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A B S T R A C T 

Adaptive embedded systems are required in various applications. This work addresses these needs in the 
area of adaptive image compression in FPGA devices. A simplified version of an evolution strategy is uti­
lized to optimize wavelet filters of a Discrete Wavelet Transform algorithm. We propose an adaptive 
image compression system in FPGA where optimized memory architecture, parallel processing and opti­
mized task scheduling allow reducing the time of evolution. The proposed solution has been extensively 
evaluated in terms of the quality of compression as well as the processing time. The proposed architec­
ture reduces the time of evolution by 44% compared to our previous reports while maintaining the qual­
ity of compression unchanged with respect to existing implementations. The system is able to find an 
optimized set of wavelet filters in less than 2 min whenever the input type of data changes. 

1. Introduction 

One of the current design challenges in embedded systems 
engineering is the implementation of adaptation capabilities. Using 
previous compression standards like JPEG, which relied in the Dis­
crete Cosine Transform (DCT) for its transform stage prevented 
from implementing this adaptation at the transform level. How­
ever, JPEG 2000 [1] switched to the Discrete Wavelet Transform 
(DWT) [2], which opened up a very interesting possibility for this 
task to be tackled. 

DWT is a very useful tool for (adaptive) image compression 
algorithms, since it provides a transform framework that can be 
adapted to the type of images being handled. This feature allows 
performance improvement of the transform according to each par­
ticular type of image so that improved compression (in terms of 
quality vs size) can be achieved, depending on the wavelet used. 
Besides, the proposal of the Lifting Scheme by Sweldens [3] widened 
the possibilities of the DWT by making the custom construction of 
wavelets possible with this computation scheme. 

Having a system able to adapt its compression performance 
according to the type of images being handled, may help in, for 
example, the calibration of image processing systems. Such a system 

would be able to self-calibrate when it is deployed in different envi­
ronments (even to adapt through its operational life) and has to deal 
with different types of images. Certain tunings to the transform 
coefficients may help in increasing the quality of the transform, 
and, consequently, the quality of the compression. 

Most of the various approaches previously followed by other 
authors in the search for this transform adaptivity are based on 
the mathematical foundations of wavelets and multi-resolution 
analysis. In contrast, a new line of research was opened in previous 
works by Grasemann and Miikkulainen [4] and Moore [5] which 
makes use of bio-inspired algorithms, such as Evolutionary Algo­
rithms (EAs), as a design/optimization tool to help to find new 
wavelet filters adapted to specific types of input data. For this rea­
son, it is the whole system that is being adapted and no extra com­
puting effort is added to the transform computation algorithm, 
such as classical adaptive lifting techniques propose. Hence, the 
proposal focuses in the implementation of new ways for the auto­
matic design of a complete new set of wavelet filters. However, 
these proposals demanded a huge amount of computing resources 
available to produce suitable results in a certainly high computing 
time. 

Following this approach of using Evolutionary Computation to 
design new wavelet filters, our proposal is focused on embedding 
these ideas in FPGA devices, enabling the implementation of adap­
tive wavelet transforms in embedded systems. Therefore, our first 
approach dealt with the simplification of the algorithm to find a 
trade-off between computing effort and search performance. Once 
a suitable EA and its corresponding set of parameters was found, a 



prototype FPGA implementation was proposed which enabled self-
calibration as a way to accomplish the aforementioned adaptation 
needs. Main system blocks are a DWT core implemented in HW 
and an EA, obtaining a system able to accomplish self-adaptation 
by optimizing wavelet filters coefficients. 

After this prototype, generic, bio-inspired adaptive System On 
Chip (SoC) for image compression tasks was validated, a further 
improved system performance in terms of computing time is tack­
led in this work. Therefore, the goal of this paper is to propose and 
evaluate several techniques that will increase the level of parallel­
ism of our previous implementation and thus allow to accelerate 
the time of evolution. Specifically, parallelization of the underlying 
computational units and an improved task scheduling and HW/SW 
communication model are proposed. 

Hence, some basic concepts of the involved domains, DWT and 
EC, are introduced in Section 2, followed by an analysis of related 
works in Section 3. Next, a summary of the initial prototype imple­
mentation and the corresponding results are included in Section 4 
to help in a better understanding of the final system and its asso­
ciated improvements which can be found in Section 5, which 
features the description of the optimized architecture and system 
operation scheduling. Section 6 concludes the paper. 

2. Overview of related concepts 

2.1. Discrete Wavelet Transform 

The DWT is a multi-resolution analysis (MRA) tool widely used 
in signal processing due to its joint time-frequency signal analysis 
characteristics that concentrates the signal energy into fewer coef­
ficients to increase the degree of compression when the data is en­
coded. For a general introduction to wavelet based MRA analysis 
see [6]. 

The Lifting Scheme (LS), introduced by Sweldens [3], reduces the 
computational cost of the transform as required by the Fast Wave­
let Transform (FWT) algorithm and facilitates the construction of 
custom wavelets for very specific and different types of data. Be­
sides, it is really well suited for the task of using an EA to encode 
wavelets, since any random combination of lifting steps will en­
code a valid wavelet, what guarantees perfect reconstruction [3,7]. 

Fig. 1 shows the basic LS, which consists of three stages (also 
called lifting steps): Split (also called Lazy Wavelet) divides the in­
put data into two smaller subsets, Sj_i and dj_i which usually corre­
spond with the even and odd samples. The Predict and Update 
stages, also called lifting filters, are computed as in (1). Although 
not shown in Fig. 1, at the end of each transform level two normal­
ization factors are defined by the Lifting Scheme if, for example, en­
ergy conservation is intended [8]. An advantage of the Lifting 
Scheme is that it defines a perfectly invertible transform by just 
doing a reversal of the forward transform operations order 
(Update, Predict, Merge) and a simple swap of plus and minus signs. 

dj_1(z)=dj(z)+P(z)sj(z) 

sj_1(z) = sj(z) + U(z)dj(z) (> 

Fig. 1. Lifting Scheme (J stands for the decomposition level). 

