
International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 3, Nº 3

-25-

Abstract — This paper proposes the design of an evolutionary

algorithm for building classifiers specifically aimed towards

performing classification and sentiment analysis over texts.

Moreover, it has properties taken from Artificial Immune

Systems, as it tries to resemble biological systems since they are

able to discriminate harmful from innocuous bodies (in this case,

the analogy could be established with negative and positive texts

respectively). A framework, namely OpinAIS, is developed

around the evolutionary algorithm, which makes it possible to

distribute it as an open-source tool, which enables the scientific

community both to extend it and improve it. The framework is

evaluated with two different public datasets, the first involving

voting records for the US Congress and the second consisting in a

Twitter corpus with tweets about different technology brands,

which can be polarized either towards positive or negative

feelings; comparing the results with alternative machine learning

techniques and concluding with encouraging results.

Additionally, as the framework is publicly available for

download, researchers can replicate the experiments from this

paper or propose new ones.

Keywords — Artificial immune system, evolutionary

computation, sentiment analysis, machine learning, classification.

I. INTRODUCTION

ENTIMENT ANALYSIS (also referred as opinion

mining) [27] is a field of Natural Language Processing

(NLP) which aims at extracting emotional or subjective

information from a source, which may be a document, a

website, a publication in a social network, etc.

A specific task within sentiment analysis is retrieving the

polarity of the document, i.e., whether it expresses a positive

or negative feeling (sometimes, the case when the document

does not express any feeling at all is also observed). This is

definitely not a simple task, as natural language semantics are

very complex, and there are many ways, sometimes too

rhetorical, to express a positive or negative feeling. In fact,

sentiment analysis involves so many challenges that many

works over the last decade have discussed them [28, 22, 24,

38] and most if not all of those difficulties remain invariant

and are widely discussed today [3], as social networks start to

set up enormous corpus which are increasingly interesting for

this task [26, 19].

From the computational side, a Machine Learning (ML)

approach perfectly fits this task. The problem of guessing the

polarity of a document is analogous to a binary classification

problem. Yet some decisions, such as how the features for

classification are retrieved from the document, or which

particular ML algorithm will be used must be taken before

some results could be obtained.

This work aims at applying an Artificial Immune System

(AIS) approach, which is a biologically-inspired ML

technique based on the immune system of vertebrates, to solve

this problem. Actually, the algorithm can be easily extended to

support multiclass classification and prediction problems. To

provide additional value, this work also have the purpose of

developing a framework which can be extended to new

algorithms and applications, so that it can be reused by the

scientific community.

A brief introduction of AIS, as well as some related work is

provided in section 2. Sections 3 and 4 discuss how features

can be extracted from text, and how the immune-based

algorithm is applied for the sentiment analysis task.

Meanwhile, section 5 focuses on the design and the

development of OpinAIS, the AIS-based framework for

solving sentiment analysis problems.

Finally, section 6 shows some results obtained from using

OpinAIS with two public datasets involving voting records for

the US Congress and a Twitter corpus. Secion 7 provides

some conclusive remarks on this work, and appendices are

included which detail how to run and extend the framework.

II. RELATED WORK

The purpose of this section is to briefly discuss the problem

of sentiment analysis, analysing previous works where ML

techniques were used to face this problem, and finally

describing how AIS work and some state of the art

applications where AIS are applied for the task of sentiment

analysis.

As it was stated in the previous section, sentiment analysis

(or opinion mining) is a problem that involves many of the

challenges brought by NLP. Techniques located within the

field of Artificial Intelligence (AI) are well suited for facing

this problem [5]. In particular, detecting the polarity of a text

(whether it contains positive or negative feelings) can be in

most cases reduced to a problem of binary classification by

using bag of words (where binary attributes indicate whether a

particular word appear or not in the document). By doing so,

many classical ML techniques can be applied [18], including

OpinAIS: An Artificial Immune System-based

Framework for Opinion Mining

Alejandro Baldominos Gómez, Nerea Luis Mingueza, Mª Cristina García del Pozo

Universidad Carlos III de Madrid, Leganés, Spain

S

DOI: 10.9781/ijimai.2015.333

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Re-UNIR

https://core.ac.uk/display/327052056?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Regular Issue

-26-

variations of the Naïve Bayes classifier [40], Support Vector

Machines [37], Kernel Trees [1] or semi-supervised

approaches [7, 21]. Some works compare several of these

techniques for detecting emotions and personality in

platforms such as Whatsapp or SMS [33]. Other works do

not use bag of words but rather different approaches such as

graph-based techniques for tweet classification [6], while in

this case the work do not focus on opinion mining but rather

topic detection. In the recent years, several surveys

summarizing the most relevant techniques and contributions

have been published [23, 25, 42, 16].

Biologically inspired AI techniques have also proved to be

relevant for solving this problem, as many works in the last

couple of years use these approaches for opinion mining, such

as it is the case of genetic algorithms [14], particle swarm and

ant colony optimization [39], neural networks [2] or a

combination of several of them [17].

Regarding biologically-inspired artificial intelligence,

relevant techniques include AIS which appeared in the mid-

90s, when efforts for understanding the immune system [12]

significantly increased. The idea beyond these systems is to

imitate the biological adaptive immune system and its ability

to recognize external harmful individuals, which can be

generalized to approach and solve a variety of problems.

The present work is based on a previous research on

applying AIS to document classification [41], which was

already based on an earlier work that applied AIS-based

techniques for concept learning [30]. In these approaches,

which will be described in further detail in section 4, a

population of antibodies is evolved with a co-evolutionary

technique. Eventually, a set of antibodies conform a classifier,

which can be used to infer the class a certain item. As long as

a document classification problem can be represented as a

binary string, the system can learn a classifier from a set of

training instances. Additionally, there are more recent works

which study the convenience of using AIS for opinion mining

[34], and use this kind of techniques for selecting features for

opinion mining [35] or analysing sentiments in newspapers

[31].

