable for initialisation. One of the two frames 
is de�ned as the origin of the reference system and reference for the angular measurements 
(i.e. the orientation angles are all 0). Using these �rst two images the structure is initialised 
(i.e. the �rst points are matched and their positions estimated via forward intersection in the 
local system de�ned by the image pair).

• Add new images to the sequence. For every new image, its position is inferred applying 
spatial resection and using the matched points with the other images and roto-translating 
it in their reference system. �e orientation of the new image is then re�ned using a Bundle 
Block Adjustment. In many implementations, this step is just a local BBA, considering only 
the neighbouring images and not the complete image block. Every new image allows for the 
forward intersection of further matched points and thus, new observations that can be used 
in the orientation of the next image.

• Run the BBA. A Bundle Block Adjustment is �nally run to re�ne both the image positions 
and the points positions (i.e. sparse point cloud) of the whole image block.

As all sequential processes, the SfM can run into serious problems of error cumulation: small er-
rors in the relative orientation of a single stereo-pair can cumulate in a sequence of stereo-pairs, 
leading to large deformations of the image block. �erefore, the Bundle Block Adjustment is a 
fundamental step in SfM as it allows to achieve more precise results, keeping the deformations 
lower. In SfM the image orientation is o�en de�ned by the Projection Matrix. �is matrix em-
beds both the interior and exterior parameters, allowing to move from image coordinates to 
object space coordinates and vice-versa. 

SfM has been originally conceived for terrestrial image sequences, with images acquired in a 
sequential way without knowing their position. If no a priori information is available, then the 
feature extraction and matching must be performed considering all the other images increas-
ing the computational e�ort of the image block orientation. Another common way to process 
them was to concatenate the images together considering the time of acquisition: each image is 
supposed to be in overlap with the neighbouring ones. More advanced approaches have been re-
cently implemented (Schönberger & Frahm, 2016) to cope with unordered sequences of images.

Most UAV platforms store GNSS information of the location where each image has been ac-
quired. �is information can clarify in advance which images overlap and which ones are too far 
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away and do not have overlap. In this way, the tie-point extraction can be performed on a limited 
number of images instead of using the whole image block. Di�erent strategies can be adopted 
for this purpose: one example is given in Figure 2.2-10. Starting from the initial stereo-pair, a 
radius is considered to de�ne the next image of the sequence. Simple criteria like the “closest not 
already oriented image” can be used to de�ne where to move the concatenation process. It must 
be noted that multiple matches (i.e. tie-points visible in more than two images) are extremely 
important to make the block more “rigid” and to reduce deformations.

Figure 2.2-10: Concatenation strategy in a UAV acquisition (nadir image case).

2.2.2.3  Image matching algorithms

�e term image matching refers to the techniques to identify and match identical objects fea-
tures in overlapping images in order to reconstruct their position in the space. Two main types 
of image matching exist: the feature matching and the area-based matching. Feature matching 
has been already described in the image orientation section: the aim of this process is to detect 
some well recognisable features to be used as tie-points in the orientation process. �e results 
provided by feature matching is a sparse point cloud generated intersecting the tie-points in the 
object space. On the other hand, the area-based matching aims at maximising the number of 
matched points to generate a dense point cloud. Many area-based matching algorithms were 
developed in the last decades. �e basic idea of these methods is to associate many pixels in a 
reference image to the corresponding (homologous) points in the search image. In ideal cases, 
a corresponding pixel in the second (or slave) image should be found for each pixel of the ref-
erence image (assuming that no occlusions are hampering). In order to de�ne the similarity 
between corresponding pixels, an image patch centred on the pixel to match is extracted in the 
�rst image. �is patch is then compared to a sliding window of the same size in the second image 
(see Figure 2.2-11): the window is translated one pixel per time in the horizontal and vertical di-
rection. �e similarity measures (such as normalised cross-correlation) are computed in all the 
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positions to de�ne the degree of similarity among image patches. �e location of the maximum 
of correlation is �nally selected as the corresponding match.

Figure 2.2-11: �e basic idea of area-based matching using a reference and a slave 
image and one-dimensional explanation of correlation (right).

Many image matching algorithms adopt di�erent measures of the similarity, such as: mutual 
information, mean squared di�erences, etc. As it can be easily understood, this process can lead 
to many wrong matches as many parts of the picture can look similar analysing a small patch. 
On the other hand, the same point can appear completely di�erent in two images because of 
varying illumination conditions or viewing angles. For this reason, many strategies to reduce 
the number of incorrect matches has been implemented. �is very long development can be 
summarised in four key-advances. 

Use of the epipolar constraint. Given two oriented images, the epipolar constraint assures 
that the homologous point in the second image will lay on the epipolar line, which reduces the 
search space in the slave image to a 1D problem. 

Multi-resolution point cloud generation. �e use of the epipolar constraint is o�en not suf-
�cient to prevent the selection of wrong matches as the epipolar line is still very long. For this 
reason, the use of multi-resolution images can partially solve this problem by iteratively re�ning 
the reconstruction in the 3D space progressively using higher resolution images. �e images are 
initially down-sampled, and the image matching is performed using lower resolution images: as 
the resolution is lower, larger areas are covered by each patch (as the GSD is larger) decreasing 
the likelihood of ambiguities or to extract wrong correspondences. �e set of matches generated 
in this phase is then used to build a �rst rough model (Model 1 in Figure 2.2-12). �e second 
iteration considers higher resolution images and is guided by the approximate model generated 
in the previous step reducing the search area in the matching process. �e process is repeated 
until the full resolution images are used as input to generate a full-resolution model. �ree to 
�ve image resolutions are usually used in this process.
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Figure 2.2-12: Multi-resolution approach in a stereo pair (please note the shorted epipolar line) 
and progressive reconstruction of the model from coarser (using low-resolution images) 

to more de�ned (using full-resolution images).

Multi-image matching. In photogrammetric applications, images are usually acquired using 
high overlaps, and more than two images capture the same point of the ground. In multi-image 
approaches, this redundant information is used to improve the quality and reliability of the 
achieved results. For a reference image, cross-correlation values are checked with more than one 
slave image at the same time, and their information is merged in order to have unique and more 
robust information (Figure 2.2-13).

Figure 2.2-13: Epipolar geometry in a multi-image approach.

Semi Global matching. Semi-global approaches (Hirschmüller, 2005) fuse the information pro-
vided by the correlation on a local patch with the contextual information provided by neigh-
bouring pixels. �e general idea of these approaches is to look at the consistency of each putative 
match considering the position of the adjacent matched pixels: in a 3D reconstruction, each 
point should typically be close to other points. In Figure 2.2-14, red and green points are good 
candidate matching along the projection line, but only the green one is consistent with the posi-
tion of the neighbouring points. From a mathematical point of view, this information is stored in 
the so-called cost function that is minimised. �e cost function “forces” the generation of locally 
�at surfaces, penalising irregular changes (i.e. sudden depth variations) from the position of 



128

Francesco Nex, Yolla Al Asmar, Claudia Stöcker and Markus Gerke

neighbouring points. At the same time, large depth variations are allowed and through another 
parameter in the penalty function. In general, this leads to the preservation of e.g. roof edges.

Figure 2.2-14: Consistency of matches in object space: the green point 
is close to other points in the reconstructed space.

2.2.3  Generation of end-products

2.2.3.1  3D point clouds

Image matching algorithms are able to generate huge point clouds. Point clouds are collections 
of points matched in the object space (chapter 3.5). Each point is generally de�ned by three co-
ordinates in a local Euclidean (U, V, W) or cartographic (East, North, height) reference system. 
As images usually store the RGB colours, the matched point can also incorporate this informa-
tion: in this case, each point is de�ned by three coordinates and three colour values. Point clouds 
represent the direct output of image matching, but they are o�en unpractical for their delivery to 
�nal users. In this regard, the point cloud can be converted in other formats.

2.2.3.2  TIN and 3D mesh

A TIN is a digital representation of a continuous surface consisting of non-overlapping/nonin-
tersecting triangular elements. TIN is obtained by connecting the points of a point cloud that 
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become the vertices of each triangle. TINs are usually produced from aerial nadiral acquisitions: 
each X and Y value can have only one Z value.

3D mesh represents a generalisation of TIN as it represents the surface of a generic object (e.g. 
landscape, statue, buildings) in the space: in this case, each X and Y value can have multiple Z 
values. 3D meshes are usually textured by adding the radiometric information of the images.

2.2.3.3  DSM and DTM – Digital Surface and Terrain Models

DSM and DTM are digital representations of the Earth surface stored in raster data format with 
a regular grid/pixel and each pixel containing one elevation/height (for more details see chap-
ter 3.4). A DSM is a geometric model of the earth surface and includes the elevation of the to-
pography and all the natural (i.e. trees) and human-made (i.e. buildings, bridges, etc.) objects. A 
DTM contains the elevation of the terrain.

�e reduction of a DSM into a DTM requires to identify the objects that protrude outside the 
ground. Many algorithms have been developed in the last decades, however without delivering 
accurate results in all the operational conditions. �e general idea of these approaches is that 
ground points are lower than the others, although several exceptions may occur in hilly areas. 
DTM extraction using photogrammetric data such as UAV images is more challenging than 
using LiDAR data because of the higher number of outliers and the unavailability of multi-echo 
information that allows penetrating inside vegetated areas, providing the position of the ground 
in hidden regions (Gevaert et al, 2018).

2.2.3.4  Orthophoto generation

�e images acquired during a UAV �ight cannot be directly used to infer the position and geom-
etry of the object on the ground. As already discussed, the images are central perspective and (i) 
the size of pixels (i.e. scale) on the ground varies according to their positions in the image frame 
and (ii) the appearance of the objects looks distorted according to di�erent viewing angles. 

To determine metric information from images, we need to generate an orthophoto. �e ortho-
photo (or Ortho-image) is a geometrically corrected (“orthorecti�ed”) image such that the scale 
is uniform: it combines the characteristics of the image and the geometry of the map o�ering the 
same metric information. Orthorecti�cation is the process of projecting the image content into 
the surface on the ground, removing central perspective distortions, and transforming the image 
information in an orthogonal projection. It can be divided into four main steps, which are also 
summarised in Figure 2.2-15. �e process is repeated for each pixel of the orthophoto.
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1. �e orthophoto is initially a blank image. As it is shown in Figure 2.2-15, the orthophoto 
has the same planimetric coordinates of the DSM and the same resolution: each pixel in 
the DSM corresponds to a pixel in the orthophoto. �is is not always true, but in general, 
these resolutions are similar and, as a rule of thumb, the orthophoto pixel size (GSD) in 
units on the ground should not be smaller than the size of the pixel in the original image.

2. Each pixel of the orthophoto is initially projected into the DSM. In this way, the height 
component of this pixel is determined.

3. �e point in the DSM is then back-projected into the image using the collinearity equati-
on. A radiometric value from the original image is �nally interpolated. Nearest neighbour, 
bilinear interpolation and cubic convolution are typical interpolation methods used in the 
orthophoto generation.

4. �e interpolated value on the original image is �nally stored in the orthophoto.

Figure 2.2-15: Main scheme of the orthophoto generation process.

�e orthorecti�cation process can be performed using the DTM or the DSM as altimetric sup-
port. Traditionally the orthorecti�cation was performed using the DTM: in this case, only the 
elements on the ground are geometrically corrected and can be used for measurements. All the 
other elements (buildings, trees, etc.) are only projected on the DTM and are still distorted and 
displaced from their correct position. �ese elements cannot be used for extracting any geomet-
ric information. �e increased automation and reliability of dense point cloud generation has 
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eased the use of DSM in the orthorecti�cation process. �e product generated using the DSM 
takes the name of true-orthophoto: the true-orthophoto recti�es all the elements producing a ge-
ometrically corrected representation of the whole scene (i.e. all the elements can be measured).

So�ware

�e incredible di�usion of UAVs has pushed many companies and research groups to implement 
dedicated so�ware for the processing of data acquired by these devices. �e number and the func-
tional range of these so�ware solutions have constantly increased with the aim to satisfy a growing 
and heterogonous market. Depending on the scope of the UAV acquisitions, the experience and 
technical skills of the operator as well as the available budget, there are several a�ordable solutions 
already available on the market. �e holistic so�ware probably does not exist, but some features 
and options should be however considered when we approach these instruments in order to �nd 
the optimal solution for our needs.
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Uncertainty in photogrammetric geospatial output arises from error in the input measurement 
data and errors in the geometric model describing the light ray paths from object to image, and 
their geometric interaction with the camera. Here, we focus on the causes and characteristics 
of uncertainty associated with topographic point coordinate output, which underpin derived 
geospatial products (e.g. DEMs and orthomosaics). We aim to enable uncertainty to be success-
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fully reduced, and to be considered appropriately within subsequent analyses. By focussing on 
geometric aspects, we leave uncertainty in radiometric considerations (which are particularly 
important for applications such as thermal surveys) to chapters 2.4 and 2.5.

Uncertainty estimates describe the likely magnitude of error on measurements, and quantify 
the qualitative concept of measurement ‘accuracy’. A measurement error (a measured value mi-
nus the associated accepted reference value (JCGM, 2012)) can be considered as comprised of a 
random component, the likely magnitude of which is described by the measurement precision, 
and a systematic component that is represented by ‘trueness’ (Figure 2.3-1). For clarity in ter-
minology, we draw on the rigorous de�nitions provided by the ISO measurement community 
(JCGM, 2012; ISO, 1994; JCGM, 2008):

Accuracy: a qualitative term describing the closeness of agreement between an individual 
measurement and the accepted reference value (ISO, 1994) or the true value (JCGM, 2012). 
Accuracy encompasses contributions due to both measurement precision and trueness.

Precision: the distribution of repeated measurement values obtained under stipulated condi-
tions. Precision re�ects the impact of random components of error and does not relate to the 
true or accepted reference values. Quantitative estimates of precision can be provided using 
statistics such as standard deviation.

Trueness: the closeness of agreement between the average of a large number of measure-
ments and the accepted reference value (the di�erence between these values is expressed 
quantitatively as ‘bias’).

Figure 2.3-1: Schematic illustration of the relationships between error and uncertainty terms. 
Adapted from Menditto et al. (2007).
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For direct measurements (e.g. determining an object’s weight with a mass balance), random 
and systematic errors are o�en clearly distinguishable from each other and can be handled 
appropriately. In contrast, photogrammetric measurements, such as point coordinates, are 
generated from numerical modelling of indirect observations (i.e. the ‘bundle adjustment’, or 
optimisation, of an ‘image network’ of image feature coordinates, chapter 2.2). �e resulting 
interdependencies give rise to complex relationships making random and systematic errors 
challenging to isolate. 

Geospatial output is typically derived from the optimum least squares estimated parameter 
values of the equations that comprise the photogrammetric model. However, complex parame-
ter inter-relations may result in poor estimates for some parameters, and associated systematic 
error in others (e.g. Figure 2.3-2). Uncertainty in geospatial results therefore re�ects contribu-
tions from both errors on the input data and limitations and weaknesses in the photogram-
metric model. A clear separation of random and systematic error components is not usually 
possible. �e complexities involved mean that uncertainty is not only likely to vary between 
survey sites, but also between repeat surveys of the same site, and spatially across individual 
surveys. �us, uncertainty assessments should be clear about their limitations, whether they 
cover repeatability and replicability and, consequently, how generalised and transferrable they 
may be to other surveys.

Figure 2.3-2: Ray diagrams illustrating the modelled positions of topographic points, S, 
reconstructed from observations in three photographs. (a) �e true, i.e. error-free, scenario in 

which all rays are coincident for each point (rays only shown for one illustrative point). (b) In real 
images, image observations are associated with random error, ε1-3, which is propagated into the 

topographic point coordinate estimates. (c) Error in estimated camera parameters, e.g. in principal 
distance, εf , results in additional systematic error (bias) in point coordinate estimates. Unless 

otherwise stated, all images were prepared by the authors for this chapter.
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�e photogrammetric model can be considered in two components: a stochastic model and 
a functional model. During photogrammetric processing, the stochastic model describes the 
expected distribution of random error on both the observations and the estimated param-
eters (chapter  2.3.1) and provides precision estimates for all model parameter values. �e 
functional component describes the underlying optical physics (including the collinearity 
equations, chapter 2.2). However, omissions or weaknesses in the functional model are not 
generally identi�able within the precision estimates and usually result in spatially correlated, 
systematic error across a survey (chapter  2.3.2). For both random and systematic contri-
butions, uncertainty can also be considered in terms of photogrammetric components (i.e. 
related to the image network geometry that de�nes the underlying shape of the model) and 
georeferencing aspects (which scale, orient and locate the model in the real-world coordinate 
system).

2.3.1  Random error in photogrammetric image networks

Random error is introduced into photogrammetric image networks by the �nite precision 
of the observations (i.e. the input data for the bundle adjustment). In SfM-based processing, 
most observations are provided as the automatically measured tie point image coordinates 
that form the majority of the image network. However, georeferencing requires additional 
observations (e.g. GNSS measurements of control points or camera positions, chapter 2.1), 
which are associated with their own error characteristics that must be accommodated in the 
bundle adjustment. 

2.3.1.1  Photogrammetric considerations

�e precision of tie point image coordinates is a function of the algorithms used to identify 
them, and the local image content and micro-contrast (texture). For example, the centroiding 
algorithms used within engineering metrology, which are tuned for locating well-illuminated 
circular arti�cial targets, can provide feature coordinates that are good to ~0.02 pixels (Gruen, 
2012; Trinder, 1989; Shortis et al., 1995; Dold, 1996). In contrast, the robust feature-based algo-
rithms such as SIFT (Lowe, 2004) or SURF (Bay et al. 2008), typically used for locating natural 
image features from UAV survey data (which are unlikely to be geometrically simple and may 
vary between image acquisitions in environmental scenes, e.g. vegetation moving in the wind), 
generally provide image feature coordinates that correlate across images to ~0.1–0.5 pixels (Re-
mondino, 2006; Barazzetti et al., 2010; Ahmadabadian, 2013).
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Within the image network, random error on the image observations contributes directly to 
random error in the 3D tie point coordinates (e.g. Figure 2.3-2b), and un-modelled residual 
error is represented by tie point image residuals. �us, photogrammetric contributions to 
tie point precision result in point coordinate values being sensitive to such error. Where tie 
points have only a few poor observations (i.e. large image residuals) in images acquired from 
similar directions, their coordinate precision will be weak. Tie point precision is strength-
ened through acquiring high quality observations (i.e. giving small image residuals) in many 
images, from diverse directions. Whilst a geometric solution in which shape on an arbitrary 
coordinate datum is possible using tie points alone, photogrammetric and image measure-
ment considerations also apply to image observations of ground control points (GCPs) used 
for georeferencing.

2.3.1.2  Georeferencing

�e control observations used for survey georeferencing (e.g. GNSS measurements of ground 
targets or camera positions) de�ne the scale and orientation of the photogrammetric model with 
respect to the external coordinate system (chapters 2.1 and 2.2). Uncertainty in such observa-
tions is thus propagated through this datum de�nition to point coordinate estimates by the sto-
chastic model, and presents as spatially correlated (i.e. systematic) uncertainty in georeferenced 
topographic results. Good georeferencing precision is achieved through control data that tightly 
constrain this transformation, e.g. a large number of carefully measured control points, widely 
dispersed across the survey. Considering georeferencing e�ects alone, the position of optimum 
point coordinate precision is located at the weighted centroid of the control measurements. Geo-
referencing contributions to precision will steadily weaken away from the centroid, as extrapo-
lated scale and orientation errors increase and may well be compounded with other systematic 
biases resulting from the imaging con�guration used (chapter 2.3.2).

2.3.1.3  Survey precision estimates

Estimates of survey precision given by the stochastic model therefore cover contributions from 
both photogrammetric and georeferencing aspects. �e magnitudes and directions of random 
error may be spatially systematic, and coordinate estimates for any one tie point (i.e. X, Y and 
Z values) will be inter-dependent. Such inter-dependencies can be described by a coordinate 
covariance matrix for each point, which enables precision estimates to be visualised as oriented 
3D ellipsoids (or projections of them; Figure 2.3-3).
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Figure 2.3-3: Illustrative precision ellipses for 3D points observed (dashed lines) in di�erent 
numbers of variously oriented cameras (triangles). Many, converging observations result in good 

precision (small ellipses) and few, near parallel observations provide weaker precision (larger, 
elongated ellipses). Redrawn and adapted from James et al. (2017).

So�ware that provides coordinate covariances from network adjustments (i.e. precision ellip-
soids, Figure 2.3-3) can be particularly informative, but valuable information can also be gained 
through spatial patterns in precision magnitudes (James et al., 2017; James et al., 2020). Fig-
ure 2.3-4 gives indicative examples of patterns that re�ect di�erent relative in�uences of photo-
grammetric or georeferencing contributions to survey precision.

Where a georeferenced datum is strong, estimated point coordinate precision may be limited 
by photogrammetric aspects such as tie points having few or poor observations. An example 
is the use of many, well distributed control points with externally measured coordinate input 
precisions that are similar to the coordination capability of the photogrammetric network (Fig-
ure 2.3-4d, le� column). Precision variations, both within and between surveys, may thus re�ect 
di�erences in photogrammetric aspects: areas of reduced image overlap, or areas of steep faces 
or vegetation where tie points may have few, low quality observations or where observations are 
from a restricted range of angles (e.g. Figure 2.3-3).

Weaker georeferencing, for example through using fewer GCPs (Figure 2.3-4d, column sec-
ond from le�), more poorly constrained GCP observations (Figure 2.3-4d, column third from 
le�), or at locations increasingly far from the control centroid, leads to point coordinate preci-
sion weakening systematically across the surveyed area. Regions of best precision become in-
creasingly focussed around the centroid of the control point distribution (e.g. Figure 2.3-4d, 
column third from le�).

Considering coordinate precision magnitudes can help enable improvements or optimisa-
tions in future surveys and be used within uncertainty-bound change detection between sur-
veys (chapter 2.3.5). However, precision covariance, including covariance between points, is a 
function of the datum de�nition, and not yet generally considered in geospatial products. For 
the most accurate analyses, both are needed to consider precision-limiting processes fully.
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Figure 2.3-4: Variation of Z-coordinate precision for a survey of a low-relief proglacial river, 
Arolla region, Switzerland. (a) Oblique overview showing all camera positions (blue rectangles). 

(b) Orthoimage, with the area of interest outlined in red; coordinates in Swiss National Grid. 
(c) DEM of the area of interest, cropped to remove wetted areas. (d) Z-precision of tie points from 

processing all images (top row) and a reduced image set from parallel-only �ight lines (bottom 
row) as a function georeferencing strength. For georeferencing with GCPs, red triangles show 

the GCPs used in the bundle adjustment; in the right-hand column, the GCP precision has been 
weakened by a factor of ten compared to in the le� and central columns. Where the number of 

control points has been reduced, note that some are retained at the survey boundaries so that tie 
points are interpolated within the bounds of the control data. �e right-most column (boxed) 

shows precision estimated without GCPs in the bundle adjustment. �ese should not be directly 
compared with the results on the le� because the transformation to the geographic coordinate 
system has to be determined independently and introduces uncertainty that is not represented 
within the �gure. Panels (b) and (c) adapted from James et al., 2020, under a CC BY license 

(https://creativecommons.org/licenses/by/4.0/).

2.3.2  Systematic error in photogrammetric 
image networks

Although spatial correlation can be evident in tie point coordinate precision estimates (particu-
larly related to georeferencing, Figure 2.3-4d), other contributions to systematic error are not 
related to precision, so are not included in the stochastic model and cannot be reliably estimated 
internally through the bundle adjustment. Such error may only be reliably identi�ed through 
comparison with an externally measured reference such as coordinates, lengths, surface pro�les 
or complete surfaces. As for precision estimates, systematic error generally comprises both pho-
togrammetric and georeferencing contributions.

2.3.2.1  Photogrammetric considerations

Systematic photogrammetric error can result from the functional model being either insu�-
cient or poorly determined. A model is insu�cient when it omits a part of the physical imaging 
process with non-negligible e�ects. For example, for most UAS surveys imaging from ≲100 m 
above the ground, including an atmospheric refraction correction (Mugnier et al., 2013; Kraus, 
1993) may not be necessary. However, omitting refraction modelling might produce measurable 
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systematic error when imaging over kilometre-scale distances (Fraser, 1993). Another example 
is correction due to Earth curvature (Mugnier et al., 2013; Kraus, 1993), which, depending on 
the desired accuracy of the UAS survey, may become signi�cant for survey dimensions ≫100 m. 
Earth curvature does not present a direct error in the photogrammetry itself, but introduces 
deformation if �eld-surveyed control measurements are included without conversion into a true 
Cartesian coordinate system. Most processing so�ware will carry out this conversion if the con-
trol measurements’ coordinate system (e.g. WGS 84) is identi�ed and associated with the control 
data prior to bundle adjustment. For the majority of UAS surveys, it is generally expected that 
all the required physical processes are su�ciently represented within the processing so�ware’s 
functional model.

More commonly, photogrammetric models from UAS surveys are limited by weak image 
network geometry that leaves some model parameters, particularly those associated with the 
internal camera imaging geometry, highly interdependent and di�cult to de�ne uniquely. 
‘Conventional’ aerial survey designs, comprising grid-style parallel imaging developed for 
use with purpose-built survey mapping cameras, typically represent weak UAS image net-
works. In practical UAS surveys following such designs, the bundle adjustment equations 
o�en present a complex set of poorly distinguishable local optimisation minima into which 
the adjustment can converge, resulting in parameter estimates with substantial uncertainty, 
including serious systematic error (Luhmann et al., 2019). �ese issues can be particularly 
problematic when camera self-calibration is included in the processing of weak networks, 
as is commonly the case for UAS surveys (chapter 1.5). In contrast, ‘strong’ image networks, 
such as highly convergent multi-image networks traditionally used for camera calibration or 
industrial measurement (Fraser, 2001; Fraser, 2013) are represented by a bundle adjustment 
solution with a clear optimisation minimum, allowing rapid convergence to accurate param-
eter estimates.

Typically, errors in estimated camera model parameter values correlate with systematic er-
rors in the modelled topographic surface shape, or with estimated camera positions and ori-
entations. For example, near-parallel imaging directions of relatively low-relief topography 
(e.g. elevation variations of < 10 % of the �ight height) can be associated with poor camera 
principal distance estimates and are susceptible to correlation between estimated radial lens 
distortion and tie point Z-coordinate values. Estimated principal distance error correlates 
with error in estimated �ight height above the surface and consequently, for directly geo-
referenced surveys, can present a systematic Z-o�set of topographic results (Benassi et al., 
2017; Grayson et al., 2018; Przybilla et al., 2020) (e.g. Figure 2.3-2c). In such cases, at least 
one GCP, preferably more, are required within the adjustment to improve camera principal 
distance estimates.
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Error in estimated radial lens distortion typically results in a curved ‘doming’ error on the 
topographic surface (Figure 2.3-5a). �ese topographic errors may not be readily observable 
within the random error patterns seen through topographic coordinate precision estimates 
when internal correlations between photogrammetric model parameters are high. Within rel-
atively low-relief topography surveys (Carbonneau & Dietrich, 2017; Gri�ths & Burningham, 
2019; James & Robson, 2014; Javernick et al., 2014; Sanz-Ablanedo et al., 2020), for which such 
issues tend to be greatest and most obvious, survey-wide systematic error may be modelled 
and removed (Carbonneau & Dietrich, 2017; James et al., 2020; Sanz-Ablanedo et al., 2020). 
Surveys of higher-relief areas, giving greater variation of observation distances within and be-
tween images, usually represent stronger image networks (i.e. with less-correlated parameters), 
resulting in smaller magnitude but more complex error distributions (James et al., 2020; Nesbit 
& Hugenholtz, 2019). �e likelihood of important systematic error can be assessed by consider-
ing correlations between estimated parameters but, usually, these are only provided for camera 
parameters representing the lens model.

2.3.2.2  Georeferencing

Including control measurements in the bundle adjustment (as either ground control point coor-
dinates or camera positions and orientations) is a standard approach to help mitigate systematic 
error resulting from photogrammetric aspects. However, control measurements also have asso-
ciated error, which can propagate adversely into the image network if not handled appropriately. 
Control measurements should be provided with their precision estimates at a minimum. In pro-
fessional-grade mapping and survey so�ware it is established practice to provide their associated 
variance-covariance matrices so that anisotropic survey errors are accounted for. Such so�ware 
can also allow the network adjustment to be extended to include other types of control obser-
vations (e.g. GNSS line lengths and angles from total station observations), along with their 
measurement uncertainties.

Weak image networks covering areas of low-relief topography are particularly vulnerable to er-
ror in control measurements because they can deform relatively easily to accommodate the error. 
For example, error on widely separated or highly weighted GCPs can result in both local and sur-
vey-wide systematic error in topographic results (Figure 2.3-5b, c). When georeferencing is carried 
out using camera position data, caution is advised to ensure that some ground-based measure-
ments are also acquired and withheld from the adjustment for use as an independent check. 

Comparison between estimates of check point coordinates from the bundle adjustment and 
their �eld-measured values help in identifying any systematic datum-related issues that might 
be represented as survey-wide systematic error. Di�erences include translations, tilting or scale 
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errors within topographic results that might be manifest across di�erent comparative data and 
in�uence decisions when assessing landform change. Comparisons in which this can be most 
obvious are between UAS photogrammetric survey and aerial LiDAR, or satellite altimetry data. 
If permanent GCPs can be used for repeat surveys, issues related to datum-de�nition will be 
minimised in inter-survey comparisons.

Figure 2.3-5: Examples of systematic error as illustrated by Z-di�erence to an accepted reference 
survey of the Arolla site (Figure 2.3-4b, c). Red triangles represent GCPs used as control points in 
the bundle adjustment (�lled symbols) or as check points (open symbols). (a) Residual doming/
dishing due to correlation between lens distortion parameters, despite well-distributed ground 

control. (b) Irregular errors highlighting changes in image overlap within a weak survey resulting 
from over-weighting of control observations. (c) Systematic error resulting from a simulated 
blunder in a GCP ground survey measurement (arrowed GCP vertically o�set by 100 mm). 
(d) Error resulting from GNSS di�culties in a directly georeferenced survey (the error shown 

represents the remaining di�erences following a best-�t translation to the check points).

2.3.3  Quantifying uncertainty

For rigorous use of survey results, uncertainty estimates must accompany geospatial products 
such as dense point clouds, DEMs and orthomosaics, and be propagated into subsequent analy-
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ses. Communicating and accounting for uncertainty is complicated from both photogrammetric 
and georeferencing aspects by the spatially varying precision and bias components involved. 
Furthermore, photogrammetric geospatial products are derived from the dense image match-
ing process that follows bundle adjustment. �is processing does not change the underlying 
photogrammetry, so initial image network uncertainty estimates will remain relevant. However, 
independent veri�cation of �nal geospatial products is usually warranted due to the additional 
image matching, which will extend into local areas in which there are few tie points. �e subse-
quent point cloud averaging and interpolation involved in producing DEMs and orthomosaics, 
will also play a part.

Options for quantifying uncertainty in geospatial products vary depending on the level of 
detail required and the available e�ort:
• �e achieved accuracy of the image network can be assessed as the most straightforward op-

tion, based on (1) mis�t to independently measured check points within the network and (2) 
precision estimates derived from the bundle adjustment. Such assessments should be con-
sidered as the minimum acceptable; insight into any issues is limited because the precision 
estimates exclude any e�ects of bias, there tend to be few check points available, and neither 
approach considers the geospatial products directly.

• �e accuracy of a geospatial product can be estimated through comparison with independent 
measurements such as check points and GNSS pro�les, or with wider established datasets 
with su�cient quality to represent an accepted reference surface (e.g. a LiDAR dataset or a 
previously acquired orthomosaic). �is can provide a detailed accuracy assessment if a large 
number of comparisons can be carried out, but requires extensive additional survey, which 
might be too costly or impractical.

• �e repeatability of geospatial products can be determined through inter-comparison of repea-
ted UAS surveys made at a higher temporal resolution than the anticipated landform change. 
�is approach is not widely used due to the e�ort required to carry out multiple repeat sur-
veys (e.g. with some exceptions (Goetz et al., 2018; James et al., 2020; Sanz-Ablanedo et al. 
2020)). However, in combination with an accuracy assessment (as above), this represents the 
gold standard in determining the uncertainty in geospatial products.

Whichever method is adopted, comparisons must be dispersed widely across the survey to iden-
tify spatial variability, and can be provided as 3D values for products such as point clouds, or 2D 
or 1D for orthomosaics and DEMs (i.e. Z-coordinate di�erences to check points, or reference 
pro�les or surveys). �e resulting di�erences can be communicated as (see chapter  2.3.5 for 
examples):
• Statistical distributions, illustrated through histograms and quantile-quantile (Q-Q) plots for 

assessing the normality of errors and identifying outliers.
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• Summary statistics for characterising survey-wide performance, such as root mean square 
error (RMSE), mean absolute error (MAE), mean, standard deviation for normally distri-
buted error, and non-parametric equivalents such as median, quantiles, and the normal-
ized median absolute deviation (NMAD (Hohle & Hohle, 2009)). Note that metrics such as 
RMSE combine components of both trueness and precision, so should be provided along 
with others that can isolate bias contributions. Ideally, summary statistics should be accom-
panied by measures that describe their uncertainty, such as a con�dence interval (Hohle & 
Hohle, 2009).

• Map-style visualisations are required to reveal spatial relationships, which cannot be identi-
�ed through statistical distributions or summary statistics.

2.3.4  Reducing uncertainty through 
survey design and processing

E�ective survey planning is underpinned by an image acquisition design that is capable of 
achieving the required survey accuracy. For historical airborne surveys with crewed aircra� 
and purpose-built metric cameras, consistencies in equipment, acquisition and processing 
procedures enabled relatively straightforward relationships between design parameters and 
expected survey accuracy (Kraus, 1993). Similar relationships (e.g. accuracy or precision ra-
tios with viewing distance or GSD) have been derived for SfM-based surveys (Eltner et al., 
2016; James & Robson, 2012; Mosbrucker et al., 2017), but have been found reliable only as 
broad guides, with literature reviews (Mosbrucker et al., 2017; Smith & Vericat, 2015) illus-
trating that error magnitudes achieved deviate around forecasts over ranges of up to an order 
of magnitude. For UAS-based surveys, the large variety of systems, image acquisition geome-
tries, image quality and the e�ectiveness of the camera modelling, limit such direct relations 
to �rst-order estimates. 

More e�ective forecasts of UAS survey accuracy tend to be based on the operator’s speci�c 
prior experience of the equipment under similar survey scenarios. Under favourable conditions, 
high-quality surveys may deliver results with a Z-uncertainty of ~1–2 GSD and better in plan, 
representing approximately twice the magnitude of precision estimates determined from the 
bundle adjustment (James et al., 2020). Such results are usually achieved where best practice 
guidelines have been followed for control deployment (chapter 2.1) and for providing a strong 
image network geometry (chapter  1.5). �e inherent weakness of image networks from tra-
ditional grid-style aerial survey �ight paths (particularly for surveying relatively low-relief to-
pography in combination with a requirement for camera self-calibration) can be strengthened 
by incorporating images from convergent viewpoints (Harwin et al., 2015; James & Robson, 
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2014; Sanz-Ablanedo et al., 2020) preferably from di�erent heights (Carbonneau & Dietrich, 
2017; Fraser, 2001), or by using a survey strategy that continuously varies the acquisition angle 
(Sanz-Ablanedo et al., 2020).

If a survey does not achieve its design accuracy requirements, then the �rst steps are to identi-
fy whether the issues are trueness- or precision-dominated and to quantify the photogrammet-
ric and georeferencing-related contributions (e.g. see the tests given in chapter 2.3.3). Such in-
sight will guide processes to improve existing surveys by adapting data processing and enhance 
survey design for future work (Table 2.3.1).

Table 2.3.1: Strategies for reducing uncertainty in photogrammetric products.

To improve precision To improve trueness

Survey design

Strengthen the pho-
togrammetric image 
network

Observe tie points in more images 
from a wider range of angles, or from 
shorter observation distances (e.g. 
include additional, lower-altitude, 
convergent imagery). �is might 
include increasing image overlap or 
�ying more �ight lines.

Improve camera calibration. If 
self-calibration is used improve 
estimates of camera parameters by 
strengthening the image network 
geometry (e.g. wider range of imaging 
distances, more convergent imagery, 
varying �ying height).

Enhance the georef-
erencing

More control measurements, more 
widely dispersed and more precisely 
measured. For repeat surveys, con-
sider deploying permanent GCPs.

More GCPs or a combination of cam-
era position information and GCPs, 
particularly if surveying low-relief 
topography.

Survey execution

Acquire higher 
quality images with 
a consistent internal 
geometry

Survey under consistent bright but 
di�use lighting conditions. Collect 
raw-format imagery (e.g. TIFF, 
RAW) rather than compressed (e.g. 
JPG).

Improve the internal stability of the 
camera (e.g. avoid the use of zoom 
lenses and either glue or tape-up the 
focussing ring on a dSLR lens).

Control measure-
ment

Improve the precision of control 
measurements (e.g. ground survey of 
GCP positions, or camera position 
data).

Ensure that outliers in control 
measurements can be identi�ed prior 
to use (e.g. validate ground survey 
data through repeat measurements of 
GCPs).
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To improve precision To improve trueness

Data processing

Photogrammetric 
image processing

Remove weak tie points (i.e., those 
with minimal observations e.g., < 4, 
from closely aligned directions or 
with large-magnitude image resid-
uals).
Remove images with few or poorly 
distributed tie point observations, 
and those with image residuals that 
are anomalously large magnitude 
or spatially systematic compared to 
others in the data set.

Check for unexpected correlations 
between camera parameters.
Remove images with few/poorly 
distributed tie points or systematic 
image residuals.
Identify and remove any outliers in the 
control data (e.g., anomalously large 
mis�ts to GCP or camera positions).
For larger sites (e.g., ≫100 m) and 
higher-�ying heights (e.g. ≫100 m), 
ensure that refraction is included in 
the photogrammetric model and that 
Earth curvature is accounted for in 
�eld-measured control coordinates by 
correctly assigning (and converting 
from) the appropriate coordinate 
system.

Generation of geo-
spatial products

Use �ltering and spatial averaging to 
improve precision in �nal products 
(e.g., use a larger spatial resolution 
for DEMs).

Reduce any identi�ed bias by re�n-
ing alignment to reference data or 
modelling (e.g., align stable areas 
of topography with previous survey 
results, or model and subtract a 
systematic bias).

2.3.5  Case study: topographic change detection

End-to-end consideration of uncertainty is particularly important when designing optimal sur-
veys for quantifying topographic change. Here, we provide a design example aimed at enabling 
the detection of surface change exceeding 50 mm over an ~100 m × 200 m area of rugged to-
pography (covering a vertical relief of ~85 m; Figure 2.3-6a). We assess the achieved survey per-
formance by comparing the results of repeat surveys over a period of negligible surface change 
against those of a reference survey. 
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2.3.5.1  Survey design and execution

Survey design was based on orthogonal intersecting �ight lines, using a 20° forward camera 
inclination to strengthen the image network. In combination with the strong topographic relief, 
the resulting convergence within the imaging geometry should facilitate robust camera self-cali-
bration and help avoid dominant systematic error. To meet the design requirement of a 50-mm 
level of detection (at a con�dence level of 95 %), repeated surveys should aim for a precision of 
~18 mm (Brasington et al., 2003; Lane et al., 2003). Under favourable imaging conditions, given 
minimal vegetation within the area and the limited spatial extent of the survey, this may repre-
sent ~one GSD. �us, for a camera with a 2.4 µm pixel pitch and a principal distance of 8.8 mm, 
a �ying height of ~66 m was required. Ideally, a full coverage of images should be acquired at 
this elevation above ground, with additional imagery collected to strengthen the image network 
as required. However, it is o�en not possible to maintain a consistent height above ground over 
rugged terrain, and a practical solution may require compromises such as tolerating greater 
uncertainty in some survey areas.

For control and check measurements, 39 arti�cial GCP targets were deployed as evenly as 
practically possible (Figure 2.3-6). �eir coordinates were recorded using survey-grade GNSS 
on deployment and retrieval, enabling measurement quality and target stability to be veri�ed 
by comparing di�erences within each measurement pair. All but one GCPs showed coordinate 
di�erences in line with GNSS quality estimates (means of 10 mm in the horizontal and 19 mm 
in vertical). �e outlier GCP had di�erences an order of magnitude greater and was identi�ed 
to have been located on unstable ground so it, and the surrounding area, were excluded from 
all analyses.

�e UAS survey was carried out with a Phantom 4 Pro quadcopter and repeated �ve times. 
An additional �ight provided a reference survey, which was processed with all the stable GCPs 
incorporated into the bundle adjustment as control measurements. Using this SfM-based survey 
to generate a reference dense point cloud facilitated direct comparisons but is subject to similar 
error processes as the reference survey. Consequently, TLS data were also collected to illustrate 
comparison with an independent method.

2.3.5.2  Accuracy of the image networks

All images in each network were of su�cient image quality and content to process automati-
cally, with only a few of the lowest altitude images being subsequently removed due to limited 
distributions of tie points. For an example survey, photogrammetric processing reported that 
a 17.5 mm mean GSD had been achieved, with an RMS image residual of 0.39 pixels, and 
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a mean number of observations per tie point of 6.9. �e strength of the convergent image 
network was re�ected by a precision estimate of 0.7 µm (0.008 %) for the camera principal 
distance and small correlations (magnitudes of ≤0.03) between radial and decentring lens 
distortion parameters.

Mis�t to independent check point coordinates suggested that the example survey met de-
sign requirements, achieving mean values of 0.5, -5.1 and 3.0 mm in X, Y, and Z respectively, 
and associated standard deviations of 5.1, 8.1 and 17.6 mm (0.3, 0.5 and 1.0 GSD). No clear 
survey-wide bias could be observed, although one control GCP was evident as a potential 
outlier; Figure 2.3-6c).

�e tie point precision estimates from the bundle adjustment were free of the clear systematic, 
survey-wide variations symptomatic of georeferencing-based limits, highlighting the potential 
for reducing GCP deployment in future work (Figure 2.3-6d). However, their non-normal dis-
tributions (Figure 2.3-6d, inset histograms) had summary statistics that, in Z particularly (medi-
an values of 4.7, 4.8 and 10.3 mm in X, Y, and Z respectively), were substantially more optimistic 
than the achieved mis�t on check points (17.6 mm).

2.3.5.3  Accuracy of the geospatial products

For a direct assessment of geospatial output, a cloud-to-cloud 3D comparison was carried out 
between the dense point cloud from the example survey and the reference point cloud using 
the M3C2-PM algorithm (James et al., 2017; Lague et al., 2013) (Figure 2.3-7). Note that survey 
georeferencing was estimated using control data only. No subsequent transformations were ap-
plied to re�ne cloud-to-cloud registration which, in practice, would have the undesired e�ect of 
confusing areas of change with stable areas. 3D vectors of di�erence between the point clouds 
were calculated for each point of the reference cloud and averaged over a 0.2-m-resolution grid 
for visualisation (Figure 2.3-7c).

�e computed M3C2 di�erence values were not normally distributed, but their summary sta-
tistics (NMAD values of 3.2, 4.0 and 16.2 mm in X, Y and Z respectively, equivalent to ~0.2 GSD 
in X and Y, and 0.9 GSD in Z; Figure 2.3-7a, b) were broadly in line with those of check point 
mis�ts. However, visualising the spatial distribution of point cloud di�erences reveals regions 
of local systematic bias (Figure 2.3-7c). �us, although summary statistics for both check point 
mis�ts and for dense point cloud di�erences to a reference survey suggest that the design re-
quirement had been met, clear spatial systematics can be observed, and the survey-wide use of 
summary statistics that assume normally distributed data should be avoided.
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Figure 2.3-6: Network accuracy assessment for an example survey of a high-relief proglacial 
fore�eld, Arolla region, Switzerland. (a) Perspective overview showing camera positions and 

20° forward inclination along the orthogonal �ight lines. (b) Orthomosaic, with area of interest 
outlined in red, and DEM showing GCP locations as red symbols. (c) 3D mis�t to control 

(triangles) and check (circles) points as a map and histograms. (d) Tie point coordinate precision 
estimates from the bundle adjustment, with inset histograms. Panel (b) adapted from James et al., 

2020, under a CC BY license (https://creativecommons.org/licenses/by/4.0/).
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Figure 2.3-7: M3C2 di�erences between the example and reference dense point clouds. Coordinate 
di�erence for X, Y and Z directions as (a) histograms overlain with normal distribution curves 
parameterised by either the mean and standard deviation (black) or the median and NMAD 

(red), (b) quantile-quantile plots, and (c) maps of spatial distribution.

With this comparison between similarly derived SfM-based point clouds, some of the di�erenc-
es in Figure 2.3-7 will re�ect error in the reference dataset itself. Best practice would promote 
comparison against data acquired using an independent technique to an order of magnitude 
smaller uncertainty, but this is rarely practical or possible. A high-resolution aerial or ground-
based photogrammetric survey could be used, but TLS data are o�en considered to represent 
a gold-standard benchmark. Comparison of the example survey with a TLS point cloud (Fig-
ure 2.3-8) shows evidence of the same systematics observed when using the SfM-based refer-
ence (Figure 2.3-7c). However, the di�erent degrees of smoothing and occlusion in the SfM and 
TLS datasets (Figure 2.3-8c, d) indicate that care must be taken when comparing results from 
di�erent methods. Assessments of surface change should always consider the in�uence of the 
observed 3D landforms on the measurement capabilities; for example, to avoid inappropriately 
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attributing di�erences due to applying di�erent methods, from di�erent observation distances 
and directions, to either error or to geomorphic change.

Figure 2.3-8: Comparison between TLS and SfM point clouds. (a) Histogram of M3C2 
Z-di�erences. Curves are normal distributions parameterised using mean and standard deviation 
(black) or median and NMAD (red). (b) Spatial distribution of the Z-di�erences (c.f. Figure 2.3-7c, 

which compares the example SfM point cloud with that from the SfM reference survey). Grey 
arrow shows the location and direction of the 3D oblique views (c) of point cloud excerpts and 

their Z-di�erences, (d) Section X-X’ (see c) through a large block showing di�erences in 
smoothing and data coverage between the TLS, SfM and SfM reference (ref.) point clouds.

2.3.5.4  Repeatability of the geospatial products

�e repeatability of the dense point cloud output was assessed by comparing di�erences between 
the reference point cloud and point clouds from the repeated surveys. �e mean di�erences 
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(Figure 2.3-9a) demonstrated a very similar pattern of systematic bias as observed for the ex-
ample survey (Figure 2.3-7c) and were of greater magnitude than inter-survey variability (Fig-
ure 2.3-9b). �us, spatial systematics were repeatable between di�erent surveys, and represented 
a consistent pattern of bias.

Figure 2.3-9: 3D point cloud di�erences between �ve repeated surveys and a reference survey. 
(a) Mean point coordinate di�erences, showing systematic error, particularly in Z, that generally 

exceeds the inter-survey variability (b). Note the di�erent colour scales used.

2.3.5.5  Change detection

For rigorous identi�cation of topographic change between point cloud datasets, cloud-to-cloud 
di�erences need to exceed local thresholds of detectability that re�ect the measurement uncer-
tainties (Brasington et al., 2003; Lane et al., 2003; Wheaton et al., 2010). M3C2-PM (James et al., 
2017; Lague et al., 2013) uses precision to estimate such levels of detection, LoD95 % (for a 95 % 
con�dence level), and only where 3D cloud-to-cloud di�erences exceed these values are they 
representative of signi�cant change. Our repeated surveys (over a period of negligible surface 
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change) enable us to assess the uncertainty estimates; analyses should be as sensitive as possible, 
whilst not erroneously indicating surface change.

Between our example SfM survey and reference survey, using tie point precision estimates 
from bundle adjustment (i.e., one-sigma estimates) within M3C2-PM gives LoD95 % values with 
a median of 21 mm (Figure 2.3-10a). However, these LoD95 % values leave clear areas erroneously 
identi�ed as signi�cant change (Figure 2.3-10b, le� panel), re�ecting the bias due to systematic 
contributions to uncertainty that are not included in precision estimates (e.g., the systematics 
observable in Figure 2.3-7c). Using twice the precision values (i.e. two-sigma estimates) within 
M3C2-PM has been previously found to improve results (James et al., 2020), and makes the 
comparison appear more reasonable, but with some spatial systematics remaining (Figure 2.3-
10b, right panel).

�e complexity of these systematics indicates that they cannot easily be accounted for by a 
straightforward analytical model (such as may be used to mitigate doming (James et al., 2020; 
Sanz-Ablanedo et al., 2020)). However, the systematics are also evident within the mean dif-
ferences to the reference from repeated surveys (e.g., Figure 2.3-9a). Correcting our example 
survey for this bias (by subtracting a mean error surface derived from the other surveys) brought 
di�erences closer in line with those expected from one-sigma precision estimates and slightly 
exceeded expectations if two-sigma values were used.

2.3.6  Summary

�rough their derivation from optimised model parameter estimates rather than as direct 
measurements, all photogrammetric output contains systematic and random components 
of uncertainty, from both model and input error. �e accuracy of geospatial photogram-
metric output from UAS surveys is in�uenced by environmental, equipment, imaging strat-
egy and processing e�ects. Survey-to-survey variability of these factors a�ect the magni-
tude of random and systematic errors. High-quality surveys can achieve Z-uncertainty of 
~one–two GSD. Separating the random error and systematic bias contributions can enable 
modelling and reduction of systematic aspects but may require extensive external measure-
ments that entail considerable e�ort. To guide improvements in survey design, insight into 
survey-limiting factors can be gained through considering uncertainty in terms of photo-
grammetric components (which a�ect the shape of the topographic output) and georeferenc-
ing components (which re�ect how the output data are represented in the world coordinate 
system).

To support rigorous assessment of surface change, photogrammetric so�ware should enable 
input measurements to be associated with a priori variance-covariance matrices. All estimated 
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Figure 2.3-10: Detection of 3D di�erences between the example SfM survey and the reference 
SfM survey. (a) 3D level of detection between the surveys, LoD95 %, determined by MC32-PM 
for tie point precision estimates based on one (le� column) or two (right column) sigma. (b, 
c) Signi�cant 3D di�erences between the surveys (i.e. where di�erences exceed the local 3D 

LoD95 %); white represents cropped areas and the tie points for which di�erences do not exceed 
LoD95 %, (their corresponding proportion of all tie points in the area of interest is given by the ‘no 
di�.’ percentage). Di�erences are shown for the original example survey (b) and for the example 

survey following bias correction by subtraction of mean error derived from four similar suveys (c). 
Bias correction brings the survey to be closer statistically in line with the reference survey, when 

considering precision-based levels of detection.
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parameter values (e.g., topographic coordinates) should be considered in association with their 
a-posteriori variance-covariance estimates. Patterns of coordinate variance and covariance 
should be visualised, compared with expected topographic change and, ultimately, values may 
be used to determine spatially variable levels of change detection.
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Infrared thermography is a non-invasive method that uses a thermal imager (thermal camera) 
to detect radiation (heat) emitted by all objects above absolute zero temperature and converting 
it into temperature. �ermal cameras provide a continuous distribution of surface temperature, 
called thermogram, that makes possible to detect heat-producing objects invisible to the hu-
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man eye (Vollmer & Möllmann, 2010). Major developments in infrared thermography over the 
past decade signi�cantly improved its application in various domains: military (guidance sys-
tems and engine detection), electronic (detecting overloaded electrical circuits), surveillance, re-
search and rescue of people, disease control (Covid-19 fever), wildlife survey (animal detection), 
medical (assessment of circulatory disorders), building inspection (heat losses), etc. Among 
these applications, infrared thermography has also been increasingly used in various �elds of 
environmental sciences such as animal (Briscoe et al., 2014) and plant physiology (Still et al., 
2019), agronomy (Maes & Steppe, 2012) and landscape ecology (Scherrer & Koerner, 2010).

�ermal cameras embarked onboard UAVs can harvest thermal-infrared (TIR) images re-
motely, providing low-cost approaches to meet the critical requirements of bridging �ne spatial 
and temporal resolutions with the covering of large environmental scenes. Autonomously op-
erated, �ying low and slow, UAVs equipped with TIR cameras o�er scientists new opportuni-
ties for measuring and studying thermal environments. By this mean, the spatial variability of 
temperature across an ecosystem or at the organism level (e.g., plant) can be acquired over large 
areas and at a greater level of detail (Figure 2.4-1) compared to ground-based thermal imagery 
or usual recording with temperature loggers. In addition, the price of TIR cameras and UAVs 
are continuously decreasing, while their management and maintenance become more automatic 
and simpler. Consequently, these �ying systems are currently becoming more a�ordable and 
accessible.

However, recording appropriate thermal data using TIR cameras onboard UAVs is not 
straightforward, as many pitfalls must be bypassed along the acquisition process. Indeed, de-
pending on the objectives of the study to be addressed, either to retrieve the accurate surface 
temperature of an object of interest (Gómez-Candón et al., 2016), or to map and compare the 
thermal heterogeneities at the landscape scale (Faye et al., 2016a), or simply to detect endother-
mic animals (Chrétien et al.,2016; Burke et al., 2019), the use of TIR cameras onboard UAVs 
raises some major issues that have to be taken into consideration before �ying.

For instance, TIR imaging devices that meet the constraints of weight and energy consump-
tion of UAVs are based on microbolometric sensors that are not stabilized at a constant tem-
perature, resulting in instability and dri� in the temperature recording. Moreover, the spatial 
resolution of the TIR sensors restricts the �ight planning for thermal mapping and makes the 
mosaicking of TIR images less accurate in the photogrammetry process than for Red Green Blue 
(RGB) images. Temperature measurements performed by TIR cameras are also a�ected by the 
physical properties of the studied object such as his capacity to emit in the thermal band (i.e., 
the object emissivity). �e ratio between object size and the spatial resolution of the image, the 
thermal contrast between the target and its environment also impact TIR measurements. Several 
parameters external to the studied object a�ect the values recorded by the thermal sensors such 
as the ambient atmospheric conditions (e.g., air temperature and humidity, atmospheric pres-
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sure, wind speed) and the presence of fog, dust or smoke (Meier et al., 2011). Varying weather 
conditions during the acquisition � ight (e.g., cloud passes) will also have strong impacts on TIR 
readings. In studies requiring accurate temperature measurements, these e� ects must be min-
imized and corrected using a proper radiometric calibration, which requires the acquisition of 
meteorological data. 

Figure 2.4-1: Examples of thermal-infrared images captured on-board UAVs for addressing 
environmental issues. 1 and 2 show the RGB and TIR images, respectively. (A) Agroecological 

landscape in the center of France. (B) Riparian and stream ecosystem in Quebec, Canada. 
(C) Hot springs in the Sajama altiplano, Bolivia. (A) and (C) © CIRAD – E. Faye. 

(B) © Centre de géomatique du Québec – P. Ménard. All rights reserved.
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�is chapter details the TIR cameras functioning and settings, speci�cities of TIR �ight plan-
ning, radiometric calibrations and geometric corrections, meteorological recording, orthomosa-
icking of TIR images, and illustrated TIR data analysis from object-based and thermal landscape 
analysis to vegetation indices. Finally, we illustrate some of the challenges and limits of using 
TIR cameras onboard UAVs that remain to be overcome in the future.

2.4.1  Principles and functioning of thermal imaging

2.4.1.1  �e theory of thermal-infrared

Infrared thermography is an imaging method that records the radiation emitted by an object at 
wavelengths ranging from 7.5 to 14 μm in the electromagnetic spectrum. Object radiates in the 
thermal-infrared band as a result of the molecular motion that relies on its temperature [1]: the 
hotter the object, the more its molecules move, the more the object emits in the thermal-infra-
red. According to the Planck’s law, the radiations emitted by a perfect blackbody (i.e., a theoret-
ical object at thermal equilibrium that absorbs all radiations) will depend only on its tempera-
ture, whatever its composition or shape (see [1] for details). Under the same conditions, any real 
object will emit radiation as a proportion of the blackbody radiation. �is ratio is characterized 
by the emissivity of the object (ε) that illustrates its e�ectiveness to emit TIR radiations. Emis-
sivity values varies between zero and one depending on the chemical composition and physical 
structure of the object. For instance, the emissivity of plants ranges between 0.95 and 0.99, high-
er when they contain more chlorophyll and water, with an average of 0.98 meaning that their 
surface emits 98 % of the energy emitted by a perfect blackbody at the same temperature (Rubio, 
1997). Consequently, any object that has a temperature above the absolute zero (-273.15°C or 
0 K at which all molecular motion stops) will emit a de�ne quantity of radiations in the TIR band 
depending on its temperature and emissivity.

2.4.1.2  How thermal-infrared cameras work?

TIR cameras are imaging devices that deliver a visual representation of the thermal radiation 
emitted by objects. Because of their low load capacity, UAVs need to carry light-weight, small 
size, low power, and uncooled thermal cameras, in where the TIR sensor is not stabilized to a 
constant temperature (Kelly et al., 2019). �e functioning of uncooled TIR cameras is based on 
a microbolometer sensor (Figure 2.4-2) made of an array of pixels built in an absorbing mate-
rial that has a temperature-dependent electrical resistance (commonly silicon or vanadium). 



161

2.4  � ermal-infrared imaging

When TIR radiations heat the detector material, the electrical signal variation is measured and 
compared to the value at the operating temperature of the sensor. By taking into account the 
ambient temperature and object emissivity, these changes in electrical signals are converted into 
temperature values that are displayed as monochrome or false-color images (i.e., 1 band), visible 
by human eyes. 

One major di� erence with optical RGB cameras is that the lenses of TIR cameras cannot be 
made of glass, as glass blocks the TIR radiations. � us, lenses are made of speci� c materials 
(such as crystalline silicon or � uoride) that is one of the main reasons explaining the high cost 
of TIR cameras (between 1000 to 10,000 US dollars). Another speci� city of using uncooled TIR 
cameras is the lack of internal temperature control system (conversely to cooled TIR cameras) 
that bring instability and strong dri�  in temperature acquisition by the microbolometers (Me-
sas-Carrascosa et al., 2018). In order to reduce this dri�  during operation, and consequently 
to reduce the inaccuracies in temperature measurements, uncooled TIR cameras are equipped 
with a self-calibration system taking advantage of an internal reference source that regularly up-
dates the o� set parameters (Olbrycht et al., 2012). � is self-calibration harmonizes the response 
signal across the entire sensor and reduces the inaccuracies due to the sensor temperature de-
pendency (Mesas-Carrascosa et al., 2018). � e TIR camera inconveniences must be taken into 
account to retrieve accurate surface temperatures (see 2.4.3.).

Figure 2.4-2: Schematic of a silicon-based microbolometer pixel. 
Reproduced with permission from SPIE – the International Society 

for Optics and Photonics: Yon et al., 2008.
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2.4.1.3  Which TIR cameras are available for UAVs?

Choosing a TIR camera for UAV applications depends on the spatial resolution and thermal 
accuracy needed, but also the weight and the price of the device. Due to their building prop-
erties, the sensors of uncooled TIR cameras o�er a much lower spatial resolution (mostly 640 
x 480 pixels, Table 2.4-1) than other cameras suitable to be carried onboard UAVs, although 
most expensive cameras can achieve a resolution of 1,280 x 1,024 pixels. �e low resolution of 
the TIR sensors brings issues for TIR acquisition that has to be considered. �e UAV �ights 
must be planned in stable atmospheric conditions (e.g., no clouds, low wind speed) while the 
resolution of thermal image (depending on the �ight altitude) must be �ne enough to avoid 
an excess of mixed pixels at the border of objects of interest. Moreover, the thermal sensitivity, 
or noise-equivalent temperature di�erence expressed in milli-Kelvin, is another key parameter 
for choosing a TIR camera. �ermal sensitivity (or thermal resolution) measures for how well 
a TIR camera is able to distinguish between very small di�erences in thermal radiation within 
one image. Manufacturers also provide temperature accuracies for their TIR cameras that rep-
resents the error made by the camera on temperature reading. �ermal accuracy usually rang-
es between ±0.1 and ±5°C. However, numerous studies have shown that the accuracy of the TIR 
camera depends on the ambient conditions in which the shooting occurs. For instance, Kelly 
et al. (2019) revealed that the thermal accuracy of a Flir Vue Pro (radiometrically uncalibrated, 
FLIR Systems, Inc., Wilsonville, USA) varied from ±0.5°C when used under stable laboratory 
conditions (i.e., air temperature maintained constant at 20.6°C) to ±5°C when used in outdoor 
conditions for TIR UAV mapping (with �ight conditions varying between partly cloudy to 
full sun, air temperatures between 20–28°C, and wind speeds up to 4 ms−1). Finally, some TIR 
cameras are factory-calibrated to generate non-uniformity compensation coe�cients which 
are applied automatically by the camera in real time to maintain good image quality. �ese 
coe�cients are based on pre-set ambient temperature, shooting distance, and take into account 
the TIR radiations emitted by the di�erent parts of the camera itself (Olbrycht et al., 2012) (e.g., 
interior, lens). 
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Table 2.4-1: Examples of currently available thermal cameras to be carried onboard UAVs.

Camera model
Spatial 

Resolution 
(px)

Weight 
(g)

Spectral 
band (µm)

�ermal
accuracy 

(ºC)

Internal
calibration

Micasense Altum* 160 x 120 357 8.0–14.0 +/- 5 Radiometric

FLIR Duo Pro R** 640 x 512 325 7.5–13.5 +/- 5 Radiometric

FLIR Vue Pro R 640 x 512 114 7.5–13.5 +/- 5 Radiometric

FLIR Tau 2 640 640 x 512 265 7.5–13.5 +/- 2 Uncalibrated

�ermoteknix MicroCAM 3 640 x 480 107 8.0–12.0 +/- 2 Uncalibrated

Gobi-640 640 x 480 263 8.0–14.0 +/- 2 Radiometric

ICI 9640 P-Series 640 x 480 137 7.0–14.0 +/- 2 Radiometric

InfraTec VarioCAM HD 600 640 x 480 1,150 7.5–14.0 +/- 1 Radiometric

Optris PI 640 640 x 480 320 7.5–13.0 +/- 2 Radiometric

Pearleye P-030 LWIR 640 x 480 760 8.0–14.0 +/- 2 NA

Tamarisk 640 640 x 480 121 8.0–14.0 +/- 2 NA

�ermal-Eye 4500AS 640 x 480 108 7.0–14.0 +/- 2 NA

* Combined with a 5-band sensor (R, G, B, red edge, near-infrared) 
** Combined with a 4K RGB camera

2.4.2  Acquisition processes with TIR UAV

Before taking o� with a TIR camera onboard a UAV, many particularities must be taken into ac-
count in order to accurately retrieve both accurate or relative surface temperatures, such as TIR 
camera settings, �ight planning, weather conditions, geometric and radiometric corrections, 
and orthomosaicking. Below, we present a step-by-step process to follow for obtaining high-res-
olution spatially distributed correct temperatures that can be used to address environmental 
issues (Figure 2.4-3).
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F igure 2.4-3: An example of a methodological � owchart to acquire and process thermal-infrared 
images with UAV. Photograph of an uncooled TIR camera (InfraTec VarioCAM® HR 600) 

onboard a � ying platform © CIRAD – E. Faye. All rights reserved.

 2.4.2.1  � e � ying platform

Depending on the applications, di� erent types of UAVs can carry TIR cameras onboard (Watts et 
al., 2012). In most cases, TIR cameras will be embarked on UAV multi-copters that provide more 
stability and can hover. As always, � ying an UAV is a trade-o�  between the payload, the battery 
capacity, the � ight elevation and speed, the extent covered, and the desired image resolution. Flying 
with TIR cameras onboard will a� ect each of these parameters. Indeed, the � ight time signi� cantly 
decreases as the payload increases. TIR camera made for UAV applications are usually connected, 
managed and thus fully interoperable with the UAV system and � ight controller: control, tilting, 
and triggering are based on the Global Navigation Satellite System (GNSS) data of the platform.

 2.4.2.2  Ground measurement devices

� e thermal radiance emitted by the object and captured by the TIR camera is modi� ed by the 
qualitative and quantitative features of the atmosphere between the object and the sensor (Scher-
rer & Koerner, 2010). Indeed, the atmosphere: (i) reduces the original signal (by absorption and 
scattering), and (ii) adds its own signal (related to the atmosphere temperature, its relative hu-
midity and other components). � is results in a change in the TIR readings by the camera as the 
shooting distance increases (Figure 2.4-4), even at very low distance (Faye et al., 2016b).



165

2.4  � ermal-infrared imaging

Figure 2.4-4: E� ect of � ight height on TIR readings 
(adapted from Faye et al., 2016a with permission of Wiley).

In order to retrieve an accurate and absolute measurement of the surface temperature of the 
object of interest, various methods have been described in the literature: application of radiative 
transfer models (i.e., simulating atmospheric interference, Dubuisson et al. (2005)), empirical 
atmospheric radiance corrections using ambient temperature of a blackbody (linear or polyno-
mial models, Torres-Rua (2017)), or neural networks (Ribeiro-Gomes et al., 2017). In practice, 
using an empirical calibration method based on known temperatures of thermal targets on the 
groundto apply the radiometric correction on the TIR images is the most commonly used meth-
od (Kelly et al., 2019). � is is the method presented below.

• Radiometric thermal targets
 � e radiometric correction detailed here is based on the knowledge of the absolute surface 

temperature of speci� c objects (radiometric thermal targets) during the airborne TIR image 
acquisition. � e device is composed of four contrasted temperature targets (Lambertian sur-
faces) that produce a large temperature range: two extreme temperature targets, that represent 
the hottest and coolest temperature of the area of interest, and two intermediate temperature 
targets. For example, targets can be made of: white polystyrene (cold), black-painted wood 
panel (hot), and dry and wet bare soil for intermediate targets (Figure 2.4-5). � e temperatures 
of each target can be continuously measured during the UAV � ight using thermo-radiometers 
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placed above the target (such as IR120, Campbell Scienti� c, ±0.2°C accuracy when calibrated 
against a blackbody) and recorded by a datalogger (Jolivot et al., 2017). Alternatively, tempera-
ture of ground targets can be measured continuously using a thermocouple placed at the sur-
face of the targets. Radiometric targets must be located within the cover zone of the UAV � ight 
and be large enough to ensure they are easily detectable within the UAV images (i.e., several 
homogenous pixels in the TIR image depending on the resolution of the TIR camera used).

• Geometric thermal targets
 Similar to RGB mapping, thermal ground control points (TGCPs) improve the georeferen-

cing of TIR mapping products. TGCPs must be easily identi� able in the TIR bands. Indeed, 
not all objects appearing in an RGB image might be distinguishable in the TIR image. For 
example, two features of di� erent colours (di� erent signature in the visible spectrum) can 
have the same temperature and become not distinguishable in TIR images, and vice-versa 
(can you spot the cold stream in Figure 2.4-1C.2). It is therefore advisable to use high or low 
re� ective surfaces displaying a high thermal contrast with the surroundings (Figure 2.4-6). 
Di� erent materials and shapes are suitable to make easily recognisable TGCPs (e.g., cross, tri-

Figure 2.4-5: � ermal targets for radiometric calibration. A.) Schematic drawing of the ground 
measurements device, B) and C) images of the device in RGB and TIR bands, respectively, 
D) absolute temperatures recorded over di� erent radiometric targets during UAV � ights 

(adapted from Jolivot et al., 2017, originally published under a CC BY license 
https://creativecommons.org/licenses/by/4.0/).
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angle, circle, square made of piece of metal, black painted panel, wooden board covered with 
an aluminium � lm). � e TGCPs size will depend on the spatial resolution of the TIR sensor 
used (usually � ve to ten-fold larger to ensure their visibility).

