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Abstract — This paper proposes the design of an evolutionary 

algorithm for building classifiers specifically aimed towards 

performing classification and sentiment analysis over texts. 

Moreover, it has properties taken from Artificial Immune 

Systems, as it tries to resemble biological systems since they are 

able to discriminate harmful from innocuous bodies (in this case, 

the analogy could be established with negative and positive texts 

respectively). A framework, namely OpinAIS, is developed 

around the evolutionary algorithm, which makes it possible to 

distribute it as an open-source tool, which enables the scientific 

community both to extend it and improve it. The framework is 

evaluated with two different public datasets, the first involving 

voting records for the US Congress and the second consisting in a 

Twitter corpus with tweets about different technology brands, 

which can be polarized either towards positive or negative 

feelings; comparing the results with alternative machine learning 

techniques and concluding with encouraging results. 

Additionally, as the framework is publicly available for 

download, researchers can replicate the experiments from this 

paper or propose new ones.  

 
Keywords — Artificial immune system, evolutionary 

computation, sentiment analysis, machine learning, classification. 

 

I. INTRODUCTION 

ENTIMENT ANALYSIS (also referred as opinion 

mining) [27] is a field of Natural Language Processing 

(NLP) which aims at extracting emotional or subjective 

information from a source, which may be a document, a 

website, a publication in a social network, etc.    

A specific task within sentiment analysis is retrieving the 

polarity of the document, i.e., whether it expresses a positive 

or negative feeling (sometimes, the case when the document 

does not express any feeling at all is also observed). This is 

definitely not a simple task, as natural language semantics are 

very complex, and there are many ways, sometimes too 

rhetorical, to express a positive or negative feeling. In fact, 

sentiment analysis involves so many challenges that many 

works over the last decade have discussed them [28, 22, 24, 

38] and most if not all of those difficulties remain invariant 

and are widely discussed today [3], as social networks start to 

set up enormous corpus which are increasingly interesting for 

this task [26, 19]. 

From the computational side, a Machine Learning (ML) 

approach perfectly fits this task. The problem of guessing the 

polarity of a document is analogous to a binary classification 

problem. Yet some decisions, such as how the features for 

classification are retrieved from the document, or which 

particular ML algorithm will be used must be taken before 

some results could be obtained.  

This work aims at applying an Artificial Immune System 

(AIS) approach, which is a biologically-inspired ML 

technique based on the immune system of vertebrates, to solve 

this problem. Actually, the algorithm can be easily extended to 

support multiclass classification and prediction problems. To 

provide additional value, this work also have the purpose of 

developing a framework which can be extended to new 

algorithms and applications, so that it can be reused by the 

scientific community.  

A brief introduction of AIS, as well as some related work is 

provided in section 2. Sections 3 and 4 discuss how features 

can be extracted from text, and how the immune-based 

algorithm is applied for the sentiment analysis task. 

Meanwhile, section 5 focuses on the design and the 

development of OpinAIS, the AIS-based framework for 

solving sentiment analysis problems.  

Finally, section 6 shows some results obtained from using 

OpinAIS with two public datasets involving voting records for 

the US Congress and a Twitter corpus. Secion 7 provides 

some conclusive remarks on this work, and appendices are 

included which detail how to run and extend the framework.  

II. RELATED WORK 

The purpose of this section is to briefly discuss the problem 

of sentiment analysis, analysing previous works where ML 

techniques were used to face this problem, and finally 

describing how AIS work and some state of the art 

applications where AIS are applied for the task of sentiment 

analysis.  

As it was stated in the previous section, sentiment analysis 

(or opinion mining) is a problem that involves many of the 

challenges brought by NLP. Techniques located within the 

field of Artificial Intelligence (AI) are well suited for facing 

this problem [5]. In particular, detecting the polarity of a text 

(whether it contains positive or negative feelings) can be in 

most cases reduced to a problem of binary classification by 

using bag of words (where binary attributes indicate whether a 

particular word appear or not in the document). By doing so, 

many classical ML techniques can be applied [18], including 
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variations of the Naïve Bayes classifier [40], Support Vector 

Machines [37], Kernel Trees [1] or semi-supervised 

approaches [7, 21]. Some works compare several of these 

techniques for detecting emotions and personality in  

platforms such as Whatsapp or SMS [33]. Other works do 

not use bag of words but rather different approaches such as 

graph-based techniques for tweet classification [6], while in  

this case the work do not focus on opinion mining but rather 

topic detection. In the recent years, several surveys 

summarizing the most relevant techniques and contributions 

have been published [23, 25, 42, 16]. 

Biologically inspired AI techniques have also proved to be 

relevant for solving this problem, as many works in the last 

couple of years use these approaches for opinion mining, such 

as it is the case of genetic algorithms [14], particle swarm and 

ant colony optimization [39], neural networks [2] or a 

combination of several of them [17]. 

