118 research outputs found

    A multifaceted evaluation of the reference model of information assurance & security

    Get PDF
    The evaluation of a conceptual model, which is an outcome of a qualitative research, is an arduous task due to the lack of a rigorous basis for evaluation. Overcoming this challenge, the paper at hand presents a detailed example of a multifaceted evaluation of a Reference Model of Information Assurance & Security (RMIAS), which summarises the knowledge acquired by the Information Assurance & Security community to date in one all-encompassing model. A combination of analytical and empirical evaluation methods is exploited to evaluate the RMIAS in a sustained way overcoming the limitations of separate methods. The RMIAS is analytically evaluated regarding the quality criteria of conceptual models and compared with existing models. Twenty-six semi-structured interviews with IAS experts are conducted to test the merit of the RMIAS. Three workshops and a case study are carried out to verify the practical value of the model. The paper discusses the evaluation methodology and evaluation results

    Secure*BPMN - a graphical extension for BPMN 2.0 based on a reference model of information assurance & security

    Get PDF
    The main contribution of this thesis is Secure*BPMN, a graphical security modelling extension for the de-facto industry standard business process modelling language BPMN 2.0.1. Secure*BPMN enables a cognitively effective representation of security concerns in business process models. It facilitates the engagement of experts with different backgrounds, including non-security and nontechnical experts, in the discussion of security concerns and in security decision-making. The strength and novelty of Secure*BPMN lie in its comprehensive semantics based on a Reference Model of Information Assurance & Security (RMIAS) and in its cognitively effective syntax. The RMIAS, which was developed in this project, is a synthesis of the existing knowledge of the Information Assurance & Security domain. The RMIAS helps to build an agreed-upon understanding of Information Assurance & Security, which experts with different backgrounds require before they may proceed with the discussion of security issues. The development process of the RMIAS, which was made explicit, and the multiphase evaluation carried out confirmed the completeness and accuracy of the RMIAS, and its suitability as a foundation for the semantics of Secure*BPMN. The RMIAS, which has multiple implications for research, education and practice is a secondary contribution of this thesis, and is a contribution to the Information Assurance & Security domain in its own right. The syntax of Secure*BPMN complies with the BPMN extensibility rules and with the scientific principles of cognitively effective notation design. The analytical and empirical evaluations corroborated the ontological completeness, cognitive effectiveness, ease of use and usefulness of Secure*BPMN. It was verified that Secure*BPMN has a potential to be adopted in practice

    Fauna and population of non-Passerine birds in the lower reaches of the Bolshaya Rechka River (Altai Territory, Bolsherechensky reserve)

    Get PDF
    The purpose of this paper is to provide additional information on the non-Passerine bird fauna and populations in the Bolsherechensky Nature Reserve, specifically within the Bolshaya Rechka River valley. Located in Altai Krai, the reserve occupies a typical territory of the Upper Ob forest massif. Protecting the habitats of rare and endangered bird species is one of the primary goals of the reserve. However, despite previous studies, our understanding of the avifauna and bird populations remains insufficient. To address this, we conducted bird surveys in the reserve during spring and summer of 2012, 2013, 2017, and 2021, specifically within the Bolshaya Rechka River valley. The results revealed that the summer breeding community of non-Passerine birds in the Bolsherechensky reserve consists of 48 species from 18 families and 12 orders. Additionally, we discovered 11 rare and endangered bird species previously unrecorded in the reserve. In particular, seven of these species lack specific distribution information in the latest regional Red Data Books, including the Black stork (Ciconia nigra), Oriental honey buzzard (Pernis ptilorhynchus), Peregrine falcon (Falco peregrinus), Red-footed falcon (Falco vespertinus), Common wood pigeon (Columba palumbus), Eurasian pygmy owl (Glaucidium passerinum), and European bee-eater (Merops apiaster). In general, our study significantly improves our knowledge of the non-Passerine bird fauna and population of non-Passerine birds in the lower reaches of the Bolshaya Rechka River within the Bolsherechensky Nature Reserve. The findings are valuable for the improvement of biodiversity protection measures.The authors express their gratitude to A. Gribkov and L. Pozhidaeva for their financial and technical support in organizing the field studies. The authors also thank R. Bakhtin, V. Kozil, student N. Kolotov and high school student A. Bespalov for their assistance during the expeditions. Financial support for the study was provided by the Global Greengrants Fund in 2012 (the project "Save the feathered raptors of the Upper Ob boron!") and "Lash-Rasha" LLC in 2017

