1,115 research outputs found

    Assessing and augmenting SCADA cyber security: a survey of techniques

    Get PDF
    SCADA systems monitor and control critical infrastructures of national importance such as power generation and distribution, water supply, transportation networks, and manufacturing facilities. The pervasiveness, miniaturisations and declining costs of internet connectivity have transformed these systems from strictly isolated to highly interconnected networks. The connectivity provides immense benefits such as reliability, scalability and remote connectivity, but at the same time exposes an otherwise isolated and secure system, to global cyber security threats. This inevitable transformation to highly connected systems thus necessitates effective security safeguards to be in place as any compromise or downtime of SCADA systems can have severe economic, safety and security ramifications. One way to ensure vital asset protection is to adopt a viewpoint similar to an attacker to determine weaknesses and loopholes in defences. Such mind sets help to identify and fix potential breaches before their exploitation. This paper surveys tools and techniques to uncover SCADA system vulnerabilities. A comprehensive review of the selected approaches is provided along with their applicability

    Addressing the Security Gap in IoT: Towards an IoT Cyber Range.

    Get PDF
    The paradigm of Internet of Things has now reached a maturity level where the pertinent research goal is the successful application of IoT technologies in systems of high technological readiness level. However, while basic aspects of IoT connectivity and networking have been well studied and adequately addressed, this has not been the case for cyber security aspects of IoT. This is nicely demonstrated by the number of IoT testbeds focusing on networking aspects and the lack of IoT testbeds focusing on security aspects. Towards addressing the existing and growing skills-shortage in IoT cyber security, we present an IoT Cyber Range (IoT-CR); an IoT testbed designed for research and training in IoT security. The IoT-CR allows the user to specify and work on customisable IoT networks, both virtual and physical, and supports the concurrent execution of multiple scenarios in a scalable way following a modular architecture. We first provide an overview of existing, state of the art IoT testbeds and cyber security related initiatives. We then present the design and architecture of the IoT Cyber Range, also detailing the corresponding RESTful APIs that help de-associate the IoT-CR tiers and obfuscate underlying complexities. The design is focused around the end-user and is based on the four design principles for Cyber Range development discussed in the introduction. Finally, we demonstrate the use of the facility via a red/blue team scenario involving a variant of man-in-the-middle attack using IoT devices. Future work includes the use of the IoT-CR by cohorts of trainees in order to evaluate the effectiveness of specific scenarios in acquiring IoT-related cyber-security knowledge and skills, as well as the IoT-CR integration with a pan-European cyber-security competence network

    KYPO4INDUSTRY: A Testbed for Teaching Cybersecurity of Industrial Control Systems

    Get PDF
    There are different requirements on cybersecurity of industrial control systems and information technology systems. This fact exacerbates the global issue of hiring cybersecurity employees with relevant skills. In this paper, we present KYPO4INDUSTRY training facility and a course syllabus for beginner and intermediate computer science students to learn cybersecurity in a simulated industrial environment. The training facility is built using open-source hardware and software and provides reconfigurable modules of industrial control systems. The course uses a flipped classroom format with hands-on projects: the students create educational games that replicate real cyber attacks. Throughout the semester, they learn to understand the risks and gain capabilities to respond to cyber attacks that target industrial control systems. Our described experience from the design of the testbed and its usage can help any educator interested in teaching cybersecurity of cyber-physical systems

    A review of cyber-ranges and test-beds:current and future trends

    Get PDF
    Cyber situational awareness has been proven to be of value in forming a comprehensive understanding of threats and vulnerabilities within organisations, as the degree of exposure is governed by the prevailing levels of cyber-hygiene and established processes. A more accurate assessment of the security provision informs on the most vulnerable environments that necessitate more diligent management. The rapid proliferation in the automation of cyber-attacks is reducing the gap between information and operational technologies and the need to review the current levels of robustness against new sophisticated cyber-attacks, trends, technologies and mitigation countermeasures has become pressing. A deeper characterisation is also the basis with which to predict future vulnerabilities in turn guiding the most appropriate deployment technologies. Thus, refreshing established practices and the scope of the training to support the decision making of users and operators. The foundation of the training provision is the use of Cyber-Ranges (CRs) and Test-Beds (TBs), platforms/tools that help inculcate a deeper understanding of the evolution of an attack and the methodology to deploy the most impactful countermeasures to arrest breaches. In this paper, an evaluation of documented CR and TB platforms is evaluated. CRs and TBs are segmented by type, technology, threat scenarios, applications and the scope of attainable training. To enrich the analysis of documented CR and TB research and cap the study, a taxonomy is developed to provide a broader comprehension of the future of CRs and TBs. The taxonomy elaborates on the CRs/TBs dimensions, as well as, highlighting a diminishing differentiation between application areas

    Improving efficiency and security of IIoT communications using in-network validation of server certificate