Regarding biologically-inspired artificial intelligence, 

relevant techniques include AIS which appeared in the mid-

90s, when efforts for understanding the immune system [12] 

significantly increased. The idea beyond these systems is to 

imitate the biological adaptive immune system and its ability 

to recognize external harmful individuals, which can be 

generalized to approach and solve a variety of problems. 

The present work is based on a previous research on 

applying AIS to document classification [41], which was 

already based on an earlier work that applied AIS-based 

techniques for concept learning [30]. In these approaches, 

which will be described in further detail in section 4, a 

population of antibodies is evolved with a co-evolutionary 

technique. Eventually, a set of antibodies conform a classifier, 

which can be used to infer the class a certain item. As long as 

a document classification problem can be represented as a 

binary string, the system can learn a classifier from a set of 

training instances. Additionally, there are more recent works 

which study the convenience of using AIS for opinion mining 

[34], and use this kind of techniques for selecting features for 

opinion mining [35] or analysing sentiments in newspapers 

[31]. 

The use of an evolutionary algorithm somehow recalls from 

other AIS techniques such as clonal selection, as the 

evolutionary operators resemble the operators in algorithms 

such as CLONALG [8]. Additionally, the process of affinity 

maturation is achieved by the evolutionary algorithm, which 

tries to increase the fitness of the antibodies, i.e., their ability 

to correctly detect antigens. 

Finally, prior work proposed a theoretical framework for 

AIS [8], and other ML frameworks such as Weka [15] also 

incorporates AIS-based techniques for general-purpose 

classification as well as specific text mining algorithms which  

would enable performing document classification or opinion 

mining [32]. However, the framework proposed in this work is 

more specifically aimed towards document classification (and 

opinion mining in particular) and therefore is simpler to be 

used and to be extended, whereas others are more complete 

and supports other problems beyond classification itself but 

fail to provide such specific parameterization for opinion 

mining.  

III. DATA WRANGLING 

For applying ML to documents expressed in natural 

language, a preliminary phase of data wrangling is often 

required so that these can be converted to a format accepted by 

the algorithm. For this work, the input is converted into a 

binary string (a list of boolean features). 

The current section details the process followed to obtain a 

set of binary individuals from a set of documents expressed in 

natural language. 

A. Preprocessing 

When dealing with natural language, some processing of the 

input may lead to better results, as raw data is typically too 

noisy. An approach to this processing involves implementing a 

series of filters running in a pipeline [11], each of those 

performing some processing over data, which is then inputted 

to the next filter. The ultimate goal of these phases is to 

increase the ratio of meaningful words by reducing the total 

number of different words, while trying to keep semantics. 

This section describes the preprocessing phase applied in this 

work, and how it could help to improve the results.  

 

1) Removing Non-Alphanumerical Symbols: usually, non-

alphanumerical symbols in a text lack from any semantic 

meaning thus can be ignored. However, other words 

formed only by symbols (e.g. emoticons such as :-) or xD) 

not only do have semantic meaning, but also store a 

strong emotional load [20]. 

2) Converting to Lower Case: in many cases, words keep 

semantics regardless whether they are written uppercase 

or lowercase. For this reason, it is useful to turn all 

symbols to the same case, to represent the same word 

always with the same characters. 

Fig. 1. Example of an antibody detecting an individual. 
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3) Removing Stop Words: in natural languages, there are 

many words that are completely meaningless, and only 

have syntactical value, such as determiners, prepositions, 

etc. These words usually appear with very high 

frequencies, and so may lead the algorithm to think that 

they are relevant. While there are works involving the 

automatic identification of stop words [44], the approach 

followed in this work uses a stop words dictionary for the 

English language. 

4) Stemming Words: stemming is the process to reduce a 

word to its stem (e.g. “work”, “working” and “worked” 

are all reduced to “work”). This way, the space of words 

is considerably reduced, while the original meanings 

persist, increasing the ratio of semantics versus the 

number of different tokens. This work uses the Porter 

Stemming Algorithm [29], as it is widely used and 

considered the de facto standard for stemming English 

words. 

B. Extracting the Features 

After the preprocessing phase, the input is still a set of 

documents, each of these reduced to a set of tokens (stems) 

resulting from applying the filters to the original words. The 

purpose of the second step is to decide which of the tokens are 

more relevant when deciding the class of each document. To 

do so, a metric known as expected information gain may be 

used, which estimates the information provided by a token 

based on the entropy of the set of documents containing and 

not containing that token. 

In particular, the expected information gain for a word w 

and a set of documents S is calculated as follows: 

 𝐸(𝑤, 𝑆) = 𝐼(𝑆) − (𝑃(𝑤)𝐼(𝐷𝑤)) + (𝑃(¬𝑤)𝐼(𝐷¬𝑤)) 

where: 

 𝑃(𝑤) is the probability that 𝑤 appears in a document, 

i.e., the percentage of documents containing 𝑤. 