    Sedimentology and diagenesis of unique lower cretaceous "Vankor-type" sandstone reservoirs in Western Siberian Basin

    Get PDF

    A review of cyber security risk assessment methods for SCADA systems

    Get PDF
    This paper reviews the state of the art in cyber security risk assessment of Supervisory Control and Data Acquisition (SCADA) systems. We select and in-detail examine twenty-four risk assessment methods developed for or applied in the context of a SCADA system. We describe the essence of the methods and then analyse them in terms of aim; application domain; the stages of risk management addressed; key risk management concepts covered; impact measurement; sources of probabilistic data; evaluation and tool support. Based on the analysis, we suggest an intuitive scheme for the categorisation of cyber security risk assessment methods for SCADA systems. We also outline five research challenges facing the domain and point out the approaches that might be taken

    Cyber-risks in the Industrial Internet of Things (IIoT): towards a method for continuous assessment.

    Get PDF
    Continuous risk monitoring is considered in the context of cybersecurity management for the Industrial Internet-of-Thing. Cyber risk management best practice is for security controls to be deployed and configured in order to bring down risk exposure to an acceptable level. However, threats and known vulnerabilities are subject to change, and estimates of risk are subject to many uncertainties, so it is important to review risk assessments and update controls when required. Risks are typically reviewed periodically (e.g. once per month), but the accelerating pace of change means that this approach is not sustainable, and there is a requirement for continuous monitoring of cybersecurity risks. The method described in this paper aims to alert security staff of significant changes or trends in estimated risk exposure to facilitate rational and timely decisions. Additionally, it helps predict the success and impact of a nascent security breach allowing better prioritisation of threats and selection of appropriate responses. The method is illustrated using a scenario based on environmental control in a data centre

    ИспользованиС Π΄Π΅ΠΏΡ€ΠΎΡ‚Π΅ΠΈΠ½ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΉ костной Ρ‚ΠΊΠ°Π½ΠΈ Π² качСствС ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Ρ‹ Ρ‚ΠΊΠ°Π½Π΅ΠΈΠ½ΠΆΠ΅Π½Π΅Ρ€Π½ΠΎΠΉ конструкции: ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΎΠ΅ исслСдованиС

