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Abstract
In recent years, the Industrial Internet of Things (IIoT) has grown rapidly, a fact that 
has led to an increase in the number of cyberattacks that target this environment 
and the technologies that it brings together. Unfortunately, when it comes to using 
tools for stopping such attacks, it can be noticed that there are inherent weaknesses 
in this paradigm, such as limitations in computational capacity, memory and net-
work bandwidth. Under these circumstances, the solutions used until now in con-
ventional scenarios cannot be directly adopted by the IIoT, and so it is necessary to 
develop and design new ones that can effectively tackle this problem. Furthermore, 
these new solutions must be tested in order to verify their performance and viability, 
which requires testing architectures that are compatible with newly introduced IIoT 
topologies. With the aim of addressing these issues, this work proposes MECInOT, 
which is an architecture based on openLEON and capable of generating test sce-
narios for the IIoT environment. The performance of this architecture is validated by 
creating an intelligent threat detector based on tree-based algorithms, such as deci-
sion tree, random forest and other machine learning techniques. Which allows us to 
generate an intelligent and to demonstrate, we could generate an intelligent threat 
detector and demonstrate the suitability of our architecture for testing solutions in 
IIoT environments. In addition, by using MECInOT, we compare the performance of 
the different machine learning algorithms in an IIoT network. Firstly, we present the 
benefits of our proposal, and secondly, we describe the emulation of an IIoT envi-
ronment while ensuring the repeatability of the experiments.
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1 Introduction

The industrial environment has undergone massive changes since the First Indus-
trial Revolution, with the latest revolution being called Industry 4.0 or the Indus-
trial Internet of Things (IIoT). Emerging technologies and implementations such 
as the Internet of Things (IoT), Artificial Intelligence (AI) and 5 G networks have 
converged with traditional Operational Technology (OT) protocols and devices to 
improve the performance and efficiency of the enterprise [1]. Some recent pro-
posals from the research community [2] have even started mentioning Industry 
5.0, which has the same basic goal of solving the problems related to the integra-
tion of IIoT into traditional industry, but while the approach followed in Indus-
try 4.0 has been to implement an independent integration for each company, 
focusing on the advantages and the functionalities of the technologies related to 
IIoT, Industry 5.0 adopts a different focus, trying to highlight the importance of 
innovation and research to support the industry in its service to humanity. Thus, 
Industry 5.0 pays particular attention the points related to resilience, sustainabil-
ity and human-centric values, with the support of the technologies considered in 
Industry 4.0 adding the advances in biotechnology and renewable and energy-
efficiency technologies [3].

One of the proposed solutions is Multi-Access Edge Computing (MEC), which 
has been created as the successor to Edge Computing and is designed to bring 
the advantages of cloud computing closer to companies, and to give support to 
emerging technologies. Its main objective is to improve the network performance 
of cloud applications, as well as to enable the implementation of new applications 
that are delay-sensitive, such as autonomous driving or virtual reality applica-
tions. In addition, MEC facilitates the implementation of IIoT since the concept 
itself already brings together some of the technologies considered in it [4]. How-
ever, the convergence of OT protocols and Information Technology (IT) proto-
cols, together with the inclusion of IoT applications and web applications, can 
produce cybersecurity risks if this process does not follow the good practices 
required in implementation. Moreover, the risks are higher in critical infrastruc-
tures, which could increase losses for companies and states and have a debili-
tating effect on sectors such as security, national economic security, national 
public health or safety. Another aspect to take into account is that many devices 
found in these infrastructures are not likely to be updated periodically [5]. As a 
result, these infrastructures are a perfect target for attackers and their strategies, 
as their techniques change and evolve rapidly. This insecure context can be found 
in others environments, such as industrial plants, private health care, or indus-
tries related to smart city functionalities, each of which has specific requirements 
that are different from those of critical infrastructures [6, 7]. Thanks to the use 
of Machine Learning (ML) and AI algorithms, cybersecurity researchers can use 
the data left by attackers or researchers themselves on their network or applica-
tion to train multiple tools. As a way to monitor and avoid (or reduce) the impact 
of these attacks, these tools are becoming the perfect solution for the cyberde-
fence department of companies. Recently, Federated Learning and Adversarial 
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Networks have been improved in order to use the data collected by the devices in 
the network, and then train the models with them, which results in these models 
being more sensitive to changes and new attacks [8]. Unfortunately, evaluating 
the feasibility and performance of these threat detectors when deployed in low-
resource environments such as IIoT is not straightforward, since an architecture is 
needed for generating reproducible experimentation scenarios while taking into 
account the specific characteristics of IIoT environments.

There are some related works that have tried to address this problem. The first 
one is openLEON [9], which is used as the basis of our proposal. However, open-
LEON does not implement any service related to IIoT. Another interesting proposal 
is the IIoT Testbed [10], which is an emulator focused on the deployment of an IIoT 
application to monitor different metrics. The limitation of this tool is the low level 
of flexibility in its scenario, as it is focused only on the IIoT application deployed, 
thus making it impossible for use in the study and modelling of IIoT networks and 
the related experimentation, and it requires a tool to design and deploy networks that 
follow the IIoT paradigm.

With these issues in mind, this paper presents MECInOT, an emulator built on top 
of OpenLEON [9] for facilitating the modelling and deployment of an IIoT topol-
ogy. MECInOT allows the deployment of OT and IT applications up to the edge 
data centre topology. MECInOT has also been designed with special attention to 
cybersecurity research, providing different tools for the proposed scenarios in which 
different attacks on the network and application layers can be carried out. In this 
regard, we use MECInOT to collect network data while attacks are taking place in 
the emulation of the scenarios, and then to implement an Intrusion Detection System 
(IDS) based on different ML algorithms. The use of ML in threat detection offers an 
advantage over the use of rules found in most commercial IDS. These advantages 
are due primarily to the inability of rule-based systems to detect unknown or new 
attacks, in addition to the difficulties that such systems have in operating in highly 
dynamic environments such as IIoT scenarios [11]. Therefore, the trend is towards 
the machine-learning-based approach, and in this work we intend to implement the 
IDS to validate our emulator in the field of cybersecurity research by adopting such 
an approach.

MECInOT, which is the emulator present in this work is available in a Github1 
repository, and the dataset used is also available online2.

The rest of this paper is organised as follows. In Sect. 2, we review the proposals 
from the research community regarding emulators for MEC, the IoT and the IIoT. 
Section 3 describes the technical background of our study. The emulator developed 
in this experiment is presented in Sect. 4, together with the applications for each OT, 
IoT and IT protocol and the attacks implemented on it. In Sect. 5, we evaluate the 
performance of the proposal, using the CPU usage parameter as a reference, and we 
present the attacks implemented on the emulator and the generation of malicious 

1 Link to Github repository: https:// github. com/ C4den aX/ MECIn OT.
2 Link to dataset: https:// data. mende ley. com/ datas ets/ xstyj wrc5r/ draft?a= 44053 8fd- e139- 4e06- 8885- 
10778 5f518 07.

https://github.com/C4denaX/MECInOT
https://data.mendeley.com/datasets/xstyjwrc5r/draft?a=440538fd-e139-4e06-8885-107785f51807
https://data.mendeley.com/datasets/xstyjwrc5r/draft?a=440538fd-e139-4e06-8885-107785f51807
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data. By using these data, in Sect. 6 we describe the methodology followed to make 
an IDS using ML algorithms and analyse the results obtained by it. Finally, Sects. 7 
and 8 correspond to the conclusions that can be drawn from this experiment and the 
future work planned, respectively.

