2,045 research outputs found

    The design and evaluation of an ergonomic contactless gesture control system for industrial robots

    Get PDF
    In industrial human-robot collaboration, variability commonly exists in the operation environment and the components, which induces uncertainty and error that require frequent manual intervention for rectification. Conventional teach pendants can be physically demanding to use and require user training prior to operation. Thus, a more effective control interface is required. In this paper, the design and evaluation of a contactless gesture control system using Leap Motion is described. The design process involves the use of RULA human factor analysis tool. Separately, an exploratory usability test was conducted to compare three usability aspects between the developed gesture control system and an off-the-shelf conventional touchscreen teach pendant. This paper focuses on the user-centred design methodology of the gesture control system. The novelties of this research are the use of human factor analysis tools in the human-centred development process, as well as the gesture control design that enable users to control industrial robot’s motion by its joints and tool centre point position. The system has potential to use as an input device for industrial robot control in a human-robot collaboration scene. The developed gesture control system was targeting applications in system recovery and error correction in flexible manufacturing environment shared between humans and robots. The system allows operators to control an industrial robot without the requirement of significant training

    Personalization in cultural heritage: the road travelled and the one ahead

    Get PDF
    Over the last 20 years, cultural heritage has been a favored domain for personalization research. For years, researchers have experimented with the cutting edge technology of the day; now, with the convergence of internet and wireless technology, and the increasing adoption of the Web as a platform for the publication of information, the visitor is able to exploit cultural heritage material before, during and after the visit, having different goals and requirements in each phase. However, cultural heritage sites have a huge amount of information to present, which must be filtered and personalized in order to enable the individual user to easily access it. Personalization of cultural heritage information requires a system that is able to model the user (e.g., interest, knowledge and other personal characteristics), as well as contextual aspects, select the most appropriate content, and deliver it in the most suitable way. It should be noted that achieving this result is extremely challenging in the case of first-time users, such as tourists who visit a cultural heritage site for the first time (and maybe the only time in their life). In addition, as tourism is a social activity, adapting to the individual is not enough because groups and communities have to be modeled and supported as well, taking into account their mutual interests, previous mutual experience, and requirements. How to model and represent the user(s) and the context of the visit and how to reason with regard to the information that is available are the challenges faced by researchers in personalization of cultural heritage. Notwithstanding the effort invested so far, a definite solution is far from being reached, mainly because new technology and new aspects of personalization are constantly being introduced. This article surveys the research in this area. Starting from the earlier systems, which presented cultural heritage information in kiosks, it summarizes the evolution of personalization techniques in museum web sites, virtual collections and mobile guides, until recent extension of cultural heritage toward the semantic and social web. The paper concludes with current challenges and points out areas where future research is needed

    Wire Harness Assembly Process Supported by a Collaborative Robot: A Case Study Focus on Ergonomics

    Get PDF
    Products and assets are becoming increasingly “smart”, e.g., mechatronic, electronic, or cyber-physical. In the lack of fully reliable wireless solutions, extensive wiring and wire bundling into wire harnesses are needed. This has manufacturing implications, leading to increasingly complex wire harness assembly processes, where numerous components, connectors, and cables are assembled, connecting critical and non-critical electric and electronic systems in smart products and assets. Thus, wire harnesses demand is rapidly rising in most industries, requiring human or robotic work. Often, required work tasks are repetitive and physically demanding, while still needing people for quality reasons. An attractive solution would therefore be humans collaborating with robots. Unfortunately, there are very few scientific studies on automation solutions using collaborative robots (cobots) for wire harness assembly process tasks to increase process productivity and improve work ergonomics. Furthermore, wire harness assembly process tasks are presently carried out 90% manually in this industry, causing serious ergonomic problems for assembly workers who perform such tasks daily. The challenge is reducing the ergonomic risks currently present in many established wire harness assembly processes while improving production time and quality. This paper presents an early prototype and simulation to integrate a cobot into a wire harness assembly process, primarily for work ergonomic improvements. The use of a cobot is specifically proposed to reduce ergonomic risks for wire harness assembly workers. Two methodologies: RULA and JSI were used to evaluate the ergonomics of the task of cable tie collocation. The real-world case study results illustrate the validation of a cobot which significantly reduced non-ergonomic postures in the task of placing cable ties in the wire harnesses assembly process studied. An ergonomic analysis without the cobot (the actual process) was conducted, based on RULA and JSI methodologies, presenting the highest possible scores in both evaluations, which calls for urgent changes in the current wire harness assembly process task studied. Then, the same analysis was performed with the cobot, obtaining significant reductions in the ergonomic risks of the task at hand to acceptable values