Hence, according to Fig. 1 the wavelet representation of s,- is 
given by the set of coefficients {s,-_2, d,-_2, dj_{]. This scheme can 
be iterated up to n levels, so that an original input data set s0 

will have been replaced with the wavelet representation 
{s_n,d_n d_i}. An algorithmic description of the LS can be 
expressed as in Algorithm 1. A different notation for the trans­
form coefficients is also often used; for a 2 level image decom­
position it becomes {II, IH, HI, HH}, where I stands for low 
pass (data trend) and H for high pass (data details) coefficients 
respectively. 

Algorithm 1. Lifting Scheme 

for j <— l,n do >j stands for the decomposition level 
{Sj, dj] ^ Split(sj+1) 
dj = dj + P(sj) 

Sj = Sj + U{dj) 
end for 

2.2. Bio-inspired optimization with Evolutionary Computation 

Evolutionary Computation (EC) [9] is a sub-field of Artificial 
Intelligence (AI) that consists of a series of biologically inspired 
search and optimization algorithms that evolve iteratively better 
and better solutions. It involves techniques inspired by biological 
evolution mechanisms such as reproduction, mutation, recombina­
tion, natural selection and survival of the fittest. 

An Evolution Strategy (ES) is one of the fundamental algorithms 
among Evolutionary Algorithms (EA) that utilize a population of 
candidate solutions and bio-inspired operators to search for a tar­
get solution. ES is primarily used for optimization of real-valued 
vectors. The algorithm operators are iteratively applied within a 
loop, where each loop run is called a generation (g), until a termi­
nation criterion is met. 

So-called variation operators (mutation and recombination) 
create the necessary diversity and thereby facilitate novelty while 
selection acts as a force pushing quality since individuals are se­
lected according to the fitness figure scored in the evaluation phase. 
Mutation delivers a (slightly) modified mutant causing a random, 
unbiased change, while recombination merges (random) informa­
tion from two (or more) parents. For real-valued search spaces, 
mutation is normally performed by adding a normally (Gaussian) 
distributed random value to each component under variation 
(i.e., to each parameter encoded in the individuals). Algorithm 2 
shows a pseudo-code description of a typical ES. 

The canonical versions of the ES are denoted by (pip, 2)-ES and 
(fi/p + 2)-ES, where p denotes the number of parents (parent pop­
ulation, Pp), p < p the mixing number (i.e., the number of parents 
involved in the procreation of an offspring), and X the number of 
offspring (offspring population, Px). The parents are deterministi-
cally selected from the set of either the offspring, referred to as 
comma-selection {p. < X), or both the parents and offspring, re­
ferred to as plus-selection. Selection is based on the ranking of 
the individuals' fitness (JF) (which measures the performance of 
that solution) taking the p best individuals. Once selected, p 
out of the p parents (71) are recombined to produce an offspring 
individual (r{) using intermediate recombination, where the param­
eters of the selected parents are averaged, or randomly chosen if 
discrete recombination is used. Each ES individual a :=(y,s) com­
prises the object parameter vector y to be optimized and a set of 
strategy parameters s, which coevolve (and are therefore being 
adapted themselves) with the solution. This is a particular feature 
of ES called self-adaptation. For a general description of the 
(p/p +X)-ES see [10]. 



Algorithm 2. (fi/p+ X)-ES 

1 
2 

3 
4 
5 
6 
7 
8 
9 
10: 
11 

12 

13 
14 

{(ym,sm), m = !, . . . , /*} Initialize Pf 

Evaluate Pf 
while not_termination_condition do 

for /<-1,2 do 
V, <— Draw p parents from P® 
r, <— recombine(TZ) 
(y , , s i )^ mutate(r,) 
^i <— evaluate(yt) 

end for 

i f 
pfe+i) 1 M 

• { ( y i , s , ) , / = i , ,4 
- selection (pf\pte\n, 

f+1 
end while 

3. Previous work on evolution in FPGAs and Evolved Wavelets 

As analysed in the previous sections, this work involves three 
main disciplines, i.e., Evolutionary Computation, Image Processing 
and FPGAs as implementation platforms. Therefore, the review of 
the State of the Art will focus on a somehow combined analysis 
of this three different subjects. 

3.1. Evolvable Systems in FPGAs 

Regarding the implementation of Evolvable Systems in FPGAs, 
this typically serves either in the fitness calculation task or as a sin­
gle-chip evolvable platform. In the former case, the FPGA is config­
ured externally by a computer (or any other system such as a 
Digital Signal Processor) where the genetic operations are carried 
out. Table 1 provides numerous examples of FPGA implementa­
tions of digital evolvable systems. One can identify the following 
components in all systems; the array of reconfigurable elements, 

evolutionary algorithm (i.e., genetic operations), fitness calculation 
unit and controller. 

The problem domain determines the type of reconfigurable 
elements. In some cases the evolution is performed directly with 
reconfigurable cells of the FPGA (e.g., at the level of frames); in 
other cases a kind of virtual reconfigurable circuit (VRC) [11], 
which is an application specific reconfiguration layer featuring 
application specific programmable elements built on top of the 
FPGA is utilized. The EA and fitness calculation unit can be imple­
mented either as application specific circuits or as software run­
ning either in a personal computer or in an on-chip embedded 
processor. Recent implementations have employed native recon­
figuration provided by the Internal Configuration Access Port 
(ICAP) in Xilinx FPGAs. In some cases, multiple instances of fitness 
units have been utilized to speed up evolution. Note that the 
'k x HW' means in Table 1 that k instances of the fitness unit were 
implemented. 

This quick overview on evolvable systems in FGPAs gives a hint 
on the various approaches followed by the research community in 
the quest of two main objectives. First, the use of FPGAs to acceler­
ate the evolution of digital circuits (as a machine-guided design 
process rather than human engineered) so that the proposed solu­
tion is later on implemented in the final system. And secondly, the 
use of the FPGA as the evolvable platform itself. In Table 1 a dis­
tinction is made on the basis of external or internal reconfiguration. 
The former approach only allows for the first objective, since the 
EA is implemented outside the final system. By the contrary, the 
latter approach, which involves conferring the system the ability 
to reconfigure itself somehow, also builds the foundations for 
self-adaptive systems. However, most implementations up to date 
which make use of internal reconfiguration have just dealt mainly 
with the acceleration of the evolutionary design process. 