2  Related work

This section presents a study of the most important pieces of research focusing on 
the emulation of IIoT and MEC scenarios.

A work which implements an IIoT context in its design is the IIoT Testbed emula-
tor [10]. This emulator allows the emulation of IIoT applications based on Data Dis-
tribution Service (DDS) middleware, allowing the users to manage different indus-
trial processes, including the modification of multiple parameters, such as Quality of 
Service (QoS), of the different services and functionalities emulated. The creation 
of new IIoT processes and their management is performed by using a web interface, 
making the use of the emulator easier for the users without the need to understand 
the whole architecture of the emulator. However, the IIoT Testbed is a very limited 
tool in terms of its functionality and flexibility when it comes to creating new condi-
tions for the scenario that it proposes. This is mainly because the tool is focused on 
the management of the process and its related data. In fact, the IIoT Testbed emula-
tor cannot success fully meet the needs of different experiments in creating multi-
ple scenarios and IIoT topologies with different devices and protocols used by the 
applications. Also, MEC is not considered during the design and implementation of 
this emulator. This is the case of rest of the proposals described in this section, but 
in the opposite sense, that is to say that Edge Computing is considered but industrial 
protocol applications are not.

A work that considers MEC in its proposal is [12], which establishes a devel-
opment environment for the deployment of applications based on Fog Computing 
and MEC architectures. This emulator allows the creation, design and definition of 
networks, the deployment of multiple edge nodes, and the implementation of IoT 
applications. Moreover, the emulator allows the analysis of the performance of each 
node deployed and of the network that interconnects them, in order to check whether 
there are any errors or misconfigurations in the scenario defined or the performance 
of the application deployed. However, to execute Fogify it is necessary for the user 
to have an in-depth knowledge of how to use it, as well as some fundamentals on 
the tool in charge of its deployment, namely Docker Swarm. In addition, this type of 
tool can lose the support of the community in favour of other popular ones such as 
Kubernetes. Furthermore, the emulator does not support the inclusion of OT proto-
cols or new IT or IoT protocols, making it impossible to create a heterogeneous IIoT 
scenario.

Using the emulators Containernet and Maxinet, which are extensions of the 
Mininet emulator, [13] presents a solution for the creation, design, definition and 
deployment of virtual networks that users consider. These emulators use the Python 
programming language, which helps the users with the deployment of the networks 
through the creation of a single script. Containernet deploys the final devices as 
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containers, providing the flexibility of this technology when creating for example, 
applications, device or server functionalities. The main problem of Fogbed is that 
the emulator does not include support for mobile networks, which is one of the prin-
cipal characteristics of the MEC paradigm. Also, the emulator is not IIoT-focused, 
making it impossible to implement an MEC-IIoT scenario using just this emulator. 
In addition, Fogbed uses the default version of Containernet, which does not allow 
redundacy in the MEC topology, with all that this implies, such as the errors that 
could appear with disconnections between edge nodes when the complexity of the 
topology and the number of applications and services increase.

The last emulator found in the literature that can allow the deployment of these 
kinds of networks is openLEON [9]. This emulator solves the problems found on 
Fogbed emulator, because openLEON implements a network controller that allows 
the use of spanning-tree in the topology, thus making it possible to implement 
redundancy between network devices and edge nodes. In addition, the emulator 
enables the use of srsLTE, which together with the corresponding hardware allows 
connectivity with Long-Term Evolution (LTE) networks in MEC topology. There-
fore, openLEON is considered one of the most appropriate emulators for use in 
the deployment of MEC-IIoT scenarios. However, as was mentioned with Fogbed, 
openLEON is only focused on the deployment of the MEC topology, and IIoT appli-
cations and devices are not considered. This means that experimentation, research 
and security checking in the context of IIoT are impossible for users. In order to 
address this shortcoming, our MECInOT proposal uses openLEON as a basis for 
MEC topology deployment, while integrating the deployment of IIoT networks with 
their corresponding services, applications and devices. This is an added functional-
ity that to the best of our knowledge, has not been included in any proposals in the 
literature.

As far as we know, there are no other works that address the emulation of MEC-
IIoT environments. This fact indicates the important contribution that our work can 
make to the state of the art. Also, MECInOT introduces new functionalities and 
characteristics such as MEC integration, flexibility to introduce new IIoT protocols 
and IIoT services, and the integration of real devices and physical resources in the 
topologies.

As a summary, Table  1, shows the characteristics of the different pieces of 
research reviewed in this section.

3  Background

In this section some technical concepts related to the emulator and machine learning 
algorithms are described.

3.1  Multi‑access edge computing

MEC, a concept standardised by the European Telecommunications Standards 
Institute (ETSI), is considered the evolution of Edge Computing and is designed 
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to improve the performance of communications in the Cloud Computing environ-
ment and IoT and IIoT technologies. One of the most important characteristics of 
MEC is the use of virtualisation technology to provide computational resources to 
applications and the heterogeneous network management that MEC must support 
[4]. As it brings computational functions closer to end users than Cloud Comput-
ing, it makes it possible to reduce the latency in communications and avoid network 
saturation in the Cloud Computing providers. This means that users perceive a better 
performance in the applications, and it allows the development of new applications 
that previously were impossible with such limitations. Also, with the use of the new 
5 G mobile networks and the future 6 G ones [14], a reduction in latency between 
devices can be achieved, making it possible to deploy real-time applications on this 
kind of architecture.

To make it possible to implement MEC, it is necessary to use multiple virtualisa-
tion technologies, namely:

• Network Function Virtualization (NFV). The implementation of IIoT in tra-
ditional factories means that a large number of IoT devices and applications are 
connected to industrial environments. Many of these devices use different com-
munication protocols, which in some cases will be proprietary, because these 
devices are designed for specific contexts and scenarios, which in turn means 
using specific network devices to manage the proprietary protocol traffic. NFV 
allows network admin to avoid the use of these specific network devices to man-
age the heterogeneous and proprietary traffic, reducing the cost associated with 
the deployment of the different network devices and their number, thanks to 
using generic network devices. Basically, NFV is software that can be installed 
on any device that can receive and send traffic. ETSI defines and determinates 
the applications that NFV can support, such as connectivity functionalities, 
Dynamic Host Configuration Protocol (DHCP) or Network Address Translation 
(NAT) [15].

• Software-Defined Networking (SDN). Traditionally, in communication net-
works the data layer is defined as the management part of the network of the traf-
fic generated by the users, while the control layer manages the routing processes. 
Both layers work together on the network devices, which produces a slow-down 
in high-demand networks. The growth in complexity of the networks has shown 
that this solution is neither scalable nor flexible. To partially solve this issue, 
network administrators manually reconfigure network devices by using scripts, 
which leads to misconfigurations, but in any case this becomes an immeasurably 
difficult task in complex networks [16].