The use of an evolutionary algorithm somehow recalls from

other AIS techniques such as clonal selection, as the

evolutionary operators resemble the operators in algorithms

such as CLONALG [8]. Additionally, the process of affinity

maturation is achieved by the evolutionary algorithm, which

tries to increase the fitness of the antibodies, i.e., their ability

to correctly detect antigens.

Finally, prior work proposed a theoretical framework for

AIS [8], and other ML frameworks such as Weka [15] also

incorporates AIS-based techniques for general-purpose

classification as well as specific text mining algorithms which

would enable performing document classification or opinion

mining [32]. However, the framework proposed in this work is

more specifically aimed towards document classification (and

opinion mining in particular) and therefore is simpler to be

used and to be extended, whereas others are more complete

and supports other problems beyond classification itself but

fail to provide such specific parameterization for opinion

mining.

III. DATA WRANGLING

For applying ML to documents expressed in natural

language, a preliminary phase of data wrangling is often

required so that these can be converted to a format accepted by

the algorithm. For this work, the input is converted into a

binary string (a list of boolean features).

The current section details the process followed to obtain a

set of binary individuals from a set of documents expressed in

natural language.

A. Preprocessing

When dealing with natural language, some processing of the

input may lead to better results, as raw data is typically too

noisy. An approach to this processing involves implementing a

series of filters running in a pipeline [11], each of those

performing some processing over data, which is then inputted

to the next filter. The ultimate goal of these phases is to

increase the ratio of meaningful words by reducing the total

number of different words, while trying to keep semantics.

This section describes the preprocessing phase applied in this

work, and how it could help to improve the results.

1) Removing Non-Alphanumerical Symbols: usually, non-

alphanumerical symbols in a text lack from any semantic

meaning thus can be ignored. However, other words

formed only by symbols (e.g. emoticons such as :-) or xD)

not only do have semantic meaning, but also store a

strong emotional load [20].

2) Converting to Lower Case: in many cases, words keep

semantics regardless whether they are written uppercase

or lowercase. For this reason, it is useful to turn all

symbols to the same case, to represent the same word

always with the same characters.

Fig. 1. Example of an antibody detecting an individual.

International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 3, Nº 3

-27-

3) Removing Stop Words: in natural languages, there are

many words that are completely meaningless, and only

have syntactical value, such as determiners, prepositions,

etc. These words usually appear with very high

frequencies, and so may lead the algorithm to think that

they are relevant. While there are works involving the

automatic identification of stop words [44], the approach

followed in this work uses a stop words dictionary for the

English language.

4) Stemming Words: stemming is the process to reduce a

word to its stem (e.g. “work”, “working” and “worked”

are all reduced to “work”). This way, the space of words

is considerably reduced, while the original meanings

persist, increasing the ratio of semantics versus the

number of different tokens. This work uses the Porter

Stemming Algorithm [29], as it is widely used and

considered the de facto standard for stemming English

words.

B. Extracting the Features

After the preprocessing phase, the input is still a set of

documents, each of these reduced to a set of tokens (stems)

resulting from applying the filters to the original words. The

purpose of the second step is to decide which of the tokens are

more relevant when deciding the class of each document. To

do so, a metric known as expected information gain may be

used, which estimates the information provided by a token

based on the entropy of the set of documents containing and

not containing that token.

In particular, the expected information gain for a word w

and a set of documents S is calculated as follows:

 𝐸(𝑤, 𝑆) = 𝐼(𝑆) − (𝑃(𝑤)𝐼(𝐷𝑤)) + (𝑃(¬𝑤)𝐼(𝐷¬𝑤))

where:

 𝑃(𝑤) is the probability that 𝑤 appears in a document,

i.e., the percentage of documents containing 𝑤.

 𝑃(¬𝑤) is the probability that w does not appear in a

document, i.e., the percentage of documents not

containing 𝑤.

 𝐷(𝑤) is the subset of documents containing 𝑤.

 𝐷(¬𝑤)is the subset of documents not containing 𝑤.

 𝐼(𝑆), 𝑆 = {𝐷, 𝐷𝑤 , 𝐷¬𝑤} is the entropy of the set 𝑆 for each

of the classes, which is defined as follows:

I(S) = ∑ −P(Sc) log2(P(Sc))

c∈{+,−}

The computation of the entropy can only be performed if a

training set exists where the class is known in advance for

each document in the set, i.e., under a supervised learning

scheme. While the previous equation refers to the class as

either positive or negative, it could be generalized to any

arbitrary number of different classes.

Finally, when the expected information gain is computed

for all words, the n words with the highest value of 𝐸 are

chosen, which can be expressed as 𝐹 = {𝑤1 𝑤2 𝑤3 … 𝑤𝑛}.

During the last phase, known as vectorization, the objective

is to convert documents to individuals represented by a binary

string: 𝑑 = {𝑏1 𝑏2 𝑏3 … 𝑏𝑛}. To do so, for each bit 𝑏𝑖 in the

individual representing the document, 𝑏𝑖 = 1 if the document

contains the word 𝑤𝑖 , or 𝑏𝑖 = 0 if it does not. After the

vectorization process takes place, the original set of

documents is converted into a set of binary individuals.

IV. THE ARTIFICIAL IMMUNE SYSTEM

For the development of AIS, the approach provided in [41]

is followed. This section provides first an intuition of how

antibodies are represented in the AIS and how they can be

used to detect individuals of a certain type. Later, it describes

the process to obtain a classifier, composed of a set of

antibodies, given a set of training examples.

A. Design of Antibodies

The design of antibodies is a key task in the development of

an AIS, as they are the entities responsible for detecting the

type of the individuals and, in the end, of the classification

task. In the AIS developed for this work, antibodies (also

called detectors), integrate the next elements:

 A type indicating the polarity of the individuals this

detector should recognize, which usually are self (i.e.,

part of the body) or non-self (i.e., foreign to the body

and thus potentially harmful), which in the task of

sentiment analysis are identified to positive and

negative items respectively. Nevertheless, this

definition can be extended to support a set of k

different classes.