3.2. Evolutionary Wavelet Design 

In the Introduction Section it was already proposed that the 
way to accomplish adaptivity within the scope of this work does 
not use the mathematical foundations of wavelets, which falls into 
the known as adaptive lifting field. This approach mainly involves 

Table 1 
FPGA implementations of evolvable digital systems. 

References Application Platform EA Fitness 

External reconfiguration 
[12] Tone discriminator 
[13] Oscillators 
[14] Sorting networks 
[15] Arithmetic circuits 
[16] Image filters 
[17] IIR filters 
[18] FTa arith. circuits 

Internal reconfiguration 
[19] FIR filters 
[20] Logic circuits 
[21] Image filters 
[22] Hash functions 
[23] Cellular automaton 
[24] Image filters 
[25] CGP accelerator 
[26] Face recognition 
[27] Sonar spectrum class 
[28] Arith. circuits 
[29] Image filters, classif. 
[30] Const. Coeff. Mult. 
[31] CGP accelerator 
[32] Small comb, circuits 
[33] Image compression 

XC6216 logic 
XC6216 logic 
XC6216 logic 
Virtex CLB 
VRC@XCV1000 
VRC @ XCV600E 
Virtex II Pro logic 

Register values 
VRC @ XC2V3000 
VRC @ XC2V3000 
VRC @ XC4VFX20 
Virtex II CLB 
VRC @ XC2VP50 
VRC @ XC2VP50 
VRC @ XC2VP30 
VRC @ XC2VP30 
VRC @ XCV2000E 
VRC @ XCV2000E 
VRC @ XC2VP50 
VRC@XC5VFX100T 
Virtex 4 logic 
Register values 

PC 
PC 
PC 
PC 
HW 
DSP 
PC 

HW 
HW 
HW 
HW 
MicroBlaze 
PowerPC 
PowerPC 
MicroBlaze 
PowerPC 
HW 
HW 
HW 
PowerPC 
PowerPC 
PowerPC 

PC 
PC 
HW 
PC 
HW 
DSP 
PC 

HW 
HW 
HW 
HW 
MicroBlaze 
HW 
HW 
HW 
HW 
2 xHW 
HW 
HW 
4xHW 
16xHW 
HW 

a Fault Tolerant. 



the adaptation of the transform to the local properties of the signal 
on the fly, which implies an extra computational effort to detect the 
singularities of the signal and, afterwards, apply the transform 
itself. 

By the contrary, our objective is to obtain a complete new set of 
filters using EC techniques to build up a new wavelet transform, 
which will eventually be adapted to a specific type of signal. There­
fore, the general Lifting Scheme still applies, which has the advan­
tage of keeping the computational complexity of the transform at a 
minimum (just as defined by the LS). This is the reason why this 
first review of the State of the Art concentrates on evolutionary de­
sign of wavelet filters. 

This work is a continuation of [34], which uses the original idea 
of combining the lifting technique with EA for designing wavelets 
proposed by Grasemann and Miikkulainen [35]. Their original 
contributions are two; the use of a Genetic Algorithm (GA) to en­
code wavelets as a sequence of lifting steps and the proposal of 
an idealized version of a transform coder to save time in the com­
plex evaluation method used (which involved computing a number 
of times the Peak Signal to Noise Ratio (PSNR) for one individual 
combined with other individuals from each of one of the parallel 
subpopulations). They propose using only a certain percentage of 
the largest coefficients (which involves a previous ordering stage) 
for reconstruction. 

The GA used had parallel evolving populations (coevolutionary 
GA). The evaluation consisted of 80 runs, each of which took 
approximately 45 min on a 3 GHz Xeon processor. The results ob­
tained in this work outperformed the considered state-of-the-art 
wavelet for fingerprint image compression, the D9/7 wavelet used 
by the FBI, in 0.75 dB. The type of images used to adapt the wavelet 
to is the set of 80 images from the FVC2000 fingerprint verification 
competition [36]. 

Works reported by Babb, Moore and co-workers can be consid­
ered the current state of the art in the use of EC for image trans­
form design [37-40]. After using a GA algorithm in their previous 
works, the authors finally propose the use of an ES, outperforming 
their previous results, but keep on encoding wavelets as filters for 
the FWT, instead of the LS. The milestones followed in their re­
search are summarized in the next list. 

1. Evolve the inverse transform for digital photographs under con­
ditions subject to quantization. 

2. Evolve matched forward and inverse transform pairs. 
3. Evolve coefficients for three and four level MRA transforms. 
4. Evolve a different set of coefficients for each level of MRA 

transforms. 

Table 2 shows the most remarkable and up to date published 
results in the design of wavelet transforms using EC. The authors 
of these works state that in the cases of MRA the coefficients 
evolved for each level were different, since they obtained better re­
sults using this scheme with the exception of [35]. The algorithms 

Table 2 
State of the Art in evolutionary wavelets design. 

References EA Seed 

[35] Coevolutionary GA Random Gaussian 
[37] GA D9/7 mutations 
[38] CMA-ES" D9/7 mutations 

[39] CMA-ES 0.2 

reported in works [37-39] are highly computationally intensive, so 
the training runs had to be done using supercomputing resources, 
available through the use of the Arctic Region Supercomputer Cen­
ter (ARSC) in Fairbanks, Alaska. Although the work by Grasemann 
and Miikkulainen [35] was done on an accessible Intel Xeon based 
PC, both training times and computing resources needed in all 
works analysed in Table 2 show the complexity of the algorithms 
developed. The use of these powerful computing resources and 
the training times needed to obtain a solution gives an idea of 
the complexity of these algorithms. This issue makes their imple­
mentation as a hardware embedded system highly unfeasible. 

4. Prototype adaptive system implementation 

This Section introduces a system level overview of the proposal, 
analysing the design steps which led to [41 ], which features a thor­
ough validation of the proposed system and its embedded EA. 
Therefore, a summary of our previously reported work is included 
here to serve as an introduction to the HW implementation accom­
plished afterwards. 