Figure 2.4-6: Geometric thermal target to improve the georeferencing of a TIR map. RGB (A) and 
TIR (B) images of a thermal target made of a black cross on a wooden board both contrasting 

with the surroundings in the TIR and RGB bands. ©IRBI – S. Pincebourde. All rights reserved.

Because these patterns are easily identi� able in UAV images in the RGB and in the TIR bands, 
they can be used for both the RGB and TIR maps geolocation (see detail in Figure 2.4-7).

• Meteorological records and optimal � ight conditions
 In order to compare temperature between images or for thermal mapping, weather conditi-

ons have to be as stable as possible. � erefore, changes in weather conditions should be moni-
tored to ensure their stability during TIR UAV image acquisition (Faye et al., 2016a). Indeed, 
changes in weather conditions can have a rapid and adverse impact on the object surface 
temperature (mainly wind gusts and variations of solar radiation due to cloud passes (Kelly 
et al., 2019)). Ideally, meteorological data should be recorded using a weather station located 
nearby the � ight area and recording at a � ne step-time. � e main parameters to monitor 
are: air temperature and relative humidity, solar and atmospheric radiation, wind speed and 
direction. Accurate and synchronized time-keeping must be ensured across all devices (da-
taloggers and TIR camera) and the timer of the GNSS receiver of the UAV. � is monitoring 
allows to con� rm that weather conditions were stable during the � ights (Figure 2.4-7); if not 
the acquisition � ight should be performed again. � erefore, TIR UAV � ights and image ac-
quisition have to be carried out during steady weather conditions, typically full sun periods, 
with no wind (i.e., gusts below 20 km/h), and no dust or smoke.
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Figure 2.4-7: Solar radiation recorded during a day with clear sky conditions in the south of 
France in August 2013. � e red vertical lines indicate the time of � ve successive UAV � ights. 

� e small peaks below the blue curve are linked to little cloud passes. Unless otherwise stated, 
all images were prepared by the authors for this chapter.

Moreover, the optimum � ight conditions depend on the object of interest and must be estab-
lished with a thorough knowledge of the studied system. For example, the thermal contrast 
between the studied object and its surroundings must be maximal in order to optimize the de-
tection of endothermic animals (e.g., � ying during night to detect endothermic organisms will 
be more e�  cient than during the day because this maximizes the di� erence in thermal radiance 
between the studied object and its environment). Not all objects have the same physical prop-
erties related to the absorption and emission of thermal-infrared radiation (see 2.4.1.). For in-
stance, some targets such as minerals (e.g., rocks) have higher thermal inertia than others such 
as vegetation. Rocks thus absorb the thermal-infrared radiation more slowly but also re-emit 
it more slowly than the vegetation, causing a higher (e.g., rocks) or lower (e.g., vegetation) lag 
contrast with the surrounding temperatures.

 2.4.2.3  Camera settings and � ights planning

First of all, in order to retrieve stable temperature data, the TIR camera needs to pre-heat before 
� ying (i.e., stabilisation time). Ribeiro-Gomes et al., 2017 studied uncooled TIR cameras stabili-
ty with a blackbody device and showed that, under laboratory conditions, at least 30 minutes of 
pre-heating are needed to obtain stabilized good quality data (Figure 2.4-8). � en, the emissivity 
should be set to the emissivity value of the main studied object referring in emissivity table (Ru-
bio, 1997) or by experimentally determining it (Zhang et al., 2016). If various objects of interest 
with a di� erent emissivity are studied, changes will be made in the post-processing (see 2.4.3). 
To avoid blurred image acquisition, the focus of the lens has to be set manually to the � ight 
height. Last, as stated in 2.4.1., the ambient temperature has to be set as an input in TIR cameras 
that dispose of an internal calibration system (Table 2.4-1).
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Figure 2.4-8: 30 minutes of temperature readings (� ermotechnix Miricle camera) a� er switching 
on the TIR camera. Data acquired each 20 seconds on a blackbody set to 20℃. 

� e jumps correspond to self-calibration events of the TIR camera.

� e � ight planning for TIR image acquisition is designed in a similar way as for RGB cameras 
(see chapter 1.5), but it is necessary to consider the lower resolution of the TIR sensor, the shut-
ter speed, and triggering limitations of TIR cameras. � erefore, the � ying speed, the elevation, 
the frontal and side overlap have to be de� ned considering the TIR camera speci� cations. TIR
ground sampling distance that depends on the pixel size and � ying height should be chosen to 
ensure object detection in the TIR bands. For example, Burke et al., 2019 target a minimum of 
ten pixels per object (i.e., animal) to ensure e� ective detection. � is aspect must also be taken 
into account to limit the e� ects related to mixed pixels (see 2.4.5). 

� e � ight plan should be designed to � y over the radiometric calibration targets as many times 
as possible per � ight (see 2.4.2). � is will ensure to achieve a robust calibration relationship and 
therefore to improve the accuracy of the results. For instance, the UAV can make three passages 
over the radiometric thermal targets on each � ight: at take-o� , landing, and once in-between 
(Figure 2.4-9).
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2.4.3  TIR images (pre-)processing

�e use of low altitude TIR images acquired by UAV o�en cannot cover the whole area of 
interest. It is therefore needed to take a series of images, whereupon images have to be ra-
diometrically corrected, and/or ortho-recti�ed and mosaicked to map the area of interest. 
�ermal image processing is a time-consuming step, which must be largely automated before 
infrared thermography can be applied as a routine tool in environmental practices. �e de-
sired temperature accuracy and spatial resolution must be chosen by taking into account the 
aim of the study. 

2.4.3.1  �ermal radiometric corrections

�e radiometric corrections can be performed by computing empirical linear equations each 
time the UAV captured the radiometric thermal targets, depending on �ight plan (three times 
in our example, Figure 2.4-9). �e average thermal TIR values for each target (four in the ex-
ample given in Figure 2.4-5) must be calculated for each image acquired above the targets and 
then compared to the ground data recorded at exactly the same time by the ground device (Fig-
ure 2.4-9). �en, the linear regression equations computed on these temperature data must be 
applied to the TIR images acquired the closest to the time of the UAV pass over the targets. In 
our example, the UAV passed three times over the targets and therefore three equations can be 
computed.
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Figure 2.4-9: Radiometric calibration equation applied to retrieve calibrated temperature data. A. 
green marks on the � ight plan represent a single TIR image acquisition and red marks represent 

TIR images acquired over the thermal calibration targets. B. Example of a ground based TIR 
imagery radiometric calibration equation for one passage over the thermal targets. 

Each red dot represents a ground target in Figure 2.4-5. Adapted by permission from Springer 
Nature Customer Service Centre GmbH: Springer, Precision Agriculture, Gómez-Candón, D., 

Virlet, N., Labbé, S., Jolivot, A. & Regnard, J. L.: Field phenotyping of water stress at tree scale by 
UAV-sensed imagery: new insights for thermal acquisition and calibration, © (2016).

Other authors (Salgadoe et al., 2019) made use of non-reference histogram methods for deter-
mining average surface temperature, bypassing the procedure based on thermal references.

 2.4.3.2  Orthomosaics and geometric corrections using TGCPs

� e generation of TIR mapping products can follow the steps presented in chapter 2.2 for RGB 
orthoimage generation (see examples of a RGB and TIR orthomosaic in Figure 2.4-10). How-
ever, the low spatial resolution of the TIR sensor and the low image quality in terms of contrast 
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and noise, leading to a low signal to noise ratio, make the mosaicking of TIR images less accurate 
compared to the use of RGB images. One way to improve the accuracy of TIR mapping is to 
process it in combination with RGB imagery. � e RGB images are used to calculate a high-reso-
lution digital elevation model onto which lower resolution TIR images are projected (e.g., Sledz 
et al., 2018 and Ribeiro-Gomes et al., 2017). � is procedure makes it possible to obtain TIR 
orthomosaics of a much higher quality in term of geometrical correctness.

Figure 2.4-10: UAV-based RGB (A) and TIR (B) orthomosaics of a French apple orchard. 
White and blue dots visible respectively in RGB and TIR orthoimages 

are the geometric thermal ground control points.

 2.4.3.3  Correcting emissivity values for each object in a thermal map

If various objects of interest with di� erent emissivity values are to be studied on the same TIR 
map (e.g., in order to compare their accurate temperature under the same environmental condi-
tions), Faye et al., 2016a developed a remote sensing procedure bringing together object recog-
nition, masking and cropping objects, with emissivity assignment that can be used to extract ob-
ject temperature with the appropriate emissivity value. However, by applying this process, Faye 
et al., 2016a assume that emissivity is spatially and temporally homogeneous for the same object 
(see Zhang et al., 2016 for details). Moreover, one should be aware that change in  emissivity 
within a 5 % range will only slightly impact the � nal temperature values (Clark, 1976). � us, 
correcting emissivity values of di� erent objects in a TIR map should be made for retrieving 



173

2.4  �ermal-infrared imaging

�ne-scale discrepancies in absolute temperatures between objects or when studying objects with 
di�erent values of emissivity (Faye et al., 2016a).

2.4.3.4  Surface temperature cross-validation

Once obtained, the accuracy of temperature in the TIR orthomosaics (radiometrically and 
emissivity corrected) can be checked. A simple method for temperature quality cross validation 
consists in comparing temperature values in the corrected TIR image with the temperatures 
acquired by thermo-radiometers located above arti�cial targets speci�cally built for this purpose 
or placed above natural surfaces already existing in the landscape.

2.4.4  Analyzing TIR images acquired by UAV

2.4.4.1  Relative or absolute surface temperatures

Choosing to work with absolute or relative temperature is an important decision when analysing 
thermal images. Absolute temperature analysis is justi�ed when comparing image series (e.g., 
multi-temporal or multi-site) or when an accurate measurement of the temperature of an object 
is needed. 

On the other hand, relative temperature retrieval is suitable to compare thermal data across 
space (e.g., temperature di�erences between objects) within the same image or for object detec-
tion. Surface temperature excess (i.e., positive or negative deviation between pixel temperature 
values in the TIR images and ambient air temperature) is a relevant index for direct comparisons 
of object surfaces’ temperature captured under di�erent conditions, regardless of their absolute 
temperature dissimilarities. But surface temperature excess is sensitive to radiative conditions, 
wind speed, and vapour pressure de�cit (Maes & Steppe, 2012). Temporal comparisons of object 
responses to environmental conditions based on this index require that ambient conditions are 
controlled or remain mostly unchanged during experiments (Berger et al., 2010).

2.4.4.2  Image co-registration and data fusion 

Coarse resolution of TIR images can be combined with the �ner resolution of RGB image, in 
order to upscale the resolution of the thermal image. A procedure of data fusion, proposed by 
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Kustas et al. (2003) consists �rst in regressing thermal pixels of TIR image against an index 
issued from the high-resolution pixels of the RGB image, this method being feasible only when 
TIR and RGB images are properly overlaid. Secondly, on the basis of the regression, an estima-
tion of temperature can be obtained for each subpixel, at the �ner resolution. 

2.4.4.3  Object-based analysis 

A category of TIR image analysis focuses on object selection, delineation, and identi�cation 
based on their spectral (i.e., thermal), shape, and contextual information. �is type of analysis 
can be carried out by photointerpretation or by image processing. Interpretation is done in a 
similar way to traditional aerial photographs (i.e., in situ visual detection made by an observer 
on board an aircra�). It can also bene�t from the motion dimension made possible by acquiring 
a video data available for some sensors. Recording moving objects in TIR video provides an ad-
ditional detection feature that is the movement of the target. �e detection of moving objects in 
the video helps the observer to limit the potential confusion between animals and objects (e.g., 
rocks, stumps). However, photointerpretation remains tedious to perform and is dependent on 
the observer. 

Automatic image analysis allows standardization of the detection approach and the processing 
of large quantities of images. Whether pixel-based, or object-oriented performed by arti�cial 
intelligence-based (e.g., convolutional neural networks), these approaches provide increasing 
accuracies but remain demanding in terms of parameterization and data availability. Faye et al., 
2016a present a work�ow to quantify the thermal heterogeneity at the landscape scale based on 
RGB and TIR maps acquired from UAV and by applying spatial statistics to the TIR values of 
objects detected and classi�ed using remote sensing technics on the RGB orthoimage. 

2.4.4.4  Vegetation indices using the TIR band

�e use of thermal image and the spatial variation of surface temperature as a proxy for plant 
transpiration rate and stomatal conductance is an e�cient indicator of the plant water status, be-
cause stomatal closure occurs before any other changes in plant water status (Jones, 1992). �us, 
TIR imagery provide useful information to monitor plant water status and/or stress using veg-
etation indices. High precision plant water status maps can be retrieved from remotely sensed 
TIR imagery through these stress indices, which are very useful tools for irrigation monitoring 
and plants trait responses to their environment, especially in areas where water resources are 
limited.
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�e crop water stress index (CWSI) is one of the most commonly used indices in crop water 
stress studies and irrigation scheduling applications (Idso et al., 1981). CWSI is a normalized 
index that was developed to overcome the in�uence that other environmental variables cause on 
the relationship between crop temperature and water stress. �e empirical CWSI is calculated as:

( ) ( )
( ) ( )

=
c a c a LL

c a c aUL LL

T T T T
CWSI

T T T T

where Tc-Ta is the measured di�erence between canopy and air temperature; (Tc-Ta)LL is the 
lower limit of (Tc-Ta) for a given vapor pressure de�cit (VPD) which is equivalent to a canopy 
transpiring at the potential rate; and (Tc-Ta)UL is the maximum (Tc-Ta), which corresponds to a 
non-transpiring canopy. 

Other commonly used vegetation indices based on TIR imagery are the water de�cit index 
(WDI) (Moran et al., 1994) which is suitable for non-full-cover vegetation surfaces, the temper-
ature-vegetation dryness index (TVDI) that assessess the land-surface dryness (Sandholt et al., 
2002), and the vegetation health index (VHI) that combines thermal and multispectral data to 
monitor vegetation health, drought, and moisture (Choi et al., 2013).

2.4.5  Challenges and limits

By taking into account all the best-practices provided in this chapter to avoid the pitfalls ad-
dressed, one should be able to appropriately record accurate thermal data with TIR cameras 
onboard UAVs in order to address various environmental and other issues. However, some chal-
lenges still remain to face in UAVs-borne TIR imagery. 

�e radiometric correction of the TIR images based on simultaneous ground- and UAV-based 
thermal recordings with TIR cams is suited to provide accurate surface temperature measure-
ments by taking into account the atmospheric component e�ects (e.g., distance, particles emis-
sion, wind, …) and the potential bias of TIR sensors due to their temperature-dependency (Me-
sas-Carrascosa et al., 2018). However, even when following this empirical calibration procedure, 
the resulting accuracies of either calibrated or uncalibrated TIR cameras achieved no less than a 
few degrees (Yon et al., 2008), a resolution that may not be su�cient for many applications such 
as ecophysiology or plant phenotyping. Indeed, the ground TIR data that is used for calibration 
is also a�ected by the same internal (and to a minor extent external) bias, leading to potential 
misestimates of absolute surface temperatures. �e calibration of TIR sensors against blackbod-
ies is an e�ective way to increase the accuracy of the TIR measurements (Torres-Rua, 2017), 
although these materials are not always available, and the procedure is time consuming. 
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TIR images acquired from UAVs provide instantaneous thermal information spatially distrib-
uted, but its associated low-resolution results into di�culties like mixed pixels which a�ects the 
interpretation of TIR data (Jones & Sirault, 2014), particularly in heterogeneous surfaces such 
as plant canopies which do not fully cover the soil. Indeed, when several elements of the study 
area are included in the same TIR pixel (including part of the studied object), the resulting value 
of the pixel consists of a temperature mixture of these di�erent elements. In order to avoid mis-
interpretation of object temperatures due to mixed pixels, we advise to not consider at least two 
rows of TIR pixels at the border of the studied object and to �y at appropriate elevation to adapt 
the TIR image resolution at the size of the body object (see 2.4.2.).

Usually, the angle of view when capturing TIR images from a UAV is nadir. But similar to 
the shooting distance e�ect (Faye et al., 2016b), the shooting viewing angle is known to impact 
the TIR cameras readings (Clark, 1976). �us, care should be taken when analysis temperature 
readings on TIR images taken with oblique viewing angle. Moreover, these e�ects might lead 
to inconsistencies in the TIR orthomosaicking process. As explained by Sledz et al., 2018, the 
blending step, which identify tie points from several images taken with di�erent viewing angles 
using the pixels from all parts of the TIR image (including image vignetting e�ects), is critically 
hampered by the viewing angle e�ects, resulting in a lower quality in the TIR orthomosaic re-
construction.

TIR cameras onboard UAVs can provide relatively high-resolution and spatially-resolved 
surface temperature measurements and, therefore, provide a powerful tool for environmen-
tal sciences. But still UAV-TIR measurements provide no information on temperatures of be-
neath-surface layers (i.e., under canopy, under rock or soil temperatures), which represent a 
major part of the thermal environment experienced by living organisms. Other thermal ap-
proaches, such as proxidetection TIR imaging or punctual thermal recording, can then comple-
ment the surface data.
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Multi- and hyperspectral (MS and HS) imaging are currently deployed at a wide range of spatial 
dimensions (“scales”), ranging from satellites observing the Earth and other planets down to lab-
scale sensing for small sample spectral analysis. New techniques such as UAV-borne imaging or 
terrestrial scanning of vertical targets are emerging and allow observing any target at a wide and 
contiguous range of scales.

Deploying spectral imaging on unmanned aerial platforms or drones creates one of the 
most promising application �elds of spectral imaging in the last decade. Lightweight, low-
cost, customizable, and usable by anyone and nearly anywhere, UAV close the scale gap be-
tween airborne and ground-based spectroscopy and o�er individual solutions for the re-
spective application. Short turnaround times and a high variability and customizability of 
platforms and sensors enable targeted surveying of inaccessible or complex areas or objects 
of interest. Depending on �ight altitude and deployed sensor, spatial sampling distances in 
the range of few centimeters can be reached while still o�ering a single image footprint of 
over one thousand square meters. With multi-image or push broom spectral imaging sur-
veys a su�ciently large area can be covered within tens of minutes. Current developments in 
UAV technology aim to increase �ight path automatization, object detection, and collision 
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avoidance, as well as system redundancy. Concurrently, the market for small and lightweight 
spectral sensors is growing fast. Sensors in the visible and near-infrared (VNIR) range of the 
electromagnetic spectrum are well-represented and distributed by a variety of companies, 
as they are based on common CCD technology, common optics, and require no additional 
cooling. �e development and application of light-weight full short-wave infrared (SWIR) 
sensors (up to 2,500 nm) is more complex and still in early stages. Recently, a few companies 
were able to o�er SWIR push-broom sensors with a mass below 7 kg. �e rapidly ongoing 
miniaturization could allow lightweight multi- or even hyperspectral sensors in the mid-
wave (MWIR) and long-wave (LWIR) infrared soon. Re�ectance spectroscopy as a passive 
technique is currently the most common approach for drone-borne imaging spectroscopy. 
However, also active spectroscopic methods using �uorescence e�ects are increasingly re-
searched for drone-borne applications. 

Parallel to the technical development, the number of prospective users and application �elds 
for drone-borne spectral imaging rises fast. One of the main �elds of interest encompasses the 
wide range of vegetation analysis, such as precision farming, forestry, plant species and health 
monitoring as well as soil moisture detection (chapter 4.3, 4.4, 4.7). Important, but less applied 
�elds are hydrology (chapter  4.3), geology (chapter  4.1), geomechanics, and environmental 
monitoring (ch 4.8). 

Multispectral imaging is the currently most advanced and applied spectral imaging tech-
nique for UAV-borne use. �e well-progressed development of ready-to-use UAV-borne MS 
sensor systems allow straight-forward processing and the delivery of trustable and high-quality 
data products. Optimized routines comprise the required steps for radiometric and geomet-
ric processing and have been implemented in established photogrammetric so�ware (Agiso� 
Metashape, Pix4D) as easily-applicable and well-documented work�ows.

In contrast, corrections on drone-borne HS data are applied rarely in recent publications 
and the data interpretation is often not exploiting the potential of the dataset. Whereas 
many basic applications such as the calculation of vegetation indices on flat terrain are 
still possible with poorly corrected data, more advanced problems, such as spectral end-
member analysis or lithological mapping in hilly terrain, crucially rely on the scientific 
rigor of the corrected dataset. Geometric and radiometric disturbances are often not trivial 
to handle and differ greatly from the effects known from satellite or airborne data. The 
influence of the atmospheric spectral component at low flight altitudes is usually small, 
while the differences in illumination caused by microtopography need to be strongly con-
sidered. So far, the novelty and diversity of UAV platforms and HS sensors have hindered 
the establishment of universal data processing routines as they exist for MS or satellite and 
airborne HS data. Respective future development of universal open-source workflows is 
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required to ensure that not only developers but all users of UAV-based HS imagery can 
obtain well-corrected data. 

�e following sections will give an insight into the principles of multi- and hyperspectral 
imaging that are required to understand the physical nature of spectroscopic processes as well 
as sensor-speci�c and external in�uence factors during the acquisition of spectral data. In later 
sections, the state of the art on drone-borne multi-and hyperspectral sensors, common and ap-
plication-speci�c data correction and processing work�ows are given to outline the remaining 
challenges. 

2.5.1  �e spectrum: physical background on 
the absorption and emission of light

Optical spectral analysis in general is the measurement of matter-light interactions as a func-
tion of their energy. More speci�cally, this encompasses any radiation that is emitted, re�ect-
ed, or transmitted from the investigated target (Clark, 1999). �e typical wavelength rang-
es analysed in spectral imaging comprise VNIR, SWIR, MWIR, and LWIR, as depicted in 
Figure 2.5-1.

�e concept of quantized molecular energy is key to the understanding of any absorption and 
emission processes observed in spectral imaging. It states that the possible quantum states 
of individual atomic species (atoms, ions, or molecules) are well-de�ned at a characteristic 
energy level. �ese states are characteristic of the particles’ physical nature and the dynamic 
and energetic processes a�ecting them. An atomic species possesses di�erent sets of energy 
levels, associated with electronic, vibrational, rotational, and translational processes as well as 
electron spins. Besides a low energy or ground state, each set can feature several high energy 
or excited states. An excited state is reached when it absorbs an amount of energy matching 
the state’s energetic di�erence. Once excited, the transition back to a lower energy state usually 
happens spontaneously through the emission of energy with a frequency resembling the energy 
of the transition. 

As the di�erences in energy level vary depending on the type of the associated process, ab-
sorption and emission occur in di�erent spectral ranges. Changes in rotational energy are ob-
served in microwave down to UV range, vibrational processes are mainly expressed in the in-
frared range, and electronic energy transitions are characteristic to the visible and UV range 
(Figure 2.5-1). 



182

Sandra Lorenz, Robert Jackisch, René Booysen, Robert Zimmermann and Richard Gloaguen

Figure 2.5-1: �e electromagnetic spectrum: Important properties and relations for 
spectral imaging. (UV: Ultraviolet, FIR: Far Infrared). (Lorenz, 2019). 

Unless otherwise stated, all images were prepared by the authors for this chapter.

An optically active center is usually a�ected by several processes, resulting in characteristic ab-
sorption and emission features over the entire electromagnetic spectrum. In visible and infrared 
spectroscopy, observed absorption and emission e�ects mostly originate from atom or mole-
cule vibrations and electronic transitions (Clark, 1999). Infrared-range photon energies are too 
small to excite electrons, instead atoms and groups in covalent bonds are excited to a range of 
vibration motions such as stretching and bending. Fundamental features at shorter wavelengths 
(4,000–1,450 cm-1 or 2.5–6.9 µm) are mostly broad and related to stretching vibrations of di-
atomic regions (group frequency region), while signatures in the so-called �ngerprint region 
(1,450–600 cm-1 or 6.9–16.7 µm) are a usually highly complex mixture of stretching and bending 
vibration e�ects. Weaker features occur at multiples of one fundamental absorption frequen-
cy and additions of several fundamental absorption frequencies, referred to as overtones and 
combinations. �e excitation of electronic transitions requires higher excitation energies than 
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thermal vibrations and can therefore be observed mainly in the visible, but also UV and SWIR 
range of the electromagnetic spectrum. �e processes that electronic transitions are related to 
are manifold:

Crystal �eld e�ects are associated with un�lled or partially �lled shells of transition elements 
(such as Fe, Ni, Cr, and Co) located in a crystal �eld. �e in�uence of the �eld causes a splitting 
of the transition elements electronic states, and thus a shi� of the transition energy. �e splitting 
and resulting absorbed or emitted energies are highly dependent on the crystal structure and 
therefore characteristic for the host mineral.

Charge transfer absorptions occur when electrons are transferred between two metal ions 
(intervalence charge transfer, e.g. Fe2+-Fe3+, Fe2+-Ti4+) or between a cation and oxygen (oxy-
gen-metal charge transfer, e.g. Fe-O, Cr-O). Charge transfer absorptions are usually located in 
the UV and lower VIS and are much stronger than crystal �eld e�ects. 

Band gap electronic transitions occur in materials featuring an energetic gap between con-
duction and valence band. Only electrons with energies exceeding the energetic gap between are 
absorbed, causing an absorption edge. At wavelengths above the edge and within the band gap, 
the material is theoretically transparent, whereas at lower wavelengths all incident radiation is 
absorbed. For silicates, the absorption edge is situated in the UV and the spectral signal in the 
VNIR remains una�ected. In sul�de minerals, the absorptions edge is located at much higher 
wavelengths, λ, from 350 nm for Sphalerite (ZnS) up to 3,350 nm for Galena (PbS).

Color centers are caused by the incidence of ionizing radiation or an imperfect crystal (Hunt, 
1977). �ese imperfections may be lattice defects due to the presence of impurities (replaced 
ions), vacancies (missing ions), and interstitials (additional ions forced in between the lattice). 
�e resulting modi�ed ions and trapped electrons possess their own electronic states. Related 
absorptions appear as broad spectral features visible in the VNIR as a variety of distinct colors 
(e.g., the colors of irradiated apatite, topaz, or zircon). 

Similar to vibrational processes, the energy absorbed by electronic processes in every case 
causes an excited energy state, from which the electron can relax. �e respective spontaneous, 
discrete emission of light unrelated to thermal radiation is referred to as luminescence. Depend-
ing on the process triggering the excitation, multiple types of luminescence are distinguished, 
such as chemi-, electro-, and photoluminescence, which o�en can be further subdivided. A com-
mon approach to measuring meaningful luminescence spectra is the excitation with a strong, 
monochromatic excitation source such as a laser or LED (Light-Emitting Diode) under the total 
absence of other light. A pulsed light source o�ers the possibility of on-/o�-measurements to 
retrieve a luminescence signal under ambient light. 

Additional to the described e�ects, thermal radiation and grey body emission are common 
e�ects to every object or surface with a temperature above 0 k, resulting in a constant emission 
of infrared radiation due to the thermal motions of its charged particles. At an assumed thermo-
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dynamic equilibrium, the emitted radiation behaves according to Planck’s law (Planck, 1914). 
Idealizing the emitter to a blackbody, which absorbs every incident radiation at all wavelengths 
and emits solely thermal radiation, the emitted wavelength- and temperature-speci�c radiation 
is simpli�able by Planck’s function (see Figure 2.5-1). With increasing temperature, the intensity 
of the emitted radiation of any matter rises, while the wavelength, at which the maximum radia-
tion intensity is observed, decreases. �e radiance spectra of incandescent light sources, such as 
the sun or lightbulbs, o�en have their intensity maximum in the VIS, where radiation is visible 
to the human eye. For matter at temperatures commonly experienced on the earth’s surface, the 
maximum radiation intensity is situated within the invisible infrared range of the electromag-
netic spectrum (Figure 2.5-1). �is results in the interference of the matter’s thermal radiation 
with additional polychromatic light and complicates the interpretation of the observed radiance 
signature. In the SWIR range, thermal radiation has only a minor in�uence and is therefore 
mostly neglected. �e MWIR range is equally in�uenced by both sources, making its interpre-
tation extremely complicated and o�en limiting its usage in spectral imaging. �e LWIR range 
is largely dominated by thermal radiation, making it the common range for thermal analysis in 
remote sensing (chapter 2.4).

2.5.2  �e image: from spectral to hyperspectral

Independent of the observed wavelength range, investigated material, and the underlying spec-
troscopic processes, the format and visualization of any spectral dataset remains similar. All 
spectral datasets acquired by imaging spectroscopy in principle feature three dimensions with at 
least one value de�ning the measured signal intensity along at least two spatial and one spectral 
axis. Depending on the type of data this basic model can be reduced or extended to di�erent 
levels of spectral and spatial complexity (Figure 2.5-2). 

Standard digital cameras represent a very basic version of a spectral sensor, providing 
three broad and partly overlapping spectral channels centered at the “true color” wavelengths of 
blue, green, and red light: a close representation of the human eye vision. Most commonly, the 
data of all three channels is acquired at the same time and on the same sensor by covering the 
sensor with a particular pattern of color �lters.

Multispectral sensors tune this concept for spectral analysis, not only by extending the ob-
servable spectral range towards the near infrared, but also by discretizing the single channels. As 
the overall number of channels is still very low (usually between four and ten), a similar sensor 
concept as for RGB cameras can be used. While such snapshot sensors allow acquiring data 
without temporal and with negligible spatial o�set, the increased number of channels drastically 
reduces the achieved spatial resolution. For this reason, many popular o�-the-shelf MS camer-
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as such as the Parrot Sequoia+ or the MicaSense RedEdge-MX operate as a multi-camera (or 
camera rig), i.e. all channels are provided by separate cameras in a �xed rig, which during image 
acquisition are triggered simultaneously. Once the o�set between the cameras is determined, all 
channels can be treated similarly during further processing. �e use of a single sensor together 
with a fast-rotating �lter wheel provides another alternative without spatial and with a negligi-
ble temporal o�set; however, the increased number of moving parts also increases the size and 
fragility of the sensor. Common to all MS sensors is a small size, weight and price, quick acqui-
sition time, and a limited number of channels compared to HS sensors. �e number and center 
wavelength of the latter are usually set according to the application. Most multispectral sensors 
are used for vegetation monitoring and such provide around four to six spectral channels in the 
green, red, and near-infrared part of the electromagnetic spectrum, tailored for the calculation 
of plant-speci�c spectral indices (chapters 4.4, 4.7, 4.8). 

Figure 2.5-2: Schematic examples on di�erent levels of dimensionality of spectral data with 
x, y, z being the spatial, λ the spectral, and t the temporal axes (Lorenz, 2019).

In contrast to the few broadbands provided by multi-spectral data, a hyperspectral image is 
de�ned as a three-dimensional data-cube with a large number of spectrally narrow, quasi-UAVi-
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contiguous entries along the spectral axis. �is provides the possibility to query a plottable spec-
tral signature for each spatial position on a surface (Figure 2.5-2, plot 3). �e accompanying 
amount of information results in much larger data sizes compared to polychromatic or mul-
tispectral imagery. �e acquisition of an HS dataset in a reasonable time is thus more complicat-
ed. �e multi-camera approach is not feasible for HS data, as it would mean to acquire each band 
by a separate sensor. In theory, snapshot sensors enable the contemporaneous acquisition of one 
dataset at a time, but are still rarely used as this is o�en achieved by a decrease of either spectral 
or spatial resolution or signal-to-noise-ratio (SNR). Common HS sensors, therefore, reduce the 
amount of simultaneously acquired data by sequential scanning of, e.g., one spatial pixel at a 
time (whisk broom or across-track scanning), one spatial pixel line at a time (push broom or line 
scanning), or one spectral channel at a time (frame-based imaging). 

�ese approaches require either moving parts within the device or a movement of the whole 
sensor to acquire a complete data-cube. Due to the time o�set between the individual record-
ings, additional movements of the sensor platform lead to image distortions and trigger the need 
for additional data pre-processing steps. Related to their acquisition principles, whisk and push 
broom scans are dominantly in need of spatial alignments between the acquired pixels or lines, 
while frame-based images may feature spatial o�sets between spectral channels. Examples of 
current commercial HS sensors suitable for UAV-borne use are given in Table 2.5-1.

Fast sensors that are less prone to generate spatial distortion e�ects, such as snapshot or 
frame-based sensors, can be deployed on smaller, but also less stable UAV. Whisk and push 
broom scanners o�en provide spectrally higher quality data, but in general require more stable 
platforms with a higher payload to carry additional equipment for geometrical calibration, such 
as a global positioning system (GNSS) and inertial measurement unit (IMU). Based on current 
legislation in most countries, UAV systems up to 25 kg MTOW (maximum take-o� weight) have 
relatively easy permitting (chapter 1.4). Redundancy is an additional weight, but a critical safety 
factor. �us, all systems (GPS, IMU, …) should be designed fully redundant. Multifrequency 
GNSS receivers and INS systems, that allow for either RTK or PPK computation of the �ight 
trajectory, are also critical in that sense (chapter 2.1).

Currently, the majority of civil (lightweight) UAV used for environmental sciences can be 
grouped into two categories; �xed-winged systems and multi-copters (chapter 1.3). In general, 
�xed-winged drones have decreased payload compared to multicopters. Fixed-wing drones that 
are capable to carry heavier payloads usually have only con�ned space for the payload and need 
more space for take-o� and landing. Further limitations originate from the relation of �ight 
speed vs altitude. For �xed-wing UAVs, a speed of around 15–25 m/s in the medium (air) is nec-
essary to provide a stable �ight. Depending on the wind conditions, this may result in a ground 
speed of more than 30 m/s, however, due to regulations, the maximum altitude is usually limited 
to 100–120 m above ground (chapter 1.4). To achieve qualitative data, the deployed sensor needs 
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to operate at very high frame rates, which at the same time limits the maximum integration 
time and therefore also SNR in the images. True color RBG and multispectral sensors, which 
are usually light and less a�ected by fast movements, are the preferred payload of �xed-wing 
UAV. In particular, for higher altitude �ights with longer range (BVLOS) and higher coverage 
requirements, the �xed-wing solution is most attractive. Hyperspectral sensors are typically 
heavier than multispectral sensors and require stop-and-go or slow speed acquisition to achieve 
su�cient SNR data. Multicopters (or multi-rotor platforms) are the most preferred choice, as 
they allow respective low-speed acquistion. However, these platforms are usually characterized 
by signi�cant vibrations and a high-frequency rolling and pitching to achieve a levelled �ight. 
Sensor-mounting on a high-quality gimbal is therefore an important asset to achieve su�ciently 
stable acquisition conditions. 

Table 2.5-1: Examples on current multi- and hyperspectral sensors for drone-borne use. 
A more exhaustive list can be found in Adão et al., 2017 or Aasen et al., 

2018, FWHM =Full Width at Half Maximum.

Sensor name Spectral channels (ch)/
FWHM

Spatial image 
size

Weight Dimensi-
ons

Push broom HySpex
Mjolnir VS-620

200 ch/3 nm (VNIR) 
300 ch/5.1 nm (SWIR)

620 px 6 kg 374/202/
178 mm

Headwall
Co-Aligned 
VNIR-SWIR

270 ch/6 nm (VNIR),
267 ch/8 nm (SWIR)

640 px 6.25 kg 272/208/
165 mm

Corning 
microHSI 425

512 ch/< 8 nm (VNIR/
SWIR)

640 px 2.7 kg 108/205/
283 mm

Frame-based Senop HSC-2 up to 1,000 ch/5–15 nm 
(VNIR)

1,024x1,024 px 0.990 kg 199/131/
97 mm

Multi-
Camera

Parrot 
Sequoia+

4 ch/10–40 nm (VNIR) 1,280x960 px 0.072 g 59/41/
28 mm

MicaSense 
RedEdge-MX

5 ch/10–40 nm (VNIR) 1,280x960 px 0.232 kg 87/59/
45 mm

Snapshot Cubert Firef-
lEYE PLUS

125 ch/8 nm (VNIR) 50x50 px 0.490 kg 200/67/
60 mm

imec XIMEA 
SNt32

32 ch/10 nm (NIR) 256x256 px 0.150 kg 150/40/
40 mm
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2.5.3  �e pre-processing: origin and 
correction of data distortions

2.5.3.1  Geometric distortions

Geometric distortions encompass any e�ects that in�uence the spatial correctness of an image 
or dataset. Spatial quality in this case is achieved if the spatial projection of any information de-
livered by the image/dataset matches its real location within a reference surface/space. �e de�-
nition of the reference system is arti�cial, but allows to set di�erent datasets into a spatial context 
and to describe the location of any image feature with unequivocal and universal coordinates 
(chapter 2.1). �e compensation of any geometric distortion in conjunction with the geolocation 
of the dataset into a reference system is called orthorecti�cation. 

�e origins of geometric disturbances in spectral image data are manifold and directly related 
to the imaging principle: 

Sensor-specific, internal, or optical distortions occur due to the technical design and 
mechanical imperfections of the sensor itself. Common examples are one- and two-dimen-
sional barrel (fish-eye) distortions or curvature effects at the slit of line-scanners due to dif-
fraction. By careful determination of the individual device-specific distortion coefficients 
(radial and tangential) and internal camera parameters (focal length, skew and center co-
ordinates), the distortions can be determined by calibration routines and finally removed 
from the dataset. 

�e main external distortions originate from the viewing angle of the sensor, may it be 
stable during the acquisition of one or all datasets in a survey, or variable due to random and 
systematic movements of the platform. Stable o�-nadir viewing angles can usually be corrected 
by perspective un-distortion of the image. Stable velocity of the sensor or platform can be used 
to calculate the appropriate aspect ratio of the resulting pixels. However, changing velocities, 
as they are particularly common in multi-rotor platforms (also refer to chapter 1.3), are much 
harder to correct and require a logging during the acquisition for a satisfactory correction. �e 
required parameters comprise any variability in sensor or platform movement, such as pitch, 
roll, yaw, skew, and changes in position and altitude (Figure 2.5-3). For whisk broom, push 
broom, and frame-based sensors this results in distortions between each acquired pixel, line, 
or spectral band, respectively (Figure 2.5-3). For snapshot sensors or at extreme movements, 
an additional blurring of the image may occur. �e most common correction approach is the 
logging of the three-dimensional location, time, and axial acceleration (=  angular position) 
using a GPS and an IMU attached or near to the sensor during the entire survey. A post-pro-
cessing accuracy (RMS error) in the range of sub-decimeter for positioning (x,y,z) and better 
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than 0.1° for roll/pitch/heading is recommended (e.g., Applanix AP-15UAV or similar). Sever-
al measurement INS (inertial navigation system) types (e.g., MEMS, �ber optic systems) and 
(multi-)antenna GNSS setups are established (chapter 1.3). However, these devices di�er sig-
ni�cantly in price and weight. Su�cient accuracy levels are commonly reached by integrating a 
multifrequency GNSS receiver and a MEMS inertial components unit. A�er careful boresight 
alignment, i.e. the correction of angular misalignment between the measurement axes of the 
single sensors, the recorded information can be used to separately orthorectify each distorted 
part of the image. For fast movements, such as for very small platforms, the approach does not 
apply, either because additional devices are not allowed by the limited payload of the platform 
or due to the limited accuracy and synchronicity of position, orientation, and HSI measure-
ments. �e cost factor also plays an important role for small surveys. For these reasons, alter-
native strategies need to be developed (chapter 2.1). Topography can have a strong negative 
in�uence on the spatial correctness of a dataset (chapter 2.2). �e amount of distortion is high-
ly dependent on the topographical height di�erences within the scene as well as the altitude 
of the sensor. In particular, with strong topographic e�ects, the number of required control 
points for an accurate orthorecti�cation is manually hardly achievable. Alternative correction 
approaches encompass (1) automatic keypoint detection, matching, and respective warping of 
the dataset to an orthophoto with similar or higher spatial resolution, or (2) projection of the 
image on a high-resolution digital elevation model (DEM) using sensor position, angles, and 
altitude, as well as image-speci�c parameters such as �eld-of-view (FOV). While approach (1) 
is independent of the exact knowledge of all acquisition parameters, approach (2) is robust to 
low information content or quality of the dataset (e.g., o�-shore imaging, extremely noisy, or 
cloud-covered images). 

A combination of several external distortions – such as expressive topography in conjunction 
with low acquisition altitudes, strong sensor movements, or high platform velocity – can com-
plicate the distortion correction distinctly. For this reason, the use of a gyro-stabilized sensor or 
gimbal is highly advised for drone-borne data, as they can help to reduce pitch and roll angular 
movement of the sensor during the acquisition, which eases the correction of the remaining 
e�ects.
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Figure 2.5-3: Schematic illustration of common geometric distortions due to sensor or platform 
movement, le� : push broom scanning, right: frame-based imaging. (A) Characteristic movements 

of an unstabilized travelling aerial platform. (B) Resulting line-wise distorted image of a push 
broom HSI. C) Characteristic movements of a hovering drone-borne gyro-stabilized platform. 

(D) Resulting band-wise distorted image of a frame-based HSI. � e landscape background 
of both top � gures was created with Google maps satellite imagery (Lorenz, 2019).

 2.5  .3.2  Radiometric disturbances

Radiometric e� ects disturb the spectroscopic information within the dataset and comprise glob-
al, spatially-local, and/or spectrally-local deviations in the pixel values. Similar to geometric 
e� ects, their origin may be internal (sensor-related) or external (environment-related). A da-
taset corrected for any internal radiometric e� ects is usually referred to as at-sensor radiance. 
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Correction for any external illumination e�ects results in TOA (top of atmosphere) re�ectance, 
an additional atmospheric correction �nally retrieves surface re�ectance. 

While irradiance, E, de�nes how much radiometric �ux is received by a surface per unit area 
and is given in W·m−2 (or W·m−3 at wavelength dependency), the radiance, L, indicates how 
much radiometric �ux is received or released from a surface per unit area and unit solid viewing 
angle. It is given in W·sr−1·m−2 (or W·sr−1·m−3 at wavelength dependency), and is in contrast to 
irradiance independent from the distance to the illumination source. Re�ectance, R, as a ratio 
between the incident and re�ected radiation, is unitless and usually given either in percent or as 
a factor between zero and one.

Important examples of internal radiometric disturbances comprise dark current, bad pixels, 
vignetting, smile, and keystone e�ects (Barreto et al., 2019). 

Dark current refers to the signal received by a photodetector in the absence of any incident 
external light. �e measured electrons are generated due to the non-zero temperature of the 
sensor, leading to defects in the semiconductor band structure and a random noise pattern, 
especially in low-signal images. �is noise consists of a hardly correctable random or shot 
noise part and a rather �xed temperature- and pixel-speci�c pattern, which can be corrected 
by subtraction from the dataset. As dark current is a thermal e�ect, sensor cooling is highly 
advised to achieve stable and low-noise imagery, especially for measurements in the IR range 
of the spectrum.

Dead, stuck, and hot pixels (o�en summarized as “bad pixels”) are sensor pixels that fail 
to return a meaningful signal, instead, they provide permanently minimal (dead) or maximal 
(stuck) intensity or show anomalous values a�er sensor heating (hot). In the acquired image 
data, these pixels appear as de�nite one-dimensional lines along a spatial or spectral axis with 
zero, in�nite, or anomalous values. Even if their information content is irrevocably lost, they 
can be eliminated by interpolation  – for example from the spectrally and spatially closest 
image value (Kie�er, 1996) – to avoid a further disturbance of the dataset in subsequent pro-
cessing.

Similar to commercial RGB cameras, spectral sensors utilizing a lens may be subject to vi-
gnetting, i.e. a radial loss in intensity towards the image edges. A correction requires knowledge 
on the optical pathway, and can be achieved by data-driven cross-track illumination correction 
or the application of a pixel- and wavelength-speci�c gain and o�set matrix. �e latter is used 
to correct for device-speci�c deviations in sensitivity between the pixels of the sensor array in 
general. 

In push-broom imaging systems, optical aberrations and misalignments of the sensor can 
lead to a concurrent spatially and spectrally curved distortion, known as smile (or frown) and 
keystone e�ects. In this context, smile refers to a shi� of the center wavelength, keystone to 
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a band-to-band-misregistration (Yokoya et al., 2010). Both e�ects are usually corrected using 
sensor-speci�c calibration values. 

Depending on the acquisition circumstances, numerous external radiometric e�ects can in-
�uence the measured signal (Figure 2.5-4). �e radiance of the illumination source de�nes the 
maximal achievable radiance (full re�ection). For drone-borne measurements, illuminating ir-
radiance is usually a mixture between direct solar irradiance and di�use sky irradiance resulting 
from the scattering of sunlight in the atmosphere. Changes in irradiance intensity or spectral 
shape during one or between several surveys result in global di�erences of measured at-sensor 
radiance, either within one or between several datasets. Depending on the sensor-target dis-
tance, di�erent compensation approaches exist. 

Figure 2.5-4: Paths of radiance and external radiometric disturbances in a HS �eld acquisition 
(based on the concept of Jensen, 2007; �rst published in Lorenz, 2019).

For low altitude drone-borne data, reference targets with known re�ectance spectra and ori-
entation similar to the observed surface can be used to determine the current downwelling ir-
radiance. �e targets should have a known, ideally featureless spectra and a constant di�use 
re�ectance within the measured wavelength range. Well suited are white or grey polyvinyl chlo-
ride (PVC) plates in VNIR, high-purity polytetra�uoroethylene (PTFE or te�on) in the SWIR, 
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and brushed aluminum or coarse high-purity gold in the LWIR. If the reference targets are not 
visible within each acquired image or scan line, an on-board irradiance (“sunlight”) sensor can 
log irradiance intensity (and spectra) for each scene for later compensation (Gilliot et al., 2018; 
Hakala et al., 2018). In comparison to the reference-target-based approach, an irradiance sensor 
allows the correction of potential irradiance variations occurring during the acquisition process. 
If no such sensor is available, a data-driven bundle-block adjustment can be used to estimate 
and correct for overall illumination di�erences between overlapping images (Honkavaara et al., 
2012). At higher altitudes, the pixel footprint eventually becomes too large to allow the usage of 
reference targets. However, the downwelling irradiance within one acquisition should be rather 
constant and, on a clear and sunny day, can be estimated according to the current date and time, 
sensor-target distance, and assumed atmospheric composition.

�e re�ected signal on a speci�c surface is dependent on a range of parameters and its behav-
iour can be described by the Bidirectional Re�ectance Distribution Function (BRDF, Nico-
demus et al., 1977). It is de�ned as the ratio fr between the di�erential scattered radiance, dLr, in 
direction of the observing sensor and the di�erential incident irradiance, dEi, with: 
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Here, λ shows the dependency of BRDF on the wavelength in spectral measurements. �e terms 
(θi, ϕi) and (θr, ϕr) describe the azimuth and declination of irradiance and re�ection, respectively. 
It can be seen that the incident irradiance, dEi, is represented by the radiance, Li, which is inci-
dent under the solid angle, dωi, onto a surface. Hereby an incidence angle, θi, o� the surface nor-
mal leads to a radiated surface area which is by 1/cos θi  larger than at a normal angle incidence. 
By that, the radiation intensity is reduced by the factor cos θi . As a result, surfaces illuminated at 
an angle far from the surface normal appear darker than such with a near-normal illumination. 
Materials with a BRDF dependent on both ϕi  and ϕr show an additional variation in radiance 
when the azimuth of the illumination is changed (the material is rotated). Such surfaces are 
referred to as anisotropic, in contrast to isotropic materials. Additionally, the BRDF is dividable 
in two main components, i.e. specular and di�use re�ection, and can be in�uenced not only by 
direct but also by concurrent ambient illumination. 

An exhaustive experimental determination of BRDF is seldomly reasonable due to its high 
dimensionality as well as material and texture dependency. For surveys carried out on �at topog-
raphy and with su�cient overlap between individual images (60–80 %), the BRDF e�ect can be 
suppressed by incorporating only the very central image parts into the �nal mosaic or by using 
overlapping image regions to estimate the required parameters. In more complex scenarios, em-
pirical and theoretical models can be used to approximate the material-speci�c e�ect of BRDF 
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(Cook & Torrance, 1981; Lambert, 1760; Schlick, 1994). In remote sensing, the assumption of 
a Lambertian behaviour is common, which represents isotropic di�use re�ection (Civco, 1989; 
Teillet et al., 1982). At image acquisition with large pixels, such as high-altitude drone-borne 
data, and areas with low topography this approach usually retrieves satisfactory results. Such, 
across-track brightness gradients in the imagery of sensors with a wide view angle can be cor-
rected (Cross-Track Illumination Correction (Kennedy et al., 1997)). However, in rugged terrain 
as well as over anisotropic surfaces such as forest or meadows, the Lambertian assumption can 
lead to strong overcorrection, especially at o�-nadir viewing angles or at illumination at an angle 
far from the surface normal. A range of empirical non-Lambertian illumination/topographic 
correction methods has been developed, such as c-factor (Teillet et al., 1982), Sun-Canopy-Sen-
sor (SCS (Gu & Gillespie, 1998)), or Minnaert (1941). �e determined wavelength-speci�c em-
pirical coe�cients are retrieved by regression of pixel brightness and illumination angle. Despite 
the distinctly improved result for rugged terrain, these approaches lack performance in areas 
with high material variability, as in theory each material with di�erent BRDF would require the 
calculation of a separate empirical coe�cient. Data pre-classi�cation and separate correction 
would be required to achieve a su�cient regression error. 

None of the approaches can su�ciently correct for shadows yet. Usually, the a�ected pix-
els are determined using illumination angle (core shadow) and surrounding topography (cast 
shadow) and are masked out a�er. Compensation for shadows is practically almost impossible. 
Firstly, the signal intensity from shadowed areas commonly falls within the background noise 
level of the sensor and fails to contain any valuable information. Secondly, the retrieved signal 
is a speci�c mixture of re�ection from di�erent sources of di�use irradiance (sky, trees, and 
neighbouring topography). In illuminated pixels, the contribution of these sources is generally 
low enough to barely interfere with the received signal. In shadowed pixels, they are the only 
light source and their single proportions of contribution are very speci�c and hardly estimable 
for each pixel. 

Despite interactions on the surface of the target, every radiation path in the system is in�u-
enced by the atmosphere. Despite re�ection and scattering at atmospheric particles that weaken 
the signal and produce di�use sky irradiance, all traveling photons are subject to absorption 
by atmospheric gases and dust. Depending on the crossed thickness and composition of the 
atmosphere the intensity and spectral shape of the atmospheric disturbances vary. For low �ight 
altitudes, e.g. below a hundred meters, the in�uence of the atmosphere on the downwelling 
and re�ected light is usually corrected using several reference ground targets (Empirical Line 
Calibration – ELC (Smith & Milton, 1999)). For higher altitudes, atmospheric compensation by 
physical modelling is common. Several algorithms exist to estimate the atmosphere’s spectral 
contribution, usually combined with topographic illumination correction (e.g., ATCOR (Rich-
ter & Schläpfer, 2018), FLAASH (Cooley et al., 2002)). Such tools usually utilize lookup tables 
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based on calculated radiative transfer models such as MODTRAN (Berk et al., 2014) or 6SV 
(Vermote et al., 1997). Several input parameters are required such as time, date, altitude, and lo-
cation of the measurement, weather conditions, and a high-resolution digital elevation model. It 
has been shown that these tools are also applicable for low-altitude UAV acquisitions (Schläpfer 
et al., 2018). 

�e signal �nally arriving at the sensor is composed not only of the radiance of the target 
(including all described disturbances), but also the path radiance of light scattered in the at-
mosphere without reaching the ground as well as light from surrounding surfaces scattered 
into the �eld of observation (adjacency radiance). Every surface with a temperature above 0 K 
additionally emits thermal radiation, which interferes with the re�ected signal. At common 
temperatures, this a�ects mainly the LWIR part of the electromagnetic spectrum. Only very 
hot surfaces (over several hundred degrees Celsius) such as lava �ows can in�uence VNIR and 
SWIR measurements (chapter 2.4, 4.6). 

2.5.4  Post-processing and interpretation

Spectral imaging data can be interpreted by two major approaches, either by directly analysing 
the physical spectroscopic properties of materials or by using a more mathematical approach of 
classifying the data according to extractable patterns or data features using machine learning 
techniques (chapter 3.2). 

Spectral analysis in principle relies on the spatial mapping of spectroscopic properties such 
as speci�c absorption or emission features. �e focus of the analysis can be set on single features 
or reach up to full material-speci�c spectral patterns. �is results also in di�erent analysis ap-
proaches. Single features or spectral characteristics are o�en mapped according to spectroscopic 
knowledge, e.g. using simple band ratioing approaches that map the ratio of re�ectance values 
at speci�c, manually set wavelengths. �is approach is mainly used in multispectral data, where 
a full analysis of a spectral feature is not possible. It can provide simple abundance maps of 
spectrally active materials, such as plants or iron minerals. For HS data, comparable, but more 
informative approaches exist, that allow to map the accurate width, depth and position of a spe-
ci�c spectral feature to draw conclusions for example on the material composition (van der Meer 
et al., 2018). Spectral mapping or the analysis of full material-speci�c spectral patterns is much 
more complex. Usually, available spectral validation data from �eld measurements, extracted 
image spectra or o�cial spectral libraries (Kokaly et al., 2017) are used as reference spectral 
signature. �is reference can then be compared to the observed image spectra to determine the 
spectral similarity and such, the probability of occurrence of the mapped material per pixel. 
Di�erent spectral mapping approaches exist (Harris, 2006). �ese approaches perform best if 
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the analysed pixel covers a target of homogeneous composition, which makes the spectral sig-
natures directly comparable. For natural targets or low spatial resolution of the sensor, mixed 
spectra are a common e�ect, i.e. that the observed spectrum is actually composed of a mixture of 
contributing spectral “endmembers”. Image processing techniques exist that allow an extraction 
or “unmixing” of these spectral components to retrieve and map information on the target’s 
composition (Bioucas-Dias et al., 2012) as well as the abundance of the di�erent components 
per pixel. �is approach is particularly interesting for geological targets that represent a hetero-
geneous mixture of minerals with highly variable spectral composition.

�e techniques of classi�cation or domain mapping allow a di�erent approach of data anal-
ysis based on the categorization of data pixels according to data-speci�c criteria. Machine learn-
ing and arti�cial intelligence plays a major role in the development of algorithms for classi�-
cation and the related �elds of segmentation and feature extraction (Ghamisi et al., 2017). �e 
resulting classi�cation maps allow a clear discrimination between di�erent domains that can be 
composed of mixed materials and do not necessarily need to be characterized by one speci�c 
spectral signature (e.g. lithological units, plant communities).

2.5.5  Discussion and outlook on current innovations

Multispectral cameras represent the currently most used spectral imaging systems for UAV-
based acquisition. In particular for applications in vegetation (crop, forestry) monitoring a range 
of ready-to-use systems exist on a both scienti�c and commercial basis, including not only the 
camera itself but also optimized platforms and dedicated processing routines for data correc-
tion, processing, and interpretation. �eir ruggedness and endurance make MS cameras a good 
choice for simple mapping tasks or when harsh imaging conditions (rough terrain, long �ight 
times) are expected. �eir low-number of spectrally �xed channels constrain possible applica-
tions mostly to the initial design aim. However, this also allows designing cheap and reliable 
systems, which can deliver the exact mapping products that are required by a potential customer, 
thus making MS drone systems ideal for industrial use. Interchangeable �lters and/or an exten-
sion of the observable spectral range to the SWIR and LWIR could increase the �exibility of MS 
cameras and broaden their applicational spectrum.

Hyperspectral cameras, with their capability to capture hundreds of image bands, o�er the 
detection and mapping of plants, soil, and rock, as well as respective mineral types. �e maturity 
of UAV-based HSI is constantly advancing and with it the level of quality to characterize unique 
properties of ecosystems, including topographical and physical aspects, surface composition, 
and vegetation at once (Arroyo-Mora et al., 2019). UAV-based HS data require speci�c steps of 
pre-processing and correction which di�er from aircra� and satellite platforms. �e novelty of 
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the approach, but also the diversity and customizability of UAV platforms and deployable sensors 
impeded the establishment of correction work�ows available for any user. As a result, most pub-
lished UAV-borne datasets are only partly or not corrected for platform-speci�c radiometric and 
geometric e�ects. In particular, for targets with highly variably morphology this can cause distinct 
distortions within the dataset (Jakob et al., 2017). While it is still possible to retrieve meaningful 
information from poorly corrected data using simple two-band-ratios, detailed spectral analysis 
of usually narrow absorption features is not possible. Geological applications in particular build 
on reliable spectral information, as the spectral di�erences between mineralogical domains are 
usually subtle. �e establishment of versatile and comprehensive processing work�ows will be 
key to ensure quality standards within UAV-based HSI. �e Mineral Exploration Python Hyper-
spectral Toolbox (MEPHySTo) (Jakob et al., 2017) was one of the �rst to combine the essential 
tools for a full processing work�ow of UAV-based HSI, and could provide a basis for implement-
ing today’s broad range of advanced processing algorithms (Aasen et al., 2018). 

Multi-sensor UAV approaches are used increasingly across many scienti�c disciplines, with 
the environmental and agricultural sciences as one of the very early contributors, e.g. in com-
bining spectral and elevation information for segmentation and plant species detection. �e 
generation of quantitative multi-sensor spatial mapping products in precision farming with low-
cost UAVs became more feasible in the early 2000s (Berni et al., 2009). Recent studies show the 
potential of using a UAV equipped with exchangeable sensors to investigate plant communities 
and ecosystem properties, such as peatlands (Beyer et al., 2019). �e integration of multispec-
tral, high-resolution RGB, and thermal data in combination with photogrammetry and image 
classi�ers driven by machine-learning makes it possible to derive high-precision plant param-
eters. Since the introduction of user-friendly UAV handling, so�ware and processing routines, 
numerous applications were developed and tested. Future applications are likely to expand from 
earth sciences and engineering towards human social interaction (Xiang et al., 2019). 

�e next step in the evolution of UAV-based HSI could be real-time or quasi-UAVi-real-time 
on-board data processing and evaluation. Such systems would provide a direct link and feed-
back of the acquired data to the end-user on the ground. �e fusion of state-of-the-art hardware 
to capture and process the resulting heavy data streams is challenging but possible (Horstrand 
et al., 2019). It is important to note that most HS sensor systems are currently transported by 
multi-rotor UAVs, which are limited in �ight time, and therefore spatial coverage. For UAV to 
become a complete substitute to manned airplane imaging systems, currently only �xed-wing or 
VTOL (Vertical Take-O� and Landing) platforms hold the endurance and �exibility to compete.

A parallel development in sensor technology regarding miniaturization and innovative 
sensor concepts will allow using a much wider range of spectral imaging sensors for drone-
borne use in the future. As a major advantage, it will allow increasing the value of drone-borne 
spectral surveys for new application �elds. It additionally fuels the diversity of available sensors 
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on the market and promotes the development of increasingly low-cost and user-friendly prod-
ucts. In the VNIR, a large assortment of competing products already allows making an applica-
tion-based selection according to the required spectral range, sensitivity, resolution, or budget. 
�e number of available sensors in the SWIR is far more limited as sensor cooling is obligatory 
to reach a su�cient SNR, which complicates the device design, limits possible miniaturization, 
and increases the price distinctly. Still, innovative concepts are already under development and 
promise much lighter and cheaper sensors for the future (Goldstein et al., 2018). A similar devel-
opment is ongoing for LWIR range HS sensors. Appropriate lightweight drone-borne versions 
are not yet commercially available but have been announced recently (Boubanga Tombet et al., 
2019) and will increase the application portfolio of drone-borne surveys in the future. Mineral 
mapping campaigns could bene�t from such sensors in particular, as it would allow increasing 
the amount of detectable rock-forming minerals (chapter 4.1). 

Drone-borne spectral sensors of any kind are used for re�ectance measurements only in most 
of the cases, using the irradiance of the sun. However, approaches to measuring luminescence
signal from a drone-platform have started (Burud, 2019; Duan et al., 2019). For the moment, 
however, only point measurements are performed in a drone-based setup, but the concept could 
be extended to a mapping approach soon. �e luminescence signal could be used alone or com-
plementary to re�ectance measurements to characterize and monitor vegetation, hydrocarbons, 
man-made structures, or valuable raw materials (Lorenz et al., 2019) (chapter 2.7).
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Laser scanning, in general, is a method for obtaining 3D information of the environment. UAV 
(Unmanned Aerial Vehicle) laser scanning, in particular, delivers dense 3D point clouds of the 
Earth’s surface and objects thereon like buildings, infrastructure, and vegetation. In contrast to 
conventional airborne laser scanning (ALS), where the sensor is typically mounted on manned 
aircra�, UAV laser scanning (ULS) utilizes Unmanned Aerial Systems (UAS) as measurement plat-
forms, which allow lower �ying altitudes and velocities compared to manned platforms resulting in 
higher point densities and, thus, a more detailed description of the captured surfaces and features. 

Whereas the bene�t of ALS is large-area acquisition of topographic data, with the Digital Ter-
rain Model (DTM) being the prime product, ULS can be thought of as close-range ALS enabling 
applications, which require high spatial resolution. However, both ALS and ULS are similar in 
the fundamental aspects of operation.

ULS is a dynamic kinematic data acquisition method. �e laser beams are continuously sweep-
ing in lateral direction and together with the forward motion of the platform, a swath of the 
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terrain below the UAV is captured. �e distances from the sensor in the air and targets on the 
ground are determined by measuring the time di�erence between the outgoing laser pulse and 
the portion of the signal scattered back from the illuminated targets into the receiver’s Field of 
View (FoV). �is is commonly referred to as the Time-of-Flight (ToF) measurement principle. As 
laser scanning in general, ULS is therefore a sequentially measuring, active acquisition technique.

To obtain 3D coordinates of an object in a georeferenced coordinate system (e.g. WGS84), the 
position and attitude of the platform and the scan angle need to be measured continuously in 
addition to the ranges. �us, ULS is a dynamic, multi-sensor system, where each laser ray has 
its own absolute orientation. In contrast to aerial photogrammetry, where the image orientation 
can be established by bundle block adjustment based on ground control points, ULS mainly 
relies on direct georeferencing. �e use of a navigation device consisting of a GNSS (Global Nav-
igation Satellite System) receiver and an IMU (Inertial Measurement Unit) are indispensable.

ULS is a polar measurement system, i.e., a singe measurement is su�cient to obtain the 3D 
coordinates of an object. �is is of special advantage in case of dynamic objects like tree cano-
pies which are permanently moving due to wind. For image-based techniques, this is a relevant 
problem because in the UAV-context, the image ground sampling distances (GSD) are typically 
in the cm range, and small object movements lead to displacements of multiple pixels. 

(a) Echo number (b) Reflectance

Legend:          1st 2nd 3rd echo                                   -15        -12           -9           -6           -3            0        dB 

Figure 2.6-1: 3D UAV-LiDAR point cloud of a forest plot; (a) colored by echo number: 1st echoes 
(blue) accumulate in the canopy whereas 2nd and 3rd echoes dominate on the ground, (b) colored 

by re�ectance: small twigs and branches feature lower re�ectance (blue) compared to 
laser returns from understorey (green), and from stems and bare ground (orange). 

Unless otherwise stated, all images were prepared by the author for this chapter.
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�e ideal laser ray is in�nitely small, but the actual laser beams can rather be thought of as light 
cones with a narrow opening angle. In ULS, the typical diameter of the illuminated spot on the 
ground (footprint) is in the cm- to dm-range depending on the �ying altitude and the sensor’s 
beam divergence. Due to the �nite footprint, multiple objects along the laser line-of-sight can 
potentially be illuminated by a single pulse. In such a situation, ToF sensors can return multiple 
points for a single laser pulse. �is so-called multi-target capability together with high meas-
urement rates leads to unprecedented 3D point densities for the acquisition of semi-transparent 
objects like forest vegetation (cf. Figure 2.6-1).

Next to signal runtime, ULS sensors typically deliver additional attributes for each de-
tected echo. Especially if the entire incoming radiation is sampled and stored with high 
frequency (full waveform recording), object properties like reflectance can be derived via 
radiometric calibration of the signal (cf. Figure 2.6-1b). The received signal strength strong-
ly depends on the employed laser wavelengths, which range from the visible green to near 
infrared part of the spectrum. Green laser radiation (λ=532  nm) is capable of penetrat-
ing water and is therefore used in laser bathymetry for capturing the bottom of clear and 
shallow water bodies. Infrared wavelengths (λ=905/1,064/1,550 nm), in turn, exhibit better 
reflectance characteristics for vegetation, soil, sealed surfaces, etc. Thus, infrared lasers are 
the first choice for topographic mapping and forestry applications. This is equally relevant 
for both ALS and ULS.

Another similarity between ALS and ULS is data acquisition with partially overlapping �ight 
strips. �e overlap area provides the basis for (i) checking the strip �tting accuracy and (ii) 
geometric calibration of the sensor system via strip adjustment. In contrast to area-wide data 
capturing, ULS is particularly well suited for corridor mapping (river courses, forest transects, 
fault lines, etc.). While manually piloting the UAV is restricted to visual line-of-sight (VLOS) 
operation, regular scan grid patterns are usually realized via waypoints, which potentially enable 
beyond line-of-sight (BVLOS) given the respective permission.

�e remainder of the chapter is structured as follows: Chapter 2.6.1 details the fundamentals 
of laser ranging and scanning, the sensor geometric and radiometric model, and the principles 
of �ight planning, quality control, and sensor orientation via strip adjustment. Chapter 2.6.2 
gives an overview of available UAV-LiDAR topographic and bathymetric sensors and their in-
tegration on di�erent UAV platforms and discusses the pros and cons of the individual sensor 
systems together with their targeted �eld of application. �e chapter concludes with a list of 
related references.
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2.6.1  LiDAR principles

In this Section, the principles of ALS scanning in general and of UAV-based laser scanning in 
particular are shortly summarized (Pfeifer et al., 2015; Shan & Toth, 2018; Vosselman & Maas, 
2010).

2.6.1.1  Laser ranging

�e core component of each laser scanning system is the ranging unit. Knowing the speed of 
light c, the pulse emission time t0, and the arrival time of the return pulse t1, the sensor-to-target 
distance R can be calculated as:

    ( )
= 1 0

2

t t
R c      1

If (i) the laser beam hits an extended planar target under a normal incidence angle and (ii) the 
speed of light (group velocity) is accurately determined, the ranging accuracy is directly related 
to the timing error. To achieve a ranging accuracy in the cm range, sub-nanosecond time meas-
urement accuracy is required.

Ranging based on the ToF principle is employed for manned ALS as well as for most ULS 
systems. However, the phase-shi� method constitutes an alternative ranging approach. In this 
case, a continuous laser signal is imprinted onto a carrier wave and the o�set between the phase 
of the emitted and returned signal is measured. �e main advantage of the ToF principle is its 
inherent multi-target capability. �is is particularly useful for environmental studies, especially 
when scanning semi-transparent objects like forests, where the laser light is able to penetrate the 
vegetation through small openings in the foliage. �e phase-shi� technique, in contrast, only 
delivers a single return per pulse. 

2.6.1.2  Scanning

As in traditional ALS, sampling of the Earth’s surface with UAV-based laser scanning is ac-
complished based on �ight strips. Areal coverage with 3D points requires (i) the forward 
motion of the UAV platform and (ii) a beam de�ection unit systematically steering the laser 
rays below or around the sensor. Figure  2.6-2 shows typical beam de�ection mechanisms 
used in ULS.
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Figure 2.6-2: Mechanical beam de�ection strategies used in UAV-based laser scanning.