Fig. 2. Example of a translation between an antibody's genotype and phenotype

Regular Issue

-28-

 A binary schema of the same length that the number of

features of an individual. While this schema is binary,

besides 0s and 1s it can also contain wildcard (#)

positions.

 A real threshold in the interval [0,1].

After a representation for the antibodies is chosen, it is

important to decide the process by which an antibody detects

an individual as being from its type. The steps for this process

are detailed next:

1) Each bit in the schema is compared to each bit of the

individual in the same position. Bits in wildcards

positions, marked as #, are ignored.

2) The matching ratio is computed as the number of bits

matching in the same position divided by the total number

of comparisons performed (i.e., the number of non-

wildcard positions in the antibody's schema).

3) If the matching ratio exceeds the threshold, then the

antibody detects the individual as being of its same type.

Otherwise, it does not detect it.

An example of individuals matching is provided in Figure

1. In this particular example, there are 3 matches from a total

of 6 comparisons, so the matching ratio is 3/6 = 0.5, which is

greater than the threshold (0.5 > 0.4), and thus the individual

is recognized as self.

B. Evolving the Classifier

A classifier is a set of antibodies, one for each possible type.

When an individual is inputted to the classifier, each antibody

tries to detect it. The type of the individual is obtained as the

type of the antibody who detects the individual and maximizes

the matching ratio. It is important to notice that, in the case

that no antibody detects the individual, then it remains

unclassified.

An evolutionary approach is chosen to obtain the classifier.

Before the details of the algorithm are described, it is

important to decide the way the antibody is represented in

order to be treated by the evolutionary algorithm, i.e., its

genotype. Antibodies are encoded as follows:

 The type does not need to be encoded, as the

evolutionary operators do not affect it.

 The threshold is encoded as an 8-bit number in Gray

code, as small changes in this binary representation

lead to small changes in the number it represents.

Because an 8-bit string represents an unsigned integer n

the interval [0, 255], the resulting value is normalized

in the range [0, 1], thus dividing it by 255.

 The schema is represented by two different binary

strings, named pattern and mask, both with the same

length that the schema. Given a pattern and a mask, the

schema can be determined as follows:

1. If the i-bit in the mask is 1, then the

corresponding bit in the schema will be a wildcard

(#).

2. If the i-bit in the mask is 0, then the

corresponding bit in the schema will correspond

to the i-bit from the pattern.

It must be noticed that with this encoding, many

different genotypes may translate into the same

phenotype. Actually, this is common in natural immune

systems, as different chains of amino acids may fold

into antibodies recognizing the same pattern [30].

An example of a translation between the genotype and the

phenotype is shown in Figure 2. Once the binary

representation for the antibodies is depicted, the details of the

evolutionary algorithm can be discussed. This algorithm

follows the next steps:

1) Initialization: to begin with, the algorithm generates an

initial population of antibodies, of a fixed (yet

configurable) size. While this initialization is performed

randomly, it attends to some parameters:

 The type bias represents the probability that the new

antibody detects self individuals. For instance, if the

type bias has a value of 0.6, then it means that in

average, 60% of the antibodies in the population will

detect self individuals.

Fig. 3. Package structure for the OpinAIS framework

International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 3, Nº 3

-29-

 The generality bias represents the probability that a bit

in the schema is a wildcard (#). For instance, if the

generality bias has a value of 0.3, then it means that in

average, 30% of the bits in an antibody schema will be

wildcards.

2) Fitness calculation: once the initial population is

generated, the algorithm calculates the fitness of each

antibody. This fitness is calculated as the number of

correctly classified individual minus the number of false

positives. Unclassified individuals are considered as

correctly classified if they are not of the same type that

the antibody. To prevent negative values for the fitness, it

is normalized in the range [0, 1].

3) Selection: two antibodies from the same type are chosen,

in a random yet fitness-proportional manner. To do so, a

technique known as roulette selection is performed, by

which antibodies with higher fitness have more chances to

be selected.

4) Reproduction: the two selected antibodies serve as

parents for a new one. This reproduction is performed

using standard crossover, by which the genome of the

child antibody is filled by selecting, for each bit, one

random bit in the same position from either of their

parents. A parameter, known as the crossover rate,

establishes the probability that crossover takes place. In

the cases where crossover is not performed, the child

results as an exact copy of one of their parents.

5) Mutation: the child is mutated, by performing bit flipping

for each individual bit. In this case, a parameter known as

mutation rate controls the probability that a single bit is

flipped.

6) Generational replacement: steps 3-5 are performed until

the new population has as many antibodies of the same

type as the previous one. When such a thing occurs, the

original population is replaced with the new one. During

this phase, elitism can be introduced through a parameter,

known as elitism rate, which controls the percentage of

best antibodies that are kept between generations. By

introducing elitism, the best detectors are maintained.

7) Stop condition: if the maximum number of generations is

not achieved, the algorithm restarts from step 2.

Otherwise, the algorithm stops and a classifier is built by

choosing the best antibody from each type. Each bit in the

schema is compared to each bit of the individual in the

same position. Bits in wildcards positions, marked as #,

are ignored.

An improved version of this algorithm, which includes a

cooperative approach, has been also developed. This

algorithm, which is known as co-evolutionary algorithm,

inserts a new phase after the fitness calculation. Indeed, it

performs a second fitness calculation, which computes a

cooperative fitness rather than an individual one.

Particularly, the cooperative fitness for a certain antibody is

the result of classifying all the individuals with that antibody

combined with the best antibodies of the remaining types. The

fitness sums up all the hits and subtracts the misses (i.e.,

individuals wrongly classified). It remains as a user-

configurable parameter to decide whether unclassified

individuals are considered as wrongly classified or are ignored

(some applications may benefit from ignoring unclassified

instances, such as those where unclassified instances are

preferred over misclassified ones). Finally, the fitness is

normalized in the range [0, 1].

The cooperative fitness evaluates a potential classifier rather

than each antibody itself. For this reason, results are usually

better, but computing time can also be significantly higher.