  In view of these misconfigurations from network administrators, SDN tries 
to solve this problem by disassociating the two layers. Thus, a specific network 
architecture is defined, and the allocation of the network resources is established 
thanks to network virtualisation [17].

• Network slicing. This technique defines different virtual networks depend-
ing on a criterion, and the allocation of the network resources is determined 
according to the needs established for each virtual network. Network Slic-
ing allows the generation of multiple custom networks using the network 
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resources deployed physically. This provides flexibility when allocating the 
network resources according to the needs of the virtual network, or even if 
then occurs an unexpected demand for resources at a particular time [4].

• Service Function Chaining (SFC). The transition from traditional networks 
to software-defined networks and virtualisation is a huge effort for IT teams 
[18]. Thus, the principal goal of SFC is to facilitate this transition dynami-
cally. The concept of SFC is quite similar to NFV, the principal difference is 
that SFC solves the problem that can appear when a service is provided indi-
vidually, and it belongs to a service chain. Thus, SFC manages the services 
that are running on the network devices and which can be used at a specific 
moment [17].

Figure 1 shows an example of implementation of a MEC architecture using the 
basic NFV and SDN services explained above, illustrating how communica-
tion between the SDN controller and the NFV controller is performed in this 
architecture.

Fig. 1  Reference MEC architecture [4]
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3.2  Machine learning algorithms

Machine learning has grown rapidly in recent years in the context of comput-
ing and whole data analysis performed via other technologies such as the IoT. 
ML uses this new information generated by analysis to develop applications with 
new functionalities in an intelligent manner. Thus, ML provides the system with 
the processes and tools to automatically extract knowledge from the data that it 
receives without the need to be programmed [19].

As mentioned above, we use a machine learning approach because several 
papers consider it to be best in environments where there are unknown threats, 
especially if these environments are highly changeable and heterogeneous, due 
to the difficulty of manually establishing rules for each type of attack. There 
are comparisons that demonstrate the superiority of machine-learning-based 
approaches in these contexts [20, 21]. In addition to the better performance of a 
machine-learning-based IDS, it also offers certain advantages, such as:

• Accuracy: Machine learning algorithms can analyse large amounts of data and 
identify patterns and anomalies that may be difficult for humans to spot or 
define explicitly.

• Flexibility: Machine learning-based IDS can continuously learn and adapt to 
new types of attacks and changing network environments.

• Anomaly detection: By modelling the normal behaviour of the system, it is 
possible to detect anomalies that are completely impossible to detect for rule-
based systems.

Supervised ML techniques are considered to be those algorithms which provide 
intelligent models with the construction of general hypotheses and patterns [22], 
using external data instances to address the prediction of future instances from a 
similar data input. The principal function of these techniques is to develop a pre-
diction model for solving classification and categorisation problems, establishing 
the possible category of the incoming data [23]. This can be solved with binary 
classification in the case of there being only two categories to predict, or multi-
class classification, which normally refers to the prediction of more than two cat-
egories. One must also consider the special case in which the incoming data can 
be categorised into multiple categories at the same time [24].

Some algorithms that give good results in multiclass classification problems 
with tabular data are the following:

• Decision Tree (DT). DT is a well-known supervised ML algorithm [25], and 
it is also used for regression problems. This algorithm works by using tree 
structures, starting from a root node and sorting down to certain leaf nodes, 
whose number depends on the data and the categories. DT performs the clas-
sification with the instances, which are classified by checking the attribute 
established and defined at each node of the tree until reaching a leaf node 
which shows the category of the entry data. The splitting is carried out by 
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using two different criteria, namely gini and entropy, whose mathematical 
equations are given by Eq. 1 and Eq. 2 [26]. 

• Random Forest (RF). The RF classifier is an ensemble classification model 
used in various areas of application [27]. This algorithm makes a parallel 
ensemble fit many DTs in parallel using different datasets or subsamples of 
the same dataset to train them. The output is the majority solution of the trees 
or the average result [26].

• Naive Bayes (NB). The NB algorithm is based on Bayes theorem, which 
makes the assumption of the independence between each pair of features that 
are allocated to the entry data of the model, and its definition is given by Eq. 3 
[28]. The principal advantage compared with other approaches is that NB 
only needs a small amount of training data to quickly estimate the parameters 
needed. However, the main problem of this algorithm is that its performance 
can be affected by the strong assumptions of feature independence [26]. 

• Stochastic Gradient Descent (SGD) [29]. SGD is an iterative algorithm 
for the optimisation of the results with an objective function with appropri-
ate properties. This algorithm allows a reduction in the computational cost 
of training, especially in high-dimensional optimisation problems, allowing 
faster iterations at the cost of a lower convergence rate. SGD is usually applied 
to problems of text classification and natural language processing. However, 
the algorithm can produce worse results for feature scaling and needs the 
hyperparameter tuning of some parameters, such as the number of iterations 
and the regularisation parameter.

• Support Vector Machine (SVM) [30]. SVM is a supervised ML algorithm 
used in various fields and kinds of problems, especially classification prob-
lems. SVM uses statistical learning approaches and classifies the input data by 
determining a set of support vectors. The main goal of SVM is find the opti-
mal hyperplane for the classification of new data. In our work, the SVM model 
developed is optimised with SGD.

There are other possible state-of-the-art algorithms, such as neural networks and 
their different architectures [31]. However, in classification problems with tabular 
data they present certain disadvantages, especially in IoT and IIoT environments, 
where there are resource constraints. These limitations are as follows:

(1)Entropy ∶ H(x) = −

n∑

i=1

p(xi)log2p(xi)

(2)Gini(E) = 1 −

c∑

i=1

p2
i

(3)P(A‖B) = P(B‖A) ⋅ P(A)
P(B)
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• Complexity: Neural networks can be complex models to train and require con-
siderable computational resources. This can make them difficult to implement 
and run, especially for large datasets.

• Overfitting: Neural networks are prone to overfitting, especially when working 
with small datasets. This means that they may perform well on the training data 
but may not generalise well to new data.

• Lack of interpretability: Neural networks can be difficult to interpret and it can 
be hard to understand how they make predictions. This can make it difficult to 
understand the factors that are driving the predictions and to identify any poten-
tial biases in the model.

• Time-consuming: Training a neural network can be time-consuming, especially 
for large datasets. This can make it difficult to use neural networks in real-time 
applications, where quick predictions are necessary.

• Require more data: Neural networks generally require more data to achieve good 
performance than other machine learning algorithms. This can be a disadvantage 
if the dataset is small or if there are certain types of data that are difficult to col-
lect.

Overall, while neural networks can be powerful tools for tabular data classification, 
they can also be complex and time-consuming to work with and may not be the best 
choice in all cases. Other machine learning algorithms, such as decision trees or ran-
dom forests, may be more suitable in certain situations [32].

For these reasons it has been decided not to validate the emulator with neural net-
works, although future experimentation in which the architecture is validated with 
deep learning architectures of low computational cost would certainly be of interest 
[33].

