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Abstract

Cyber-Physical Systems (CPS), including Industrial
Control Systems (ICS) and Industrial Internet of
Things (IIoT) networks, have become critical to our
national infrastructure. The increased occurrence
of cyber-attacks on these systems and the potential
for catastrophic losses illustrates the critical need to
ensure our CPS and ICS are properly monitored and
secured with a multi-pronged approach of prevention,
detection, deterrence, and recovery. Traditional
Intrusion Detection Systems (IDS) and Intrusion
Detection and Prevention Systems (IDPS) lack features
that would make them well-suited for CPS and
ICS environments. We report on the initial results
for MAHIVE: Modular Analysis Hierarchical IDS
Visualization Event cybersecurity engine. MAHIVE
differs from traditional IDS in that it was specifically
designed and developed for CPS, ICS, a IIoT systems
and networks. We describe the MAHIVE architecture,
the design, and the results of our evaluation using two
ICS testbed penetration testing experiments.

1. Introduction

Industrial Control Systems (ICS) are real-time
infrastructure that operate and automate industrial
processes [1]. Internet of things (IoT) devices are
interrelated computing devices that collect and exchange
data without human interaction. Intrusion Detection
Systems (IDS) are devices and/or software applications
that actively monitor systems for malicious activity
including policy violations. IDS that also attempt to
prevent intrusions are usually named Intrusion Detection
and Prevention Systems (IDPS).

1.1. The Current Problem

The susceptibility of Cyber-Physical Systems (CPS)
to external threats is well documented [2, 3], Recent
cybersecurity reports show an increase in cyber-attacks

against CPS, for example, the 2019 Symantec Internet
Security Report showed an increase of approximately
30% from 2018 to 2020 [4]. The Cisco 2020 Benchmark
Cybersecurity Report surveyed 2900 cybersecurity
professionals across 13 countries, including United
States, Brazil, China, and India. In this report, 69% of
the respondents witnessed a cyber-attack or expected an
attack at any moment [5].

As previously stated, traditional IDS are not effective
at identifying attacks against the heterogeneity of the
individual components. What is required for IDS for
CPS is a comprehensive and distributed IDS application
that features functions that are specific to ICS and
IoT devices. This comprehensive IDS must be easily
configurable to the specific ICS and/or IoT devices, with
the ability to enable selective, low processing penalty,
sensing and detection at different points in the control
system.

1.2. Contribution

This paper presents MAHIVE: Modular Analysis
Hierarchical IDS Visualization Event cybersecurity
engine. MAHIVE’s functionality includes: (1) to
inspect selected logs from CPS-related protocols,
including attached IoT devices; (2) to integrate detection
alerts with big-data frameworks for stream processing;
(3) to visualize high level, correlated log alerts on
dashboards; and (4) to integrate intelligence feeds to
help identify Indicators of Compromise (IOCs).

1.3. Overview of this Article

The rest of this paper is organized as follows:
Section 2 provides background for IDS and CPS.
Section 3 describes the MAHIVE architecture. Section
4 describes the testing and validation environment.
Section 5 describes MAHIVE’s simulated CPS
environment. Section 5 details MAHIVE’s detection,
visualization, and correlation capabilities. Section
6 details simulated experimental validation results.
Section 7 presents related work. Section 8 presents
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Figure 1. Architectural Overview for the MAHIVE cybersecurity engine

the conclusion and Section 9 presents MAHIVE future
work.

2. Background

Current IDS are defined under one of four categories.

• Network Intrusion Detection Systems (NIDS)
consists of an independent platform that identifies
intrusions by examining network traffic including
monitoring multiple hosts.

• Host Intrusion Detection Systems (HIDS)
consists of an agent on a host that identifies
intrusions by analyzing system calls.

• Perimeter Intrusion Detection Systems (PIDS)
detects and pinpoints the location of intrusion
attempts on critical infrastructure perimeter
fences.

• Virtual Machine (VM) based Intrusion Detection
System (VMIDS) detects intrusions using virtual
machine monitoring.

CPS is the combination of physical systems and
cyber systems through the integration of ICS, IoT
devices and IDS. There has been a significant growth
with the integration of CPS into our everyday life.
For example, CPS permeate the electrical power
grid, transportation systems, household appliances,
and personal and industrial healthcare systems. One
fundamental issue is CPS security. With CPS being a
combination of many different systems including ICS
and IoT devices the opportunity for new attack vectors
also significantly increases.

The current state of CPS is most IDS don’t detect
or prevent intrusions based on the heterogeneity of the
individual components.