V. THE OPINAIS FRAMEWORK

OpinAIS is an extensible framework that enables the

application of AIS to a variety of classification problems, as

long as instances can be represented as binary strings.

The power of OpinAIS remains in its extensibility. While

the algorithms described in the prior section are already

implemented, it is relatively simple to develop new ones. This

principle not only applies to algorithms, but also to input

readers, information retrieval processors, etc.

Figure 3 shows the package structure of the framework. The

heading of the figure refers to the path where the OpinAIS

framework is placed in the package. The purpose of this

section is to describe the responsibility of each one, so that it

can serve as a quick developer guide. The ir package (1) stores

the logic required to retrieve a set of individuals (which are

computable by the algorithm) from an input source, such as a

text file containing one individual in each line. This package is

divided in several subpackages, with clearly defined

responsibilities:

 Package items (2) contains items, which a generic type

of individuals, i.e., something which can be potentially

converted to an individual, but so far is not, such as a

tweet or an HTML document are some kinds of items.

 Package readers (3) will store readers, whose

responsibility is to generate a set of items from an input

source. For instance, there may be a folder containing

HTML documents, and a reader that returns a set of

objects representing those.

 Package preprocessors (4) stores classes responsible

for performing some preprocessing tasks over text

items which may significantly increase the

performance of the classifier, as it was shown in

section 3.

 Package extractors (5) contains classes whose purpose

is to extract features from a set of items in those cases

when specific logic for this task is required (e.g.

implementation details on the extractor for text items

was provided in section 3).

 Package vectorizers (6) contains the logic for

converting items into individuals encoded as a set of

bits. The behaviour of vectorizers for text items was

explained in section 3.

On the other hand, the core package (7) stores the logic

required for obtaining a classifier from a set of input

individuals. Most details on this process were already given in

section 4, so this section will limit to explain how this

Regular Issue

-30-

functionality is broken into different packages:

 Package types (8) contains an enumerated type, Type

with the set of all possible classes for individuals. For

the sake of flexibility, this enumerated type is empty

and it is filled dynamically when classes are known.

 Package detectors (9) contains the Detector class,

representing the definition of an antibody, as it was

described in section 4. Moreover, the DetectorFactory

class implements some logic for initializing the first

population of antibodies.

 Package selectors (10) contains classes which

implement some logic for choosing an antibody from a

population. So far, the evolutionary algorithm

developed uses a roulette selector, yet many others

could be implemented by the user (e.g. a tournament

selection).

 Package operators (11) stores auxiliar logic containing

operators used by the algorithms. An example of such

operators is the standard crossover and mutation, which

were already described in section 4, and which are

implemented in the classes CrossoverOperator and

MutationOperator respectively.

 Package algorithms (12) stores the algorithms, whose

responsibility is to receive a set of training individuals

and build a classifier from them.

Finally, the experimenter package (13) contains additional

logic for assisting the experimental tasks, such as:

 dividing a set of individuals into training and test sets,

where the size of these tests can be set by the user.

 given a classifier and a set of individuals, computing

the confusion matrix, i.e., a table showing up the

number of correctly classified instances, as well as

false positives, true negatives and unclassified

individuals.

 computing the performance of a classifier measured as

its accuracy, given the corresponding confusion matrix.

The OpinAIS framework is publicly available for download

from a GitHub repository1, and more information and

developers documentation can be found in the project

website
2
, including instructions on how to run and extend it.

VI. EXPERIMENTAL RESULTS

Once the OpinAIS framework is developed, experiments

over two different datasets are performed using the

implemented AIS-based algorithm in order to validate the

system, and a comparative evaluation with classic ML

techniques is also carried out. Additionally, further evaluation

for the algorithms underlying this proposal has already been

published in previous works [30, 41].

A. US Congressional Voting Records Dataset

The first experiment in this section will execute over the US

Congressional Voting Records Data Set from the UCI

1 http://github.com/alexbaldo/opinais
2 http://baldo.uc3m.es/opinais/

Machine Learning Repository [36], which is composed of 117

(34.21%) instances of republican votes and 225 (65.79%)

instances of democrat votes. As instances are fairly

unbalanced, two experiments are executed: the first one will

deal with all input instances, while the second will balance

them, thus taking 117 instances of republican congressmen

and the same number of democrats.

TABLE I

CONFUSION MATRIX FOR THE US VOTING RECORDS DATASET WITH

UNBALANCED DATA

 Republican Democrat N/C

Republican 86/22 5/3 1/0

Democrat 2/2 179/41 1/0

TABLE II

CONFUSION MATRIX FOR THE US VOTING RECORDS DATASET WITH

BALANCED DATA

 Republican Democrat N/C

Republican 85/26 3/0 2/1

Democrat 2/0 95/19 1/0

The results for an average execution are shown in Table I

and Table II, which contains the confusion matrix for the

experiment with unbalanced and with balanced data

respectively. Cells in the confusion matrix contain two values,

the first one referring to the training set and the second to the

test set. The last column refers to non-classified instances.

As it can be seen, the results are pretty good. For the

original dataset, the accuracy is 96.72% (92.65%), while for

the balanced subset the value is 95.74% (97.83% for the test

set). From these numbers, two conclusions can be drawn: in

the first place, the AIS-based evolutionary algorithm provides

good classification accuracy, which validates that the system

is working properly. Secondly, the algorithm shows a good

generalization ability, as long as it does not fall into overfitting

the individuals from the training set, achieving very similar

results for both the training and the test sets.

B. Twitter Sentimental Corpus

The second battery of experiments is performed over a set

of actual tweets, which are short publications in Twitter. This

dataset is provided by Sanders Analytics
3
, consists in 5,513

tweets about technological companies and it is especially

interesting as it provides two different classifications. The first

one has to do with the polarity of the tweet, which can either

be positive, negative, neutral or irrelevant. In most cases,

tweets are classified as irrelevant if they are written in

languages other than English or have nothing to do with the

topic (i.e., they are spam). Also, tweets are classified as

neutral when they are neither positive nor negative in a clear

way, they are simple factual statements or they express

questions with no strong emotions. The second classification

criterion has to do with the technological enterprise related to

the content of the tweet.