4  MECInOT proposal

This section provides the details of the design and the methodology that have been 
followed in developing MECInOT.

4.1  Design

When designing MECInOT, we considered that the emulator should include the fol-
lowing features:

• Offer a realistic emulation of physical scenarios. It should allow to users to 
carry out experiments and proofs of concepts, and to obtain data in the same way 
as when using a real topology, without the need to use physical devices.

• Provide the possibility and flexibility to develop different scenarios depend-
ing on the research needs. Thanks to the use of the virtualisation of devices 
using containers, it is possible to easily modify the number of devices, their 
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functionality, or even the definition and deployment of multiple virtual subnet-
works, with each one having a specific function or implementation.

• Facilitate the insertion of real devices in emulated scenarios. The possibility 
may arise in an experiment of having to use real devices in an emulated sce-
nario in order to validate the performance results. In this proposal it is possi-
ble to introduce new metrics such as collisions, packet delays or device perfor-
mance. Therefore, thanks to the virtualisation technologies used by MECInOT, 
real devices can be integrated into the scenarios deployed by the emulator, new 
network devices such as IoT gateways can be implemented. Also the integration 
of physical radio for specific protocols such as Zigbee, Z-Wave, or 6lowpan is 
available.

• Enable cybersecurity research. The main goal during the design of MECI-
nOT was to develop an emulator that make it possible to carry out cybersecurity 
research in the MEC-IIoT context. Consequently, the emulator provides the users 
with different scripts and a malicious container that allow them to easily per-
form different types of attacks in their scenarios, generate malicious data, and 

Fig. 2  MECInOT architecture
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check the impact that these attacks have on the topologies. Also, through the 
design of the emulator, these attacks can have a consequences on the real devices 
connected to the emulated scenarios, providing more options for validating and 
obtaining results.

Figure 2 shows the MECInOT architecture, in which we can see the different func-
tionalities considered during the design of the emulator.

4.2  MECInOT deployment methodology

In a real Industry 4.0 scenario, it is mandatory to deploy each device of the indus-
trial network or enterprise network, and provide them with an individual network 
configuration that covers the specific needs of the scenario. In MECInOT, the first 
step is to virtualise the machine which creates, manages and deploys the industrial 
private network, as well as the machine which deploys the MEC architecture. Next, 
the communication between the industrial network and the MEC architecture is 
defined. To make this possible, both the machines must have the IP address of the 
same private subnetwork, configuring the network adapter of the virtual machines in 
bridge mode.

It is necessary to define the subnetwork addresses that are going to be used by 
the virtualised IIoT devices and the MEC virtual subnetwork. In MECInOT, the 
emulated IIoT devices are deployed using the container technology tool Docker-
Compose, which facilitates and speeds up the deployment and the implementation 
of changes in the virtual scenarios. For this reason, the configuration of the virtual 
IIoT networks is given by this tool, which allows the users define multiple subnet-
works for each scenario. For MEC architecture deployment, the network configura-
tion used is the default one established by the openLEON emulator with multiple 
Edge servers that will run the multiple IIoT services of the scenarios. In addition, it 
is necessary to establish a correct routing configuration on the IIoT network machine 
in order to enable correct communication between IIoT subnetworks and the MEC 
subnetwork. Once this process has been carried out, the communication between 
IIoT and MEC hosts should be tested to check whether it is correct.

The last step consists in deploying the MEC-IIoT architecture in which the exper-
iments are going to be performed. This architecture is comprised of the IIoT devices, 
which are already implemented in the emulator scenarios provided, and the network 
topologies described in the following sections.

Figure 3 shows the communication the between different steps mentioned above.

4.3  IIoT topology

With the purpose of emulating the network of an Industry 4.0 factory, MECInOT 
implements a business network using the interface created by Docker-Compose 
to deploy the different Docker containers, each of which corresponds to an IIoT 
device in the virtual factory. In addition, the emulator allows the users to define and 
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implement different subnets with the most common protocols that can be found in 
an IIoT scenario, with these being:

• IoT protocols. MECInOT includes IoT applications that rely on the most com-
monly used protocols in this context: Message Queuing Telemetry Transport 
(MQTT), Constrained Application Protocol (CoAP) and Advanced Message 
Queuing Protocol (AMQP) [34, 35].

• OT protocols. The protocols added to MECInOT are versions of the industrial 
protocols which use the TCP transport protocol: Modbus/TCP, which is the most 
widely used industrial standard and protocol [36]; S7COMM, which is the pro-
prietary communication protocol used by the Programmable Logic Controller 
(PLC) of Siemens [37]; and Open Platform Communications United Architec-
ture (OPC UA), which is considered as one of the protocols that allows the con-
vergence of OT and IT protocols [35].

• IT protocols. This group of protocols includes those that are widely used by 
Internet users, such as the Hypertext Transfer Protocol (HTTP) [38].

As mentioned above, the design of MECInOT is focused on enabling cybersecurity 
research in MEC-IIoT scenarios. Consequently, the emulator provides a set of tools 
that allow users to carry out attacks in these scenarios, thus making it possible to 
evaluate the impact of such attacks, as well as the risks and the costs that these could 
entail in the particular context studied. This toolset is currently built into an attack-
ing node using the Kali Linux distribution image which ca be run in a Docker Con-
tainer on the IIoT network.

Fig. 3  MECInOT deployment methodology
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To evaluate the impact of a possible attack on the infrastructure deployed with 
the emulator, different types of attacks are employed. These attacks belong to the 
following categories:

• Packet manipulation. To carry out this type of attack, the attacker node must 
use the Man in the Middle attack to capture the packets and modify them. The 
changes made to the packets are focused on the data field of each protocol in the 
emulated scenario. The rest of the fields do not change.

• Brute force. The attack uses a dictionary of users and passwords to make mul-
tiple login attempts to try and access devices and services. Thus, MECInOT has 
a script that performs the dictionary brute force attack on a login form of a web 
server that can be running on a PLC or edge node.

• Attacks with payloads in HTTP frames. These attacks aim to exploit the 
Shellshock vulnerability [39], which is a software bug found on some web serv-
ers that can be used to gain access to the machine on which the service is run-
ning. A script is made to automatise the process of gaining access to the machine 
shell. This vulnerability is exploited by sending an HTTP packet with a modified 
User-Agent field that contains the specific payload.

• Network scanning. The emulator includes a tool that allows different scanning 
methods to be carried out automatically. The scanning methods implemented are 
TCP SYN, TCP connect, UDP, TCP NULL, TCP FIN, TCP XMAS, and TCP 
ACK.

• Denial of Service (DoS). For this type of attacks, traditional denial of service 
methods have been implemented, such as Ping of the Dead [40], and methods 
based on the flood or saturation of the port with a massive sending of TCP pack-
ets. In addition, these methods have been adapted depending on which proto-
col is targeted. In particular, for the AMQP protocol, fake devices are included 
in order to overflow the message queue, resulting in legitimate user not being 
able to establish communication with the queue. With regard to CoAP protocol, 
this uses UDP as a transport protocol, which allows the implementation of the 
UDP amplification attack [41]. This attack consists in using a simple modified 
request to a method on a CoAP server to be received by the target machine. As 
the attacker sends lightweight packets, this makes it possible to cause a denial 
of service for some of the devices in the network using the CoAP server, which 
sends larger packets than the attacker.