 𝑃(¬𝑤) is the probability that w does not appear in a 

document, i.e., the percentage of documents not 

containing 𝑤. 

 𝐷(𝑤) is the subset of documents containing 𝑤. 

 𝐷(¬𝑤)is the subset of documents not containing 𝑤. 

 𝐼(𝑆), 𝑆 = {𝐷, 𝐷𝑤 , 𝐷¬𝑤} is the entropy of the set 𝑆 for each 

of the classes, which is defined as follows: 
 

I(S) = ∑ −P(Sc) log2(P(Sc))

c∈{+,−}

 

 

The computation of the entropy can only be performed if a 

training set exists where the class is known in advance for 

each document in the set, i.e., under a supervised learning 

scheme. While the previous equation refers to the class as 

either positive or negative, it could be generalized to any 

arbitrary number of different classes. 

Finally, when the expected information gain is computed 

for all words, the n words with the highest value of 𝐸 are 

chosen, which can be expressed as 𝐹 = {𝑤1 𝑤2 𝑤3 … 𝑤𝑛}. 

During the last phase, known as vectorization, the objective 

is to convert documents to individuals represented by a binary 

string: 𝑑 = {𝑏1 𝑏2 𝑏3 … 𝑏𝑛}. To do so, for each bit 𝑏𝑖 in the 

individual representing the document, 𝑏𝑖 = 1 if the document 

contains the word 𝑤𝑖 , or 𝑏𝑖 = 0 if it does not. After the 

vectorization process takes place, the original set of 

documents is converted into a set of binary individuals.  

IV. THE ARTIFICIAL IMMUNE SYSTEM 

For the development of AIS, the approach provided in [41] 

is followed. This section provides first an intuition of how 

antibodies are represented in the AIS and how they can be 

used to detect individuals of a certain type. Later, it describes 

the process to obtain a classifier, composed of a set of 

antibodies, given a set of training examples. 

A. Design of Antibodies 

The design of antibodies is a key task in the development of 

an AIS, as they are the entities responsible for detecting the 

type of the individuals and, in the end, of the classification 

task. In the AIS developed for this work, antibodies (also 

called detectors), integrate the next elements: 

 A type indicating the polarity of the individuals this 

detector should recognize, which usually are self (i.e., 

part of the body) or non-self (i.e., foreign to the body 

and thus potentially harmful), which in the task of 

sentiment analysis are identified to positive and 

negative items respectively. Nevertheless, this 

definition can be extended to support a set of k 

different classes. 

Fig. 2. Example of a translation between an antibody's genotype and phenotype 
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 A binary schema of the same length that the number of 

features of an individual. While this schema is binary, 

besides 0s and 1s it can also contain wildcard (#) 

positions.  

 A real threshold in the interval [0,1]. 

After a representation for the antibodies is chosen, it is 

important to decide the process by which an antibody detects 

an individual as being from its type. The steps for this process 

are detailed next: 

1) Each bit in the schema is compared to each bit of the 

individual in the same position. Bits in wildcards 

positions, marked as #, are ignored.  

2) The matching ratio is computed as the number of bits 

matching in the same position divided by the total number 

of comparisons performed (i.e., the number of non-

wildcard positions in the antibody's schema).  

3) If the matching ratio exceeds the threshold, then the 

antibody detects the individual as being of its same type. 

Otherwise, it does not detect it. 

An example of individuals matching is provided in Figure 

1. In this particular example, there are 3 matches from a total 

of 6 comparisons, so the matching ratio is 3/6 = 0.5, which is 

greater than the threshold (0.5 > 0.4), and thus the individual 

is recognized as self. 

B. Evolving the Classifier 

A classifier is a set of antibodies, one for each possible type. 

When an individual is inputted to the classifier, each antibody 

tries to detect it. The type of the individual is obtained as the 

type of the antibody who detects the individual and maximizes 

the matching ratio. It is important to notice that, in the case 

that no antibody detects the individual, then it remains 

unclassified. 

An evolutionary approach is chosen to obtain the classifier. 

Before the details of the algorithm are described, it is 

important to decide the way the antibody is represented in 

order to be treated by the evolutionary algorithm, i.e., its 

genotype. Antibodies are encoded as follows:  

 The type does not need to be encoded, as the 

evolutionary operators do not affect it.   

 The threshold is encoded as an 8-bit number in Gray 

code, as small changes in this binary representation 

lead to small changes in the number it represents. 

Because an 8-bit string represents an unsigned integer n 

the interval [0, 255], the resulting value is normalized 

in the range [0, 1], thus dividing it by 255.   

 The schema is represented by two different binary 

strings, named pattern and mask, both with the same 

length that the schema. Given a pattern and a mask, the 

schema can be determined as follows: 

1. If the i-bit in the mask is 1, then the 

corresponding bit in the schema will be a wildcard 

(#). 

2. If the i-bit in the mask is 0, then the 

corresponding bit in the schema will correspond 

to the i-bit from the pattern. 