    Get PDF
    The use of advanced communications and smart mechanisms in industry is growing rapidly, making cybersecurity a critical aspect. Currently, most industrial communication protocols rely on the Transport Layer Security (TLS) protocol to build their secure version, providing confidentiality, integrity and authentication. In the case of UDP-based communications, frequently used in Industrial Internet of Things (IIoT) scenarios, the counterpart of TLS is Datagram Transport Layer Security (DTLS), which includes some mechanisms to deal with the high unreliability of the transport layer. However, the (D)TLS handshake is a heavy process, specially for resource-deprived IIoT devices and frequently, security is sacrificed in favour of performance. More specifically, the validation of digital certificates is an expensive process from the time and resource consumption point of view. For this reason, digital certificates are not always properly validated by IIoT devices, including the verification of their revocation status; and when it is done, it introduces an important delay in the communications. In this context, this paper presents the design and implementation of an in-network server certificate validation system that offloads this task from the constrained IIoT devices to a resource-richer network element, leveraging data plane programming (DPP). This approach enhances security as it guarantees that a comprehensive server certificate verification is always performed. Additionally, it increases performance as resource-expensive tasks are moved from IIoT devices to a resource-richer network element. Results show that the proposed solution reduces DTLS handshake times by 50–60 %. Furthermore, CPU use in IIoT devices is also reduced, resulting in an energy saving of about 40 % in such devices.This work was financially supported by the Spanish Ministry of Science and Innovation through the TRUE-5G project PID2019-108713RB-C54/AEI/10.13039/501100011033. It was also partially supported by the Ayudas Cervera para Centros Tecnológicos grant of the Spanish Centre for the Development of Industrial Technology (CDTI) under the project EGIDA (CER-20191012), and by the Basque Country Government under the ELKARTEK Program, project REMEDY - Real tiME control and embeddeD securitY (KK-2021/00091)

    Cybersecurity of Industrial Cyber-Physical Systems: A Review

    Get PDF
    Industrial cyber-physical systems (ICPSs) manage critical infrastructures by controlling the processes based on the "physics" data gathered by edge sensor networks. Recent innovations in ubiquitous computing and communication technologies have prompted the rapid integration of highly interconnected systems to ICPSs. Hence, the "security by obscurity" principle provided by air-gapping is no longer followed. As the interconnectivity in ICPSs increases, so does the attack surface. Industrial vulnerability assessment reports have shown that a variety of new vulnerabilities have occurred due to this transition while the most common ones are related to weak boundary protection. Although there are existing surveys in this context, very little is mentioned regarding these reports. This paper bridges this gap by defining and reviewing ICPSs from a cybersecurity perspective. In particular, multi-dimensional adaptive attack taxonomy is presented and utilized for evaluating real-life ICPS cyber incidents. We also identify the general shortcomings and highlight the points that cause a gap in existing literature while defining future research directions.Comment: 32 pages, 10 figure

    MECInOT: a multi-access edge computing and industrial internet of things emulator for the modelling and study of cybersecurity threats

    Get PDF
    In recent years, the Industrial Internet of Things (IIoT) has grown rapidly, a fact that has led to an increase in the number of cyberattacks that target this environment and the technologies that it brings together. Unfortunately, when it comes to using tools for stopping such attacks, it can be noticed that there are inherent weaknesses in this paradigm, such as limitations in computational capacity, memory and network bandwidth. Under these circumstances, the solutions used until now in conventional scenarios cannot be directly adopted by the IIoT, and so it is necessary to develop and design new ones that can effectively tackle this problem. Furthermore, these new solutions must be tested in order to verify their performance and viability, which requires testing architectures that are compatible with newly introduced IIoT topologies. With the aim of addressing these issues, this work proposes MECInOT, which is an architecture based on openLEON and capable of generating test scenarios for the IIoT environment. The performance of this architecture is validated by creating an intelligent threat detector based on tree-based algorithms, such as decision tree, random forest and other machine learning techniques. Which allows us to generate an intelligent and to demonstrate, we could generate an intelligent threat detector and demonstrate the suitability of our architecture for testing solutions in IIoT environments. In addition, by using MECInOT, we compare the performance of the different machine learning algorithms in an IIoT network. Firstly, we present the benefits of our proposal, and secondly, we describe the emulation of an IIoT environment while ensuring the repeatability of the experiments

    MAHIVE: Modular Analysis Hierarchical Intrusion Detection System Visualization Event Cybersecurity Engine for Cyber-Physical Systems and Internet of Things Devices

    Get PDF
    Cyber-Physical Systems (CPS), including Industrial Control Systems (ICS) and Industrial Internet of Things (IIoT) networks, have become critical to our national infrastructure. The increased occurrence of cyber-attacks on these systems and the potential for catastrophic losses illustrates the critical need to ensure our CPS and ICS are properly monitored and secured with a multi-pronged approach of prevention, detection, deterrence, and recovery. Traditional Intrusion Detection Systems (IDS) and Intrusion Detection and Prevention Systems (IDPS) lack features that would make them well-suited for CPS and ICS environments. We report on the initial results for MAHIVE: Modular Analysis Hierarchical IDS Visualization Event cybersecurity engine. MAHIVE differs from traditional IDS in that it was specifically designed and developed for CPS, ICS, a IIoT systems and networks. We describe the MAHIVE architecture, the design, and the results of our evaluation using two ICS testbed penetration testing experiments
    corecore