• Malicious device injection. In this attack, the attacker tries to find a default con-
figuration or a bad implementation of an MQTT broker in order to obtain more 
information from it. This process is automatised by using a script which emulates 
a new device that tries the connection to the specific topic on the MQTT broker 
as a way to read whole messages that pass through it.

4.4  MEC topology

As was mentioned above, the MEC topology is deployed using the openLEON emu-
lator. In this emulator there two key components:
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• Data centre. openLEON implements this part of the topology by using the Con-
tainernet emulator [42], which is an extension of the Mininet emulator [43], thus 
allowing the creation of topologies whose hosts are implemented with contain-
ers. Secondly, the architecture of the topology has a 3-level hierarchical network 
structure, which is typical of a 3-tier data centre. The topology has two core 
switches, and two aggregation switches for each one. Also, the architecture has 
64 hosts connected between the switches found on the Top of Rack level. This 
topology structure provides redundancy between network devices and hosts, thus 
trying to avoid communications errors in the network. In order to do this, it is 
useful to implement a spanning-tree protocol [44] on the network devices. Since 
the default SDN controller implemented in Mininet does not support this func-
tionality, openLEON developers decided to implement and use RYU [45], which 
is a module implemented with Python that provides support for OpenFlow to be 
integrated in the topology.

• Mobile communication. As was mentioned in Sect.  2, this is a crucial MEC 
component. The protocol used to provide mobile communication is LTE, and this 
is achieved by using the srsLTE emulator [46]. In order for this emulator to run 
correctly it needs a set of hardware, such as antennas and mobile LTE stations. 
With this module it is possible to establish communication between the mobile 
devices connected via LTE with the MEC-IIoT topology.

4.5  MECInOT distributed deployment

With the aim of taking advantage of the container and Mininet virtualisation tech-
nologies, a distributed deployment is also defined in order to be able to use MECI-
nOT on a High Performance Computer (HPC) or cluster, and thus obtain a more 
realistic and better performance than when using a single computer. This kind of 
deployment allows the use of multiple MEC and IIoT topologies on the distributed 
nodes of a cluster. For this implementation, it is recommended to use a container 
orchestrator for the management of the containerised IIoT topologies. In addition, 
it is possible to deploy multiple MEC topologies without the need to use the virtual 
machine by only employing the Containernet implementation of openLEON.

Figure 4 presents a logical implementation of this type of deployment, also show-
ing the intercommunication between the nodes and topologies providing a correct 
functionality and connection between the different parts of the emulator.

5  MECInOT evaluation

In this section some examples of scenarios that can be designed and deployed with 
MECInOT are described. In addition, we present an evaluation based on the cost of 
CPU usage metric for the physical machine on which the emulator is run. Finally, 
a cybersecurity analysis and proof of concept are carried out to check whether the 
emulator can contribute to this research field with the MEC-IIot scenario deployed.
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5.1  Hardware setup

For the evaluation of the proposal described in Sect. 4 we used a laptop with an 
Intel i7-10875 H 2.30GHz CPU with 32 GB RAM memory, running Windows 10 
20H2. In order to execute the virtual machine, the hypervisor VirtualBox 6.1.16r 
was used. Finally, a Raspberry Pi Zero 2 was included as additional hardware in 
order to add the possibility of deploying an IoT gateway in our scenarios.

5.2  Industrial OT scenario

In order to evaluate this scenario we only deployed devices that specifically use 
industrial or OT protocols, as mentioned in Sect. 4.3.

The scenario studied for the OPC UA protocol consisted of a client node 
which was in the industrial topology, and a server node that was allocated in the 
MEC topology. The basic functionality between the two nodes was a communi-
cation based on the reading of a random string that was generated by the server 
node at a random time between one and nine seconds.

For the case of the S7 protocol, two client nodes were deployed, one for read-
ing and the other for writing, and these nodes were allocated in the industrial 
network. A server node was also deployed in the scenario, but it belonged to 
the MEC topology. The functionality provided by these nodes was very similar 

Fig. 4  MECInOT logical distributed architecture
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to that mentioned for the OPC UA protocol. The writing client wrote a random 
string on the server, and then this was read by the reading node at a random time.

For the ModBus/TCP protocol, the deployment involved two clients allocated in 
the industrial topology, one for writing and the other for reading, and a server node 
that was deployed in the MEC network. In this scenario, the writing node wrote a 
sequence of values, which could be alternately True or False, to the server, with the 
reading node periodically reading the values stored on the server.

In order to provide the emulator with cybersecurity testing capabilities, an 
attacker node is deployed in the industrial topology, and it can communicate with 
the rest of the industrial devices and MEC servers. This node, as well as the tools, 
scripts and attacks implemented, is described in Sect. 4.3.

5.3  Industry 4.0/IIoT scenario

This scenario is an extension of the scenario detailed in Sect. 5.2, and introduces 
communication between devices using IoT protocols and the emulation of users that 
operate with IT protocols. This allows researchers and emulator users to implement 
and deploy an example of an Industry 4.0 factory, which is connected to different 
network services. In this scenario, the IoT traffic passes through an IoT gateway 
which is deployed in the business network. In addition, an attacker node is intro-
duced in order to provide the user with the option of performing cyberattacks with 
the new devices included.

The MQTT protocol is implemented with the aim of emulating a factory that 
has multiple sensors sending the temperature in degrees Celsius every three sec-
onds. The IoT gateway is given the role of MQTT broker, acting as an intermediary 
between the communication with the MQTT subscriber, which belongs to one of the 
edge nodes in the MEC network, and the rest of the devices.

In the case of the CoAP protocol, a client is deployed in the industrial network 
and it sends multiple messages to the IoT gateway, which performs the function of 
master/server node, with these messages being read by another CoAP client allo-
cated in MEC topology.

For the AMQP protocol, a client node is deployed in the industrial network and it 
publishes a random number between 33 and 126 in the RabbiMQP queue that is run-
ning on the IoT gateway. These messages are received by an AMQP client allocated 
in the MEC topology.

The IT protocols that are considered and included in the scenario are the HTTP 
and Hypertext Transfer Protocol Secure (HTTPS) protocols. The former implements 
a login form for the factory users, and the latter does so with a video streaming 
server. On the user side, they are specifically in the industrial network and have been 
implemented using Python scripts that emulate their normal behaviour using the IT 
applications mentioned above.

In Fig.  5, a logical schema of communication between the different parts in 
this scenario is shown. In addition, it describes how communication is performed 
depending on the type of traffic.
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5.4  Performance analysis

Now we have described some of the scenarios that can be created and deployed with 
MECInOT, we analyse its performance in these scenarios. This analysis considers 
the cost in terms of computational resources associated with the deployment of the 
Industry 4.0 scenario on the machine, since it is the scenario with the highest num-
ber of devices and services running simultaneously. The metric used is the CPU 
usage of the host machine running Windows 10, and the tool used to obtain this met-
ric is System Monitor, which is a piece of native software for obtaining information 
regarding hardware conditions and process metrics.