Assuming both horizontal terrain and horizontal forward motion of the platform with constant 
velocity, a rotating multi-faced polygonal wheel produces parallel scan lines on the ground ap-
proximately perpendicular to the �ight trajectory. �e constant rotation of a mirror polygon 
yields an approximately constant point distance along the scan line within a typical FoV of ±30° 
around the nadir direction. By adjusting rotation speed (scan rate), �ying velocity, and pulse 
repetition rate (PRR), a homogeneous point pattern on the ground can be achieved, both along 
and across track (Figure 2.6-2a). 

Panoramic scanning in vertical scan planes is achieved using a scan wedge, where the mirror 
plane is tilted by 45° with respect to a horizontal rotational axis. As the laser scanner is typically 
mounted below the UAV, the full circle of laser beams is restricted in practice to approximately 
230°. �is still allows scanning even above the horizon, which is bene�cial in the context of 
environmental mapping, e.g., to acquire narrow canyons or riverside vegetation. Concerning 
the homogeneity of the point pattern, the same as for polygonal wheels applies for the na-
dir area (±30°). Due to panoramic scanning, the swath is much wider and is only limited by 
the maximum measurement range of the sensor. �e point spacing decreases with increasing 
distance from the strip center and with larger ranges the size of the laser footprints increases 
(Figure 2.6-2b). 

In contrast to scanning in vertical planes as described above, oblique scanning with a constant 
laser beam o�-nadir angle results in a spiral-shaped scan pattern on the ground. �is is, e.g., 
implemented by employing a rotating scan wedge with a tilted rotational axis (Palmer scanner, 
Figure 2.6-2c). Palmer scanners are especially used in laser bathymetry with o�-nadir angles 



204

Gottfried Mandlburger

between 15–20°, as this is the optimum trade-o� for receiving re�ections from the water surface 
as well as for penetration of the laser signal into the water column (Guenther et al., 2000). For 
topographic applications, oblique scanning enables to look under bridges and potentially pro-
vides more returns from facades, depending on building height, road width, and laser beam tilt. 
It also provides a forward and backward look in the same scan line (more precisely: scan circle or 
ellipse), thus hitting objects from di�erent viewpoints. However, this double-look feature dimin-
ishes from the center towards the border of the strip. A downside of this scanning mechanism 
is the inhomogeneous point distribution with a much higher density on the border compared 
to the center of the strip, which needs to be appropriately considered during data processing. 

Oscillating mirrors constitute an alternative to constantly rotating mirrors or polygons (Fig-
ure 2.6-2d). �e mirror constantly swings between two positions. �e extreme mirror positions 
mark the border of the strip. Due to the necessary deceleration at the end of the swing, the point 
density is higher at the border of the strip compared to the center, as it is the case for Palmer 
scanners. 

A completely di�erent scanning approach is persued by a technique referred to as solid-state 
hybrid lidar (Frost et al., 2016) or rotating multi-beam LiDAR, respectively. In this context, sol-
id-state means that no rotating or oscillating device is used to de�ect the laser beam in di�erent 
directions, but the entire laser unit spins around an axis. As this technology o�en operates a fan 
of laser range �nders (8/16/32/64/128 channels) in parallel, the term pro�le-array scanner is 
used in the following. In ULS, scanner integrations with horizontal rotation axes are preferred 
enabling panoramic scanning similar to Figure  2.6-2b, but with multiple laser channels and, 
hence, multiple scan lines per revolution. �is potentially increases the capturing rate by a factor 
of n, with n=number of laser channels. Figure 2.6-3 illustrates the general principle. 

v

Laser range finder

Figure 2.6-3: Scanning principle of pro�le-array laser scanners.

In all strategies shown so far, an individual detector receives the backscattered signal from a 
single narrow laser shot. In contrast to that, so-called �ash LiDAR or focal plane LiDAR sensors 
use a broad laser pulse and the backscattered signal illuminates an array of receivers. �ese sys-
tems are also termed ToF cameras or range cameras, as the result of a single laser pulse is a range 
image (Hansard et al., 2012). �us, no scanning in the above sense using rotating elements is 
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required to obtain arial coverage, which enables extremely compact and lightweight design 
(~100 g). Due to the limited measurement range on natural targets (< 50 m), �ash LiDAR is 
not further considered here but with ongoing development it is likely to become an option in 
UAV-based LiDAR mapping for environmental applications in the future. 

2.6.1.3  Laser beam model

While the ideal laser shot is in�nitely short and narrow, in practice typical UAV LiDAR sensors 
exhibit a laser pulse duration in the range of 1–6 ns corresponding to 30–180 cm in metric units 
and feature a laser beam divergence of around 0.5–3 mrad resulting in a laser footprint on the 
ground of 2.5–15 cm for a �ying altitude of 50 m above ground level (AGL).

�e energy distribution in longitudinal and radial direction (along and across the laser beam 
direction) is commonly described as a Gaussian function (Jutzi & Stilla, 2005; Słota, 2015). Fig-
ure 2.6-4 shows a conceptual drawing of the energy distribution within a laser beam and the 
corresponding mathematical formulation is provided in eq. 2.

r

t

Figure 2.6-4: Leaser beam model (adapted from (Słota, 2015)).
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I0 denotes the peak energy level which is reached at temporal position t = 0 and radial posi-
tion r = 0, i.e. along the laser axis in the middle between rising and falling of the laser energy. 



206

Gottfried Mandlburger

I0  decreases exponentially from this center point both along and across the laser line of sight. 
�e drop level depends on the standard deviation of the Gaussian curves (longitudinal: σtang, 
radial: σrad ). In signal processing, pulse duration and size are o�en described by the so-called 
“full width at half maximum” (FWHM), i.e. the range when the signal has dropped to the half 
of its maximum. �e following relations between FWHM and standard deviation apply for the 
longitudinal and radial direction:

        = 22 2 ln2 tangw     3

   = =22 2 ln2  rads R     4

�e pulse duration w (eq. 3) directly in�uences the range discrimination distance, i.e. the capa-
bilitity to separate two consecutive objects illuminated by the same laser beam along the beam 
path (e.g., two branches of a tree, shrub and ground below, etc.). As a rule of thumb, the min-
imum time, or distance, respectively, to separate two individual laser echoes is dt = w/2. For a 
typical pulse duration of 3 ns, the range discrimination distance in metric units is approximately 
45 cm. 

From eq. 4 it can be seen that the size of the illuminated area s (i.e., the laser footprint diame-
ter) depends on both the measurement range R and the beam divergence γ. �e size of the laser 
footprint inherently limits the spatial resolution of any LiDAR system. As ALS and ULS sensors 
exhibit comparable beam divergence measures, the spatial resolution of ULS is higher by an 
order of magnitude due to shorter measurement ranges. 

2.6.1.4  Signal detection and waveform processing

In conventional ToF laser ranging, the return signal of a highly collimated laser pulse is received 
by a single detector. For the conversion of the optical power into digital radiometric informa-
tion, a two-stage procedure is employed (Ullrich & Pfennigbauer, 2016). First, an Avalanche 
Photo Diode (APD) converts the received laser radiation into an analog signal, and subsequently 
an Analog-Digital Converter (ADC) generates the �nal measurement in digital form. APDs 
used for UAV-based laser scanning operate in linear-mode, i.e. the dynamic range of the APD 
where the optical power and the analog output are linearly related. Such APDs deliver measures 
of the received signal strength and provide object re�ectance and/or material properties of the 
illuminated objects via radiometric calibration (Briese et al., 2012; Wagner, 2010).

�e actual range detection is either implemented by hardware components of the laser scan-
ner (discrete echo systems) or by high-frequency discretization of the entire backscattered echo 
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waveform. In the latter case, the captured waveforms are either processed online by the �rmware 
of the sensor (Pfennigbauer et al., 2014) or stored for detailed analysis in postprocessing (Mallet 
& Bretar, 2009; Shan & Toth, 2018). To date, some existing ULS sensors feature full waveform 
acquisition with entailed advantages w.r.t. ranging precision, target separability, and object char-
acterization (amplitude, echo width, re�ectance, etc.). A detailed discussion of full waveform 
laser scanning is beyond the scope of this book. More information is found in subject literature 
(Jutzi & Stilla, 2005; Mallet & Bretar, 2009; Wagner et al., 2006). 

2.6.1.5  Geometric sensor model
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Figure 2.6-5: Conceptual drawing of ALS/ULS sensor model based on: (Glira et al., 2015b).

UAV laser scanning is a kinematic measurement process based on a tightly synchronized mul-
ti-sensor system consisting of a Global Navigation Satellite System (GNSS) receiver, an Inertial 
Navigation System (INS), and the laser scanner itself. INS sensors are also termed IMU (Inertial 
Measurement Unit). �e computation of georeferenced 3D points is called direct georeferencing 
and is illustrated in Figure 2.6-5. 

In a preprocessing step, Kalman �ltering (Grewal et al., 2013) is employed to merge GNSS and 
IMU observations resulting in a so-called Smoothed Best Estimate of Trajectory (SBET). A Kal-
man �lter integrates the individual positional and inertial measurements over time in a linear 
quadratic estimation framework considering statistical noise and other sources of inaccuracies. 
It delivers the absolute 3D positions (X, Y, Z) of the measurement platform in a geocentric, 
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Cartesian (Earth-Centered-Earth-Fixed, ECEF) coordinate frame as well as the attitude of the 
measurement platform w.r.t. to the local horizon (navigation angles: roll, pitch, yaw). GNSS 
typically provides positions with a rate of 1–2 Hz corresponding to a point distance of 4–8 m for 
a typical UAV �ight velocity of 16 knots (~8 m/s). �e INS measurement rate in turn, is much 
higher (100–500 Hz) and both 3D positions and attitudes are estimated for each timestamp (t) 
of the higher IMU-frequency within the Kalman �lter resulting in a typical point spacing of 
consecutive �ight trajectory points of 1.6–8 cm. 

�e trajectory data are subsequently combined with the time-stamped laser scanner meas-
urements. In general, the raw range and scan angle measurements are not directly provided 
by the sensor manufacturers, as small corrections are applied to the raw data compensating 
systematic instrument e�ects which are calibrated in the manufacturer’s lab (irregularities of the 
scan mirrors, amplitude dependency of range measurement, etc.). �is internal calibration leads 
to 3D coordinates of the detected objects (i.e. laser echoes) in the sensor coordinate system and 
constitute the basis for the calculation of 3D object coordinates in an ECEF coordinate system 
according to eq. 5

  ( ) ( ) ( ) ( ) ( )( )= + +e e e n i i s
n i sx t g t R t R t a R x t    5

�e transformation chain in eq. 5 transforms between the following coordinate systems (CS), 
each denoted by a speci�c index and highlighted by a speci�c color in Figure 2.6-5.

• s/blue: scanner CS
• i/red: INS CS, also referred to as body CS or platform CS
• n/no color: navigation CS (local horizon: x=north, y=east, z=nadir)
• e/magenta: ECEF (earth-centered earth-�xed) CS

Reading eq. 5 from right to le�, xs(xs, ys, zs) is a 3D vector denoting the coordinates of a laser 
point in the local scanner CS which is rotated by the boresight angles into the INS system ( i

sR ) 
and shi�ed by the lever arm (ai). �e lever arm is the o�set vector between the phase center of 
the GNSS antenna and origin of scanner system, and the boresight angles denote the small an-
gular di�erences (Δroll, Δpitch, Δyaw) between the reference plane of the scanner and the INS 
(cf. green elements in Figure 2.6-5). While the lever arm can be measured on the ground with 
a total station, the boresight angles are determined within strip adjustment based on data from 
a calibration �ight (Hebel & Stilla, 2012; Skaloud & Lichti, 2006). n

iR  transforms the resulting 
vector from the INS CS to the navigation system based on the IMU measurements (roll/pitch/
yaw), and e

nR  rotates to the cartesian ECEF system. �e latter rotation depends on the geograph-
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ical position (latitude/longitude) of the INS origin. �e 3D coordinates of the laser point  xe(t) 
are �nally obtained by adding the ECEF coordinates of the GNSS antenna (ge).

�e total positional and vertical uncertainty (TPU/TVU) of ULS-derived 3D points depends 
on the accuracy of both the laser scanner and the trajectory as well as on the synchronisation of 
all sensor components (GNSS, IMU, scanner). Compared to ALS based on manned aircra�, the 
accuracy demand for the angular components (scan angle, platform attitude) is lower for ULS 
due to the shorter measurement ranges. For this reason, the employed INS sensors are typically 
less accurate (roll/pitch: ~0.015°, yaw: 0.035°) as used for ALS. GNSS errors, however, directly 
translate to respective errors in the ULS point clouds, thus, equally accurate GNSS receivers are 
required for ALS and ULS.

2.6.1.6  Radiometric sensor model

Information about the radiometric properties of illuminated objects are of high importance for 
environmental applications. �e laser-radar equation describes the fundamental relationship 
between the emitted and the received optical power (Pfeifer et al., 2015; Wagner et al., 2006):
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�e received power PR depends on the transmitted power PT, the measurement range R, the 
laser beam divergence γ, the size of the receiver aperture D, the radar cross-section σ, as well as 
factors related to system losses ηSYS and atmospheric attenuation ηATM. PBK, �nally, indicates solar 
background radiation that deteriorates the signal-to-noise ratio.

�e laser-radar cross-section σ incorporates all target properties and can be separated into the 
illuminated target area A, the object’s re�ectance ρ, and the backscattering solid angle Ω.

   
4 A= 7

Ω denotes the opening angle of a cone into which the laser signal is re�ected. Specular re�ection 
is characterized by a narrow cone (i.e. small values of Ω). Most of the natural targets (soil, grass, 
trees, etc.) as well as sealed surfaces (asphalt, concrete) are di�use scatterers. For ideal di�usely 
re�ecting targets (Ω = 180o), Lambert’s cosine law is applicable.

�e cross-section further depends on the illuminated area A, which is a function of the meas-
urement range R, the beam opening angle γ, and the incidence angle α between the laser beam 
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and the normal direction of the illuminated surface. For extended targets larger than the laser 
footprint, the area calculates to (Roncat et al., 2016; Roncat et al., 2012): 

   ( )
=

2

cos 4 cos
L

RA
A 8

AL is the projection of the e�ectively illuminated target area to a plane orthogonal to the laser 
beam direction which only depends on the measurement range R and the laser beam opening 
angle γ. Inserting eqs. 8 and 7 into eq. 6 reveals a decrease of received power with the squared 
sensor-to-target distance (R2). Linear targets (e.g. power lines) crossing the laser footprint, in 
turn, exhibit a R3 relationship and the signal loss corresponds to R4 for point features (e.g. 
leaves). 

LiDAR sensors do not directly measure the received optical power PR, but especially full wave-
form laser scanning provides the signal amplitude and the width of the return echo which to-
gether are proxies for PR . Simple correction strategies account for the dominating range e�ect to 
correct the received signal strength measurements (Hö�e & Pfeifer, 2007), while rigorous radi-
ometric calibration use external radiometric reference measurements to obtain object properties 
like backscattering cross-section, backscattering coe�cient, or object re�ectance (Briese et al., 
2012; Kaasalainen et al., 2011; Kashani et al., 2015; Wagner, 2010) .

�e laser-radar equation only applies in the far �eld starting at a range of about 50 m. While 
UAV �ying altitudes are seldomly lower than 50 m above ground level due to safety consider-
ations, still objects standing out from the ground (e.g. buildings, trees, power line towers, etc.) 
may well result in measurement ranges smaller than 50 m. In this case, sensor manufacturers 
o�en provide look-up tables describing the relation between signal strength and short measure-
ment range.

2.6.1.7  Flight planning

ULS data capturing is generally carried out based on individual �ight strips. For areal data 
acquisition a setup with longitudinal strips for areal coverage and occasional cross strips for 
block stabilization (cf. Figure 2.6-6a) constitutes best practice. Adjacent �ight strips typically 
exhibit an overlap area of 20–50 %. Corridor mapping o�en requires a more �exible �ight plan 
with the strips aligned to the object of study (cf. Figure 2.6-6b). Also in this case, su�cient 
overlap of consecutive strips is crucial for enabling proper quality control and stabilizing the 
block geometry.
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Figure 2.6-6:  Flight strip setup for areal survey (a) and corridor mapping (b). � e areal setup 
consists of six longitudinal strips and three cross strips. In the corridor setup, 

the � ight strips follow the river course and strip overlaps are provided 
at the junction points for block stabilization.

� e most relevant parameters for planning a � ight are (i) the swath width of the individual strips 
and (ii) the intended laser pulse density:

    = 2 tan
2

FOVSW h  8

   /
/  2   tan

2

points second MR MRPD
area second SW FOVh

= = =  8

� e swath width SW (eq. 9) relates to the � ying altitude h and the scanner’s FOV. � is applies 
to scanners with a � nite FOV. For panoramic 360° scanners, SW is only restricted by the max-
imum range. � e mean pulse density PD (eq. 10) is directly proportional to the e� ective meas-
urement range MR and indirectly proportional to the swath width and the � ying  velocity v. For 
Palmer scanners and scanners with an oscillating mirror, MR corresponds to the PRR, while in 
most other cases MR<PRR. � e latter is typically the case for scanners with rotating polygons 
or 360° scanners. For the prior, eq. 10 denotes the mean pulse density as an average of very 
high density at the strip boundary and more representative lower pulse density in the middle 
of the strip.
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2.6.1.8  Quality control and sensor orientation

Within the common area of two �ight strips, the ground surface and objects thereon are meas-
ured independently from di�erent viewing points. Deviations in the overlap area are an indica-
tor of the sensor calibration quality. Especially smooth and inclined surfaces (slopes, embank-
ments, roofs, etc.) are well suited to detect potential sensor calibration problems. Deviations 
can either be measured as strip height di�erences based on strip-wise, gridded Digital Elevation 
Models (Ressl et al., 2008) or based on the 3D point clouds by calculating the distances of points 
in one strip from the planes constructed from the neighbouring points of the overlapping strip 
(point-to-plane distances). If (i) the residual errors are larger than the nominal accuracy of the 
employed sensors or (ii) systematic errors occur, re-calibration of the sensor system and orien-
tation of the �ight strips becomes necessary.

Depending on data availability, either approximative methods (Ressl et al., 2011) or rigorous 
approaches (Glira et al., 2019; Glira et al., 2015a; Pfeifer et al., 2015; Skaloud & Lichti, 2006) can 
be employed. Approximative methods typically start with the geo-referenced 3D point cloud 
and try to minimize the (height) deviations in the strip overlap area. Rigorous approaches, in 
turn, are based on the geometric sensor model (cf. chapter 2.6.1.5), and utilize the raw measure-
ments (i.e., �ight trajectory and the coordinates of the laser echoes in the sensor’s CS) to estimate 
the sensor calibration parameters. �e most important parameters are (Glira et al., 2016):

• mounting calibration (lever arm and boresight angles)
• scanner calibration parameters (range and scan angle o�set and scale)
• trajectory correction parameters (constant o�sets, dri�s, time dependent correction terms of 

higher order)
• datum shi� parameters

Sensor calibration and strip adjustment of ULS does not generally di�er from the strategies 
applied for manned ALS-platforms. UAVs, however, are not as stable as manned aircra� and 
hence prone to sudden �uctuation in position and attitude, especially when �own in windy 
conditions. Keeping in mind that the highest-class INS sensors are seldomly used for ULS, 
local deviations of the 3D point clouds of overlapping �ight strips are likely. To compensate 
these short-term e�ects, a cubic spline-based trajectory correction is proposed by Glira et al. 
(2016) for UAV-�ights with su�cient strip overlap and control patches. An optimum sensor 
calibration and orientation strategy would incorporate the raw GNSS and INS measurements, 
but this is still subject to scienti�c research (Cucci et al., 2017). Glira et al. (2019) extended the 
concept of pure laser scanning strip adjustment to hybrid sensor orientation including camera 
sensors. Including correspondences between laser strips and image tie points in a comprehen-
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sive integrated adjustment framework has proven to improve the trajectory estimation (Glira, 
2018).

2.6.2  UAV-LiDAR sensor concepts

2.6.2.1  Sensor overview

Table 2.6-1 provides an overview of existing compact laser scanners suited or even designed for 
integration on UAVs. �e speci�cations are taken from company brochures. In case of di�erent 
operation modes, the reported values always denote the mode with the highest measurement 
rate. �e maximum range depends on the object’s re�ectivity, where at least ρ≥60 % is assumed. 
�e listed precision (prec) and accuracy (acc) numbers relate to the ranging component only. 
For better readability, the beam divergence measures are also expressed as footprint diameters 
on the ground assuming a �ying height of 50 m AGL.

Table 2.6-1: UAV-LiDAR sensor speci�cations.

ID sensor mass wave-
length

max 
range

prec/
acc

meas. 
rate

beam 
div.

footprint 
@50 m 
agl

FOV chan-
nels

[kg] [nm] [m] [mm] [kHz] [mrad] [mm] °

1 VUX1-UAV 3.75 1,550 300 5/10 500 0.5 25 330 1

2 mini-
VUX-2UAV

1.60 905 250 10/15 200 1.6 x 0.5 80 x 25 360 1

3 VUX-240 4.10 1,064 650 15/20 1500 0.35 18 75 1

4 VQ-840-G 12.00 532 --- 15/20 200 1.0–6.0 50–300 40 1

5 Puck LITE 0.59 903 100 --/30 300 3.0 x 1.2 150 x 60 360 32

6 Alpha Puck 3.50 903 300 --/30 2,400 3.0 x 1.5 150 x 75 360 128

7 CL-90 3.85 1,550 175 5/10 500 0.3 15 90 1

8 CL-360 3.50 1,550 300 5/10 500 0.3 15 360 1
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(1) (2) (3) (4)

(5) (6) (7) (8)

Figure 2.6-7: Selected UAV-lidar sensors.8 Images from Riegl, Velodyne Lidar 
and Teledyne Geospatial; used with permission – all rights reserved.

In general, di�erent categories of LiDAR sensors are available. Extremely lightweight sensors 
(< 1 kg) enable longer �ight endurance but are typically less accurate (3 cm) and exhibit a larg-
er footprint diameter in the dm-range. Such sensors can be integrated on small UAS (sUAS) 
platforms with a maximum take-o� mass (MTOM) < 10 kg. Sensors delivering survey-grade 
precision in the cm range typically weigh around 4 kg and, thus, require larger UAVs with a 
MTOM of around 25 kg. 

�e sensors listed in Table 2.6-1 use the scan mechanisms shown in Figure 2.6-2 and Fig-
ure 2.6-3. All sensors except (5) and (6) are conventional linear-mode LiDAR systems with a 
single laser channel and mechanical beam de�ection with a rotating polygonal wheel (3), rotat-
ing wedge (1, 2, 8), oscillating mirror (7), or conical scanning (4). Sensors (5) and (6) are pro-
�le-array scanners with 32 or 128 jointly rotating laser channels. Most of the cited sensors use 
panoramic scanning (FoV=360°) with (near) horizontal rotation axes allowing to capture verti-
cal structures to both sides of the scanner in narrow valleys, street canyons, and river corridors. 
It is a clear advantage of agile UAVs to operate in such demanding scenarios. �e down side of 
this scanning mechanism is that, in most cases, the surfaces and objects of interest are located 

8 Source: (1) http://www.riegl.co.at/uploads/tx_pxpriegldownloads/Infosheet_VUX-1series_2017-12-04.
pdf. (2)  https://www.geoweeknews.com/news/riegl-goes-small-minivux1-uav-lidar. (3)  http://www.
riegl.co.at/products/unmanned-scanning/riegl-vux-240/. (4)  http://www.riegl.com/nc/products/
airborne-scanning/produktdetail/product/scanner/63/. (5), (6)  https://velodynelidar.com/products/
alpha-prime/. (7)  https://www.teledyneoptech.com/en/products/compact-lidar/cl-90/. Image courte-
sy of Teledyne Geospatial. (8)  https://www.teledyneoptech.com/en/products/compact-lidar/cl-360/. 
Image courtesy of Teledyne Geospatial.



215

2.6  UAV laser scanning

beneath the UAV. Hence, concentrating the emitted laser pulses to a smaller FoV would increase 
the e�ective measurement rate, as this is the case for scanners (3), (4) and (7). 

�e measurement rates ranging from around 200 kHz (2, 4, 5) to more than 1 MHz (3, 6) 
result in point densities on the ground in the order of 50–500 points/m2 depending on �ying al-
titude, �ight velocity, and FoV. ULS is therefore well suited for deriving Digital Elevation Models 
with a grid spacing of 5–10 cm (Escobar Villanueva et al., 2019; Mandlburger et al., 2015). It is 
noted that the spatial resolution generally depends on both the point spacing and footprint size 
and is always limited by the larger of the two. �us, when choosing the right scanner for a certain 
application, both aspects need to be taken into account. 

2.6.2.2  Topo-bathymetric sensors

Most sensors listed in Table 1 are topographic scanners based on infrared wavelengths. Sensor 
(4) is a topo-bathymetric scanner employing a laser operating in the visible green domain of 
the spectrum (532 nm). At this wavelength, laser light is able to penetrate the water column and 
measure the ground of the water bodies. While airborne laser bathymetry based on manned 
aircra� is well suited for mapping clear and shallow coastal areas and larger inland water bodies, 
the spatial resolution is moderate as relatively broad laser beams are employed to ensure eye-safe 
operation. �e main advantages of UAV-borne LiDAR bathymetry are (i) the potentially higher 
planimetric resolution and (ii) the agility of the UAV platforms. �e latter make UAV-based 
bathymetry an upcoming technique for mapping smaller water bodies like ponds and medi-
um-sized rivers featuring a meandering course. 

�e depth performance of topo-bathymetric sensors is o�en de�ned in multiples of the Secchi 
depth (SD). Secchi depth is an empirical measure for water turbidity and denotes the distance 
where the black and white quadrants of a 30 cm checker board disk lowered into the water can 
no longer be separated. Sensor (4) constitutes a survey-grade topo-bathymetric sensor featuring 
a maximum depth penetration of 2 SD. However, the sensor requires a powerful UAV platform 
with a MTOM of around 35 kg. Complementary to sensor (4), more lightweight instruments 
(5 kg) with a depth penetration of around 1 SD are available too. Such sensors are suitable for 
capturing small and very shallow clear water rivers. A comprehensive review of existing topo-ba-
thymetric sensors can be found in (Mandlburger et al., 2020).
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2.6.2.3  Sensor integration examples

Figure 2.6-8 shows examples for integrations of LiDAR sensors on various UAV platforms. �e 
choice of the appropriate type of UAV depends on the payload capacity and the targeted �ight 
endurance. In general, multicopter, helicopter, and �xed wing UAVs are potentially suited for 
UAV-LiDAR integrations, but multicopters (quad-, hexa-, and octocopters) are most o�en uti-
lized.

rotors
GNSS+ radio data link antennas

batteries

laser scanner (1) + IMU
cameras

laser scanner (4)

camera or 
IR laser 

octocopter UAV 
(MTOM: 25 kg)

octocopter UAV 
(MTOM: 35 kg)

hexacopter UAV 
(MTOM: 15.5 kg)

profile array laser 
scanners (5) + IMU

GNSS antennas

Source: 4D-IT, www.4d-it.com

Fixed wing UAV (MTOM: 15.5 kg)

Source: Quantum systems, https://www.quantum-systems.com; YellowScan, https://www.yellowscan-lidar.com/

profile array
laser scanner (5)

(a) (b)

(c) (d)

cameras

Figure 2.6-8: UAV-LiDAR sensor integration examples.9 Images from 4D-IT and 
Quantum Systems; used with permission – all rights reserved.

Figure 2.6-8a depicts a full-featured hybrid sensor system consisting of a panoramic laser scan-
ner (1), two oblique cameras, and a navigation system (GNSS+IMU) integrated on an octocop-
ter-UAV with a MTOM of 25 kg. �e maximum �ight time of this survey-grade sensor system is 
around 30 min and the targeted application include agriculture, forestry, archaeology, corridor 
mapping, monitoring of landslides and open-cast mines, and urban mapping. 

Figure 2.6-8b shows a bigger version of the same UAV-type (octocopter, MTOM: 35 kg) carry-
ing a topo-bathymetric sensor (4). �e inertial navigation sensors and an optional camera or IR 
laser range �nder are combined and tightly coupled in a compact housing. �e targeted applica-
tions for UAV-based LiDAR bathymetry include �ood modelling, habitat mapping, monitoring 
of morphodynamics, roughness estimation for hydrodynamic-numerical modelling, etc.

9 Source: (c) 4DIT. (d) Quantum systems, YellowScan.
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�e system shown Figure 2.6-8c comprises two ultra-lightweight pro�le-array laser scanners 
(5), two oblique looking RGB cameras and a navigation system (GNSS+IMU) mounted on a 
hexacopter UAV. �e system features a maximum �ight time of 40 min and is used for terrain 
modelling, vegetation mapping, geological mapping, documentation of pit-mining activities, or 
land slide monitoring, and for high-quality 3D documentation of building facilities, industrial 
sites, or archaeology.

�e �nal example depicted in Figure 2.6-8d shows the same scanner as above (5) integrated 
on a �xed wing UAV featuring only limited payload capacity (700 g) but long �ight endurance. 
In general, �xed wing UAVs outperform multicopters in terms of �ight endurance, which is es-
pecially useful when operated BVLOS. �e depicted system features a �ight time of 90 min, and 
o�ers telemetry capabilities within a radius of 7 km. Together with the generally faster cruising 
speeds compared to multicopter platforms, �xed wing UAVs are best suited for large-area map-
ping with very high spatial resolution. �is is especially bene�cial for capturing vast uninhabited 
forest areas, for which BVLOS �ight permissions are easier to obtain compared to populated 
areas.
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Regardless of the application, UAVs are largely employed in environmental sciences for a sim-
ple reason: they allow researchers or professionals interested in a given process or physical 
element to gather observations giving, at the same time, some logistical advantage. �e ad-
vantage given by UAVs might be measurable in terms of cost (e.g., compared with airborne 
data acquisition), resolution, rapidity, feasibility and accessibility of the site that one intends 
to study. 

UAVs are most o�en used in environmental studies to gather low-cost and high-resolution 
visible or multispectral aerial imagery of one or more elements of interest within the environ-
ment. Typical examples are the reconstruction of orthophotos and Digital Elevation Models 
starting from overlapping RGB photos processed with photogrammetry methods (chapter 2.2), 
or the collection of multispectral imagery (chapter 2.5) to assess the health of crops or to assess 
ecosystem status (Salamí et al., 2014). �ese are examples of how UAVs can be used to collect 
ground data, that are largely treated in this volume. 

In this chapter, an overview on other use of UAVs in environmental science is presented. Due 
to the rapid increase of the use of UAVs in di�erent environmental �elds and the existing broad 
applications, it will not be possible to cover all the other environmental uses of UAVs, but, in this 
chapter, we aim at mentioning some of the established ones. To note is here we only give a broad 
overview of these “other” environmental applications, with the necessary references where more 
detailed information can be found. 

A well-established use of UAVs is certainly the study of the air column. Atmospheric sci-
entists have pioneered the use of UAVs to study atmospheric phenomena (Gottwald & Ted-
ders, 1985; Konrad et al., 1970). �is resulted in new insights into atmospheric processes, 
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that were �rst hitherto di�cult to reach with traditional techniques (e.g. Ramanathan et al., 
2007). In literature, most examples of UAV use relate to operations involving a single drone 
(Martin et al., 2011; Rautenberg et al., 2018 and other), but there are examples where UAVs 
are �own in a swarm to collect, for example, multi-layer data (Han et al., 2013; Ramanathan 
et al., 2007).

�e brief overview presented here is based upon the extensive work of Villa et al., 2016, enti-
tled “An Overview of Small Unmanned Aerial Vehicles for Air Quality Measurements: Present 
Applications and Future Prospectives”. �ese authors reviewed 60 papers on the subject of “Air 
quality monitoring”, and report a detailed description for each one of them, including both UAV 
platforms and associated sensors. Villa et al.’s review (2016) is subdivided into three broader sub-
topics: “Study of Atmospheric Composition, Pollution and Climate Change”, “Measurement of 
Surface, Interior and Atmospheric Phenomena”, and “Measurements for Prevention, Patrolling 
and Intervention”. �ese are herein summarized into two broader topics: “Atmospheric variables 
and aerosol” and “Natural gas emissions and pollutants”. In addition to those two topics, we 
brie�y explore the use of UAVs in the magnetometry �eld. 

2.7.1  Atmospheric variables and aerosol

UAVs can mount sensors to measure atmospheric variables such as wind intensity and direction 
(Reuder et al., 2012 and other), even within extreme weather events such as typhoons (Lin et al., 
2008). UAVs can also be employed in the measurement of temperature, humidity, pollens and 
other variables at di�erent altitudes (Brosy et al., 2017; Renzaglia et al., 2016; Aylor et al., 2006 
and other) and to assess the concentration of aerosols and greenhouse gases within the atmos-
pheric boundary layer (ABL) or above it (Villa et al., 2016). As an example, Watai et al., 2005 
used UAVs can be used to measure temporal and spatial variations of atmospheric CO2 in and 
above the ABL. As a matter of fact, they measured temporal and vertical variation of CO2 from 
about 650 m to 2,000 m a.g.l. (above ground level). In 2012, Mayer et al., used the data collected 
by an UAV to evaluate the ABL parameterization schemes of the Advanced Weather Research 
and Forecasting model (AR-WRF). �e UAV provided vertical pro�les of temperature, relative 
humidity and wind from the ground to about 3,500 m a.g.l. �is, not only proved the capability 
of the UAV to catch the relevant physical processes of the diurnal evolution of the ABL, but also 
the crucial value of the UAV data for the detailed validation and development of the parameteri-
zation schemes used in forecasting numerical models. To give the reader the necessary referenc-
es of di�erent applications, Table 1 provides the list of variables measured using di�erent sensors 
mounted on UAVs. �e table presents the variables measured and the dedicated instrument/
sensor used on a UAV in the speci�c study.



221

2.7  Other UAV sensors

Table 2.7-1: Atmospheric variables and aerosol measured by di�erent 
instruments mounted on UAVs.

Measured Variables Instruments on drone Reference

Mean and turbulent wind vector 
(40-Hz temporal resolution, 55 cm 
spatial resolution)

5-hole probe; GPS receiver; inertial 
measurement unit (IMU) manufac-
tured by the
Institute of Fluid Dynamics (TU 
Braunschweig)

Kroonenberg et al., 
2008.

Martin et al., 2011.

Temperature and humidity Vaisala Intercap HMP50 sensor (1 s);
Dantec sensor (Temperature with 
higher temporal resolution)

Wind direction and speed
3-dimensional turbulence �ow vec-
tor (100 Hz).

5-hole probe; pressure transducers; 
data logger (Aeroprobe Corpora-
tion).

Reuder et al., 2012.

Temperature and humidity Sensirion SHT 75 sensor; 
PT1000 Heraeus M222 sensor 
(Temperature with higher temporal 
resolution, at least in unsaturated 
ambient air)

Pressure VTI SCP1000 sensor 

Turbulent 3D wind vector pitot-static tube; standard inertial 
navigation system; global navigation 
satellite systems

Rautenberg et al., 
2018.

Aerosol (concentration, size distribu-
tion, absorption coe�cient) 

Condensation Particle Counter; Op-
tical Particle Counter; Aethalometer

Ramana et al., 2007.

Solar radiation �uxes Pyranometer; Photo-synthetically 
Active Radiation

Clouds microphysics (drop size dis-
tribution, liquid water content)

Cloud Droplet Probe; Liquid water 
content probe
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Typhoons Data Collection
(tangential and radial wind pro�les 
from the outer perimeter into the eye 
of the typhoon; surface pressure
in the eyewall; speci�c humidity and 
air temperature)

Two Vaisala RSS901 PTU (pres-
sure-temperature-humidity) sensors

Lin et al., 2005.

Ultra�ne Particle condensation particle counters; opti-
cal particle counter

Altstädter et al., 2014.

2.7.2  Natural gas emissions and pollutants

�e concept of mounting sensors on UAVs to assess or monitor in time and space the chemi-
cal composition of volcanic plumes has been developed for nearly 15 years (Caltabiano et al., 
2005). In a recent review, Jordan et al., 2019 (their section 6) gives an overview of the studies 
that have employed di�erent sensors to measure volcanic gases such as sulfur dioxide (SO2) and 
carbon dioxide (CO2). Other than natural gas emissions, UAVs have been employed to monitor 
pollutants or other elements that pose a risk to human health. Within this context, speci�c sen-
sors can be used to measure industrial or radioactive pollutants. Han et al., (2013) showed that 
�xed-wing UAVs �ying in formation can be used to detect nuclear radiation using a lightweight 
(< 600 g) radiation detection sensor. In radiation surveillance the advantage of using UAVs is 
well evident since dangerous missions can be carried out safely from remote locations while the 
drone reaches contaminated areas and measure the level of radiation. Pollanen et al., (2009) used 
an air sampler and a gamma-ray spectrometer mounted on a mini-UAV to detect alpha-particle 
emitting radionuclides. Other sensors can be used to measure the concentration of atmospheric 
aerosol particles. Brady et al., (2016) used an optical particle counter and a CO2 sensor mounted 
on a quadrotor UAV to measure vertical and horizontal concentration gradients of CO2 and 
Particulate Matter (PM, both small-size, with diameter between 0.5 and 1 μm, and larger size, 
> 1 μm) at high spatial resolution (1 m). It is worth noting that PM is a signi�cant health hazard 
(Anderson et al., 2011) and also it plays a central role in Earth’s radiation budget (IPCC, 2013). 
Harrison et al., (2015) successfully measured airborne PM concentration using an aerosol spec-
trometer and an intake probe mounted on a UAV. Another application on air quality monitoring 
is reported in the work of Gonzalez et al., (2011) where they developed a prototype spore trap 
onboard an UAV which successfully captured and geolocated spores of pathogens in the air. 
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Table 2 gives an overview of the literature on natural gas and pollutants variables measured by 
speci�c sensors mounted on UAV platforms.

Table 2.7-2: Natural gas and pollutants variables measured 
by di�erent instruments mounted on UAVs.

Measured Variables Instruments on drone Reference

Carbon dioxide (CO2) and Partic-
ulate Matter (PM) at a high spatial 
resolution (1 m) 

MetOne 80080 two-channel particle 
counter to measure PM; CO2 meter 
K-30 sensor to detect CO2 between 0 
and 10,000 ppm

Brady et al., 2016.

Airborne Particulate Matter (PM) Grimm 1109 aerosol spectrometer; 
intake probe

Harrison et al., 2015. 

Carbon dioxide (CO2), methane 
(CH4), and water vapor concentra-
tions at high temporal resolution 
(1 Hz)

Compact lightweight atmospheric 
analyser (near infrared O�-Axis
Integrated Cavity Output Spectrosco-
py) 

Berman et al., 2012.

Methane (CH4) Custom laser-based methane sensor Nathan et al., 2015.

Volatile Organic Compounds 
(VOCs) and other gases (NO, NO2, 
CO).

Custom micromachining Metal Oxide 
(MOX) sensor

Rossi et al., 2014.

Ozone (O3) Electrochemical Concentration Cell 
(ECC) ozonesonde (manufactured by 
Science Pump Ltd)

Illingworth et al., 
2014.

Gas (gas source location) Con�gurable electronic nose (Örebro 
University); Gas detector (Dräger 
X-am 5600, Dräger Safety AG & Co. 
KGaA, Germany)

Neumann et al., 2013.

Carbon dioxide (CO2), Sulfur 
dioxide (SO2), Hydrogen sul�de 
(H2S) and Hydrogen (H2) content 
in volcanic emission

MicroGAS, MiniGAS, DOAS minia-
turized ultraviolet spectroscopic system

Stix et al., 2018. 

Jordan, 2019.

Carbon dioxide (CO2), Sulfur di-
oxide (SO2) and Hydrogen sul�de 
(H2S) content in volcanic emission

microDOAS gas-sensing spectrometer Kern et al., 2015.

Jordan, 2019.
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Nuclear radiation MiniRad-V radiation detection sensor Han et al., 2013.

Alpha-particle emitting radionu-
clides and ionizing radiation

Air Sampler and Small gamma-ray 
spectrometer

Pollanen et al., 2009.

Fungal pathogens (spores of plant 
pathogens)

Spore trap Gonzalez et al., 2011.

2.7.3  Magnetometry

Magnetometry is used in numerous geophysical applications as a form of site investigation of 
mineral exploration, infrastructures tracking, unexploded ordnance detection and other ap-
plications involving magnetic �eld anomalies. UAVs mounting a magnetometer can exploit a 
higher rate of coverage than terrestrial magnetic surveys at a higher resolution than manned 
airborne surveys (Walter et al., 2019). �e use of UAVs in this �eld is very challenging due to 
the di�culties in separating the magnetometer signal from the UAV platform to minimize the 
UAV’s magnetic �eld in�uence on the observations. Particularly apt platforms for magnetome-
try are multicopters, which allow to suspend a magnetic sensor away from the aircra� to avoid 
these e�ects (Walter et al., 2019). �is reduces signi�cantly the magnetic �eld contributions 
from the UAV platform (Malehmir et al. 2017, Parvar et al. 2018). Walter et al. (2019) investigat-
ed the performance of optically pumped vapour magnetometers suspended under a UAV. �ey 
concluded that once the magnetometer sensor axis has been optimally oriented with respect to 
the Earth’s magnetic �eld, the attitude variations of the sensor in pitch and roll are not signi�cant 
contributors to magnetic data loss. Instead, yaw axis variations, if unrestricted, contribute to 
magnetic data loss. �ey demonstrated that �xing the magnetometer yaw axis allows to collect 
data within the industrial standard. Among the applied examples of UAV magnotometry, we 
report that of Parvar et al. (2018), who used it a magnetometer mounted on a UAV to detect 
chromite (a mineral used as source of chromium for stainless steel production) by mapping the 
serpentinite rocks surrounding it. 
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3.1.1  �e choice of data formats – why does it matter?

UAVs themselves do not actually collect any data. It is much more about the data gener-
ated by different sensors carried by the UAVs. Chapters 2.4–2.7 already provides a broad 
overview of different sensor techniques carried by different systems like copters or fixed 
wings. Thus, the aim of this chapter is to give a fundamental overview about data structures 
and formats generated by different sensor technologies. The next subchapters start with an 
introduction of various point cloud data formats followed by a discussion of image data 
formats.

To facilitate the use and exchange of collected data, commonly used data formats follow or 
should follow some basic principles. �e use and exchange of data is particularly successful 
if the data formats are open in the broadest sense. It is important that speci�c license terms 
do not bind working with the data to speci�c so�ware products or impose additional fees on 
their users. �ese formats should also be backed by a large community of developers and users 
to ensure long-term availability and so�ware support. Data formats should allow to store the 
data in a compact an e�cient way, but also ensure that lossless compression algorithms can be 
applied. �is is especially crucial if the data should be used for computational analysis in later 
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processing steps. A common example is the analysis of radiometric information (e.g. from 
camera images) where lossy compression may introduce artifacts that have a negative e�ect 
on feature extraction or the computation of band indices. Closely related are considerations 
of numerical accuracy and value ranges. Low-precision �oating-point data (16 and 32 bit) can 
easily produce computational inaccuracies in the percent-range. If possible, su�ciently large 
�oating-point types (e.g. 64 or 128 bit) or precise integer or decimal values are preferred. Final-
ly, a suitable data format should permit fast reading under various access patterns. Data tiling 
or partitioning divides the whole data set into subsets to support fast seek operations. �e 
integration of pre-generated image pyramids provides generalized representations at di�erent 
spatial resolutions. Both mechanisms enable fast access to subsets of the data without having 
to load the whole data set.

For practical applications, the data format is o�en determined by the (o�en proprietary) sen-
sor technology and the so�ware used for post-processing and data analysis. Both usually restrict 
the choice of data formats and may even lead to various problems in data analyses if the overlap 
is very small and only leaves poor choices. If the technology is less restrictive, the choice of the 
data format can be determined by the task to achieve optimal results and a seamless processing 
work�ow.

�e choice of the data format deserves some consideration, incorporating the immediate 
task as well as storage and computing aspects and suitability for future applications which 
may not be fully known at the time of data recording. A poor choice may lead to sub-opti-
mal results, uneconomic use of resources or a restriction of downstream applications of the 
data. �e following example should outline such a case: �e storage of UAV images in the 
JPEG format, which uses lossy compression and usually encodes data in eight bits per RGB 
channel, is very economic but immediately heavily degrades the radiometric accuracy of the 
stored images. �is downgrade removes or modi�es �ner structures in the image, alters some 
pixel values to obtain better compression and introduces arti�cial patterns that result from 
the lossy encoding. Any subsequent image classi�cation task will not only produce sub-op-
timal results  – it must also be carefully analysed to identify areas where the classi�cation 
algorithm was deceived by arti�cial patterns. Especially for a temporal comparison, this can 
cause considerable constraints, which in the worst case leads to the necessity to repeat the 
UAV �ights.

To save time and e�ort in data acquisition UAV data are very o�en re-used for other tasks 
later on. However, this is only possible if a further use has already been anticipated. Hence the 
selection of a suitable data format must be part of every �ight planning. �e following chapters 
provide decision support for picking the right data format. �ey cover data formats for point 
clouds as well as image data formats. 
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3.1.2  Point cloud data formats

At �rst glance, the primary structure to store is that of a point. Essentially, a point cloud is a 
set of points in vector space. �is set of points is usually unorganized and lacks any topological 
information. Such point clouds can be captured directly by laser scanners installed on the UAVs, 
or they can be the product of data processing of 2D images that have been run through Structure 
from Motion algorithms (SfM, chapter 4.3). 

�e data formats mentioned in this chapter are certainly not complete and represent only a 
fraction of the total data formats available for point cloud data. Nevertheless, the essential for-
mats are presented here. 

�e �le formats for point clouds can be divided into two large groups – ASCII formats and 
binary formats – with individual advantages and disadvantages.

3.1.2.1  ASCII data formats

Data formats based on ASCII characters store the point information as lines of text. In the sim-
plest form, each line stores the x, y, z value of the spatial coordinate of each point. More complex 
formats may contain additional information such as intensities or even colour values for each 
point. �e main advantage of ASCII data formats is plain text and easily to understand by read-
ing. In many cases, a simple text editor is su�cient. With a view to the short-lived nature of data 
formats and the associated risk, that data once collected will no longer be readable in the future, 
ASCII data formats are of particular importance when storing data over long periods of time. 
But there are also disadvantages associated with the ASCII data format: �e use of text charac-
ters reduces data density and leads to a rapid increase in the data volume required for ASCII 
data. In addition, it is not possible, to read spatial subsets of the data record without scanning 
the whole �le. Data in ASCII format must be read line by line. �is necessity can considerably 
limit the speed of data processing, which is especially true for large scenes with high resolution. 
In the following two common ASCII data formats are introduced brie�y.

XYZ: In principle, there is no clear speci�cation standard for this �le format. �e structure of 
such a �le therefore depends very much on the preferences of the creator (e.g. for the separator 
of columns: spaces, tabs, commas). It is useful to have columns for the X, Y, and Z coordinates. 
In theory, the number of columns is unlimited, and these columns can contain additional infor-
mation about the points, such as color values. A disadvantage of non-speci�cation is that errors 
can occur during data exchange because of missing information on measurement units or coor-
dinate systems if these are not passed as supplementary information.
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OBJ: �e OBJ data format is not only suitable for storing point information, but could store 
more complex geometric objects. �is ASCII data format uses the de�nition of elements. �ese 
elements include points (p), lines (l), curves (curv), 2D-curve (curv2) and surfaces (surf). �e 
�le starts with an ordered set of points where each point has a unique index (�rst, second, and 
so on). �is index is used in subsequent parts of the �le when objects such as surfaces (key: f) 
are created from these points indices. Many common so�ware products use the OBJ data for-
mat. Depending on the application, the point information can also contain colour information, 
which are appended to each point’s coordinate as additional numbers (0.1).

3.1.2.2  Binary data formats

�e use of binary formats avoids some of the disadvantages of ASCII data formats. Binary data 
encodings are more storage-e�cient than ASCII data and also require less bandwidth for transfer. 
Many binary data formats support spatially indexing making it possible to read, visualize and ana-
lyse subsets of the data very quickly. Furthermore, they provide additional structures for metadata, 
sometimes down to each contained coordinate. �e obvious disadvantage of binary data formats, 
however, is the lack of immediate readability as it was the case with ASCII data, making it less suit-
able for data archives. �e LAS format is probably the most important binary point data format.

LAS: �e LAS data format is a binary point cloud data format o�ered by the American Society 
for Photogrammetry and Remote Sensing. Due to the binary storage, a data set in LAS format 
needs signi�cantly less space than ASCII formats. �e point information can be stored in eleven 
di�erent types of point data records. �ese types are distinguished mainly by the di�erent availa-
ble data �elds. Depending on the type of data record, the format also o�ers the possibility to store 
additional information about the point data. �is includes information about intensity, colour, 
GPS time and classi�cation. Within a LAS �le, all point data records must have the same format.

�ere are some data formats that try to combine the strengths of binary and ASCII formats. 
Among the best known are the PLY and E57 data formats that allow point clouds to be stored in 
both ASCII and binary representations.

PLY: �e PLY format is basically based on the OBJ format and was developed especially for 
storing 3D data. It is also called the Stanford Triangle Format. �e similarity to the OBJ format 
becomes clear when you consider the structure of an ASCII representation. Points are de�ned 
step by step to be combined into �at polygons in a second step. �e �le format is also capable of 
providing additional information, for example, about colour, transparency or texture.

E57: E57 is a vendor-neutral format that allows not only point clouds to be stored very compact-
ly, but also images and metadata. E57 �les have a hierarchical tree structure. �e sections contain-
ing the metadata (e.g. sensor information) are encoded as XML. However, for reasons of e�ciency, 
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most of the data (point data) is binary coded and not embedded in the XML sections. An advan-
tage of the E57 data format over other formats (e.g. LAS) is its theoretically unlimited �le size.

As already mentioned, the decision for one or the other point data format depends on the 
so�ware and hardware that is to be or must be used. Especially among the so�ware, many prod-
ucts allow a variety of import and export formats. Furthermore, the conversion of a binary �le 
into an ASCII �le for archiving purposes can be considered. Otherwise, it can be concluded that 
with LAS and E57 two formats are available that can guarantee a high degree of interoperability.

3.1.3  Image data formats

Camera systems that deliver data as digital images form another important group of sensors on 
UAVs for in environmental sciences. �eir images record information over a broad electromag-
netic spectrum. Chapters 2.4 and 2.5 provide a detailed description of imaging systems.

�e development of image data formats has started decades ago and led to a broad range of 
di�erent data formats with major or subtle di�erences. In general, two types of image data can 
be distinguished: RAW data formats and the so called “developed formats”. 

RAW data is data recorded by the cameras’ electronic sensors and stored almost unchanged. Be-
cause there is currently no uniform standard for sensor hardware RAW data formats di�er between 
camera manufacturers. Today, raw data formats such as ARW (Sony), NEF (Nikon), CRW/CR2/
CR3 (Canon) or RAF (Fuji) are in use. Approaches to �nd a common standard do exist. �e digital 
negative (DNG) is considered an open data format but is still protected by license (Adobe Inc.).

“Developed formats” can be derived from raw data formats. Examples are the JFIF (JPEG File 
Interchange Format) or the TIFF (Tagged Image File Format) which are certainly the most used 
data formats. If you compare RAW data with, for example, data in JPEG format, some di�er-
ences occur that are well suited to show the advantages and disadvantages of one data format 
over the other. RAW data have a colour depth of 10 to 16 bits, i.e. they are able to distinguish 
radiometric di�erences in 1,024 to 65,536 brightness levels (per colour channel). JPEG, on the 
other hand, can only store 256 di�erent brightness levels (8 bit). If the brightness or colour range 
in an image is high, losses in the radiometric quality of the images are inevitable. O�en camera 
systems already include RAW data converters, which give the user the choice of one and/or 
the other format, but JPEG images may have already gone through pre-processing steps, such 
as white balance, tonal value corrections or noise reduction. �e introduction of this chapter 
already pointed out the consequences of these pre-processing steps for the analysis of the image 
data. Especially when comparing di�erent images of the same object, the di�erences could rep-
resent real changes or are the result of such corrections. Already in the planning of UAV �ights, 
it is therefore necessary to consider which data format is chosen to meet the requirements of 
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the task. If, for example, only point clouds (cf. SfM) or one-time geometric information is to be 
derived from the resulting images, this fact can play a rather minor role.

Nevertheless, JPEG also has advantages over RAW data formats. Data in JPEG format is very 
compact and much less storage-intensive than RAW data. With regard to the application of such 
data formats in camera systems on UAVs, however, this leads to a sometimes-signi�cant increase 
in time required for saving an image. In the case of RAW data, this may well mean three times 
the saving time. However, this additional time has a direct e�ect on �ight planning. In such a 
case, the UAV would have to �y much slower to completely record the desired area. In the above 
example (triple saving time), the power supply would only be secured for one third of the �ight 
time and additional resources (battery, working time, etc.) would have to be provided.

An alternative to JFIF/JPEG is the lossless Tagged Image File Format (TIFF). TIFF allows a 
colour depth of up to 32 bits per colour channel. However, the conversion from a RAW data 
format may already include adjustments may by noise reduction or white balance procedures. 
Here again the already explained problems in data analysis can arise.

In the environmental sciences and especially in the use of UAVs, image data are usually re-
quired in georeferenced form. Here, with the GeoTIFF, especially the TIF format o�ers a special 
format that combines the advantages of lossless compression with additional information for 
spatial reference. �is includes the coordinates for georeferencing as well as information about 
the map projection and the coordinate reference system.

Finally, the decision for an image data format depends on the speci�c task. �is is akin to 
the decision process for point cloud format but probably much simpler in case of raster data. 
GeoTIFF has become a de facto standard for the storage of raster data in recent years. It can be 
assumed, that all current so�ware products and libraries for raster data processing can handle 
this type of data (reading and writing).

Finally, Table 3.1-1 provides an overview of the properties of the image data formats discussed.

Table 3.1-1: Image data formats and their properties (selection).

Format Numeric 
Types *

Colour 
channels/
Bands *

Georeference Tool sup-
port and 
adoption

Compres-
sion *

Image 
pyramids

RAW
(vendor-spe-
ci�c, proprie-
tary)

8 to 32 bit ven-
dor-spe-
ci�c

vendor-spe-
ci�c, usually 
limited to a 
Geotag (GPS 
point)

Medium yes/lossy 
or lossless

no/
vendor 
speci�c
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JPEG/JFIF
(JPEG Group)

8 bit Inte-
ger

3 yes, via 
extended 
metadata or 
external �les

Very good yes/lossy no

Ti�/
GeoTi�
(Adobe/
Aldus)

8 to 64 bit
Float and 
Integer 
types

> 1,000 yes,
with GeoTi� 
Metadata

Good yes/lossless yes (op-
tional)

JPEG2000
(various patent 
holders)

1 to 38 3 Yes Medium yes/lossy 
or lossless

yes

HFA (.img)
(Erdas)

8–64 bit 
Float and 
Integer 
types

> 1,000 Yes Medium yes/lossless yes

* �ere is a di�erence between what the format speci�cations allow and what the so�ware 
tools support. We have tried to focus on the widely used variants.

3.1.4  Decision checklist

In the preceding chapters, the advantages and disadvantages of the common data formats for 
point clouds and raster images were brie�y reviewed. It became clear that a decision for one or 
the other data format will very o�en depend on the individual requirements. Nevertheless, the 
following checklist points out where the choice of data formats in the use of UAS matters.

1. �e selection of the sensor o�en implies a decision for a vendor-speci�c data format. It 
should be checked whether the available formats are compatible with the available so�-
ware for data processing or can be e�ortlessly converted without loss of information. 

2. �e speed of data storage should be considered when data must be recorded at a high vo-
lumes or high repetition rate. As a rule of thumb, smaller data formats provide faster write 
speed, provided that the involved compression algorithms are e�ciently implemented.

3. For the purposes of later data processing, care should be taken to ensure that fast data 
access is possible, especially if it is necessary to get a fast access to subsets of a data set. 
As data volumes grow, this aspect becomes increasingly important. If low latency, indexed 
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access, and high throughput are not provided by the original format, consider a conversion 
to a more capable format prior to any data processing steps.

4. If the thematic dimension of a data set is high or varies within the data, a format is required 
that allows such data structures. For raster data, for example, it would have to be checked 
whether a data format is required that allows multilayer structures. 

5. If large amounts of data are recorded and produced, data compression (or storage e�-
ciency) should be a concern. It is important to check if a data format can be selected that 
enables compression and whether a possible lossy compression has a negative in�uence on 
the further process of data analysis. 

6. Especially in the �eld of environmental sciences, long-term observations and longitudinal 
studies are frequently conducted and should be anticipated in any UAS project. In such 
scenarios, when selecting a data format, care should also be taken to ensure that the for-
mats can be expected to have long availability and tool support or can be considered hu-
man readable, such as well-documented ASCII data. Alternatively, data curation strategies 
that involve converting the data to newer formats should be set up that ensure the data can 
be used a�er maybe more than 20 years.

7. When deciding for or against a data format, attention should be paid to its degree of adop-
tion. When sharing the data with other people reusability is usually improved by picking 
a widely recognized data format with good tool support.

Since there are hundreds of data formats available which are optimized for di�erent purposes, 
it is impossible to recommend “a best” format. Hence, we recommend sticking to this checklist 
and the discussed features of the to evaluate the strengths and weaknesses of a particular format 
in your application context.



237

3.2  Analysis of imagery – automatic 
extraction of semantic information

Claudio Persello and Caroline Gevaert

3.2.1  Image classi�cation work�ow ................................................................................................. 238

3.2.2  2D image feature extraction ................................................................................................... 240
3.2.2.1  Deriving textural features I: Grey-Level Co-occurrence Matrix (GLCM) ......... 240
3.2.2.2  Deriving textural features II: Linear Binary Pattern (LBP) .................................. 241

3.2.3  2.5D feature extraction ............................................................................................................ 243

3.2.4  3D feature extraction ............................................................................................................... 243
3.2.4.1  Spatial binning ............................................................................................................ 243
3.2.4.2  Planar segments and shape attributes ...................................................................... 244

3.2.5  Feature selection ....................................................................................................................... 244

3.2.6  Supervised classi�cation algorithms ...................................................................................... 246
3.2.6.1  Support Vector Machine ........................................................................................... 246
3.2.6.2  Random Forests .......................................................................................................... 249
3.2.6.3  Deep learning classi�cation and convolutional networks .................................... 251

3.2.7  Accuracy assessment ............................................................................................................... 254

3.2.8  Summary ................................................................................................................................... 256

�e advent and rapid development of radio-controlled platforms for aerial image acquisitions is 
o�ering new opportunities for the acquisitions of overhead imagery. UAVs allow us to perform 
acquisitions that can be easily repeated in time, over di�erent geographical areas, and in dangerous 
conditions for human operators (e.g., a�er catastrophic events). As discussed previously in chap-



238

Claudio Persello and Caroline Gevaert

ter 2.2, multiple overlapping images acquired on the same area on the ground with di�erent view-
ing angles can be used to obtain three-dimensional (3D) information of the target area. �anks 
to recent developments in photogrammetry and computer vision, state-of-the-art dense matching 
techniques can generate Digital Elevation Models (DEMs) and 3D point clouds with accuracies and 
densities, which were unexpected until recently (Hirschmüller, 2008). �e extremely high spatial 
resolution of 2D images combined with 3D geometric information allows us not just to recognize 
a large and detailed set of thematic classes, but also to precisely characterize the objects in the area 
under investigation according to their material and geometry. In the context of urban studies, UAV 
data can be used to map buildings (Gevaert et al., 2018a), roads (Zhou et al., 2017), monuments 
(Fiorillo et al., 2013) as well as to detect damages a�er catastrophic events (Nex & Remondino, 
2014) (e.g., earthquakes, �ooding). In vegetation related studies, UAV data can provide estimations 
of biophysical parameters or detect early signs of plant stress or disease (Nex & Remondino, 2014). 
�e capability to extract such information, with a �exible and relatively cheap acquisition process, is 
opening new opportunities, including 3D urban modelling, damage assessment and recovery action 
planning, precision agriculture, mapping of informal settlements (Gevaert et al., 2017) and cadas-
tral boundaries (Xia et al., 2019). For all these applications, automated image analysis techniques, 
capable of extracting semantic information e�ciently and accurately, are essential. In this domain, 
machine learning techniques play a fundamental role. In particular, supervised classi�cation algo-
rithms, which are able to learn how to classify images from a set of training samples. Unsupervised 
algorithms such as clustering and segmentation do not require training data. �ey are used for 
separating di�erent objects; however, they cannot assign them class labels.

�is chapter presents an overview of supervised classi�cation strategies to extract semantic 
information from UAV data. �e focus is on the automated classi�cation of UAV data, con-
sidering the main processing steps of a classical work�ow based on supervised learning algo-
rithms (chapters 3.2.1–3.2.6). An overview of the deep learning approach, recently becoming 
popular thanks to the excellent feature extraction capabilities of convolutional networks, is given 
in chapter 3.2.6.3. Chapter 3.2.7 covers classi�cation accuracy assessment aspects, and chap-
ter 3.2.8 closes the chapter with a short summary.

3.2.1  Image classi�cation work�ow

�e classical work�ow for the classi�cation of UAV images, also known as land-cover or land-
use classi�cation in the remote sensing literature (Tong et al., 2020), consists of a sequence of 
processing steps. In computer vision, this task is commonly called semantic segmentation (Long 
et al., 2015). �e output of this process is a thematic map, where each pixel is labelled according 
to a prede�ned set of classes, e.g., land-cover categories.
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�e classi�cation can be performed on a per-pixel basis or per region. In the �rst case, pixels 
are considered as the atomic elements for the classi�cation process. In the second approach, of-
ten referred to as object-based image analysis (OBIA) (Blaschke, 2010), the image is �rstly divid-
ed into homogeneous regions through a segmentation algorithm. �e segments (and therefore 
all pixels therein) are then classi�ed according to user-de�ned rules or a supervised classi�cation 
algorithm. In both cases, one of the fundamental points to obtain accurate classi�cations is the 
extraction of the spatial information that characterize the neighbourhood of individual pixels. 
�is is fundamental for the analysis of extremely high-resolution imagery acquired from UAVs, 
where the objects of interests (e.g., buildings, roads) are typically much larger than the pixel size.

A diagram of the general classi�cation work�ow is reported in Figure 3.2-1. �e �rst step 
involves all necessary pre-processing operations aimed at correcting geometric and radiometric 
distortions and includes the application of photogrammetric techniques to derive an orthorec-
ti�ed image, a digital elevation model (DEM) and a point cloud. �is fundamental processing 
phase is important to obtain high-quality input data for the semantic analysis. �is step was de-
scribed in detail in chapter 2.2. �e second stage involves the extraction of informative features 
for the classi�cation of the input image. It involves the extraction of spatial-contextual features, 
which capture radiometric, textural and geometric information from the neighbourhood of the 
individual pixel. �e extraction process can operate in a moving window manner or on the 
basis of homogeneous regions obtained by segmentation. �is step is important to enhance the 
discrimination ability of the classes and to obtain accurate classi�cation by considering the spa-
tial relations between pixels. Several techniques have been proposed in the literature to extract 
(2D) textural features (Haralick et al., 1973; Ojala et al., 2002), 2.5D and 3D contextual features 
(Weinmann et al., 2015). Texture feature extraction based on Grey-Level Co-occurrence Matrix 
(GLCM) and Linear Binary Pattern (LBP) is presented in chapter 3.2.2; 2.5D and 3D contextual 
features extraction are covered in chapters 3.2.3 and 3.2.4, respectively. �e feature extraction 
phase may result in the extraction of a large number of potentially discriminative characteristics, 
not all of them being relevant for the supervised classi�cation task. To remove redundant and 
non-informative features, a feature selection is commonly adopted to identify a subset of the 
most relevant features for the problem at hand (chapter 3.2.5). Finally, the third step is about 
the supervised classi�cation. A classi�cation algorithm is used to translate the features extracted 
in the previous step into a thematic map representing the spatial semantic information of the 
area under investigation. �e focus of this chapter is on supervised classi�cation algorithms, 
which require the availability of labelled samples for training the classi�cation model. Popular 
algorithms are based on machine learning techniques like Support Vector Machine (SVM) (Bru-
zzone & Persello, 2009) or Random Forests (RF) (Belgiu & Drăguţ, 2016) which can derive accu-
rate classi�cation from a set of heterogeneous features as input (chapter 3.2.6). Chapters 3.2.2–
3.2.6 will enter into the details of feature extraction, selection and classi�cation of UAV data.
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Figure 3.2-1: Diagram of the classical image classi�cation work�ow. Unless otherwise stated, 
all images were prepared by the authors for this chapter.

3.2.2  2D image feature extraction

2D feature extraction from UAV imagery is quite similar to feature extraction from satellite im-
agery. In this chapter, a feature is considered to be a variable in an n-dimensional feature space 
such as radiometric and texture features:

Radiometric features consist of the spectral bands of the UAV sensor, ranging from RGB to 
multispectral to hyperspectral and thermal, as well as derivatives of these bands such as vege-
tation indices. Other chapters of this book (chapter 2.4, 2.5 and 4) provide the reader with an 
overview of these features linked to speci�c applications. 

Texture features can provide important supplementary information. For example, in urban 
settings, UAVs mounted with only RGB cameras may not have the spectral resolution to distin-
guish between green roofs and vegetation. Texture features have proven to be useful in such ex-
amples where the radiometric resolution of the imagery is not su�cient to distinguish between 
classes. Most texture features work with single-band images, so the �rst step is usually to convert 
a colour image into a grayscale image. �en, textures are identi�ed by comparing the intensity of 
pixel values within a de�ned neighbourhood. Two main types of texture features are the GLCM 
and the LBP.

3.2.2.1  Deriving textural features I: Grey-Level Co-occurrence Matrix 
(GLCM)

Textural features can be extracted from a GLCM matrix. GLCM matrices describe how o�en a 
de�ned intensity combination (i.e. Grey-Level) of adjacent pixels occurs (i.e. Co-occurrence) 
(Haralick et al., 1973) within a moving window or kernel. Pixel adjacency is generally under-
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stood as horizontal, vertical, le�-diagonal, and right-diagonal neighbours described by an o�-
set (i, j). �e user will de�ne these o�sets and construct a GLCM matrix for each combination 
individually. �e image is �rst re-quantized to N number of grey-levels. �e resulting GLCM 
matrix P will have a dimension of N x N. Higher values of N increase the computational com-
plexity and processing requirements of the GLCM features. So, in practice, values of up to 64 
are generally used. Texture patterns in UAV imagery can be oriented in di�erent directions. For 
example, the linear texture created by roof material may sometimes be oriented North-South 
and sometimes East-West. �e aim is to identify the roof texture regardless of which direction 
the roof is oriented. In other words, a good texture feature in remote sensing should have 
rotational invariance. A certain degree of rotational invariance can be introduced into GLCM 
features by normalizing the matrices for the di�erent o�set directions. �e user will also select 
the kernel size, which can have a large impact on the results. A kernel that is too small does not 
cover enough of the image to capture dominant texture patterns. A kernel size that is too large 
will cover too many di�erent texture patterns in the image and make it di�cult to distinguish 
between them. 