3. MAHIVE Architecture

MAHIVE is divided into three modules: 1)
hierarchical components for monitoring network
security; 2) analytics and visualization engine; 3) threat
intelligence sources. Figure 1 illustrates the MAHIVE
architecture.
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Figure 2. Beaconing Behavior Detection Using RITA

3.1. Network Security Monitoring

MAHIVE is built using the Zeek Network Security
Monitor (ZNSM) [6, 7]. ZNSM is an open source tool
for traffic analysis and network monitoring, capable of
detecting real-time network intrusions through passive
monitoring. ZNSM uses a policy script interpreter event
engine. The script interpreter is capable of performing
tasks over a range of network protocols. BNSM’s
event engine reduces kernel-filtered network traffic into
a series of higher-level events. It is capable of capturing
live data on multiple interfaces, including log files that
can be generated to create an archive for the captured
data. By default, ZNSM includes a protocol parser for
Modbus and DNP3 protocols with decoding and event
handling functionalities. It also supports a distributed
and clustered architecture deployment with a policy
script interpreter, that interprets event handlers written
in a high-level policy language.

3.2. Visualization and Log Analytics

MAHIVE’s visualization analytics component use
the industry standard ELK Stack, Elasticsearch,
Logstash, and Kibana [8]. Elasticsearch (ELCS) is a
REpresentational State Transfer (RESTful) system that
features a distributed search and analytics engine built
on Apache Lucene [9]. ELCS provides a distributed,
multi-tenant-capable, full-text search engine with an
HTTP web interface and schema-free JSON documents.
Logstash is a service used for log collection, processing,
and data ingestion into ELCS. Kibana provides data
visualization capabilities for content obtained from
the ELCS cluster. Kibana’s visualization capabilities
facilitates the creation of customized charts providing
easier comprehension of log and feed data. The ELK
Stack provides an end-to-end log analysis solution,
which aids in analytics, visualization, and geospatial
support of logs.

MAHIVE uses Apache Kafka, a multi-node big data

cluster, to manage incoming log streams and message
queuing [10]. Kafka is a distributed streaming platform
for creating real-time data pipelines. Kafka was
chosen because of its strong fault tolerance, automated
re-balancing algorithms, and ability to support large
scale real-time data streams. Combining Kafka
with Apache Spark allowed advanced data streaming
capabilities [11] and the use of external libraries
integrating the Spark SQL library, for extended query
processing and the MLib library, for machine learning.

3.3. Threat Intelligence

MAHIVE’s threat intelligence uses the Intel Critical
Stack (ILCS) [12] coupled with RITA (Real Intelligence
Threat Analytics) [13]. ILCS provides threat
intelligence feeds and signature analysis. RITA provides
network traffic analysis using beaconing and DNS
tunneling detection. RITA searches for signs of
beaconing behavior in and out of a CPS network. Figure
2 illustrates the beaconing behavior using RITA.

4. Simulated CPS Environment

In order to test and evaluate MAHIVE, select
components of a micro-grid power utility was created
[14]. The micro-grid power utility consists of two
hydro generators and transmission buses, and the
simulation uses the open source ModbusPal Java
simulator. ModbusPal reproduces real and complex
CPS environments with native support for TCP/ IP and
scripting. ModbusPal, coupled with its automation tool
SineGenerator, was used to generate customized and
dynamic generator measurement values.

MAHIVE tracks the current state of the micro-grid
CPS system using Ladder Logic on OpenPLC [15].
OpenPLC is open source Programmable Logic
Controller (PLC) that emulates the functions of
electromechanical relays based on the configurations of
uploaded logic-based programs.
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Figure 3. MAHIVE IoT RFID Simulator.

Supervisory Control and Data Acquisition (SCADA)
was implemented using ScadaBR [16]. ScadaBR is an
open source SCADA system that supports acquisition of
data in more than 20 CPS protocols. It also provides
supervisory control, an events engine, alarm and report
management, and a Human Machine Interface (HMI).

The MAHIVE implementation provides a
visualization of OpenPLC server measurement values
that are transmitted in real-time as DNP3 tags. The
DNP3 data sources were configured with ScadaBR
including simple alarms notifications from device state
changes and point event detectors.

The MAHIVE simulation environment forms a
distributed CPS architecture depicting level 0, level 1,
and level 2 of the Purdue Model for Control Hierarchy
[17].

The IoT simulation environment was created using a
Raspberry Pi 4 Model B. The Pi simulated an RFID card
swipe of an employee entering the micro-grid power
utility. The data from the card swipe was processed
using Amazon Greengrass IoT Core, where lambda
functions were applied to record the time and the user
identity. Figure 3 displays the Raspberry Pi 4 model B
representing the IoT RFID.