    Get PDF
    Background. At present, for a number of reasons the complete bone defect replacement with autogenous bone is not always possible. Bone substitute materials are used as an alternative to autogenous bone tissue and can be of either biological or non-biological origin. One of the ways of development of reconstructive technologies is the use of tissue-engineered constructs that fully imitate autogenous bone tissue in the required volume. Aim of study to define in vivo the possibility of using deproteinized human cancellous bone tissue as a matrix for creating tissue-engineered constructs. Methods. An in vivo study was carried out on NZW rabbits. To create a construct, we used the fragments of deproteinized cancellous bone tissue of the human femoral head and stromal vascular fraction of rabbit adipose tissue as a matrix. Bone defect modeling with its subsequent replacement was performed to evaluate the efficacy of reparative osteogenesis during bone defects reconstruction. Study groups were defined: group 1 (control) surgical modeling of a bone defect of the femur without its reconstruction; group 2 surgical modeling of a bone defect of the femur with its reconstruction using fragments of deproteinized cancellous bone matrix; group 3 surgical modeling of a bone defect of the femur with its reconstruction using fragments of deproteinized cancellous bone matrix in combination with stromal vascular fraction of adipose tissue (according to ACP SVF technology). Results. Comparative analysis of reparative processes in case of applying tissue-engineered constructs based on deproteinized human cancellous bone matrix in combination with adipose tissue-derived stromal vascular fraction on in vivo experimental model revealed that the use of these bone substitute materials contributes not only to an early activation of reparative regeneration of main structural elements of the bone tissue in the area of the bone defect replacement, but also to its well-timed differentiation. This determines the restoration of structural and functional viability of the bone tissue at the damage site without developing discernible reactive inflammation. Moreover, the effect of the selected tissue-engineered construct with the combined influence of several factors (ACP SVF) in its composition turned out to be more effective in stimulating bone tissue repair and differentiation. Conclusion. Combination of SVF and deproteinized bone matrix for creating tissue-engineered constructs enables to engage several regeneration mechanisms and accelerate the process of bone defect replacement in comparison with isolated deproteinized bone matrix without bone defect reconstruction.ΠΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ. Π’ настоящСС врСмя ΠΏΠΎ ряду ΠΏΡ€ΠΈΡ‡ΠΈΠ½ Π½Π΅ всСгда Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠΎΠ»Π½ΠΎΠ΅ Π·Π°ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ Π΄Π΅Ρ„Π΅ΠΊΡ‚Π° костной Ρ‚ΠΊΠ°Π½ΠΈ Π°ΡƒΡ‚ΠΎΠ³Π΅Π½Π½ΠΎΠΉ ΠΊΠΎΡΡ‚ΡŒΡŽ. Π’ качСствС Π°Π»ΡŒΡ‚Π΅Ρ€Π½Π°Ρ‚ΠΈΠ²Ρ‹ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ ΠΊΠΎΡΡ‚Π½ΠΎΠ·Π°ΠΌΠ΅Ρ‰Π°ΡŽΡ‰ΠΈΠ΅ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ ΠΊΠ°ΠΊ биологичСского, Ρ‚Π°ΠΊ ΠΈ нСбиологичСского происхоТдСния. Одним ΠΈΠ· ΠΏΡƒΡ‚Π΅ΠΉ развития рСконструктивных Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΉ являСтся использованиС Ρ‚ΠΊΠ°Π½Π΅ΠΈΠΆΠ΅Π½Π΅Ρ€Π½Ρ‹Ρ… конструкций, ΠΏΠΎΠ»Π½ΠΎΡ†Π΅Π½Π½ΠΎ ΠΈΠΌΠΈΡ‚ΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ… Π°ΡƒΡ‚ΠΎΠ³Π΅Π½Π½ΡƒΡŽ ΠΊΠΎΡΡ‚Π½ΡƒΡŽ Ρ‚ΠΊΠ°Π½ΡŒ Π² Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎΠΌ объСмС. ЦСль исслСдования ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ in vivo возмоТности использования Π΄Π΅ΠΏΡ€ΠΎΡ‚Π΅ΠΈΠ½ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΉ Π³ΡƒΠ±Ρ‡Π°Ρ‚ΠΎΠΉ костной Ρ‚ΠΊΠ°Π½ΠΈ Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ° Π² качСствС ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Ρ‹ для создания Ρ‚ΠΊΠ°Π½Π΅ΠΈΠ½ΠΆΠ΅Π½Π΅Ρ€Π½Ρ‹Ρ… конструкций. ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π» ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹. ИсслСдованиС in vivo осущСствляли Π½Π° ΠΊΡ€ΠΎΠ»ΠΈΠΊΠ°Ρ… Π»ΠΈΠ½ΠΈΠΈ NZW. Для создания ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Ρ‹ использовали Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚Ρ‹ Π΄Π΅ΠΏΡ€ΠΎΡ‚Π΅ΠΈΠ½ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΉ Π³ΡƒΠ±Ρ‡Π°Ρ‚ΠΎΠΉ костной Ρ‚ΠΊΠ°Π½ΠΈ Π³ΠΎΠ»ΠΎΠ²ΠΊΠΈ Π±Π΅Π΄Ρ€Π΅Π½Π½ΠΎΠΉ кости Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ°, ΡΡ‚Ρ€ΠΎΠΌΠ°Π»ΡŒΠ½ΠΎ-Π²Π°ΡΠΊΡƒΠ»ΡΡ€Π½ΡƒΡŽ Ρ„Ρ€Π°ΠΊΡ†ΠΈΡŽ ΠΆΠΈΡ€ΠΎΠ²ΠΎΠΉ Ρ‚ΠΊΠ°Π½ΠΈ ΠΊΡ€ΠΎΠ»ΠΈΠΊΠ°. Для ΠΎΡ†Π΅Π½ΠΊΠΈ эффСктивности Ρ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ остСогСнСза ΠΏΡ€ΠΈ рСконструкции костных Π΄Π΅Ρ„Π΅ΠΊΡ‚ΠΎΠ² Π²Ρ‹ΠΏΠΎΠ»Π½ΡΠ»ΠΎΡΡŒ ΠΌΠΎΠ΄Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ костного Π΄Π΅Ρ„Π΅ΠΊΡ‚Π° с Π΅Π³ΠΎ ΠΏΠΎΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΌ Π·Π°ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ΠΌ. Π’Ρ‹Π΄Π΅Π»Π΅Π½Ρ‹ Π³Ρ€ΡƒΠΏΠΏΡ‹ исслСдования: 1-я Π³Ρ€ΡƒΠΏΠΏΠ° (ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½Π°Ρ) хирургичСскоС ΠΌΠΎΠ΄Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ костного Π΄Π΅Ρ„Π΅ΠΊΡ‚Π° Π±Π΅Π΄Ρ€Π΅Π½Π½ΠΎΠΉ кости Π±Π΅Π· Π΅Π³ΠΎ рСконструкции; 2-я Π³Ρ€ΡƒΠΏΠΏΠ° хирургичСскоС ΠΌΠΎΠ΄Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ костного Π΄Π΅Ρ„Π΅ΠΊΡ‚Π° Π±Π΅Π΄Ρ€Π΅Π½Π½ΠΎΠΉ кости с Π΅Π³ΠΎ рСконструкциСй Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚Π°ΠΌΠΈ Π΄Π΅ΠΏΡ€ΠΎΡ‚Π΅ΠΈΠ½ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΉ Π³ΡƒΠ±Ρ‡Π°Ρ‚ΠΎΠΉ костной ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Ρ‹; 