Textural features can be calculated from the GLCM matrix P. 28 features were originally pro-
posed (Haralick et al., 1973), such as homogeneity, contrast, dissimilarity, entropy, angular sec-
ond moment, mean, standard deviation, and correlation. �ese statistical measures are known 
as Haralick features. Many (remote sensing) image processing so�ware have the option to cal-
culate GLCM texture features based on a user-de�ned kernel size, o�set, and Haralick features. 
Unfortunately, it is di�cult to know before-hand which kernel size will be optimal or which 
Haralick features best describe the texture patterns in the image that is being classi�ed. In prac-
tice, di�erent combinations of kernel sizes and texture features are tested in order to select the 
ones that obtain the highest classi�cation accuracies.

3.2.2.2  Deriving textural features II: Linear Binary Pattern (LBP)

LBP texture features are less computationally intensive than GLCM and are rotationally invari-
ant. LBP features are computed by selecting a total of N neighbours evenly distributed in a circle 
with a radius R from a central pixel (Ojala et al., 2002). A binary code with a length of Nbits is 
obtained by comparing each neighbour to the value of the central pixel. �e digit is assigned a 
value of one if the intensity of the neighbour is higher than that of the central pixel, and a value 
of zero if it is lower. Figure 3.2-2 displays two examples of LBP patterns calculated from UAV 
imagery considering eight neighbours (N=8) at a radius of one pixel (R=1). If we take the bottom 
pattern as an example, the �rst, second and seventh neighbours have a higher intensity value 
than the central pixel, so this corresponds to a code of 11000010. Rotational invariance can be 
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obtained by applying bitwise rotation, or circular shi� until the lowest binary value is obtained. 
�e code 11000010 would then be transformed into 00001011. �e next step is to introduce a 
“uniform” pattern by counting the number of transitions from 1/0 and 0/1 in the rotationally 
invariant code. For example, 00001011 will change into 3. Ultimately, this process assigns a val-
ue between one & N+2 to each pixel (the extra two representing only 0s or only 1s), where the 
number represents a uniform and rotationally-invariant texture pattern.

Figure 3.2-2: Example of extracting LBP texture features (R=1, N=8) from a UAV image.

For aerial image classi�cation applications, it is practical to calculate the LBP texture pattern 
for di�erent values of R and N. In practice, useful combinations for [R,N] are [1,8], [2,16], and 
[3,24]. �e inclusion of more neighbours (=higher values of N) is computationally ine�cient. 

Each [R,N] combination results in a raster with codes indicating the texture pattern surround-
ing the pixel. �is raster tends to be very noisy, with many di�erent texture patterns observed by 
neighbouring pixels. Rather than using the raster of LBP codes directly as classi�cation features, 
it is common practice to calculate the relative frequency of the LBP codes over certain image 
segments. �is is done by �rst selecting an image patch (using either a moving window or image 
segmentation techniques), and then computing the normalized histogram giving the frequency 
of each LBP code within that patch. In this way, noise and small artefacts are removed and the 
feature used for classi�cation will consider texture patterns over a larger area.

Note that LBP textures only consider whether a neighbour is higher than the central pixel, 
but not by how much. �e variance of the neighbours N is therefore usually included as a sup-
plementary feature to the LBP code. �e �nal textural features used for image classi�cation will 
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then be the relative frequency of the LBP codes and variance features for each [R,N] texture 
feature. 

3.2.3  2.5D feature extraction

2.5D (topographic) features refer to features extracted from a Digital Surface Model (DSM) or 
Digital Terrain Model (DTM) (see chapter 5.4 for a description of DSMs and DTMs). �ese fea-
tures give an indication of the elevation characteristics of objects in the scene but do not take the 
full 3D geometries into account. For example, morphological �lters applied to DSMs can be used 
as topographic features for UAV scene classi�cation. �is is especially useful for scenes where it 
is di�cult to obtain the DTM due to the limited availability of points on the ground or scenes 
with very steep topography. Various studies have demonstrated the utility of using morphologi-
cal top-hat �lters applied to the elevation data (Are� & Hahn, 2005; Mongus et al., 2014). �ese 
�lters provide information regarding the height of a pixel compared to the neighbouring pixels 
which fall within a user-de�ned structuring element. A multi-scale topographic feature set can 
be constructed by applying top-hat �lters with structuring elements of various sizes to the DSM 
obtained from the UAV. �is provides information regarding the height of an object compared 
to its neighbours, and the utilization of multiple structuring elements provides an indication of 
the expected size of the object.

3.2.4  3D feature extraction

3.2.4.1  Spatial binning

3D features are computed directly on the point-cloud (opposed to 2.5D features which are cal-
culated from the DSM or DTM). �e bene�t of full 3D features is that they can capture more 
detailed 3D information of the scene in question. However, the 3D features must be converted 
into 2D raster in order to be combined with the 2D and 2.5D features from the previous section. 

One of the simplest ways to do this is through spatial binning, sometimes known as elevation 
images. First, the “spatial bins” are constructed by creating a grid where the boundaries align to 
the geographical coordinates of the 2D image pixels. Features can be obtained by determining the: 
total number, maximal height di�erence, and standard deviation in the height of all 3D points 
corresponding to each bin. Note that if this results in many empty bins (due to a low point cloud 
density), a larger spatial resolution should be selected or smoothing techniques should be used.
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3.2.4.2  Planar segments and shape attributes

Another way to convert complex 3D shape attributes to a 2D raster is to calculate the shape 
attribute for the highest point in each spatial bin. As the UAV captures imagery from above, it 
makes sense that the radiometric information in an image pixel will correspond to the object 
represented by the highest point in the point cloud for the spatial bin corresponding to this pixel. 
3D shape attributes can be approximated by �rst de�ning a neighbourhood (either limited by 
size or a maximum number of neighbours) around a point in the point cloud. �e normalized 
eigenvalues of the matrix constructed by the X, Y, Z coordinates of these points provide an in-
dication of the shape of this neighbourhood (Chehata et al., 2009). For example, a linear surface 
will have a very large primary eigenvalue and relatively small secondary and tertiary eigenvalue. 
A planar surface will have a large primary and secondary eigenvalue, but much smaller tertiary 
eigenvalue. Various studies provide overviews to such geometric shape attributes which can be 
obtained from point clouds based on local neighbourhood’s (Demantké et al., 2012; Weinmann 
et al., 2015). In some cases, planar features extending over much larger areas than can easily be 
represented by local neighbourhoods in high-density UAV point clouds. For example, �at ter-
rain in a �eld or large roof surfaces. Large planar segments can be extracted more easily through 
surface-growing algorithms (Vosselman, 2013). Features can then be extracted from each planar 
segment, such as the number of points per segment, average residual to the segment, inclina-
tion angle of the segment, and the maximal height di�erence between the segment and directly 
neighbouring points. More methods regarding the analysis point clouds, such as segmentation 
and classi�cation, can be found in chapter 3.5.

3.2.5  Feature selection

�e previous sections describe a wide range of features that can be extracted from UAV data. Al-
though more features can provide more detailed information to capture the di�erences between 
classes, the additional complexity may actually reduce the classi�cation accuracy. �is is known 
as the “curse of dimensionality”, or Hughes phenomenon. It is especially a problem when limited 
training data is available. Feature selection is an e�ective way to mitigate the “curse of dimen-
sionality” and limit unnecessary data processing. It reduces the total number of features to a se-
lected set which provides the most discriminatory information for the classi�cation task at hand. 
Feature selection methods are made up of a search strategy and a criterion function (Richards, 
2013; Persello & Bruzzone, 2016). �e search strategy is the method which the algorithm uses to 
select di�erent subsets of features. �e criterion function allows you to rank the di�erent subsets 
and select the set of features which has the highest performance for your classi�cation problem. 
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�ere are three main types of feature selection methods: �lter, wrapper, and embedded methods 
(Chandrashekar & Sahin, 2014). Filter methods use statistical metrics to de�ne the dependence 
of class labels on each individual feature in the feature sets (i.e. the criterion function) and then 
rank the features in order of importance (i.e. the search strategy). Bene�ts of �lter methods 
include fast computation and independence from the classi�cation method used. However, this 
method may sometimes select two features which have a very high correlation to the class label, 
but also to each other. �is is known as feature redundancy because the two selected features 
contain redundant information. Feature redundancy can be solved using search strategies such 
as Sequential Forward Selection (SFS) and Sequential Backward Selection (SBS). SFS starts in 
the same way by selecting the most important feature. �e di�erence is when ranking the sub-
sequent features. Rather than assessing the information contained in each feature separately, 
SFS adds each remaining feature to the selected features individually. Each time, it calculates the 
improvement in the statistical importance metric. It then adds the feature which has enhanced 
this important criterion the most. �is process is repeated to select the remaining features. SFS 
thus avoids feature redundancy by answering the question: which new feature will improve my 
set of selected features the most? SBS works in the opposite direction. It �rst calculates the cri-
terion function on the entire set of features. It then removes a feature from the set of selected 
features and calculates the decrease in the criterion function. It does the same for each feature. 
�e feature which causes the smallest decrease is considered to be the least important and is 
removed from the set of selected features. �e same process is followed to keep removing the 
least important features. Both SFS and SBS are sub-optimal search strategies, meaning that they 
do not test each and every feature set combination, but they are computationally more e�cient. 
�ese heuristics can be used to �nd a good subset of features, although it may not strictly be the 
optimal one. Criterion functions for �lter methods may include divergence, the Je�ries-Matusita 
(JM) Distance, and transformed divergence (Richards, 2013).

Wrapper methods recursively perform the classi�cation with di�erent feature subsets and 
use the classi�cation accuracy as the criterion function to identify important feature subsets 
(Guyon et al., 2002). �e largest disadvantage of wrapper methods is their considerable compu-
tational cost. �erefore, literature o�en uses a hybrid model which �rst employs a �lter method 
to remove irrelevant or weakly associated features, and then uses a wrapper method to identify 
the optimal subset. Embedded methods include feature selection in the training process of 
the classi�er, and features are ranked according to their contribution to the model. Recursive 
Feature Elimination for Support Vector Machines (SVM-RFE) is a common example. It uses 
the weight vector w to rank important features (see details on the SVM classi�er in the next 
section).



246

Claudio Persello and Caroline Gevaert

3.2.6  Supervised classi�cation algorithms

Supervised classi�cation algorithms aim to learn a general mapping rule, i.e., a partition of the feature 
space to assign a class label to an input pattern (feature vector). �e learning process takes advantage 
of a set of labelled examples named training set. In semantic segmentation, the input patterns are 
commonly associated with individual pixels, although it is also possible to consider image segments 
according to an object-based image analysis approach. In the latter case, features are extracted per 
segment, which are then considered as input vectors for the supervised classi�cation. In both cases, 
the spatial-contextual information is captured during the feature extraction phase preceding this step. 
�e output is a thematic map, where each pixel of the input image is assigned to one of the prede�ned 
class labels. Pixels are commonly mapped according to multi-class land-cover or land-use classes, 
but depending on the application, they can be classi�ed according to a speci�c label set. For example, 
in a damage assessment application, pixels are labelled as “damaged” or “not damaged” by solving a 
binary classi�cation problem. Many detection problems can be modelled as a binary classi�cation 
problem, e.g., building detection, road detection, �ood mapping, change detection, boundary delin-
eation. Several supervised algorithms have been explored in the remote sensing literature, including 
1) Gaussian Maximum Likelihood (GML) (Paola & Schowengerdt, 1995), 2) Arti�cial Neural Net-
works (ANN), also known as Multi-Layer Perceptron (MLP) (Benediktsson et al., 1990), 3) Deci-
sion trees (Pal & Mather, no date), 4) RF (Gislason et al., 2006) and, 5) SVM (Gualtieri & Chettri, 
no date; Cortes & Vapnik, 1995). GML is a probabilistic classi�er that adopts a parametric model 
for the distribution of the classes (for this reason called parametric), more speci�cally the normal 
(Gaussian) model, resulting in quadratic decision surfaces in the feature space. ANNs, RF and SVM 
are non-parametric (or distribution-free) classi�ers; that means that they do not require an explicit 
assumption on the distribution of the classes. An important type of ANNs, speci�cally designed for 
image analysis, are Convolutional Neural Networks (CNNs). �e remainder of this section will focus 
on popular non-parametric techniques: SVM, RF, deep learning, and CNNs.

3.2.6.1  Support Vector Machine

SVM implements a binary classi�cation strategy that exploits a geometrical criterion rather than 
a statistical one. In other words, SVMs do not estimate the statistical distributions of classes to 
carry out the classi�cation task, but they derive the model by exploiting the concept of margin 
maximization. �e success of SVMs in many applications, including remote sensing and UAV 
image analysis, is rooted in a number of attractive properties (Burges, 1998; Vapnik, 1998; Cris-
tianini & Shawe-Taylor, 2000; Schölkopf & Smola, 2002):
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1. A non-parametric approach that does not require an explicit assumption on the distribu-
tion of the classes, unlike probabilistic techniques such as GML;

2. A discriminative strategy, which does not explicitly estimate the distribution of the classes, 
but focuses on deriving the optimal decision boundary directly; 

3. An e�ective approach to improve the generalization ability (i.e., the ability to classify un-
seen data correctly) based on a regularized loss function (also called the structural risk 
minimization principle);

4. �e possibility to solve non-linear separable classi�cation problems by implicitly projec-
ting the data into a high dimensional feature space and separating the data with a simple 
linear function.

Let us consider the problem of pixel-wise classi�cation of a generic image of size I × J pixels. We 
assume that a training set of N pairs ( )

=1
, 

N
i i i

yx  is available, where xi are feature vectors associated 
with pixels (or segments) and yi are the corresponding labels. For the sake of simplicity, we focus 
here on the two-class case, while multi-class problems can be solved by combining multiple 
binary classi�ers. Accordingly, let us assume that +1, 1iy  is the binary label of the pattern xi. 
�e goal of SVM is to divide the d-dimensional feature space into two subspaces, one for each 
class, through a separating hyperplane ( ) = + =:   0H f bx w x . �e decision rule used to �nd the 
membership of a test sample is based on the sign of the discrimination function f(x). �erefore, 
a generic test pattern x is labelled according to the following rule:
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�e training of an SVM consists of �nding the position of the hyperplane H, estimating the 
values of the vector w and the scalar b, according to the solution of an optimization problem. 
From a geometrical point of view, w  is a vector perpendicular to the hyperplane H and thus de-
�nes its orientation. �e so�-margin training algorithm, designed to handle data which are not 
linearly separable, consists in minimizing a cost function (also called loss function) expressed 
by the combination of two criteria: 1) margin maximization, and 2) error minimization:

    ( )
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1, ,
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N

i
i

b C
=

ψ = + ∑w w ξ (2)

where ξi are so-called slack variables, which control the penalty for the misclassi�cation of train-
ing samples (see Figure 3.2-3 for an illustrative example). C is a regularization parameter that 
controls the penalty associated with errors, and thus controls the trade-o� between training 
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errors (empirical risk) and the width of the margin (generalization ability). If the value of C
is too small, many errors are permitted, and the discriminant function will poorly � t the data 
(under� tting); on the opposite, if C is too large, the classi� er may over� t the data instances, thus 
resulting in low classi� cation accuracy on the test set, i.e., unseen data. Careful tuning of the C
value is crucial and should be derived through an accurate model selection phase. � e minimi-
zation of the cost function (2) is subject to the following constraints:

( ) ξ+ =iy    1  ,   1,2, ,ib i Niw x

ξ =0,           1,2, ,i i N

(3)

resulting in a quadratic optimization problem subject to inequality constraints. It is di�  cult to 
solve this optimization problem directly; therefore, the Lagrange theory is usually applied to 
transform it into a dual formulation (Cristianini & Shawe-Taylor, 2000).

Figure 3.2-3: Illustrative example of the SVM discriminant function 
for a binary classi� cation task.
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Solving this optimization problem leads to the linear SVM classi�er. However, one of the main 
advantages of SVM is the possibility to extend it to non-linear discriminant functions by means 
of an elegant mathematic expedient. Instead of using more complex discriminant functions, the 
input data are projected into a high dimensional feature space where a linear function can better 
separate the transformed samples. �is is done by replacing the inner product in the mathemat-
ical formulation of the problem with a kernel function de�ned as:

  ( ) ( ) ( )= =,   , 1, , ,i j i jK i j Nx x x x (4)

calculating implicitly the inner product in the transformed space.
Once solved the problem (in the dual form) with respect to the Lagrange multipliers αi the 

discrimination function becomes: 
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where SV is the set of support vectors, i.e., the training samples associated with αi >0. �e SVM 
solution is sparse in the sense that only a subset of the training samples, i.e., the support vectors, 
contribute to the de�nition of the membership function.

3.2.6.2  Random Forests

Ensemble classi�ers are classi�cation algorithms that are based on a number of individual super-
vised classi�ers. Random Forests are ensemble classi�ers made up of individual Classi�cation 
and Regression Trees (CART) (Breiman, 2001) (explained in more detail in the next paragraph). 
Each CART in the RF is trained by using a random subset of the training data (Figure 3.2-4). 
A bagging approach randomly selects the training data subset for each CART through boot-
strapping (i.e. random sampling with replacement). A boosting will give training samples which 
are di�cult to classify in one CART a higher likelihood to be selected to train the next CART. 
Bene�ts of using ensemble classi�ers like RF is that, by aggregating the results of the individ-
ual CARTs, a greater accuracy can be achieved and the classi�er is more robust to noise in the 
training samples. Due to the high accuracies obtained by RF classi�ers and the ease and speed 
of training, RF has become a popular classi�cation method in the remote sensing community 
(Belgiu & Drăguţ, 2016).
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Figure 3.2-4: Illustrative example of a Random Forest classi�er constructed 
from three CARTs using a bagging approach.

Each individual CART is made of nodes and leaves. �e �rst node (the root node) generally con-
tains about two-thirds of the N training samples (though this depends on the speci�c so�ware 
package and can sometimes be altered). �e remaining training samples are retained as a vali-
dation set, known as the out-of-bag samples. Each node in the CART splits the training samples 
into two groups based on a selected number of features with the aim of increasing the homo-
geneity or purity of the two descending nodes. Consecutive nodes, therefore, split the group of 
training samples into increasing degrees of purity, until the �nal leaves of the tree which assign 
a class label to the training samples. �e degree of purity can be calculated by the Information 
Gain or the Gini Index (6). 

   ( )211 C
k kG p== ∑ (6)

Where G is the Gini index, c is the total number of classes, and pk is the relative frequency of 
class k in the samples present at that given node. A Gini index of one indicates a low homo-
geneity and equal distribution of classes within the node, and a Gini index of zero indicates 
the presence of only a single class within the node. During the training phase, the Gini index 
of each feature in a parent node and two child nodes is calculated. �e feature which causes 
the largest decrease in the Gini index between the parent and child nodes (in other words, 



251

3.2  Analysis of imagery – automatic extraction of semantic information

the feature which increases the purity of the child nodes the most) will be selected. �e user 
must de�ne a number of parameters when training an RF. �e �rst parameter is the number 
of individual trees to train in the ensemble classi�er. Sensitivity studies for remote sensing 
applications show that this parameter generally does not have a big e�ect on the classi�cation 
accuracies. �e second parameter is the number of features to randomly select and present 
to each individual node during the training phase. �is seems to have a stronger in�uence on 
the classi�cation results. A good rule of thumb is to set it to the square root of the number of 
input variables (Gislason et al., 2006; Belgiu & Drăguţ, 2016). Finally, the user can also set the 
maximum number of samples allowed in each leaf. Allowing more samples per leaf tends to 
create smaller trees and smoother results. Fewer samples per node will cause more heteroge-
neous results.

3.2.6.3  Deep learning classi�cation and convolutional networks

�e classi�cation work�ow described above is based on the extraction of spatial features spe-
ci�cally designed to address the problem at hand. �e corresponding methods depend on sev-
eral free parameters, which are usually set according to user experience or by trial and error. 
An exhaustive optimization of the parameter values is computationally expensive, especially 
when large spatial neighbourhoods need to be considered as is the case of high-resolution 
UAV images. Moreover, traditional feature extraction techniques are unsupervised, which 
means that the extraction is not guided by the speci�c classi�cation task through a supervised 
learning process. Deep learning networks can partly overcome the above-mentioned issues 
by automatically learning spatial features from the input data (Zhu et al., 2017). Deep ANNs 
are computational models, where the input data is gradually transformed through a sequence 
of processing layers that extract intermediate features and �nally predict the target output 
(LeCun et al., 2015). In a supervised setting, the network is trained with a set of training data, 
exemplifying the functional relationship between input and output. �e training is an iterative 
process that tunes the free parameters of the network to minimize a cost (or loss) function. 
�e procedure for training ANNs is based on the backpropagation algorithm (LeCun et al., 
1998) and the most common technique is called stochastic gradient descent (SGD) (Wein-
mann et al., 2015).

CNNs are a type of ANNs, which are speci�cally designed for image analysis (or any data that 
come in the form of multiple 2D arrays). As other ANNs, they are composed of a sequence of 
processing layers that perform an a�ne transformation of the input data followed by a non-linear 
activation function. �e main building blocks of CNNs are: 1) 2D convolution (see chapter 3.3), 
2)  an activation function, and 3)  spatial pooling. �e weights of the convolution operations 
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are shared at each pixel location and learned through a supervised learning process aimed at 
minimizing the classi�cation error. �e activation function is a non-linear transformation, such 
as the sigmoidal function or the linear recti�er (Nair & Hinton, 2010). �e pooling performs 
spatial aggregation by taking the average or the maximum value of the image in non-overlapping 
windows of �xed size (e.g., 2 × 2). Standard architectures use a sequence of convolutional lay-
ers to extract feature maps interleaving the main three processing operations described above. 
�rough progressive pooling operations, the feature maps are then �attened into a 1D vector 
and fed to a fully connected network, which corresponds to a conventional ANN. Figure 3.2-5 
shows the architecture of a popular CNN architecture, named VGGNet a�er the name of the 
research group that developed it (Simonyan & Zisserman, 2015). �e convolutional layers are 
responsible for learning the spatial features, whereas the fully connected layers learn the classi�-
cation rule to be applied to the extracted feature vector. �e network is trained in an end-to-end 
fashion; hence, feature extraction and classi�cation occur simultaneously in a single supervised 
learning algorithm. �is approach has shown to be e�ective in various computer vision tasks, 
including multimedia image classi�cation, where one label is assigned to the entire input scene. 
Deep CNNs have been successfully applied to image categorization benchmarks such as the 
ImageNet Large-Scale Visual Recognition Challenge (ILSVRC) (Russakovsky et al., no date), 
considerably outperforming techniques based on hand-cra�ed features.

Figure 3.2-5: Architecture of VGGNet (Simonyan & Zisserman, 2015). 
Source (Bezdan & Bačanin Džakula, 2019).
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CNNs have also been adapted to perform pixel-wise image classi�cation. �e standard patch-
based approach consists in training the CNN to label the central pixel of patches extracted from 
the input image (Bergado et al., 2016). �is, however, results in redundant processing at infer-
ence time and therefore in high computational cost when applied to large RS images. Currently, 
the most e�ective architectures are the so-called Fully Convolutional Networks (FCNs), which 
are trained to infer pixel-wise labels of the entire input image. In these networks, the fully con-
nected layers are usually substituted by one or multiple layers that up-sample the feature maps 
(e.g., by applying bilinear interpolation or transposed convolutional �lters) extracted by the con-
volutional layers to the resolution of the input image (Long et al., 2015; Noh et al., 2015; Ron-
neberger et al., 2015b; Badrinarayanan et al., 2017). Long et al., (2015) adapted contemporary 
CNNs into FCNs and �ne-tuned them to address semantic segmentation. More recent networks 
use an encoder-decoder structure (see Figure 3.2-6), using various strategies for up-sampling 
the feature maps learned by the encoder to the resolution of the input image (Noh et al., 2015; 
Ronneberger et al., 2015a; Badrinarayanan et al., 2017). An alternative approach is to use no-
down-sampling networks employing dilated convolutional �lters as in (Yu & Koltun, 2016; Per-
sello & Stein, 2017). Figure 3.2-7 shows the classi�cation work�ow based on a deep learning 
approach: FCNs allow us to merge the two traditional distinct steps of feature extraction and 
classi�cation into one optimized processing step.

Figure 3.2-6: Architecture of SegNet (Badrinarayanan et al., 2017), popular 
encoder-decoder fully convolutional network for semantic segmentation.
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Figure 3.2-7: Diagram of the deep learning classi�cation work�ow based on a fully 
convolutional network. Please note the di�erence to Figure 3.2-1: Feature learning 

and classi�cation are merged into one single supervised algorithm.

3.2.7  Accuracy assessment

�e �nal step is to assess the accuracy of the supervised classi�er. �e accuracy will determine 
whether the map is �t-for-purpose and acceptable for the intended application. It is conducted 
by comparing the results of the classi�er with reference data. �is reference data represents the 
actual class label on the ground. It can be obtained from �eldwork or other thematic maps or 
remote sensing imagery sources. It is important to ensure that there is no spatial or temporal 
shi� between the reference data and the map data. For example, land-use changes could occur 
between the date of �eld data collection and the UAV image capture. �e model may appear to 
contain false errors if this �eld data is then used to assess the accuracy of a classi�cation model 
based on the UAV imagery. In practice, the spatial detail of UAV imagery is so high that visual 
interpretation can o�en be used to manually digitize reference data on top of the imagery.

A suitable set of reference data, also known as testing data, must satisfy a number of char-
acteristics. Firstly, it must represent all of the classes targeted by the supervised classi�cation 
algorithm. �e number of samples per class is still under research, but in general, the more, the 
better. Some sources recommend 30 to 60 samples per class, though the supervised classi�cation 
of UAV imagery can easily result in hundreds of samples per class. Ideally, the reference data 
should also be balanced. �at is to say that each class is represented by approximately the same 
frequency. However, this is o�en di�cult in practice as some classes will be much more abun-
dant in the imagery than others. A practitioner may therefore need to make a selection of the 
samples to ensure that the classes are more balanced.

Reference data should be collected according to an adequate sampling design strategy. Ran-
dom sampling distributes the number of sample points over the study area ad hoc. Systematic 
sampling distributes the points evenly over the study area in a grid-like pattern. Random and 
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systematic sampling are easy to implement and result in unbiased reference data. Disadvantages 
include that they may select areas that are di�cult to visit in the �eld or observe in the image, 
and that rare classes might be omitted from the sampling. Strati�ed sampling ensures that each 
class is represented in the reference data. �is sampling design strategy selects a number of 
testing samples per class depending on the relative frequency of that class in the output map 
(Warner et al., 2009). 

Once reference data is selected, we can proceed to assess the accuracy of the supervised clas-
si�cation. �is is commonly done with the confusion matrix, also known as an error matrix, 
which compares the reference labels with the labels predicted by the supervised classi�er. For 
example, cell ci,j will give the frequency of testing samples with the class label i in the predicted 
map and class label j in the reference data. Table 3.2-1 displays an example of a confusion matrix 
for binary classi�cation.

Table 3.2-1: Example of a confusion matrix with multiple classes.

Reference classes
Total

1 2 3 c

�
em

at
ic

 m
ap

cl
as

se
s

1 c1,1 c1,2 c1,3 c1,c c1,+

2 c2,1 c2,2 c2,3 c2,c c2,+

3 c3,1 c3,2 c3,3 c3,c c3,+

c cc,1 cc,2 cc,3 cc,c cc,+

Total c+,1 c+,2 c+,3 c+,c

Various accuracy metrics can be extracted from the confusion matrix. �e diagonal of a con-
fusion matrix indicates the number of correctly classi�ed samples. �ese cells represent true 
positives, because the thematic map correctly predicts the reference class (i=j). �e other cells 
in the matrix represent samples that were misclassi�ed. For example, samples in cell c1,2 are false 
positives as the thematic map predicts they are class 1, but the reference class is actually 2. �e 
overall accuracy (OA) of a classi�cation is the proportion of correctly classi�ed pixels and can 
be calculated by taking the sum of the diagonal divided by the total number of testing samples 
(7). �e user’s accuracy (UA) is the probability that a pixel in the reference map is actually that 
class on the ground (8). �is is sometimes also known as correctness or precision. �e producer’s 
accuracy (PA) is the probability that a reference sample has been correctly classi�ed by the algo-
rithm (9). �is is also known as the completeness, or recall. It is common to provide the total UA 
and PA averaged over all thematic classes. However, these average metrics can be misleading if 
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the classes are unbalanced. �erefore, the F1-score is o�en presented as it includes both the UA 
and PA (10) (Warner et al., 2009). Sometimes you will see the kappa coe�cient used to report 
classi�cation accuracies in remote sensing studies. However, there are convincing arguments 
that this not appropriate because, e.g. it reports the overall agreement above chance agreement 
(yet chance agreement is not relevant for remote sensing classi�cation problems) and it is di�-
cult to interpret kappa values (Foody, 2020). 

     1 /c
i iiOA c N==∑ (7)

   UA(f or class i) = cii/ci+ (8)

   PA(f or class i) = cii/ci+ (9)

      =
21 UA PAF
UA PA

(10)

3.2.8  Summary

�is chapter presented an overview of the most common techniques used in the analysis of 
UAV images to produce a thematic map, i.e., associating a semantic label to each pixel of the 
image. Considering the high spatial resolution that can be achieved by UAV data, one of the 
fundamental challenges of the last decade has been to characterize the spatial-contextual in-
formation and extract discriminative features for the automated classi�cation. We have seen 
that the classical approach requires to “handcra�” those spatial features considering 2D, 2.5D, 
and 3D information, which can be a cumbersome procedure. �e deep learning approach 
simpli�es the work�ow by learning those features directly from the training data, assuming 
that enough labelled data is available. �is approach proved very e�ective in many applica-
tions and is going to play a fundamental role in the research as well as in the operational use 
of UAV images for mapping purposes. Nevertheless, the high computational requirements 
and the need for large training data may limit the use of deep learning. It has been highlighted 
the role of convolutional networks designed for pixel-wise labelling, i.e., fully convolutional 
networks. Recent literature has shown that these networks can be applied to a large number of 
applications, including the extraction of DTMs (Gevaert et al., 2018b), delineation of agricul-
tural boundaries (Persello et al., 2019), cadastral boundaries (Xia et al., 2019), and mapping 
of urban areas (Persello & Stein, 2017). We expect that in the near future, advanced computer 
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vision methods for semantic segmentation and object detection will become more and more 
popular and will �nd a number of applications in the extraction of semantic information from 
UAV data.
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Measuring object displacement and deformation in image sequences is an important task in 
remote sensing, photogrammetry and computer vision and a vast number of approaches have 
been introduced (Leprince et al., 2007; Alba et al., 2008; Debella-Gilo & Kääb, 2011). In the �eld 
of environmental sciences, applications are, for instance, in the studies of landslides, tectonic 
displacements, glaciers, and river �ows (Manfreda et al., 2018). Tracking algorithms are vastly 
utilized for monitoring purposes in terrestrial settings and in satellite remote sensing, which 
need to be adapted for the application with UAV imagery because resolution, frequency and 
perspective are di�erent. For instance, geometric and radiometric distortion need to be minimal 
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for successful feature tracking, which can be a large issue for UAV imagery in contrast to satellite 
imagery with much smaller image scales (Gruen, 2012).

Using UAV systems for multi-temporal data acquisition as well as capturing images with high 
frequencies during single �ights enables lateral change-detection of moving objects. And if the 
topography is known, a full recovery of the 3D motion vector is possible. �e underlying idea is 
the detection or de�nition of points or areas of interest, which are tracked through consecutive 
images or frames considering the similarity measures. 

In this chapter, pre-processing steps to successful image tracking and vector scaling are intro-
duced. A�erwards, two possible strategies of tracking, i.e. feature-based and patch-based, are 
explained. Furthermore, di�erent choices of tracking in image sequences are discussed. And 
�nally, examples are given in di�erent �elds.

3.3.1  Image pre-processing

UAV image sequences can be either acquired during multiple �ight campaigns to observe phe-
nomena evolving at slow rates, e.g. landslide monitoring or during a single campaign focusing 
on faster change rates, e.g. lava or river �ows. In both cases, information about the terrain has 
to be considered to calculate scaled motion vectors (chapter 3.3.1.1). �erea�er, frame co-regis-
tration is necessary for precise tracking of objects. �is step becomes more critical when image 
sequences of high frequencies are captured (chapter 3.3.1.2). Finally, image �ltering may be re-
quired to increase the robustness of image tracking (chapter 3.3.1.3).

3.3.1.1  Image ortho-recti�cation

It is important to account for impacts of camera perspective and relief to avoid false scaling of 
tracking vectors. �e objective is the projection of the original image, which might be captured 
from oblique viewing angles looking at unlevelled terrain, into an image plane to calculate a dis-
tortion-free photo where the scale remains constant (Figure 3.3-1). Without this transformation, 
correct measurements would solely be possible if a planar terrain is captured from nadir view. 
To achieve the conversion from central projection, i.e. lines of projection intersect at one point 
(projection centre), to parallel projection, i.e. lines of projection are orthogonal to the projection 
plane, knowledge about the interior camera geometry, the camera position and orientation dur-
ing the moment of capture, and the topography is required. �is information can be retrieved, 
capturing overlapping images and using SfM photogrammetry. �e result is an orthophoto al-
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lowing for distance and angle measurements. You can �nd more details regarding the process of 
calculating an orthophoto in chapter 2.2.

Figure 3.3-1: Captured scene can be distorted due to the in�uence of camera perspective and 
relief hindering scaled measurements. Oblique view at a planar terrain leads to increased scale 
overestimation with increasing distance to the camera projection centre. Terrain deviating from 

a plane leads to increased scale underestimation with decreased projection centre to object 
distance. Information about the relief has to be implemented for correct transformation of central 

projection to parallel projection. All �gures were prepared by the authors for this chapter.

3.3.1.2  Image co-registration

To track the displacement of fast-moving objects, such as particles on water, it becomes nec-
essary to capture images in a fast sequence, for instance, using videos. In most circumstances, 
UAVs are not able to capture the entire event from a stable position and orientation among 
others due to vehicle dri�s and tilts caused by wind and due to vibrations of the sensor. If these 
movements are not mitigated, they will a�ect the calculation of correct �ow velocity vectors. 
�erefore, image sequences need to be stabilized exploiting �xed targets, which can be identi�ed 
in the image sequence.

Image stabilization can be achieved by identifying manually tie points or performing an au-
tomatic detection and matching of points of interest (chapter 3.3.2 and 2.2). �e information of 
the corresponding points is used to retrieve the parameters of a transformation matrix between 
the two images. Usually, either an a�ne transformation with six parameters (two scales, two 
shi�s, one rotation, and on shear) is considered (Figure 3.3-2b) or a homography with eight 
parameters is estimated, where lines between both images still remain straight lines a�er the 
transformation (Figure 3.3-2c). With the retrieved transformation matrix, the source image will 
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be converted requiring the interpolation of a new image. In the end, the co-registered image se-
quence has to be ortho-recti�ed for correct scaling of tracks (chapter 3.3.1.1) applying the same 
transformation to all images.

It has to be noted that the approach via tie points assumes that the surface is a plane, which 
can be a suitable approximation for higher �ying heights and/or relatively �at terrain. Another 
requirement is that the UAV imagery captures stable areas distributed around the area of inter-
est. �is is not possible in all scenarios, for instance, if large areas are a�ected by movements. In 
such cases, other possibilities need to be considered. One option can be direct referencing (chap-
ter 2.1). However, accuracy demands regarding position estimation with dGNSS, orientation 
reconstruction with the IMU, and camera synchronisation are very high, and future research has 
to reveal whether such an approach will be possible.

Figure 3.3-2: Distortion of the image due to o�-nadir image acquisition and/or sloping terrain. 
(a) Un-distorted image. (b) Distorted image describable with a�ne transformation. 

(c) Distorted image describable with perspective transformation (homography).

3.3.1.3  Image �ltering

Tracking objects in image sequences can be sensitive to noise and low signal strength leading 
to ambiguities. Especially in environmental applications di�culties due to lighting conditions 
(e.g. glares and shadow) or water turbidity (e.g. transparent, clear water) have to be mitigated. 
�erefore, di�erent image processing approaches might be considered to increase the robustness 
of data analysis.

Applying a low-pass �lter is a possible method to decrease image noise. An option of image 
smoothing is convolution. A kernel or window with a speci�c size is applied to the original im-
age (Figure 3.3-6). Possible kernels are a Gaussian kernel (Figure 3.3-3b), where the weight of 
the pixel decreases with distance to the centre pixel, a median kernel, which is especially suitable 
for salt and pepper noises, or a bilateral kernel, where the noise is reduced, but the edges are 
preserved. Further image improvements are possible via contrast enhancement (Dellenback et 
al., 2000), gamma correction (Tauro et al., 2017), histogram equalization (Dal Sasso et al., 2018) 
or intensity threshold criterion (Jodeau et al., 2008).
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Another option to increase the robustness of image sequence analysis is the calculation of 
image derivatives, for instance, considering edges applying a Laplace operator (Figure 3.3-3c). 
To improve the signal strength, the histogram of the radiometric pixel values of an image can 
be modi�ed. An example is the adaptive histogram equalization that ampli�es the contrast in 
distinct image regions instead of applying a global histogram change (Pizer et al., 1987). Another 
approach to improve the signal for tracking is the calculation of derivatives from SfM (chap-
ter 2.2), or Lidar (chapter 2.6) derived digital elevation models (chapter 3.4), e.g. considering 
hillshades to identify traceable features in the terrain.

Figure 3.3-3: Di�erent options of image �ltering to reduce the impact of image noise or to increase 
the tracking robustness. (a) Original image. (b) Gaussian �ltered image for smoothing. 

(c) Laplace �ltered image to keep edges only for tracking.

3.3.2  Feature-based tracking

Feature-based tracking in image sequences can be separated into three processing steps: fea-
ture detection, feature description, and feature matching. �ese steps are similar to the im-
age matching approach during SfM, which was introduced in chapter 2.2. �e result of fea-
ture-based matching is in most scenarios a sparse set of correspondences. To �nd distinct and 
traceable image points, assumptions about the required feature shape are made. �e feature 
has to reveal a large contrast to its neighbourhood, and the strong intensity changes have to 
occur in at least two directions. First- or second-order derivatives of the image can be calcu-
lated to assess the radiometric gradients and their orientation. In �at areas, no changes in all 
directions are measurable. Along edges, intensity changes occur solely in one direction result-
ing in ambiguous feature matches. �us, blobs or corners are the interest operators of choice 
(Figure 3.3-4). As blob features were already introduced in detail in chapter 2.2, the focus lies 
on corner features.
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Figure 3.3-4: Examples of unsuitable features as well as corners and blobs as suitable features 
for tracking. (a) Un�ltered, raw image. (b) Radiometric gradient �ltered image.

An example of a corner feature detector is the Harris feature (Harris & Stephens, 1988). Image 
gradients are calculated via convolution using the Sobel operator. �us, �rst derivatives are esti-
mated for both image directions. Within local neighbourhoods, the distribution of the retrieved 
gradient intensities is assessed, and corresponding eigenvalues are calculated, making the feature 
detector rotation invariant. Finally, a score is computed from the eigenvalues. Both eigenvalues 
are high for corners. If they are only high for one eigenvector or low for both eigenvectors, an 
edge or �at area has been detected, respectively. Another corner feature is the Shi-Tomasi feature 
(Shi & Tomasi, 1994), which is especially designed for tracking tasks. �e approach is similar to 
the Harris detector, however, the score function is di�erent as both eigenvalues solely have to be 
above a minimum threshold.

Another possibility to extract features can be simply performed through the binarization of 
the images and identifying a threshold value, which allows to separate the background from 
the particles represented by brighter colours. �us, the pixels at a higher intensity than the 
threshold will keep their value unaltered and pixels at lower intensities will be assigned a black 
colour (Figure 3.3-5). �e procedure described above is called global threshold, but there are 
also other methods in the literature, such as: i) local threshold, which overcomes the limits 
of the global approach, varying the value of the threshold within the image depending on 
the light intensity, or ii) Otsu’s method (Otsu, 1979) which performs clustering-based image 
thresholding.

Figure 3.3-5: Binarization of radiometric information to apply a threshold (histogram) 
to keep points of interest, in this case, �oating particles at the water surface.
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�e extracted features can be either used to estimate descriptors considering their local neigh-
bourhood and subsequently matching these features or the features can be considered as points 
of interest for a subsequent patch-based matching approach.

3.3.3  Patch-based tracking

Patch-based tracking approaches de�ne areas or patches, which are then tracked by searching 
for the corresponding location of the highest similarity in the next image. �e areas to track can 
be chosen manually, de�ning regular grids, or considering the locations of detected features 
(chapter 3.3.2) to create templates. Dense sets of correspondences are possible, e.g. in the case of 
the de�nition of grids with high resolution. In patch-based tracking techniques correspondenc-
es are found at locations where matching costs are minimal. Tracking can either be performed 
in the spatial or the frequency domain.

3.3.3.1  Tracking in the spatial domain

�e most common approaches in the spatial domain are represented by the similarity and op-
timization algorithms. In the case of similarity estimates kernels of �nite size, with radiometric 
information extracted from the source image, are searched for in the target image. �us, the 
kernel is moved across the search image to �nd the position, where the kernel information 
and the overlapping local target information are most similar (Figure 3.3-6). Di�erent kernel 
functions can be applied in the convolution, e.g. considering the sum of squared di�erences 
(SSD). Another frequently used template matching function is the normalized cross-corre-
lation (NCC), which accounts for brightness and contrast changes to increase the matching 
robustness. �e results of the kernel applications are similarity maps, where the similarity peak 
(e.g. for SSD and NCC negative and positive, respectively) corresponds to the �nal position of 
the tracked feature.
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Figure 3.3-6: Patch-based tracking approaches. Kernel k with information of image x-1 (source 
image) sliding across search image x (target image). At each pixel position xi,j in the extracted 

patch of the search image, corresponding to the overlapping area of the kernel, is computed with 
the kernel applying di�erent functions. Di�erent similarity measures R can be considered, e.g. 

SSD (sum of squared di�erences) or NCC (normalized cross-correlation). Image displays a cross-
correlation map, where NCC values were computed using a moving window over the search area. 

Diagram illustrates a 1D representation of sub-pixel interpolation by estimating the extreme 
value for a Gaussian �tted curve to NCC values along the x-axis of similarity image.

SSD and NCC have the disadvantage that both measures are sensitive to rotation, scale chang-
es and shear. However, other patch-based matching such as optimization algorithms can over-
come these constraints. An example is represented by the least-square-matching (LSM; Acker-
mann, 1984; Förstner, 1982). LSM searches for the transformation matrix between two image 
patches such that the square of sums of grey value di�erences is minimized. For instance, if it 
is assumed that the corresponding patches are located in a plane, six parameters of an a�ne 
transformation are estimated (Figure 5.3-2b). �is enables the tracking of distorted features, 
e.g. at stretching landslides, buckling glaciers, or rotating particles on rivers. �e optical �ow 
algorithm Lucas-Kanade (Lucas & Kanade, 1981), increasingly used in hydrological tracking 
tasks, is another optimization approach �tting an a�ne model to the motion �eld. Sub-pixel 
accurate measurements are possible, and the statistical output of the adjustment can be used 
to assess the matching quality. Due to the non-linearity of the adjustment, approximation 
values are required, which can be provided assuming solely minimal changes between images 
(e.g. in the case of high-speed imagery or very slow-moving objects), using the results of other 
matching approaches (e.g. NCC) as �rst estimates, or considering hierarchical approaches 
(chapter 3.3.3.3).
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3.3.3.2  Tracking in the frequency domain

To �nd the position of highest similarity, it is also possible to estimate displacements in the 
frequency domain using the Fourier transformation. �e phase correlation approach (e.g. De 
Castro & Morandi, 1987) calculates the cross-correlation between the Fourier transformed 
search and kernel patch to retrieve the phase shi� in the frequency domain and thus lateral 
shi� between both image patches in the spatial domain (Figure 3.3-7). Finding matches in the 
frequency domain is signi�cantly faster than measuring in the spatial domain.

Figure 3.3-7: Simpli�ed 1D representation of measuring phase shi� θ between search (target) 
and source object in the frequency domain to retrieve displacement.

3.3.3.3  Improving robustness and accuracy

In most cases of patch-based tracking, the feature to track will not be located at the pixel centre 
in the search image due to signal discretization, i.e. the conversion of a continuous signal to a 
discrete (integer) value during the image capture process. �us, to improve the matching accura-
cy sub-pixel estimation can be necessary. One approach is the �tting of a paraboloid (Figure 3.3-
6) at the position of the highest score in the similarity map and then extracting the coordinates 
at the local extreme value. �e advantage of that method is that also the strength of the match 
can be evaluated considering the steepness of the paraboloid. Further parameters for quality 
assessment of the similarity measure are height and uniqueness of the estimated values.

Patch-based matching approaches can be further improved regarding their robustness and ac-
curacy with hierarchical methods, which build image pyramids made o� increasingly downsam-
pled images to incrementally decrease image resolution (Figure 3.3-8). �e tracking will start 
at the highest pyramid level, thus at the image with the lowest resolution. �e search area can 
cover nearly the entire image. �e position of the matching result is used as an approximation 
to con�ne the search area in the next pyramid level. �ese steps are repeated until the last level 
with the full image resolution, where the �nal location of the match is extracted. �e hierarchical 
approach enables to mitigate the impact of choosing the right kernel and search window sizes. 
�e larger the kernel is chosen, the less sensitive it is to ambiguities due to repeating patterns and 
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the smaller it is chosen, the higher the accuracy will be because more details are captured. And 
the larger and smaller the search window is chosen, the larger displacements can be captured 
and the faster processing times are achieved, respectively. �erefore, applying image pyramids 
allows for processing from the stage of high robustness at the �rst low-resolution levels to the 
stage of high accuracies at the last high-resolution levels.

Figure 3.3-8: Applying image pyramids to improve the tracking robustness and accuracy. �e 
highest level corresponds to the image of the lowest resolution (�rst image), and the base level 

corresponds to the image of the highest resolution (last image). �e matching result at each level 
serves as an approximation for the next level. �e kernel has the same number of pixels in each 

level, and therefore di�erent areas of the scenery are covered. Note that kernel 
size and downsampling are not scaled accordingly in this example to 

enhance the visibility of changes at di�erent levels.

A further option to increase the accuracy of the tracking is the application of �ltering algorithms 
to the �nal tracks. �ese can be either used globally, considering, e.g. the average and standard 
deviation of all measured displacements to identify outliers, or locally, considering, e.g. displace-
ment statistics only within a speci�ed neighbourhood. �e latter approach is especially useful 
for objects with complex movement patterns.

3.3.4  Tracking strategies

Di�erent spatial tracking strategies are possible for successful estimation of velocities and direc-
tion of moving objects in UAV image sequences. First of all, it has to be considered if tracking 
is performed in stationary image sectors, thus where in each subsequent image tracking starts 
again at the same image coordinate, i.e. Euler approach, or if the track of a speci�c target in the 
image sequence is searched for, i.e. Lagrangian approach. �e Euler method is generally compu-
tationally more e�cient with respect to the Lagrangian method. In return, the latter approach 
is able to perform measures also with low tracer density, whereas the former relies on abun-
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dant seeding density. To identify matching regions or features, the concept of similarity between 
groups of particles in two consecutive images is used, but it is also possible to use multi-frame 
algorithms that use three or more consecutive frames to solve the problem of correspondences.

Once the particle positions are identi�ed, the velocity is estimated by dividing the displace-
ment of particles between consecutive frames by the time interval between the pair of images. A 
�nite di�erence scheme is applied implicitly for calculating the velocity. �erefore, the temporal 
accuracy is directly correlated to the image frequency. Sampling frequency must be identi�ed 
properly in order to avoid over- or undersampling that may lead to missed features or high ve-
locity uncertainties if displacements are happening at the sub-pixel range, respectively. Di�erent 
temporal tracking strategies are possible with di�erent temporal bases, overlap and resolutions 
(Schwalbe, 2013, Figure 3.3-9). For instance, in a scenario of very slow-moving particles cap-
tured with high framerates, instead of tracking consecutive frames illustrated by strategy two in 
Figure 3.3-9, it might be suitable to skip frames and track features subsampling frames at a lower 
frequency. �is may help to enhance the visibility of shi�s and movements of objects within each 
frame. �ereby, features or patches might be detected, e.g. every frame or every second frame 
(strategy four and three in Figure 3.3-9, respectively).

Figure 3.3-9: Temporal matching strategies (a�er Schwalbe, 2013).

To transform the measurements within the image sequences into displacements in a scaled co-
ordinate system and correspondingly to metric velocity values, it is necessary to reference the 
tracking result (chapter 3.3.1.1). Referencing can be either performed prior to the tracking pro-
cessing or a�erwards. Executing the tracking in the original image, and thus transforming the 
image measurement a�erwards, only considering the coordinates of the tracked particles, entails 
the advantage that interpolation errors, especially in strongly tilted images, are avoided.
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3.3.5  UAV monitoring applications

�e applications of tracking approaches to UAV data are vast and therefore entail very case-spe-
ci�c challenges. �erefore, we display three common �elds of application – hydrology (chap-
ter 4.3), geomorphology (chapter 4.2) and glaciology (chapter 4.5) – to highlight di�erent ad-
vantages, challenges and limits of image sequence analysis of UAV-based data.

3.3.5.1  Stream�ow

Image-based �ow velocity measurement with UAV imagery is a valuable emerging �ow gaug-
ing technique, which can also be applied to terrestrial images captured by �xed station or 
mobile stations (Eltner et al., 2020). �e advantage of using UAVs is the possibility for greater 
coverage of the river surface at multiple locations, including potentially inaccessible sites. 
Furthermore, they tend to fail less at high �ow conditions compared to classical monitoring 
systems.

A vast number of methodological approaches are available to compute water surface veloci-
ties. �e most frequently adopted algorithms are large scale particle velocimetry (LSPIV, Le Coz 
et al., 2010), belonging to the Euler tracking strategy, and particle tracking velocimetry (PTV, 
Tauro & Grimaldi, 2017), belonging to the Lagrangian tracking strategy. LSPIV is an adaption 
of particle image velocimetry (PIV, Creutin et al., 2003). In contrast to PIV, LSPIV can be used 
for a wider range of physical phenomena due to its capacity to cover larger areas and to adopt 
low-cost cameras. Regardless of the speci�c algorithm considered for tracking, the estimated 
velocity is recovered from the information of tracing features on the water surface, i.e. natural 
foam, seeds, woody debris, and turbulence-driven pattern. 

Accuracy assessments of UAV image velocimetry revealed that stationary UAV measure-
ments are in strong agreement with established �ow gauging approaches. To better under-
stand the complexity of 2D river �ow structures, following major points have to be respected: 
i) the stability of the camera, ii) a good compromise between �ight altitude, camera resolution, 
tracer particle size and river width (Lewis & Rhoads, 2018), iii) the potential necessity of non-
oblique UAV imagery at wider rivers to enable the coverage of the entire cross-section, and 
iv) the presence of a traceable pattern on the water surface. Seeding density is one of the most 
relevant parameters in the determination of reliable velocity �elds. When facing low seeding 
density conditions, the number of analysed frames should be increased for more accurate 
results (Dal Sasso et al., 2018).
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3.3.5.2  Landslide

UAVs o�er a cost-e�ective, time-e�cient, �exible and safe data collection solution to improve 
the spatio-temporal resolution of landslide movement maps (chapter 4.2), e.g. through the com-
parison of SfM-derived co-registered digital surface models (DSM) or using multi-temporal or-
thophotos. Landslide tracking techniques applied to satellite, airborne or terrestrial data cannot 
be easily transferred to UAV-imagery, due to the di�erent monitoring scales. �erefore, Lucieer 
et al. (2014) applied the COSI-Corr (co-registration of optically sensed images and correlation) 
algorithm (Ayoub et al., 2009) to hill shaded DSMs, instead of RGB imagery, to measure land-
slide movements. In a further step, other UAV-derived morphological attributes, such as slope, 
openness and curvature, can be considered (Peppa et al., 2017). Furthermore, feature tracking 
approaches based on terrain break-lines can be more suitable to detect landslide movements 
with important surface deformation, whereas NCC-based correlation can be more appropriate 
when targeting small landscape elements.

�e presence of vegetation can become an important challenge. For instance, image cross-cor-
relation performance decreases when terrain surface is covered with grass. And vegetation’s neg-
ative e�ect on correlation is even more pronounced when images were produced in di�erent 
seasons (e.g. spring and winter). Although some errors are expected, especially over regions with 
rotational failures, UAV-based methods o�er a reliable quanti�cation of translational earth-�ow 
activity, in particular, movement of ground material pieces, vegetation patches and landslide 
toes (Lucieer et al., 2014; Peppa et al., 2017).

3.3.5.3  Glacier

Similarly to landslide monitoring, UAV-acquired data can be bene�cial to better understand gla-
cial dynamics (chapter 4.5). However, applying UAV image-based processing can be particularly 
challenging in these landscapes due to large uniform surfaces, but whose texture can be enhanced 
by the presence of dust or debris. One of the challenges when quantifying glacier velocity is iso-
lating ice movement from other surface displacements (e.g. debris slope collapse or falling blocks 
from the moraine on the ice surface) (Rossini et al., 2018). Application of a multi-scale mode, 
implemented in COSI-Corr, allowed for the exclusion of the majority of these noises. �e best 
results involved a trade-o� between limited noise, when using larger correlation windows, and 
�ne-scale details. Besides orthomosaic, hillshaded DSMs and DSM derivates, e.g. detected edges, 
can also provide a globally coherent output. Feature-tracking algorithms used to compute glacier 
surface velocity can perform similarly compared to manual digitalization, and they enable �ne 
spatio-temporal displacement quanti�cation of debris-covered glaciers (Rossini et al., 2018).
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�e current development with UAVs is revolutionizing many �elds in geosciences, at least for 
small-to medium scale studies. In comparison with traditional topographic surveys and modern 
techniques such as laser scanning and aerial photogrammetry, UAVs applications are generally 
cheaper, provide faster data acquisition and processing, and generate several high-quality prod-
ucts with impressive level of details. 

UAVs applications often rely on Digital Elevation Models (DEMs) to represent the topog-
raphy, and on digital terrain modelling or geomorphometry (see Sofia (2020) for a recent 
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review), a steadily increasing range of techniques, providing a full objective description of 
landforms through descriptive measure of the surface form (Evans, 2012) in their purest 
form as elevation, slope, and aspect, and with increasingly sophisticated measures (Wilson, 
2018; Hutchinson & Gallant, 2000a,b). These tools offer the best opportunity for under-
standing the physical context of the Earth’s surface at spatial and temporal frequencies that 
are commensurate with rates of natural processes (Viles, 2016; Passalacqua et al., 2015; 
Tarolli, 2014). 

�e increase in the quality of UAV survey georeferencing, achieved mainly through the 
use of ground control points and real-time kinematic technology, led to the reproducibility 
and repeatability of multi-temporal spatial data (Clapuyt et al., 2017). As a consequence, the 
UAV-based multi-temporal digital surface models and orthophotos also provide the oppor-
tunity to extend timescales of enquiry and, based on knowledge of forcing events during the 
monitoring period, inferences can be made about the processes evolution. Not only digital 
cameras but also more advanced geophysical sensors, including LiDAR (Lin et al., 2019), 
multispectral cameras (Diaz-Varela et al., 2014) or meteorological sensors (Spiess et al., 
2007) can be mounted on-board UAVs. Ground penetrating radar (Chandra & Tanzi, 2015) 
or drone-mounted magnetometers (Versteeg et al., 2007) allow for underground surveys, for 
instance. Bathymetric LiDAR provide the technology for underwater surveys (Mandlburger 
et al., 2016).

Despite the quality of the so�ware and data currently available, there is an uncertainty in-
trinsic to the surfaces acquired by UAVs and this discrepancy needs to be assessed in order to 
validate the techniques applied. �is points to a series of unique challenges regarding DEM 
pre- and post-processing, the uncertainties and their subsequent application, and the consistent 
representation of processes in the digital realm. 

�e importance of resolution has been deeply investigated and highlighted in geomorphology 
in general (Passalacqua et al., 2015; Tarolli, 2014), but the way we conceptualize the surface is 
also becoming more and more critical (So�a, 2020). As survey techniques advances, problems 
arise because of insu�cient resolution as compared to the landscape of interest (i.e. loss of local-
ly signi�cant features such as ridgelines and streams), and because of the scale-dependency of 
many descriptors (Bishop et al., 2012).

As well, we need improved algorithms to �lter out vegetation, buildings and other hu-
man-made structures in the DEMs that we can generate from remote sensing and UAV surveys. 
Finally, the default surface surveyed with drones is generally the top of the structures or vege-
tation, and most geoscienti�c applications require a bare-earth DEM, therefore new challenges 
exist for the creation of DEMs from photogrammetry-based surveys.



275

3.4  Digital Elevation Models and their topographic derivatives

Figure 3.4-1: � e main tasks associated with digital terrain modelling and the sources of errors. 
Modi� ed and updated from (Wilson, 2012; Hutchinson & Gallant, 2000). All � gures were 

prepared by the author for this chapter.

Challenges also emerge from the steadily growing number of parameters and algorithms for 
processing DEMs and de� ning descriptive measures and surface features. Because terrain anal-
ysis is currently implemented in many commercial or open-source so� ware, procedures are im-
plemented through di� erent methods and algorithms. � e results of di� erent work� ows o� en 
con� ict, leading to uncertainties due to the mathematical model by which land parameters are 
calculated, the size of the search window, and each one of these steps’ bias and limitations is 
generally transferred and accumulated to the next step (see Figure 3.4-1 for a typical work� ow 
and sources of errors). � e challenge is, therefore, to recognize and minimize uncertainties in 
data that are particularly elusive.

Aside from the challenge of deriving descriptive statistics, quantifying volumetric change us-
ing UAV-based data is also a process prone to bias. � e ability to develop spatially distributed 
models of topographic change generally relies on a DEM of Di� erence (DoDs – Wheaton et al., 
2010), and requires the reconstruction of one or more geomorphic surfaces from which eleva-
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tion changes can be computed. �e quality and con�dence in the topographic data available are 
usually the limiting factors in the accuracy and con�dence in the resulting analysis.

�is book chapter provides an overview of the state-of-the-art for a typical digital terrain 
modelling work�ow, from DEM production, to surface modelling, and identi�cation of mor-
phological changes or DEM errors. �is work�ow is cross-disciplinary, and independent from 
the sensor used for the survey. Nonetheless, UAV surveys speci�cally require additional care and 
processing, that will be addressed throughout the chapter.

�e remainder of the article is organised as follows. �e next section describes the primary 
sources and methods for capturing elevation data, and it represents the methods used to pre-
process DEMs along with some of the challenges that confront those who tackle these tasks. �is 
section also describes the various kinds of errors that are embedded in DEMs and how these 
may be propagated and carried forward with the calculation of di�erent land surface parame-
ters. Chapter 3.4.6 describes the land surface parameters that are derived directly from DEMs to 
model water �ow and related surface processes. Chapter 3.4.8 discusses above mentioned DoD. 
�e �nal section o�ers some concluding remarks.

3.4.1  Acronyms

During the years, the concepts of Digital Elevation Model (DEM), Digital Terrain Model (DTM) 
and Digital Surface Model (DSM) have been used with a context-dependent implication. �e 
use of di�erent terms mostly relates to the technological development of surveying techniques 
(Table 3.4-1). �e earliest de�nition of a Digital Terrain Model (DTM) dates back to the 50s and 
refers to ‘a statistical representation of the continuous surface of the ground by a large number of 
selected points with known xyz coordinates in an arbitrary coordinate �eld’ (Miller & La�amme, 
1958). As of today, in most cases the term digital surface model represents the Earth’s surface 
and includes all objects on it.

In contrast to a DSM, the digital terrain model (DTM) represents the bare ground surface 
without any objects like plants and buildings but may include other arti�cial features, such as 
road embankments (Li et al., 2004; Maune, 2001). DEM is o�en used as a generic term for DSMs 
and DTMs, only representing height information without any further de�nition about the sur-
face. With the growing application of LiDAR, it is recommended to employ DTM for explicitly 
describing the bare-earth surface generated from LiDAR raw point clouds, while DEM is gen-
erally recommended in studies based on photogrammetry (DEMs from structure-from-motion 
or satellite). �roughout this book chapter, the term DEM will be considered as any generic 
numeric representation of a topographic surface arranged as a set of regularly spaced points in 
a square grid.
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Table 3.4-1: Various historical and current de�nitions of DEM, DSM and DTM.

Digital Ele-
vation Model 
(DEM)

a) Generic term covering digital topographic (and bathymetric) data in all its various 
forms as well as the method(s) for interpreting implicitly the elevations between ob-
servations. Typically implies elevations of bare earth without vegetation and buildings, 
but may include other arti�cial features, such as road embankments (Li et al., 2005; 
Maune, 2001)
b) Numeric representation of a topographic surface arranged as a set of regularly 
spaced points, generally in a square grid or hexagonal pattern, expressed as three-di-
mensional coordinates (Petrie & Kennie, 1987)

Digital Ter-
rain Model 
(DTM)

a) Umbrella concept covering models of elevations and other geographical elements 
and natural features, such as rivers and other break lines. May also include derived 
data about the terrain, such as slope, aspect, curvature, visibility (Miller & La�amme, 
1958; Petrie & Kennie, 1987)
b) Currently, DTM is a synonym of a bare-earth DEM (as widely referred in works 
related to laser-scanning and UAV applications) 

Digital Sur-
face Model 
(DSM)

Model depicting elevations of the top of re�ective surfaces, such as buildings and 
vegetation (Maune, 2001). Used widely in works related to laser scanning and UAV 
applications.

3.4.2  DEM generation

�e data sources and processing methods for generating DEMs have evolved rapidly over the 
past 20–30 years — from ground surveying and topographic map conversion to remote sensing 
with LiDAR, RADAR and UAVs (among others). Nelson et al. (2009) and Wilson (2012) provide 
an excellent overview of DEM production and generating sources, and they de�ne three possible 
sources for DEM data: (1) Ground survey techniques, (2) digitalization of existing topographic 
maps, (3) remote sensing (airborne and satellite, laser systems, interferometry, and unmanned 
systems – airborne, terrestrial, underwater – and Time of Flight (ToF), hand-held or supported 
cameras). A succinct summary of the signi�cant features of each of these options and their typ-
ical application scale is shown in (Table 3.4-2).
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Table 3.4-2: Signi�cant features of survey options and their application scale [inspired and 
modi�ed from (Nelson et al., 2009; John P. Wilson, 2012)] [v = vertical, h = horizontal accuracy].

Scale DEM reso-
lution

Data source Accuracy Example of applications

Micro-
scale

< 1 m Ground survey
GPS/dGPS
LiDAR
Unmanned systems – air-
borne, terrestrial, under-
water – Time of Flight 
(ToF) cameras hand-held 
or supported cameras

< 0.1 m v,h
< 1 m v,h
< 1 m v, 1 m h
< 1 m v,h
[accuracy also de-
pend on the accura-
cy of georeferencing 
system i.e. Ground-
Control-Points – 
GCPs]

Detailed hydrological 
modelling 
Precision agriculture
Soil mapping
Erosion mapping
Flume experiments

Fine 
topo-
scale

1 m–10 m Orthophotography
LiDAR
IfSar/InSar
Stereo-satellites (Ikonos, 
Geoeye, Pleiades)

< 1 m v,h
< 1 m v, 1 m h
< 2 m v, < 10 m h
< 4 m v, < 6 m h

Civil engineering 
Landscape mapping
Spatial hydrological 
modelling 
Spatial analysis of soil 
properties

Coarse 
topo-
scale

10 m–100 m Satellites (Aster, SPOT, 
SRTM)
Map digitalization

< 20 m v, < 10 m h Broad-scale hydrological 
modelling Subcatchment 
analysis for lumped 
parameter hydrological 
modelling

Meso-
scale

100 m–1 km Satellites 
Map digitalization

Medium v,h Elevation-dependent 
representations of sur-
face temperature and 
precipitation

Macro-
scale

1 km–
100 km

Satellites 
Map digitalization

Medium v,h Global circulation mo-
dels

LiDAR surveys from aerial or terrestrial laser scanner are generally the preferred support to 
represent �ne-scale (in space and time) elements and obtain high-quality, high-resolution data. 
However, despite the high vertical and horizontal accuracy, LiDAR surveys o�en do not provide 
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the areal coverage or temporal conditions required for particular studies. Finer space-time res-
olution topographic data can be derived from UAVs surveys and techniques based on Structure 
from Motion (SfM) and Multi-View Stereo (MVS). However, logistical constraints related to 
repeat surveys in the �eld, or the extent of coverage still exists (Eltner et al., 2016; Pearson et al., 
2017; Smith & Vericat, 2015; Carrivick et al., 2016; Smith et al. 2015). Importantly, higher-res-
olution data require great storage and computing capacity, and this restricts their existence to 
populated areas in wealthier nations, or to limited locations where researchers conduct their 
study. 

A tremendous advantage in surveying techniques has been given by the use of spaceborne 
platforms for DEM generation. Notwithstanding the issues related to cloud coverage, DEMs can 
nowadays be quickly produced over large and inaccessible areas (near) real-time or within a rel-
atively short time at a remarkable cheaper cost (Saeed et al., 2020; Purinton & Bookhagen, 2017). 
�e ALOS World 3D – 30 m (AW3D30), ASTER Global DEM Version 2 (GDEM2), and SRTM-
30 m, the TANDEM-X DEM (90 m), the MERIT DEM (90 m) have become available to the 
general public free of charge. A disadvantage of these DEMs, however, is that their resolution is 
insu�cient for most applications except where relief is high, and the fact that many of the DEMs 
currently available are over a decade old. With the development of 1 m optical and stereo image-
ry acquired from satellite-borne sensors, precision in the elevations of derived DEMs of meter 
scale is currently possible (Lane & Chandler, 2003). Examples of improved resolution global 
DEMs are o�ered by the High Mountain Asia (HMA) DEM (8 m) by NASA, the Arctic DEM 
(~0.5 m resolution) (also provided free of charge), the newly produced TANDEM-X (~12 m 
resolution in North-South direction), or the Pleiades-derived DEMs. Further improvement can 
be expected with the use of spaceborne LiDAR data (i.e. ICESat-2 data (Neuenschwander et al., 
2019)) to be used, for example, for processing improvements, elevation control, void-�lling and 
merging with data unavailable at the time of other spaceborne DEMs productions.

3.4.3  Data processing and construction

DEMs can be interpolated from irregularly spaced three-dimensional points collected from var-
ious sources (Table 3.4-2). However, with di�erences related to the remote sensing sensor, before 
DEM interpolation, it is generally necessary to preprocess the data, to reduce systematic and 
random errors, and to enrich the quality of the DEMs. 

It is widely accepted that the UAV-derived DEM accuracy from SfM-MVS, i.e., aerial or ter-
restrial photogrammetry processing, is in�uenced by �ight design and planning factors, such as 
GSD (ground sample distance), inclusion (or not) of oblique images, sensor and camera lens, 
�ight pattern and georeferencing method, etc. (Manfreda et al., 2019). As well, �ight altitude 
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in�uences the DEM quality, where lower �ights produce better DEMs; in a similar fashion, over-
cast weather conditions are preferable, but weather conditions and other factors in�uence DEM 
quality as well. Many works (Harwin & Lucieer, 2012; Hudzietz & Saripalli, 2011; James et al. 
2017b) have analysed the e�ects of each of them. Standard DEM generation algorithms also 
su�er from typical errors obtained by the use of an onboard Global Positioning System (GPS) 
receiver, antenna and inertial measurement unit (IMU), incurring by prevalent systematic error 
or “dri�s” in GPS camera positions.