It must be noticed that with this encoding, many 

different genotypes may translate into the same 

phenotype. Actually, this is common in natural immune 

systems, as different chains of amino acids may fold 

into antibodies recognizing the same pattern [30]. 

An example of a translation between the genotype and the 

phenotype is shown in Figure 2. Once the binary 

representation for the antibodies is depicted, the details of the 

evolutionary algorithm can be discussed. This algorithm 

follows the next steps: 

1) Initialization: to begin with, the algorithm generates an 

initial population of antibodies, of a fixed (yet 

configurable) size. While this initialization is performed 

randomly, it attends to some parameters: 

 The type bias represents the probability that the new 

antibody detects self individuals. For instance, if the 

type bias has a value of 0.6, then it means that in 

average, 60% of the antibodies in the population will 

detect self individuals. 

Fig. 3. Package structure for the OpinAIS framework 
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 The generality bias represents the probability that a bit 

in the schema is a wildcard (#). For instance, if the 

generality bias has a value of 0.3, then it means that in 

average, 30% of the bits in an antibody schema will be 

wildcards.  

2) Fitness calculation: once the initial population is 

generated, the algorithm calculates the fitness of each 

antibody. This fitness is calculated as the number of 

correctly classified individual minus the number of false 

positives. Unclassified individuals are considered as 

correctly classified if they are not of the same type that 

the antibody. To prevent negative values for the fitness, it 

is normalized in the range [0, 1]. 

3) Selection: two antibodies from the same type are chosen, 

in a random yet fitness-proportional manner. To do so, a 

technique known as roulette selection is performed, by 

which antibodies with higher fitness have more chances to 

be selected. 

4) Reproduction: the two selected antibodies serve as 

parents for a new one. This reproduction is performed 

using standard crossover, by which the genome of the 

child antibody is filled by selecting, for each bit, one 

random bit in the same position from either of their 

parents. A parameter, known as the crossover rate, 

establishes the probability that crossover takes place. In 

the cases where crossover is not performed, the child 

results as an exact copy of one of their parents. 

5) Mutation: the child is mutated, by performing bit flipping 

for each individual bit. In this case, a parameter known as 

mutation rate controls the probability that a single bit is 

flipped. 

6) Generational replacement: steps 3-5 are performed until 

the new population has as many antibodies of the same 

type as the previous one. When such a thing occurs, the 

original population is replaced with the new one. During 

this phase, elitism can be introduced through a parameter, 

known as elitism rate, which controls the percentage of 

best antibodies that are kept between generations. By 

introducing elitism, the best detectors are maintained.  

7) Stop condition: if the maximum number of generations is 

not achieved, the algorithm restarts from step 2. 

Otherwise, the algorithm stops and a classifier is built by 

choosing the best antibody from each type. Each bit in the 

schema is compared to each bit of the individual in the 

same position. Bits in wildcards positions, marked as #, 

are ignored.  

An improved version of this algorithm, which includes a 

cooperative approach, has been also developed. This 

algorithm, which is known as co-evolutionary algorithm, 

inserts a new phase after the fitness calculation. Indeed, it 

performs a second fitness calculation, which computes a 

cooperative fitness rather than an individual one.  

Particularly, the cooperative fitness for a certain antibody is 

the result of classifying all the individuals with that antibody 

combined with the best antibodies of the remaining types. The 

fitness sums up all the hits and subtracts the misses (i.e., 

individuals wrongly classified). It remains as a user-

configurable parameter to decide whether unclassified 

individuals are considered as wrongly classified or are ignored 

(some applications may benefit from ignoring unclassified 

instances, such as those where unclassified instances are 

preferred over misclassified ones). Finally, the fitness is 

normalized in the range [0, 1]. 

The cooperative fitness evaluates a potential classifier rather 

than each antibody itself. For this reason, results are usually 

better, but computing time can also be significantly higher. 

V. THE OPINAIS FRAMEWORK 

OpinAIS is an extensible framework that enables the 

application of AIS to a variety of classification problems, as 

long as instances can be represented as binary strings. 

The power of OpinAIS remains in its extensibility. While 

the algorithms described in the prior section are already 

implemented, it is relatively simple to develop new ones. This 

principle not only applies to algorithms, but also to input 

readers, information retrieval processors, etc.   

Figure 3 shows the package structure of the framework. The 

heading of the figure refers to the path where the OpinAIS 

framework is placed in the package. The purpose of this 

section is to describe the responsibility of each one, so that it 

can serve as a quick developer guide. The ir package (1) stores 

the logic required to retrieve a set of individuals (which are 

computable by the algorithm) from an input source, such as a 

text file containing one individual in each line. This package is 

divided in several subpackages, with clearly defined 

responsibilities: 

 Package items (2) contains items, which a generic type 

of individuals, i.e., something which can be potentially 

converted to an individual, but so far is not, such as a 

tweet or an HTML document are some kinds of items. 