An example of a tweet for each polarity and enterprise is

3 http://www.sananalytics.com/lab/twitter-sentiment

International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 3, Nº 3

-31-

shown in Table III. As it can be seen, the classification task

may find some difficulties. In the first place, a tweet with

negative polarity contains a high load of positive words such

as “greatly impressed”. Secondly, as irrelevant tweets can be

in any language, they add a huge number of possible words

that may harden the features extraction task.

TABLE III

TWEETS FOR EACH POLARITY AND ENTERPRISE

Brand Polarity Tweet

Apple
Positive

@apple @siri is efffing

amazing!

Microsoft Neutral
Creating #Pareto charts using

#Microsoft #Excel

Google Negative

Not greatly impressed with

#Google and #Samsung

presentation skills.

Twitter Irrelevant #twitter sos un vicioooooo

TABLE IV

CONFUSION MATRIX FOR THE TWITTER SENTIMENT CORPUS WHEN

CLASSIFYING THE TWEET'S ENTERPRISE USING OPINAIS

 A G M T NC

A 699/75 42/2 27/10 44/3 165/29

G 27/4 742/68 59/5 96/12 196/25

M 50/6 59/6 791/93 24/1 208/19

T 20/4 18/2 82/9 825/93 128/11

TABLE V

CONFUSION MATRIX FOR THE TWITTER SENTIMENT CORPUS WHEN

CLASSIFYING THE TWEET'S POLARITY USING OPINAIS

 Positive Negative NC

Positive 296/30 107/20 42/1

Negative 72/9 385/39 32/4

TABLE VI

RESULTS FOR THE EVALUATION OF THE TWEET'S POLARITY PREDICTION

USING OPINAIS

 Train Test Train Test

ACC 72.9% 67.0% TPR 73.5% 60.0%

PPV 80.4% 76.9% TNR 84.3% 81.3%

NPV 78.3% 66.1% MCC 58.2% 48.9%

TABLE VII

CONFUSION MATRIX FOR THE TWITTER SENTIMENT CORPUS WHEN

CLASSIFYING THE TWEET'S POLARITY USING NAIVE BAYES

 Positive Negative

Positive 196/80 144/76

Negative 47/16 339/139

For both experiments, a population of 200 individuals each

one recognizing 250 features is evolved during 1000

generations. The dataset is divided into a training set

containing 70% of the original instances and a test set with the

remaining 30%.

First, a classifier is trained to infer the enterprise related

with the tweet, either Apple (A), Google (G), Microsoft (M) or

Twitter (T). The number of instances for each enterprise is

approximately the same, i.e., the dataset is balanced. The

confusion matrix for this problem is shown in Table IV. As it

can be seen the results are good, providing a great

improvement over random guess with an accuracy of 92.41%

(90.41% over the test set, which also shows a good

generalization).

TABLE VIII
CONFUSION MATRIX FOR THE TWITTER SENTIMENT CORPUS WHEN

CLASSIFYING THE TWEET'S POLARITY USING C4.5

 Positive Negative

Positive 233/90 107/66

Negative 50/37 336/18

TABLE IX

CONFUSION MATRIX FOR THE TWITTER SENTIMENT CORPUS WHEN

CLASSIFYING THE TWEET'S POLARITY USING RANDOM FOREST

 Positive Negative

Positive 317/126 23/30

Negative 29/34 357/121

TABLE X

CONFUSION MATRIX FOR THE TWITTER SENTIMENT CORPUS WHEN

CLASSIFYING THE TWEET'S POLARITY USING SVM

 Positive Negative

Positive 143/61 197/5

Negative 40/12 346/143

TABLE XI

CONFUSION MATRIX FOR THE TWITTER SENTIMENT CORPUS WHEN

CLASSIFYING THE TWEET'S POLARITY USING MLP

 Positive Negative

Positive 198/79 142/77

Negative 26/13 360/142

TABLE XII

CONFUSION MATRIX FOR THE TWITTER SENTIMENT CORPUS WHEN

CLASSIFYING THE TWEET'S POLARITY USING CLONALG

 Positive Negative

Positive 181/81 159/75

Negative 78/37 308/118

TABLE XIII

CONFUSION MATRIX FOR THE TWITTER SENTIMENT CORPUS WHEN

CLASSIFYING THE TWEET'S POLARITY USING AIRS

 Positive Negative

Positive 145/65 195/91

Negative 44/15 342/140

TABLE XIV
CONFUSION MATRIX FOR THE TWITTER SENTIMENT CORPUS WHEN

CLASSIFYING THE TWEET'S POLARITY USING IMMUNOS-81

 Positive Negative

Positive 113/55 227/101

Negative 36/11 350/144

Finally, the algorithm is executed with the objective of

inferring the polarity of a tweet. For this experiment, only

positive and negative tweets are considered. This is due to a

couple of reasons, the first one being that neutral and

irrelevant tweets take the most part of the corpus (almost

80%).

Regular Issue

-32-

While this handicap could be solved by balancing the

classes, a second problem appears: words from the irrelevant

tweets will take a considerable part of the features array, if not

the whole. This happens given that irrelevant tweets contains

many words in different languages, which only appear in

tweets from that class and which turn out to be very good

discriminators. For this reason, the classifier would specialize

in neutral and irrelevant tweets rather than on positive or

negative ones, which was the original problem.

The number of positive and negative tweets is balanced

(47.83% vs. 52.17% respectively). The confusion matrix for

this problem is shown in Table V, and Table VI shows

different metrics for evaluating the prediction quality [13] for

both the train as test sets, including the accuracy (ACC), the

positive predictive value (PPV, also known as precision), the

negative predictive value (NPV), the true positive rate (TPR,

also known as recall), the true negative rate (TNR, also known

as specify) and the Matthews correlation coefficient (MCC).

Unclassified instances are treated as if they were misclassified.