5. MAHIVE Implementation

A clustered ZNSM instance provides distributed
hierarchical packet capture and anomaly detection
across several layers of a CPS organization. The
architecture supports packet inspection of several
protocols, including DNP3, MODBUS and TCP/IP
by using sensors for protocol analysis on traffic

streams. Traffic from several layers of the model system
is aggregated to a centralized manager (MAHIVE
Manager) which is responsible for receiving alerts and
notices from the rest of the nodes in the cluster. In
Figure 1 the collators act as the logger and proxy nodes
for storing log messages from each of the network
components. The indexers manage the synchronized
state of the variables across network components. The
MAHIVE manager handles eliminating multiple similar
log events from several devices, ultimately creating a
single logged event that is managed by the indexers.

In Figure 1, the sensors in the ICS Network zone
capture all traffic sent and received from the PLC. The
sensors forward the traffic through the firewall to the
collators. Similarly, the Supervisory Control Network
and Standard Network zones capture the traffic. The
traffic is passed to the collators where the event engine
and policy script interpreter, analyze received packets, to
generate logs containing several protocols such as TCP,
UDP, DNP3, MODBUS, and ARP. Logs generated from
matching detection signatures in Intel CriticalStack and
RITA are included.

The IoT Network zone is similar to the other
zones, except the sensors are replaced with AWS
IoT Greengrass [18]. Greengrass seamlessly extends
AWS to edge devices acting locally on the generated
data, while allowing connected devices to run Lambda
functions or Docker containers. Lambda functions allow
execution of predictions based on machine learning
models. Greengrass forwards its traffic through the
firewall to the collators.

The collators groups the data, and then forward
that data to the indexers. The aggregated data from
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the indexers is ultimately forwarded to the MAHIVE
Manager. The MAHIVE Manager forwards the data
through the ELK Stack for visualization and analytics.

MAHIVE uses a distributed and fault tolerant
Apache Kafka cluster to address the four core
characteristics of Big Data: [19] 1) Volume 2) Variety
3) Velocity and 4) Value. The Kafka instance is a
multi-node cluster comprising of three brokers, that
uses Zookeeper to track the status of cluster nodes.
MAHIVE correlates logs from the distributed sensors,
where intrusion notices are visualized as alerts on the
multi-node Apache Kafka.

MAHIVE relies on its network security monitoring
system with extended capabilities of logging, anomaly
detection, behavioral analysis and signature based
intrusion detection. This system also contains an
event-driven scripting language. Whenever the event
engine receives incoming packet streams, the engine
reduces the streams into higher-level events. By
reducing the streams into higher-level events the engine
can understand the network activity without any policy
parsing. Using scripts, packets are analyzed by the
sensors and attack patterns matching the site policy’s
detection scripts are logged in the file notice.log. The
matching threat intelligence alert is logged in the file
intel.log. Intel.log is then used by the Intel CriticalStack
for traffic patterns with known signatures.

6. MAHIVE Validation

The MAHIVE prototype, version 0.1, was validated
using two penetration testing scenarios representative
of potential cyber-attacks on industrial control systems.
The premise for each scenario is that a malicious
actor has compromised a server located in any of
the network zones. The attack scenarios used
are: Network Reconnaissance and Address Resolution
Protocol (ARP) Spoofing.

6.1. Network Reconnaissance

Description: During network reconnaissance a
malicious actor attempts to determine information about
a network, including the network structure, and its
applications and services. In this scenario, a malicious
actor attempts to map the network using a black box
approach including:

• Executing a ping sweep to identify live hosts,
devices, or services and obtain information about
them and any connected systems.

• Initiating a stealth port scan using Nmap TCP
connect and SYN scans. A stealth port scan

differentiates between open, closed, and filtered
ports.

The Simulated Attack: A malicious actor launched
multiple reconnaissance campaigns on the Supervisory
Control Network. This simulated attack attempted to
sniff network packets and create a list of vulnerable
hosts, devices, protocols, and services.

Results: MAHIVE detected all reconnaissance
campaigns. A loaded scan policy with custom defined
intervals and thresholds for address and port scans was
used to detect the reconnaissance campaigns. When the
network scans were detected, an alert was logged to
notice.log on the MAHIVE collator. The collector
logged all reconnaissance campaign attempts. However,
the collator only forwarded a single log entry to
intel.log since all scans were considered duplicate
scans. The indexer notified the MAHIVE Manager and
the scan alert was visualized.