4.1. System level overview. Design partitioning 

Fig. 2 shows a high-level flow chart of the proposed EA together 
with an abstract view of the system to show the whole idea of this 
work: let an EAfind an adequate set of coefficients for the lifting filters 
in order to maximize the wavelet transform performance from the 
compression point of view for a very specific type of images. 

Typical implementations of evolutionary optimization engines 
in FPGAs place the EA in an embedded processor. With this ap­
proach some degree of performance is sacrificed to gain flexibility 
in the system (needed to fine tuning the algorithm), so that mod­
ifications may be easily done to the (software) implementation of 
the EA (which is, of course, much easier than changing its hard­
ware counterpart). The selected platform to host this system is a 
Xilinx ML507 board featuring a Virtex-5 FPGA (XC5VFX70T) with 
an embedded PowerPC® 440 processor. 

Section 4.3 shows the results of this partitioning philosophy ob­
tained after doing a software simulation for 500 generations. Each 
of the operators of the proposed EA (as introduced in following sec­
tion) are analysed together with further actions to be accom­
plished: recombination (of the selected parents); mutation (of the 
recombinant individuals to build up a new offspring population); 
evaluation (of each offspring individual); and selection (of the 
new parent population for the next generation). 

4.2. Proposed Evolutionary Algorithm 

This work proposes using an ES as the search algorithm encod­
ing the individuals (wavelets) using the LS. This is a combination of 
the original proposals analysed in Section 3.2. However, the use of 
super-computing resources and the training times needed to 

Conditions Image set Improvement (dB) 

MRA. 16:1 Ta Fingerprints 0.75 
MRA (4). 16:1 T Fingerprints 0.76 
64:1 Qc Satellite 1.79 

Fingerprints 3.00 
Photographs 2.39 

MRA (3). 64:1 Q. Fingerprints 0.54 

a Thresholding. 
b Covariance matrix adaptation-evolution strategy. 
c Quantization. 



Initialization 

Recombination 

Fig. 2. (a) Flow graph of the algorithm, (b) Idea of the algorithm. 

evolve state of the art performing wavelets gives an idea of the 
complexity of those proposals. This issue makes their implementa­
tion as a hardware embedded system highly unfeasible, which is 
precisely what this work addressed in the previous stages of the re­
search, to find an adequately tuned EA able to keep up with the quality 
of the transforms evolved in the State of the Art, but feasible enough to 
be implemented in an FPGA. Therefore, several and severe simplifi­
cations were proposed as compared to the previous reported work. 
The summary of our proposals and the resulting ES are reproduced 
here for reading convenience, pointing to the particular conference 
papers where they were first presented, which yielded 1.57 dB 
improvement in Peak Signal to Noise Ratio (PSNR) over the D9/7 
wavelet for standard fingerprint images. 

The first simplifications to the algorithm [34] as compared to 
the previously reported State of the Art are summarized below: 

1. Single evolving population opposed to the parallel populations of 
the coevolutionary genetic algorithm proposed in [35]. 
Use of uncorrelated mutations with one step size[ 10] instead of 
the overcomplex CMA-ES method used by Babb et al. [39,38]. 
Evolution of one single set of coefficients for all MRA levels. 
Ideal compression for the evaluation of the transform. Since doing 
all the compression stages required for a real compression algo­
rithm would turn out to be an unsustainable amount of com­
puting time, the simplified evaluation method of Grasemann 
and Miikkulainen [35] was further improved. Therefore, all 
wavelet coefficients d,- are zeroed, keeping only the trend level 
of the transform from the last iteration of the algorithm s,-, as 
suggested in previous works [42] dealing with wavelet filter 
evaluation for image compression. For 2 levels of decomposi­
tion this severe compression is equivalent to an idealized 16:1 
compression ratio. 

Finally, the last two simplifications were accomplished and val­
idated in a second stage of our work [43]. 

1. Uniform random distribution. Instead of using a Gaussian distri­
bution for the mutation of the object parameters (see below for 
a description of mutation), a Uniform distribution was tested 
for being simpler in terms of the HW resources needed for its 
implementation. 

2. MAE as fitness function. PSNR is the quality measure more 
widely used for image processing tasks. But, as previous works 
in image filter design via EC show [24], using Mean Absolute 
Error (MAE) as defined in (2) gives almost identical results 
because the interest lies in relative comparisons among popula­
tion members. 

MAE = ^ £ £ | / ( i j ) - K ( U ) l (2) 
i=o j=o 

where R, C are the rows and columns of the image and /, K the ori­
ginal and reconstructed images respectively. 

Table 3 gathers all the information related to the proposed ES. 
Candidate wavelet solutions are encoded so that each P„ U, lifting 
stage is made up of four coefficients with fe, being single scaling 
coefficients, which yields 26 fixed point coefficients as object 
parameters as described in Section 2.2. As a comparison, D9/7 
wavelet is defined by (Pi, Ui, P2, U2, ki, k2). 

4.3. Validation of the partitioning 

Modelling and simulation of the algorithm was accomplished 
and reported in [44] using Python computing language [45], to-



Table 3 
Proposed evolution strategy. 

Parameter/operator Value 

Representation 

Wavelet encoding mutation3. 

Learning rate x 
Evaluation 
Selection 
Recombination 
Parent population size 
Offspring population size 
Seed for initial population 

(Xl X„,<T) 

n = 26, fixed point coefficients 
<P1,(/1,P2,(/2,P3,(/3,fc1,fc2> 

x; =xi + (f - t/i(—1, i) 

roc \/s/tm,a = {1,2} 
MAE 
Comma 
Intermediate, p = 5 
/ j=10 
A = 70 
Random 

a Af(0,1): draw from the standard normal distribution. 
b (/,•(—1,1): separate draw from the discrete uniform distribution for each vari­

able i. 

gether with its numerical and scientific extensions, NumPy and 
Scipy [46], as well as the plotting library, MatPlotlib [47]. The sim­
ulation platform was a laptop computer containing an Intel Core™ 
2 Duo processor at 2 GHz running Debian "Wheezy" GNU/Linux 
64 bits operating system. The 16-bit fractional part for fixed-point 
binary arithmetic, as shown in [48,49] for 8 bits per pixel (bpp) in­
put images, was modelled with integer types, defining the required 
quantization/dequantization and bit-alignment routines to mimic 
hardware behaviour. 