 Package readers (3) will store readers, whose 

responsibility is to generate a set of items from an input 

source. For instance, there may be a folder containing 

HTML documents, and a reader that returns a set of 

objects representing those. 

 Package preprocessors (4) stores classes responsible 

for performing some preprocessing tasks over text 

items which may significantly increase the 

performance of the classifier, as it was shown in 

section 3.  

 Package extractors (5) contains classes whose purpose 

is to extract features from a set of items in those cases 

when specific logic for this task is required (e.g. 

implementation details on the extractor for text items 

was provided in section 3). 

 Package vectorizers (6) contains the logic for 

converting items into individuals encoded as a set of 

bits. The behaviour of vectorizers for text items was 

explained in section 3.  

On the other hand, the core package (7) stores the logic 

required for obtaining a classifier from a set of input 

individuals. Most details on this process were already given in 

section 4, so this section will limit to explain how this 



Regular Issue 

 

-30- 

 

functionality is broken into different packages: 

 Package types (8) contains an enumerated type, Type 

with the set of all possible classes for individuals. For 

the sake of flexibility, this enumerated type is empty 

and it is filled dynamically when classes are known.  

 Package detectors (9) contains the Detector class, 

representing the definition of an antibody, as it was 

described in section 4. Moreover, the DetectorFactory 

class implements some logic for initializing the first 

population of antibodies.  

 Package selectors (10) contains classes which 

implement some logic for choosing an antibody from a 

population. So far, the evolutionary algorithm 

developed uses a roulette selector, yet many others 

could be implemented by the user (e.g. a tournament 

selection).  

 Package operators (11) stores auxiliar logic containing 

operators used by the algorithms. An example of such 

operators is the standard crossover and mutation, which 

were already described in section 4, and which are 

implemented in the classes CrossoverOperator and 

MutationOperator respectively.  

 Package algorithms (12) stores the algorithms, whose 

responsibility is to receive a set of training individuals 

and build a classifier from them.  

Finally, the experimenter package (13) contains additional 

logic for assisting the experimental tasks, such as: 

 dividing a set of individuals into training and test sets, 

where the size of these tests can be set by the user.   

 given a classifier and a set of individuals, computing 

the confusion matrix, i.e., a table showing up the 

number of correctly classified instances, as well as 

false positives, true negatives and unclassified 

individuals.  

 computing the performance of a classifier measured as 

its accuracy, given the corresponding confusion matrix.  

The OpinAIS framework is publicly available for download 

from a GitHub repository1, and more information and 

developers documentation can be found in the project 

website
2
, including instructions on how to run and extend it.  

VI. EXPERIMENTAL RESULTS 

Once the OpinAIS framework is developed, experiments 

over two different datasets are performed using the 

implemented AIS-based algorithm in order to validate the 

system, and a comparative evaluation with classic ML 

techniques is also carried out. Additionally, further evaluation 

for the algorithms underlying this proposal has already been 

published in previous works [30, 41]. 

A. US Congressional Voting Records Dataset 

The first experiment in this section will execute over the US 

Congressional Voting Records Data Set from the UCI 

 
1 http://github.com/alexbaldo/opinais 
2 http://baldo.uc3m.es/opinais/ 

Machine Learning Repository [36], which is composed of 117 

(34.21%) instances of republican votes and 225 (65.79%) 

instances of democrat votes. As instances are fairly 

unbalanced, two experiments are executed: the first one will 

deal with all input instances, while the second will balance 

them, thus taking 117 instances of republican congressmen 

and the same number of democrats. 

 
TABLE I 

CONFUSION MATRIX FOR THE US VOTING RECORDS DATASET WITH 

UNBALANCED DATA 

 Republican Democrat N/C 

Republican 86/22 5/3 1/0 

Democrat 2/2 179/41 1/0 
 

TABLE II 

CONFUSION MATRIX FOR THE US VOTING RECORDS DATASET WITH 

BALANCED DATA 

 Republican Democrat N/C 

Republican 85/26 3/0 2/1 

Democrat 2/0 95/19 1/0 

 

The results for an average execution are shown in Table I 

and Table II, which contains the confusion matrix for the 

experiment with unbalanced and with balanced data 

respectively. Cells in the confusion matrix contain two values, 

the first one referring to the training set and the second to the 

test set. The last column refers to non-classified instances.  

As it can be seen, the results are pretty good. For the 

original dataset, the accuracy is 96.72% (92.65%), while for 

the balanced subset the value is 95.74% (97.83% for the test 

set). From these numbers, two conclusions can be drawn: in 

the first place, the AIS-based evolutionary algorithm provides 

good classification accuracy, which validates that the system 

is working properly. Secondly, the algorithm shows a good 

generalization ability, as long as it does not fall into overfitting 

the individuals from the training set, achieving very similar 

results for both the training and the test sets. 