6.2. ARP Spoofing

Description: To build an ARP entries table,
outstation devices and other Ethernet based devices
broadcast ARP packets. Broadcasting ARP packets
initiates a communication channel with the goal of
obtaining the Media Access Control (MAC) addresses
of other systems. In this scenario, using the ICS
network, a simulated malicious actor attempts to spoof
a PLC ARP entry. Spoofing the PLC ARP entry allows
access to the network where false data can be injected
into the ICS.

The Simulated Attack: A malicious actor
attempted to disrupt the operational network by
launching an ARP spoofing attack. This simulated
attack used EtterCap attempting to inject random values
into holding registers.

Results: MAHIVE detected all malicious data
injections by using a known-masters-slaves script. This
script tracks all master and slave devices within the
ICS network. Similar to the Network reconnaissance
attacks the attempts were logged to notice.log
and forwarded to indexers. The indexers logged the
information to intel.log and then forwarded the
information to the MAHIVE Manager where the scan
alert was visualized.

Figure 4 shows the MAHIVE detection of both the
network reconnaissance scans and the simulated ARP
spoofing attacks. In both instances MAHIVE alerted
the security analyst visually and with log entries to
notice.log and intel.log.
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Figure 4. MAHIVE Alerts on Visualization Dashboard

7. Related Work

The research concerning IDS and IDPS for CPS has
gained momentum in the past five years, and based on
this research a classification system for ICS testbeds has
been developed. Geng et al. [20] classified the ICS
testbeds into four different categories.

• Physical Simulation Testbed - The testbed uses
actual hardware and software to configure both
the network and physical layers.

• Software Simulation Testbed - The testbed uses
software to simulate the hardware.

• Semi-physical Simulation Testbed - The testbed
is mostly comprised of software simulations;
however, some actual hardware is used in the test
bed.

• Virtualized Simulation Testbed - The testbed is
completely virtualized using open source software
and controllers such as OpenPLC [21].

MAHIVE was developed based on Ghaeini et al.
HierArchical Monitoring Intrusion Detection System
(HAMIDS) and Mantere et al. Self-Organizing Maps
(SOM).

Rakas et al. further classified IDS testbeds by
evaluating the research work of 26 IDS and IDPS for
CPS [22]. In Rakas et al. classification system, SOM is
not addressed and HAMIDS is classified as a virtualized

simulation test bed that is specification-based. Also
classified with HAMIDS as a specification-based
virtualized simulation testbed is the work of Yang et al..

Ghaeini et al. described HAMIDS as a hierarchical
monitoring IDS that detects anomalies at level 0 and
level 1 of an industrial control system in a water
treatment facility [23]. The HAMIDS framework is built
on Zeek IDS, using Hadoop as a storage component.

Mantere et al. introduced the SOM algorithm.
This algorithm promotes use of network specific state
attributes to provide network anomaly detection [24].
SOM uses the Zeek IDS.

Yang et al. introduced an IDS tailored for IEC 61850
based substations. This work encompassed access
control detection, protocol whitelisting, model-based
detection, and multi-parameter based detection [25].
The work was completed with data from a real 500 kV
smart substation.

The remainder of this related works section
discusses the differences of MAHIVE compared to
HAMIDS, SOM and IEC 61850, concerning modularity,
security monitoring, visualization, intelligence sources
and log analytics.

Modularity: HAMIDS allows inspection of
selected SCADA protocols as Zeek extensions. SOM
allows for inspection of normal logs and alarm
logs. IEC 61850 allows for substation configuration
monitoring. MAHIVE allows for monitoring as well as
the integration of ICS and IIoT devices using a modular
approach.
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Security Monitoring: HAMIDS allows for IP
scanning, Port scanning, ARP poisoning, Dynamic
Host Configuration Protocol (DHCP) attack,
synchronize (SYN) flooding, and HMI crash. SOM
is a complementary mechanism and not a security
monitoring tool. IEC 61850 allows for access-control
detection, model-based detection and multi-parameter
detection. MAHIVE is a comprehensive distributed
IDPS suite that allows for the same security monitoring
as others; however, MAHIVE has the added capabilities
of IIoT monitoring and detection.

Visualization: Based on the published related
works, there was difficulty in determining the
visualization capabilities of HAMIDS or SOMS.
IEC 61850 illustrated basic visualization capabilities of
its log files. MAHIVE differs from the others based on
its visualization capabilities. MAHIVE’s visualization
analytics component is built using the ELK Stack:
Elasticsearch, Logstash, and Kibana.