Table 4 shows profiling results for 500 generations for each EA 
operator. Absolute values are not of real interest (although NumPy 
routines are highly optimized, a C implementation would be fas­
ter), since what is being checked is the relative amount of time 
spent in each phase so that design partitioning is validated as a 
whole. As expected, most of the computing time in simulation (col­
umns 3 and 4) is consumed evaluating the individuals. In each gen­
eration, 20.479 ms (=1433.56/(500 generations x 70 individuals x 
2 transforms)) are needed to compute a single wavelet transform 
(forward or inverse). Obtained results validate the design parti­
tioning proposed for the FPGA implementation (columns 5 and 6) 
except for the selection operator, which is low enough to be imple­
mented in SW. The reason to choose a HW implementation, featur­
ing an Insert Order Machine (IOM) as will be shown in next 
Section, is that it can be applied in parallel to the evaluation as re­
sults are produced by the fitness computation module, saving extra 
time. In contrast, the simulation of the Python model runs on a sin­
gle processor thread. Therefore, all operators are applied sequen­
tially. However, in the hardware implementation some operators 
can be easily applied in parallel. For this reason, and depending 
on the scope of the system, some other operator will probably ben­
efit from being implemented in hardware, as, for example, muta­
tion. Besides, the subset of the C-language used to program the 

PowerPC processor in the FPGA imposes restrictions that will prob­
ably make that the percentage of the time each operator takes to 
compute increases. 

4.4. FPGA implementation 

The initial implementation accomplished in [33] was meant for 
the self-calibration of the transform stage of an image processing 
system. EA runs on the PowerPC processor embedded in the FPGA 
while the adaptive wavelet core is attached to it as a peripheral of 
the CoreConnect IBM PLB Bus licensed by Xilinx. Peripheral is con­
figurable through just two registers; one for the PowerPC to send 
data and commands to the peripheral and one for the peripheral 
to communicate its status and send results back to the processor. 
However, this implementation was not optimized. 

This prototype system implementation was just meant to be a 
proof of concept, aiming to validate the suitability of an FPGA 
implementation, so no considerable effort was made in optimizing 
system performance. Besides, since this work does not deal with 
the hardware implementation of an efficient wavelet transform 
architecture, it is just the validation of the system adaptivity as a 
whole what has been analysed. For instance, the Lifting Scheme 
is a direct mapping from its algorithmic description, so no optimi­
zations at the level of data dependencies were considered (any 
existing lifting based wavelet implementations, as shown in [50] 
for example, could be used in this work, as long as the associated 
set of coefficients is made configurable by using registers); neither 
the concurrent access to the internal RAM memories so fitness 
computation could be made in parallel to the inverse DWT as these 
results were produced; and so on. The only concurrent operation 
taking place in the system was the population sorting phase, which 
instead of waiting until all the individuals had been evaluated, 
sorted them as fitnesses results were produced. This way, just 
some clock cycles after finishing the evaluation of the last individ­
ual, was the population sorting also finished. The description of the 
modules which constitute the adaptive wavelet core is as follows: 

• DWT performs a DWT, which is defined as a set of lifting filter 
coefficients. A total of 3 Update and 3 Predict stages of 4 coeffi­
cients each can be configured (this amounts to 26 coefficients, 
taking into account the 2 normalization factors). Since both lift­
ing filters are structurally equal, a general filtering computing 
stage has been designed as a direct mapping of the lifting algo­
rithm (1). This stage can be configured to perform a Predict or 
an Update filter. Fig. 3 shows the implementation of the filters, 
which is very similar to the one reported in [51]. The full trans­
form is obtained by cascading several Predict and Update stages 
(3 of each at a maximum as stated previously). In order for this 
generic filtering stage to fulfil the lifting algorithmic description, 
a configuration bit sets the operating mode of the transform, for­
ward or inverse, which simply configures the last module in each 
filtering stage to be an adder or a subtractor, as shown in Section 

Table 4 
System execution profiling. 

Operator Further actions Profiling Partitioning 

%(s) % (s) % HW SW 

Recombination - 0.14 0.009 V 

Mutation - 0.43 0.029 V 

Evaluation Wavelet transform'' 1433.56 97.470 w 
Compression 4.96 0.337 w 
Fitness computation (Fitness) 31.62 2.150 w 

Selection Sorting population (IOM) 
Parent population 

0.040 0.003 w 
V 

a Computation time results for both, 2-level forward and inverse wavelet transform. 
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Fig. 3. Predict/update stage implementation. 

2.1. Besides, another configuration bit sets whether the ideal 
compression proposed is done on the fly or not. 
As shown in previous works [48,49] by other authors, for 8 bit-
s per pixel (bpp) integer inputs from an image, a fixed point 
fractional format of Q2.10 for the lifting coefficients and a bit 
length in between 10 and 13 bits for a 2-5-level MRA transform 
for the partial results is enough to keep a rate-distortion perfor­
mance almost equal to what is achieved with floating point 
arithmetic. This requires Multiply and Accumulate (MAC) units 
of 20-23 bits (10 bits for the fractional part of the coefficients 
+10-13 bits for the partial transform results). In this prototype 
implementation the datapath has been over-dimensioned to 
16 bits fractional part and 10 bits integer part, for a total of 
26 bits for the result of the transform. 

• Fitness computes the fitness function, MAE, as in (2). Since 
dividing by the number of pixels RC just means scaling the 
summation value, it has not been implemented in HW to save 
resources. Maximum possible fitness value is 255 x (256 x 
256) « 28+8+8 = 224. 

• IOM (Insert Order Machine) sorts the population individuals 
according to their fitnesses as they are evaluated. It keeps track 
of the particular individual each fitness value belongs to so that 
when the processor retrieves the result of the evaluation, the val­
ues sent are composed of the tuple (fitness_value, individualjd). 
Since maximum fitness value needs 24 bits for its representation, 
this tuple can be packed in a single 32 bit transfer for populations 
of up to 256 individuals. 