B. Twitter Sentimental Corpus 

The second battery of experiments is performed over a set 

of actual tweets, which are short publications in Twitter. This 

dataset is provided by Sanders Analytics
3
, consists in 5,513 

tweets about technological companies and it is especially 

interesting as it provides two different classifications. The first 

one has to do with the polarity of the tweet, which can either 

be positive, negative, neutral or irrelevant. In most cases, 

tweets are classified as irrelevant if they are written in 

languages other than English or have nothing to do with the 

topic (i.e., they are spam). Also, tweets are classified as 

neutral when they are neither positive nor negative in a clear 

way, they are simple factual statements or they express 

questions with no strong emotions. The second classification 

criterion has to do with the technological enterprise related to 

the content of the tweet. 

An example of a tweet for each polarity and enterprise is 

 
3 http://www.sananalytics.com/lab/twitter-sentiment 
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shown in Table III. As it can be seen, the classification task 

may find some difficulties. In the first place, a tweet with 

negative polarity contains a high load of positive words such 

as “greatly impressed”. Secondly, as irrelevant tweets can be 

in any language, they add a huge number of possible words 

that may harden the features extraction task. 

 
TABLE III 

TWEETS FOR EACH POLARITY AND ENTERPRISE 

Brand Polarity Tweet 

Apple 
Positive 

@apple @siri is efffing 

amazing! 

Microsoft Neutral 
Creating #Pareto charts using 

#Microsoft #Excel 

Google Negative 

Not greatly impressed with 

#Google and #Samsung 

presentation skills. 

Twitter Irrelevant #twitter sos un vicioooooo 

 
TABLE IV 

CONFUSION MATRIX FOR THE TWITTER SENTIMENT CORPUS WHEN 

CLASSIFYING THE TWEET'S ENTERPRISE USING OPINAIS 

 A G M T NC 

A 699/75 42/2 27/10 44/3 165/29 

G 27/4 742/68 59/5 96/12 196/25 

M 50/6 59/6 791/93 24/1 208/19 

T 20/4 18/2 82/9 825/93 128/11 

 
TABLE V 

CONFUSION MATRIX FOR THE TWITTER SENTIMENT CORPUS WHEN 

CLASSIFYING THE TWEET'S POLARITY USING OPINAIS 

 Positive Negative NC 

Positive 296/30 107/20 42/1 

Negative 72/9 385/39 32/4 

 
TABLE VI 

RESULTS FOR THE EVALUATION OF THE TWEET'S POLARITY PREDICTION 

USING OPINAIS 

 Train Test   Train Test 

ACC 72.9% 67.0%  TPR 73.5% 60.0% 

PPV 80.4% 76.9%  TNR 84.3% 81.3% 

NPV 78.3% 66.1%  MCC 58.2% 48.9% 

 
TABLE VII 

CONFUSION MATRIX FOR THE TWITTER SENTIMENT CORPUS WHEN 

CLASSIFYING THE TWEET'S POLARITY USING NAIVE BAYES 

 Positive Negative 

Positive 196/80 144/76 

Negative 47/16 339/139 

 

For both experiments, a population of 200 individuals each 

one recognizing 250 features is evolved during 1000 

generations. The dataset is divided into a training set 

containing 70% of the original instances and a test set with the 

remaining 30%. 

First, a classifier is trained to infer the enterprise related 

with the tweet, either Apple (A), Google (G), Microsoft (M) or 

Twitter (T). The number of instances for each enterprise is 

approximately the same, i.e., the dataset is balanced. The 

confusion matrix for this problem is shown in Table IV. As it 

can be seen the results are good, providing a great 

improvement over random guess with an accuracy of 92.41% 

(90.41% over the test set, which also shows a good 

generalization). 
 

TABLE VIII 
CONFUSION MATRIX FOR THE TWITTER SENTIMENT CORPUS WHEN 

CLASSIFYING THE TWEET'S POLARITY USING C4.5 

 Positive Negative 

Positive 233/90 107/66 

Negative 50/37 336/18 
 

TABLE IX 

CONFUSION MATRIX FOR THE TWITTER SENTIMENT CORPUS WHEN 

CLASSIFYING THE TWEET'S POLARITY USING RANDOM FOREST 

 Positive Negative 

Positive 317/126 23/30 

Negative 29/34 357/121 

 
TABLE X 

CONFUSION MATRIX FOR THE TWITTER SENTIMENT CORPUS WHEN 

CLASSIFYING THE TWEET'S POLARITY USING SVM 

 Positive Negative 

Positive 143/61 197/5 

Negative 40/12 346/143 

 
TABLE XI 

CONFUSION MATRIX FOR THE TWITTER SENTIMENT CORPUS WHEN 

CLASSIFYING THE TWEET'S POLARITY USING MLP 

 Positive Negative 

Positive 198/79 142/77 

Negative 26/13 360/142 

 
TABLE XII 

CONFUSION MATRIX FOR THE TWITTER SENTIMENT CORPUS WHEN 

CLASSIFYING THE TWEET'S POLARITY USING CLONALG 

 Positive Negative 

Positive 181/81 159/75 

Negative 78/37 308/118 

 
TABLE XIII 

CONFUSION MATRIX FOR THE TWITTER SENTIMENT CORPUS WHEN 

CLASSIFYING THE TWEET'S POLARITY USING AIRS 

 Positive Negative 

Positive 145/65 195/91 

Negative 44/15 342/140 
 

TABLE XIV 
CONFUSION MATRIX FOR THE TWITTER SENTIMENT CORPUS WHEN 

CLASSIFYING THE TWEET'S POLARITY USING IMMUNOS-81 

 Positive Negative 

Positive 113/55 227/101 

Negative 36/11 350/144 

 