Fig. 5  Logical network schema of Industry 4.0/IIoT scenario
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In Fig. 6, the evolution of CPU usage over nine minutes (the execution time of the 
scenario) is shown. The metric is measured from the launch of the virtual machines 
to the stopping of the emulator. We can observe the different load rate changes dur-
ing the deployment of the different parts of the emulator, and the fact that the maxi-
mum CPU usage occurs in the building and deployment of the Docker-Compose 
containers.

In order to check the flexibility and how load usage varies depending on the com-
plexity of the scenario deployed, a comparison is made with the scenario that only 
deploys the applications that uses OT protocols and the above mentioned one. In 
this case, the OT scenario is simpler than Industry 4.0 and allows us to make the 
comparison desired. Figure 7 shows the evolution of the CPU load usage during five 
minutes of the execution of the OT scenario.

By comparing Figs.  6 and 7, we can see that the resources needed to run a 
given scenario vary in accordance with its complexity. However, by measuring 

Fig. 6  Evolution of CPU usage with the deployment of the Industry 4.0 scenario. The X-axis represents 
the running time of the experiment in minutes:seconds format, and the Y-axis represents the CPU usage 
percentage

Fig. 7  Evolution of CPU usage with the deployment of the OT scenario. The X-axis represents the run-
ning time of the experiment in minutes:seconds format, and the Y-axis represents the CPU usage per-
centage
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the median CPU usage in the two scenarios, it can be concluded that the differ-
ence between the two cases is only 2%. This means that it is possible to increase 
the number of services and devices in the scenarios without generating much 
higher rates of CPU usage on the host system. In addition, the maximum load 
usage in the OT scenario occurs during the launch of the virtual machines of 
MECInOT, while in the Industry 4.0 scenario it occurs during the event associ-
ated with the building and deployment of the containers allocated in the indus-
trial network. This experiment demonstrates the viability of deploying multiple 
scenarios on a system with limited computational resources.

5.5  Cybersecurity analysis

After evaluating the performance of the emulator, a proof of concept was con-
ducted by carrying out cyberattacks in the Industry 4.0 scenario deployed. In 
this case, for the proof of concept we considered all the attacks implemented and 
described in Sect. 4.3. Firstly, the manipulation attack was performed, followed 
by the attacks related to http frames. Then the scanning network tools were run 
in the scenario, and the DoS attacks were implemented. Finally, the malicious 
device injection was run to prove its functionality. Figure 8 shows the IIoT base-
line scenario designed to explain the attacks implemented in MECInOT. In this 
scenario, the legitimate nodes are shown with a green background, the legiti-
mate IIoT servers are shown with a blue background, and finally the malicious 
node, which will introduce the network attacks in the scenario, is shown with a 
red background. The behaviour of the malicious node in the scenario varies in 
accordance with the attack that is running in the scenario.

Fig. 8  IIoT baseline schema for its cybersecurity analysis
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5.5.1  Manipulation attack

In order to perform a successful manipulation attack, first the attacker node must 
execute a Man in the Middle attack using the arpspoof tool with the aim of being 
able to capture the traffic between the victim node and the destination. The manipu-
lation attack scheme is shown in Fig. 9, which illustrates how the malicious node 
is allocated in the middle of the communication between the legitimate nodes and 
legitimate server, and how it returns the manipulated messages to the destination. In 
MECInOT the manipulation process is carried out using a Python script on the mali-
cious node, which changes the information allocated in the data field in the corre-
sponding IIoT protocol used in the communication. Figures 10 and 11 show how the 

Fig. 9  Manipulation attack schema

Fig. 10  Messages sent by the writer client

Fig. 11  Modified messages received by the reader client
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writer client sends strings of random characters without numbers, while the reader 
client receives a string of numbers from the server. This means that the attack has 
been successful and the results obtained are as expected.

5.5.2  HTTP application attacks

Figure  12 shows the schema followed to implement and run the brute force and 
payload attack against HTTP services. This schema shows how the legitimate users 
transmit legitimate HTTP traffic while the malicious node introduces a huge number 
of HTTP frames in the brute force attack and HTTP frames that carry a payload try-
ing to exploit a possible Shellshock vulnerability allocated in the HTTP service.

The brute force attacks in MECInOT were implemented by using the Hydra 
tools, which is already installed on the attacker node of MECInOT. To launch 
this attack, there is a script which runs the tool with the corresponding param-
eters to indicated in the script and the dictionary used by the nmap tool, which 
is in charge of the enumeration of the services and passwords. Figure 13 shows a 
screen capture of the traffic sniffed to check whether the attack has been carried 
out successfully against a web server with the IP address 10.0.0.1, showing how 
multiple and continuous HTTP login petitions are sent to the login form.

In order to launch the Shellshock payload, a python script is used. This script 
facilitates the sending of the HTTP frames with the payload to gain access to the 
device with this vulnerability, whose IP address is 10.0.0.1 in the MEC topology. 

Fig. 12  HTTP applications attack schema
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Fig. 13  Traffic generated by the brute force attack

Fig. 14  HTTP frame with malicious payload in the User-Agent field

Fig. 15  Network scanning schema
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Figure 14 shows an example of an HTTP packet sniffed that contains the payload 
in the User-Agent field.

5.5.3  Network scanning

Network scanning allows attackers to discover active nodes and servers that are 
running at that moment. Also, the attacker receives additional information from 
these devices, such as the IP address, open ports or services running. Figure 15 
shows the schema for running this attack in the scenarios. The malicious node 
sends the scanner packets to every possible device running in the MEC-IIoT net-
work and receives the response of each legitimate node in the network.

Fig. 16  Traffic generated by network scanning

Fig. 17  DoS attack schema
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For the scanning functionality and implementation for the attacker node in 
MECInOT, a script was developed that automatises this task by using Python and 
Python-nmap modules. Figure 16 shows an example of the scanning traffic gener-
ated by the script that tries to scan the services running on the MEC servers in the 
scenario.

5.5.4  DoS attacks

The DoS attacks tested in this analysis are the generic ones mentioned in Sect. 4.3, 
and the schema DoS attack against a legitimate IIoT server in the scenario by a mali-
cious node is shown in Fig. 17.

To run them, a Python script that allows launching the Ping of Death attack and 
the Teardrop attack with DNS packets is included. Figures  18 and 19 show the 
attacks that are launched against the edge server in the MEC topology whose IP 
address is 10.0.0.1. In these figures it is possible to identify the packets that are gen-
erated by the scripts, and which allow the generation malicious DoS traffic in the 
scenarios.

5.5.5  Malicious device injection

To evaluate the MQTT malicious device injection attack, the following devices are 
used: an IoT gateway with a Mosquitto broker running, two IoT devices in an IIoT 
topology which send temperature data to two different topics whose definitions are 
’topic1’ and ’topic2’, and the malicious IoT device run by the attacker. Figure. 20 

Fig. 18  Ping of Death malicious traffic

Fig. 19  Teardrop attack traffic generated
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shows the attack schema implemented in the scenario to run this attack with the 
devices described above.