• Communications IF is responsible of interfacing with the bus-
based system and decoding its commands. 

• Control is the global control of the peripheral. Communicates 
with the Communications IF driving the rest of the peripheral 
according to the commands decoded. 

• Memory and memory controller. The internal peripheral mem­
ory is implemented with the BRAM blocks available in the FPGA. 
The two instantiated memories have been designed to host: 
- The original image (pixels are 8 bit wide integers). 
- Subsequent transformation results 

* The result of the DWT plus the compression if configured 
(26-bit wide fixed point format as explained previously). 

* The reconstructed image (whose effective bit width is 
actually 8). 

• Ser/Des (Serializer/Desearializer). Serializer splits the 32 bits 
data bus into 4 8-bit wide pixels. The opposite operation is per­
formed by the Deserializer. 

The system operation phases were clearly defined in the periph­
eral by the different operating modes it supports, coded as a State 
Machine in the control module. A communications IF module was 
in charge of decoding the configuration commands sent by the 
microprocessor to the peripheral, which set it into a different oper­
ating mode according to the FSM commands driven by the Control 

module. As a summary, these modes dealt with image transfers 
from/to the Compact Flash and the internal memory of the periph­
eral {1MG_RCV and 1MG_BACK)\ configuration of the peripheral to a 
given wavelet by sending it the corresponding coefficients in the 
correct order to set up a forward or inverse transform (CFG_WV); 
computation of a 1-dimension, 1-level forward or inverse DWT 
or ideal compression (IMG_0P); fitness computation (INDIV_FIT); 
and retrieval of the evaluation results (P0P_FIT); 

4.4.1. Notes on the implementation of the ES 
Section 4.2 described the ES implemented in the PowerPC pro­

cessor. Regarding mutation for real-valued search spaces in ESs, it 
is normally performed by adding a normally (Gaussian) distributed 
random value to each component under variation (i.e., to each 
parameter encoded in the individuals). In this work it has been 
implemented using the standard C-based rand () and srand () func­
tions, which yield a Uniform distribution in the range 
(O...RAND_MAX)(RAND_MAX = 2,147,483,647) and seed the gen­
erator, respectively. To obtain a Normal distribution N(0,1) two 
Uniform distributions U,V are needed according to the Marsaglia 
Polar Method [52], described below: 

z2 = ± 

log(tf) 

log(tf) 

U 
R 
V 
R 

(3) 

being U, V two independent uniform distributions U(0,1) and 
R = U2 + V2. With this method zx and z2 are obtained which follow 
two standard Normal distributions. 

4.5. Performance results 

Adaptation results were demonstrated in [33], and, since the 
scope of this paper is accelerating the time of evolution, previous 
timing results are reproduced here to clarify reading. Measured la­
tency of the DWT module is 56 clock cycles. Therefore, for the size 
of images used for evolution, the number of clock cycles needed to 
compute the first forward transform level, s,-_i, is: 

( (256x256)+ 56) x 2 = 131,184 

Equivalently, for the second transform level s,-_2, where the 
smaller (compared to the original input s,-) subset Sj_i, sized 
128 x 128, is used as input, the number of clock cycles needed 
for its computation is 32,880. This means that a whole 2-level for­
ward DWT takes 131,184 + 32,880 = 164,064 clock cycles. The 
same analysis can be applied for the 2-level inverse DWT, since 
the computation stages are right the same. As for the compression 
module, it needs to retrieve the whole image from memory to per­
form its operation, which yields 256 x 256 = 65,536 clock cycles. 
The same applies for the fitness module. 

Based on this previous analysis, it can be concluded that the 
evaluation of one individual takes 
164,064 + 65,536 + 164,064 + 65,536 = 459,200 clock cycles. If sys­
tem frequency is set to 100 MHz, 4.592 ms are needed for the eval­
uation of a single candidate wavelet. System is let to evolve during 
1000 generations, doing 70 evaluations per generation, which 
means 70,000 evaluations are done. Hence, a time teval of around 
5.34 min is needed to perform all evaluations. 

Previous timing analysis for teval applies to the adaptive wavelet 
core timing, i.e., hardware time. However, ES running in the Power­
PC processor will add more time to the evolution, mainly due to 
the computation of random values and to the exponential function 
involved in the mutation operator as well as to the communication 
overhead caused by HW/SW communication. This time, tEA, or soft­
ware time, has been measured to be around 3.5 min. Therefore, if 



evolution time is defined as tevo = tevai + t^, approximately 9 min 
are needed by the system to complete the 70,000 evaluations. 

5. Improving system performance 

In this Section, the various optimizations addressed to improve 
system performance are analysed. Fig. 4 shows the optimized sys­
tem architecture, which, as opposed to the prototype (as shown in 
[33]), splits the internal modules of the peripheral to allow for an 
enhanced control strategy and HW/SW communication as will be 
analysed below. The functional description of the modules in Sec­
tion 4.4 applies to this enhanced architecture. 

It can be observed in Fig. 4 that there is a direct connection of 
each module to the PLB Bus, which simplifies the control strategy, 
defining some more registers for commanding the peripheral. 

• Control. 
- Command Reg (W). Sets the peripheral into one of the oper­

ating modes defined. 
- Status Reg (R). Status of the peripheral may be active if a pre­

vious command is still being executed or idle if it is already 
finished. 

• DWT. 
- Config Reg (W). A given wavelet transform (forward and 

inverse) is configured into the peripheral. 
• Fitness/IOM. 

- Configuration Reg (W). Number of sorted individuals to be 
read back to the processor. 

- Data Reg (R). Tuple (fitness_value, individualjd) representing 
the evaluation of an individual. 

• Memory. 
- Data Reg (W). Image write register (Compact Flash -> 

Peripheral image transfer). 
- Data Reg (R). Image read register (Peripheral -> 

CompactFlash image transfer). 