It can be seen that the results are fairly good and the

generalization power is acceptable as well, as the performance

over the test set is pretty similar to that over the training set.

Finally, a comparative evaluation is performed to check

how the results obtained using OpinAIS for the task of

sentiment analysis compare to those achievable using classic

ML techniques. For this task, the Weka framework is used

[15]. An ARFF file is generated directly from the OpinAIS

framework, after the preprocessing and vectorization phases.

Thus, the resulting ARFF is a file where instances have 200

binary attributes (one per each selected word) and a class,

either positive or negative.

For the comparative evaluation, classic ML techniques have

been used (Naive Bayes, C4.5 decision trees and random

forest), as well as Kernel-based techniques (support vector

machines) and biologically-inspired algorithms (multilayer

perceptron). Also, alternative immune classifiers
4
 have been

compared, namely CLONALG [9, 10], AIRS [43] and

Immunos-81 [4]. In all cases, default parameters are used.

Confusion matrices displaying the classification results for

each of this techniques are shown as follows: Table VII shows

the confusion matrix using Naive Bayes, Table VIII for C4.5

decision trees, Table IX for random forest, Table X for

4
 Added to WEKA as a plugin available at:

http://wekaclassalgos.sourceforge.net

support vector machines (SVM), Table XI for multilayer

perceptron (MLP), Table XII for CLONALG, Table XIII for

AIRS and Table XIV for Immunos-81.

All these results are synthesized in Table XV where the

metrics for evaluating the prediction quality described above

are computed for the results obtained in the test set for each

technique. Results show that for class-independent metrics

(accuracy and Matthew's correlation coefficient), OpinAIS

performs better than most of the other classifiers, with the only

exception of random forests. In a per-class basis, OpinAIS

provides the best results for the true positive rate (TPR), i.e., is

able to classify most positive tweets correctly, outperforming

the other techniques. On the other hand, the results are worse

for the true negative rate (TNR), meaning that many negative

tweets are either misclassified or not classified at all. Also, the

negative predictive value (NPV) compares quite well to the

alternative techniques, only surpassed by random forest,

meaning that most of the tweets predicted as negative are

really negative. From all the techniques compared, OpinAIS is

the second with highest generalization power (measured as the

absolute difference between the accuracy of the training and

the test set), outperforming all its competitors expect for

Immunos-81.

VII. CONCLUSIONS AND FUTURE WORK

As a result of the present work, a framework for applying

IS to a variety of classification problems, including those

involving sentiment analysis or some natural language

processing, has been developed. While this framework is

initially built as an implementation of an evolutionary

algorithm, it has been refactored to keep extensibility as the

main priority. This way, scientists can easily adapt the

framework to their needs, either adding new algorithms or

information retrieval processes or supporting new input data.

The first framework prototype has been evaluated by using

two different public datasets. Results are encouraging, as

binary classification metrics for the evaluated datasets are

always greater than 50% and in some cases close to 100% and

MCC is significantly higher than zero, and the built classifiers

proved to generalize fairly well the concepts they learnt. When

these results are compared to other machine learning

techniques, OpinAIS outperforms them in terms of accuracy,

with the only exception of the random forest classifier, and in

any case behaves significantly better in a class-independent

basis than its immune-based competitors.

TABLE XV
CLASSIFICATION METRICS COMPARED FOR DIFFERENT MACHINE LEARNING TECHNIQUES. BOLD CELLS INDICATE THE BEST VALUE FOR EACH METRIC

 ACC PPV NPV TPR TNR MCC

OpinAIS 73.31% 69.52% 79.03% 83.33% 63.23% 47.54%

Naive Bayes 70.42% 83.33% 64.65% 51.28% 89.68% 44.33%

C4.5 66.88% 70.87% 64.13% 57.69% 76.13% 34.40%

Random Forest 79.42% 78.75% 80.13% 80.77% 78.08% 58.86%

SVM 65.59% 83.56% 60.08% 39.10% 92.26% 36.99%

MLP 71.06% 85.87% 64.84% 50.64% 91.61% 46.29%

CLONALG 63.99% 68.64% 61.14% 51.92% 76.13% 28.91%

AIRS 65.92% 81.25% 60.61% 41.66% 90.32% 36.59%

Immunos-81 63.99% 83.33% 58.78% 35.26% 92.90% 34.44%

International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 3, Nº 3

-33-

As the framework remains in a phase of active

development, many improvements can be proposed as future

work. For instance, many new algorithms, parameters and

information retrieval features can still be added, and n-grams

rather than words could be used for vectorization.

APPENDIX

A. Running the Framework

The OpinAIS class, which is placed in the root package

(es.uc3m.baldo.opinais), contains the entry point for the

application. This class only requires an argument, which is the

path for a properties file (a special type of file in Java, very

similar to .ini files), containing a bunch of parameters.

CODE I

A SAMPLE PROPERTIES FILE

Set of possible types (classes).

types=apple,google,microsoft,twitter

Reader which will retrieve the items from the input source.

reader=TweetReader

Factory which will process and convert the items to individuals.

factory=TextIndividualsFactory

Source file with input.

inputFile=data/SandersAnalytics/tweets_brand.txt

Maximum number of individuals. 0 means all.

individualsSize=0

Must the number of individuals for each type be balanced?

isBalanced=false

Size of the population of detectors.

speciesSize=200

Length of the features vector.

featuresLength=1000

Preprocessors to be applied, in order.

preprocessors=LowerCaser,StopWordsRemover,Stemmer

Percentage of the individuals to be used in the test set.

testPct=0.1

Name of the algorithm to be used.

algorithm=EvolutionaryAlgorithm

Types of the arguments required by the constructor

algorithmTypes=Integer,Double,Double,Double,Double,Double

A fragment of a sample properties file is shown in Code I.

Besides, the distributed source code contains also properties

files for some applications, which the user may want to take a

look at to get a better understanding of all the parameters that

can be customized.

B. Extending the Framework

The purpose of this section is to provide a brief overview to

developers on how they can extend the framework to support

new inputs.