Finally, the algorithm is executed with the objective of 

inferring the polarity of a tweet. For this experiment, only 

positive and negative tweets are considered. This is due to a 

couple of reasons, the first one being that neutral and 

irrelevant tweets take the most part of the corpus (almost 

80%). 
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While this handicap could be solved by balancing the 

classes, a second problem appears: words from the irrelevant 

tweets will take a considerable part of the features array, if not 

the whole. This happens given that irrelevant tweets contains 

many words in different languages, which only appear in 

tweets from that class and which turn out to be very good 

discriminators. For this reason, the classifier would specialize 

in neutral and irrelevant tweets rather than on positive or 

negative ones, which was the original problem. 

The number of positive and negative tweets is balanced 

(47.83% vs. 52.17% respectively). The confusion matrix for 

this problem is shown in Table V, and Table VI shows 

different metrics for evaluating the prediction quality [13] for 

both the train as test sets, including the accuracy (ACC), the 

positive predictive value (PPV, also known as precision), the 

negative predictive value (NPV), the true positive rate (TPR, 

also known as recall), the true negative rate (TNR, also known 

as specify) and the Matthews correlation coefficient (MCC). 

Unclassified instances are treated as if they were misclassified. 

It can be seen that the results are fairly good and the 

generalization power is acceptable as well, as the performance 

over the test set is pretty similar to that over the training set.  

Finally, a comparative evaluation is performed to check 

how the results obtained using OpinAIS for the task of 

sentiment analysis compare to those achievable using classic 

ML techniques. For this task, the Weka framework is used 

[15]. An ARFF file is generated directly from the OpinAIS 

framework, after the preprocessing and vectorization phases. 

Thus, the resulting ARFF is a file where instances have 200 

binary attributes (one per each selected word) and a class, 

either positive or negative. 

For the comparative evaluation, classic ML techniques have 

been used (Naive Bayes, C4.5 decision trees and random 

forest), as well as Kernel-based techniques (support vector 

machines) and biologically-inspired algorithms (multilayer 

perceptron). Also, alternative immune classifiers
4
 have been 

compared, namely CLONALG [9, 10], AIRS [43] and 

Immunos-81 [4]. In all cases, default parameters are used. 

Confusion matrices displaying the classification results for 

each of this techniques are shown as follows: Table VII shows 

the confusion matrix using Naive Bayes, Table VIII for C4.5 

decision trees, Table IX for random forest, Table X for 

 
4
 Added to WEKA as a plugin available at: 

http://wekaclassalgos.sourceforge.net 

support vector machines (SVM), Table XI for multilayer 

perceptron (MLP), Table XII for CLONALG, Table XIII for 

AIRS and Table XIV for Immunos-81. 

All these results are synthesized in Table XV where the 

metrics for evaluating the prediction quality described above 

are computed for the results obtained in the test set for each 

technique. Results show that for class-independent metrics 

(accuracy and Matthew's correlation coefficient), OpinAIS 

performs better than most of the other classifiers, with the only 

exception of random forests. In a per-class basis, OpinAIS 

provides the best results for the true positive rate (TPR), i.e., is 

able to classify most positive tweets correctly, outperforming 

the other techniques. On the other hand, the results are worse 

for the true negative rate (TNR), meaning that many negative 

tweets are either misclassified or not classified at all. Also, the 

negative predictive value (NPV) compares quite well to the 

alternative techniques, only surpassed by random forest, 

meaning that most of the tweets predicted as negative are 

really negative. From all the techniques compared, OpinAIS is 

the second with highest generalization power (measured as the 

absolute difference between the accuracy of the training and 

the test set), outperforming all its competitors expect for 

Immunos-81. 

VII. CONCLUSIONS AND FUTURE WORK 

As a result of the present work, a framework for applying  

IS to a variety of classification problems, including those 

involving sentiment analysis or some natural language 

processing, has been developed. While this framework is 

initially built as an implementation of an evolutionary 

algorithm, it has been refactored to keep extensibility as the 

main priority. This way, scientists can easily adapt the 

framework to their needs, either adding new algorithms or 

information retrieval processes or supporting new input data.  