Intelligence Sources: HAMIDS, SOM and IEC
61850 are all built from traditional IDS, without the
capabilities for IIoT. MAHIVE is also built from a
traditional IDS; however, MAHIVE allows for IIoT low
power devices attached to the perimeter.

Log Analytics: HAMIDS and SOM both use Zeek
scripting for log analysis. IEC 61850 uses Generic
Object Oriented Substation Events GOOSE for its
events and log analysis. MAHIVE uses Apache Kafka
as a multi-node big data cluster to manage incoming log
streams and message queuing. The use of Apache Kafka
is unique to MAHIVE as compared to other IDS.

In summary MAHIVE is similar to other IDS
systems in its use of traditional IDS intelligence sources.
MAHIVE is radically different from the other systems
with its visualization analytics component and its
capability of adding, monitoring, and detecting attached
IIoT devices.

8. Conclusion

Comprehensive and accurate intrusion detection in
Cyber-Physical Systems requires practitioners to have
an exceptional understanding of the threat landscape and
also the structure and operation of the CPS or ICS being
protected.

Traditional IDS are not well-suited for adequately
monitoring CPS and ICS systems. As more
organizations add digitally controlled and network
connected CPS, including integrated ICS and IoT
devices to the critical national infrastructure, there is a
growing demand to ensure CPS are adequately secured.
Successful cyber-attacks against critical infrastructures
could have catastrophic consequences.

This article introduced MAHIVE: Modular Analysis
Hierarchical IDS Visualization Event cybersecurity
engine. MAHIVE shows that a distributed hierarchically
integrated IDS may help address current drawbacks in
IDPS. A detailed analysis concerning the architecture
and implementation of MAHIVE was described as well
as the results of two penetration testing scenarios used
as preliminary evaluation.

In summary, MAHIVE should be considered a
next-generation IDS that is capable of monitoring CPS
with ICS and IIoT and detecting real-world intrusions.

9. Future Work

Similar to all other signature-based Intrusion
Detection Systems, MAHIVE requires expert
knowledge related to network protocols, systems
and logs, and CPS scripting languages. Future work
includes the following additional enhancements.

The current logging system of notice.log
and intel.log will be converted into a high-level
policy language, such as the High Level Easy to Use
Reconfigurable Machine Environment Specification
(HERMES) language [26, 27]. HERMES allows
for a block-like structure, domain specific language
that contains singular identifiers to differentiate
specifications, including a wide range of attributes and
fields for relationship representation.

The current MAHIVE anomaly and behavior
detection system will be enhanced with an
implementation of Machine Learning-based detectors.
This will allow a more robust set of anomaly and
behavior detection scripts, replacing the simulation
loaded scripts.

Additional and richer penetration testing scenarios
will be developed to further evaluate MAHIVE’s
performance.

By implementing these future work items MAHIVE
with its monitoring of CPS including integrated IDS and
IIoT will further its effectiveness at identifying attacks
against the heterogeneity of the individual components.

List of Abbreviations

ARP Address Resolution Protocol
CPS Cyber-Physical Systems
DHCP Dynamic Host Configuration

Protocol
DNP3 Distributed Network Protocol 3
ELCS Elasticsearch
ELK Elasticsearch, Logstash and

Kibana
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GOOSE Generic Object Oriented
Substation Event

HERMES High Level Easy to Use
Reconfigurable Machine
Environment Specification

HIDS Host Intrusion Detection Systems
HMI Human-Machine Interface
ICS Industrial Control Systems
IDPS Intrusion Detection and

Prevention Systems
IDS Intrusion Detection Systems
IEEE Institute of Electrical and

Electronics Engineers
IIoT Industrial Internet of Things
ILCS Intel Critical Stack
IOC Indicators of Compromise
IoT Internet of Things
ISAAC The Idaho Cybersecurity Testbed
IT Information Technology
LAN Local Area Network
MAC Media Access Control
MAHIVE Modular Analysis Hierarchical

IDS Visualization Event
cybersecurity engine

NIDS Network Intrusion Detection
Systems

NMap Network Mapper
OT Operational Technology
PIDS Perimeter Intrusion Detection

Systems
PLC Programmable Logic Controller
RESTful REpresentational State Transfer
RITA Real Intelligence Threat

Analytics
SCADA Supervisory Control and Data

Acquisition
SOM Self-Organizing Maps
SYN Synchronize
VM Virtual Machine
VMIDS Virtual Machine Intrusion

Detection Systems
ZNSM Zeek Network Security Monitor
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