Further pre-processing to remove non-ground points is also needed, especially to achieve 
accurate UAV-based DEMs for geomorphological applications. For this, many ground filtering 
algorithms exist, but the lack of standard data and uni�ed evaluation systems limit objective 
comparisons of di�erent methods (Uysal et al., 2015; Ozcan & Akay, 2018; Chiabrando et al., 
2017). Filtering methods are generally classi�ed into four di�erent categories (Sithole & Vos-
selman, 2004): slope-based (Vosselman, 2000); surface-based (Wan & Zhang, 2006); clustering/
segmentation (Sithole & Vosselman, 2005); and block-minimum algorithms (Sithole, 2005). 
Discussions about standard algorithm performances can be found in Uysal et al. (2015); Ozcan 
and Akay (2018); Chiabrando et al. (2017); Sithole and Vosselman (2004); Sithole and Vos-
selman (2005); Wan and Zhang (2006); Sithole and Vosselman (2005); Sithole, (2005). While 
these works refer mostly to LiDAR �ltering, similar approaches can be used for UAV-based 
surveys, and further �ltering approaches can be found in Pijl et al. (2020); Yilmaz and Gungor 
(2018); Yilmaz et al. (2018); Zeybek and Şanlıoğlu (2019) .

According to literature, surface-based algorithms are the most commonly used, and generally 
perform better (at least with high-resolution data). �is is maybe because they use more context 
compared with other �ltering algorithms (Sithole & Vosselman, 2004). �e basic concept of sur-
face-based �ltering algorithms is to create a parametric surface that can approximate the actual 
ground surface. According to previous studies (Zhang and Lin, 2012), surface-based �ltering 
algorithms are generally divided into three subcategories, including morphology-based; itera-
tive-interpolation-based; and progressive-densi�cation-based �lters. Morphology-based �lters 
conduct a series of morphological operations such as the opening and closing on rasterised 
point clouds. Alternatively, the progressive-densi�cation-based �lters utilise an initial triangular 
irregular network (TIN) to represent ground surface. �e initial TIN surface is then progressive-
ly densi�ed under strong constraints. �e iterative-interpolation-based �lters iteratively approx-
imate the true ground surface using various interpolation algorithms.

Once the data have been �ltered, it is necessary to use interpolation to estimate the elevation 
values at a higher resolution (throughout the landscape). �eoretically, the resolution of such 
surface (or scale) and the density of measurements required to obtain a speci�ed accuracy is 
dependent on the variability of each terrain. �e point density must be high enough to capture 
the smallest terrain features, yet not too �ne so as to over-sample the surface, in which case there 
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will be unnecessary data redundancy (Petrie & Kennie, 1987). �e resolution of the obtainable 
DEMs also depends on the density of the input points: a pixel size of two or three times the aver-
age point distance should be preferred (see i.e. Anderson et al., 2006 for LiDAR).

Literature on UAVs generally considers standard DEM interpolation approaches as they are 
available in numerous commercial and non-commercial so�ware. �e following paragraphs will 
highlight possible interpolation cross-platform methods used in literature (Li et al., 2004). Inter-
polation methods generally fall into two groups: local and global. Local methods operate around 
the position of the predicted point (neighbourhood), within an extent smaller than that of the 
study area. Examples of local deterministic methods are the Inverse Distance Weighting (IDW), 
local polynomials, and Radial Basis Functions (RBFs). On the other hand, global interpolation 
methods (i.e. Kriging) use all the available sample points to generate predictions for the whole 
area of interest. �ese methods can be used to evaluate and remove global variations caused by 
physical trends in the data. 

Among the most commonly considered local method, the IDW calculates the value as a dis-
tance-weighted average of sampled points in a de�ned neighbourhood (Manson et al., 1999). 
It considers that points closer to the query location will have more in�uence, and weights the 
sample points with inverse of their distance from the required point.

Nearest Neighbor interpolation �nds the closest subset of input samples to a query point and 
applies weights to them based on proportionate areas (Sibson, 1981). It is a local deterministic 
method and interpolated heights are guaranteed to be within the range of the samples used. It 
does not produce peaks, pits, ridges or valleys that are not already present in the input samples, 
and adapts locally to the structure of the input data. It does not require input from the user and 
works equally well for regularly as well as irregularly distributed data, and it produces reliable 
surfaces for morphological analysis (Pirotti & Tarolli, 2010; Boissonnat & Cazals, 2001).

�e Spline interpolation approach uses a mathematical function to minimise the surface cur-
vature and produces a smooth surface that exactly �ts the input points. Advantages of splin-
ing functions are that they can generate su�ciently accurate surfaces from only a few sampled 
points and they retain small features. A disadvantage is that they may have di�erent minimum 
and maximum values than the data set and the functions are sensitive to outliers due to the in-
clusion of the original data values at the sample points.

�e ANUDEM (Hutchinson, 2011) method uses an interpolation technique speci�cally de-
signed to create a surface that more closely represents a natural drainage surface and preserves 
both ridgelines as well as stream networks.

Kriging (Wu, 2017) is a geo statistical interpolation method that utilizes variograms which de-
pend on the spatial distribution of data rather than on actual values. Kriging weights are derived 
using a data-driven weighting function to reduce the bias toward input values, and it provides 
the best interpolation when good variogram models are available. 
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3.4.4  DEM accuracy

�e accuracy of DEM is a function of several variables such as the roughness of the terrain sur-
face, the interpolation function, interpolation methods and other attributes (accuracy, density, 
and distribution) of the source data. �e latter is, as well, in�uenced by both systematic (e.g. 
accuracy of the survey equipment and of the method chosen) and random errors (e.g. tilting of 
the pole when surveying with a dGPS), that are uneven across a surface, with generally low error 
across uniform surfaces and increased error associated with breaks of slope. 

Overall, DEM errors can refer to:

1. Data errors due to the age of data, the incomplete density of observations or results of 
spatial sampling.

2. Measurement errors such as positional accuracy, data entry faults, or observer bias.
3. Processing errors such as numerical errors in the computer, errors due to interpolation or 

classi�cation and generalisation problems.

DEMs obtained through UAV aerial images appear to provide relatively high accuracy (Anders 
et al., 2013; Rusli et al., 2019; Mancini et al., 2013; Chandler et al., 2018; Colomina and Molina, 
2014). Factors that in�uence the �nal error associated to UAV-derived DEM are for example 
(Uysal et al., 2015; Ruiz et al., 2013): camera-to-ground distance, camera-sensor system param-
eters, image network geometry, matching performance, terrain type, lighting conditions refer-
encing methods. 

DEM errors are not easily detectable and can introduce signi�cant bias. Error assessment is 
o�en carried out with limited control data, and it generally only accounts for absolute horizon-
tal and/or vertical accuracy. �is measurement of accuracy, however, presents two signi�cant 
limitations. It does not represent the accuracy of higher-order DEM derivatives (e.g., slope and 
curvature), geomorphic metrics, or landscape features of interest to geoscientists. �e problem 
is especially acute given that relatively small elevation errors will propagate in the �rst (slope) 
and second (curvature) derivatives, potentially obscuring geomorphometric results (e.g., (So�a 
et al., 2013; Albani et al., 2004; Oksanen & Sarjakoski, 2005). It does not incorporate spatial 
autocorrelation of uncertainty. Errors in spatial data are generally spatially auto-correlated. For 
example, an error in a benchmark measurement will a�ect resulting elevation values developed 
from that point. �us, uncertainty regarding this error is also spatially dependent. �is can cre-
ate systematic biases in DEMs and poses a problem for non-spatial statistical methods used to 
de�ne map accuracy (such as the Root Mean Square Error – RMSE –). 
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Many studies have investigated improved methods to identify systematic errors in DEMs (So-
�a et al., 2013; Heritage et al., 2009; Oksanen & Sarjakoski, 2005; Xuejun & Lu, 2008; James et 
al., 2017b). Semivariograms and fractal dimensions have been shown to analytically con�rm the 
presence and structure of systematic errors in DEMs, and multiple authors suggested �ltering as 
a means to reduce biases (Milan et al., 2011; Brown & Bara, 1994). Further studies highlighted 
how to observe the DEM derivatives to infer about DEM errors by calculating the average value 
of the land surface parameter from multiple equiprobable realizations of the same DEM (So�a et 
al., 2013; Zandbergen, 2011; Hengl, 2006). Fisher and Tate (2006) review the source and nature 
of errors in DEMs, and in the derivatives of such models, highlighting methods for the correc-
tion of errors and assessment of �tness for use. Wechsler (2007) brings together a discussion of 
research in fundamental topical areas related to DEM uncertainty that a�ect the use of DEMs 
for hydrologic applications. Januchowski et al. (2010) o�ers an interesting point of view on the 
bene�ts gained from having less error in a model or to the corresponding cost associated with 
reducing model error by choosing one product over another. While not being speci�cally for 
UAV-derived products, the mentioned works o�er interesting starting point for investigating 
DEM quality and accuracy on UAV-based studies. Additionally, Goetz et al. (2018) provide an 
example of error determination for UAV-based SfM DEMs, and de�ne how DEM error can be 
described di�erently depending on the available validation data. Examples of how to mitigate 
systematic error in topographic models derived from UAV and ground‐based image networks 
are provided by James and Robson (2014).

3.4.5  Guidance

�e real applicability of UAV or other sensors-derived DEMs, for any analysis should be assessed 
depending on the aim of the study. Ideally, it should be evaluated by investigating landforms 
(how accurate is the shape of the land in the digital landscape?), features (how accurate are 
ridges and �ow lines within the landscape?), surface roughness (how accurately is landscape 
roughness portrayed in the digital realm?), and consistency (is elevation consistent throughout 
the landscape?) (Wilson, 2012). �ese questions should also help the image acquisition phase. 

One approach to investigate the above-mentioned questions is the Explore-then-exploit tech-
nique (i.e. Roberts et al., 2017) that involves two phases. In the “explore” phase, an initial path is 
planned with a uniform distribution of views for the area to be reconstructed, similar to an o�-
the-shelf �ight-planner. Next, images are quickly collected by the UAV and utilized to generate 
an initial rough model called a geometric proxy. �is geometric proxy can be investigated to 
observe roughness, landforms, features and consistency. In the “exploit” phase, a new trajectory 
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is planned according to the geometric proxy and the collection and reconstruction processes are 
repeated to generate a high-quality 3D model. 

�e real applicability of a DEM, guided by the above-mentioned principles, is highly in�u-
enced by all the processing phases, from data pre-processing and DEM creation.

Regarding the accuracy of landform, feature and roughness representation, the pre-pro-
cessing phase is the most challenging. To model geomorphological or hydrological processes, 
it is important to retrieve the actual terrain surface, and not the vegetated surface. In surface 
models, trees and shrubs are represented as impenetrable obstacles, while in reality water and 
sediment �ows around the stems of such vegetation. Modelling hydrological behaviour and/or 
sediment transport with surface models will likely to lead to wrong assumptions. Developing 
terrain surfaces from image-based point clouds, especially for areas under dense over-ground 
coverage (vegetation, buildings) is an area of active research, due to the di�culty of obtain-
ing a suitable number of under-coverage images from multiple perspectives (Sammartano & 
Spanò, 2016). For UAV surveys of relatively smooth landscape, good �ltering results can be 
achieved using algorithms that recognize objects according to their variation of height and 
density from ground (as an almost plane level). For more complex topographies, adaptive 
algorithms should be preferred, where the threshold for �ltering varies depending on the 
slope of the terrain (i.e. Pijl et al., 2020; Sammartano & Spanò, 2016). Comparative studies 
highlighted how, among others, adaptive TIN algorithms perform better for the �ltering of 
image-based data (Yilmaz & Gungor, 2018; Yilmaz et al., 2018), depending however on the 
characteristics of the study area.

Figure 3.4-2: Photogrammetric DEMs of a portion of the Tecolote Volcano, Pinacate Volcanic 
Field, Sonora, Mexico (a) (Scott et al., 2018) created using IDW (b), Natural Neighbor (c), 

Spline (d), and Kriging (e).
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For the DEM creation, one should keep in mind that di�erent interpolation methods applied 
over the same data sources may result in di�erent results, and hence it would be preferable 
to evaluate the comparative suitability of these techniques. A challenge in error assessment is 
that, practically, it is not always possible to measure true elevation from ground because of time 
and accessibility. Instead of determining the absolute accuracy of the DEM, it is more common 
to measure the relative accuracy in comparison with sample point measurement known to be 
of a higher order of accuracy. Bell (2012) o�ers an exciting article summarising and identify-
ing sources of error arising from the interpolation approach. �is work enables to assess the 
statistical characteristics of error, their spatial statistical structure and deviance of distribution 
as a means to easily understand spatial structure. As an example, Figure 3.4-2 shows a photo-
grammetric model of the Tecolote Volcano, Pinacate Volcanic Field, Sonora, Mexico (Scott et 
al., 2018) created using IDW (b), Natural Neighbor (c), Spline (d), and Kriging (e). Table 3.4-3 
reports some statistical measurements.

Table 3.4-3: Some statistic measure of a DEM derived using di�erent 
interpolation techniques. DEMs are showed in Figure 3.4-2.

Skewness Mean STD Min Max

IDW -0.0869 338.02 18.72 284.35 383.84

Natural Neighbor -0.0913 338.09 18.70 284.35 383.81

Spline -0.0872 338.01 18.74 284.10 384.29

Kriging -0.0872 338.01 18.73 284.33 383.82

From a visual interpretation (Figure  3.4-2), it appears that overall roughness of the models 
changes, depending on the interpolation technique used. �e Spline model (d) emphasizes 
rocky outcrops and erosional elements, while the IDW (b) seems to present more distributed 
roughness and striping artifacts. A quick review of statistical parameters (Table 3) shows that all 
interpolated surfaces illustrate negative skewness quite close to zero, suggesting the high resolu-
tion of the SfM dataset enables accurate interpolation of surfaces. �e Natural Neighbor model 
(d) performs least favourably in terms of skewness with the distribution being slightly more neg-
atively skewed than other techniques. �e standard deviation of the spline, however, is highest 
for all interpolation approaches demonstrating most signi�cant variation in values around the 
mean. A greater spread of values and peak around mean suggests potential sources of error and 
a reduction in accuracy of the interpolation approach.

Given the example showed in Figure 3.4-2, it is essential that surface composition and top-
ographic complexity are considered before selecting an interpolation algorithm. In �uvial ge-
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omorphology, for example, Delauney triangulation or TINs are o�en used (Brasington et al., 
2000) or kriging (Fuller et al., 2003). Both of these schemes have been suggested as being the 
best interpolators for landscape surface data (Holmes, 2016), with TINs being computationally 
e�cient and well suited to discontinuous shapes such as ridges, and breaks of slope (Wilson 
& Gallant, 2000a,b) and return lower elevation errors in comparison to other interpolation 
schemes. 

Finally, for real DEM applicability, DEM pre-processing might also be required, and it strict-
ly depends on the �nal aim of the study. An important aspect worth mentioning is the use of 
UAV DEMs for hydrological studies (i.e. Govedarica et al., 2018; Sammartano & Spanò, 2016; 
Pineux et al., 2017; Leitão et al., 2016). From a hydrologic perspective, the development of UAV 
techniques should be driven by the necessary inputs to a hydrologic model or the potential for 
utilizing the imagery to test the model predictions. Hydrological analysis requires the ability 
to simulate �ow movements correctly in the digital landscape. For this type of pre-processing 
(hydrological correction), challenges are introduced with increasing resolution because of the 
e�ect of artefacts such as systematic DEM errors and small features creating blockages in the 
landscape, or, on the other hand, from the identi�cation of sink that could be part of the inves-
tigated landscape (Callaghan & Wickert, 2019). Di�erent pre-processing techniques produce 
di�erent results (Lidberg et al., 2017). As well, hydrological pre-processing alters the landscape, 
to the point that the created DEM should not be applied for other analysis (i.e. morphological 
ones). Careful investigation of hydrologic correction can ensure that UAV based DEM make 
their way into products that directly quantify the hydrologic cycle and improve predictive skill 
at a range of resolutions.

3.4.6  DEM derivatives

A full objective description of landforms from DEMs is achieved through descriptive measure 
of the surface form (Evans, 2012) in their purest form as elevation, slope, and aspect, and with 
increasingly sophisticated measures. �is chapter will provide a collection of DEM derivatives. 
�e reader should refer to (Wilson, 2018; Hutchinson & Gallant, 2000a,b) to have a complete 
view of this subject.

Most local topographic variables can be derived from elevation (z) values within a neigh-
bourhood of each point of the land surface (z). z is given by z=f (x,y) where x and y are plan 
Cartesian coordinates. �is implies that caves and empty spaces are not currently possible to be 
represented by surface derivatives. �e derived landscape parameters are functions of partial de-
rivatives that can be calculated with regular (square-gridded) DEMs by various methods includ-
ing several �nite-di�erence methods using moving windows e.g. (Wood, 2009); and analytical 
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computations based on DEM interpolation by local splines or global approximation of a DEM 
by high-order orthogonal polynomials (Florinsky & Pankratov, 2016). 

DEM derivatives and topographic parameters can be classi�ed based on their mathematical 
properties (Florinsky, 2017; Evans & Minár, 2011) and can be grouped into four main classes: 
(1) local variables; (2) non-local variables; (3) two-�eld speci�c variables; and (4) combined 
variables. 

A local morphometric variable is a single-valued bivariate function describing the geometry 
of the topographic surface in the vicinity of a given point of the surface (Speight, 1974) along 
directions determined by one of the two pairs of mutually perpendicular normal sections, and 
they include �rst order (i.e slope)and second order (i.e. curvature) derivatives. 

A non-local (or regional) morphometric variable is a single-valued bivariate function describ-
ing a relative position of a given point on the topographic surface (Speight, 1974). To estimate 
non-local variables, we generally rely on �ow routing (FR) algorithms. �ese algorithms deter-
mine a route along which a �ow is distributed from a given point of the topographic surface to 
downslope points. FR algorithms can be classi�ed based on their mathematical base: (1) sin-
gle-�ow direction (D8, Figure 3.4-3b) algorithms that use one of the eight possible directions 
separated by 45º to model a �ow from a given point (Martz & Garbrecht, 1992); and (2) mul-
tiple-�ow direction (MFD, Figure 3.4-3d) algorithms using the �ow partitioning (Quinn et al., 
1991). �ere are some methods combining D8 and MFD principles i.e. D-in�nity (Figure 3.4-
3c) (Tarboton, 1997). Overall, while both approaches perform within an acceptable rate of ap-
proximation for convergent hillslopes, in divergent landscapes the D8 method has disadvantages 
arising from the discretization of �ow into only one of eight possible directions separated by π/4, 
which results in a loss of information about the real �ow path and leads to biases of �ow lengths 
(Figure 3.4-3b). Comparisons among algorithms can be found in Armitage (2019), Orladini et 
al. (2011) and Hutchinson et al. (2013).

A two-�eld speci�c morphometric variable is a single-valued bivariate function describing re-
lations between the topographic surface (located in the gravity �eld) and other �elds, in particu-
lar, solar irradiation and wind �ow. �ese variables are functions of the �rst partial derivatives of 
elevation (as in local variables) and angles describing the position of the Sun in the sky. Example 
of this is topographic openness (Yokoyama et al., 2002) (Figure 3.4-3g, h).

Morphometric variables can be composed of local and non-local variables. Such attributes 
consider both the local geometry of the topographic surface and a relative position of a point 
on the surface, and focus on water �ow/soil redistribution or energy/heat regimes (Wilson & 
Gallant, 2000a, b) Among combined morphometric variables are the topographic index and the 
stream power index (SPI, Figure 3.4-3f) (Wilson & Gallant, 2000a, b) and some others. Com-
bined variables are derived from DEMs by the sequential application of methods for non-local 
and local variables, followed by a combination of the results.
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Figure 3.4-3: Various topographic parameters: Flow accumulation according to the D8 (b), 
Dinf (c) and MDF (d) method, total curvature (e), Stream Power Index – SPI – (f) and 

positive (g) and negative (h) openness, evaluated for a 1 m DEM from LiDAR (Pirotti & Tarolli, 
2010). Flow directions, curvature and SPI, are computed using ArcGis 10.6, 

Openness is evaluated using SAGA.

Slope and aspect have been well known in geosciences for many decades, and so there is no 
need to specify their �elds of application. Curvature (Figure 3.4-3e) is systematically used in 
geomorphic studies to describe, analyse and model landforms and their evolution, to study re-
lationships in the topography-soil-vegetation system and to perform predictive soil and vegeta-
tion mapping, to reveal hidden faults as well as to study fold geometry (Drăgut & Dornik, 2013; 
Tarolli, So�a et al., 2012), or to recognize thalweg (negative values, Figure 3.4-3e) and crest lines 
(positive values, Figure 3.4-3e) (Clubb et al., 2014; Passalacqua et al., 2010). Two-�eld speci�c 
variables are generally the most straightforward approach to visualise landscapes (hillshade or 
shaded-relief maps) (Chase et al., 2014; Devereux et al., 2008). Flow-routing compound indices, 
such as the Stream Power Index (SPI, Figure 3.4-3f) are widely used in hydrological and related 
soil, plant and geomorphic studies, or erosion and soil research (Ferencevic & Ashmore, 2012).
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3.4.7  Redundancy and scale

Complexity emerges because geomorphometric analysis is currently implemented in many 
commercial or open-source so�ware, and it is implemented through di�erent methods and al-
gorithms. �e results of di�erent work�ows o�en con�ict, leading to uncertainties about feature 
locations, and each one of these steps’ bias and limitations is generally transferred and accumu-
lated to the next step. Two aspects are worth to be mentioned, referring to DEM derivatives and 
their applicability: redundancy and scale.

Redundancy. Currently, more than 100 land surface parameters exist (Wilson, 2018). Many 
of these land surface parameters incorporate �ow direction, and they make use of one or more 
of the many �ow direction algorithms that have been proposed during the past decades. Some 
parameters might not be actually unique (Gessler et al., 2009) . Di�erent methods for parameter 
evaluation implies di�erent characteristics of the map, and the results are always dependent on 
the generalisation/resolution and quality of the DEM. Figure 3.4-4 shows slope computed ac-
cording to Zevenbergen and �orne (1987) and Evans (1972) using a 1 m LiDAR DEM (Pirotti 
& Tarolli, 2010) and it displays di�erences between each map, especially in steep terrain.

Comparative studies in various disciplines, ranging from hydrology (Buchanan et al., 2014; 
Sørensen et al., 2006), natural hazard (Barbarella et al., 2017; Favalli & Fornaciai, 2017), wa-
tershed analysis (Li�ner et al., 2018), soil science (Song et al., 2016) prove that a calculation 
method that performs best for all measured variables does not exist; instead, the best method is 
generally variable, site-speci�c and speci�c to each �eld-of-study. It is highlighted, therefore, the 
importance of clarifying the choice of the considered parameter, procedures and analysis should 
be described in a su�ciently detailed and in a transparent way. Without su�cient knowledge 
of the processes and the so�ware being used, comparative studies can potentially invest greater 
con�dence in the results than may be warranted.

Figure 3.4-4: Example of slope evaluated according to Evans (1972) (a) and Zevenbergen and 
�orne (1987) (b) algorithms and relative changes (c). �e slope is evaluated using SAGA. 

Parameters are evaluated from a 1 m DEM from LiDAR (Pirotti & Tarolli, 2010).
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Scale. DEM resolution impact is a well-known subject in DEM application. Nonetheless, a fur-
ther scale issue emerges regarding DEM derivatives. Literature discussed how the highest reso-
lution does not always imply the optimal information, and the use of di�erent scale of analysis 
algorithms produce multiple interpretations of a single phenomenon (see So�a, 2020 for a full 
review). DEM derivatives are generally computed using a neighbourhood around the data (i.e. 
a moving window, generally of 3x3 pixels). DEM-derived parameters are much less sensitive to 
resolution changes than to variation in neighbourhood size (So�a et al., 2013; Smith et al., 2006).

Figure 3.4-5 exempli�es the e�ect of choosing a correct window size to evaluate topographic 
parameters. Roughness can be associated with the presence of landslides or erosive processes 
(Booth et al., 2009; Tarolli, 2014). Cavalli et al. (2008) de�ne roughness as the standard deviation 
of residual topography (Figure 3.4-5). A rougher topography is identi�ed by high residual topog-
raphy variability (Tarolli, 2014), and it can be measured over sampling windows of a �xed size that 
are moved over the DEM (i.e 3x3, Figure 3.4-5b, 15x15 Figure 3.4-5c, or 33x33 Figure 3.4-5d).

Generally, smaller windows are more sensitive to noise and errors (Figure 3.4-5b), but win-
dows that are ‘extremely’ large, are not su�cient to capture the morphology of interest (Fig-
ure 3.4-5d). Windows that are two  to three  sizes the size of the feature of interest should be 
preferred (Pirotti & Tarolli, 2010). 

A further issue to consider is related to microtopographic noise. �is noise is ubiquitous, espe-
cially in high‐resolution DEMs from LiDAR or SfM. A branch of literature addressed this issue 
by �ltering techniques taken from image analysis such as di�usive smoothing, optimal Wiener 
�ltering, or nonlinear di�usive or Perona‐Malik �ltering (Clubb et al., 2014; Pelletier, 2013; Pel-
letier & Perron, 2012; Passalacqua et al., 2010).

Figure 3.4-5: Examples of roughness index by Cavalli et al. (2008) for a landslide area in northern 
Italy (a) evaluated at di�erent moving windows with size 3x3 (b), 15x15 (c) and 33x33 m (d). 

Roughness is evaluated using ArcGis 10.6. LiDAR data are provided by Pirotti and Tarolli (2010).
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�e readers should refer to So�a (2020), Drăguţ & Dornik (2013); Drăguţ et al. (2011); Drăguţ 
& Eisank (2011a); Drăguţ & Eisank (2011b); So�a et al. (2011); So�a et al. (2017), Minar & Evans 
(2015); Evans & Minár (2011); Minár & Evans (2007) for di�erent views and applications of 
scales ranging from scale e�ects to scale optimisation techniques. As a general rule, elementary 
landscape forms (segments, units), as the signature of processes, are de�ned by constant values 
of fundamental morphometric properties and limited by discontinuities of the properties. �is 
literature suggests that to identify the underlying process correctly, we must identify the scale 
that maximises internal homogeneity and external di�erences.

3.4.8  DEM of di�erence

A further step in landscape characterisation is o�ered by change detection techniques (İlsever & 
Ünsalan, 2012; James et al., 2012), which has gained signi�cant attention due to its capability of 
providing variations of volumetric and planimetric measures. Readers should refer to (Qin et al., 
2016) for a review. �ese techniques rely on the availability of multiple topographic data cover-
ing the same area of interest, real (across time) or simulated, to be used to compare topography. 
�e change detection can either be applied volumetrically, using DEMs (e.g. Bangen et al., 2014; 
Wheaton et al., 2010; Lane et al., 2003), or in plan, where geomorphological features are delim-

Figure 3.4-6: Time-series change detection (e) between 2005 (a, b) and 2008 (c, d) for an 
anthropogenic landscape in Spain (LiDAR DEMs at 1 m resolution and orthophotos are from 

(Institut Cartogra�c De Catalunya (ICC) 2005; Institut Cartographic de Catalunya (ICC) 2008). 
Change detection was performed using the GCD toolbar for ArcGis 10.6.
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ited from remote sensing imagery or cartography (e.g. Hooke & Yorke, 2010). For this chapter, 
we are focusing mostly on volumetric change detection, where two DEMs that share the same 
geodetic reference are subtracted from one another to reveal morphological changes related to 
processes (Figure 3.4-6), or to DEM processing (Figure 3.4-7). 

Figure 3.4-6 shows an example of DoD related to two LiDAR Surveys, carried out in 2005 and 
2008 for the same area. Summing the total change across the DoD quanti�es volumetric changes, 
and highlight patterns related to either deposition (A in Figure 3.4-6e) or erosion (B in Figure 3.4-6e). 

Applications of DoD in earth-surface processes research o�en center on monitoring and 
detecting change within a system over time. Nonetheless, this technique can be useful also to 
identify and assess the quality of a DEM as compared to a reference dataset (Figure 3.4-7). �e 
advantage of using DoD to address error, is that it allows to identify patterns and location where 
such di�erences might be present. Figure 3.4-7 shows a LiDAR DEM at 30 m resolution as com-

Figure 3.4-7: Barringer Crater (AZ, USA (a)) and detection of errors (b) between a 
30 m LiDAR (c) and the 30 m SRTM DEM (d). �e original LiDAR at 0.25 m and the 

SRTM for the same area are free and available for download at http://opentopo.sdsc.edu/
raster?opentopoID=OTSDEM.112011.26912.3 [LiDAR data acquisition and processing completed 
by the National Center for Airborne Laser Mapping (NCALM – http://www.ncalm.org). NCALM 

funding provided by NSF’s Division of Earth Sciences, Instrumentation and Facilities Program. 
EAR-1043051; SRTM https://doi.org/10.5069/G9445JDF] Change detection 

was performed using the GCD toolbar for ArcGis 10.6.
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pared to an SRTM DEM with the same pixel quality (30 m) (d). Applying a DoD between the 
two datasets reveals areas of di�erences, and it allows to highlight artifacts in the SRTM DEM. 
�e elevation di�erences aligned in straight lines in Figure 3.4-7b are due to striping artifacts, a 
common error in SRTM DEMs (Stevenson et al., 2010)

Similar DoD studies, considering DEMs from UAVs and DEMs from a reference survey (i.e. 
airborne LiDAR), would allow to quantify errors related to the UAV survey, and de�ne its accuracy.

3.4.9  Quantifying spatially variable uncertainty

Di�erencing sequential sets of DEMs can be used to detect and quantify geomorphic change to 
understand processes on infer about the quality of a DEM. Nonetheless, loss of valuable infor-
mation concerning landscape change may result in areas where the mean error is higher than the 
change being measured. �is is of crucial signi�cance in small-scale erosion studies (e.g. Kaiser 
et al., 2018), where changes are o�en very subtle in nature, and their magnitude is similar to that 
of uncertainties. 

It is, therefore, essential to understand the distinction between the process of estimating errors 
of individual DEMs (chapter 2.2), and the process of propagating those errors and choosing a 
technique by which to threshold the DoD to separate noise from signal. Researchers should also 
account for the fact that biases are likely to be spatially variable. �erefore, the signal to noise 
ratio is likely to vary across an area of interest, with di�erent degrees depending on landscape 
complexity and the survey system. 

At all scales and for all application, users must understand: (i) the technology and its limita-
tions at the time of data collection; (ii) how post-processing steps (point cloud classi�cation and 
generation of the gridded product) for each individual data set might a�ect the results; and (iii) 
georeferencing information for the original data, as systematic errors can be introduced at any 
one of these steps.

To produce a more realistic spatial representation of morphological changes, literature sug-
gests taking into consideration the spatial patterns of DEM errors (Javernick et al., 2014; Lane 
et al., 2003; Milan et al., 2007). �is can be accomplished, for example, through stochastic reali-
sation of the same DEMs (Hawker et al., 2018), and by comparison with a reference survey (i.e. 
Figure 3.4-7). With these comparisons, it is possible to derive a spatially distributed estimation 
of errors, to be further considered in the DoD. Wheaton et al. (2010) also present a technique 
for estimating the magnitude of DEM uncertainty in a spatially variable manner through the use 
of fuzzy set theory.

An assessment of the error in the DoD derived quantity can be made formally, assuming that 
both inputs can be treated as independent (Brasington et al., 2000). Independently from the way 
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DEM errors are estimated (e.g. spatially uniform, fuzzy inference systems, user-speci�ed spatial-
ly variable), there are various possible combinations for propagating these errors into the DoD.

In the simplest approach, accuracy measures are applied as ‘minimum level of detection’ 
(LoD) to account for the propagated error in the considered dataset, to perform the geomorphic 
detection. �is approach presents one main limitation, which is that the statistic is generally 
averaged across the whole surface.

As an alternative, a probabilistic approach is suggested for the determination of the uncer-
tainty in the magnitude of change for each data point in a DEM of di�erence (Lane et al., 2003; 
Brasington et al., 2003). �ey show how probabilistic thresholding can be carried out with a 
user-de�ned con�dence interval. Following this method, an error-reduced DoD can then be 
obtained by discarding all changes with probability values less than the chosen threshold. As a 
more advanced approach, Wheaton et al. (2010) suggest using Bayesian statistics with updated 
additional information (e.g. spatial coherence �lters) to de�ne the threshold for the DoD. �ese 
more advanced approaches present less-conservative volumetric estimates, in comparison to 
using a spatially uniform LoD, and provide more plausible and physically meaningful results 
(Prosdocimi et al., 2016).

Poor quanti�cation of uncertainty can erroneously over- or underestimate real change. Espe-
cially when applying uniform thresholds, overestimates change in areas where change would not 
be expected, such as stable hillslopes, and underestimates the changes in areas where it is expect-
ed. More appropriate results are obtained when using a spatially variable DEM error model that 
combines the in�uence of various error sources, such as slope, point density, and vegetation, for 
example) in a fuzzy inference system (Prosdocimi et al., 2017; Vericat et al., 2015; Wheaton et 
al., 2010). 

3.4.10  Final remarks

DEMs and DoD are critical for geoscienti�c studies focusing on the description and classi�ca-
tion of landforms, on the dynamical processes characterising their evolution and existence and 
on their relationship to and association with other forms and processes. �ree critical points will 
yield substantial bene�ts in the use of DEMs for landscape analysis. 

It is important to improve our knowledge of the presence of and propagation of errors in 
both the current and new remote sensing data sources that emerge. DEM quality and reso-
lution must be consistent with the scale of the application and of the processes that are mod-
elled, the size of the land surface features that are to be resolved, and the study objectives. 
DEM errors should always be accounted for, including information about their correlation 
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and entity, and creating approaches that account for variable sources of errors, especially 
when dealing with DoD. 

�e second critical element concerns scale e�ects. �e rapid advent and adoption of high-res-
olution remote sensing digital elevation data sources mean that there is an urgent need to im-
prove our understanding of how these �ne-scale data in�uence the computed land surface 
parameters. Higher resolution does not always imply a better representation of surfaces, but it 
also comes with higher level of possible noise being captured. As well, many vital parameters 
can be understood at lower-resolution, given careful consideration of how analyses are per-
formed.

�e availability of medium-sized global models also calls for a more comprehensive study 
of scale. We must also account for the scale at which we infer topography, in terms of window 
of analysis, and we must put careful consideration into how terrain analysis moves across 
scales.

�e third point is critical for those interested in calculating one or more of the described land 
surface parameters as a part of some digital terrain modelling work�ow and using the results as 
inputs in some environmental application(s). At each step (i.e. pre-processing, �ltering, DEM 
interpolation, evaluation of derivatives) researchers must choose wisely among the various op-
tions available for each task, while paying particular attention to the research goal, the advan-
tages and disadvantages of di�erent data sources and digital terrain modelling techniques, the 
characteristics of their study area, and how errors might have been introduced and propagated 
in their work�ows, and the signi�cance of these errors for the results that are produced. Crit-
ical thinking must be put into the interpretation of results. �e quality of the data and of our 
assumption about the process under investigation form the basis for the environmental applica-
tion. A small blunder can set o� a chain of errors that can go undetected for long periods. And 
when they do get noticed, it takes quite some time to recognise the source of the issue, and even 
longer to correct it.

Notwithstanding the complexity of terrain analysis and DEM applications, the use of digital 
terrain analysis o�ers interpretative, analytical investigations on past and current patterns of 
processes, and can help improve and possibly prediction earth surface processes for the future. 
�is unique set of tools and techniques provide �eld evidence of changes to the landscape in 
response to various drivers, of natural or anthropogenic origin. �us, they enhance our under-
standing of changes in geomorphic systems and vulnerabilities to landscapes and society at a 
variety of scales, from micro, to local, to global.
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Geomorphometric computations rely on physical measurements of the Earth’s surface that ulti-
mately form the basis for understanding geomorphological processes. Despite the roots of this 
approach can be traced back to the early 1800s (Pike, 2002) it took more than a century until the 
geodetic strategies for data acquisition and processing emerged that are still being used today. 
Presumably the �rst realisation of geomorphometric measurements were carried out in the �eld 
of engineering surveying (Ganz, 1914) and is also referred to as change detection, deformation 
measurement, deformation monitoring or deformation analysis in the �eld of geodesy. In the 
following the term deformation measurement is used since the primary aim of this process is to 
quantify and �nally visualise deformations. �e analysis itself is an interpretational task which is 
�nally carried out by an expert in the respective �eld – while the computation of deformations 
requires geodetic knowledge. 

Deformation measurement is conducted by surveying an area of interest at di�erent points in time, 
that are referred to as epochs. Geometric changes are then identi�ed based on the captured data. 
�erefore, a stable reference frame is required which is determined by immovable control points – a 
methodology that is referred to as congruency modelling (Heunecke & Welsch, 2000). In order to 
achieve this prerequisite, both stable areas and those potentially subject to deformations need to be 
identi�ed within the area under investigation. If stable points, e.g. in the case of tacheometry, or areas, 
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when using point clouds (Wujanz et al., 2018), have been detected, they can be used to transform a 
given epoch into a reference epoch for deformation measurement. As a �nal step, di�erences between 
the point clouds are computed that eventually reveal deformations. �e outcome is generated by 
colour-coding the points of one dataset in dependence to their magnitude of deformation that can 
�nally be used to draw conclusions about the geomorphometric behaviour of an area of interest.

�e process chain of deformation measurement typically involves the following steps, regard-
less which strategy for data acquisition was chosen:

• Planning of a survey
• Acquisition of an epoch
• (Geo-) Referencing the data, see chapter 2.1 for details.
• Quanti�cation of deformations

Sound summaries about deformation monitoring based on point clouds can be found in e.g., 
Jaboyedo� et al. (2012), Lindenbergh & Pietrzyk (2015) or Wujanz (2016). 

3.5.1  Error budget of deformation measurement 
based on UAVs

Perfection is unfortunately just a theoretical concept and therefore beyond reach in practice – 
regardless of if we look at the accuracy of sensors, algorithms or computations performed by a 
computer. Hence, it is vital to consider potentially all relevant error sources that interfere with 
the desired outcome which is gathered in a so-called error budget (Soudarissanane, 2016). �e 
more realistic the occurring errors can be estimated, the more realistic deformations can be 
distinguished from random or systematic errors that are provoked along the path of data pro-
cessing. An error budget for an unmanned aerial vehicle that is applied for deformation meas-
urement may contain, among others, the following components:

• Accuracy of the applied sensors for 3D-data acquisition (see e.g. chapter 2.3), positioning, 
and orientation (see chapter 2.1)

• Bore-sight calibration of all sensors (Jutzi et al., 2014)
• Registration/referencing of point clouds
• Sampling process/aliasing, see chapter 3.5.2
• Quanti�cation of deformations, see chapter 3.5.3

Particularly critical aspects will be discussed in greater detail in the following. 



299

3.5  Deformation measurements based on point clouds 

 3.5 .2  Aliasing in 3D-data acquisition

� e point sampling of all 3D-data acquisition techniques varies in dependence to the survey con-
� guration, for instance � ight altitude and relative orientation to the object of interest, as well as 
the selected sensor settings, such as the chosen resolution or frequency of data acquisition. Every 
3D documentation of an object can thus be interpreted as a coherent geometric representation – 
a direct comparison with other descriptions of the same object, however, usually leads to pseu-
do-deformations. � is is e� ect is illustrated in Figure 3.5-1. � e le�  part of the � gure shows three 
di� erent geometric descriptions of an identical object. For the sake of clarity, a single pro� le of each 
point cloud is shown on the right. If we now triangulate the point clouds and look sideways at the 
resulting pro� les, apparent di� erences emerge, especially in unsteady and poorly resolved areas. 
3D-data acquisition techniques can therefore be interpreted as polymorphic measuring methods.

Figu  re 3.5-1: Genesis of pseudo-deformation as a consequence of aliasing (Wujanz, 2018; 
Copyright VDE Verlag; Used with permission – all rights reserved).

 3.5. 3  Strategies for deformation measurement 
based on point clouds

Point clouds that are enriched with temporal information can be interpreted and hence pro-
cessed in several ways. Potential processing strategies can be based on:
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• model-free assumptions, which is subject of chapter 3.5.3.1
• computed segments, as discussed in chapter 3.5.3.2, or
• an assumed model. 

A peculiarity of the last-mentioned strategy is that changes of an object over time are not com-
puted based on the original point cloud or subsets. Instead, the captured points are approximated 
with respect to an assumed model which characterises an object’s shape. Deformations are given 
if di�erences among estimated parameters between epochs are of statistical signi�cance. Even 
though this strategy could be useful for geomorphometry, for instance to characterise changes 
in steady landscapes such as dunes or snow cover, it will not be discussed in greater detail. �is 
can be explained by its early scienti�c stage where current research primarily focuses on mon-
itoring manmade structures (e.g. Holst et al., 2019). �e following two sections will discuss the 
remaining strategies in detail. 

3.5.3.1  Model-free deformation measurement

If no information is available regarding the assumed geometric shape of a point cloud or parts 
of it, it is referred to as model-free deformation measurement. Since this is the majority in most 
cases, model-free deformation measurement can be assumed to be the standard case. In prin-
ciple, several procedures of model-free deformation measurement can be di�erentiated, mostly 
with regard to the chosen strategies of forming correspondences. �e crux of this task arises 
from the already mentioned quasi-laminar characteristics of point clouds (Wujanz, 2016, p.1), 
which means that aliasing is inevitable, and that no repeatedly observable points can be record-
ed at di�erent points in time. �erefore, the determined deformation vectors are of a purely 
interpretive nature and do not necessarily correspond to the physical direction of action of an 
occurred deformation since they cannot be assigned to a semantic object or speci�c points on 
the object. �e following section describes the two most common methods to establish point 
correspondences which can be found in several implementations. Subsequently, three widely 
distributed algorithms for deformation measurement, that are all publicly available in Cloud-
Compare (Girardeau-Montaut, 2011), will be discussed.

�e correspondence problem

�e key prerequisite for referencing and computing deformations based on point clouds is the 
formation of point correspondences. �e simplest solution to achieve this is referred to as point-
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to-point correspondences, in which point pairs are established based on the minimal distance 
between two point clouds. Examples are for instance Besl & McKay (1992) in the context of reg-
istration of point clouds and Girardeau-Montaut et al. (2005) for deformation measurement in 
laser scans. Figure 3.5-2 illustrates this concept, where points of a reference epoch are highlight-
ed in green. In the le�  part of the � gure, the red sphere indicates data from a subsequent epoch 
that were captured by the depicted scanner. � e closest point between the reference epoch and 
the succeeding epoch is interpreted as the corresponding point, which is highlighted in yellow 
in the centre of the � gure. � e vector between the corresponding points can be interpreted as 
the geometrical di� erence respectively deformation that may occurred, which can be seen in the 
right part of the � gure in form of a yellow line. 

� e main problem of this approach is that the computed geometrical di� erence based on 
point-to-point correspondences directly depends on local di� erences of point sampling of the 
point clouds and thus on the present resolution. Another disadvantage of this approach is that 
no distinction can be made regarding the sign of the deformation. In practice, this means that 
geometrical di� erences between epochs can be computed, yet it is not clear whether, for exam-
ple, a material gain, or loss has occurred.

Figur e 3.5-2: � e concept of point-to-point correspondences (based on Wujanz, 2018).

To compensate for the inevitable e� ect of aliasing in capturing point clouds an alternative ap-
proach can be used to approximately solve the problem. � erefore, point-to-triangle corre-
spondences are established, as suggested by Chen & Medioni (1992) for registration of point 
clouds and Cignoni et al. (1998) when determining deformations between epochs. � e general 
concept is depicted in Figure 3.5-3. While the starting points are geometrically identical to the 
ones shown in Figure 3.5-2, the reference epoch was triangulated. Correspondences are estab-
lished when a point from a subsequent epoch can be projected onto a triangle of the reference 
epoch. � e vector between the base point and the point from the successive epoch, which is 
highlighted by a yellow line in the centre part of the � gure, can be interpreted as a deformation. 
Consequently, its orientation determines the direction of action which, as in the case of point 
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of point-to-point correspondences, does not necessarily coincides with the physical one that 
occurred in the object space. 

While this strategy at least compensates for di� erences in local sampling – it also creates new 
problems as shown on the right of the � gure. For the present example, another point was added, 
which consequently leads to an additional triangle. Since the point from the successive epoch 
can be projected onto both triangles, an ambiguity results since its correspondence cannot be 
clari� ed with certainty. � is problem typically appears in unsteady landforms, e.g., block gla-
ciers. In theory, the use of the normal direction allows to di� erentiate the sign of a deformation, 
i.e. whether it is a positive or negative change. If a point is located on the side to which the nor-
mal vector is pointing, this point receives a positive sign and could therefore be interpreted as a 
gain of matter or a motion towards the sensor. Since information concerning the survey con� g-
uration is typically lost in the process of registration of all point clouds and the uni� cation into 
a common data set, an arbitrary orientation of the surface normal usually occurs. � e essential 
information as to whether an area is subject to growth or loss can therefore only be determined 
by common sense or expert knowledge. 

A routine, which is commonly used in practice, is to reduce the point density of the reference 
point cloud to save time during its triangulation. � is course of action should be avoided at all 
costs since it most probably ‘arti� cially’ creates aliasing e� ects and consequently pseudo-defor-
mations. 

F igure 3.5-3: � e concept of point-to-triangle correspondences (based on Wujanz, 2018; 
Copyright VDE Verlag; Used with permission – all rights reserved).

Computation of deformations

An ever-emerging problem in engineering is the question whether a given signal, in our case 
a geometric di� erence between point clouds, is notably larger than the given noise. In the � eld 
of Geodesy, the resulting noise level of an entire process chain is typically computed by means 
of error-propagation (Schaer et al., 2007; Mezian et al., 2016; Ghilani 2017) based on the afore-
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mentioned error budget. If the ratio between signal and noise is of statistical signi�cance (Te-
unissen et al., 2020) it can be assumed that deformation has occurred in between epochs. In the 
following we will have a look at how common algorithms for deformation measurement based 
on point clouds determine whether a geometric di�erence between point clouds is considered 
being deformation or noise. �e �nal step of deformation measurement based on point clouds 
is the visualisation of the results which forms the basis for its interpretation. �erefore, points 
or triangles of one epoch are colour-coded in dependence to the magnitude of an associated 
deformation. 

�e two  most widely deployed approaches for deformation measurement based on point 
clouds in science and industry are the Metro algorithm, as suggested by Cignoni et al. (1998), 
as well as Girardeau-Montaut et al. (2005). Both approaches do not consider an error budget at 
all which consequently means that deformations are distinguished from noise by setting �xed 
boundaries. Consequently, the colour scaling of the �nal results can be freely adjusted. As a 
result, arbitrary results can be generated. A sound statement as to whether a statistically signif-
icant deformation is present or not cannot be made. A detailed and recommendable study on 
algorithms for model-free deformation measurement based on point clouds was carried out by 
Holst et al. (2017).

To overcome the aforementioned drawback and to verify the statistical signi�cance of defor-
mations, Lague et al. (2013) determine stochastic measures for local point adjacencies in their 
Multiscale Model to Model Cloud Comparison (M3C2) algorithm. For this purpose, a cylinder 
diameter must be de�ned which determines the circumference in which points are considered 
for the calculation of the stochastic measures. �e calculated numbers are �nally assigned to 
so-called core points  – the distance between core points from two  epochs represent the ge-
ometric di�erence between point clouds. A statistical test assesses if the geometric di�erence is 
a signi�cant deformation or not. Although this algorithm can be regarded as the most mature 
one among the publicly available solutions, it still deploys a rather simple error budget. Frankly 
speaking, the consideration of an applied sensor’s uncertainty for 3D data acquisition is a very 
challenging and thus ongoing research question, especially in the �eld of laser scanning (Wujanz 
et al., 2017; Heinz et al., 2018). Hence, the given algorithm could be extended as soon as the 
corresponding research has reached a matured state. An error component that easily exceeds 
the uncertainty of 3D data acquisition is the in�uence of referencing/registration. �is e�ect is 
however only considered rudimentarily in the M3C2 as a global error component while it is well 
known that this error is non-isotropic which means that its impact is not equally distributed 
within referenced point clouds – just as in any surveying technique (Ghilani, 2017). 

In the following, a practical example will be processed by two  di�erent solutions that were 
previously discussed. �e data, which was thankfully provided by the �rst author of Al-Rawab-
deh et al. (2017), consists of two epochs featuring a landslide in Canada and was captured by a 
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UAV-mounted camera. � e most active area can be seen in the upper half on the le�  of Figure 3.5-
4. At � rst, the two referenced scans were processed by using a point-to-point-based strategy. � e 
upper boundary was set to 3 m and hence restricts the largest distance between two points from 
di� erent point clouds. Consequently, this setting also limits the largest magnitude of a deforma-
tion. � e other end of the spectrum was set to 5 cm which means that all geometric di� erences 
smaller than this number are considered to be geometrically stable. Since no information about 
the local orientation of individual points is given, it is not possible to distinguish between, e.g., 
subsidence or heave. � e centre part of the � gure shows all points that are considered as being 
subject of deformation while the colour bar is given in metres. It is obvious that increasing the 
lower threshold would reject many of the shown points. From an interpretational point of view, a 
change of this global threshold would lead to the conclusion that this landslide and its surround-
ings is less active compared to the shown result. � e right part of Figure 3.5-4 shows the outcome 
generated by the M3C2 using suggested parameters. Note that only core points are shown which 
is why the point density on the right is lower than the one in the centre. Since every core point 
also receives a computed face normal it is possible to distinguish di� erences in the direction of a 
deformation. � us, the colour bar ranges from +3 m to -3 m. Comparing the � gures in the centre 
and on the right do not reveal obvious di� erences in the upper range of deformations. However, 
the lower end of the spectrum di� ers notably and thus has a great impact when, e.g., areal chang-
es are reported. � is inconspicuous circumstance is of particular brisance when numbers are 
reported for areas of public interest, such as the retreat of a glacier as a consequence of changing 
climatic conditions or the featured landslide, that occurred in close proximity to a residential 
area. We should be aware that numbers are powerful information that can, as history has shown 
numerously, can be misused to discredit scienti� c evidence or measurements that are not in ones’ 
favour in general. � us, it should be our self-interest to produce sound and reproducible num-
bers – regardless of which sensors and algorithms were used. 

Fi gure 3.5-4: RGB-image of the reference point cloud (le� ), deformation maps based on point-to-
point correspondences (centre) and the M3C2-algorithm (right) (Wujanz, 2018; 

Copyright VDE Verlag; Used with permission – all rights reserved).
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3.5.3.2  Segmentation-based deformation measurement

�e outcome of model-free deformation measurement approaches allows to draw geometrical 
conclusions. However, in many �elds of application, it is desirable to analyse deformation pat-
tern or changes of an object at the level of single objects or distinguishable areas with di�erent 
properties (Anders et al., 2021). �is step requires a semantic layer and can be achieved by 
segmenting or classifying the input point clouds (Brodu & Lague, 2012; Poux, 2019). Up to 
now there is no proper de�nition of how to call these rather novel approaches that operate at 
segment level. �erefore, the term segmentation-based deformation measurement will be used 
throughout this section. Note that this strategy is ambiguous and can therefore be interpreted 
in several ways depending on how subsets of the original data are created and how changes are 
determined. 

A prerequisite for this deformation model is a preceding segmentation or classi�cation of the 
input point clouds based on geometric and/or radiometric information, for instance in form of 
intensity values captured by a laser scanner or RGB values from imagery. �e result of this ele-
mentary pre-processing step corresponds to an object generation, where each point of the input 
data is assigned to exactly one segment. Consequently, the original point clouds are divided 
into subsets of points with equal characteristics. Typical classes in geomorphology could be for 
instance bedrock, vegetation, boulders, or deposit. 

Geomorphometric measures, such as velocity and magnitude, are of great interest for geo-
scientists and can be derived by the algorithms described in the previous section. Yet, they are 
not capable to derive another vital measure namely the direction of action. Gojcic et al. (2018) 
addresses this drawback and thus present one possible interpretation of segment-based defor-
mation measurement. Starting point of this algorithm is the segmentation of single boulders 
from the original point cloud. Subsequently, point-to-point correspondences between individ-
ual points on an object captured at di�erent times are formed with the help of a local feature 
descriptor. Finally, the direction of action as well as the magnitude of the deformation can be 
determined on the basis of the determined correspondences. 

Mayr et al. (2019) classify point clouds of a recorded landslide, as depicted on the le� of Fig-
ure 3.5-5, into seven geomorphological classes (right part of the same �gure) which provides the 
basis for a second interpretation of this strategy. �erefore, a combination of a supervised clas-
si�cation and a rule-based re-classi�cation using object knowledge is used (Mayr et al., 2017). 
Deformations between di�erent epochs are determined by an approach comparable to Lague 
et al. (2013). �e generated semantic information allows a) to assign deformations to one of 
the seven geomorphological classes and b) to detect local changes regarding the classi�cation 
outcome. 
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Figure 3.5-5: Documented landslide (le�) and segmented point cloud (right) (Mayr et al., 2019). 
Reproduced with permission from the American Society for Photogrammetry and Remote 

Sensing, Bethesda, Maryland, www.asprs.org.

3.5.4  Summary and open issues

Classical deformation measurement based on established surveying techniques, such as level-
ling or tacheometry, has always been a domain of a few highly specialised experts in the �eld of 
engineering geodesy for. �e emergence of a�ordable and comparably precise sensors for con-
tactless 3D-mapping and available algorithms for post-processing however initiated an inverse 
trend – deformation measurement can now be considered a mainstream tool that is carried out 
across many �elds of specialisation. A downside of this development is that numerous studies 
appear to be carried out in the haze of super�cial knowledge. Many users simply do not know 
how the applied algorithms work, how tuneable parameters in�uence the outcome, are not 
aware of error sources and how to consider them. Another problem is that the vast majority of 
scienti�c output about deformation measurement based on point clouds is just deploying exist-
ing so�ware, while only a homeopathic fraction of publications suggests new implementations 
that account for known and critical shortcomings of existing ones. Even though 3D-mapping 
and processing has turned into a pro�table market and is vividly used across many scienti�c 
disciplines, very few universities added this subject to their curriculum which could help to 
address these issues. Despite all existing problems deformation measurement based on con-
temporary 3D-mapping data is a giant leap forward in terms of spatial information density as 
well as its quality and thus provides a very powerful tool to geoscientists in their quest of re-
vealing a deeper understanding in geomorphological processes (Zahs et al., 2020). Apart from 
very promising results generated by segmentation-based approaches recent research e�ort also 
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started to address the vital issue of error estimation, see for instance Fey et al. (2107), James et 
al (2017) or Mayr et al. (2020). 
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Geological analysis is crucial for successful resource exploration, natural hazard assessment, 
infrastructure development and the scienti�c investigation of the Earth’s history. However, the 
structural and compositional complexity of many geological terranes, combined with o�en lim-
ited exposure, make such analyses a challenging task. To overcome these di�culties, mapping ef-
forts typically synthesise diverse datasets gained directly from geological outcrops and indirectly 
via geophysical methods that can measure physical properties of the subsurface. 

UAVs provide an accessible, cost- and time-e�cient tool for acquiring high-resolution, mul-
ti-sensor, multi-temporal and multi-perspective data, and so are increasingly used for geological 
purposes. A single UAV survey can cover areas of up to 10’s of square kilometers at a cm-dm 
spatial resolution, bridging the scale gap between ground-based geological �eld work and air-
borne mapping campaigns. UAVs can also carry geophysical sensors that provide surface and 
subsurface lithological and structural information in areas that may be cumbersome, di�cult or 
dangerous to access by traditional means.

Table 4.1.-1 gathers a non-exhaustive list of UAV sensors currently/potentially used for geo-
logical applications. In both geological research and the mining industry, the most widespread 
application of UAVs is the generation of digital outcrop models by Structure-from-Motion Mul-
ti-View Stereo (SfM-MVS) photogrammetry. �ese models can then be used to map structures 
or lithologies, capture fracture data for geotechnical analysis or �uid �ow modelling, and moni-
tor slope stability or raw material production. Magnetic and hyperspectral sensors are also being 
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deployed on UAVs as emerging tools for exploration targeting, while thermal cameras and gas 
sensors are becoming prominent in the volcanology community (covered in the chapter on the 
application of UAVs in volcanology) and for hydrogeological applications. 

Apart from these more common uses, there are few reports on the use of UAVs for surveys 
with miniaturized versions of geophysical sensors usually mounted on helicopters or airplanes 
such as light detection and ranging (LiDAR), very-low-frequency electromagnetics (VLF-EM), 
full tensor magnetic gradiometry (FTMG), and ground-penetrating radar (GPR). LiDAR sen-
sors mounted to UAVs provide an alternative way of generating topographic data with the added 
bene�t of being able to penetrate vegetation. UAV-borne VLF-EM sensors are a recent, more 
�exible adaptation of the airborne VLF-EM counterparts that have been used for environmental 
and exploration purposes since the 1960s. VLF-EM utilizes distant transmitters broadcasting at 
frequencies in the range of 15–30 kHz to map resistivity contrasts to depths of ca. 100 m below 
the surface. FTMG systems provide measurements of the full magnetic gradient tensor of the 
Earth’s magnetic �eld, allowing the resolution of deep, small or weakly magnetic targets and 
a calculation of the remanent magnetisation vector. GPR-drone integrated systems are �own 
at low elevation and low speed to produce high-resolution, three-dimensional imaging data 
of the near surface (e.g. for soil-layer pro�ling) based on re�ections of high-frequency radio 
waves induced into the ground. Additionally, UAV-mountable gravimeters have recently been 
developed, which should enable a more e�cient solution for mapping density contrasts of rocks 
underground. However, for all the sensors mentioned in this paragraph, no geologic case stud-
ies have been published to date. �is chapter will therefore focus on photogrammetry-derived 
digital outcrop models, hyperspectral imaging and magnetic surveys, describing challenges and 
best practices in terms of acquisition, processing and interpretation of these data for geological 
purposes.

Table 4.1-1: Non-exhaustive compilation of UAV-based sensors and their 
applications in geological research.

Sensor type Manufacturers,
sensors

Potential
applications

Selected
publications

Multispectral, visible to 
nearinfrared (VNIR)

Parrot Sequoia;

MicaSense RedEdge Iron mineral mapping, 
vegetation for masking 
or as lithological proxy

Fairley et al. (2018), 
Padró et al. (2019), 
Jackisch et al. (2019)
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Hyperspectral visible to 
nearinfrared (VNIR)

Senop Optronics Hy-
perspectral Imager; Cu-
bert UHD 185-Fire�y

Iron mineral mapping, 
REE detection

Jakob et al. (2017), Jak-
kisch et al. (2018, 2019), 
Kirsch et al. (2018), 
Booysen et al. (2020)

Hyperspectral, short-
wave infrared (SWIR)

HySpex Mjolnir VS-
620; Headwall co-
aligned

Lithologic mapping

�ermal (broadband) Workswell WIRIS Pro, 
FLIR, ICI, Nippon 
Avionics, Magnity 
Electronics Co

Monitoring volcanoes 
and geothermal systems

Amici et al. (2013), 
Harvey et al. (2016), 
Mori et al. (2016), Chio 
& Lin (2017)

Magnetic GEMsystems GSMP-
35U, Ge-ometrics 
MagArrow; Sensys 
MagDrone R3

Lineament mapping, 
mineral exploration

Funaki et al. (2014), 
Cunningham et al. 
(2018), Macharet et al. 
(2016), Malehmir et al. 
(2017), Jackisch et al. 
(2019, 2020)

Full tensor magnetic 
gradiometry

Supracon Fault mapping, mineral 
exploration

Radiometric 
(gamma-ray)

Georadis D230A, Kro-
mek GR-1, Medusa 
MS-1000

U prospecting and 
environmental mon-
itoring, geothermal, 
detection of hydrother-
mal alteration, regolith 
mapping

Martin et al. (2015), 
Pirttija ̈rvi (2016), Šálek 
et al. (2018), Koomans 
& Limburg (2020)

Gravity Mineral exploration Middlemiss et al. (2016)

Electromagnetic GEM Systems GSM-
90AVU UAV VLF, 
MGT Radio EM sys-
tem, AMKVO

Mineral exploration, 
hydrocarbons

Eröss et al. (2013, 
2017), Parshin et al. 
(2021)

Lidar Yellowscan Map-per II, 
Riegl miniVUX-1UAV, 
Phoenix SCOUT-16

Topography below can-
opy, outcrop modelling, 
structural mapping, 
rockfall monitoring

Tong et al. (2015)
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Photogrammetry Various outcrop modelling, 
volcano monitoring, 
erosion/rockfall moni-
toring, reservoir char-
acterization, open pit 
mine surveying

Bemis et al (2014), 
Tong et al. (2015), De-
ring et al. (2019), De 
Beni et al. (2019), Rossi 
et al. (2017), Vanneschi 
et al. (2019), Menegoni 
et al. (2019)

Gas spectrometer InterMet Systems Volcanic hazard
assessment

Diaz et al. (2015), Mori 
et al. (2016) Rüdiger et 
al. (2018)

4.1.1  Geological analysis using UAV-based 
photogrammetry

One of the most common UAV-based datasets utilized for geological purposes are high resolu-
tion photographs that can be transformed into digital outcrop models by means of SfM-MVS 
photogrammetry (e.g., Ullman, 1979; Seitz et al., 2006; Westoby et al., 2012; James & Robson, 
2012). Digital outcrop models are virtual representations of geologic outcrops that consist of 
either large point clouds or photo-textured meshes. �ese models provide a rapid and objective 
way of capturing outcrop information at sub-cm resolution over wide areas. Hence, they are an 
ideal dataset for lithological, stratigraphic and structural mapping (Bemis et al., 2014; Nesbit et 
al., 2018; Dering et al., 2019), erosion and rockfall monitoring (Vanneschi et al., 2019; Menegoni 
et al., 2019), reservoir characterization (Priddy et al., 2019) and open pit mine surveying (Chen 
et al., 2015; Ren et al., 2019). 

Numerous so�ware packages and algorithms have been developed for the purpose of vis-
ualizing and manipulating digital outcrop models (OpenPlot—Tavani et al., 2011; VRGS—
Hodgetts et al., 2015; LIME—Buckley et al., 2019; CloudCompare—Girardeau-Montaut, 
2011). �ese so�ware packages can also be used to interpret datasets and extract structural 
measurements, though this can be a very time-consuming process for large, high-resolution 
models. A variety of automatic and semi-automatic methods are beginning to emerge to help 
optimise the interpretation process and improve objectivity and reproducibility (e.g. Vasuki et 
al., 2014; Dewez et al., 2016; �iele et al., 2017, 2019; Guo et al., 2018). �e natural variability 
and multi-scale nature of geological structures makes this a challenging task, so there is signif-
icant scope for new developments. Using these (semi-)automatic methods, unprecedentedly 
detailed datasets can be extracted (Figure 4.1-1), such as the planar orientations of lithologic 
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contacts, faults, veins, and joints (Figure 4.1-1B), and derived measurement such as dike or 
layer thickness (Figure 4.1-1B), fracture spacing, density, and persistence. � ese data can then 
feed into 3D models (Figure 4.1-1C; e.g., Bistacchi et al., 2015; Hansman & Ring, 2019), e.g., 
for visualization, volume calculations, kinematic restauration, reservoir and geomechanical 
modelling.

Figure 4.1-1: Example digital outcrop model and interpreted stratigraphy (a) acquired by 
conducting a UAV survey of a cli�  face in Caldera Taburiente, La Palma, Spain. Dykes and 

sills were mapped using the Compass plugin in CloudCompare (� iele et al., 2017) and a large 
number of orientation and thickness measurements (b) extracted using the method described by 
� iele et al. (2019). � ese data were then used to constrain a 3D reconstruction of the shallow 

volcanic plumbing system (c). Prepared by the author for this chapter.

Besides serving as photo-realistic 3D basemaps for the analysis of geologic structures, digital 
outcrop models and digital elevation models derived from UAV-based imagery are used for the 
topographic correction of hyperspectral imagery. Furthermore, the digital outcrop models can 
be fused with hyperspectral data and their derivatives (e.g., Lorenz et al., 2018; Kirsch et al., 
2018, 2019) for improved interpretability of material properties and delineation of lithologic 
contacts.
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4.1.2  Geological analysis using UAV-based 
hyperspectral imaging

Each pixel of a hyperspectral image (HSI) contains a continuous spectrum over a certain wave-
length range. �e spectrum is material speci�c, and thus, in geological contexts, yields informa-
tion on mineralogical composition. Current UAV-borne hyperspectral sensors cover the VNIR 
(0.4–1.0 μm) and SWIR (1.0–2.5 μm) range of the electromagnetic spectrum, in which elec-
tronic processes and molecule vibrations cause characteristic absorption features for a variety 
of common geologic materials. �is includes iron oxides, iron hydroxides, and iron sulfates as 
well as rare earth elements in the VNIR, and “alteration minerals”, such as phyllosilicates, hy-
droxylated silicates, sulphates, carbonates, and ammonium minerals in the SWIR (e.g., Hunt, 
1977; Pontual et al., 1997). �ese minerals can be identi�ed and characterised in HSI using band 
ratios, minimum wavelength mapping, dimensionality reduction, mineral mapping/unmixing, 
and unsupervised or supervised classi�cation (e.g., Contreras Acosta et al., 2019).

Acquisition routines for UAV-based hyperspectral imaging di�er between frame-based and 
push-broom cameras. Frame-based systems can be operated in nadir or o�-nadir setup (be-
cause corrections are accomplished through co-registration of bands within individual data 
cubes and subsequent georeferencing to an orthophoto). As images are acquired band-wise, it is 
recommended to �y at low speed (the exact speed depends on �ight height) or in a stop-and-go 
mode to maximize the spatial overlap between bands. Push-broom sensors are best operated in 
automatic mode to minimize deviations from a nadir viewing angle. IMU data are essential to 
allow correction for roll, pitch and yaw of the drone in post-processing. Calibration panels with 
known spectral signatures should be placed in at least one of the scenes for radiometric correc-
tion of hyperspectral data (Figure 4.1-2B). 

Drone-borne hyperspectral imaging requires a speci�c sequence of pre-processing steps to 
transform the raw data to meaningful spectroscopic information, including lens correction and 
band co-registration, conversion to radiance, orthorecti�cation and georeferencing, and topo-
graphic correction. Whereas the conversion to radiance can usually be accomplished using pro-
prietary so�ware of the camera manufacturer, the other pre-processing steps can be realized with 
the Mineral Exploration Python Hyperspectral Toolbox (MEPHySTo, Jakob et al., 2017). Ortho-
recti�cation, georeferencing and topographic corrections require a corresponding digital eleva-
tion model or digital outcrop model of the imaged scene, which is usually acquired separately, but 
can also be obtained from the hyperspectral images themselves if the overlap is su�cient.

Multi- and hyperspectral imaging for geologic mapping require an unobstructed view on the 
outcrops. Vegetation-free outcrops are more common either in arid or arctic environments, 
which are challenging regarding the operation of drones due to extreme weather conditions 
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and their remoteness. In more vegetated parts of the world, rocks are usually only exposed in 
sub-vertical outcrops (or underground), either in natural settings such as canyons or river val-
leys, or in arti�cial settings like road construction or open-pit mines. �ese circumstances o�en 
require a non-nadir sensor setup, which adds substantial complexity to acquisition and data pro-
cessing routines. Hyperspectral imaging in the VNIR–SWIR region is a passive technique that 
requires an external light source, which, in outdoor settings, corresponds to re�ected sun-light. 
As the light-scattering e�ect of moisture and dust can have a detrimental e�ect on the quality 
of spectroscopic data, hyperspectral surveys are best conducted in dry conditions at bright day-
light, which can be a limiting factor in high latitude areas, in sites of high topography and in 
active mining environments.