    Mechanical design optimization for multi-finger haptic devices applied to virtual grasping manipulation

    Get PDF
    This paper describes the design of a modular multi-finger haptic device for virtual object manipulation. Mechanical structures are based on one module per finger and can be scaled up to three fingers. Mechanical configurations for two and three fingers are based on the use of one and two redundant axes, respectively. As demonstrated, redundant axes significantly increase workspace and prevent link collisions, which is their main asset with respect to other multi-finger haptic devices. The location of redundant axes and link dimensions have been optimized in order to guarantee a proper workspace, manipulability, force capability, and inertia for the device. The mechanical haptic device design and a thimble adaptable to different finger sizes have also been developed for virtual object manipulation

    Combining physical constraints with geometric constraint-based modeling for virtual assembly

    Get PDF
    The research presented in this dissertation aims to create a virtual assembly environment capable of simulating the constant and subtle interactions (hand-part, part-part) that occur during manual assembly, and providing appropriate feedback to the user in real-time. A virtual assembly system called SHARP System for Haptic Assembly and Realistic Prototyping is created, which utilizes simulated physical constraints for part placement during assembly.;The first approach taken in this research attempt utilized Voxmap Point Shell (VPS) software for implementing collision detection and physics-based modeling in SHARP. A volumetric approach, where complex CAD models were represented by numerous small cubic-voxel elements was used to obtain fast physics update rates (500--1000 Hz). A novel dual-handed haptic interface was developed and integrated into the system allowing the user to simultaneously manipulate parts with both hands. However, coarse model approximations used for collision detection and physics-based modeling only allowed assembly when minimum clearance was limited to ∼8-10%.;To provide a solution to the low clearance assembly problem, the second effort focused on importing accurate parametric CAD data (B-Rep) models into SHARP. These accurate B-Rep representations are used for collision detection as well as for simulating physical contacts more accurately. A new hybrid approach is presented, which combines the simulated physical constraints with geometric constraints which can be defined at runtime. Different case studies are used to identify the suitable combination of methods (collision detection, physical constraints, geometric constraints) capable of best simulating intricate interactions and environment behavior during manual assembly. An innovative automatic constraint recognition algorithm is created and integrated into SHARP. The feature-based approach utilized for the algorithm design, facilitates faster identification of potential geometric constraints that need to be defined. This approach results in optimized system performance while providing a more natural user experience for assembly

    The development of a human-robot interface for industrial collaborative system

    Get PDF
    Industrial robots have been identified as one of the most effective solutions for optimising output and quality within many industries. However, there are a number of manufacturing applications involving complex tasks and inconstant components which prohibit the use of fully automated solutions in the foreseeable future. A breakthrough in robotic technologies and changes in safety legislations have supported the creation of robots that coexist and assist humans in industrial applications. It has been broadly recognised that human-robot collaborative systems would be a realistic solution as an advanced production system with wide range of applications and high economic impact. This type of system can utilise the best of both worlds, where the robot can perform simple tasks that require high repeatability while the human performs tasks that require judgement and dexterity of the human hands. Robots in such system will operate as “intelligent assistants”. In a collaborative working environment, robot and human share the same working area, and interact with each other. This level of interface will require effective ways of communication and collaboration to avoid unwanted conflicts. This project aims to create a user interface for industrial collaborative robot system through integration of current robotic technologies. The robotic system is designed for seamless collaboration with a human in close proximity. The system is capable to communicate with the human via the exchange of gestures, as well as visual signal which operators can observe and comprehend at a glance. The main objective of this PhD is to develop a Human-Robot Interface (HRI) for communication with an industrial collaborative robot during collaboration in proximity. The system is developed in conjunction with a small scale collaborative robot system which has been integrated using off-the-shelf components. The system should be capable of receiving input from the human user via an intuitive method as well as indicating its status to the user ii effectively. The HRI will be developed using a combination of hardware integrations and software developments. The software and the control framework were developed in a way that is applicable to other industrial robots in the future. The developed gesture command system is demonstrated on a heavy duty industrial robot
    corecore