Listing 1 shows how the malicious IoT device is implemented and how the device 
tries to subscribe to the # topic. If the broker only has the default configuration, the 
malicious IoT device will receive all the messages on any topic handled by the bro-
ker. Figure 21 shows how the malicious device receives the message from ’topic1’ 
from the first IoT device and ’topic2’ from the second one.

Under these circumstances, it can be concluded that this analysis shows that the 
malicious data generated in the scenario is suitable for use in the creation of new 
applications using big data and ML techniques, or simply for its analysis (Fig. 21).

Fig. 20  Malicious device injection schema

Fig. 21  Messages received on other topics by malicious device
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6  IDS based on ML algorithms

In this section, we describe the methodology and workflow followed to develop 
the IDS based on ML algorithms. In addition, we present an analysis of the results 
obtained from the algorithms selected.

6.1  Methodology

The workflow for the development and deployment of the smart IDS is shown in 
Fig. 22.

Network Deployment. The OT scenario described in Sect.  5.2 is deployed for 
the IDS development. The way in which the OT services are distributed in the IIoT 
topology and on the MEC edge servers is shown in Fig. 23.

Data Extraction. The raw traffic data are extracted once the scenario and attacks 
are running. For the collection of network data, Wireshark is used on the SCADA 
node. Finally, we analyse these network data to extract features considered for the 

Listing 1  Malicious MQTT 
device implementation

Fig. 22  Workflow of the experimentation



1 3

MECInOT: a multi‑access edge computing and industrial internet…

input of the ML models in the following steps. The features extracted from the net-
work packets are shown in Table 2.

Data Preprocessing. In this stage, the data extracted are adapted in order to 
be used with the algorithms. Firstly, the raw data have to be tagged into the 

Enterprise Internal Network
192.168.1.0/24

Industrial Internet
Of Things Topology

172.18.0.0/24 
Scada Node
172.18.0.1S7 Industrial Node Reader

172.18.0.2

OPC UA Industrial Node
172.18.0.5

ModBus/TCP Reader Industrial Node
172.18.0.3

S7 Industrial Node Writer
172.18.0.6

Attacker Node
172.18.0.7

Multi-Access Edge
Computing Topology

10.0.0.0/12

S7 Server Node
10.0.0.1

Modbus/TCP Server Node
10.0.0.2

OPC UA Server Node
10.0.0.3

MEC NAT
10.0.0.65

ModBus/TCP Writer Industrial Node
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Fig. 23  IIoT experimentation scenario
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corresponding category, with the aim of enabling the models to classify them cor-
rectly. The categories tagged and the number of each one are detailed in Table 3. 
Moreover, it is necessary to study them to determine which techniques to apply to 
the data and which features are most relevant. For this purpose, the feature selec-
tion is performed with Extremely Random Forest [47]. In addition, some features 
are combined and retaught to receive greater importance during the training of the 
models.

Model Training. Once the data are ready to be used with the algorithms, namely 
DT, RF, NB and SVM Linear+SGD, it is necessary to distribute the data in different 
dataframes. These dataframes hold benign traffic and one type of attack or multiple 
attacks. In addition, the dataframes are divided up into 70%, which uses the K-Fold 
Cross-Validation technique, dividing the data into five subsets to obtain the best 
model, performing an experiment per subset, while the 30% of the dataset remaining 
is dedicated to the validation stage, which allows us to identify the performance of 
the model when new data are introduced after the training.

Model Validation. When the training stage is finished, it is time to validate the 
predictions of the final model. With the aim of evaluating whether the model cor-
rectly predicts the testing dataset, the following metrics are used: Accuracy, Preci-
sion, Recall, F1 Score and Training Time. All of these except the last one use the 
information of the confusion matrix, which is constructed with the number of True 
Positives (TP), True Negatives (TN), False Negatives (FN) and False Positives (FP) 
[48].

Thus, Accuracy metric score shows the percentage of predictions made correctly, 
although this metric does not explain the performance of a model when a class-
imbalanced dataset is used as in our experiment. For this reason, in our analysis of 
the experiment Recall, Precision and F1 Score are also included. The Recall metric 
score shows the percentage that the model detects for which the packet belongs to 
attacks but the classification is not correct. A high Precision metric score means 
that the model does not detect many FP. The F1 Score shows the balance between 
these 2 scores. The Training Time metric is also included and it shows how much 
time it costs to train a model with the technique used to develop the model.

Table 3  Categories, tags associated and the number of packets for each one

Category Tag(s) Packets

Normal traffic final_clean 14634
HTTP attacks brute_http, payload_user_agent 4320
DoS attacks ping_of_death_dos, tcp_flood_dos 5533
Scanner scanner_ack, scanner_fin, scanner_tcp, scanner_udp, 

scanner_xmas, scanner_null
5709

Manipulation attack manipulation 3003
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6.2  Results

Table 4 shows the results for each metric and algorithm used and for each attack 
considered for detection by the classification model. The analysis is divided into the 
different attacks implemented and introduced into the dataset, so that the perfor-
mance of each scenario can be evaluated.

Packet manipulation attack. This type of attack is normally difficult for clas-
sifiers to detect correctly without having a good definition of the features. The 
results returned by the algorithms show that the best one for detecting this attack 
is RF, since it achieves a score of 96% in the metrics of Precision, Recall and 
F1 Score, and 98.33% in Accuracy. However, RF has the worst result in terms 
of Training Time, and, looking at the results returned by the DT algorithm, it is 
possible to reduce training time without significantly sacrificing performance, as 
the differences in the key metrics are around 1–2 %. In addition, when it comes 
to obtaining better Precision than Recall results, NB is an attractive option, but it 
has a worse F1 score than DT. Finally, the results returned by SVM Linear+SGD 
are significantly worse than those of the rest of the algorithms in the study.

Table 4  Performance results for the models

Attack Algorithm Precision Recall F1 Score Accuracy Training 
Time 
(sec)

Packet manipulation DT 0.94 0.96 0.95 0.9791 0.0152
RF 0.96 0.96 0.96 0.9833 0.4111
GaussianNB 0.95 0.93 0.94 0.9775 0.0092
SVM Linear+SGD 0.94 0.91 0.92 0.9145 0.0181

Scanner DT 0.92 0.99 0.94 0.9992 0.0182
RF 0.92 0.99 0.94 0.9992 0.5106
GaussianNB 0.91 0.96 0.92 0.9991 0.0153
SVM Linear+SGD 0.91 0.96 0.92 0.9990 0.1564

DoS DT 1 0.97 0.98 0.9994 0.0079
RF 1 0.97 0.98 0.9994 0.2750
GaussianNB 1 0.79 0.84 0.9962 0.0088
SVM Linear+SGD 1 0.79 0.84 0.9962 0.0365

HTTP application DT 1 1 1 1 0.0079
RF 1 1 1 1 0.2750
GaussianNB 1 1 1 1 0.0088
SVM Linear+SGD 1 1 1 1 0.0136

Mixed DT 0.99 0.99 0.99 0.9993 0.0660
RF 0.99 0.99 0.99 0.9991 0.8001
GaussianNB 0.93 0.97 0.94 0.9925 0.0313
SVM Linear+SGD 0.52 0.57 0.5 0.9663 1.5971
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Scanner attacks. For the scanners that can be run in the MEC-IIoT scenar-
ios, DT and RF return the same results for the metrics selected. Specifically, 
the results are 92%, 99%, 94% and 99% for the Precision, Recall, F1 Score and 
Accuracy metrics, respectively. The training time metric shows that DT is faster 
than RF, and therefore it is the best algorithm to use in this case. With respect 
to the NB and SVM Linear+SGD algorithms, they obtain worse results than the 
algorithms mentioned above. Both NB and SVM Linear+SGD obatin the same 
results, with 91% in Precision, 96% in Recall and 92% in F1 Score, with the only 
difference being 0.01% in the Accuracy metric. As can be seen, the difference in 
the results between DT/RF and NB/SVM Linear+SGD are not very significant.