Figure 4.1-2: UAV-based hyperspectral imaging of a gossanous ridge in the Rio Tinto area, 
southern Spain. (A) Rikola hyperspectral VNIR camera and (B) calibration panels. (C) Vegetation 
masked false colour image (Principal Components 2, 3 and 5) draped on a 3D orthophoto model, 
(D) image spectra (�gures C and D modi�ed a�er Jakob et al., 2017 . Originally published under 

a CC BY license (https://creativecommons.org/licenses/by/4.0/)).

Validation or ground truthing is an essential step in geologic remote sensing, as it allows the 
accuracy assessment of the mapping results with error metrics, and more importantly, allows 
the identi�cation of real surface features such as orientation and lithologies. Likewise, ground 
validation helps to increase supervised classi�cation accuracies, provides means for atmospheric 
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correction and geolocation by global navigation satellite system positioning. Methods of acquir-
ing ground truth data are manifold, and range from traditional surface photography and speci-
men sampling with ensuing lab analysis, to the use of modern, portable analytical devices such 
as X-ray �uorescence (XRF) spectrometers, VNIR-SWIR spectroradiometers, Fourier transform 
infrared (FTIR) analysers, and handheld laser induced breakdown spectrometry (LIBS) instru-
ments. Further validation sources include satellite imagery and spectral libraries.

Hyperspectral data can be combined with SfM point clouds to produce HSI-enhanced digital 
outcrop models (Lorenz et al., 2018; Kirsch et al., 2018, 2019), which provide a three-dimension-
al, distortion-free framework for intuitive geological outcrop visualisation and analysis. Within 
a 3D framework, these models can be used to delineate geologic contacts and structures as well 
as incorporate spatially referenced analytical validation data during interpretation.

4.1.3  Geological analysis using UAV magnetics

Airborne and ground based magnetic surveys are widely used in mineral exploration, particu-
larly in situations where there is limited outcrop. Magnetic data can be used to directly detect 
magnetically anomalous mineral deposits (Figure 4.1-3), and indirectly to identify geologically 
favourable sites for potential mineralization. Magnetic data are interpreted in conjunction with 
geological data to establish a link between anomalies and their source location, depth and ge-
ometries (e.g., Isles & Rankin, 2013). Recent studies (Naude & Kumar, 2017; Jackisch et al, 2019) 
have demonstrated that UAV-based magnetic surveys can provide high-quality magnetic data at 
a lower cost than labour-intensive ground surveys, and with a minimal environmental footprint. 
Whereas traditional aeromagnetic surveys are useful for regional reconnaissance mapping, low 
altitude and dense UAV-based magnetic surveys are well suited for more detailed targeting as 
they have the ability to resolve small, shallow anomalies. 

For acquisition of UAV-based magnetic data, it is recommended to follow the guidelines for 
aeromagnetic surveys given by Reid (1980) and Coyle et al. (2014). Because the response of a 
magnetic body falls o� with the inverse cube of the distance, UAV magnetic surveys should be 
�own at low altitude to maximize resolution. Survey lines should be oriented perpendicular to 
the strike of the geological target to enhance the geological contacts detected, and line spacing 
chosen to resolve the smallest features of interest. Tie lines should be �own to enable tie line 
levelling corrections as a means to eliminate line-to-line errors. All magnetic surveys also re-
quire a ground-based magnetometer to be located in a magnetically quiet zone near the survey 
operation to measure and correct for diurnal variations of the magnetic �eld. Furthermore, a 
compensation test or calibration Figure 4.1-3 is advised, so post-processing adjustments can be 
made in account of the directional variations of a given magnetometer. 
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Electromagnetic interference produced by UAVs can compromise magnetic data quality. 
In order to avoid electromagnetic noise from the engines and payload electronics, the sensor 
should be placed at a distance from these sources, either in the tail end of a �xed wing drone 
(Figure 4.1-3B) or attached/towed underneath a multirotor UAV (Figure 4.1-3A). To prevent 
sudden changes of current to the engines, �ights are best conducted in windless conditions, at 
constant barometric height, and in automatic �ight mode. A gimbal can reduce artifacts in the 
measured magnetic �eld due to attitude variations of the UAV. Sources of cultural noise (e.g., 
power lines, railways, electric fences, radio towers, etc.) should be avoided.

Figure 4.1-3: Results from a UAV-based magnetic survey at Otanmäki, Finland (�gures modi�ed 
a�er Jackisch et al., 2019. Originally published under a CC BY license (https://creativecommons.org/

licenses/by/4.0/)). (A) Multicopter with SenSys MagDrone R1 �uxgate magnetometer. (B) Fixed-
wing drone from Radai Oy. (C–E) Total magnetic intensity plots with survey lines and (F) geological 

map (black line delineates outcrop). Note di�erences in resolution of magnetic data captured at 
di�erent elevations and good correlation between high magnetic intensities and mapped iron ore.
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Processing of UAV magnetic data involves the removal of heading errors, diurnal variations, 
interference by the magnetic �eld of the UAV, compensations for the sensor movement and 
tie-line levelling. A commercial toolbox, i.e. the Seequent UAV Geophysics Extension for Oasis 
Montaj, optimized for speci�c types of sensors, is able to handle most of these operations. Re-
gional-residual separation is a crucial step in the interpretation of magnetic data to constrain the 
distribution of the magnetic response. Since the total �eld is the result of all sources below the 
sensor, this analysis allows a di�erentiation between deeper and shallower anomalies based on 
the fact that the regional �eld spectrum is dominated by low frequencies that come from larger 
and deeper sources while the residual �eld is dominated by high frequencies that come from 
small and shallow sources. 

Magnetic data are usually presented as maps of total magnetic intensity (TMI). Common 
enhancements for the interpretation of magnetic data include (a) the reduction-to-pole (RTP) 
transform, which removes the asymmetry of magnetic anomalies where the Earth’s magnetic 
�eld is non-vertical, (b) vertical and horizontal derivatives that highlight discontinuities, and 
(c) analytic signal, in which all three directional gradients of the magnetic �eld are combined to 
help delineate geological bodies and resolve close-spaced bodies. TMI maps and derived data-
sets can then be interpreted to de�ne geophysical domains, which can be correlated with other 
geophysical datasets (e.g. gravity) and geological constraints (e.g., Isles & Rankin, 2013). If the 
magnetic properties of rock units are known, then forward and inverse modelling techniques 
can be applied to gain further insight into the three-dimensional geological structure and test 
speci�c geometrical hypotheses. 

4.1.4  Outlook and conclusions

UAVs have become an important, if not essential, tool in the study of geological targets. Re-
motely sensed datasets provide indispensable information on the topography, structure, and 
main mineral compositions of an area. �is has enhanced the way conventional geological 
work is performed. By using multiple UAV sensors, geologists are able to map inaccessible 
areas, improve existing geological maps, and acquire valuable geological data rapidly and 
safely. Currently, academic e�orts are focussed on e�cient ways to combine multi-sensor 
data. �ere is an urgent need for innovative data processing methodologies (Arti�cial Intel-
ligence [AI], Machine Learning [ML]) for exploiting the data acquired by UAV platforms at 
multiple spatial and temporal scales. �ese approaches will build the foundation of future 
predictive tools.
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Geomorphology in general is the scienti�c area that examines the origin and evolution of the 
Earth surface and its landforms. It focuses on the landscape forming processes and magnitudes. 
In this context, UAVs generally enable to detect and document features. Most importantly, pro-
cesses of change can be monitored much more easily with unprecedented spatial and temporal 
resolution. �erefore, UAVs allow for a paradigm change in geomorphologic measurements. 
�e �eld of geomorphology is closely related to geomorphometry and o�en uses the analy-
sis of DEMs (chapter 3.4). Likewise, geology (chapter 4.1), hydrology (chapter 4.3), as well as 
processes in the cryosphere (chapter 4.5) and volcanology (chapter 4.6.) are parts of or closely 
related to this scienti�c area. �us, in this chapter the major �elds of UAV applications in a 
geomorphologic context are described (see also Figure 4.2-1) in the following, namely areas of 
�uvial geomorphology, erosion, gravitational processes, tectonics and from the area of coastal 
to marine applications.
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Figure 4.2-1: Illustration (by Melanie Elias) of the UAV applications to observe geomorphological 
processes described in this chapter. (A) �uvial morphology (chapter 4.2.1) considering A1 

bathymetry and granulometry, A2 change detection and A3 river habitats. (B) Erosion 
(chapter 4.2.2). (C) Gravitational Processes (chapter 4.2.3). (D) Marine and coastal 

applications (chapter 4.2.5). Prepared by the authors for this chapter.

4.2.1  Fluvial geomorphology

�e repeated observation of rivers is important to assess the frequency and magnitude of �ood 
events and to measure morphological controls on the impact of events. Furthermore, monitor-
ing is needed for anthropogenic management of rivers, e.g. to control discharge, to evaluate the 
impact of channel changes and to measure the quality of aquatic ecosystems. �e resulting ob-
servation data is also implemented in numerical models, for instance, to predict future �ooding 
areas. 

Airborne Lidar and traditional photogrammetry by airplanes are used to reconstruct the �u-
vial topography and bathymetry for geomorphological process understanding (Lane, 2000; Lane 
et al., 2003; Legleiter, 2012). However, these methods are expensive and less �exible, for instance, 
in the situation when the river has to be mapped immediately a�er a �ood. On the ground to-
tal stations are applied to acquire river cross-sections, or terrestrial laser scanners are used for 
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high-resolution topography data of a �nite area (Baewert et al., 2014; Brasington et al., 2012). 
�e former approach only allows for very low spatial resolutions and the latter is only suitable 
for smaller extents. Satellites are used to measure rivers, as well, but are less suitable for intermit-
tent scales due to their coarser spatial resolution (Spence & Mengistu, 2016). 

UAVs enable very frequent measurement of rivers at unprecedented scales (Carrivick & Smith, 
2019). First applications of UAVs in �uvial geomorphology were the reconstruction of the to-
pography of gravel bars and the bathymetry of rivers in France using paragliders (Lejot et al., 
2007) and the automatic mapping of river corridors allowing the UAV to autonomously detect 
and track rivers (Rathinam et al., 2007). Overall, main areas of application are bathymetry, gran-
ulometry, change detection and river habitat assessment, which are discussed in more detail. 

4.2.1.1  Bathymetry

Bathymetry describes the topography beneath the water surface. Bathymetric mapping can be 
performed with di�erent approaches. �e two  most o�en applied techniques are either em-
pirically, linking the attenuation of the radiation signal in the images with water depth, or ge-
ometrically, modelling and correcting the refraction impact and reconstructing the underwater 
area with SfM (chapter 2.2). �e full 3D reconstruction of a river is possible from UAV data, 
including bathymetry and topography as well as �ow velocity measurements (chapter 3.3) ena-
bling even discharge estimation and therefore allowing for comprehensive hydromorphological 
monitoring (Cândido et al., 2020; Detert et al., 2017).

�e acquisition of measurements below the water surface requires the compensation of the 
refraction, either with a simple correction factor suitable for applications with Nadir-viewing 
cameras (Woodget et al., 2015) or considering each camera perspective individually making 
the approach also suitable for O�-Nadir imagery (Dietrich, 2017; Mulsow et al., 2018). �e re-
fraction correction approach relies on the visibility of the submerged areas and on calm water 
conditions. Furthermore, accurate information about the water level is needed (Woodget et al., 
2019). However, techniques exist to also estimate the position of the water level as another un-
known parameter within a bundle adjustment procedure to reconstruct the bathymetry (Mul-
sow et al., 2018). �e error of the underwater area calculation increases with increasing water 
depth (Woodget et al., 2015) and turbulences can hinder reconstruction completely because of 
complex refractions (Entwistle & Heritage, 2019). Challenges still to overcome for this method 
are the impact of water depth, water turbidity and water colour because of the decreased image 
texture and the following success of SfM reconstruction (Kasvi et al., 2019).

�e empirical approach relates the water depths measured in the �eld to pixel intensity 
values in the image (Flener et al., 2013; Lejot et al., 2007; Tamminga et al., 2015). However, 
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limitations for this regression approach are the need for reference measurements. Further-
more, the river bed structure should be smooth and river �ow conditions also have to be calm 
for correct results.

4.2.1.2  Granulometry

�e measurement of grain sizes and their distribution, i.e. granulometry, is needed to assess 
�ow conditions, e.g. turbulences and velocities, or to evaluate habitat conditions. Traditional 
granulometry approaches are either measurements performed in the �eld, which are very labour 
intense and high variability in the results are common, or photosieving, where grain sizes are 
measured in usually terrestrially acquired images either manually (Ibbeken & Schleyer, 1986) or 
automatically (Detert et al., 2017). UAVs enable the calculation of granulometry of entire river 
reaches due to the high-resolution imagery and thus signi�cantly expanding the area of investi-
gation of the traditional local sampling approaches. 

To identify and classify grain sizes with UAV data on the one hand photosieving approaches 
are extended to the aerial imagery. �is enables for instance the detection of multi-temporal 
changes of grain size distribution across point bar transects and therefore the quanti�cation of 
change of the structure of an alluvial accumulation form due to �ood events (Langhammer et 
al., 2017). Photosieving with UAV imagery has been improved to measure grain sizes in directly 
georeferenced imagery (chapter 4.2) without the need of any ground control or empirical data 
(Carbonneau et al., 2018) making the approach very useful for frequent mapping of large river 
reaches.

On the other hand, statistical relationships are established between image texture or topo-
graphic characteristics and average grain sizes (Carbonneau et al., 2018; Woodget & Austrums, 
2017). Image-based approaches use texture measures such as GLCM (chapter 3.2) and topogra-
phy-based methods usually consider roughness estimates, e.g. correlating standard deviation of 
heights to predict grain sizes (Vázquez-Tarrío et al., 2017). Choosing one of the two approaches 
depends on the applied scale and sediment characteristic. In a case study by Woodget and Aus-
trums (2017) for a reach smaller than 1 km and data with cm-resolution, roughness was a better 
predictor. However, in a subsequent study, grain sizes were smaller and imbricated causing that 
the same parameter did not perform as good because the grain size was not as well represented 
by topography (Woodget et al., 2018). Considering additional information such as the patch 
facies can improve the estimation with roughness but challenges still remain for less sorted sed-
iment (Pearson et al., 2017). 

In �at terrain image texture can be better suited because texture relies on grain edges, thus 
grains might be well distinguished in 2D images but not necessarily in the 3D data. If image 
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texture is used to predict grain sizes, images without blur are a prerequisite (Woodget et al., 
2018). Furthermore, image analysis should be performed in the original single image rather 
the orthomosaic as the calculation of mosaics leads to distortion of the original image content 
(Woodget et al., 2017), due to the interpolation of orthomosaic pixel values from overlapping 
images and error propagation of the estimated image geometry and dense point cloud into the 
�nal map.

4.2.1.3  Change detection

Change detection of �uvial environments is needed to assess the geomorphic impact of �oods, 
the change of channels due to changing environmental conditions and to monitor the success 
of river restoration. UAV data can be used to calculate sediment budgets, roughness changes, 
channel pattern alterations or to perform connectivity analysis. 

�e evolution of point bars below and above the water surface can be observed to derive con-
tinuous wet-dry models (Flener et al., 2013). Furthermore, lateral bank shi�s and river incision 
due to erosion during �ood events and corresponding eroded volumes and changing channel 
patterns, such as river width and height variability, can be measured (Marteau et al., 2017; Miri-
jovskỳ & Langhammer, 2015; Tamminga et al., 2015). Another novel possibility is the immediate 
observation of the impact of extreme events. �e topographic and bathymetric data of pre- and 
post-�ood events can be used in hydrodynamic models to estimate peak discharges and conse-
quently assess how well these models can describe the actual processes. �ereby, ( Tamminga et 
al., 2015) could reveal that the impact of these extreme �ood events is still not well understood 
and that changes of the morphology of the channel regime were mostly unrelated to pre-�ood 
conditions. Furthermore, the propagation of knick-points, which again in�uence the spatial pat-
terns of changes along the river, can be detected due to frequent data acquisition of river reaches 
(Marteau et al., 2017).

Automation of �uvial feature (e.g. ripples, deep and shallow areas, sidebars, river banks, grav-
el, sand and vegetation) detection becomes necessary to assess the changes of these features 
over time covering larger areas. On the one hand, 2D information can be used only considering 
the images in combination with machine learning techniques (chapter  3.2) such as arti�cial 
neuronal networks (Casado et al., 2015), random forest classi�ers (Feng et al., 2015) or using su-
pervised classi�cations (Flynn & Chapra, 2014). Feature-based mapping can be extended from 
2D to 3D information, as performed by Langhammer and Vacková (2018), who detected fresh 
and old gravel, sand accumulations and bank erosion and could identify �ood a�ected area in 
relation to water depth.
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4.2.1.4  River habitats

Due to the high spatio-temporal resolution of UAV data, it is now possible to measure contin-
uums instead of single samples to evaluate river habitats, at least supporting well-established 
classi�cation approaches (Woodget et al., 2017). UAVs can even modernise surface �ow type 
mapping because they provide a continuous and quantitative mapping of rivers at microscale 
but covering mesoscale areas and thus can be advantageous over less reliable and more er-
ror-prone traditional approaches because drones better capture the high spatio-temporal var-
iability of river habitats (Woodget et al., 2016). To enable future frequent application of UAVs 
in �uvial geomorphology, for instance to implement the data in updated hydrodynamic mod-
elling, direct referencing will be needed to capture river reaches at the km-scale (Hamshaw et 
al., 2017). 

4.2.2  Soil erosion

Multi-temporal SfM (see DoD, chapter  3.4) by the recording of images with UAV platforms 
allow to measure soil surface changes on di�erent scales in very high accuracy. Accuracies at a 
sub-mm level at low �ying heights (below 10 m) and spatial resolutions of a sub-cm range are 
possible. However, to use UAV based photogrammetry for soil erosion measurement a very 
precise ground control point setup for multi-temporal data acquisition and sub-cm change de-
tection is required (i.e. using stable reference points around the area of interest measured with 
mm-accuracy).

Although, UAVs are improving the assessment of soil surface change detection, measurements 
remain most challenging at the smallest scale, i.e. interrill or di�use erosion, because accuracy 
and resolution requirements are very high (Pineux et al., 2017). Nevertheless, interrill and rill 
erosion at hillslopes can be quanti�ed, as shown in a fragile loess landscape (Eltner et al., 2015). 
By comparing both erosion forms, it was revealed that as soon as rills were forming interrill 
erosion decreased signi�cantly. When rill erosion is assessed with UAVs, it becomes necessary 
to automatically extract these forms to e�ectively quantify their eroded volume (Bazzo�, 2015; 
Carollo et al., 2015). 

Gullies, as a geomorphologic feature of erosion in the landscape were early documented by 
analogue cameras on kites and blimps. For instance, d’Oleire-Oltmanns et al. (2012) published 
results from a gully documentation from 1995 to 1998 with an analogue camera. However, early 
�xed-wing systems already outpaced classic approaches (D’Oleire-Oltmanns et al., 2012). As 
undercuts and steep sidewalls occur in particular in gully morphology, images taken close to 
nadir hinder a full 3D surface reconstruction. �us, images from a bird´s eye perspective or a 
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combination of aerial and terrestrial images can therefore be bene�cial with regard to precise 
volume calculation and hydrological analysis (Stöcker et al., 2015). 

Badlands, as a landscape with a variety of erosional features, such as gullies, pipes, steep slopes 
and a dense drainage network can be monitored by UAVs. A detailed multi-temporal analysis 
in the Val d’Orcia, Italy with di�erences in vegetation cover, slope and aspect was mapped and 
di�erent types of morphological changes across the catchment in sub-decimetre precision were 
revealed (Neugirg et al., 2016).

Besides height change measurements, high-resolution UAV data also enables to derive surface 
roughness, which is an important parameter for runo� formation and velocity (Eltner et al., 
2018). �ereby, isotropic as well anisotropic roughness can be used to highlight for instance the 
importance of the connectivity of depressions across- and along the slope.

�e unprecedented spatial resolution and accuracy of the UAV photogrammetry also allows 
to detect and measure other processes causing soil surface changes. Compaction, consolidation, 
swelling, shrinkage and hydrostatic impacts can cause complete masking of the erosion signal. 
Kaiser et al. (2018) highlight that for a robust and accurate soil erosion measurement further in-
vestigation (i.e. clay mineralogy) of these processes is needed in the future to potentially correct 
their in�uence at the surface change model.

4.2.3  Gravitational processes

Geomorphological analysis of gravitational mass movements needs to incorporate neighbour-
ing disciplines such as geology, hydrology and soil science to acquire a holistic image of a certain 
area of interest. In various cases, analysis is additionally supported by an anthropo-geographical 
perspective, as in densely populated and geomorphologically active regions, human settlements 
and ground movements may lead to con�icts. When planning a UAV-surveying campaign, this 
multi-disciplinary nature should be considered to produce data of interest for all potential users. 

UAVs are bene�cial to researches as areas of active slope failures, rockfall or slow earth �ow 
are inherently di�cult or dangerous to access. Early experiences with UAV applications in land-
slide documentation date back a decade, when Rau et al. (2011) presented mapping results af-
ter 2009 Typhoon Morakot triggered nationwide landslides. Di�erent from recent applications, 
they �ew at 1.400 m above ground to capture an area of 21.3 km². A GSD of 17 cm was su�cient 
to document damages. Repeated campaigns allow for change quanti�cation (see DoD, chap-
ter 3.4) at high spatial and desired temporal resolution. Clapuyt et al. (2016) monitored a ~17 ha 
landslide in the northern foothills of the Swiss Alps with an annual interval at a �ying altitude 
of 60 m. �is relatively low repetition time was considered suitable with regard to the in situ dy-
namics. However, they explicitly pointed out that di�erent natural hazards may need increased 
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frequencies, which UAVs are an appropriate tool for. Turner et al. (2015) mapped a 7,500 m² 
landslide at seven dates over four years and were able to separate surface areas according to their 
respective dynamics.

In surveying gravitational mass movements, a combination of platforms and sensors can be 
fruitful. Casagli et al. (2017) present various applications from satellite earth observation to 
ground-based systems with UAVs therebetween. �e authors underline that choice of temporal 
and spatial resolution is case-dependent and can di�er in all phases of an event. While satellite 
imagery is su�cient for post-disaster damage assessment, landslide inventories and mapping 
at e.g. basin scale, UAVs are recommended for periodic checks of detailed movements, volume 
measurements and rapid assessments at slope-scale. 

4.2.4  Tectonics

�e detection and monitoring of existing tectonic surface features allows for insights in tec-
tonic processes and e.g. photogrammetric approaches from airborne data help by improving 
data density, especially in hardly accessible terrain. Deformations of the surrounding bedrock, 
orientation and shape and also the texture of dykes allow the reconstruction of formation condi-
tions and thus re�ect ancient events. Orthoimagery and point cloud analysis allows for detailed 
and precise mapping of such features and are therefore well-received in geological surveys. �e 
advantage of high-density data acquisition goes along with a challenging analysis and interpre-
tation due to the large amount of produced data. A need for semi-automatic handling of ortho-
images, DEMs and point clouds is therefore a requirement for post-processing of such surveys. 
Vasuki et al. (2014) present an approach to map geological structures from high-resolution data, 
either fully automatic or semi-automatically. �e latter reduces mapping duration from roughly 
seven hours in a classic manual method to 10 min. �ey test and make use of di�erent feature 
detection approaches and segment linking in a MATLAB work�ow to produce a structure map, 
including faults and dip directions unguided or controlled through user inputs.

Dering et al. (2019) sublime best practise instructions for mapping of dykes on unvegetated 
surfaces with assistance from the choice of UAV, depending on area to be covered and needed 
detail in the produced data to data analysis, interpretation and examples. High-end analysis can 
be achieved by surface brightness gradients and colour contrast, automatic and semi-automatic 
fracture and lithology mapping e.g. by freely available applications such as the CloudCompare 
plugins Compass and Facets or a QGIS’ GeoTrace and sophisticated 3D structural analysis tech-
niques such as Lime (Buckley et al., 2017) or OpenPlot (Tavani et al., 2011). Both, 2.5D raster 
and orthomosaic in GIS-based analysis and 3D point cloud analysis o�er high potential and de-
pending on the application show their advantages over other approaches. �e authors also point 
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out that for the monitoring of tectonic or dyke-related displacements and respective change de-
tection approaches �xed ground control points should be avoided and rather recommend UAVs 
with di�erential GPS capabilities. �e study of intrusive systems may also bene�t from UAV-
based sensors outside of the visible range, i.e. thermal infrared, hyperspectral, aeromagnetic and 
maybe gravitational measurements, but there is need for research in this domain. 

A case study by Fazio et al. (2019) underlines the usability of UAVs in geological mapping 
in an experimental design that combines in-situ mapping with drones. On a hardly accessible 
cli� wall, they map geological features and point out the bene�ts of small airborne systems over 
terrestrial LiDAR or terrestrial photogrammetry, boat-based mobile laser scanners and total sta-
tions. �eir results point at tectonic conditions during bedrock formation and reveal di�erences 
in aperture width indicating di�erent ages of genesis. 

Another structural mapping approach is given by Vollgger and Cruden (2016), who pro-
duced spatial datasets in sub-cm resolution for South-Eastern Australian basement and cover 
rocks. �ey o�er detailed joint orientation histograms and produce a 3D structural trend 
model derived from the dense photogrammetric point cloud. Detailed bedding trend surfac-
es could thus be derived and visualised and wavelength of anticlines and synclines could be 
reconstructed.

Tectonic control on geyser activity could be shown in a study by Walter et al. (2020), who com-
bined an optical and TIR UAV and underwater cameras in an Icelandic geothermal �eld. �ey 
recommended a night time data acquisition for the thermal imagery to reduce solar interference 
with heated surfaces around the AoI. �e produced thermal anomaly map enabled the authors 
to count and locate hot spots and link them to the seismicity of analogue orientation across the 
area. Supplemented by the underwater camera, the UAV survey proved the fracture-controlled 
nature of the geyser through recording the cross-sections of the conduit. 

4.2.5  Marine and coastal applications

In particular, for the high dynamic coastal areas, monitoring by UAVs instead of GPS-based 
transects or any other surveying method is easier and faster. �e detected changes as results of 
multi-temporal surveys enable to quantify these dynamics, e.g. for sandy beaches (Casella et al., 
2016) and cli�s (Ružić et al., 2014). Dune development can be related to stabilising vegetation 
coverage achieved from the orthophotos (De Giglio et al., 2017; Hugenholtz et al., 2013; Nolet 
et al., 2018). Morphodynamics of foredunes at seasonal time-scales was studied by Taddia et 
al. (2019) and revealed an overall positive evolution of the system within two  years, as well 
as erosion occurring in interdunal depressions and at the upper backshore. Furthermore, dif-
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ferent magnitudes of changes of various forms were distinguished. Most changes occurred at 
the youngest embryo dunes, dunes at further distances to the shore migrated seaward and the 
back dunes remained stable. In another study, inland migration and average vertical accretion of 
foredunes as well as lowering of the beach during winter season due to high-energy waves was 
observed (Laporte-Fauret et al., 2019). 

Single to larger �elds of boulders dislocated by storm or tsunami events are an additional area 
for monitoring approaches, as SfM allows to reconstruct the dimensions of boulders, as well as 
to detect changes of moving boulders or their surrounding area. �ese (3D) boulder dimensions 
are also used in hydrodynamic equations in order to estimate necessary wave heights or veloci-
ties for the dislocation process (Autret et al., 2018; Ho�meister et al., 2020). 

However, the acquisition by UAVs can only be applied under calmer wind conditions. Cor-
rosion by marine spray can cause severe damages and permits are important. Depending on 
visitors, other survey options, e.g. terrestrial laser scanning (Ho�meister et al., 2020) or kites 
(Autret et al., 2018) might be necessary. Likewise, the application of image matching in tex-
tureless sandy beach environments can be challenging and other sensors, i.e. LiDAR, might be 
preferable. Solazzo et al. (2018) observed a signi�cantly higher point density with ULS (UAV 
based laser scanning) compared to the image-based 3D reconstruction approach. In addition, 
ULS can partly penetrate vegetation cover and therefore allow for more accurate estimation 
of dune growth below sediment catching plant patches. For monitoring approaches, �xed 
surveying points or any other constant targets are important, usually surveyed by real-time 
kinematic (RTK) measurements or total stations. All of these studies use a raster-based DoD 
approach or apply a comparison of point clouds from di�erent time-steps (chapter 3.4 and 
chapter  3.5). �e results of these monitoring approaches can be compared to modelled or 
measured wave heights or inundation depths and show insights on storm impact and recovery 
(Turner et al., 2016). 

Besides these monitoring applications, nearshore bathymetry can indirectly be extracted by 
analysing the speed of wave crest lines (Matsuba & Sato, 2018). �e detection and tracking of 
marine species are possible from �xed images out of recorded videos (Colefax et al., 2018) and 
the successful mapping of meadow areas by object-based (OBIA) segmentation of the orthopho-
tos (Ventura et al., 2018). For all previous investigations, low-cost UAVs with small and simple 
RGB-based cameras were used. In contrast, hyperspectral images were successfully applied in 
a more complex approach by Parsons et al. (2018) for mapping of coral bleaching. Likewise, 
multispectral and thermal imagery shows an enhanced potential for wildlife detection (Colefax 
et al., 2018). However, for all surveys, the clearness of the water (normally measured in Secchi 
depths) is hampered by the turbidity of the water, e�ects of sun glare, as well as wave heights 
and shoaling. Typically, surveys should be conducted close to midday, with mostly calmer water 
and less shadow.
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Close-range remote sensing through UASs is revolutionizing hydrological sciences by a�ord-
ing the observation of novel variables and by increasing the temporal and spatial resolution at 
which natural phenomena can be observed. Airborne-based remote sensing is bridging the gap 
between ground-based sensing systems and satellites: not only have UASs o�ered re�ned obser-
vations, but also large spatial coverage and �ight repeatability.

UAS-based remote sensing can signi�cantly contribute to unveil the inherent complexity of 
hydrological processes. Indeed, water phenomena occur at heterogeneous spatial scales, span-
ning from micro-rills up to the entire catchment. Also, such processes evolve rapidly in time, 
and potentially continuous or frequent observations may highly advance our comprehension of 
the response of natural systems. Historically, hydrological sciences have been increasingly en-
hanced by experimental studies, which are though o�en expensive, time-consuming, and risky 
(if, for instance, observations during extreme �ood events are considered). UAS-based remote 
sensing has mitigated all these criticalities by enabling the mapping of �ne-scale details as well 
as allowing non-invasive observations. Limited costs (as compared, for instance, to satellite mis-
sions) as well as simplicity of use of UASs have contributed to the spread of such approaches to 
numerous research groups, organizations, and the public sector worldwide. Despite such unde-
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niable advantage, taking UAS-based observations to the level of standard measurement systems 
is still a challenge.

UASs have been equipped with a multitude of sensors (RGB cameras, thermal infrared cam-
eras, multispectral, hyperspectral cameras, etc) to dissect diverse aspects of natural catchments. 
Stream�ow, vegetation dynamics, soil moisture, and evapotranspiration are some of the hydro-
logical processes and aspects whose comprehension has improved thanks to UAS remote sens-
ing. Many of these earth system observations intersect with diverse realms of science and can 
be found in other chapters of this book. Regarding hydrological applications, the innovative use 
of UASs has enabled considerable advances in �ow monitoring and land surface – atmosphere 
energy �uxes estimation.

4.3.1  Stream�ow monitoring

�e estimation of �ow discharge, stream�ow in the rest of this chapter, is of paramount impor-
tance to hydrological modelling and engineering practice. Stream�ow is traditionally estimated 
through rating curves, which are relationships experimentally established between water level 
and �ow discharge at selected cross-sections along the stream. �e development of rating curves 
relies on the acquisition of the bathymetry and velocity at the stream cross-section through 
the deployment of expensive and bulky equipment (such as, for instance, current meters or 
acoustic Doppler current pro�lers). Such experimental campaigns are expensive; furthermore, 
measurements are not taken in challenging conditions (during �oods or di�cult-to-access en-
vironments), which may pose personnel and equipment at risk. Due to technical complexities 
in developing rating curves, such relationships are not frequently updated and morphological 
changes of the bathymetry are rarely considered. Also, expensive and time-consuming cam-
paigns have led to a gradual decrease in gauging stations in Europe since the 1990s, with small 
hydrological catchments (less than 500  km2) lacking hydrometric observations (Tauro et al., 
2018a). In developing countries, these issues are typically exacerbated (van de Giesen et al., 
2014; Feki et al., 2017).

Once rating curves are determined for a selected stream cross-section, gauging stations are 
installed to monitor water level. Existing gauging stations mostly feature point-wise sensors, 
such as ultrasonic meters and radars, which a�ord non-contact estimation of the water level. 
However, such measurements are related to a single point along the cross-section and may not 
be representative of the actual �ow dynamics occurring in the stream.
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Figure 4.3-1: Sketch of the measurements currently enabled by UASs in river systems. 
All images were prepared by the author for this chapter.

� e use of UASs has opened new frontiers towards the observation of stream� ow (Tauro et 
al., 2018c; Manfreda et al., 2018). Latest e� orts largely encompass the use of such platforms 
to: i) reconstruct the stream surface � ow velocity � eld along stream reaches of several squared 
meters, ii) estimate water level, and iii) develop stream bathymetry models. � e measurements 
of such parameters may revolutionize the way stream� ow is currently measured. Even if UAS-
based remote sensing does not (or at least, not yet) solve problems such as directly capturing 3D 
stream� ow characteristics, this approach is highly innovative. In fact, reconstructing the stream 
surface � ow velocity � eld or the water level of the free surface may directly lead to stream� ow 
estimation without the need for traditional point-wise gauging stations. Also, distributed, rather 
than point-wise, measurements of the stream surface are now feasible and have the potential to 
shed new light on several processes, including river erosion and ecosystem dynamics. Obvious-
ly, traditional ground-based measurements are still needed to verify and improve UAS-based 
observations. Figure 4.3-1 displays a sketch of the latest measurements enabled in river systems 
by UASs. In most cases, the evaluation of these parameters relies on image acquisition and pro-
cessing. 
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4.3.1.1  Surface �ow velocity �eld

Digital images have been successfully adopted in �uid dynamics laboratories to noninvasively 
(that is, without deploying sensors and probes in the �ow) visualize the �ow and to quantitative-
ly reconstruct the 2D and 3D velocity �eld (Adrian, 1991; Ra�el et al., 2007). A similar approach 
has been implemented on UAS platforms retro�tted with cameras (mostly RGB and thermal) 
and, in some cases, with laser devices that create reference points in the �eld of view (Tauro et 
al., 2015; 2016a,b and Detert & Weitbrecht, 2015) to reconstruct the 2D surface �ow velocity 
�eld in natural rivers.

Data acquisition consists in �ying the platform (typically a multirotor but images recorded 
from �xed wing systems may be adapted and utilized as well) in the hovering mode above the 
region of interest (frequently, the region spans several meters along the stream and includes both 
stream banks) for a few minutes. �e onboard camera axis can be either orthogonal or at an an-
gle with respect to the water surface, whereby inclined cameras enable the acquisition of larger 
�elds of view. �e camera captures high-de�nition videos of the stream surface, where �oating 
objects may be naturally transiting or arti�cially dispersed (Powers et al., 2018).

4.3.1.2  Water level

Water levels have been estimated from UASs adopting an array of diverse technologies. Minia-
ture lidar systems have been mounted onboard UASs to estimate both water level and bathym-
etry. Green wavelength lidars, scanning lasers, and NIR lasers have a�orded measurements at 
accuracies of a few centimeters (Hö�e et al., 2009; Mandlburger et al., 2016; Huang et al., 2018). 
Such systems can typically be a�ected by di�culties in discriminating between the returns from 
the water surface and stream bed. �e level of turbidity (suspended particles) and the optical 
properties of natural river beds are crucial factors for the reconstruction of river topography. In 
some cases, river beds re�ect less light than a Secchi disc, thus hindering the estimation of the 
water depth level (Flener et al., 2013). Also, the air-water interface and synchronization between 
sensors are major technical issues which sensibly in�uence measurement accuracy.

Radars, sonars, and custom-built developed camera-based laser distance sensors have been 
used in Bandini et al. (2017b, 2018) to measure the range of the platform to the water surface. 
�e orthometric water level has then been retrieved by subtracting such range from the Glob-
al Navigation Satellite System (GNSS) receiver mounted onboard the platform. Such tech-
nologies have proved accuracies of approximately 4 cm. UAS photogrammetry o�ers much 
lighter-weight payloads than lidars towards the estimation of water level (Ridol� & Manciola, 
2018).
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 4.3.2  Land surface – atmosphere interactions

Surface energy � uxes highly in� uence the water cycle and water resources management. In re-
cent years, remarkable e� orts have entailed the use of UASs rather than traditional instrumenta-
tion to facilitate the remote estimation of land surface atmosphere interactions. In the following, 
we present latest results on soil moisture and evapotranspiration observations, see Figure 4.3-2.

Data acquisition for surface energy � uxes observations can be executed with both multirotor 
and � xed-wing platforms. Sometimes, the UAS is conveniently � own in the autonomous mode 
and images can be automatically georeferenced using information on the UAS attitude. 

Typically, UASs are equipped with multispectral sensor payloads at sub-meter resolution. � e 
� ight mission is pre-programmed with GPS-waypoint navigation. In most cases, data may ex-
hibit diverse spatial resolution (for instance, thermal imagery tends to have worse de� nition 
than RGB), and data re-sampling and interpolation is necessary. Importantly, UAS-based ac-
quisitions frequently need ground-based calibration and are o� en complemented with ground 
sampling to estimate soil characteristics and texture, � eld capacity, and wilting point.

Figure 4.3-2: Sketch of UAS-based measurements of surface energy � uxes.

 4.3.2.1  Soil moisture

Soil moisture is a fundamental driver of physical processes in natural ecosystems and a cru-
cial parameter for agricultural management. It is traditionally measured with in situ sensors 



340

Flavia Tauro

(gravimeters, time and frequency domain re�ectometers, and neutron probes) which typically 
lead to accurate estimations in areas of limited extension and upon laborious campaigns (An-
dreasen et al., 2017; Bogena et al., 2015). However, the use of such probes on large scale environ-
ments can be rather impractical and time-consuming.

Surface soil moisture (that is, moisture within the �rst 10  cm of the soil) can be remotely 
estimated through satellite-based earth observations. Optical, thermal, multispectral, and mi-
crowave remote sensing have demonstrated to provide accurate representations of the land 
surface-atmosphere �ux exchanges with minimum parameterization (Petropoulos et al., 2009). 
However, satellites also o�er low revisit times, are a�ected by cloud cover, exhibit low spatial 
resolutions and may not overpass the entire globe (Wang et al., 2018a). UASs mitigate several of 
the satellite criticalities: they can be �own at lower altitudes thus a�ording higher spatial resolu-
tions; platforms can monitor di�cult-to-access areas at high temporal frequencies, at low costs 
and in cloudy periods.

Approaches to estimate soil moisture with UASs leverage existing remote sensing methods. 
�ey include optical sensing (Filion et al., 2016; Anne et al., 2014), integrated approaches that 
combine optical sensing and thermal infrared observations (Carlson, 2007) and microwave 
remote sensing methods (Kornelsen & Coulibaly, 2013). One of the �rst instances of UAS plat-
forms for surface soil moisture estimation is the AggieAir, a 14-pound �xed-wing platform 
that can �y up to one hour at a speed of 30 miles per hour (Jensen et al., 2009). Surface soil 
moisture maps can be transferred onto large scale areas based on the relation with image-based 
vegetation indices. Distributed acquisitions for such indices are then used as inputs to soil 
moisture models. Examples of such indices include the normalized di�erence vegetation in-
dex (NDVI), enhanced vegetation index (EVI), and vegetation condition index (VCI), among 
others. Computation of the indices relies on the acquisition of high-resolution imagery from 
UASs in the visual spectrum, near-infrared, and infrared/thermal bands. Images in the visible 
bands also allow for generating digital elevation models, which can be helpful to reconstruct 
orthorecti�ed mosaics.

To develop surface soil moisture maps, optical vegetation indices and ground-based measure-
ments serve as inputs to models. Alternatively, the thermal inertia approach relates soil mois-
ture to the di�erence in maximum and minimum soil and crop canopy temperatures during 
the day (Idso et al., 1975). �e crop water stress index is another methodology that relates the 
components of the surface energy balance to changes in soil moisture. Several machine learn-
ing approaches exploit vegetation indices to calculate soil water content (Hassan-Esfahani et 
al., 2015, 2017). In Wang et al. (2018b), soil moisture at the root-zone (down to 30 cm) is esti-
mated by coupling a modi�ed version of the temperature-vegetation triangle approach (from 
thermal, multispectral, and RGB imagery sensed with a multirotor) with information on sur-
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face roughness (related to the aerodynamic resistance to heat transfer) gathered from the struc-
ture-from-motion technique.

4.3.2.2  Evapotranspiration

Increasing global population and climate variability are challenging water resources avail-
ability and management. Improved agricultural yield as well as enhanced resilience against 
water shortage can be achieved through multi-sensor high spatial and temporal resolution 
observations. In this vein, remote sensing missions have proved instrumental for monitoring 
evapotranspiration at large spatial scales. Speci�cally, thermal imaging and hyperspectral and 
multispectral measurements have been widely adopted as proxy for evapotranspiration estima-
tion (Price, 1982; Govender et al., 2007). Unlike satellites, UASs o�er much more time-re�ned 
observations at higher spatial resolution, which have the potential to signi�cantly improve ag-
ricultural practice, such as the timing and amount of crop irrigation (Kustas et al., 2018) and 
the selection of genotypes that are resilient to water de�cit (Ludovisi et al., 2017).

Similar to surface soil moisture, proximal sensing-based evapotranspiration frequently relies 
on energy balance models fed with thermal and multispectral imagery. UASs simultaneously 
capture images at diverse bands that are processed to yield vegetation indices and to estimate 
the energy balance components (Ortega-Farías et al., 2016). Surface energy balance models 
have been developed since the 1940s based on the assumption that the rate of exchange of heat 
and mass between the ground and atmosphere is caused by a di�erence in the potential of the 
land surface-atmosphere system as well as by resistances due to the local land and vegetation 
properties (Kalma et al., 2008). One-source surface energy balance models treat energy �uxes 
between soil, vegetation and the atmosphere, whereby no distinction is made between evapora-
tion from the soil surface and transpiration from the vegetation (Monteith, 1965). On the other 
hand, two source-models regard the evapotranspiration �uxes as the sum of the contributions 
from the soil surface and vegetation (Shuttleworth & Wallace, 1985). �ese approaches involve 
meteorological variables which are frequently estimated from local sparse networks of weather 
stations at the time of UAS surveys. Also, camera radiometric calibration with ground-based 
measurements is o�en required.

Evapotranspiration has been estimated with two-source energy balance models in agricultural 
crops at very high resolution (Ho�mann et al., 2016). To this end, thermal images have been 
captured from �xed wing or multirotor UAVs, mosaicked, and input to energy balance models. 
Such data need to be complemented with meteorological variables typically obtained at local 
stations and eddy covariance towers. In Wang et al. (2019a), image resolution consistent with 
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canopy size (1.5 m) is found to be su�cient to capture the spatial heterogeneity of evapotran-
spiration �uxes.

4.3.2.3  Accuracy and limitations

UAS-based sensing approaches a�ord surface soil moisture and evapotranspiration estimation 
at large scales, which is advantageous given the high heterogeneity of such parameters and their 
dependence on a multitude of factors (such as, for instance, vegetation, topography, human ac-
tivities). Also, these proximal sensing methods can be employed to yield quantitative estima-
tions at incredibly re�ned spatial resolutions (meter level).

A recent study has proposed a methodology to fully exploit the potential o�ered by UASs 
earth observations by temporally interpolating sparse estimates of land surface variables, such as 
soil moisture. �is approach interpolates land surface state variables obtained from UAS-based 
snapshot data to upscale instantaneous to daily observations. In the future, UAS observations 
may be complemented with a few meteorological and remote sensing data to yield temporal-
ly continuous land surface-atmosphere �ux exchanges at high spatial resolution (Wang et al., 
2019b).

4.3.3  Comments and recommendations

Despite the promise demonstrated by the use of UASs in stream �ow monitoring and energy bal-
ance estimations, the technology is still struggling to become a standardized procedure. Many 
data acquisition procedures, including planning the �ight mission and processing parameters, 
heavily rely on the expertise of the user. Regarding stream �ow monitoring, even if a general 
agreement has been achieved on the image processing work�ow toward surface �ow velocity 
extraction, no guidelines have been developed to inform the choice of stabilization approaches 
and velocimetry algorithms. While it is generally agreed that velocimetry algorithms may exhib-
it diverse performance based on �ow regime or the presence of tracers, major e�orts still focus 
on the development and enhancement of velocity estimation tools rather than on collaborative 
activities toward the standardization of the procedures. 

In the realm of energy �uxes estimation, platforms are typically �tted with numerous piec-
es of instrumentation (visible, thermal, and multispectral cameras), which considerably raise 
costs and manageability. In some cases, the integration of data sources with diverse spatial and 
temporal resolution may involve the use of machine learning algorithms and sharpening tools 
that are needed to combine data of di�erent dimensionality, thus complicating data handling 



343

4.3  UAVs in hydrology

and extraction. Also, ground-based measurements are still essential for running energy balance 
models.

Current challenges that still need to be addressed involve �ying UASs in windy and rainy 
conditions. Inaccuracies in image stabilization can be highly detrimental for measurements 
and accurate data geolocalization, even if platform technological ameliorations are expected 
to sensibly mitigate these issues in the near future.
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Unmanned Aerial Vehicles (UAV) platforms are emerging as one of the most promising remote 
sensing technology to provide data for research and operational applications in a wide range of 
disciplines, including forestry. 

�is chapter provides a coherent synthesis and framework by which UAVs can be used through 
passive and active sensors in forest-related disciplines. �e general goal is to advise foresters and 
forestry-oriented researchers on choosing, by means of examples, the appropriate UAV and sen-
sor according to the application. Furthermore, we summarise suitable approaches to get reliable 
results and information on forest systems and their dynamics. �e focus of this chapter is on the 
use of UAV images and on UAV LiDAR data and their derived forest information by including 
the applied methods and achievable accuracies. Furthermore, a brief description of radar UAV 
applications in forestry is given. Finally, the challenges and technical considerations of UAVs for 
possible operational applications in forestry are discussed.

Forests are viewed, de�ned, and assessed from di�erent perspectives (Chazdon et al., 2016). 
�e formal de�nition of forest is based on the economic, social, ecological and political value of 
the tree-covered land. Furthermore, each country has its own legal forest de�nition(s), whereas 
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the FAO provides a worldwide one (FAO/FRA, 2000). Forests can be classi�ed according to the 
amount of human alteration (plantation or ‘natural’ stands), on climate, and on the predominant 
tree species composition (i.e. broadleaf trees, coniferous or needle-leaved trees, mixed and tropi-
cal forest). In general, forests are composed of layers such as forest �oor, shrub layer, understory, 
canopy, and emerging trees in a tropical forest, each with a di�erent set of functions.

�e management of forests is referred to as forestry, i.e. the science and practice of manag-
ing, using, preserving, monitoring and creating forests, woodlands and associated resources for 
multiple uses. �e overall goal of forest management is to create a sustainable or maintainable 
forest that continues to grow and produce its goods and bene�ts (FAO/FRA, 2000). �is can be 
done in many di�erent ways such as reforestation, even- and uneven-aged methods, controlled 
burns or selective and reduced impact logging. Depending on the management objectives and 
methods, the information about the following issues is required: forest health and diseases, tree 
species, canopy height, tree growing, timber stock, stand density (i.e. the number of trees per 
area), canopy cover (i.e. the area of ground under the tree canopy), forest gaps (i.e. abrupt ver-
tical changes occurring between trees), tree crown, basal area (i.e. the section of land that is 
occupied by the cross-section of tree trunks), de�nition of boundaries and acreage, as well as 
biological inventory. For national and local forest inventories additional parameters such as e.g. 
vertical canopy structure, wood quality, tree positions, topographic and moisture condition are 
required, which are traditionally collected by in-situ �eld measurements in a regular interval, 
need to be measured and observed. 

Sustainable forest management requires accurate spatial information in high temporal and 
spatial resolution (Imangholiloo et al., 2019). Although airborne remote sensing is widely used 
in forestry, one of the most critical barriers to their applications is the lack of timely data col-
lection over target areas (Tang und Shao, 2015) and the cost of data collection especially for 
developing countries. 

On the contrary, with a UAV platform the data acquisition over small to medium areas is quite 
�exible and, thus, the surveying can be repeated in shorter time intervals, which can be practical 
for monitoring under di�erent phenological condition or a�er a meteorological or anthropo-
genic event (Tang und Shao, 2015). Moreover, the UAV platform can be equipped with di�erent 
sensors targeted to the forest parameter.

UAVs has experienced increasing scienti�c attention in forestry in the last years, as summa-
rised in a number of reviews (Assmann et al., 2019; Banu et al., 2016; Frey et al., 2018; Goodbody 
et al., 2017b; Hernandez-Santin et al., 2019; Liu et al., 2018; Pádua et al., 2017; Tang und Shao, 
2015; Torresan et al., 2016; Zhang et al., 2016). �e most commonly used terms in these articles 
are emphasized in Figure 4.4-1. 

�e construction of the platform, e.g. �xed-wing, copter or a combination of both, determines 
the ground coverage, the payload, the starting, and landing capability, the �ight time, stability, 
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and quality (Adler et al., 2018). �e operational altitude of a UAV in forestry usually varies from 
50 to 300 m above ground (for small UAVs). Smallest UAVs can also �y close to the forest can-
opy (~20 m) and custom platforms also under the forest canopy (Chisholm et al., 2013; Jiang et 
al., 2016; Krisanski et al., 2018a; Krisanski et al., 2018b; Tang und Shao, 2015). However, so far 
there has been very limited research on the potential of below-canopy UAV for forest mapping.

O�en, a �xed-wing UAV is a more suitable platform for covering large areas: up to 200 ha with 
one �ight and up to 1000 ha in one working day in optimal weather and topographic conditions 
using multiple batteries on a lightweight �xed-wing UAV (Giannetti et al., 2018). Multi-cop-
ters are also used, especially for multispectral and hyperspectral sensors. �e types of sensors 
currently used in forestry are digital true colour (i.e. RGB) cameras, multispectral cameras and 
LiDAR (Light Detection and Ranging) followed by hyperspectral cameras, thermal detectors/
cameras, and radar.

Figure 4.4-1: Sketch of the keywords used in the review papers on UAV in forestry (Jason Davies 
visualization). Unless otherwise stated, all images were prepared by the author for this chapter.

4.4.1  UAV images for forestry

By applying Structure from Motion (SfM) photogrammetry and image matching algorithms, 
UAV image sequences are commonly processed into coherent data sets, providing structural 
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and spectral information of the canopy surface in the form of re�ectance orthomosaic, three-di-
mensional (3D) point cloud, and 2.5D digital surface models (DSMs). �e latter is o�en used to 
determine the canopy height model (CHM) of forests by subtracting the height of the ground in 
the form of digital terrain models (DTM). 

�ere is a growing body of literature on the use of UAV image-based technologies for forest 
studies. In order to provide an overview of the trend of recent studies and applications using 
UAV images in forestry, we conducted a comprehensive literature search of scienti�c studies 
such as accessible journal paper, conference proceedings articles and o�cial thesis using Google 
Scholar and citation tracking. We searched the terms ‘UAV’, ‘unmanned aerial vehicle’, ‘UAS’, 
‘unmanned aerial system’, and ‘drone’ in combination with the terms ‘forest’, ‘forestry’, ‘invasive 
species’, ‘forest �re’, ‘vegetation’, ‘canopy’ in the time period from 2012 to 2019 (Figure 4.4-2). �e 
reviewed articles are categorized into the following thirteen UAV applications: forest pre-post 
harvesting, biodiversity, �re, monitoring, health, above ground biomass, structural parameters, 
and methods. Figure 4.4-2 compares the number of studies per application and shows the num-
ber of studies compared to the date of publication for each application. In this �gure, we have 
only reported the keywords for each application. However, the full description of each classi�ed 
application, as well as the list of references for each application, are reported as supplementary 
material. Please note that the statistics shown in the �gure are calculated on the basis of the 
found articles. Studies are assigned to only one application; however, some applications overlap. 
For example, the canopy height, which is a forest structure parameter, is also calculated in the 
forest inventory, used for the detection and segmentation of individual trees and as a variable for 
above ground biomass estimation.

Our literature search re�ects the general trend of an increasing numbers of UAV studies 
(35 % were published in the past three years) and UAV applications in forestry over the last 
three years (Figure 4.4-2). Moreover, the literature search pointed to the recent innovative ap-
plications of UAV, in various �elds of forestry such as the estimation of phytovolume (i.e. the 
volume under vegetal canopy), insecticide e�ect in forest (Leroy et al., 2019), light transmis-
sion and canopy shadow e�ect in river temperature models (Dugdale et al., 2019), seedlings 
detection (Feduck et al., 2018; Imangholiloo et al., 2019), soil disturbance from forest ma-
chinery (Pierzchała et al., 2014), monitoring greenhouse gas emissions from forests (Mlambo 
et al., 2017), census of an Endangered Plant Species (Rominger und Meyer, 2019) and liana 
infestation (Waite et al., 2019). 

More popular is the use of UAV imagery to support the estimation of forest structure and 
forest inventory parameters, forest �re management, and biodiversity characteristics such as 
canopy gaps and dead wood (Inoue et al., 2014) and species identi�cation. Other tasks include 
monitoring of protected areas, harvesting activities, forest change and recovery, and the mon-
itoring of forest health and pest infestation. Furthermore, a wide variety of studies have inves-
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tigated the technical and methodological challenges of using UAVs in forestry (Figure 4.4-2, 
Methods) and the integration of UAV data with terrestrial images (Mikita et al., 2016), terrestrial 
LiDAR(Aicardi et al., 2017; Mtui, 2017), aerial LiDAR (Kotivuori et al., 2020) and satellite data 
(Abdollahnejad et al., 2018; Martin et al., 2018; Martínez-Sánchez et al., 2019; Navarro et al., 
2019; Puliti et al., 2018; Rossi et al., 2018). 

Figure 4.4-2: Applications of UAV imagery in the reviewed studies from 2012 to 2019. 
Number of articles versus the application category (top) and number of articles 

versus publication date for each application (bottom). �e reference list for 
each application is reported in the appendix.
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Based on our literature research, forest structural parameters are the one that has received the 
highest attention followed by forest biomass, forest health and forest classi�cation (Figure 4.4-2, 
the highlighted sectors). �ese applications are discussed in the following sub-chapters.

4.4.1.1  Forest structure parameters

Forest structure refers to the spatial (i.e. vertical and horizontal) arrangement of the compo-
nents of a forest ecosystem and describes properties such as the distribution and abundance of 
vegetative elements (Lindenmayer et al., 2000). In detail, forest structural components include 
tree density, tree position, canopy cover and tree crown area, tree species composition, foliage 
distribution, canopy gaps, and light penetration and availability for the understory vegetation 
(Palace et al., 2016). In the �eld of forest inventory, forest parameters also include the presence 
of death trees, basal area, diameter at the breast height (DBH), trunk size distribution, and tree 
canopy height. �e latter is o�en expressed through descriptive statistics such as the maximum 
height, mean height (i.e. the arithmetic mean of heights), standard deviation of the height values 
as well as the coe�cient of variation of heights and height percentiles o�en calculated between 
10 % and 90 %. �ese structural components are important indicators for the investigation and 
modelling of forest dynamics, biological diversity and ecological processes (Awad, 2017; Lu et 
al., 2016; Molinier et al., 2016; Rahimizadeh et al., 2019) and their measurements are also used to 
estimate biomass and growing stock volume (Grznárová et al., 2019) and to derive disturbance 
mechanism.

Technological advances in remote sensing related to forestry contribute to the arrival of rela-
tively new term such as “Precision Forestry”, i.e. the provision of reliable, accurate and detailed 
information on the structural and ecological aspects of forests with high spatial and temporal 
resolution, even at the individual tree level (Holopainen et al., 2014).

Airborne laser scanning (ALS) data has been tested for e�cacy in measuring forest structure 
properties through and under the top of the canopy (Sullivan et al., 2014). Due to the similarity 
between UAV photogrammetric and ALS point cloud in the sense that vertical information can 
be represented in a dataset (White et al., 2013), UAV photogrammetric point clouds are increas-
ingly used for calculating forest structure parameters (Balenović et al., 2017; Banu et al., 2016; 
Birdal et al., 2017; Bohlin et al., 2012; Dandois und Ellis, 2013; Goodbody et al., 2017a; Hird 
et al., 2017; Jayathunga et al., 2018a; Mohan et al., 2017; Ota et al., 2017; Torresan et al., 2016; 
Vastaranta et al., 2013; Zarco-Tejada et al., 2014). However, it is worth noting that compared to 
ALS, photogrammetric point cloud does not provide the same level of penetration into the can-
opy, and therefore cannot provide the same level of information on the vertical strati�cation of 
vegetation layers and the terrain (Torresan et al., 2016; White et al., 2013) (Figure 4.4-3).
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Figure 4.4-3: Point clouds derived from UAV LiDAR (Riegl VUX1 – blue-green-yellow dots) 
and Sony Alpha imagery (red dots) over a forest scene. Pro�le width is 1 m.

�e extraction of canopy height and vertical canopy pro�le from UAV images o�en relies on 
the algorithms developed for LiDAR data (Silva et al., 2015). �erefore, the potential of using 
spectral and textural information is not fully exploiting yet. In addition, several studies have 
highlighted that UAV photogrammetry o�en requires an auxiliary very high-resolution DTM 
(González-Jaramillo et al., 2019; Messinger et al., 2016; Ota et al., 2015; Ullah et al., 2019), such 
as ALS-derived DTM, to generate accurate information of canopy height and consequently stem 
volume and basal area. Only for forests with low stem density, 3D points from the terrain and 
consequently a DTM can be derived from UAV imagery. For example, Lin et al. (2018) demon-
strated the feasibility of deriving a photogrammetric DTM and tree height from oblique RGB 
photographs for a sparse subalpine coniferous forest.

Based on UAV image data structural forest parameters are commonly extracted from the 
CHM model rather than the 3D point cloud. Among the forest parameters, the estimation of the 
tree height and crown diameter from UAV imagery received the highest attention, likely because 
from these measurements individual tree characteristics can be estimated (e.g. stem diameter 
and volume). 

To extract tree positions and heights from UAV CHMs or point clouds, local maxima 
algorithms are commonly used (Abdollahnejad et al., 2018; Guerra-Hernández et al., 2018; 
Mohan et al., 2017). Other studies derived the tree position based on a segmentation into 
tree crowns and the tree heights based on the highest DSM values within the tree crown 
segments (Ganz et al., 2019). However, local maxima approaches based on CHM works 
efficient for forests that have a well-defined apex, where tree tops are sufficiently separated 
from each other, where tree heights are uniform (e.g. conifers), where there are no trees 
hidden under or between taller and larger ones as in mixed and/or multi-layered forests 
(Balsi et al., 2018).
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Concerning the tree height estimation Alexander et al. (2018) developed an alternative ap-
proach for assessing the height of emergent trees in a tropical rainforest only from DSM and the 
slope of the DSM without the requirement for a terrain model. 

Recent studies have shown very high precision (i.e. repeatability) of within-season tree height 
growth measurements of individual trees or forest stands using UAVs (Dempewolf et al., 2017; 
Guerra-Hernández et al., 2017; Krause et al., 2019; Mohan et al., 2017), although the topic merits 
further study. Multitemporal UAV surveys have also been successfully conducted for ecological 
monitoring (Zhang et al., 2016) and for quantifying the leaf phenology of individual trees (Park 
et al., 2019). 

One aspect common to almost all studies is that ALS and �eld-based measurements are used 
for validation by analysing the root mean square error (RMSE) and the R2 for each parameter. 
Several studies comparing UAV and ALS canopy height report R2 values of 0.8 or higher (Dan-
dois und Ellis, 2013; Jensen und Mathews, 2016; Lisein et al., 2013; Torresan et al., 2016; Zahawi 
et al., 2015; Zarco-Tejada et al., 2014). In comparison to indirect �eld-based measurements, 
which are however also potentially subjected to error propagation (Larjavaara und Muller-Lan-
dau, 2013; Wang et al., 2019b), the R2 ranges between 0.63–0.84 (Fankhauser et al., 2018). High 
accuracy was also found in comparison to terrestrial LiDAR (Roşca et al., 2018). 

�e di�erences between structural metric estimates from ALS and UAV images are attributed 
to the limited ability of UAV images to penetrate the canopy layer, hence the overestimation of 
lower height percentiles and canopy density values. In addition, it is worth noting that di�er-
ences in observed accuracy values are due to di�erences in data sources, in the variation of the 
surveyed forest types, �ight con�gurations, image acquisition parameters, camera resolution, 
ground control points (GCP) and processing work�ows used.

4.4.1.2  Forest mapping and classi�cation and forest health

�e characteristics of the sensor (i.e. spectral and spatial resolution) play an important role in 
the ability to monitor forest health, recognize plant diseases, map tree species and classify forest 
types and land cover from UAV image-based technologies. �e following paragraphs summa-
rise the main methodologies currently used for forest mapping and classi�cation by means of 
UAV imaging technologies and provide an overview of the use of multispectral, hyperspectral 
and thermal technologies for forest health assessment. Information on state-of-the-art remote 
sensing of forest health and on the integration of spectral technology on UAV platforms can be 
found in the extensive reviews provided by Hall et al. (2016), Senf et al. (2017), Lausch et al. 
(2016; 2017), and Aasen et al. (2018). �e detailed description of di�erent types of UAV sensors 
and their calibration goes beyond the scope of this chapter. 
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Understanding the spatial distribution of individual trees, their species and size is important 
for biodiversity assessment, forest biomass prediction, ecosystem services and in general in the 
sustainable management of forest resources. For example, the relationship between DBH and 
biomass is species-speci�c, and therefore there is an increasing need to classify tree species with 
high accuracy.

Classi�cation of tree species, land cover and determination of vegetation species are o�en 
performed with semi-automatic approaches rather than only manual mapping. �e classi�ca-
tion method and the features used for classi�cation play an important role in the accuracy of 
the classi�cation. In classi�cation processes, spectral, spatial and temporal features derived from 
UAV images are used independently or combined. �e incorporation of temporal features (i.e. 
based on UAV time-series images) to help classifying tree species is not fully exploited yet while 
spectral and spatial characteristics are widely used for object-based analyses. For tree species 
classi�cation, spatial-based features can be textural images or segmentation of crown size and 
shape, crown closure and stand density. For tree crown delineation and crown diameter extrac-
tion, the use of the watershed segmentation approach applied to UAV DSM or CHM (Grznárová 
et al., 2019) in combination with manual single tree crown delineation on orthomosaic (Iizuka 
et al., 2017) is very common. However, the visual quality of the photogrammetric CHM varies 
between stand species and forest density (Lisein et al., 2013). 

Spectral features take advantage of di�erent forest structures and chlorophyll content to 
di�erentiate forest types (e.g. broadleaf forest versus needle forest). Spectral information can 
be derived directly from the UAV orthophoto, but more o�en the vegetation indices are calcu-
lated from the orthophoto according to the available spectral band and speci�c purpose. Mul-
tispectral sensors are more powerful than the visible camera to detect the spectral response 
from the forest canopy and other surfaces. Multispectral sensors on board of UAV usually op-
erate in the visible, red-edge and near-infrared (NIR) spectral regions. Based on the NIR and 
Red band, the normalized di�erence vegetation index (NDVI) is commonly used to assess the 
greenness of the trees, to detect dead trees and to delineate canopy gaps as well as to estimate 
biophysical parameters. In addition to NIR images, RGB images are also used to calculate 
various vegetation indices as a basis for forest mapping and classi�cation (Zhang et al., 2019). 

Multispectral UAV sensors were used to monitor changes in land cover (Minařík und Lang-
hammer, 2016), and tree species classi�cation (Gini et al., 2014; Gini et al., 2018; Komárek et al., 
2018) as well as for mapping forest health (Brovkina et al., 2018), insect damage (Lehmann et al., 
2015), disease outbreak (Dash et al., 2017) and estimating forest canopy fuels (Shin et al., 2018). 
A comprehensive literature review of the current state of UAVs for invasive alien plant research 
is provided by Dash et al. (2019).

As reported, many variables from spectral features, vegetation indices, texture, and structural 
information can be used for forest classi�cation and mapping. However, to date, it is not yet clear 
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how di�erent features and data sources in�uence land cover or forest classi�cation and which 
classi�cation algorithm provides the best performance.

Pixel-based classi�cation (PBC) was conducted on orthorecti�ed RGB and multispectral UAV 
images to assess tree density, tree height and canopy cover (Durfee et al., 2019). However, PBC 
only works on the spectral features (i.e., re�ectance values) of each pixel to assign class labels 
according to speci�ed ranges (Fraser und Congalton, 2019). As a result, crown textures, gaps, 
and shadows reduce the accuracy of the classi�cation. With the availability of very high spatial 
resolution images from UAV, object-based classi�cation (OBC) is the predominant choice for 
reducing spectral variability within the classes. In fact, OBC works with groups of homogeneous 
and contiguous pixels, also known as segments, as basic elements to perform a classi�cation (De 
Luca et al., 2019; Torres-Sánchez et al., 2015). �erefore, OBC also takes into account spatial 
characteristics to di�erentiate classes (Bothra et al., 2017). 

Among the di�erent classi�cation algorithms from statistical-based algorithms (e.g., cluster 
analysis, k-nearest neighbour, maximum likelihood) to machine learning algorithms (e.g. sup-
port vector machine, decision tree and arti�cial neural networks) in the literature search, ran-
dom forest classi�cation algorithm (Breiman, 2001) is the most used non-parametric learning 
algorithm. �is algorithm is successfully applied for tree species classi�cation (Franklin und 
Ahmed, 2017), forest regeneration monitoring (Goodbody et al., 2017a), and for selecting the 
most important 3D metrics and spectral features for further inspections (Imangholiloo et al., 
2019; Saarinen et al., 2017). 

Hyperspectral imageries from UAV have recently been used for detecting damaged and dead 
trees (Näsi et al., 2015), identifying the di�erent stages of bark beetle infestations (i.e., healthy, 
infested, and dead trees) (Näsi et al., 2018), in mapping biodiversity indicators (Saarinen et al., 
2018) and identifying tree species (Cao et al., 2018; Li et al., 2019b; Nevalainen et al., 2017; San-
dino et al., 2018) and vegetation classi�cation in general (Yan et al., 2019). �ese studies high-
light the great value of hyperspectral data for vegetation classi�cation and forest health manage-
ment and its advantages over RGB imagery and multispectral data. According to the authors, 
the tree species classi�cation based on hyperspectral imagery can further be improved by adding 
structural information (i.e. three-dimensional point cloud or surface model) of forest canopies. 
�is information helps to reduce misclassi�cation due to the shade and varying illumination 
conditions and to discriminate species with similar spectral signatures, but di�erent structural 
characteristics (Cao et al., 2018; Sankey et al., 2017).