For this example, the US Congressional Voting Records

Data Set [36] described before has been chosen. This dataset

contains a set of instances representing a certain congressman,

which can be either republican or democrat. Each of these

stores the particular vote of the congressman for 16 different

votations, where this vote can be a yes, a no, or an abstention.

The steps for supporting classification over this dataset are

the next ones:

1) In the first place, the developer must create a class in the

ir.items package, which represents a vote record and may

be called VotingRecord. This class must extend from Item

and will store the vote for each votation.

2) Secondly, a class converting input lines into instances of

the VotingRecords class will be implemented, and stored

in the ir.readers.factories package, while implementing

the Factory interface. This class may be called

VotingRecordFactory.

3) Later, a reader in the ir.readers class will be developed,

which must implement the Reader interface. This reader

will eventually return a set of voting records given an

input file.

4) A vectorizer must be developed to encode voting records

as a binary string. To do so, the approach of [41] can be

observed, where yes is represented as 01, no is

represented as 10 and abstention is represented as 00

(notice that this encoding is not arbitrary, and it has been

chosen so that opposite values differs in its genomic

representation as much as possible). This class can be

called VotingRecordVectorizer and must be placed in the

ir.vectorizers package.

5) Finally, the individuals factory implementing the interface

IndividualsFactory must be developed, which essentially

coordinates the flow between the classes above to

generate a set of individuals.

ACKNOWLEDGMENT

This work was partially funded by the Spanish Ministry of

Science and Innovation under MOVES project (TIN2011-

28336) and European Union's CIP Programme (ICT-PSP-

2012) under grant agreement no. 325146 (SEACW project).

REFERENCES

[1] A. Agarwal, B. Xie, I. Vovsha, O. Rambow, and R. Passonneau.

Sentiment Analysis of Twitter Data. In Proc. LSM, pages 30 - 38, 2011.

[2] E. Cambria, T. Mazzocco, and A. Hussain. Application of Multi-
Dimensional Scaling and Artificial Neural Networks for Biologically

Inspired Opinion Mining. BICA, 4:41-53, 2013.

[3] E. Cambria, B. Schuller, Y. Xia, and C. Havasi. New Avenues in
Opinion Mining and Sentiment Analysis. IEEE Intelligent Systems,

28(2):15-21, 2013.

[4] J. H. Carter. The Immune System as a Model for Classification and
Pattern Recognition. Genetic Programming and Evolvable Machines,

7:28-41, 2000.

[5] H. Chen and D. Zimbra. AI and Opinion Mining. IEEE Intelligent
Systems, 25(3):74-76, 2010.

[6] H. Cordobés, A. Fernández-Anta, L. F. Chiroque, F. Pérez, T. Redondo,

and A. Santos. Graph-based Techniques for Topic Classification of
Tweets in Spanish. IJIMAI, 2:31-37, 2014.

Regular Issue

-34-

[7] S. Dasgupta and V. Ng. Mine the Easy, Classify the Hard: a Semi-

Supervised Approach to Automatic Sentiment Classification. In Proc.
ACL-IJCNLP, pages 701-709, 2009.

[8] L. N. de Castro and J. Timmis. Artificial Immune Systems: A New

Computational Intelligence Approach. Springer, 2002.
[9] L. N. de Castro and F. J. Von Zuben. The Clonal Selection Algorithm

with Engineering Applications. In Proc. GECCO, pages 36-37, 2000.

[10] L. N. de Castro and F. J. Von Zuben. Learning and Optimization Using
the Clonal Selection Principle. IEEE Transactions on Evolutionary

Computation, 6:239-251, 2002.

[11] L. Dey and S. M. Haque. Opinion Mining from Noisy Text Data.
IJDAR, 12:205-226, 2009.

[12] K. D. Elgert. Immunology - Understanding the Immune System. John

Wiley & Sons, Inc., 1996.
[13] T. Fawcett. An Introduction to ROC Analysis. Pattern Recognition

Letters, 27:861-874, 2006.

[14] M. Govindarajan. Sentiment Analysis of Movie Reviews using Hybrid
Method of Naive Bayes and Genetic Algorithm. IJACR, 3(4):139-145,

2013.

[15] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H.

Witten. The WEKA Data Mining Software: An Update. SIGKDD

Explorations, 11(1):10-18, 2009.

[16] R. R. S. Jandail, P. Sharma, and C. Agrawal. A Survey on Sentiment
Analysis and Opinion Mining: A Need for an Organization and

Requirement of a Customer. IJETAE, 4(3):17-24, 2014.

[17] A. N. Jebaseeli and E. Kirubakaran. Genetic Optimized Neural Network
Algorithm to Improve Classification Accuracy for Opinion Mining of

M-Learning Reviews. IJETTCS, 2(3):345-349, 2013.
[18] J. Khairnar and M. Kinikar. Machine Learning Algorithms for Opinion

Mining and Sentiment Classification. IJSRP, 3(6), 2013.

[19] E. Kouloumpis, T. Wilson, and J. Moore. Twitter sentiment analysis:
The good the bad and the omg! In Proc. ICWSM, 2011.

[20] S. Leon-Rojas, U. Kirschenmann, and M. Wolpers. We Have No

Feelings, We Have Emoticons ;-). In Proc. ICALT, pages 642-646,
2012.

[21] S. Li, Z. Wang, G. Zhou, and S. Y. M. Lee. Semi-Supervised Learning

for Imbalanced Sentiment Classification. In Proc. IJCAI, pages 1826-

1831, 2011.

[22] B. Liu. Sentiment analysis: A multifaceted problem. IEEE Intelligent

Systems, 25(3):76-80, 2010.
[23] B. Liu and L. Zhang. A Survey of Opinion Mining and Sentiment

Analysis. In Mining Text Data, pages 415-463. Springer, 2012.

[24] D. Maynard, K. Bontcheva, and D. Rout. Challenges in developing
opinion mining tools for social media. In Proc. LREC Workshop, pages

15-22, 2012.