The first framework prototype has been evaluated by using 

two different public datasets. Results are encouraging, as 

binary classification metrics for the evaluated datasets are 

always greater than 50% and in some cases close to 100% and 

MCC is significantly higher than zero, and the built classifiers 

proved to generalize fairly well the concepts they learnt. When 

these results are compared to other machine learning 

techniques, OpinAIS outperforms them in terms of accuracy, 

with the only exception of the random forest classifier, and in 

any case behaves significantly better in a class-independent 

basis than its immune-based competitors. 

TABLE XV 
CLASSIFICATION METRICS COMPARED FOR DIFFERENT MACHINE LEARNING TECHNIQUES. BOLD CELLS INDICATE THE BEST VALUE FOR EACH METRIC 

 ACC PPV NPV TPR TNR MCC 

OpinAIS 73.31% 69.52% 79.03% 83.33% 63.23% 47.54% 

Naive Bayes 70.42% 83.33% 64.65% 51.28% 89.68% 44.33% 

C4.5 66.88% 70.87% 64.13% 57.69% 76.13% 34.40% 

Random Forest 79.42% 78.75% 80.13% 80.77% 78.08% 58.86% 

SVM 65.59% 83.56% 60.08% 39.10% 92.26% 36.99% 

MLP 71.06% 85.87% 64.84% 50.64% 91.61% 46.29% 

CLONALG 63.99% 68.64% 61.14% 51.92% 76.13% 28.91% 

AIRS 65.92% 81.25% 60.61% 41.66% 90.32% 36.59% 

Immunos-81 63.99% 83.33% 58.78% 35.26% 92.90% 34.44% 
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As the framework remains in a phase of active 

development, many improvements can be proposed as future 

work. For instance, many new algorithms, parameters and 

information retrieval features can still be added, and n-grams 

rather than words could be used for vectorization.  

APPENDIX 

A. Running the Framework 

The OpinAIS class, which is placed in the root package 

(es.uc3m.baldo.opinais), contains the entry point for the 

application. This class only requires an argument, which is the 

path for a properties file (a special type of file in Java, very 

similar to .ini files), containing a bunch of parameters. 

 
CODE I 

A SAMPLE PROPERTIES FILE 

# Set of possible types (classes). 

types=apple,google,microsoft,twitter 

 

# Reader which will retrieve the items from the input source. 

reader=TweetReader 

 

# Factory which will process and convert the items to individuals. 

factory=TextIndividualsFactory 

 

# Source file with input. 

inputFile=data/SandersAnalytics/tweets_brand.txt 

 

# Maximum number of individuals. 0 means all. 

individualsSize=0 

 

# Must the number of individuals for each type be balanced? 

isBalanced=false 

 

# Size of the population of detectors. 

speciesSize=200 

 

# Length of the features vector. 

featuresLength=1000 

 

# Preprocessors to be applied, in order. 

preprocessors=LowerCaser,StopWordsRemover,Stemmer 

 

# Percentage of the individuals to be used in the test set. 

testPct=0.1 

 

# Name of the algorithm to be used. 

algorithm=EvolutionaryAlgorithm 

 

# Types of the arguments required by the constructor 

algorithmTypes=Integer,Double,Double,Double,Double,Double 
 

A fragment of a sample properties file is shown in Code I. 

Besides, the distributed source code contains also properties 

files for some applications, which the user may want to take a 

look at to get a better understanding of all the parameters that 

can be customized.  

B. Extending the Framework 

The purpose of this section is to provide a brief overview to 

developers on how they can extend the framework to support 

new inputs. 

For this example, the US Congressional Voting Records 

Data Set [36] described before has been chosen. This dataset 

contains a set of instances representing a certain congressman, 

which can be either republican or democrat. Each of these 

stores the particular vote of the congressman for 16 different 

votations, where this vote can be a yes, a no, or an abstention. 

The steps for supporting classification over this dataset are 

the next ones: 

1) In the first place, the developer must create a class in the 

ir.items package, which represents a vote record and may 

be called VotingRecord. This class must extend from Item 

and will store the vote for each votation. 

2) Secondly, a class converting input lines into instances of 

the VotingRecords class will be implemented, and stored 

in the ir.readers.factories package, while implementing 

the Factory interface. This class may be called 

VotingRecordFactory. 

3) Later, a reader in the ir.readers class will be developed, 

which must implement the Reader interface. This reader 

will eventually return a set of voting records given an 

input file. 

4) A vectorizer must be developed to encode voting records 

as a binary string. To do so, the approach of [41] can be 

observed, where yes is represented as 01, no is 

represented as 10 and abstention is represented as 00 

(notice that this encoding is not arbitrary, and it has been 

chosen so that opposite values differs in its genomic 

representation as much as possible). This class can be 

called VotingRecordVectorizer and must be placed in the 

ir.vectorizers package. 

5) Finally, the individuals factory implementing the interface 

IndividualsFactory must be developed, which essentially 

coordinates the flow between the classes above to 

generate a set of individuals.  
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