�ermal sensors that provide the temperature of the plant/forest canopy (Zarco-Tejada et al., 
2012) are commonly used for stress detection (Junttila et al., 2016), due to the linear relation-
ship between leaf or canopy temperature and transpiration (Maes & Steppe, 2012) (i.e. higher 
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canopy temperatures likely lower transpiration rates). Using airborne thermal imagery, Scherrer 
et al. (2011) assessed the drought sensitivity of deciduous forest tree species. Berni et al. (2009) 
were the �rst to test a helicopter-based UAV equipped with inexpensive thermal and narrow-
band multispectral imaging sensors for estimating water stress detection and canopy tempera-
ture for vegetation monitoring. Recently UAV thermal systems are employed to monitor surface 
temperature dynamics on distinct land cover classes e.g. disease-induced canopy temperature 
rise (Smigaj et al., 2015), high-stress level in conifer forests (i.e. 1.5°C temperature di�erence) 
(Smigaj et al., 2017) and to quantify phenotypic traits of moderately stressed and non-stressed 
trees (Ludovisi et al., 2017). Other UAV thermal investigations have shown a correlation be-
tween canopy temperature depression and disease level (Smigaj et al., 2019). Speci�cally, Maes 
et al. (2018) demonstrated that infrared thermography based on UAV provides a new method 
to study the plant-water relations of mistletoe and their host plants. With UAV thermal infrared 
images Lapidot et al. (2019) showed that the transpiration rate is close to the measured values 
of direct gas exchange.

4.4.1.3  Forest biomass

Biomass refers to the amount of material accumulated by plants in a unit area (McKendry, 2002). 
Forest biomass is the main index to measure the carbon sequestration capacity of a forest (Ré-
jou-Méchain et al., 2019), and consequently the carbon emission from deforestation and forest 
degradation. In this respect, there is an increasing need for consistent monitoring of forest bio-
mass under the Reduction of Emissions from Deforestation and Forest Degradation (REDD+) 
program.

As the underground portion of forest biomass is di�cult to obtain, the Aboveground Biomass 
(AGB) of forest is usually estimated (Lin et al., 2018). �e largest part of forest biomass consists 
of wood (70 % to 90 % of AGB) in which the dominant trees (~25–30 m) contain more than 
75 % of total carbon (Cuni Sanchez und Lindsell, 2016). �erefore, the most important predic-
tors of AGB of a tree are its trunk diameter, total height, wood speci�c gravity, and forest type 
(dry, moist, or wet) (Chave et al., 2005). 

Forest AGB is rarely directly measured (Qureshi et al., 2012) and thus, indirect estima-
tions are mainly achieved by the biomass and forest yield models, carbon flux measure-
ments, forest inventory-based approaches, and remote sensing methods (Qureshi et al., 
2012). Remote sensing based methodologies either infer biomass through relationships 
between field-based estimation of biomass and spectral signal, or through estimations of 
some other forest variables and employment of allometric analysis (Lu et al., 2016). Within 
both approaches, actual forest cover, forest type and forest species mapping as well as tree 
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height and DBH are very important source of information (Galidaki et al., 2016). The latter 
two parameters are commonly measured in forest inventories to estimate AGB by applying 
allometric equations. 

Several studies have shown that from ALS data AGB and carbon stock can be estimated 
accurately in various forest types (Asner et al., 2011; Gobakken et al., 2012; Hansen et al., 
2015; Ioki et al., 2014; Lefsky et al., 2002; Montagnoli et al., 2015; Næsset et al., 2013; Næsset 
et al., 2004). In recent years, UAVs have been gradually utilized in AGB estimations of forests 
as an alternative to using ALS (Lin et al., 2018; Messinger et al., 2016). Although most of 
the literature in this respect is focused on UAV-based LiDAR data (Balsi et al., 2018; Brede 
et al., 2017), recent studies demonstrate that repeated UAV imagery can be used to estimate 
changes in the AGB, for instance linked to selective logging in tropical forests (Ota et al., 
2019). Similarly, Jayathunga et al. (2018b), demonstrated that the digital photogrammetry of 
UAV imagery, when combined with LiDAR DTM can be used e�ectively for the estimation of 
plot-level stem volume and carbon stock of uneven-aged mixed conifer-broadleaf forest, with 
comparable accuracy to ALS data. �eir reported RMSE of the UAV-estimated volume was 
comparable to other studies that used UAV-photogrammetry with LiDAR DTM (Puliti et al., 
2015; Tuominen et al., 2015). 

Since the UAV-based biomass estimation relies on the availability of reliable DTMs, Kacham-
ba et al. (2016) tested di�erent ground �ltering to generate DTM from UAV imagery in miombo 
woodlands. Except for the DTM based on shuttle radar topography mission (SRTM), the dif-
ferences between the tested DTMs were minor when comparing to the �nal biomass estimates. 
In similar environment, Domingo et al. (2019) assessed the in�uence of image resolution, cam-
era type and side overlap on prediction accuracy of biomass constructed from ground-based 
data and UAV data. �e results showed that a reduction of side overlap from 80 to 70 %, while 
keeping a �xed forward overlap of 90 %, might be an option for reducing �ight time and cost 
of acquisitions without decreasing the achieved accuracy. �e analysis of terrain slope e�ect in 
biomass predictions showed that error increases with steeper slopes, especially on slopes greater 
than 35 %, but the e�ects were small in magnitude. 

However, it is known from other ongoing studies that a reduction of the overlap below 85/85 % 
can lead to alignment errors especially for leaf-o� data sets. �erefore, it is strongly recommend-
ed the have a side and forward overlap > 85 %.

To estimate the AGB in a natural tropical mountain forest, González-Jaramillo et al. (2019) 
tested two methods based on UAV RGB images, from where they derived the tree height and 
DBH, and the second based on multispectral camera used to calculate the NDVI index. �eir 
study found that the NDVI-based AGB estimates were less accurate due to the saturation e�ect 
in dense tropical forests, while the RGB photogrammetric approach provided reliable AGB (Mg/
ha) estimates comparable to LiDAR surveys. 
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4.4.2  UAV LiDAR for forestry

LiDAR is widely used in forestry applications because of its ability to provide 3D information 
of canopy structure and terrain information, even under dense canopy cover. �e main product 
from LiDAR is a 3D point cloud, which is the basis for deriving high resolution DTMs, DSMs, 
CHMs, as well as normalized point clouds and consequently a multitude for forest parameters. 
In forest areas with dense crown cover, the advantage of LiDAR towards photogrammetry is 
more pronounced thanks its ability to penetrate vegetation retrieving terrain information. �is 
would merit the choice of the more expensive LiDAR scanner in applications where the vertical 
distribution of vegetation is of importance (Jensen et al., 2018), and/or where high-resolution 
DTMs from national LiDAR acquisitions are not available.

�e �rst UAV-LiDAR system optimized for forestry applications is described in Wallace et 
al. (2012). �e developed TerraLuma UAV-LiDAR system is a low-cost UAV system that com-
bines GPS, IMU LiDAR and High De�nition (HD) camera data. �e developed work�ow for 
processing the data fuses observations from GPS, IMU and HD video camera to determine the 
precise trajectory, which is a pre-requisite to achieve high geo-location accuracies of the derived 
3D point cloud. Furthermore, Wallace et al. (2012) assessed the feasibility of UAV-based LiDAR 
for monitoring high resolution changes within an Eucalyptus Nitens plantation, in Tasmania, 
Australia. �ey used their developed TerraLuma UAV-borne LiDAR system mounted on a mul-
tirotor UAV to acquire point clouds for extracting plot level forest metrics. Within this study, 
they could con�rm the repeatability of assessing these forest metrics with high accuracy.

Chisholm et al. (2013) used a LiDAR mounted on a UAV without any localization device for 
mapping a 20 x 20 m forest patch of roadside trees. �ey could detect trees greater than 20 cm DBH 
with an accuracy of 73 % within a 3 m �ight path. Smaller and more distant trees could not be de-
tected reliably. �e DBH for the detected trees could be assessed with an absolute error of 18.1 %. 

Due to the fast development in the UAV and LiDAR sensor domains Amon et al. (2015) pre-
sented the survey-grade Riegl VUX-1 UAV mounted on a RiCopter. Several research groups 
used this system for acquiring high precision 3D points from forest areas. For example, Brede 
et al. (2017) presented �rst UAV-based LiDAR data with accuracies comparable to TLS point 
clouds. Furthermore, Brede et al. (2017) reported that from this UAV-based LiDAR data DBH 
could be assessed with a correlation coe�cient of 0.98 and a RMS of 4.24  cm compared to 
TLS-derived DBHs. For estimating DBH they applied Quantitative Structural Modelling (QSM) 
(Raumonen et al., 2013) combined with cylinder �tting. Also Wieser et al. (2017) summarize 
that DBH > 20 cm can be reconstructed with almost 100 % with relative di�erences to the refer-
ence DBH of 9 % (DBH 20–30 cm) down to 1.8 % for DBH > 40 cm. �ey used a cylinder �tting 
approach for a dense LiDAR data set acquired over a complex alluvial forest scene in Austria.
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In addition to the Riegl VUX Scanner also Velodyne scanners were used in di�erent studies. For 
example, Liu et al. (2018) used UAV-LiDAR data to estimate forest structural attributes (i.e., DBH, 
Lorey’s mean height, basal area, stem density, volume and AGB) for ginkgo plantation forests un-
der di�erent silvicultural treatments. �ey used a Velodyne Puck VLP-16 sensor mounted on a 
GV1300 multi-rotor UAV platform. �e �ight altitude was approx. 60 m above ground level, re-
sulting in 160 pts m-2. Based on plot- and individual tree level metrics derived from LiDAR point 
clouds, di�erent classi�cation approaches (i.e., PLS, k-NN model and RF) were evaluated to derive 
the forest attributes. �e found out that models based on both plot-level and individual-tree level 
(CV-R2 = 0.66–0.97, rRMSE = 2.83–23.35 %) performed better than models based on the plot-level 
metrics only (CV-R2 = 0.62–0.97, rRMSE = 3.81–27.64 %). For the point cloud density sensitivity 
analysis, the canopy volume metrics showed a higher dependence on point cloud density than 
other metrics. Individual-tree results showed relatively high accuracies (F1-score > 74.9 %) when 
the point cloud density was > 16 pts m-2, whereas the correlations between AGB and the metrics of 
height percentiles, lower height level of canopy return densities and canopy cover appeared stable 
across di�erent point cloud densities (i.e. point cloud density reduced from 80 pts m−2 to 8 pts m−2).

Also, Guo et al. (2017) used a Velodyne Puck VLP-16 LiDAR scanner for acquiring 3D data for 
di�erent forest types in China. �ey conclude that very high-resolution 3D terrain and canopy 
height models, canopy cover, LAI and AGB information can be derived from LiDAR data, which 
opens new possibilities to provide comprehensive 3D habitat information for biodiversity studies. 

Furthermore, Yin & Wang (2019) used UAV-based LiDAR data, acquired with a Velodyne 
HDL32E LiDAR scanner mounted on an eight-rotor UAV platform, for extracting individual 
mangrove tree parameters (i.e. position of tree, tree height, crown size) by applying a marker 
controlled watershed segmentation algorithm to the CHM. �e �ying height was 40 m above 
ground, resulting in a main point density of 91 pts m-2. �ey could delineate 46 % of the �eld 
measured mangroves, which was promising considering the complexity of mangrove forests.

Wang et al. (2019a) used UAV-LiDAR as sampling tool to combine �eld plots and Sentinel-2 
imagery for mapping height and AGB of the mangroves on Hainan Island in China. �e UAV-Li-
DAR data was acquired with a Velodyne VLP-16 Puck sensor mounted on a DJI M600 UAV. �e 
�ight altitude was about 52 m above ground resulting in a mean point density of all collected 
LiDAR data of 94 pts m-2. From the UAV-LiDAR data a DTM, DSM, and height-, density- and 
canopy volume metrics were derived for grids with a cell size of 10 x 10 m, comparable with the 
Sentinel-2 pixel. �e UAV-LiDAR derived metrics serve as input for a random forest-based ap-
proach for mapping AGB and height of mangroves. �e results show that the UAV-LiDAR based 
estimation models for AGB and canopy height performed better than the traditional remote 
sensing method that directly relates ground plots and Sentinel-2 data. Furthermore, the results 
show that the UAV-LiDAR metrics describing the canopy thickness are the most important var-
iables for mangrove AGB estimation. 
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Finally, an extensive summary about the potential of ultra-high-density drone LiDAR data for 
forestry application is given by Kellner et al. (2019). �ey conclude that the derived 3D model 
can clearly resolve branch and stem structure, which is comparable to results derived from ter-
restrial laser scans.

4.4.3  Synthetic Aperture Radar

�e use of Synthetic Aperture Radar (SAR) mounted on UAVs can only be evaluated in a few 
academic studies. Indeed, there are many acquisition challenges especially for estimating forest 
parameters that still need to be overcome such as the UAV �ight planning according to the beam 
width (i.e. the area covered) and the radar measurement geometry patterns (incidence angle and 
spatial resolution), as well as the impact of forest structure and site characteristics (slope, aspect, 
soil moisture content) (Robinson et al., 2013). Furthermore, SAR data are technically challeng-
ing to process. In this context, in the study of UAV SAR, researchers focused mainly on system 
design, signal processing, and data acquisition (Aguasca et al., 2013; Dewantari et al., 2018; Ding 
et al., 2019; Edwards et al., 2008; Essen et al., 2012; Li et al., 2018; Lort et al., 2018). For instance, 
the Finnish Geospatial Research Institute developed a Ku-band UAV-borne pro�ling radar (i.e., 
waveform) to better understand the backscatter radar response for forest mapping and invento-
ries. �e application over boreal forests showed that the pro�ling radar successful detected the 
top of the forest canopy and the ground surface with accuracy comparable to simultaneous Lidar 
measurements (Piermattei et al., 2017) (Figure 4.4-4).

Figure 4.4-4: (a) Ku-band vertical pro�le and Lidar points within one footprint cone and 
(b) the comparison between one pro�ling radar waveform and the corresponding 

Lidar points for a high tree (Piermattei et al., 2017. Originally published under a Creative 
Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/)).
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4.4.4  Strength, limitations and future directions 
of operational applications

�e UAV technology in forestry undoubtedly implies many advantages, such as frequent data 
collection and low operating cost and, thus, it has great potential to become the new operational 
standard for small forest properties. In fact, aerial photogrammetry based on UAVs allows any 
user like private forest owners, to purchase a relatively cheap platform and to acquire high-reso-
lution 3D data and even process it on their desktop. 

In the last year, the UAV market has made huge strides in supporting novice UAV users by 
continuing to invest in fully autonomous UAV solutions, with continued improvements in the 
so�ware and sensors, providing training and even data processing for those without computer 
experience (Paneque-Gálvez et al., 2014). In this direction, several companies are growing, such 
as OpenForests, Delair, DroneDeploy, TimberDrone, Mosaicmill just to cite few of them that 
support forest managers and organizations to acquire UAV data (camera and LiDAR) over small 
and medium-size forest properties as well as to assist them on the data processing and analysis. 
�is type of service contributes to a signi�cant advance of the operational use of UAVs in forest-
ry and in general of the interest in UAV forest surveys. 

Despite these advances, the operational use of UAVs in forestry is still in an early stage. In fact, 
there remain a number of ine�ciencies and limitations in the use of UAV data, their collection, 
and processing which are addressed below. 

At present, UAVs equipped with LiDAR sensors are considerably more expensive compared 
with UAVs equipped with digital consumer cameras (Roşca et al., 2018). Unlike ALS, photo-
grammetric UAV point clouds are generated through image matching only on surfaces captured 
by the camera, which is re�ecting in the absence of points below dense forest canopy. �is makes 
it very di�cult to generate a reliable terrain model in dense forests from only UAV photogram-
metry data (Torresan et al., 2016), which is essential for deriving canopy height (Dandois und 
Ellis, 2013; Lisein et al., 2013; Puliti et al., 2015; Tuominen et al., 2015). Moreover, the placing 
of ground control points can be challenging as the points under the canopy are not well visible 
on imagery and thus hinder accurate georeferencing. Another limiting factor is wind during the 
image acquisitions, which leads to errors in the image matching process.

�e option of using freely available DTM data e.g., SRTM-DTM failed to produce accurate 
canopy height estimations because of low resolution (e.g. 30  m) and errors associated with 
SRTM-DTM (Jayathunga et al., 2018a; Su und Guo, 2014). �erefore, an accurate high-resolu-
tion DTM such as LiDAR DTM is recommended to achieve accurate normalization of photo-
grammetric point clouds from UAV in case of dense canopy (Jayathunga et al., 2018b). Further-
more, it is worth noting that for the accurate estimation of canopy structure and canopy height 
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a high-quality co-registration of all involved data sources is required, which o�en represent a 
signi�cant challenge. 

As observed in many comparisons of photogrammetric-CHM with LiDAR-CHMs, photo-
grammetric CHMs tend to be overestimate the canopy heights as a result of occlusions, (i.e. 
point clouds could not penetrate to ground level to de�ne crown boundaries), shadows and 
smoothing (Saarinen et al., 2017). Particularly, coniferous stands with numerous and abrupt 
�ne-scale peaks and gaps in the outer canopy seem to su�er more from the smoothing e�ect 
induced by the dense-matching (Lisein et al., 2013). 

�e major limitation of UAVs’ application that hinders their operation independently by the 
equipped sensor, is the limited �ight endurance (Torresan et al., 2016) and thus the mapped are-
as. A trade-o� between areal coverage, which is primarily a function of �ying height and sensor 
viewshed, and point-cloud density or resolution is always necessary. �erefore, further work is 
required to fully explore the potential of areal upscaling from the scale of individual trees and 
small forest stands, to the geometric characterization of entire forests and plantations. �e use 
of larger aircra� powered by gasoline engines will allow data collection over much larger areas 
with more advanced imaging sensors. For example, UAV under development at the Wake Forest 
UAV Lab will provide the capability to carry 5 kg of sensors or other equipment for over four 
hours, allowing for coverage of approximately 13 000 ha per �ight at a GSD of 7.7 cm (Messinger 
et al., 2016).

Another aspect to consider is that for the possible combinations of sensors and �ight con�gu-
rations, it is still unclear what the optimal methods might be for accurately measuring/mapping 
forest parameters using these techniques (Dandois et al., 2015).

Within the planning phase of image acquisition, various decisions must be made which 
influence the results in a significant way. In fact, the quality of UAV photogrammetric 
point cloud such as geometric positioning accuracy, point cloud density, and canopy pen-
etration, estimates of canopy structure, and point cloud color radiometric quality varies as 
a function of different observation conditions and acquisition strategies e.g., the images 
overlap or the flight altitude (Dandois und Ellis, 2013), and the choice of the sensor for a 
given application. 

Some research was undertaken to de�ne an appropriate template for UAV acquisition in for-
ested areas, although the e�ciency of the used method depends on the complexity of the forest’s 
stand structure (Brieger et al., 2019). Dandois et al. (2015) evaluated the �ight height and image 
overlap for the reconstruction of tree heights, canopy penetration, and point cloud density. �e 
3D point cloud density and the canopy penetration are strongly related to forward photographic 
overlap. �ey showed that 80 % photographic side-overlap and 80 m altitude above the canopy 
with optimal conditions of clear skies resulted in estimates of canopy height that were highly 
correlated with both �eld and LiDAR estimates of canopy height (R2 = 0.86 and 0.99, respective-
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ly). Similarly, Balenović et al. (2019) found that high image overlaps, contributed considerably to 
the accuracy of image orientation. Additional slight improvements were achieved by replacing 
single-frequency GNSS measurements with dual-frequency GNSS measurements. However, the 
application of this methodology to more geometrically complex multilayered forest environ-
ments remains a question for further research. 

Choosing the sensor should always be a trade-o� between the potential gain in accuracy, spec-
tral information and the cost associated with more sophisticated sensors (Barbedo, 2019). In 
forestry, the UAV-based photogrammetry system mainly carries RGB and multispectral cam-
eras since the data acquisition and processing of hyperspectral and thermal sensors on board 
of UAVs are more complex and limited to good weather conditions. �eir operational limita-
tions concern the need of necessary pre-�ight operations (e.g. spectral calibration (Lucieer et 
al., 2014)) and post-�ight pre-processing (e.g. radiometric and geometric corrections (Hrus-
ka et al., 2012)) to ensure the usefulness of hyperspectral and thermal information (Aasen et 
al., 2018; Adão et al., 2017; Proctor und He, 2015). Furthermore, to date, there are only a few 
single-camera systems that allow collecting hyperspectral and structural information from the 
same sensor (Honkavaara et al., 2012). Similar issue for thermal images. Webster et al. (2018) are 
the �rst to combine thermal and RGB images simultaneously acquired by the UAV platform, to 
generate separate thermal and RGB point clouds of 3D structures. Currently, the processing of 
2D thermal imagery to produce fully 3D models containing thermal information has to be fully 
explored in the context of forest canopy structure in the future. For the derivation of accurate 
plant temperature measurements from UAV thermal imagery, users need to be aware of the 
impact of environmental factors such as air temperature, humidity, radiation, wind speed (Lei-
nonen et al., 2006), and the amount of shaded leaves at the canopy level (Gonzalez-dugo et al., 
2013). Some experiments have shown that the most favourable time of day to acquire thermal 
images is around midday (Berni et al., 2009) and that measurements should always be taken 
at the same time of the day. Other aspects requiring further examination include the impacts 
of target emissivity and sensor calibration, error characterization and spatiotemporal non-uni-
formity corrections, and identi�cation of in-�ight e�ects (i.e., wind-speed, directional viewing 
e�ects, and ambient temperature) on sensor stability and temperature estimation (Kelly et al., 
2019; Malbeteau et al., 2018).

Improvements in sensor resolution are needed for identifying individual diseased trees. In 
case of hyperspectral images, the greater the number of bands, the lower the resolution for each 
spectral band (Iseli und Lucieer, 2019), with e�ects on the level of spatial detail and, therefore, 
on the range of �ight heights and the size of the regions that can be captured (Guijun et al., 
2017). Li et al. (2019a) integrated a low-cost multisensory UAV system, composed of a GNSS 
receiver, an IMU, a global shutter camera, a multispectral camera, and a laser scanner. Such a 
multi-sensor system enables the fusion of imagery and laser scanning data for reliable forest 
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inventory applications. However, further research is needed to use such multi-sensor systems 
for operational forest applications.

4.4.5  Conclusions

�e use of UAVs for the monitoring and protection of forests and other natural resources is cur-
rently in an expansion phase, encouraged by the constant development of new UAV platforms, 
sensors and so�ware solutions. From UAV LiDAR data high precision topographic models, for-
est structure parameters such as tree position, tree height, crown shape and size, crown coverage, 
vertical structure distribution, LAI, etc. can be derived. For extracting 3D models of the stem 
and branches only survey-grade UAV-LiDAR systems are capable to acquire data with the re-
quired accuracy until now. Based on such high precision 3D LiDAR data several forest parame-
ters can be derived in a highly automated way, which can be integrated into operational forestry 
applications. �e increasing accessibility in terms of cost and size for LiDAR sensors along with 
data combining methodologies will highly improve the utilization of UAVs in forestry. However, 
UAV image-based technologies (e.g., RGB, multispectral, or hyperspectral) currently provide 
an alternative cost-e�ective data source to UAV LiDAR and conventional remote sensing data. 
Particularly where �eld data collection can be costly, �eld locations can be hardly accessible, or 
the use of remote sensing to complement the �eld sampling is advisable. In addition, UAV im-
age-based technologies have consistently proven to be useful for forest mapping, classi�cation of 
forest and tree species in a wide variety of forest types. Future generations of UAVs will contin-
ually evolve and o�er increased �ight time and improved sensors. �erefore, future applications 
will include studies over a large range of forestry �elds, covering a large variety of situations that 
occur in the operational management of forests.
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Earth observation methods have long been used to supplement cryosphere �eld campaigns as 
part of detailed and systematic survey and monitoring programmes. �is has in part been due 
to the large scale and inaccessibility of the cryosphere. However, the challenging weather, low 
air pressure, poor reception of GPS signals and hazardous ice and snow-covered terrain has 
meant that adoption of UAVs by cryospheric scientists has lagged behind that within some other 
environmental sciences. Indeed, in a previous systematic review of UAV studies in glaciological 
research, Bhardwaj et al. (2016) identi�ed just 20 studies using UAVs in glaciological research. 
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Figure 4.5-1: Cartoon showing the main applications of UAVs in the cryosphere. (A) mapping 
surface features (chapter 4.5.1). (B) collecting topographic data from glaciated terrain, e.g. 
terminal moraines and lateral moraines, (chapter 4.5.2). (C) using ice penetrating radar to 
observe internal structure and bed topography (chapter 4.5.3). (D) measuring snow depth 
(subtracting DEMs with snow from snow-free DEMs) (chapter 4.5.4). (E) calculating melt 
and retreat rates using DEMs of di� erence (chapter 4.5.5). (F) obtaining ice velocity from 

feature tracking across multi-temporal imagery (chapter 4.5.6). (G) estimating aerodynamic 
roughness from microtopographic data (chapter 4.5.7). (H) observing changes in albedo caused 
by di� erences in re� ectance, e.g. by cryoconite (chapter 4.5.8). (I) detecting variation in surface 

temperature caused by debris cover such as medial moraines (chapter 4.5.9). All � gures were 
prepared by the authors for this chapter.
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Despite these challenges, there has been a proliferation of UAV use in cryospheric re-
search over the last four years with an order of magnitude increase in published research 
utilising the technology. The primary motivation for this increased popularity is the spatial 
resolution of UAV imagery; centimetric ground sampling distances outperform very-high 
resolution satellite imagery and, for the first time, enable detailed glacier-scale observation 
of a variety of surface features. As such, this chapter aims to review the scope of glaciolog-
ical applications of UAVs (Figure 4.5-1) and provide examples of progress and challenges 
of each.

From the �rst applications of UAVs, the resulting aerial imagery has been used primarily as a 
mapping tool (4.5.1). In particular, topographic surveys of glacial areas (4.5.2) are able to cover 
larger areas than ground-based surveys. Radar instruments mounted on UAVs provide further 
information on the subsurface ice and snow structures (4.5.3). �rough repeat aerial survey, 
topographic changes can be quanti�ed, typically to determine snow depths (4.5.4) or melt rates 
(4.5.5). Similar comparisons of aerial imagery provide glacier surface velocity estimates (4.5.6). 
Interrogation of UAV-derived imagery or topographic data permits calculation of speci�c prop-
erties of ice and snow, such as aerodynamic roughness (4.5.7), albedo (4.5.8) or temperature 
(4.5.9).

4.5.1  Mapping surface features

Aerial imagery from UAVs provides an opportunity for centimetric resolution mapping of sur-
face features. Within the cryospheric sciences, an early application of UAV imagery for mapping 
was that of Hodson et al. (2007) which identi�ed the spatial concentrations of cryoconites across 
the snow-free surface of the Midtre Lovénbreen glacier in Svalbard. Using a supervised classi�-
cation of UAV images, cryoconites could be mapped accurately; however, small, dispersed gran-
ules of cryoconite (< 0.25 cm2) could not be resolved. On the same glacier, Rippin et al. (2015) 
used a UAV to map the supra-glacial drainage network and used their UAV imagery to identify 
a relationship between channel density, surface roughness and surface re�ectance which has 
important implications for glacier surface energy balance.

�e mapping of larger scale features is typically undertaken using more readily available sat-
ellite imagery; however, UAV data are still crucial to identify biases in satellite-based methods 
and to aid the interpretation of the satellite imagery. In this way, Inoue et al. (2008) obtained 
UAV imagery of melt ponds on sea ice on the Beaufort Sea. By thresholding RGB colour-distri-
bution histograms in the UAV imagery, pond concentration was mapped and used to identify a 
negative bias in estimates derived from satellite passive microwave-based observations. At the 
same site, Tschundi et al. (2008) also used UAV imagery to validate melt pond concentration es-



368

Mark W. Smith, J. Chambers and Jonathan L. Carrivick

timates from the daily MODIS surface re�ectance product and observed that re�ectance-based 
estimates performed well. More recently, Wang et al. (2018c) used a similar method to map melt 
pond fraction over arctic sea ice. 

Snow extent has also been mapped automatically by classifying UAV-based orthophotographs 
(Niedzielski et al., 2018) (see also chapter  6.5.5). Similarly, at the Forni glacier in the Italian 
Alps, Fugazza et al. (2015) developed a semi-automatic approach to mapping surface features 
from UAV imagery that was shown to outperform satellite-based approaches and identify much 
smaller features, including individual crevasses.

4.5.2  Topographic data of glaciated terrain

Mapping of surface features from UAV imagery is o�en combined with acquisition of topo-
graphic datasets. While UAV-based LiDAR systems have been applied to map ice topography 
(e.g. Crocker et al., 2012), more commonly topographic datasets are obtained from UAVs via 
Structure-from-Motion (SfM) photogrammetry (chapter 2.2) which have been shown to per-
form well even on relatively featureless ice surfaces in validation tests against laser altimeter data 
(Solbø & Storvold, 2013). �e aerial images and topographic derivative data sets act in combi-
nation to provide an e�ective geomorphological mapping tool and permit identi�cation and 
quantitative analysis of a variety of supraglacial and especially proglacial features (Figure 4.5-2).

�e requirement for a well-distributed network of accurately surveyed Ground Control Points 
(GCPs) can limit the applicability of SfM photogrammetry over large scales or in areas of in-
accessible or hazardous terrain, as typically encountered in cryospheric research (Carrivick et 
al., 2016). To circumvent this requirement, Chudley et al. (2019) demonstrate an alternative 
‘direct georeferencing’ approach (chapter 2.1) where the location of the imagery is recorded to 
a high accuracy. �is enabled the production of decimetre-scale accuracy topographic models 
over the calving front of Store Glacier in western Greenland and has since been adopted by 
other researchers working in such inaccessible environments (Jouvet et al., 2019a). Certainly, 
the increased accuracy of directly georeferenced SfM topographic models represents an exciting 
future development to further facilitate UAV-based research in the cryosphere. 

Proglacial applications of UAV-based topographic data include mapping and dimension anal-
yses of drumlins (Clayton, 2012) and �utes (Clayton, 2017). Early tests against total station data 
note that UAV-based topographic mapping of formerly glaciated areas can be e�ective in areas 
without dense vegetation cover (Tonkin et al., 2014). At Isfallsglaciären in arctic Sweden, Ely et 
al. (2017) derived a geomorphological map from a 2 cm horizontal resolution orthophoto and 
Digital Elevation Model (DEM) obtained via UAV. �e dataset compared favourably to larger 
valley-scale DEM obtained via Terrestrial Laser Scanning (Carrivick et al. 2015) and was used 
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to clearly identify moraines, fans, channels and �utes alongside the association of the latter with 
the presence of boulders. Ewertowski et al. (2019) undertook a similar study at the foreland of 
Hørbyebreen, Svalbard to identify �utes, ridges and crevasse traces. �ey even suggest that the 
high-resolution imagery can be used to provide an impression of clast shape and aid geomor-
phological interpretations. By upscaling patch-scale relationships identi�ed between grain size 
and surface roughness to UAV-based topographic data, Westoby et al. (2015) present a distrib-
uted grain-size map of Antarctic moraines to inform sedimentological characterization. Dąbski 
et al. (2017) undertook such geomorphological interpretations of periglacial landforms on King 
George Island from �xed-wing UAV-based images and derived topography. �e resulting data-
set is su�ciently detailed for polygons of classi�ed landforms to be established (e.g. soli�uction 
landforms, scarps, taluses, patterned ground) and their relative surface cover quanti�ed.

      

Figure 4.5-2: Mavic Pro 2 UAV (le�) used as part of a glacier-scale SfM topographic 
survey at Quelccaya ice cap, Peru (example UAV image, right).

Furthermore, UAV-derived topographic data has been used as input for hydraulic modelling of 
glacial outburst �oods and as part of hazard assessment in general, as demonstrated by Watson 
et al. (2019) in the Himalayas.

4.5.3  Detecting bed topography and 
layering within snow and ice

More experimentally, UAV-mounted sensors have been used to map features beneath the sur-
face. Leuschen et al. (2014) used a dual-frequency UAV-mounted radar in Antarctica to obtain 
the �rst ever successful glacier bed topographic data from a UAV. Keshmiri et al. (2017) later 
deployed the same UAV-based system to obtain a radar echo sounding of Russell glacier in 
Greenland (also reported in Rodriguez-Morales et al. (2017) and Arnold et al. (2018)) where de-
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ployment of ground-based radar is problematic owing to insu�cient snowfall to in�ll crevasses 
and thereby render the glacier travel unsafe by snowmobile and sledge even in winter. 

Similarly, Jenssen et al. (2016) presented an Ultra Wide Band (UWB) radar used to meas-
ure snow layering in avalanche starting zones and identify potential failure planes for slab 
avalanches to form. Preliminary results compared well with density observations and, while 
clearly in an early experimental phase, provide a promising alternative to upscaling from 
o�en high-risk point-based snow pit observations. �e UWB radar was mounted on a UAV 
�own just 1 m above the surface (Jenssen et al., 2018) and could identify detailed snow stra-
tigraphy.

4.5.4  Quantifying snow depth

One of the more common applications of UAVs in cryospheric research is the production of 
detailed distributed maps of snow depth (Sturm, 2015). Such maps are very important for wa-
ter resource management in alpine areas; yet prior to the availability of UAVs, snow depth was 
notoriously di�cult to measure or even estimate over mountainous terrain. UAV-derived snow 
depth maps have been produced over a range of spatial scales and terrain types and using a 
number of di�erent depth calculation methodologies. While Hawley & Millstein (2019) used 
assumptions on the structure of underlying topography to use a UAV to quantify snow dri�ing 
around structures at Summit Station, Greenland, more commonly, snow depth is obtained by 
acquiring topographic data via UAV-based SfM photogrammetry and subtracting a summer 
reference topographic model. 

In an early application for mapping the extent of avalanche debris, Eckerstorfer et al. (2015) 
used a 10 m topographic basemap in the absence of a summer reference. Across multiple studies, 
validation of UAV-based snow depth estimates indicates that sub-decimetre accuracy can be 
obtained where ground control is available in favourable conditions (Vander Jagt et al., 2015; 
De Michele et al., 2016; Bühler et al. 2016; Harder et al., 2016; Cimoli et al., 2017), with direct 
georeferencing approaches exhibiting twice that error (Vander Jagt et al., 2015). �e approach 
improves on the previous use of interpolated point measurements of snow depth (Bühler et al., 
2016) while allowing the spatial structure and auto-correlation of snow depth to be investigated 
(e.g. Redpath et al., 2018). UAV-based snow depth estimates yield similar errors to those ob-
served from piloted aircra� (Nolan et al., 2015) and slightly lower errors than estimates from 
very high resolution (Pléiades) satellite stereo-imagery (Marti et al., 2016). While Nolan et al. 
(2015) point out that piloted aircra� are more useful in remote areas by removing the need for 
expeditions and owing to the larger survey areas, �xed-wing UAVs have been used to cover 
areas of ~1 km2 (Harder et al., 2016) and o�er the potential for more cost-e�ective and regular 
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on-demand operational measurements for water storage and avalanche prediction applications 
(Bühler et al., 2016).

Despite the popularity of the approach, substantial accuracy challenges remain for UAV-based 
snow depth estimates. �e study of Cimoli et al. (2017) evaluated the method in six locations in 
Svalbard and West Greenland and observed that variable snow surface patterns, lighting con-
ditions, vegetation and topography in�uence the achievable accuracy. Fernandes et al. (2018) 
note that the use of a snow-free topographic model is perhaps the limiting factor in snow depth 
estimates as errors were similar to vegetation heights. In an extensive evaluation in the Ca-
nadian Rocky Mountains, Harder et al. (2016) suggest that meaningful snow depth estimates 
can only be obtained where the depth is > 30 cm. Bernard et al. (2017b) note that the use of a 
summer reference as part of the DoD methodology assumes no underlying changes in topogra-
phy during the survey interval, although in highly-active mountainous and arctic environments 
geomorphological activity and moraine dynamics are both observed to be sizeable (Bernard et 
al., 2017a). Typically, these studies undertake a straightforward DEM Di�erencing approach; 
while this may be appropriate given the magnitude of topographic changes involved, progress 
using spatially-variable levels of detection and precision maps in geomorphological research 
(Wheaton et al., 2010; James et al., 2017a) could reduce the magnitude of errors observed and 
the overall reliability of the technique.

�e application of SfM photogrammetry as part of the work�ow proves challenging on o�en 
rather featureless snow surfaces where image matching algorithms fail to detect su�cient key-
point correspondences for accurate surface reconstruction (Smith et al., 2015). To overcome this 
considerable challenge, Near-infrared imagery has been used owing to the higher contrast and 
lower re�ection on snow-covered areas (e.g. Bühler et al., 2016; Miziński & Niedzielski, 2017; 
Bühler et al., 2017) and has been shown by Adams et al. (2018) to o�er improvements over im-
ages in the visible spectrum.

4.5.5  Quantifying glacier melt rates and retreat

�e same DEM Di�erencing approach applied to glacier ice can be used to measure glacier 
elevation changes and hence melt rates. Rates of glacier terminus retreat can also be quanti-
�ed. With sub-decimetre errors, the use of UAVs o�ers improvements in precision over satel-
lite-based glacier monitoring systems but also provides spatially-distributed estimates rather 
than the at-a-point measurements that result from �eld monitoring using ablation stakes. UAVs 
also allow regular low-cost on-demand multi-temporal surveys to better identify spatial patterns 
and controls on glacier melt rates and can supplement or continue longer time series of aerial 
surveys (e.g. Mölg et al., 2019). 
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Whitehead et al. (2013, 2014) present an early example of UAV-based glacier monitoring 
of Fountain Glacier on Bylot Island in the Canadian Arctic. Immerzeel et al. (2014) applied 
a UAV-based glacier monitoring system to a debris-covered Himalayan glacier. While the 
observed glacier mass loss was limited, the high-resolution, detailed distributed map of topo-
graphic change achievable with a UAV revealed very high spatial variability of melt rates. �e 
ability to couple DoDs with orthophotos further enabled them to make the observation that 
areas around ice cli�s and supra-glacial ponds were o�en associated with mass losses an order 
of magnitude higher than average. Wigmore and Mark (2017) observed similar variability and 
association with ice cli�s in the Cordillera Blanca in Peru, while Seier et al. (2017) detected 
ice collapses at a lateral crevasse �eld in addition to mean glacier surface lowering in Pasterze 
Glacier, Austria. As with snow depth monitoring, sub-decimetre errors are reported in these 
studies.

�e DEM Di�erencing approach has also been used to investigate moraine dynamics by Ber-
nard et al. (2017a) and to capture and quantify a high magnitude catastrophic subsidence event 
on Dålk Glacier, East Antarctica by Florinsky and Bliakharskii (2019). �e collapse of an engla-
cial cavern led to the formation of an ice depression up to 43 m deep over an area of ~40,000 m2. 
With UAV surveys captured ten days before, one hour a�er and ten days a�er the event, the 
development of the subsidence could be observed, triggered by supraglacial water accumulation 
over a thin cavern roof.

 At a larger scale, Ryan et al. (2015) used repeat SfM surveys from a �xed-wing UAV to obtain 
mass loss estimates from a 5.3 km wide calving ice front on Store Glacier, Greenland. To achieve 
the larger spatial coverage, a higher �ight altitude was required (~500 m vs ~100 m of previous 
mountain glacier examples) which resulted in DEM errors of around 2 m. However, this is more 
than adequate given the scale of the glaciological application. More recently, Jouvet et al. (2019a) 
scaled this approach up even further by quantifying volumetric changes over six calving glaciers 
in Ingle�eld Bredning, northwest Greenland.

4.5.6  Ice velocity measurement

Imagery obtained from UAVs is frequently used for feature tracking glacier surfaces to deter-
mine glacier �ow rates (chapter  3.3). While this can be undertaken by manually identifying 
objects in multiple co-registered images to obtain movement vectors (e.g. Immerzeel et al., 2014; 
Dall’Asta et al., 2015; Wigmore and Mark, 2017; Rossini et al., 2018), image correlation tools 
(e.g. normalized cross-correlation, COSI-Corr) can be used to obtain distributed image-to-im-
age displacements between co-registered orthomosaics. Kraaijenbrink et al. (2016) used this 
technique to identify considerable spatial and seasonal di�erences in surface velocity for a de-
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bris-covered Lirung glacier in the Himalayas. Jouvet et al. (2019a) also successfully used this 
method to obtain ice surface displacement �elds for six calving tidewater glaciers in Greenland. 
However, Whitehead et al. (2013) reported challenges in obtaining su�cient image correlation 
on relatively featureless ice-covered surfaces. Alternatively, Chudley et al. (2019) used particle 
image velocimetry so�ware to generate velocity �elds across the calving front of Store Glacier, 
though manual �ltering of erroneous values was required. Nevertheless, while there is a more 
established history of applying feature-tracking techniques to satellite imagery (e.g. Quincey et 
al., 2009), it is the superior spatial resolution of UAV-imagery that permits lower �ow velocities 
to be detected or smaller survey intervals to be interrogated. For example, local variations in the 
direction of the velocity �eld, as detected around a lateral crevasse �eld by Seier et al. (2017), can 
be observed clearly from UAV data. 

In a related application, McGill et al. (2011) document the deployment of a UAV o� the deck 
of a research ship in the Southern Ocean with the objective of identifying and tracking free 
�oating icebergs. In this case, the iceberg movement was tracked via GPS tags dropped onto the 
icebergs that communicated regular position reports. Most recently, Jouvet et al. (2019b) used 
the on-board di�erential GNSS receiver of the UAV itself as a method of in-situ sensing of glacial 
motion by landing the UAV on the fast moving Eqip Sermia tidewater Glacier in west Greenland 
and recording its movement over several hours.

4.5.7  Estimating aerodynamic roughness

UAV-based roughness surveys o�er the opportunity to more adequately represent the hetero-
geneity of glacier surfaces and better parameterise the ice aerodynamic roughness length (z0) 
in distributed melt models. �e high-resolution topographic data generated via UAV-based 
LiDAR or SfM photogrammetry is o�en gridded at ~100–102 m scale horizontal resolution. 
Yet, the raw point clouds are o�en of a much higher resolution. Several studies have sought 
to take advantage of this data abundance to produce sub-grid metrics and thus to obtain 
distributed maps of ice surface roughness for both sea ice (e.g. Crocker et al., 2012; Wang et 
al., 2018c) and mountain glaciers (e.g. Rippin et al., 2015; Rossini et al., 2018). Chambers et 
al. (2020) demonstrate that roughness data obtained via a UAV can be used to obtain an esti-
mate of z0, which is an important control over turbulent heat �uxes on glaciers. Whereas melt 
modelling studies o�en assume spatially and temporally uniform value of z0, �eld evidence 
notes variability over several orders of magnitude (Brock et al., 2006); although issues with 
scale-dependency remain, UAVs o�er an ability to provide distributed maps of z0 for use in 
such melt models.
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4.5.8  Albedo measurement

Albedo is an additional important uncertainty in ice and snow surface energy balance modelling 
and plays a crucial role in modulating the fraction of absorbed shortwave radiation. Yet, albedo 
measurements have been subject to the same data limitations described above for z0. Field stud-
ies have observed pronounced spatial and temporal albedo variability (e.g. Jonsell et al., 2003); 
however, the coarse pixel resolution of satellite-based estimates (typically several hundreds of 
metres) limits their ability to detect this. UAV-based digital imagery has been interrogated by 
Rippin et al. (2015) who proposed that pixel RGB values can be used to provide a crude ‘albedo 
proxy’, albeit subject to relatively large errors arising from variable illumination conditions. 

Ryan et al. (2017) evaluated the performance of similar image-based analysis of albedo over 
280 km2 of the Greenland ice sheet by comparing estimates with the ratio of upward and down-
ward re�ectance as measured by a pair of broadband pyranometers also mounted on the UAV. A 
white Te�on reference target was used to convert downward radiation into digital numbers and 
correct for the variable illumination issue. In the resulting 20 cm resolution albedo �eld, distinct 
patterns were observed; the in�uence of local topographic variability on albedo was pronounced 
with crevassed areas exhibiting lower albedo values than low relief areas. In an intercomparison 
study, Burkhart et al. (2017) noted that although UAV-based re�ectance estimates were slightly 
higher than MODIS-based values, they were in close agreement and UAV-based values have 
potential to provide insight into sub-pixel variability of MODIS data products. 

To examine the e�ect of Saharan mineral dust on snow albedo in the European Alps, Di Mau-
ro et al. (2015) combined ground-based high-resolution measurements of re�ectance spectra 
with UAV-derived orthophotographs. �ey developed a relationship between mineral dust con-
centration and the normalized ratio between red and green wavelengths thereby permitting an 
estimation of the spatial variability of mineral dust deposits and their in�uence on surface re-
�ectance.

4.5.9  Surface temperature measurement

Mounting thermal sensors on UAVs o�ers the potential for distributed maps of surface temper-
ature (chapter 2.4). Kraaijenbrink et al. (2018) demonstrate this potential on the debris-covered 
Lirung Glacier in the Central Himalaya. Given the complex, nonlinear in�uence of supraglacial 
debris layers on surface energy budgets (via enhanced radiation absorption when the layer is 
thin and insulation of the ice when the layer is > 5 cm), an enhanced understanding the var-
iability of surface temperature yields important insight into the glacier melt process. Higher 
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surface temperatures are assumed to indicate more e�ective insulation of the cold ice by thicker 
debris layers. For ground control, targets were wrapped in aluminium foil to ensure a distinct 
radiant temperature from the surrounding surface. In common with glacier surface parameters 
described above, repeat UAV-based thermal imagery of the debris-covered glacier revealed pro-
nounced spatial and temporal variability in surface temperatures over the glacier (Kraaijenbrink 
et al., 2018) including a range of nearly 50°C observed in a single morning. While methodo-
logical issues relating to sensor bias and estimation of spatially distributed emissivity remain, 
the UAV-based measurements revealed pronounced patterns that could not be established from 
either satellite-based measurement or relatively sparse in situ temperature measurements.

4.5.10  Challenges and future opportunities

As previous sections have demonstrated, the potential of UAVs for progressing cryospheric 
research is being exploited increasingly. UAVs o�er a valuable platform on which to mount 
a number of di�erent sensors (e.g. radar systems, pyranometers, thermal sensors) to obtain a 
range of measurements of great importance to the discipline. A common theme emerges in 
relation to scale and resolution. For the most part, measurements taken from UAVs bridge the 
scale gap between challenging, time consuming and o�en expensive and hazardous direct �eld 
measurement of glacial properties at a single or several points and distributed yet course satellite 
estimates of the same properties. �e size and remoteness of glaciers and ice sheets dictates that 
sparse �eld observations be interpolated; yet, where �eld measurements do exist, local heteroge-
neities are observed that could not be detected from satellite-based estimates.

UAV-based studies of melt rates, surface roughness, ice surface velocity, surface temperature 
and albedo have each quanti�ed pronounced spatio-temporal heterogeneity. Early work with 
UAV-mounted radar sensors suggest that heterogeneities are also present on a glacier bed and 
within snow and ice. �e landscape-scale variability in all properties reveals an underlying com-
plexity of pattern and process. While this has been regularly observed and reported qualitatively, 
UAVs now provide the ability to quantify and formalise these observations. Moreover, the ability 
to derive a wide range of measurements from a single sensor has permitted several authors to 
examine relationships between each of these; for example, Rossini et al. (2018) quantify the 
e�ect of glacial brightness and roughness on surface lowering, all of which were derived from a 
UAV. Yet, the use of UAVs for each of the above applications remains in its infancy and has yet 
to be used operationally to provide distributed inputs to surface energy balance models thereby 
reducing the uncertainties of restrictive of assumptions of spatial and temporal uniformity.

�at is not to suggest that UAVs represent a panacea for cryospheric data collection. In the 
high altitude and/or low latitude locations where cryospheric research is typically undertaken, 
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meteorological conditions are at best unfriendly to UAVs and o�en exceed all operational lim-
its (Bühler et al., 2017). Mountain glaciers are o�en located in places with poor GNSS signals, 
while high winds (Arnold et al., 2018) and low air pressure at altitude (Wigmore & Mark, 2017) 
present further obstacles to undertaking safe and e�ective UAV surveys. Given these challenging 
conditions, it is inevitable that UAVs will be lost or experience crash landings (e.g. McGill et al., 
2011; Jouvet et al., 2019b; Figure 4.5-3). Poor visibility also reduces available survey time, though 
Wang et al. (2018c) were able to implement a ‘defogging’ algorithm to extract useable data from 
UAV-based images during periods of light fog. Moreover, extreme cold weather limits battery 
life and reduces the time available for aerial surveys. In mountain areas, large and smooth land-
ing sites can be challenging to locate; Bühler et al. (2016) note that multirotor UAVs with vertical 
take-o� and landing capabilities o�er an advantage in such areas, though Harder et al. (2016) 
note that �xed-wing systems now have landing accuracies within ~5  m. Meanwhile, in high 
latitude applications, beyond-visual-line-of-sight surveys mean that landing sites can be tens of 
kilometres from target survey areas (Zmarz et al., 2018).

Figure 4.5.-3: Poor GNSS signals coupled with mountain winds result in more 
UAV take-o�s than landings in cryospheric research.
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Low solar angles of high latitude cryospheric surveys add complexity to studies requiring 
consistent lighting (Cimoli et al., 2017) and the surface texture of ice and snow can prove 
especially challenging for photogrammetric surveys. While snow surfaces yield lower survey 
point densities than other environments, Gindraux et al. (2017) suggest that only fresh snow 
surfaces are problematic in this regard and that point density improves with each addition-
al day. Finally, in common with other UAV applications, legislation continues to evolve and 
present limits to the use of UAVs in cryospheric research, even in remote locations such as 
Antarctica (Leary, 2017). 

On balance, it seems that the proliferation of UAV-based cryospheric studies in just the last 
few years indicates that the bene�ts of UAV-use outweigh the challenges. Clearly, UAVs are set 
to remain a key component of the glaciologists’ toolbox moving forward.
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Volcanologists study volcanic systems for two main reasons: �rst is to improve our understand-
ing of volcanoes and volcanic eruptions in order to provide better hazard assessment and sup-
port risk reduction; second is using volcanoes as portals that connect the Earth’s interior to the 
outside environment of the biosphere and atmosphere in which we live. Questions that vol-
canologists try to answer include: What are the precursors to an eruption? How long before an 
eruption can we identify the precursors? Once an eruption begins, how will it evolve and when 
will it end? More fundamental questions include: what is the relationship between the magmat-
ic/volcanic evolution of a region and its tectonic history? What is the ratio between the volume 
of magma that erupts extrusively as lava and ash, and magma that is emplaced intrusively and 
builds the crust internally? What messages do volcanic products tell us about mantle processes 
such as plate subduction and plumes? 

To answer these questions, volcanologists collect a wide range of observations, depending on 
the goal of the study as well as the situation (that is, peace time or during unrest of an eruption 
crisis). For example, to assess the �ux of magma at a volcano, scientists need to measure the 
volume of eruptive products such as lava and ash, as close to the time of the eruption and over as 
many eruption cycles as possible. To predict how an erupted lava �ow would travel from the vent 
and provide appropriate warning to down-�ow communities, scientists must have an up-to-
date knowledge of the existing topography and its roughness, as well as how quickly the lava is 
coming out of the vent (lava �ux) and the lava’s physical properties (e.g., temperature, viscosity, 
density). Measuring the �ux and composition of gases emitted from volcanoes is critical – gases 
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released by volcanoes during and between eruptions are harmful to health and vegetation, and 
at the same time can provide important clues about movement of magma underground and the 
potential for an imminent eruption. 

Unfortunately, collecting observations at volcanoes can be a di�cult task. Volcanoes, espe-
cially active ones, are usually rugged terrains characterized by unsteady ground and rock sur-
faces, such as glassy and fragile lava �ows or poorly consolidated ash layers. �e topography at 
volcanoes is o�en challenging, with many volcanoes towering steeply to high elevations above 
their surrounding. �e eruption products which volcanologists want to study, such as ash layers, 
tephra and lava �ows o�en extend over large areas. �ese factors make collecting observations 
on foot di�cult, time consuming, and o�en dangerous. During volcanic unrest, just before or 
during an active eruption, it is hazardous or even illegal to approach the volcano, even to collect 
data. For these reasons, UAVs and their ability to provide access to di�cult areas have been 
revolutionizing volcanology for over a decade now, with a rapid increase in their use since the 
introduction of low-cost platforms. 

4.6.1  UAV application for volcano science

Over the past two decades UAVs have proved extremely useful for volcanologists, providing a 
wide range of observations, including both imaging and non-imaging examples. �e following 
sections review examples of applications of UAVs to volcanology, for purposes of scienti�c re-
search as well as disaster response. �e examples are divided to imaging, which covers applica-
tions based on photo or video data, and non-imaging applications, which includes sampling of 
gases, ash, and water, geophysical measurements, as well as instrument deployment. Interested 
readers are referred to a recent article (James et al., 2020b) that provides thorough review of 
techniques, equipment, and applications of using UAVs in volcanology. 

4.6.1.1  Imaging applications

As discussed in previews sections, modern small UAVs are frequently equipped with cameras, 
and collecting aerial pictures and videos are some of the most common uses of UAVs. Cameras 
mounted on a UAV can be visible-light cameras, or sensitive to thermal infrared or multispectral 
radiation. Images and videos collected by these cameras can be used for a wide range of applica-
tions, which this section reviews. 
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Pre-eruption baseline topography

It is essential for volcanologists to know the pre-eruptive topography of the areas to be covered 
by eruption products such as ash and lava. �is baseline topography facilitates accurate hazard 
assessment as it serves as the input for forward �ow models that predict the routing of lava 
�ows, lahars and pyroclastic density currents. It also allows a more accurate assessment of the 
total volume of eruptive products, and thus the per-eruption magmatic �ux. UAVs help obtain 
topographic data through two main techniques: image-based Structure-from-Motion (SfM) and 
UAV-mounted Laser Imaging, Detection, and Ranging (LiDAR) units. Both SfM and LiDAR 
techniques were described in detail in chapters 2.2 and 2.6, respectively. Favalli et al. (2018) 
conducted both LiDAR and UAV-based SfM topographic surveys of the same 1974 lava �ow on 
Etna, and compared the advantages and disadvantages of each method. �e higher spatial reso-
lution obtained with the UAV allowed the scientists to capture �ow features such as cracks, folds 
and blocks, which reveal details about �ow emplacement rates and dynamics. 

SfM applications usually use visible-light images. However, given the thermal anomalies o�en 
associated with volcanoes, thermal infrared (IR) images o�en provide additional data that can 
be used in SfM analysis. �is is particularly helpful when the view of the region of interest (e.g., 
a crater, a vent or an active �ssure) is obstructed by opaque clouds of gases. 

Lava �ows

One of the �rst notable applications of a UAV to study the emplacement of an active lava �ow 
was during the 2014-2015 eruption of Kīlauea volcano in Hawai’i. An extensive lava �ow �eld 
erupted from a vent on the eastern �ank of the volcano and made its way towards the city of Hilo 
and its suburbs. Repeated surveys of the �ow �eld with UAVs provided time-dependent topog-
raphy data and allowed scientists to measure the �ow’s advance rate and volumetric �ux, and 
detect �ow in�ation and stalling. �ese measurements fed directly into the �ow routing models 
used by the USGS to provide rapid hazard assessment and update forecasting (Turner et al., 
2017). During later eruptions at Kīlauea, UAV-derived topographic and thermal data revealed 
details of the development of �ow breakouts and a tube system (Biass et al., 2019; Dietterich et 
al., 2018, e.g.,). �e use of UAVs for mapping lava �ow extent and thickness has been poplar at 
Mount Etna in Italy. De Beni et al. (2019) documented the diversion and divergence of a 2017 
lava �ow by a topographic obstacle (a small mountain) that stood in its path. 

�e 2018 eruption of Kīlauea volcano provided a testing bed for UAVs in the context of an ac-
tive volcanic eruptions; Figure 4.6-1 shows an example – Videos captured by UAVs that hovered 
almost stationary over speci�c spots along the �ow channel yielded unprecedented estimates of 
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� ow velocity and � ux and their change over time (Patrick et al., 2019). � ese videos have also 
been used to constrain the rheology of the � owing lava by providing a constraint against which 
to test numerical models of lava � ow (Conroy and Lev, 2021). 

Figure 4.6-1: UAV-derived observations were key in documenting the evolution of lava � ows 
during the 2018 eruption of Kīlauea volcano, Hawai’i. Hovering over the lava channel, UAVs 

captured videos of the � owing lavas and documented changes surges in lava � ux. (A) View of a 
lava channel during a high-� ow time. (B) View of the lava channel during a low-� ow time. 

(C) average and (D) cross-channel pro� les of lava velocity during high and low � ow times as 
measured using particle image velocimetry analysis on the captured videos. From Patrick et al. 
2019, reprinted with permission of the American Association for the Advancement of Science. 

All Rights Reserved.

Lava � ows are classi� ed by their surface morphology (e.g., two of the main types of lava deposits, 
called “pahoehoe” and “a’a”, have smooth and very rough surface morphologies, respectively). 
Flow morphologies are indicative of the conditions of their emplacement. It is thus useful to 
characterize and classify past and new lava � ows. However, assessing morphology on foot can 
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be dangerous, time consuming, and o� en unfeasible over large areas. UAVs have been used re-
cently to help classify large areas of lava � ows. For example, two classi� cation e� orts of the 2018 
lava � ows of Sierra Negra volcano in the Galapagos utilized: 1) machine learning analysis of the 
orthomosaic visible image of the � ow (Soule et al., 2019), and 2) a combination of roughness 
estimates from an SfM-based DEM and the grain size proxy of ground heating rate (Carr et al., 
in review; See Figure 4.6-2). Both e� orts proved that a few hours of data collection from the 
safety of a UAV launch point, a large area can be mapped and analyzed e�  ciently and accurately. 

Figure 4.6-2: An example of surface deposit (lava � ow and tephra) morphology classi� cation 
using data collected by a UAV. Top le� : heating r C/hr, measured by � ying an infrared thermal 

camera three times (before, at and a� er sunrise) and measuring the change in apparent 
temperatures; Top right: Small-scale surface roughness, derived from a 20 cm/pixel DEM 
constructed from visible light images using SfM; Bottom: Automated classi� cation results 

using the k-means method with 3 categories. Image reprinted from Carr et al., 2021, 
with permission from Elsevier. All Rights Reserved.
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La va domes

When the lava erupting from the vent is highly viscous, for example due to its high-silica com-
position or relatively low temperature, it forms a dome. Domes are particularly dangerous, since 
they can become unstable and collapse, forming hazardous pyroclastic density currents, even 
without active e� usion. Such collapses are di�  cult to predict, and present a challenge for hazard 
assessment and mitigation. In some cases, a dome collapse can relieve enough pressure from the 
underlying magma to trigger a large eruption. It is therefore important to track the growth, and 
assess the structure and stability of domes during and beyond their emplacement. Domes are 
usually inaccessible targets, making them an attractive target for UAVs. Figures 4.6-3 and 4.6-4 
show examples of domes documented by UAVs at two volcanoes in Indonesia.

Figure 4.6-3: Topographic change analysis of a lava dome at Merapi volcano, Indonesia. (a) 
Shaded reliefs of the 2012 and (b) 2015 Digital Elevation Models and (c) cross-section pro� les of 
lines h–i and j–k show detailed geometry of the open � ssures and lava dome at Merapi Volcano 
before and a� er a series of steam explosions that occurred between 2012 and 2014. Coordinates 

are in UTM meters. (d) Changes in topography reveals the a� ermath of the explosions, where red 
areas indicate deposited areas and blue areas indicate loss areas. Also an unstable block is 
identi� ed. Image reprinted from Darmawan et al., (2018), with permission from Elsevier. 
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Figure 4.6-4: Figure 4.6-5: Lava dome stability analysis made possible through UAV topography 
mapping. � e lava dome at Sinabung Volcano, Indonesia, grew between 2010 and 2018. Carr et 
al. (in prep.) performed a UAV survey (A) to gather images, from which they built a DEM that 
was compared with the pre-eruption DEM from 2010 to reveal dome growth (red) and collapse 

(blue) sites (B). � e DEM was used as input to a numerical slope stability so� ware which 
calculates the Factor of Safety (FoS), a parameter that quanti� es the likelihood of collapse. 

For Fos<1, the lower the value of FoS, the more unstable the section.

Topo graphic change at volcanic craters

� e accessibility and relative ease of using UAVs makes them ideal for detecting change through 
repeat surveys. UAVs that use pre-programmed � ight paths can easily re-� y the same path over 
and over, facilitating highly accurate change detection. � is ability has already been used in several 
volcanoes to quantify syn-eruptive change in rapidly evolving crater areas. For example, Smets et 
al. (2018) measured the amount of lava (6.9×106 m3) that � lled the crater of Nyamulagira volcano, 
in D.R. of Congo during lava fountain eruptions 2014. During the 2018 eruption of Kīlauea volca-
no, daily surveys of the summit caldera with UAVs produced an extensive data set documenting 
the collapse of the caldera � oor in response to the emptying of the underlying magma chamber 
as magma migrated through the East Ri�  Zone and erupted as lava � ows (Neal et al., 2019; Figure 
4.6-5). � e repeated topographic surveys allowed scientists to assess the connection between the 
summit reservoir and the eruption site and helped improve warnings for changes in e� usion rates.

 4.6. 1.2  Non-imaging applications

� e range of observations that volcanologists seek in their pursuit to understand volcanoes bet-
ter goes far beyond appearance and topography that can be viewed and documented using im-
ages. � is section reviews non-imaging applications, where scientists relied on UAVs to collect 
samples, make geophysical measurements, and deploy instruments on volcanoes. 
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Gas sampling

As magma ascends within volcanoes, it releases gases such as SO2, CO2, and H2S. � e amount 
and composition of the gases being released can change over time and provide an indication that 
magma is getting closer the surfaces or that fresh magma has been added to the reservoir (e.g., 
Aiuppa et al., 2007). � ese signals can suggest that an eruption is approaching, thus providing 
important information for hazard assessment. 

Figure 4.6-5: � e collapse of the summit caldera at Kīlauea volcano in 2018, as documented by 
repeat UAV surveys. � e caldera collapsed in response to emptying of the magma reservoir, as 

magma � owed into the East Ri�  Zone and erupted as lava � ows. Top: oblique aerial view of the 
caldera; Middle: Shaded relief maps of the caldera topography from before (2009) and a� er 

(August 2018) the eruption. Bottom: change along the cross-section line marked in the maps. 
From Neal et al. (2019), reprinted with permission of the American Association 

for the Advancement of Science. All Rights Reserved.
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In recent years, UAVs have been equipped with small gas sensors that either collect gas sam-
ples to bring back to the ground, or with sensors that measure gas composition and concentra-
tion as they �y through the volcanic gas plume. �e utilization of UAVs to collect and measure 
volcanic gas has a signi�cant advantage over past methods such as ground-based gas detectors 
(e.g., DOAS, UV cameras) or aerial gas surveys using manned helicopters, which puts the crew 
at a great risk and comes at a large cost. For these reasons, the �eld of volcanic gases have seen 
an explosion of applications. E�orts have focused on minimizing sensors so that they can be 
carried by smaller and cheaper platforms and on combining sensors for di�erent gases, to make 
data collection most e�ective (Figure 4.6-6). 

Ash sampling

Another volcanic product that is important to collect is ash. Ash particles are a major hazard 
to local communities as they are a respiratory irritant and damage crops and structures. �ey 
are also dangerous for aircra� engines and can cause airspace closures. Scienti�cally, ash par-
ticles are important as they are the freshest eruption products and quench immediately upon 
exiting the volcano, and thus preserve critical information such as ascent rates and magma 
storage depths. Ash is light and o�en gets dispersed soon a�er the eruption, so it is important 
to collect samples quickly, in competition with the obvious danger of doing so. UAVs can 
assist with this challenge by collecting ash samples from inaccessible locations and during an 
eruptive crisis (Figure 4.6-7). Examples where this has been done are reported by Nagatani et 
al. (2013, 2014, 2018), who collected ash samples from the ground of Asama, Fuj, Izu Oshima, 
Unzen and Sakurajima volcanoes in Japan using a remotely operated roller-based soil sampler 
suspended from UAVs. Schellenberg et al. (2019) mounted sticky stubs used in scanning elec-
tron microscopes (SEMs) to collect ash while �ying through the plume of Volcan de Fuego, 
Guatemala.
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Figure 4.6-6: Examples of UAV platforms used for collecting volcanic gas information, and the 
data gathered by them. (A) Multicopter carrying a multigas and a gas collecting pump-and-bag 

unit used during the Geldingadalir eruption in 2021 (photo: Yves Moussallam) (B) A minaturized 
Flame spectrometer (by Ocean Insight) combined with a Raspberry Pi controller, before being 

mounted on a multicopter during the 2021 Cumbre Vieja eruption in Spain (photo: Mike Burton). 
(C-D) A SIERRA � xed wing UAV that carried a miniaturized mass spectrometer (inset) in its 
nose compartment, and the data that Pieri et al. (2013) collected with it at Turrialba volcano, 

Costa Rica. (E) Measurements (top-right inset) of multiple gas types measured by an Ai450 drone 
model Aeroterrascan (bottom le�  inset) carrying a Multi-GAS instrument. � e background shows 

the topography of Agung volcano, Indonesia, and the � ight path. Image from Syahbana et al. 
(2019), originally published under a CC BY license (https://creativecommons.org/licenses/by/4.0/) 
(F) CO2 sampling by a remotely-operated pump and bag system suspended beneath a DJI Inspire 
1 UAV as it is � own through the plume of Po �as volcano, Costa Rica (James et al., 2020a, photo 

by Fiona D’Arcy. Image originally published under a CC BY license (https://creativecommons.org/
licenses/by/4.0/). � e collected sample will then be analyzed in the laboratory. 
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Figure 4.6-7: Ash sampling using UAVs. (A) An example of a roller-based ash collector. © 2014 
IEEE. Reprinted, with permission, from Yajima et al. (2014). (B) Ash particles collected by 

sticking to an SEM stub mounted on a UAV, by Schellenberg et al. (2019), originally 
published under a CC BY license (https://creativecommons.org/licenses/by/4.0/). 

Water s ampling

Water in volcanic systems o� en interacts with the magma to form hydrothermal systems. As 
such, changes in water composition and temperature can reveal clues about changes in the sub-
surface magmatic system, such as an intrusion of fresh magma. Sampling water from UAVs has 
been done using non-metallic bottles or pistons � tted with one-way ball valves that seal as the 
device is pulled up. Example locations include a lake that formed in the collapsed crater of Kīlauea 
volcano post the 2018 eruption, the Yugama crater lake at Kusatsu-Shirane volcano, Japan (Terada 
et al., 2018), and low viscosity water-rich muds at Lusi mud volcnao (Di Stefano et al., 2018). 

