205 research outputs found

    OpinAIS: An Artificial Immune System-based Framework for Opinion Mining

    Get PDF
    This paper proposes the design of an evolutionary algorithm for building classifiers specifically aimed towards performing classification and sentiment analysis over texts. Moreover, it has properties taken from Artificial Immune Systems, as it tries to resemble biological systems since they are able to discriminate harmful from innocuous bodies (in this case, the analogy could be established with negative and positive texts respectively). A framework, namely OpinAIS, is developed around the evolutionary algorithm, which makes it possible to distribute it as an open-source tool, which enables the scientific community both to extend it and improve it. The framework is evaluated with two different public datasets, the first involving voting records for the US Congress and the second consisting in a Twitter corpus with tweets about different technology brands, which can be polarized either towards positive or negative feelings; comparing the results with alternative machine learning techniques and concluding with encouraging results. Additionally, as the framework is publicly available for download, researchers can replicate the experiments from this paper or propose new ones

    Regulatory motif discovery using a population clustering evolutionary algorithm

    Get PDF
    This paper describes a novel evolutionary algorithm for regulatory motif discovery in DNA promoter sequences. The algorithm uses data clustering to logically distribute the evolving population across the search space. Mating then takes place within local regions of the population, promoting overall solution diversity and encouraging discovery of multiple solutions. Experiments using synthetic data sets have demonstrated the algorithm's capacity to find position frequency matrix models of known regulatory motifs in relatively long promoter sequences. These experiments have also shown the algorithm's ability to maintain diversity during search and discover multiple motifs within a single population. The utility of the algorithm for discovering motifs in real biological data is demonstrated by its ability to find meaningful motifs within muscle-specific regulatory sequences

    On the hierarchical classification of G Protein-Coupled Receptors

    Get PDF
    Motivation: G protein-coupled receptors (GPCRs) play an important role in many physiological systems by transducing an extracellular signal into an intracellular response. Over 50% of all marketed drugs are targeted towards a GPCR. There is considerable interest in developing an algorithm that could effectively predict the function of a GPCR from its primary sequence. Such an algorithm is useful not only in identifying novel GPCR sequences but in characterizing the interrelationships between known GPCRs. Results: An alignment-free approach to GPCR classification has been developed using techniques drawn from data mining and proteochemometrics. A dataset of over 8000 sequences was constructed to train the algorithm. This represents one of the largest GPCR datasets currently available. A predictive algorithm was developed based upon the simplest reasonable numerical representation of the protein's physicochemical properties. A selective top-down approach was developed, which used a hierarchical classifier to assign sequences to subdivisions within the GPCR hierarchy. The predictive performance of the algorithm was assessed against several standard data mining classifiers and further validated against Support Vector Machine-based GPCR prediction servers. The selective top-down approach achieves significantly higher accuracy than standard data mining methods in almost all cases

    Accelerating FPGA-based evolution of wavelet transform filters by optimized task scheduling

    Get PDF
    Adaptive embedded systems are required in various applications. This work addresses these needs in the area of adaptive image compression in FPGA devices. A simplified version of an evolution strategy is utilized to optimize wavelet filters of a Discrete Wavelet Transform algorithm. We propose an adaptive image compression system in FPGA where optimized memory architecture, parallel processing and optimized task scheduling allow reducing the time of evolution. The proposed solution has been extensively evaluated in terms of the quality of compression as well as the processing time. The proposed architecture reduces the time of evolution by 44% compared to our previous reports while maintaining the quality of compression unchanged with respect to existing implementations. The system is able to find an optimized set of wavelet filters in less than 2 min whenever the input type of data changes

    Artificial Neurogenesis: An Introduction and Selective Review

    Get PDF
    International audienceIn this introduction and review—like in the book which follows—we explore the hypothesis that adaptive growth is a means of producing brain-like machines. The emulation of neural development can incorporate desirable characteristics of natural neural systems into engineered designs. The introduction begins with a review of neural development and neural models. Next, artificial development— the use of a developmentally-inspired stage in engineering design—is introduced. Several strategies for performing this " meta-design " for artificial neural systems are reviewed. This work is divided into three main categories: bio-inspired representations ; developmental systems; and epigenetic simulations. Several specific network biases and their benefits to neural network design are identified in these contexts. In particular, several recent studies show a strong synergy, sometimes interchange-ability, between developmental and epigenetic processes—a topic that has remained largely under-explored in the literature