DoS attacks. In this scenario it is possible to identify two groups of results: 
the first one, with 100% in Precision, 97% in Recall, 98% in F1 Score and 
99.94% in Accuracy, is the one obtained by the algorithms DT and RF. There-
fore, the best-performing one in this group, and in general, is DT as it is faster 
to train than RF. Specifically, DT takes 0.0079  s to be trained, instead of the 
0.2750  s that RF needs to finish the training model. The second group returns 
worse results in general than the first one, with 100%, 79%, 84% and 99.62% in 
the Precision, Recall, F1 Score and Accuracy metrics, respectively.

HTTP application attacks. The results for the HTTP attacks implemented in 
the scenario show that all the algorithms achieve 100% in for all the metrics. 
The reason for this is that the parameters considered for the models are able to 
detect the attacks easily thanks to the information in the HTTP frames for pay-
load attacks, and the time delay between packets for brute force attacks. There-
fore the selection of the best algorithm should be based on another metric, such 
as the resources needed to run the model or the training time of the models, 
depending on the needs of each scenario in which the IDS will be implemented. 
When using the training time it is possible to determine that the best algorithm 
for this type of attacks is DT, with 0.0079 s.

Mixed attacks. This case is the most realistic scenario that it is possible to 
find in real Industry 4.0 factories when they are under attack from multiple 
attackers at the same time. Under these circumstances, the results obtained in 
this experiment are crucial in order to select the algorithm to be used for the 
IDS implementation. The best results are achieved by the DT and RF algo-
rithms, which obtain 99% for every metric. The main difference between them 
is the training time, with a better result being achieved by the DT algorithm. 
In addition, it is important to highlight the poor results returned by the SVM 
Linear+SGD algorithm for the Precision, Recall and F1 Score metrics, with 
these being around 50%. This is particularly curious when the Accuracy metric 
shows 99.63%, which means that SVM Linear+SGD does not correctly classify 
the packets and is probably grouping most of them in to a single class.

Finally, an analysis of the metrics shows that the best options for all the testing 
scenarios are DT and RF, since both of them return similar results. As has been 
mentioned during the analysis of each case, the main difference between the two 
solutions is in the Training Time metric. This metric gives an idea of how much 
time it takes to train the model with a specific parameter, and how it could scale 
when the dataset size increases. Furthermore, NB produces very similar results 
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to DT with a difference in performance of around 1-6 % in the Packet Manipu-
lation, Scanner, HTTP and Mixed attacks. However, the results obtained in the 
DoS attacks are significantly worse than the DT and RF algorithms. Lastly, the 
worst ML algorithm included in the analysis is SVM Linear+SGD, with a per-
formance similar to NB in the Packet Manipulation, Scanning, DoS and HTTP 
attacks. However, it obtains the worst performance for the Mixed attacks and in 
all cases returns the longest Training Time.

7  Conclusion

In this work, MCEInOT, a cybersecurity-oriented emulator for the deployment of 
MEC-IIoT topologies for experimentation in this context has been presented. It 
provides cybersecurity researchers with different tools for carrying out network 
and application attacks in any scenario deployed with the emulator, support-
ing IIoT, IoT and IT protocol-based applications. In addition, it has been shown 
that our proposal can be used to extract data from network attacks made on the 
network on which the experimentation scenario is deployed, and then use these 
data to train different ML algorithms to be deployed as an IDS for the MEC-IIoT 
topology. The experiment has allowed us to evaluate some ML algorithms for 
classification purposes, namely DT, RF, NB and SVM Linear+SGD. Although 
they provide quite similar performances in some situations, the DT and RF 
achieve the best general results, with the training time metric showing that DT 
obtains better results than RF.

8  Future work

In this section, we describe several future projects that could improve the emulator, 
as well as some lines for additional research that could derive from this experiment.

• Optimisation of the container images. It would be highly beneficial to 
reduce the size of the containers in the scenario in order to improve the speed 
and resource consumption during the deployment of the topology of the appli-
cation nodes.

• Unification of the emulator on a single virtual machine. In order to prop-
erly use the emulator on a single computer, it is necessary to run two virtual 
machines and interconnect them using a private network. This produces an 
overuse of computational and network resources that could be avoided if the 
two virtual machines were joined into a single one.

• Extend experiments with other ML and Deep Learning (DL) techniques. In 
this work, a study of 4 ML algorithms for the development of an IDS was carried 
out. However, there is the option of testing additional ML techniques such as 
kernel-based algorithms or boosting-tree algorithms. Even some lightweight DL 
approaches could be considered for integration into MEC-IIoT environments.
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• Study of implementation of the IDS in the scenario. Once it has been decided 
which ML algorithm to select to implement the IDS, it is necessary to deploy it 
in the scenario and study its performance when the attacks are running. There-
fore, it would be useful to analyse the possible implementations of the IDS given 
the possibilities offered by the inclusion of an MEC topology in the IIoT sce-
nario. In addition, various IDS architecture proposals can be implemented, using 
MEC as the principal component to control the traffic or deploy the smart IDS 
on each device in order to detect possible anomalies individually.

• Implementing new network functionalities. MECInOT is mainly an emula-
tor oriented for use in the cybersecurity field, so it would be interesting to 
implement other network functionalities such as firewalls, or topologies with 
a cyberdefence architecture in mind near the implementation of a Demilitar-
iesed Zone (DMZ), in order to improve the quality and the possibilities during 
experimentation.

• Introduction of new applications into scenarios. Thanks to the possibilities 
that openLEON provides when deploying different MEC topologies, it would 
be interesting to offer the option of implementing new emerging technologies 
oriented to wards security and privacy. One example would be the smart con-
tracts based on blockchain to preserve the privacy and integrity of the data.

• Inclusion of specific attacks for the different protocols. The attacks 
included and described in MECInOT are specifically designed for carrying out 
generic network cyberattacks in the scenarios that the emulator can deploy. 
However, it would be useful to add new types of attacks that are focused on 
exploiting vulnerabilities found on OT and IoT devices or in their protocols. 
In addition, these attacks should consider not only IIoT vulnerabilities but also 
those associated with the services and the virtualisation functions in the MEC 
paradigm [49].
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