The optimizations accomplished try to reduce the time needed 
to perform evolution, tevo = tevai + tEA, which can be decomposed as 
an equivalent timing of tevo = tHW + tsw + tHWjSw, where tHWjSw 
stands for the HW/SW communication overhead. Following sub­
sections address the different optimizations accomplished, which 
deal with the concurrent execution of the evaluation tasks (OptJ, 
which affects HW related timing), an improvement on the HW/ 
SW communication which reduces the number of times the 

processor needs to access the peripheral {0pt2, which affects 
HW/SW related timing) and the pre-calculation of the random 
numbers and exponential functions which define the mutation 
steps (0pt3, which affects SW related timing). Once each improve­
ment is analysed, the measured saved time is reported indepen­
dently of the others so at the end all of them are considered 
together and the overall performance improvement is reported. 

5.1. Concurrent operation of the evaluation tasks (Optl) 

The architectural description and the timing analysis of previ­
ous Section clearly show that a great amount of time could be 
saved if a better memory architecture and some degree of pipelin­
ing at the level of HW tasks was accomplished. Previous system 
architecture forced to schedule the tasks needed for evaluation in 
a sequential manner, i.e., forward DWT (fDWT); compression 
(Comp); inverse DWT (iDWT); and fitness calculation (Fitness). 

This situation is shown in the top schedule (grayed out) of Fig. 5. 
However, as soon as the first results of the details bands of the first 
transform level are produced (indicated as a grey-dotted box inside 
f/iDWT), compression may be triggered. Since compression just re­
places the resulting transform coefficients by zeros, one clock cycle 
after fDWT is finished compression will be finished too. The same 
analysis can be applied to the iDWT. In this case, after the first in­
verse transform level is finished, fitness unit may begin its opera­
tion just some clock cycles afterwards, right when the first final 
results of the inverse transform are produced. 

The result of this enhanced scheduling strategy, due to an 
improvement in the pipeline of the system, reduces the time needed 
for the evaluation of the candidate wavelets, as shown in Fig. 5, 
where the configuration of a new wavelet has been advanced some 
time as compared to the non-optimized version. Specifically, hard­
ware related evaluation time is reduced by an approximate 29 %, 
since now t^w — tevai ~ 

164,064 + 164,064 = 328,128 clock cycles. 
5.2. Improved HW/SW communication (0pt2) 

The internal structure of the prototype adaptive wavelet core 
demanded an overloaded HW/SW communication, since every sin­
gle operation had to be commanded from the processor. As in­
stance, to perform an n-level forward or inverse DWT, 2 x n 
IMG_0P commands had to be issued (factor 2 is due to the fact that 
each issued command performed a 1-direction transform, just over 
rows or columns), being the control module responsible of taking 
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Fig. 4. System level architecture. Although fDWT and iDWT share the same HW, they are separated in the diagram for an improved functional understanding. 
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Fig. 5. Comparison of the HW scheduling of the system for the evaluation of one individual. Upper (grey) scheduling corresponds to the prototype while the lower (black) 
corresponds to the optimized system implementation. 

care of the current transform level. Besides, to configure a given 
wavelet, forward or inverse transform coefficients had to be sent 
to the peripheral in two separate phases while with this new com­
munication model forward and inverse wavelet configuration is a 
one step process. 

Therefore, to perform the evaluation of one individual using 2-
level DWTs, 2 wavelet configurations, 4 x 2 IMG_OP commands, an 
extra IMG_OP command for compression and one INDIV_FIT com­
mand had to be issued. However, only one wavelet configuration 
and one IMG_OP command are now needed to perform a single 
evaluation. This reduction in the number of commands issued by 
the microprocessor, though probably negligible for a single evalu­
ation, is for sure important when 70,000 evaluations are per­
formed. Besides, a cleaner code is achieved in the processor since 
a simplified system control strategy is obtained. 

Expected time reduction is difficult to be estimated since it in­
volves taking into account the overhead introduced by the arbitra­
tion policies of the PLB system bus as well as the transfers 
themselves. Therefore, actual performance gain is measured using 
a peripheral timer attached to the PowerPC to profile the elapsed 
clock cycles. Next Section reports these results. 

5.3. Pre-computation of mutation steps (0pt3) 

One of the most time consuming tasks in the system is the muta­
tion operator, which can be found in Table 3. As it can be derived, to 
generate a new individual after recombination of its parents several 
random numbers and further computations with them need to be 
done. To be precise, the following calculations have to be performed: 

• One draw from the standard normal distribution N(0,1). 
• Computation of the term ACT = expT'N(0,1l 
• One separate draw from the discrete uniform distribution 

l/,{—1,1) for each i (object parameter), i.e., 26 draws. 

All of these calculations (mutation steps) can be scheduled 
concurrently with the evaluation of the X (70) individuals, so that 
when a new population has been completely evaluated, the muta­
tion of the strategy and object parameters can be finished. Therefore, 
mutation can be rewritten as: 

Aff = explN«W 

A U = [ / , ( - l , l ) 

a' = a • A<7 

x1, = x,- + a' • AU 

(4a) 

(4b) 

(4c) 

(4d) 

In this case, mutation time can be decomposed as tmut = tmut__ 
steps* tmutop, where mut_steps (4a) and (4b) are computed concur­
rently with the evaluation phase and mut_ops (4c) and (4d) straight 
afterwards recombination (which follows evaluation and selection) 
to complete the process of the mutation operator. This situation is 
shown in Fig. 6. Again, the exact number of cycles will be measured 
in-system after implementation, but it is expected that the pre-cal-
culation of the mutation steps takes a reasonably shorter time than 
the evaluation of the 70 individuals. 

5.4. Performance results of the optimized system architecture 

After synthesis, implementation and verification of the system 
in the FPGA according to the prototype working version, a valid fre­
quency of 100 MHz is still achieved as shown in Table 6. Since this 
paper deals with acceleration of the evolution time, it is just men­
tioned here how the FPGA is able to host such a system in terms of 
available resources, while the following analysis concentrates on 
the related timing issues. 