[25] N. Mishra and C. K. Jha. Classification of Opinion Mining Techniques.
IJCA, 56(13):1-6, 2012.

[26] A. Pak and P. Paroubek. Twitter as a corpus for sentiment analysis and

opinion mining. In Proc. LREC, pages 1320-1326, 2010.
[27] B. Pang and L. Lee. Opinion Mining and Sentiment Analysis. FTIR,

2(1-2):1-135, 2008.

[28] B. Pang, L. Lee, and S. Vaithyanathan. Thumbs Up? Sentiment
Classification using Machine Learning Techniques. In Proc. EMNLP,

pages 79-86, 2002.

[29] M. F. Porter. An Algorithm for Suffix Stripping. Program, 14(3):130-
137, 1980.

[30] M. A. Potter and K. A. De Jong. The Coevolution of Antibodies for

Concept Learning. In Proc. PPSN, pages 530-539, 1998.
[31] M. Puteh, N. Isa, S. Puteh, and N. A. Redzuan. Sentiment Mining of

Malay Newspaper (SAMNews) Using Artificial Immune System. In

Proc. WCE, 2013.
[32] A. Puurula and S.-H. Myaeng. Integrated Instanceand Class-based

Generative Modeling for Text Classification. In Proc. ADCS, pages 66-

73, 2013.
[33] Y. Saez, C. Navarro, A. Mochón, and P. Isasi. A System for Personality

and Happiness Detection. IJIMAI, 2:7-15, 2014.

[34] N. Samsudin, M. Puteh, A. R. Hamdan, and M. Z. A. Nazri. Is Artificial
Immune System Suitable for Opinion Mining. In Proc. DMO, pages

131-136, 2012.

[35] N. Samsudin, M. Puteh, A. R. Hamdan, and M. Z. A. Nazri. Immune
Based Feature Selection for Opinion Mining. In Proc. WCE, 2013.

[36] J. C. Schlimmer. Concept Acquisition through Representational

Adjustment. PhD thesis, University of California, Irvine, 1987.
[37] B. Schuller and T. Knaup. Learning and Knowledge-Based Sentiment

Analysis in Movie Review Key Excerpts. In Toward Autonomous,

Adaptive, and Context-Aware Multimodal Interfaces. Theoretical and

Practical Issues, volume 6456 of LNCS, pages 448-472. Springer, 2011.
[38] N. R. Sharma and V. D. Chitre. Opinion Mining, Analysis and its

Challenges. IJIACS, 3(1):59-65, 2014.

[39] G. Stylios, C. D. Katsis, and D. Christodoulakis. Using Bio-inspired
intelligence for Web opinion Mining. IJCA, 87(5):36-43, 2014.

[40] S. Tan, X. Cheng, Y. Wang, and H. Xu. Adapting Naive Bayes to

Domain Adaptation for Sentiment Analysis. In Advances in Information
Retrieval, volume 5478 of LNCS, pages 337-349. Springer, 2009.

[41] J. Twycross and S. Cayzer. An Immune-based Approach to Document

Classification. Technical report, HP Laboratories, Filton Road, Stoke
Gifford, Bristol U.K., 2002.

[42] G. Vinodhini and R. M. Chandrasekaran. Sentiment Analysis and

Opinion Mining: A Survey. IJARCSSE, 2(6), 2012.
[43] A. Watkins, J. Timmis, and L. Boggess. Artificial Immune Recognition

System (AIRS): An Immune-Inspired Supervised Learning Algorithm.

Genetic Programming and Evolvable Machines, 5:291-317, 2004.
[44] J. Wilbur and K. Sirotkin. The Automatic Identification of Stop Words.

JIS, 18:45-55, 1992.

Alejandro Baldominos Gómez (M’14) was born in

Madrid (Spain) in 1990. He obtained his bachelor in

computer science and engineering from Universidad Carlos
III de Madrid (Spain) in 2012 and his master in computer

science and technology in 2013 with a specialization in

artificial intelligence from the same university. He has been
working as a Research Assistant at Universidad Carlos III

de Madrid in the Advanced Databases Group since 2010,
and in the Evolutionary Computation and Artificial Intelligence Group since

2013. He is now a Ph.D. student with a studentship granted by the Spanish

Ministry of Education, Culture and Sport. He also works as Professor of the
master in visual analytics and big data at Universidad Internacional de la

Rioja. He has published several conference papers in the fields of context-

aware systems, artificial intelligence and big data and has been involved in
several national and European research projects, such as Semants, Cadooh,

Memento and SEACW. Prof. Baldominos is AAAI Student Member and

IEEE Student Member.

Nerea Luis Mingueza was born in Madrid (Spain) in

1991. She obtained her bachelor in computer science and
engineering from Universidad Carlos III de Madrid (Spain)

in 2013 and her master in computer science and technology

in 2014 with a specialization in artificial intelligence from
the same university. She has held a research fellowship

since 2012 in the Planning and Learning Group of

Universidad Carlos III de Madrid, where she is now a
Ph.D. student. She is also Professor of the bachelor in computer science and

engineering, where she teaches the programming course. Her research fields

are humanoid robotics and multi-agent planning, having several papers of
these topics published in conference proceedings.

Mª Cristina García del Pozo was born in Madrid (Spain)
in 1983. She obtained her computer management

engineering degree in 2006, her master in computer security

in 2007 and her industrial organization degree in 2009, all
of them from Universidad Pontificia de Salamanca. She is

currently studying the master programme in technological

projects design and management from Universidad
Internacional de la Rioja. She has participated in several

national and European projects, including Yuste Digital and GBIC at

Universidad Pontificia de Salamanca, and SEACW and E-Space at
Universidad Carlos III de Madrid, where she currently works as Research

Assistant in the Evolutionary Computation and Artificial Intelligence Group.

She had previously worked as JAE-Tec in CSIC (Consejo Superior de
Investigaciones Científicas) for two years developing projects, including the

platform used for managing researchers’ normalized curriculum vitae (CVN).