    Diagnosis of an EPS module

    Get PDF
    Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Engenharia Electrotécnica e ComputadoresThis thesis addresses and contextualizes the problem of diagnostic of an Evolvable Production System (EPS). An EPS is a complex and lively entity composed of intelligent modules that interact through bio-inspired mechanisms, to ensure high system availability and seamless reconfiguration. The actual economic situation together with the increasing demand of high quality and low priced customized products imposed a shift in the production policies of enterprises. Shop floors have to become more agile and flexible to accommodate the new production paradigms. Rather than selling products enterprises are establishing a trend of offering services to explore business opportunities. The new production paradigms, potentiated by the advances in Information Technologies (IT), especially in web related standards and technologies as well as the progressive acceptance of the multi-agent systems (MAS) concept and related technologies, envision collections of modules whose individual and collective function adapts and evolves ensuring the fitness and adequacy of the shop floor in tackling profitable but volatile business opportunities. Despite the richness of the interactions and the effort set in modelling them, their potential to favour fault propagation and interference, in these complex environments, has been ignored from a diagnostic point of view. With the increase of distributed and autonomous components that interact in the execution of processes current diagnostic approaches will soon be insufficient. While current system dynamics are complex and to a certain extent unpredictable the adoption of the next generation of approaches and technologies comes at the cost of a yet increased complexity.Whereas most of the research in such distributed industrial systems is focused in the study and establishment of control structures, the problem of diagnosis has been left relatively unattended. There are however significant open challenges in the diagnosis of such modular systems including: understanding fault propagation and ensuring scalability and co-evolution. This work provides an implementation of a state-of-the-art agent-based interaction-oriented architecture compliant with the EPS paradigm that supports the introduction of a new developed diagnostic algorithm that has the ability to cope with the modern manufacturing paradigm challenges and to provide diagnostic analysis that explores the network dimension of multi-agent systems

    Understanding Behavior of System of Systems Through Computational Intelligence Techniques

    Get PDF
    The world is facing an increasing level of systems integration leading towards systems of systems (SoS) that adapt to changing environmental conditions. The number of connections between components, the diversity of the components and the way the components are organized can lead to different emergent system behavior. Therefore, the need to focus on overall system behavior is becoming an unavoidable issue. The problem is to develop methodologies appropriate for better understanding behavior of system of systems before the design and implementation phase. This paper focuses on computational intelligence techniques used for analysis of complex adaptive systems with the aim of identifying areas that need methodology customization for SoS analysis

    Training Single Walled Carbon Nanotube based Materials to perform computation

    Get PDF
    This thesis illustrates the use of Single Walled Carbon Nanotube based materials for the solution of various computational problems by using the process of computer controlled evolution. The study aims to explore and identify three dimensions of a form of unconventional computing called, `Evolution-in-materio'. First, it focuses on identifying suitable materials for computation. Second, it explores suitable methods, i.e. optimisation and evolutionary algorithms to train these materials to perform computation. And third, it aims to identify suitable computational problems to test with these materials. Different carbon based materials, mainly single walled carbon nano-tubes with their varying concentrations in polymers have been studied to be trained for different computational problems using the principal of `evolution-in-materio'. The conductive property of the materials is used to train these materials to perform some meaningful computation. The training process is formulated as an optimisation problem with hardware in loop. It involves the application of an external stimuli (voltages) on the material which brings changes in its electrical properties. In order to train the material for a specific computational problem, a large number of configuration signals need to be tested to find the one that transforms the incident signal in such a way that a meaningful computation can be extracted from the material. An evolutionary algorithm is used to identify this configuration data and using a hardware platform, this data is transformed into incident signals. Depending on the computational problem, the specific voltages signals when applied at specific points on to the material, as identified by an evolutionary algorithm, can make the material behave as a Logic gate, a tone discriminator or a data classifier. The problem is implemented on two types of hardware platforms, one a more simple implementation using mbed ( a micro- controller) and other is a purpose-built platform for `Evolution-in-materio" called Mecobo. The results of this study showed that the single walled carbon nanotube composites can be trained to perform simple computational tasks (such as tone discriminator, AND, OR logic gates and a Half adder circuit), as well as complex computational problems such as Full Adder circuit and various binary and multiple class machine learning problems. The study has also identified the suitability of using evolutionary algorithms such as Particle Swarm Optimisation algorithm (PSO) and Differential evolution for finding solutions of complex computational problems such as complex logic gates and various machine learning classification problems. The implementation of classification problem with the carbon nanotube based materials also identified the role of a classifier. It has been found that K-nearest neighbour method and its variant kNN ball tree algorithm are more suitable to train carbon nanotube based materials for different classification problems. The study of varying concentrations of single walled carbon nanotubes in fixed polymer ratio for the solution of different computational problems provided an indication of the link between single walled carbon nanotubes concentration and ability to solve computational problem. The materials used in this study showed stability in the results for all the considered computational problems. These material systems can compliment the current electronic technology and can be used to create a new type of low energy and low cost electronic devices. This offers a promising new direction for evolutionary computation
    • …
    corecore