As it was analysed in Section 5.1 Optl saves 28.5% of the time 
used for evaluation, which, for the 70,000 evaluations considered 
andusinga 100 MHz clock, means saving 1.52 min(from 5.34 down 
to 3.82 min). This situation is shown in Table 7, which gives the pro­
filing results of the optimized system implementation. Results for 
the prototype and optimized system are shown for the different 
timings considered when decomposing evolution time as te. 
vo = tHW + tSw

+ tHWjSw Besides, the improvement introduced by 
each optimization is also shown in Table 7. This improvement, 
whether termed as relative or absolute, is referred to each of the 
time-related terms considered in tevo decomposition, not to the 
whole evolution time which is shown in the last row of the table. 

Regarding Optl, from 11,372 clock cycles per candidate evalua­
tion in the non-optimized version, which required 2 wavelet con­
figurations and 10 commands issued from the PowerPC, 
5130 clock cycles are now needed for 1 wavelet configuration 
and 1 command issued from the PowerPC. In this case, the 
improvement introduced by this optimization is not so important 
as that of Optl, since it only means 4.36 s for the whole evolution. 
However, additional and subjective measures in terms of system 
organization, maintainability and code layout are obtained. 

And last but not least, 0pt3 also introduces significant savings in 
computing time. Selection, recombination and mutation operators 
have been profiled and the results are shown in Table 5. Selection is 
performed once while Recombination and Mutation operate 70 
times per generation respectively. These results validate the sched­
uling proposal for the pre-calculation of the mutation steps in par-
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Table 5 
Profiling of the genetic operators for one individual evaluation. 

Operator Further actions Clock cycles 

Table 7 
Performance results of the optimized system architecture and percentage gain 
compared to the prototype implementation reported in [33]. 

Prototype Optimization Improvement 
Selection 
Recombination 

7332 
10,191 
81,000 
63,400 

92 

Relative a Absolute b 

Mutation ACT 
AU 
mut_ops 

7332 
10,191 
81,000 
63,400 

92 

tnwc 

tHW/SWc 

tswc 

tevo (min 

459,200 
11,372 
154,788 
7.2 

Optl 
Opt2 
Opt3 
4 

328,128 
5130 

10,388 

28.5% 
54.8% 
93.3% 
44% 

1.52 min 
4.36 s 
1.68 min 

since tmut steps is around 

tnwc 

tHW/SWc 

tswc 

tevo (min 

459,200 
11,372 
154,788 
7.2 

Optl 
Opt2 
Opt3 
4 

328,128 
5130 

10,388 

28.5% 
54.8% 
93.3% 
44% 3.2 

allel to the evaluation of the population, since tmut steps is around 

a For one candidate wavelet evaluation. 
b For the 70,000 considered evaluations @ f = 100 MHz. 

half of the evaluation time. Hence, the total time needed to create 
a new individual after the evaluation of the previous population is 
154,788 clock cycles for the prototype system (the cycles of the 
selection operator have been averaged by 70 to consider only the 
proportional time needed for one individual). In contrast, for the 
optimized system, since mut_steps ACT and AU are computed con­
currently to the evaluation of the previous population, the total 
time required to create a new individual is reduced down to 
10,388 clock cycles. This results are compiled also in Table 7, where 
the 93% relative improvement for this time tSw is also shown. 

To summarize, the different techniques implemented to speed 
up evolution yield a significant improvement in the overal comput­
ing time. As shown in Table 7, an improvement of around 44% is 
obtained, which corresponds to a total of 3.2 min. It has to be noted 
that the last row in Table 7 reports results computed using an 
embedded timer to profile the different sub-times considered, 
and it thus shows the expected evolution time. However, as we 
reported previously, around 9 min were measured for the whole 
evolution using a stopwatch. This difference (from 7.2 to 9 min) 
is due to some extra computations taking place in the system, 
e.g., initialization, where the original image stored in the Compact 
Flash memory as a text file is binary converted and copied in the 

In clock cycles. 

peripheral memory (around 20 s); random creation of the initial 
population; and supervision of the evolution where some debug­
ging outputs are sent through the attached JTAG console to check 
system status, among others. In the case of the optimized system 
this extra computations increase the time to around 5.8 min. How­
ever, this extra time would be very close to zero in a final system 
implementation. 

6. Conclusion 

Our previous works proposed a self-adaptive FPGA-based archi­
tecture for image compression in embedded systems by optimizing 
DWT performance. The combination of EC and a reconfigurable 
hardware platform produces a system which is able to self-adapt 
to changes in the type of input data (images) being dealt with in 
a reasonable time. Evolved wavelet filters outperformed standard 
wavelets such as D9/7 by 1.57 dB (in PSNR) for standard fingerprint 
images. 

Table 6 
Implementation results for the main modules in the system. 

Module Resources Frequency (MHz) 

Slice LUTs Slice Registers DSP48ES BRAM (Kb) 

DWT 2818/44,800 4417/44,800 76/128 - 112.67 
Compression 43/44,800 39/44,800 - - 414.25 
Fitness function 95/44,800 66/44,800 - - 341.88 
IOM 3920/44,800 2209/44,800 - - 231.93 
Original image memory 68/44,800 55/44,800 - 576/5328 429 
Transform memory 314/44,800 120/44,800 - 1728/5328 209 



In this work, an improved memory architecture, combined with 
several techniques that increase the level of parallelism and an 
optimized task scheduling was proposed to reduce the time of 
evolution. It is important to recall that these changes in the system 
architecture have not influenced the quality of the (evolved) 
results, which remains exactly the same as before. It is just perfor­
mance that has been improved by a combined 44%, reducing total 
evolution time from 7.2 min to 4 min. 

Although it may still be considered as a high evolution time for 
an adaptive system, the validation of the algorithm reported in [41 ] 
has shown how around 100 and 300 generations are enough for 
the system to evolve an optimized solution. Hence, the effective 
evolution time could be further reduced a minimum of a 50% if a 
conservative 500 generation ES is used. This would yield a total, 
conservative, evolution time of 2 min. It has to be noted that there 
is still room for improvement, which constitutes the possible fu­
ture research directions, e.g., introducing multiple fitness units or 
a simplified mutation operator as well as increasing the operating 
frequency of the PowerPC (which is supported in this device fam­
ily) and that of the HW modules by reducing their critical path. 
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