 4.6.1.3   Geophysical measurements
Geophysical measurements such as gravity, electrical conductivity, and magnetism are a common 
tool in imaging the structure of volcanoes, as they can reveal the properties of volcanic deposits and 
point to changes in the position of melt and gas pockets. For example, ma� c rocks show a higher 
magnetic intensity, and silicic rocks show a lower magnetic intensity; magnetic intensity can also 
track lava cooling and hydrothermal alteration of deposits (Koyama et al., 2013). Conducting geo-
physical studies on land at volcanoes can be di�  cult for all the reasons discussed previously. Aerial 
surveys can help. In recent years, geophysical sensors have become su�  ciently small and light to be 
� tted on UAVs and used to survey volcanoes. Examples of aeromagnetic surveys using UAVs come 
mainly from Japan, and include Izu-Oshima volcano (Kaneko et al., 2011), Kuchinoerabu-jima 
Volcano (Ohminato et al., 2017), and during the 2011 eruption of Shinmoe-dake volcano, Japan 
(Koyama et al., 2013). UAV-based gravity surveys are yet to be conducted at volcanoes. 
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Instrum ent deployment

UAVs are capable not only of collecting data using on-board sensors, but also of deploying sen-
sors that will collect data on the ground (Figure 4.6-8). UAVs have the advantage of being able 
to place such sensors in inaccessible places, such as an active volcano’s crater or on fresh de-
posits, or during an eruption. Sensors deployed this way must be capable of transmitting their 
data remotely, since in most cases retrieval of these sensors is impossible and they are likely to 
be destroyed by an eruption. � ey also must be light-weight and autonomous. For example, 
small, glass-shelled sensor capsules nicknamed ‘Dragon Eggs’ are being developed and will al-
low deployment of � exible sensor networks at volcanoes. Each Dragon Egg is equipped with 
sensor packages, including gas sensors (SO2, H2S, relative humidity, temperature, pressure), 
GPS receivers, and vibration sensors (Wood et al., 2018). � e UAV deploying the Dragon Eggs 
is equipped with a remotely operated custom release hook that is triggered once the sensor unit 
had been ‘placed’ (not dropped) in at the desired site. Ohminato et al. (2017) reported depositing 
specially-designed seismometers near the vent of Kuchinoerabu-jima volcano, Japan, an area 
inaccessible in other ways. � e solar-powered seismometers weighed just 5kg, to � t within the 
aircra� ’s payload, and were equipped with an aluminum tripod landing gear to stabilize their 
placement on the ground. Data was transmitted through a commercial cellphone network, an 
advantage not always available in remote volcanic areas. 

Figure 4.6-8: Instrument deployment at volcanoes by UAV. A) An unmanned helicopter deploying 
a seismic observation module at Kuchinoerabu-jima volcano, Japan (see Ohminato et al., 2017). 

� e le�  panel shows the winch and cable system used to lower the seismic observation module 
onto the volcano; � e middle panel shows the component of the package, including ground motion 

sensor, aluminum tripod, solar panel and battery, cellular phone antenna, and GPS antenna. 
Photos: Takayuki Kaneko and Takao Ohminato. B) A multirotor UAV (DJI M100) deploying a 

“dragon-egg” sensor package at Tavurvur volcano, Papua New Guinea to measure fumarole 
activity (Wood et al., 2018). � e package included SO2, H2S, relative humidity, temperature, 

pressure and pressure sensors, GPS receivers, and vibration sensors. Photo: Kieran Wood.

Einat Lev



391

4.6  UAVs in Volcanology

4.6.2  UAVs for volcanic disaster response

Volcanoes are of course not just a fascinating scienti�c target, but are a source of risk for com-
munities who call them home or neighbors. UAVs now take an important role in assisting emer-
gency crews and government agencies in their response and management to an active volcanic 
disaster. During the 2018 eruption of Kīlauea, UAVs �own by the local university and the USGS 
provided night-time observations of new �ssure opening and lava �ow advance when no other 
helicopter or plane could �y. UAVs hovered over the �owing lava and provided real-time esti-
mates of lava �ux and speed, which the USGS immediately entered into hazard models. More-
over, during the 2018 Kīlauea eruption, a UAV was used to guide a stranded residence out from 
their home to safety. During an active or on-going eruption, governments usually declare a no-
�y zone for manned aircra� due to the danger to the crew. �is risk is alleviated when using 
UAVs, that can provide real-time monitoring of the summit or vent areas even they are obstruct-
ed by crater walls or a plume of ash or gases, as is o�en the case. 

4.6.3  Summary

�e role of UAVs in reshaping volcanology into a data-rich science cannot be overestimated. 
UAV capabilities are now within reach of even the more cash-strapped scientists and obser-
vatories, opening the door to a wide range of data that was previously impossible to collect 
due to cost, danger, or inaccessibility. �e near future will undoubtedly see new applications, 
as di�erent sensors become small enough for a UAV to carry or deploy and data collection and 
processing methods mature. 
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Agricultural intensi�cation is necessary for feeding a rapidly growing human population (1 %/a; 
currently 7.8 bn will reach 10 bn by 2057). �is agricultural intensi�cation needs e�cient irriga-
tion, fertilisation, and pest control. An overapplication of these components is a �nancial waste 
and leads to environmental threads, such as soil erosion and degradation. �e most important 
factor is the nitrogen (N) – application (70 % of all fertilizers), which shows only an e�ciency 
of 30–50 % and the overapplication leads to extensive nitrate concentration in rivers and seas, as 
well as contamination of ground water. Likewise, global warming (e.g. increased temperatures, 
higher variability of rain) and restricted access to fertilizer (increasing costs) and water (more 
irrigation needed) are further future e�ects on agricultural productivity.

�erefore, agricultural production must be as e�cient as possible to maximise food produc-
tion, while minimizing e�ects on the environment (e.g. by using too much fertilizers or water for 
irrigation). For an e�cient nitrogen application, representing every other stated factor, the ‘right 
rate, right type, right placement, and right timing’ (Houlton et al., 2019, p. 867) is important. 
�us, an accurate and easy measurement of a plant status and allowing to adjust management 
measures is important. �ese targets are summarized in the area of precision agriculture, which 
aims to optimize all management tasks on �eld-level. �erefore, biochemical, and biophysical 
properties must be monitored, and homogenous zones for management should automatically 
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characterized and delineated. �is overall aim can be subdivided in research areas of pheno-
typing and yield assessment, as well as abiotic and biotic stress detection (Olson and Anderson, 
2021) (see Figure 4.7-1). 

For this purpose, aerial images, also with infrared bands, have been in use for disease de-
tection since the 1920s (Colwell, 1956; Gerten and Wiese, 1987). First applications with pet-
rol-based �xed-wing UAVs or helicopters were conducted in the early 2000s, but also the solar 
powered NASA’s Path�nder-Plus UAV was used for agricultural monitoring tests (Herwitz et al., 
2004). Early examples are the successful application to shrub estimation (Quilter and Anderson, 
2001), estimating plant biomass and nitrogen content with a multispectral imaging sensor (Hunt 
et al., 2005), the documentation of water stress in crops (Berni et al., 2009), and mapping range-
land vegetation (Laliberte and Rango, 2009).

�e quick acquisition at critical points during the growing period is an advantage. In contrast 
to satellite imagery, which needs to be ordered and planned in advance, no cloud obstructions 
occur in UAV-based surveys. Likewise, all other advantages of UAVs, e.g. covering larger areas 
fastly, in combination with miniaturisation of sensors are of importance for this area of ap-
plication. Main advantage and research target are the non-destructive determination of plant 
parameters, such as plant height. In general, UAV-based surveys are cost-e�ective, and enable 
to acquire high-resolution (resolution in centimeter ground sampling distance) images, which 
are needed for applications in precision agriculture. In contrast, lighting conditions strong-
ly a�ect acquisition and results. Good weather conditions, two hours around local noon, the 
recommended time slot, are not always the case. Likewise, all regulations concerning UAV 
applications, access, and ownerships rights (chapter 1.4), close by habitat areas and birds of 
prey are actual problems, which may prevent or disrupt an acquisition. Further, the complexity 
of applying thermal, multi-, and hyperspectral sensors, analysis steps, as well as the acquisition 
of stable, high accurate ground-referencing points might be additional barriers for these appli-
cations. 

However, applications of UAVs in agriculture are manifold and one of the major application 
areas of UAVs at all. Mainly, crop height and crop growth distribution, yield estimations, and 
crop health status, as well as disease detection from pathogens, weeds and insect problems are 
areas of research (see Figure 4.7-1). All of the approaches aim to �nally increase e�ectiveness 
of input and optimize output of any crop, also in terms of environmental protection, by adjust-
ed farm management. �erefore, single surveys or multiple surveys over time are conducted, 
ranging from single overviews to enhanced analysis using nearly every sensor shown in previ-
ous chapters. Overall, the application of UAVs in agriculture is a huge market, and in terms of 
environmental protection an important factor. Most o�en, UAV-based applications are used for 
phenotyping and further experimental trial areas, in general agricultural management, viticul-
ture and horticulture. Phenotyping thereby is an area of science, which focuses on the complex 
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interaction between a speci�c genotype and the environment in which the plant develops in 
order to monitor plant breeding.

Figure 4.7-1: Overview on selected issues and actions in agricultural applications 
of UAV-based sensors. Prepared by the author for this chapter.

In this chapter, basic principles and examples of corresponding applications will be shown. 
�e chapter is divided into passively recording spectral sensors (thermal, RGB, multi- and 
hyperspectral approaches) focusing on biochemical plant properties, a short review of achiev-
ing biophysical, structural plant data, such as plant height, �nally ending with further speci�c 
sensors.

4.7.1  Spectral data

Spectral sensors capture the partly re�ected electromagnetic radiation of surfaces, ranging 
from visible (~400 nm) to near infrared, also called thermal infrared (~14 µm). �e sensors 
record, as introduced in chapter 2.5, this radiation in wavelengths of di�erent ranges as bands, 
whereas multispectral sensors use up to ten bands with uneven ranges and hyperspectral sen-
sors use about 200 bands with narrow, even bands. �us, usual RGB-based cameras are a 
multispectral sensor, capturing re�ections by three bands located in the visible area of the 
electromagnetic spectrum (~400–700 nm). �e re�ection is stored as digital numbers (DN) 
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per band and needs further calculations or calibrations to retrieve the re�ectance. Di�erent 
surfaces show di�erent re�ectance patterns and calculations on di�erent bands resulting in 
indices allow to estimate the status of a surface, e.g. its temperature or vitality. �e received 
values of the before mentioned multi- and hyperspectral measurements, the band values per 
pixel, can be used to calculate indices. �e Normalized Di�erence Vegetation Index (NDVI) 
is the most commonly known index for plants, reusing the knowledge-based relation of green 
plants, not highly re�ecting in the red area of the electromagnetic spectrum, but highly re-
�ecting in the near infrared area:

( )
( )

=
+

NIR Red
NDVI

NIR Red

where Red and NIR represent measured values from the speci�c wavelength area of visible red 
and near-infrared re�ection, resulting in values between -1 to 1. �is easier index is widely used 
for the estimation of a plant´s health status and its spatial distribution and in general for vegeta-
tion detection, but this index shows a saturation a�er a certain plant development. R² values in 
relation to biomass greater than 0.5 are typically found. 

4.7.2.1  �ermal

As pointed out in chapter 2.4, cameras acquiring thermal-infrared (TIR) information are for 
UAV applications uncooled instruments, allowing only a lower resolution. However, these 
instruments are widely used in agriculture applications, as the provision of the plant water 
status is possible. �is is an important information for irrigation monitoring and irrigation 
will be even more important in the future, due to climate change. Common indices build on 
the derived temperatures (plant canopy and air temperature), such as the CWSI and WDI, 
shown in chapter 2.4 are applied. Likewise, the thermal information helps to detect diseases 
and lodging (Liu et al., 2018) as well. Mostly, the complexity and a warm-up time for the 
cameras is denoted. 

4.7.2.2  RGB imagery

An orthomosaic derived from RGB images already allows a general overview by visual inspec-
tion, e.g. colour and density di�erences, as well as areas of lodging are easily manually detectable 
and also measurable, which is an important result for insurances. In addition, the RGB informa-
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tion is usable to detect these kinds of di�erences in a crop stand by data-driven approaches. For 
instance, OBIA, an image-based segmentation into homogenous areas is used, which is followed 
by classi�cation of the image segments in order to derive areas with invasive species (e.g., Al-
berto et al., 2020; Peña et al., 2013; Wijesingha et al., 2020). For the segmentation, information 
derived from the RGB images, by transforming to another colour model, here intensity, hue and 
saturation (IHS), can be used for successful classi�cations (Laliberte et al., 2010). 

Figure 4.7-2: Orthomosaic and derived RGBVI (bottom) from a grassland trial site showing 
greener, healthier areas with a higher index value (green colors) then areas with low 

vitality or with bare-earth (red colors) (details in Possoch et al., 2016).
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Likewise, lacking of integrable sensors and trying to use low-cost solutions, speci�c digital 
RGB-cameras, which can be modi�ed to acquire NIR light, were applied (called ‘modi�ed CIR’). 
�is is conducted by removing the internal hot-mirror �lter and replace a blue-blocking �lter in 
front of the lens. With a radiometric calibration and extensive post-processing, the raw digital 
camera image can be converted into a red, green and NIR false-colour image, which can be used 
to provide normalized di�erence vegetation index (NDVI) images, delivering similar results as 
obtained from the multispectral cameras. Finally, an implementation in an e�ective crop health 
monitoring, allowing to react is possible. Hunt et al. (2010) for instance, found that modi�ed 
CIR, allows to calculate the green normalized di�erence vegetation index (GNDVI) and a re-
gression model can be derived with an R² of 0.85 to the leaf area index (LAI), which represents a 
structural plant parameter as the relation of the leaf area to a given unit of land area. 

Further, machine learning approaches can be used on RGB imagery in order to estimate lodg-
ing (Zhang et al., 2020) and in addition, spectral indices are built on the three spectral bands 
(Red, Green, Blue) of the re�ected visible light. �e indices are for example, the Greeness In-
dex (GI) (Gitelson et al., 1996) or the triangular greenness index (TGI) (Hunt et al., 2011). An 
example of an RGB-based analysis is given in Figure 4.7-2, where a grassland experiment with 
di�erently fertilized plots is shown and the RGB Vegetation Index (RGBVI) was derived. �e 
latter shows areas of more developed grass from more fertilizer in contrast to areas with less 
fertilizer and corresponding less developed plots of grass, as well as areas harmed by lodging or 
destruction from animals. All details are presented in Possoch et al. (2016). �ese indices can 
also be related to the distribution of chlorophyll content or can be reused for instance to esti-
mate and monitor the vegetation cover or the gaps within, calculated as the vegetation fraction 
(Torres-Sánchez et al., 2014).

4.7.2.3  Multi- and hyperspectral

Multi- and hyperspectral sensors measure the passively re�ected amount of light of objects in 
speci�c bands, covering selected wavelength ranges of the electromagnetic spectrum. �e infor-
mation additional to the visible, commonly used, RGB-sensor information enables to further 
distinguish objects and in particular enables to estimate a plant´s health status. �is is conducted 
by using data-driven approaches, band combinations or relations set to corresponding measure-
ments of plants, e.g. the biomass. 

However, particularly for multi- and hyperspectral sensors, which measure digital num-
bers per pixel calibrations for further analysis and comparisons are necessary. More details 
on these e�ects can be found in chapter 2.5. Besides a geometric calibration, a radiometric 
calibration is necessary. Mostly the sensors are pre-calibrated (e.g. concerning vignetting 
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e�ects, sensor contamination between bands and corrections for di�erent exposure times, 
apertures sizes or ISO settings) and only a short calibration before and a�er each �ight is 
necessary, in order to adjust to actual environmental conditions. �is is usually conducted 
by capturing images of a white re�ectance panel with known re�ectance values. In addition, 
several sensors are coupled with illumination sensors (‘Downwelling Light Sensor (DLS)’ or 
‘sunshine sensors’) capturing the actual lightning conditions of each image during the �ight, 
for correction in post-processing, most e�ectively for completely cloudy conditions (over-
cast). For more accurate results a smoothing of the DLS data might be necessary (Olsson et 
al., 2021). �e DLS readings cannot correct shadowed parts of images or are less reliable in 
constant illumination environments (e.g. sunny, clear days), as the error of the sensor is high-
er. Another possibility for the changing illumination conditions during �ights are ground-
based illumination sensors. Coping with atmospheric conditions, particularly with higher 
�ight heights, correction is also possible by integration atmospheric modelling approaches, 
mostly known from satellite imagery analysis.

As a further procedure for radiometric correction, the empirical line method/calibration 
(ELM or ELC) can be used. ELM derives the coe�cients needed to �t uncalibrated or adjust 
multispectral images (chapter 2.5). �is calibration is conducted by placing several levelled, larg-
er calibration panels in di�erent black to white colours in a central location within the �ight path 
of the UAV platform. Spectral measurements for �eld calibration are taken on calibration targets 
with a �eld spectrometer in the same spectral range (e.g. 350–1,050 nm) as the sensor and at 
nearly the same time of image acquisition. �e reference spectra are to be used later for the em-
pirical line calibration method. For multi-temporal approaches, a calibration can be based on 
similar targets and procedures, or on arti�cial targets, such as roads, parking areas, tra�c paint-
ings, and buildings. In general, it is recommended to compare sensor values with ground-truth 
values, sensors need a warm up time of several minutes.

Besides the above mentioned NDVI-index, a huge number of other indices exist, which are 
used in agricultural applications. Some of these enhance the NDVI (green normalized di�erence 
vegetation index, GNDVI; red-edge normalized di�erence vegetation index, RENDVI), adjust 
for bare-soil in�uences (soil-adjusted vegetation index, SAVI; optimized-SAVI, OSAVI) or esti-
mate chlorophyll content (green chlorophyll index, GCI). An overview on these indices is given 
on https://www.indexdatabase.de/. Likewise, the implementation of information in the short-
wave infrared wavelengths (SWIR) is possible (Jenal et al., 2020). �e correction of the NDVI 
by a fraction cover enhances the estimation of leaf nitrogen content (Xu et al., 2021). Other 
possibilities to achieve insights in plant health distribution are statistical and enhanced machine 
learning based approaches in order to use the sensor values in relation to plant parameters. 
�ese are, as examples, multiple linear regression and stepwise multiple linear regression, the 
previously shown OBIA-approach, as well as partial least square regression and random forests. 
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�e additional information of the non-visible re�ection range allows to enhance classi�cation 
results in any kind of application. 

Results of index-based and other calculations are o�en related to the LAI. Several devices for 
ground truth measurements, which are more time consuming, are available. �e LAI is an indi-
cation for yield, and is useful to determine the correct amounts of pesticides or fungicides that 
are needed to protect a crop. LAI can also diagnose the nitrogen status for timely correct applica-
tions of fertilizers to boost yield. In addition, LAI is an important parameter for modelling mass 
and energy exchange between the biosphere and atmosphere, and connected to photosynthesis, 
evaporation, rainfall interception, and carbon �ux.

4.7.3  Structural data

4.7.3.1  Multi-temporal approach

Another approach of achieving biomass indications of a crop, instead of using relations of indi-
ces, is to use multi-temporal height calculations. �erefore, multiple derived digital crops sur-
face models (CSMs) or the original point clouds of a crop stand are established. �e CSMs, as 
DSMs of a crop, are built by using the dense 3D point cloud achieved from image matching 
algorithms (chapter 2.2), representing the top canopy. �e 3D information can be stored as a 
2.5D raster image. By building the di�erence between di�erent points in time, the crop devel-
opment (growth or decline) and the crop height by using a bare-earth height or base model, 
can be achieved in a high spatial resolution (Ho�meister, 2016; Ho�meister et al., 2010). �is is 
represented by the following equations: 

CHt = CSMt – DTM 
CDt2–t1 = CSMt2 – CSMt1

where CHt is crop height at a time t, derived from the CSMt minus the digital terrain model 
(DTM, or bare-earth model); crop di�erence CDt2-t1 is the di�erence between CSMs of certain 
points in time. 

�e bare-earth height, or DTM, is either a result of a survey before crop emergence or an esti-
mated value, e.g. by interpolation of open areas or reconstructed by manual measurements. �e 
derived crop height or any statistical size per area (e.g. median, minimum, maximum or per-
centiles) compared to manual measurements or biomass usually result in high regression results 
(e.g., Gilliot et al., 2020), also allowing to establish models for yield estimations. In addition, this 
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biophysical information plant height can be combined with previously mentioned indices in 
order to enhance estimations (Bendig et al., 2015; Lu et al., 2019). 

4.7.3.2  LiDAR

Small LiDAR sensors (chapter 2.6) are also applied to agriculture in order to estimate bi-
omass amount and distribution, as shown before. In contrast, these systems actively send 
laser impulses and their re�ected signal is captured. As the signal travels by group velocity, 
light-velocity in atmosphere, the distance can be accurately calculated (‘time-of-�ight’-prin-
ciple). With accurate angle determinations and connected INS, a 3D point cloud can directly 
be achieved, contrasting the photogrammetric approach, which needs the recalculation of 
images. �e intensity of the re�ected signal allows to distinguish objects and the signal partly 
penetrates through vegetation allowing to achieve ground or bare-earth points. �e latter 
enables to achieve plant heights without a multi-temporal approach and shows a density 
information. 

For example, Zhang et al. (2021) used Velodyne’s HDL-32E UAV LiDAR and the Riegl VUX‐1 
UAV LiDAR system to study grassland and showed that these sensors are capable of e�ectively 
extracting vegetation parameters and derive above ground biomass. For this purpose, as typical 
for laser scanning applications, the raw point clouds as a result, are classi�ed in di�erent groups, 
e.g. ground, vegetation, trees, and noise. A�erwards, ground points are used for a bare-earth, 
digital terrain model reconstruction and the digital surface model representing the crop height, 
as shown before, is used to build a di�erence. Likewise, the fractional canopy cover, as the ratio 
of the number of vegetation returns to all returns for a given area is used in order to represent the 
density of a crop surface. Both factors then are used in linear and nonlinear regression models to 
estimate biomass by (usually dried) samples. From derived canopy height and fractional vegeta-
tion coverage (FVC), aboveground biomass is derived by the �rst two components as predictors 
(R2 = 0.54). It was also shown that di�erent �ight heights ranging from 40 to 110 m only have a 
minor in�uence on the results. Insights in wheat plant structure and development over time for 
an entire agricultural �eld by using multispectral indices in combination with LiDAR-results are 
presented by Bates et al. (2021). 

4.7.4  Further applications

Another bigger part of research is spraying or sprinkling systems on UAVs, which allow auto-
matically to apply pesticides or nutrients at the right spot within a �eld. For example, this spot 
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wise, e�ective method allows to save investments in fertilizers, which is particularly important 
for orchards and viticulture (Martinez-Guanter et al., 2020). Likewise, work�ows are enhanced 
(e.g. by cloud-computing of UAV-based imagery) for decision making processes on a farm. �e 
derived data can be used to automatically adjust spraying amounts of a tractor. Instead of in-
directly measuring re�ectance and adjusting these values to biochemical or biophysical plant 
parameters, sensing of the solar induced chlorophyll �uorescence is possible, closely related to 
important photosynthetic activity of a plant. However, the relatively low intensity of the signal, 
a comparison of upwelling radiance and downwelling irradiance is challenging (Bendig et al., 
2020; Vargas et al., 2020). Active sensing by using arti�cial lights might overcome illumination 
problems from passive remote sensing (Li et al., 2018). A combined approach of thermal, mul-
tispectral and LiDAR also enables to accurately determine soil salinity (Ivushkin et al., 2019), 
representing that a mixture of data might help to most accurately estimate agriculture parame-
ters.
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Conservation needs to address animal distribution and density, habitat conservation, and 
poaching. Widespread and steep declines in biodiversity have and will continue to result from 
anthropogenic pressures (Maxwell et al., 2016; Powers & Jetz, 2019). �ese include land con-
version for agriculture, infrastructure and urban areas; killing animals for food or as a result of 
human-animal con�ict; disease; pollution and climate change (Benítez-López et al., 2019; Lanz 
et al., 2018; Spooner et al., 2018; Leendertz et al., 2017; Carvalho et al., 2019; Strona et al., 2018; 
Cooke et al., 2019; Johnston, 2019). To manage biodiversity and mitigate anthropogenic threats 
there is an urgent need for scale-appropriate information on the distribution and density of 
plants and animals, and land-cover classi�cation and change over time. 

4.8.1  Traditional methods

Traditionally animal distribution and density data have been collected using an array of di�er-
ent survey methods, primarily through terrestrial (e.g. line transects), marine (e.g. with ships) 
or aerial (with occupied aircra�) approaches where researchers collect data on animal presence 
and numbers along transects, in plots, or from point samples (Buckland et al., 2001, 2004, 2010; 
Franklin, 2010). Data on species’ distribution are o�en used in combination with environmental 
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layers to model species’ distributions (Franklin, 2010). To derive animal density from observa-
tions researchers commonly use analyses based on the distance of the individual/group from 
the transect or point (Buckland et al., 2010). Such data from distributions and densities have 
also been combined into density-distribution models, which result in an overall abundance for 
species (e.g. Voigt et al., 2018; Santika et al., 2017).

In addition to observations from the ground and occupied aircra�, researchers have been us-
ing camera traps and autonomous acoustic recorders to obtain data on animal distribution and 
density (Campos‐Cerqueira & Aide, 2016; Wrege et al., 2017; Marques et al., 2013; Ahumada et 
al., 2020). �ese techniques have led to a wealth of data and knowledge, particularly from elusive 
species that are otherwise di�cult to obtain data from through other survey means. 

Despite the existence of these survey techniques, we still lack data on the distribution, and 
particularly population density of many species, contributing to them being classi�ed as data 
de�cient on the IUCN Red List (Jetz & Freckleton, 2015). As a result, within primates we do not 
have total abundance estimates for most species, or for those we do time series are lacking which 
hampers our ability to determine trends in abundance (White, 2019). For instance, we only have 
species-level abundance estimates for a few of the great ape species, a set of species that are par-
ticularly well studied (Voigt et al., 2018; Wich et al., 2016a, 2019). �is severe lack of density and 
distribution data is partially a consequence of the high costs that are associated with surveys and 
the lack of funding for such data collection (Jetz & Freckleton, 2015). �ere is therefore a strong 
need to develop new methods to obtain animal distribution and density data. 

Simultaneously, there is a need to map and monitor the habitat that animals reside in. To 
support conservation e�orts, it is o�en necessary to classify the various land-cover types that a 
species occurs in and monitor change in those over time. O�en such land-cover classi�cation 
and change detection are conducted using satellite images using a variety of the bands in the 
electromagnetic spectrum (Horning et al., 2010). �ere are however several potential challenges 
with the use of satellites. First, in the humid tropics and the Arctic persistent cloud cover is a 
challenge for obtaining cloud-free images at regular intervals (Hansen et al., 2008; Mulaca et al., 
2011). Second, the interval between the data that the sensors on satellites collect is o�en prede-
termined by the orbit of the satellite, and tasking satellites for data collection at other moments 
comes at a premium price. �ird, even though the resolution of freely available images acquired 
by satellites is improving, it may not meet the requirements of speci�c conservation projects. 
Although higher resolution satellite data may be available, the costs of such images is o�en pro-
hibitively high for conservation projects.

Drone mounted sensors may be able to provide data on both animals and their habitats, 
and at lower costs and more scale-appropriate resolutions than alternative methods (e.g. very 
high-resolution images of the canopy of a tropical rainforest, (Wich & Koh, 2018; Anderson & 
Gaston, 2013)). In this chapter, we will review three aspects of conservation for which drones 
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are being used: 1)  classi�cation of land-cover types and changes therein for areas in which 
animals occur; 2) obtaining data on the distribution, behaviour, and density of animals; 3) an-
ti-poaching e�orts. 

4.8.2  Land-cover classi�cation and change detection

Land-cover classi�cation and the detection of change in land cover over time are important 
aspects of conservation and drones have been used for such studies in areas ranging from the 
Arctic to the tropics (Wich & Koh, 2018). Land-cover maps can provide a wealth of information 
for conservation decision-makers. For instance, land cover maps can inform conservation man-
agers about the land cover types constituting the home range of an animal species of interest, in 
which areas they occur most o�en, and in which part of the home range they sleep most o�en. 
Subsequently, the land-cover change detection can provide crucial information on which areas 
of an animal’s home range experienced the most loss or conversion to another land-cover type. A 
variety of sensors have been mounted on drones to acquire images that can be used for land-cov-
er classi�cation and land-cover change detection (Wich & Koh, 2018; see Box 1). Because con-
servation researchers o�en need to map relatively large surface areas, the use of �xed-wing 
drones instead of multirotor drones for land-cover classi�cation studies may be more e�ective 
(see Box 2). Most commonly, researchers use visual spectrum cameras (Red Green Blue (RGB)) 
to obtain images and then process these images using Structure-from-Motion (SfM) so�ware 
to obtain orthomosaics (chapter  2.2). �e resulting orthomosaics and digital surface models 
(DSMs) are then processed further to classify land-cover types or detect speci�c features such 
as a particular tree species (e.g. Wich et al., 2018; Reid et al., 2011; Laliberte et al., 2007; Cunli�e 
et al., 2016). Because traditional RGB cameras capture non-radiometrically calibrated spectral 
data, they can be less e�ective than radiometrically calibrated cameras in traditional spectral 
classi�cation work�ows. �is particularly relates to land-cover classi�cation and change detec-
tion as well as the ability to calculate vegetation health indices (e.g. Normalized Di�erence Veg-
etation Index (NDVI), Green NDVI (GNDVI), etc, Assmann et al., 2019; Michez et al., 2016). 
Despite this, there are examples of RGB images being used successfully to determine land-cover 
classes, leaf-area index, and vegetation (Wich et al., 2018; Liu & Wang, 2018; Silver et al., 2019). 
Hyperspectral cameras are increasingly being used, but their high cost and increased logistical 
and processing burdens currently limit their widespread adoption (Mitchell et al., 2012, 2016). 
Most studies use pixel or object-based supervised or unsupervised classi�cation methods that 
use re�ectance for land-cover classi�cation (Wich et al., 2018; Dunford et al., 2009; Laliberte & 
Rango, 2009; Fraser et al., 2016), but some take advantage of the point clouds that are generated 
during SfM to distinguish vegetation types by vegetation height (Cunli�e et al., 2016). �e ac-
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curacy with which land-cover classes are classi�ed varies extensively for the di�erent land-cover 
classes within and between studies. �ese di�erences are associated with variability in methods, 
scale of inquiry and measurement, as well as the available data (review in chapter 7 of Wich & 
Koh, 2018). Selecting the best analytical method and scale of observation for a particular set 
of data is therefore not straightforward (Levin, 1992) and when feasible carefully considering 
spectral and/or spatial grain requirements and testing several methods could o�er advantages. 
�e majority of studies have focused on one-o� mapping of land cover and land-cover change 
mapping with drones for conservation is still rare (Wich & Koh, 2018; see Box 2 for an example).

Drones have not only been used for mapping terrestrial areas but also for marine systems 
where they have been used to monitor shoreline environments (Mancini et al., 2013), mapping 
of coral reefs and their (Muslim et al., 2019; Etienne et al., 2015), and mapping seagrass cover-
age (Du�y et al., 2018). As for terrestrial monitoring, drones will augment data collection on 
the ground, from occupied aircra� and satellites but likely not replace any of these completely 
(Johnston, 2019). 

�e high spatial resolution data that can be obtained with drones can potentially also be 
important for Payment for Ecosystem Services (PES) mechanisms such as REDD (Reducing 
Emissions from Deforestation and forest Degradation) which have gained a large amount of 
interest in conservation (IPCC, 2007; Pan�l & Harvey, 2016). An important component of such 
mechanisms is measuring above-ground carbon content for which drones can be used (Jones 
et al., 2020; González-Jaramillo et al., 2019). Such carbon mapping is not only important for 
estimating carbon content of forest landscapes but also in blue carbon ecosystem (mangroves, 
seagrasses, and salt marshes) (Jones et al., 2020; Pham et al., 2019).

Box 1: Using drones with a multispectral sensor to classify tree species in 
Tanzania

Ever since the development of the Normalised Di�erence Vegetation Index, or NDVI (Tu-
cker, 1979) near-infrared radiation (NIR) has become the essential component in remotely 
sensed vegetation assessments. Near-Infrared (NIR) radiation is widely considered to be an 
essential component in remotely sensed land cover assessments. NIR and its relationship 
with regards to other wavelengths – Red in particular – has led to the development of some 
valuable classi�cation indices, such as the Normalised Di�erence Vegetation Index, or NDVI 
(Tucker, 1979). �e high sensitivity of all types of vegetation to NIR radiation makes it an 
extremely useful tool for large-scale land cover assessments (Townshend et al., 1991; De-
Fries et al., 1995) and discriminating between various types of vegetation (Running et al., 
1995; Schmidt & Skidmore, 2003). In this example, we investigate whether subtle variations 
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in NIR re�ectance can be used as a predictor for identifying tree species in a miombo region 
(vegetation dominated by Brachystegia and Julbernardia species) of Western Tanzania. Tree 
health, height, size, prevalence, and leaf density are all potential factors that will in�uence 
NIR re�ection and contrive to produce a spectral signature unique to each tree. If the spectral 
signature of individual trees is representative of that particular species as a whole, then there 
is potential to map large areas of forest and quickly discriminate tree species from above. 
�is ability to perform rapid biodiversity assessments of the miombo woodland would have 
bene�ts for ecologists and conservationists alike.

Methodology. �e data were collected at the Greater Mahale Ecosystem Research and Con-
servation (GMERC) camp in Western Tanzania (5°30’14.59”S, 30°33’44.49”E). �e local 
landscape is characterised by miombo woodland, wet and dry grasslands, and well-establis-
hed gallery forest in riparian valleys (Piel et al., 2015). Ground truthing assessment took 
place over two research trips (2018 & 2019) and data on over 400 individual trees in areas of 
miombo woodland were recorded. �ese data comprised the tree species, DBH, qualitative 
canopy description (to assist orthomosaic delineation) and the GPS coordinates for each tree, 
taken from the trunk. RGB data capture (included in Figure 4.8-1 as a visual reference and 
not used for analysis) was carried out using a DJI Mavic Pro in conjunction with the DJI GS 
Pro �ight planning application. Multispectral data were obtained by �ying over the ground-
truthed areas at 120 m (400�) and using a high side-lap setting of 90 %. �e aircra� was a 
custom-built DJI F550 hexacopter operating a PIXHawk �ight controller, carrying a Parrot 
Sequoia multispectral sensor set-up to capture data in four bands, Green (530–570 nm) Red 
(640–680 nm) Red Edge (640–680 nm) and Near Infrared (770–810 nm). A calibration panel 
of known re�ectance values was photographed before each �ight to allow for images captured 
under changing illumination conditions to be spectrally corrected and standardised during 
processing. �e recorded data were processed with Pix4D so�ware to produce single-band 
grayscale re�ectance maps that were subsequently combined to generate a 4-band false-co-
lour orthomosaic using ArcMap (Figure  4.8-1). Tree GPS coordinates were overlaid onto 
these rasters and the laborious process of canopy delineation began. A total of 377 canopies 
across 14 di�erent species were determined to be identi�able and selected for analysis. Quan-
titative pixel data was extracted from each raster band (Green, Red, Red Edge & NIR) for 
each identi�ed tree, and the data combined into basic statistics for the 14 di�erent species 
(Min, Max, Mean, Median & Std Dev). �ese descriptive statistics were then analysed in R 
Studio under a range of classi�cation techniques, such as Linear Discriminant Analysis, Sup-
port Vector Machines (SVM) and Random Forest, to �nd the highest accuracies and the best 
approach for tree identi�cation.
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Results. � ese data were analysed under two groupings, Species and Genus. A highest classi-
� cation accuracy of 61 % was achieved for the dataset containing fourteen species using a va-
riant of SVM. � e same analysis also gave the best classi� cation accuracy of 75 % when using 
the genus dataset, which further reduced the data to7 classes. � e more established techniques 
of SVMs and Discriminant Analysis generated the highest accuracies, whilst newer approa-
ches such as Neural Networks tended to struggle. � is trend was not readily apparent during 
earlier testing using larger, full-pixel datasets rather than condensed averages, suggesting that 
Neural Networks require a much larger dataset to generate better prediction accuracy.

Figure 4.8-1: Le�  panel – Traditional RGB orthomosaic of the study site, GMERC Camp, 
Western Tanzania. Middle panel – False colour orthomosaic of the study site (showing the 
same area as Figure 4.8-1) displayed through NIR, Red, and Green channels. Right panel – 

False colour orthomosaic of the study site, with six of the most numerous tree species displayed 
as delineated canopy polygons. BB – Brachystegia boehmii; BM – Brachystegia microphylla; 
BS – Brachystegia spiciformis; JG – Julbernardia globi� ora; MA – Monotes africana; PC – 

Parinari curatellifolia. All � gures were prepared by the authors for this chapter.

Box 2: Community monitoring of land-cover change in Tanzanian forest 
reserves

Forest ecosystems are threatened worldwide by human activities like conversion to agricultu-
re, settlements, charcoal production, mining and logging. � ere is a need to monitor the sta-
tus and trends in forest cover, forest structure and threats at temporal and spatial scales mea-
ningful to inform local decisions. Drones could be powerful tools to quickly collect, visualize 
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and share detail information on forests and human activities at the local scales and monitor 
land cover and land use change as part of a participatory decision-making process. In this box 
we give a brief overview of how local communities and government decision makers could 
potentially use drones combined with participatory mapping approaches to monitor the en-
forcement and implementation of village land use plans and community own protected areas.

�e Greater Gombe Ecosystem (GGE) is an area of 640 km2 located on the eastern shore of 
Lake Tanganyika in the Kigoma region of western Tanzania (Pintea et al., 2016). It includes 
Gombe National Park and adjacent community lands covering 27 villages. At Gombe stud-
ies of wild chimpanzees (Pan troglodytes schweinfurthii) began in 1960 with the research of 
Dr. Jane Goodall (Wilson et al., 2020). Over the last few decades, there has been signi�cant 
deforestation and environmental degradation outside the park. In addition to chimpanzee 
habitat loss and fragmentation, deforestation in hilly terrain of the ecosystem also resulted in 
unstable watersheds, threatening local settlements with more frequent and severe landslides 
and �ash �oods (Pintea et al., 2012). 

In 1994 the Jane Goodall Institute (JGI) started the Lake Tanganyika Catchment Reforesta-
tion and Education (TACARE) program designed to engage communities as key stakeholders 
in forest and chimpanzee conservation. Now known as Tacare, it represents the Jane Goodall 
Institute’s (JGI) community-centered conservation approach. Tacare is rooted in participa-
tion and inclusion. By directly engaging with local communities, a holistic approach develops 
understanding of how people are connected to ecosystems: combining traditional knowledge 
with science and appropriate use of innovative technologies, such as drones.

�e Tacare process ensures that local communities own and drive the conservation e�ort 
on their lands. It includes facilitating local communities to secure land tenure and rights to 
natural resources according to the government land policies. In the case of Tanzania this in-
volves a Participatory Village Land Use Planning process that facilitates local communities to 
resolve any land disagreements and agree on village boundaries and land uses to meet speci�c 
community needs from access to clean water to farmland. �is forms a foundation for other 
interventions targeting natural resource management, health, and sustainable livelihoods.

In GGE, participatory village land-use plans were prepared by the communities and facil-
itated and supported by JGI, including the use of high-resolution satellite imagery, GIS and 
other mapping tools. 

By 2009,13 villages voluntarily assigned 9,690 ha, or 26 %, of their lands as Village Land 
Forest Reserves (Pintea, 2011). �e location of these reserves was guided by one spatial vision 
developed as part of the GGE Conservation Action Plan (GGE-CAP, 2009) that resulted in 
an interconnected network of village forest reserves that covered 68 % of the original historic 
chimpanzee habitat in GGE (Pintea, 2007).
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Figure 4.8-2: Upper panel showing part of the orthomosaic from 2015, middle panel showing 
part of the orthomosaic in 2016 and the lower panel showing the di� erence in the digital 

surface model between the two images draped over the shaded relief derived from 2015 DSM.
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JGI and partners are now engaged in building capacity of village governments to imple-
ment their land-use plans, including restoring and managing their Village Forest Reserves. 
�is includes supporting village forest monitors to use Survey 123 (a mobile app to collect 
spatial data) and mobile technologies to patrol their forests on the ground and interpretation 
of very high-resolution imagery from Maxar satellites and drones. �is improves transparen-
cy and establishes a common language and understanding of how local communities enforce 
their village land use plans. 

Figure 4.8-2 shows an area of Kalinzi village forest reserve in GGE acquired from a �xed-
wing drone with a RGB camera in 2015 and 2016. Such imagery could be used by local com-
munities to visually detect both increase in tree cover and new threats such as conversion 
of trees to new farms or logging. Permanent and temporary houses could be seen as well as 
the type of crops used for farming. Visual interpretation could be complemented by change 
detection algorithms using datasets derived from drone imagery. For example, Figure 4.8-2 
shows normalized di�erences in surface heights detected from 2015 and 2016 Digital Surface 
Models (DSM) estimated as (DSM2016-DSM2015)/DSM2016+DSM2015). Note that this 
approach could quickly highlight areas of tree cover loss and gain that could be con�rmed by 
visual interpretation (Pintea, 2016).

4.8.3  Animal detection

A major part of the drone research in conservation has focused on detecting and locating an-
imals (or their signs) in their environment and then using these data to inform distribution, 
density and abundance estimates (Wich & Koh, 2018; Chabot & Bird, 2015; Christie et al., 2016). 
Recent studies reveal that sensors on drones can be used to detect a large number of species 
across a broad range of terrestrial and aquatic habitats. In terrestrial habitats examples range 
from large elephants in open savanna areas (Vermeulen et al., 2013) to small birds in �elds (Is-
rael & Reinhard, 2017). Studies in aquatic environments include marine mammals (Hodgson et 
al., 2013; Koski et al., 2015), sea turtles (Rees et al., 2018), sharks (Rieucau et al., 2018; Kiszka et 
al., 2016), �sh in rivers (Groves et al., 2016; Harris et al., 2019) and marine conservation (John-
ston, 2019). Drones have been used in a variety of environments from polar regions to the trop-
ics and highland plateaus (Su et al., 2018; Du�y et al., 2017; Fiori et al., 2017). Although most 
work on animal detection has been done using drones equipped with visual spectrum cameras 
there is a growing number of studies using thermal sensors mounted to drones with the aim of 
detecting animals when visual spectrum cameras are ine�ective (e.g. low-light, camou�age, par-
tial cover under vegetation) (Scholten et al., 2019; Spaan et al., 2019; Burke et al., 2019; Rashman 
et al., 2018; Gonzalez et al., 2016; Kays et al., 2019; Seymour et al., 2017). While these studies 
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overcome limitations of visual spectral data, a challenge of using thermal data is the di�culty in 
distinguishing species when sizes are similar (Burke et al., 2019b; Kays et al., 2019). Kays et al. 
(2019) suggest that combining �ash photography or IR illumination for RGB images in combi-
nation with thermal sensors might reduce such challenges. 

Several studies have used drones to obtain data on the distribution and/or density of animals, 
and some have even used those data to obtain abundance estimates. A recent study of chinstrap 
penguins (Pygoscelis antarcticus) derived the total abundance of 14 colonies from data obtained 
with a �xed wing drone (Pfeifer et al., 2019). Two other recent studies used �xed wing drones 
to obtain data on several large wild and domestic herbivores on the Tibetan Plateau and Chang 
Tang National Nature Reserve in China and estimate their abundance (Guo et al., 2018; Hu et 
al., 2018). Obtaining density estimates from animals with drones has also been used in marine 
settings as for example in a study on blacktip reef sharks (Carcharhinus melanopterus) where 
standard visual spectrum cameras have been used to detect sharks in relatively shallow and clear 
waters (Rieucau et al., 2018). 

An important aspect of the work with drones is comparing how similar drone counts are to 
those obtained with other methods (see Box 3). Studies have investigated this issue with visual 
spectrum and thermal sensors and for both animal and animal sign counts (Spaan et al., 2019; 
Burke et al., 2019b; Wich et al., 2016b; Gooday et al., 2018) but the results vary. For instance, 
fewer orangutan nests were observed with drones equipped with a visual spectrum camera than 
on the ground, but the ground and aerial counts were correlated (Wich et al., 2016b). A carefully 
designed study with fake birds indicated that counts on visual spectrum drone images were 
more accurate than ground counts (Hodgson et al., 2018). Several studies with thermal imaging 
cameras indicated that counts from the thermal data were comparable with ground data or had 
higher counts for animals living high up in the forest canopy (Spaan et al., 2019; Burke et al., 
2019b; Corcoran et al., 2019), but were fewer in areas where canopy cover was high, for example 
in the case of New Zealand fur seals (Arctocephalus forsteri) (Gooday et al., 2018). Likewise, in 
one study, fewer primates were observed in a dense forest on the thermal images than during 
ground counts due to the high canopy cover (Kays et al., 2019).

Box 3: Using drones and thermal cameras to count spider monkeys 

Spider monkey (Ateles spp.) populations are declining across their range (Mexico–Bolivia) 
due to deforestation and hunting but determining population abundance by traditional met-
hods is di�cult as these species are arboreal, live in closed-canopy forests and have a high de-
gree of �ssion-fusion dynamics (Ramos-Fernández & Wallace, 2008). For this reason, Spaan 
et al. (2019) assessed the e�ectiveness of using a drone �tted with a thermal infrared camera 
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(TIR) to survey Geo�roy’s spider monkeys (A. geo�royi) at their sleeping sites in Los Arboles 
Tulum (20°17’50”N, 87°30’59”W), Mexico. �ey compared the number of spider monkeys 
counted by observers on the ground (ground counts) to the number of spider monkeys coun-
ted from TIR drone footage (drone counts) using a concordance analysis.

Ground and drone counts were compared for a total of 28 drone �ights at three spider 
monkey sleeping sites. Between sunset and sunrise, the temperature of the environment dif-
fered the greatest from the spider monkey skin temperature, presenting the ideal time to �y 
the drone with the TIR camera. However, due to restrictions in national regulations, �ights 
were performed around sunset and sunrise. �e authors performed a combination of both 
grid and hover �ights at 60–70 m above ground level. Grid �ights consisted of the drone 
�ying in a grid pattern over the sleeping site and during hover �ights the drone hovered 
above a single sleeping tree for several minutes. A group of observers counted the number of 
monkeys in a subgroup from the ground as the drone was �ying over the same area simul-
taneously. �e number of monkeys observed in the TIR footage collected by the drone was 
determined post-�ight. Using hand-drawn maps they determined the visual �eld of ground 
observers and only compared the number of monkeys observed from the drone TIR footage 
to the number of monkeys counted on the ground that fell within that area.

�e researchers �ew a custom-made quadcopter �tted with a TeAx Fusion Zoom dual-vi-
sion TIR/RGB camera. �e camera was �tted to a gimbal to keep the footage steady dur-
ing �ights. Grid and hover �ights were planned on the Mission Planner so�ware (v1.3.52.0; 
http://ardupilot.org/planner/)

�e authors used Lin’s concordance coe�cient to test agreement between the methods 
(Lin, 1989), where agreement is measured from -1 (no agreement) to 1 (perfect agreement) 
(McBride, 2005). As individual monkeys are more likely to be missed during ground surveys 
when subgroups are larger in size (De�er & Pintor, 1985; Chapman et al., 2015), the authors 
predicted that the two survey methods would show no agreement for large subgroups, i.e. 
the drone would count more monkeys than ground observers. Contrastingly, when spider 
monkey subgroups were small, they predicted a high level of agreement between the meth-
ods, i.e. the drone and ground counts would not di�er. To test the hypotheses, they compared 
drone and ground counts for small subgroups (≤9 individuals) and large subgroups (≥10 
individuals).

When spider monkey subgroups were small, the two methods agreed (rc = 0.90 [95 % CI: 
0.79–0.95]), indicating that the drone performed equally well as observers on the ground. 
However, when spider monkey subgroups were large (i.e. included ten or more individuals), 
drone counts were higher than ground counts (i.e. no agreement between the methods: rc = 
0.08 [95 % CI: -0.38–0.40], Figure 4.8-3).
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As expected, drone counts were higher than ground counts for large subgroups. � ey at-
tributed this di� erence to the di�  culty of observing primates from the ground as they tend 
to blend in with their surroundings, whereas the monkeys appeared as clearly distinguishable 
white objects on the TIR footage. Additionally, TIR footage from drones can be replayed mul-
tiple times a� er � ights have been completed, aiding detection of the animal of interest. � e 
authors recommended the use of drones � tted with thermal cameras for surveying arboreal 
primates as they can cover larger areas and count monkeys equally well or better than ground 
observers. 

To overcome the short � ight limitations of quadcopters, future avenues will explore the 
use of � xed-wing drones � tted with thermal cameras to cover larger areas in single � ights. 
Research should focus on � ying over sleeping sites at night, to ensure that the entire group 
can be counted in a single � ight or a series of back-to-back � ights and thereby obtain (near) 
complete counts of spider monkey groups. 

Figure 4.8-3: Bar chart showing the di� erences in the number of monkeys counted from the 
TIR drone footage and by observers on the ground for small and large subgroups.

Researchers have been using drones � tted with visual spectrum cameras for a variety of other 
interesting research and/or conservation questions that go beyond detecting animals. Assessing 
the health of animals is an important topic for conservation and innovative work shows that 
visual spectrum images acquired with drones can be used to obtain body-size measurements of 
Australian fur seals (Arctocephalus pusillus doriferus) as indices of their body condition (Allan et 
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al., 2019). In other work researchers have used images obtained from drones to study the social 
interactions in Barren-ground caribou (Rangifer tarandus groenlandicus) (Torney et al., 2018) 
and blacktip reef sharks (Carcharhinus melanopterus) (Rieucau et al., 2018). �ese studies are 
indicative of the emergence of new ways to analyse drone data to answer ecological questions. 

Researchers have also ventured beyond imaging sensors and are using an array of di�erent 
sensors for studies that are important for conservation. A very promising, but vastly understud-
ied topic is the use of acoustic sensors mounted to drones to detect species through their calls. A 
consistent challenge for such studies is how to avoid having the noise from the drone in�uence 
the recordings of the animals’ calls. One option is to increase the distance from the drone to the 
microphone by having the microphone (with or without the recorder) attached to a cable or rope 
below the drone. �is approach was used in a study on a number of bird species and compared to 
ground counts only produced slightly lower species richness estimates and comparable number 
of birds per point count even though for species with low-frequency songs the drone estimates 
were lower (Wilson et al., 2017). Another study used a Styrofoam ba�e to reduce the noise from 
the drone and successfully recorded the echolocation calls of the Brazilian free-tailed bat (Ta-
darida brasiliensis) (Kloepper & Kinniry, 2018; Fu et al., 2018). 

An important aspect of many conservation projects is to locate animals and subsequently de-
termine their home-range (�omas et al., 2012). A multitude of methods is being used for this 
including hand-held radio receivers to locate VHF tags on animals and GPS tags which record 
GPS locations at predetermined intervals that can be uploaded to phone networks or satellites 
(�omas et al., 2012). �ese methods have their challenges such as the di�culties of locating 
VHF tags over large and o�en inaccessible areas or in the case of GPS tags the costs of obtaining 
data through satellites or the size of GPS tags being too large for the animal of interest. As a 
result, several studies have investigated using drones to locate VHF tags on animals but most of 
these are still in experimental phases (Muller et al., 2019; Nguyen et al., 2019; Desrochers et al., 
2018; Cli� et al., 2015). A recent study on yellow-eyed penguins (Megadyptes antipodes) was able 
to use a drone to locate VHF tagged penguins faster and with a lower search e�ort than other 
methods (on the ground VHF tracking and manual ground searching) (Muller et al., 2019). Al-
though this technology will take some time to mature and become widely available, the results 
are promising and could facilitate conservation e�orts tremendously. 

Core challenges preventing drones from becoming an e�cient tool for conservation are the 
burdens of data curation and post-processing, activities that rely on skills not traditionally pri-
oritized in conservation science curricula. At the moment a large number of the analyses per-
formed using data captured by drones are conducted by humans who count the animals manual-
ly. �is means that the e�ciency of data collection gained by using drones is potentially o�set by 
the costs and time needed to manually count animals or other objects of interest. �is challenge 
is not unique to the usage of drones in conservation but applies to other methods of collecting 
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data as well (e.g. camera traps) (Weinstein, 2018). �ere are two important aspects to count-
ing animals: detection and in the case of multiple species, classi�cation (Wich & Koh, 2018). 
�ere have been several studies that applied computer vision methods to automate detection 
of animals or their signs (e.g. nests) with almost all studies focusing on a single species (Wich 
& Koh, 2018; Weinstein, 2018; Kellenberger et al., 2018a). Particularly promising are machine 
learning methods that have been applied to both thermal and visual spectrum images (Corcoran 
et al., 2019; Kellenberger et al., 2018b). In some cases, non machine learning methods that use 
thresholding and classi�cation methods have been successful as well (Vayssade et al., 2019). De-
spite the promise of automated detection and classi�cation of multiple species, more research is 
needed that incorporates a number of important characteristics such as the sensors used, habitat 
type, size of the animal, number of species in the area, colour of the animal, and so forth on de-
tection and classi�cation accuracies. At the same time there is a need to make machine learning 
methods more accessible to non-computer scientists, increase access to large training datasets 
(potentially in collaboration with citizen science projects), and methods to deal with small and 
unbalanced datasets (Weinstein, 2018; Kellenberger et al., 2018b). Collaborations between com-
puter scientists, ecologists and large companies that can provide the required computing power 
are increasingly becoming important to achieve these goals. Universities could facilitate this as 
well by incorporating machine learning into the curriculum for conservation science students.

It is important to discuss the potential disturbance that drones can cause animals and how 
to minimize potential sources of disturbance (Mulero-Pázmány et al., 2017; Hodgson & Koh, 
2016). �ere have been several studies conducted on disturbance to animals caused by drones 
(reviews in Wich & Koh, 2018; Mulero-Pázmány et al., 2017) and this research area continues 
to grow (e.g. Brunton et al., 2019; Bennitt et al., 2019). �ese studies indicate that disturbance 
ranges from being absent (at least in terms of an observable change in the behaviour of an ani-
mal) to leading to strong behavioural reactions by animals such as �ying away and alarm calling 
(see Table 6.2 in Wich & Koh (2018). �e review by Mulero-Pázmány et al. (2017) shows that 
reactions depend on aspects related to the animals themselves (species, life-history, breeding or 
non-breeding, and aggregation level) and characteristics of the drone (multirotor, �xed wing, 
powering system) and �ight pattern (grid �ight or �ight that speci�cally approaches the animal). 
Speci�cally, �ights with larger drones and those that are powered by fuel instead of batteries lead 
to stronger reactions by wildlife. In addition, birds are generally more likely to be disturbed by 
drones than other taxa (Mulero-Pázmány et al., 2017). As a result of these studies, researchers 
started to develop guidelines to minimize disturbance (Wich & Koh, 2018; Hodgson & Koh, 
2016). It is important to compare the potential disturbance of drones to the potential of alterna-
tive survey methods (Wich & Koh, 2018). A set of two observers walking a trail in a rainforest to 
count non-habituated primates will o�en also lead to disturbance (Schaik et al., 1983), a manned 
aircra� �ying over penguins can lead to pronounced disturbance even at large distances (Wilson 
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et al., 1991) and even camera traps have been found to have some in�uence on animals (Meek et 
al., 2014, 2016). �ere is therefore a strong need to conduct comparative studies in which several 
survey methods are evaluated in terms of the disturbance they cause to animals (e.g. Scholten et 
al., 2019). �ese studies should, ideally, go beyond the visually observable behaviour of animals 
and incorporate physiological measures of stress as well. To date, almost no research has been 
conducted on this, except for the measurement of physiological responses to drones in bears 
(Ditmer et al., 2015). 

4.8.4  Poaching

Poaching is a core issue for animal conservation and generally considered one of the two main 
threats facing wildlife (the other being land-cover change) (Benítez-López et al., 2017, 2019; 
Fa & Brown, 2009; Wich & Marshall, 2016). Given the limited resources available to protected 
area managers for deploying anti-poaching missions and the risks involved with such missions 
(Olivares-Mendez et al., 2013), there is an interest in determining whether drones could support 
anti-poaching missions (review in Wich & Koh (2018)). �e most important aspect of such mis-
sions is to detect poachers before they reach the target animal(s) and several organizations have 
been deploying drones for such e�orts (e.g. WWF, Air Shepherd10). It is di�cult to determine 
the success of these e�orts as understandably few details of such operations are provided by the 
organizations involved. It is known, however, that poachers have been detected and that on at 
least one occasion this has led to poachers being intercepted11. Despite this, little has been pub-
lished on how o�en poachers might have been missed during operations and which factors are 
important for detection. An experimental study in which poachers were mimicked by students 
and research sta� in Tanzania showed that a thermal sensor led to a higher detection probability 
than a visual spectrum sensor at dawn and dusk, but that a higher canopy density and larger dis-
tance from the line of �ight led to decreased detection probability on thermal images (Hambre-
cht et al., 2019). �e study also found that image analysts di�ered in their detection probability 
and suggested that machine learning might solve that issue. As with the detection of animals a 
future avenue is to automate the detection of poachers through machine learning. Some promis-
ing work on automating the detection using machine learning is being conducted and once fully 
operational in the �eld should facilitate the use of drones in anti-poaching missions (Bondi et al., 
2018; Fang et al., 2019). For anti-poaching missions, near-real-time detection must be achieved. 

10 https://www.dronezon.com/drones-for-good/wildlife-conservation-protection-using-anti-poaching-
drones-technology/

11  https://www.smartparks.org/track-record/
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At least three options are interesting to explore. First, detection on the drone and in case of a 
detection an alert being send to a ranger indicating location and object. Second, detection on 
live images at a remote server through a GSM network (Bondi et al., 2018). �ird, detection on 
live images on a local computer in the �eld. 

While drones might have many bene�ts, it is important to evaluate the social impacts that the 
use of drones for anti-poaching or other conservation e�orts might have (Wich & Koh, 2018; 
Sandbrook, 2015; Humle et al., 2014; Wich et al., 2016c; Nowlin et al., 2019). �e use of drones 
raises a set of questions surrounding data security, privacy, safety, negative implications for local 
communities, and so forth that require more discussion (Sandbrook, 2015; Nowlin et al., 2019). 
It is relevant to mention that these do not necessarily only apply to drones but might also apply 
to other remote sensors being used for conservation e�orts such as camera traps, satellites, and 
acoustic sensors (Wich et al., 2016c). Technology such as drones can, however, be used by local 
communities to map their lands which can be part of e�ort from local communities to resist dis-
possession of their lands (Millner, 2020; Radjawali et al., 2017). Although not widespread, stud-
ies conducted in Guatemala and Indonesia show that drones can be used by local communities 
to map their lands and use such maps to counter land use plans from the government (Millner, 
2020; Radjawali et al., 2017). 

4.8.5  Discussion

�e past decade or so has seen tremendous progress in the use of drones for conservation re-
search (Wich & Koh, 2018). �is progress has been facilitated by the growth and a�ordability of 
the consumer drone market, the development of drones for industries such as agriculture and 
mining, and the large open-source community for so�ware (e.g. Mission Planner12) and hard-
ware (e.g. Pixhawk13) that allowed for bespoke drone development for speci�c purposes. As a 
result, drones are now used in three important aspects of conservation: land-cover classi�cation 
and change detection, animal counts, and to assess human behaviour (e.g. poacher detection). 
For the latter social and privacy implications need to be considered carefully (Sandbrook, 2015; 
Humle et al., 2014; Nowlin et al., 2019) and eventhough there has been a proliferation of drone 
use for conservation it seems much of this is still in a research phase, and that as far as we are 
aware drones rarely form part of the standard operations of day-to-day conservation area man-
agement. In the case of anti-poaching usage of organizations such as Air Shepherd14, there are 

12 http://ardupilot.org/planner/
13 https://pixhawk.org/
14 https://airshepherd.org/
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sustained operations in a small number of areas, but such operations are not yet widespread nor 
are drones being used o�en operationally in conservation area management for mapping and 
animal counting. �is might partially be due to the complexity of using drones and analysing 
the data as well as integrating the results with real-time decision making in the case of poaching. 
�us, the usage of drones for conservation is still in its infancy and it will likely take several years 
before this technology will have matured su�ciently for sustained operational usage in a large 
number of conservation management and research settings.

�ere are likely several reasons why the uptake of the technology at a large scale has not 
happened yet. First, despite the relative ease with which data can be collected in certain circum-
stances the analyses of the data, particularly for animal counts is still largely manual, thereby 
increasing the costs and potentially preventing drones from being more cost e�cient than other 
data collection methods. �ere is thus a strong need for (semi) automated methods. Second, in 
many countries the regulations prevent or make it quite complicated to �y beyond the visual 
line of sight. Because this distance is ~500 m from the pilot, it restricts the use of drones to quite 
small areas. Whilst regulations are crucial for the safe operation of drones it is worth evaluating 
a risk-oriented approach in which such distances can be increased in areas of low risk to other 
air users, people, and property. �ese low-risk areas are o�en where conservationists would like 
to use drones: remote national parks, marine reserves, and so forth. �ird, even though many 
drone systems, in particular multirotor systems, have become very user friendly there is still a 
hurdle for the adoption of the technology by those who have had less opportunity to use tech-
nology (Paneque-Gálvez et al., 2014) and even with the consumer grade drones accidents can 
happen due to insu�cient experience (Semel et al., 2019). �is hampers uptake and bespoke, 
sometimes costly, training is required to overcome this at the short term (Radjawali et al., 2017; 
Paneque-Gálvez et al., 2014, 2017). Fourth, drone usage o�en relies on access to internet for up-
dates in �rmware, ground control so�ware, downloading base maps, and potentially uploading 
data to cloud servers for analyses. In many areas where conservationists would like to operate 
drones there is no mobile network nor o�ces with wi� connection from satellites which can 
make operations more cumbersome (Paneque-Gálvez et al., 2014, 2017). Fi�h, drone repair 
opportunities are o�en limited. Consumer systems repairs are o�en di�cult due to propriety 
systems and lack of availability of spare parts. In contrast, bespoke systems can o�en be repaired 
in the �eld given that spare parts and a drone engineer area are available, however this rarely is 
the case (Paneque-Gálvez et al., 2014). Sixth, the durability of drones is limited and o�en not 
well quanti�ed (Paneque-Gálvez et al., 2014). It is for instance in most cases not known a�er 
how many hours of use a motor should be repaired because durability testing with most parts 
of a drone either have not been conducted or have not been made available by companies. �e 
challenges outlined above are by no means meant to be an exhaustive list, but just some that we 
have encountered in our work and have found in the literature. In addition to these the location 
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one aims to operate in can pose some additional challenges such as cold temperatures in�uenc-
ing �ying time when using LiPo batteries, sand and corrosion when �ying in coastal or marine 
settings can wear drone parts (Du�y et al., 2017). 

Even though drones o�er rich data acquisition opportunities, combining drones with other 
technologies can lead to the integration of various types of data (e.g. acoustic, visual, vibration) 
and/or similar data collected using multiple data sensors (e.g. visual spectrum images from a 
camera on a drone and from camera traps on the ground) (Wich & Koh, 2018). Drones could 
be used for both data acquisition and data transmission in this type of sensor network. Exciting 
steps in this direction are being taken by initiatives such as Smart Parks who have been operating 
in several National Parks in Africa and track animals through long range (LoRa) networks15. 
Given the variety of sensors to detect poaching events or poachers for instance, there is a wealth 
of opportunity to link sensors together to achieve a better anti-poaching system (Kamminga et 
al., 2018). Such integration of sensors is also becoming more common in ecological research and 
combined with the rapid developments in machine learning will likely lead to very exciting new 
research and conservation approaches during the coming decade (Allan et al., 2018).
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ADC Analog-Digital Converter
AI Arti�cial Intelligence
ALS Airborne Laser Scanning
ANN Arti�cial Neural Networks
AoI Area of Interest
APD Avalanche Photo Diode
BBA Bundle Block Adjustment
BVLOS Beyond the Visual Line Of Sight
CART Classi�cation and Regression Trees
CNN Convolutional Neural Networks
CP Check Point
CSM Crops Surface Models
CWSI Crop Water Stress Index
DEM Digital Elevation Model
dGPS/  di�erential GPS/di�erential GNSS
dGNSS
DN Digital Numbers
DoD DEM of Di�erence
DOP Digital Ortho Photo
dSLR digital Single Lens Re�ex
DSM Digital Surface Model
DTM Digital Terrain Model
DSLR Digital Single Lens Re�ex
ECEF Earth-Centered-Earth-Fixed
EASA European Aviation Safety Agency
FCN Fully Convolutional Networks
FOV Field of View
FR Flow Routing
FTIR Fourier Transform Infra-Red
FTMG Full Tensor Magnetic Gradiometry

FVC Fractional Vegetation Coverage
FWHM Full Width at Half Maximum
GCI Green Chlorophyll Index
GCP Ground Control Point
GI Greeness Index
GIS Geo-Information System
GLCM Grey-Level Co-occurrence Matrix
GML Gaussian Maximum Likelihood
GMT Greenwich Mean Time
GNDVI  Green Normalized Di�erence Vegeta-

tion Index
GNSS Global Navigation Satellite System
GPR Ground-Penetrating Radar
GPS Global Positioning System
GSD Ground Sampling Distance
HS Hyper-Spectral
HIS Hyper-Spectral Image
IDW Inverse Distance Weighted
ILSVRC   ImageNet Large-Scale Visual Recogni-

tion Challenge
IMU Inertial Measurement Unit
INS Inertial Navigation System
LAI Leaf Area Index
LBP Linear Binary Pattern
LIBS Laser Induced Breakdown Spectrometry
LiDAR Light Detection and Ranging
LoD Level of Detection
LSM Leas-Square Matching
LWIR Long-Wave Infra-Red
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Abbreviations

M3C2  Multiscale Model to Model Cloud Com-
parison

M3C2 Multiscale Model to Model Cloud
-PM Comparison – Precision Maps

MAE Mean Absolute Error
MFD Multiple-Flow Direction
ML Machine Learning
MLP Multi-Layer Perceptron
MS Multi-Spectral
MTOM Maximum Take-O� Mass
MVS Multi-View Stereo
MWIR Mid-Wave Infra-Red
NCC Normalized Cross-Correlation
NDVI Normalized Di�erence Vegetation Index
NIR Near Infra-Red
NMAD Normalized Median Absolute Deviation
OA Overall Accuracy
OBIA object-based image analysis
PA Producer Accuracy
PA Precision Agriculture
PPK Post-Processed Kinematic
PPR Pulse Repetition Rate
Q-Q Quantile-Quantile
RBF Radial Basis Functions
RENDVI  Red-Edge Normalized Di�erence Vege-

tation Index
RF Random Forest
RGB Red Green Blue
RGBVI RGB Vegetation Index
RMSE Root Mean Square Error
RPAS Remotely Piloted Aircra� System
RTK Real-Time Kinematic
SAVI Soil-Adjusted Vegetation Index
SBET Smoothed Best Estimate of Trajectory

SFAP Small Format Aerial Photography
SfM Structure from Motion
SGD Stochastic Gradient Descent
SLR Single Lens Re�ex
SNR Signal-to-Noise-Ratio
sUAS, small UAS, small UAV
sUAV
SBS Sequential Backward Selection
SEM Scanning Electron Microscope
SFS Sequential Forward Selection
SSD Sum of Squared Di�erences
SVM Support Vector Machine
SWIR Short-Wave Infra-Red
TGCP �ermal Ground Control Point
TGI Triangular Greenness Index
TIN Triangulated Irregular Network
TIR �ermal Infra-Red
TLS Terrestrial Laser Scanning
TMI Total Magnetic Intensity
ToF Time of Flight
UA User Accuracy
UAV  Unmanned/uncrewed/unoccupied Ae-

rial Vehicle
UAS  Unmanned/uncrewed/unoccupied Ae-

rial System
ULS UAV Laser Scanning
UWB Ultra Wide Band
VIS Visible Spectrum
VLF-EM Very-Low-Frequency Electro Magnetics
VNIR Visible and Near-Infra-Red
VTOL Vertical Take-O� and Landing
WGS World Geodetic System
XRF X-Ray Fluorescence
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