3-я Π³Ρ€ΡƒΠΏΠΏΠ° хирургичСскоС ΠΌΠΎΠ΄Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ костного Π΄Π΅Ρ„Π΅ΠΊΡ‚Π° Π±Π΅Π΄Ρ€Π΅Π½Π½ΠΎΠΉ кости с Π΅Π³ΠΎ рСконструкциСй Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚Π°ΠΌΠΈ Π΄Π΅ΠΏΡ€ΠΎΡ‚Π΅ΠΈΠ½ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΉ Π³ΡƒΠ±Ρ‡Π°Ρ‚ΠΎΠΉ костной ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Ρ‹ совмСстно со ΡΡ‚Ρ€ΠΎΠΌΠ°Π»ΡŒΠ½ΠΎ-васкулярной Ρ„Ρ€Π°ΠΊΡ†ΠΈΠ΅ΠΉ ΠΆΠΈΡ€ΠΎΠ²ΠΎΠΉ Ρ‚ΠΊΠ°Π½ΠΈ (согласно Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ ACP SVF). Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. CΡ€Π°Π²Π½ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ Π°Π½Π°Π»ΠΈΠ· Ρ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ΠΈΠ²Π½Ρ‹Ρ… процСссов ΠΏΡ€ΠΈ использовании Ρ‚ΠΊΠ°Π½Π΅ΠΈΠ½ΠΆΠ΅Π½Π΅Ρ€Π½ΠΎΠΉ конструкции Π½Π° основС костной ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Ρ‹ ΠΈΠ· Π΄Π΅ΠΏΡ€ΠΎΡ‚Π΅ΠΈΠ½ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½ΠΎΠΉ Π³ΡƒΠ±Ρ‡Π°Ρ‚ΠΎΠΉ костной Ρ‚ΠΊΠ°Π½ΠΈ Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ° Π² сочСтании со ΡΡ‚Ρ€ΠΎΠΌΠ°Π»ΡŒΠ½ΠΎ-васкулярной Ρ„Ρ€Π°ΠΊΡ†ΠΈΠ΅ΠΉ ΠΆΠΈΡ€ΠΎΠ²ΠΎΠΉ Ρ‚ΠΊΠ°Π½ΠΈ Π½Π° ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ in vivo выявил, Ρ‡Ρ‚ΠΎ использованиС ΠΊΠΎΡΡ‚Π½ΠΎΠ·Π°ΠΌΠ΅Ρ‰Π°ΡŽΡ‰ΠΈΡ… ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠ² способствуСт Π½Π΅ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Ρ€Π°Π½Π½Π΅ΠΉ Π°ΠΊΡ‚ΠΈΠ²Π°Ρ†ΠΈΠΈ Ρ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ΠΈΠ²Π½ΠΎΠΉ Ρ€Π΅Π³Π΅Π½Π΅Ρ€Π°Ρ†ΠΈΠΈ основных структурных элСмСнтов костной Ρ‚ΠΊΠ°Π½ΠΈ Π² мСстС замСщСния костного Π΄Π΅Ρ„Π΅ΠΊΡ‚Π°, Π½ΠΎ ΠΈ ΠΈΡ… своСврСмСнной Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²ΠΊΠ΅. Π­Ρ‚ΠΎ обусловливаСт восстановлСниС структурно-Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠΉ ΡΠΎΡΡ‚ΠΎΡΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ костной Ρ‚ΠΊΠ°Π½ΠΈ Π² мСстС поврСТдСния, Π½Π΅ вызывая развития Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½Π½ΠΎΠ³ΠΎ Ρ€Π΅Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ воспалСния. ΠŸΡ€ΠΈ этом дСйствиС Π²Ρ‹Π±Ρ€Π°Π½Π½ΠΎΠΉ Ρ‚ΠΊΠ°Π½Π΅ΠΈΠ½ΠΆΠ΅Π½Π΅Ρ€Π½ΠΎΠΉ конструкции с сочСтанным влияниСм Π½Π΅ΡΠΊΠΎΠ»ΡŒΠΊΠΈΡ… Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠ² (ACP SVF) Π² Π΅Π΅ составС оказалось Π±ΠΎΠ»Π΅Π΅ эффСктивным для ускорСния Ρ€Π΅Π³Π΅Π½Π΅Ρ€Π°Ρ†ΠΈΠΈ ΠΈ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²ΠΊΠΈ костной Ρ‚ΠΊΠ°Π½ΠΈ. Π—Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅. ИспользованиС сочСтания SVF с Π΄Π΅ΠΏΡ€ΠΎΡ‚Π΅ΠΈΠ½ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΉ костной ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Π΅ΠΉ для создания Ρ‚ΠΊΠ°Π½Π΅ΠΈΠ½ΠΆΠ΅Π½Π΅Ρ€Π½ΠΎΠΉ конструкции позволяСт Π·Π°Π΄Π΅ΠΉΡΡ‚Π²ΠΎΠ²Π°Ρ‚ΡŒ нСсколько ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠΎΠ² Ρ€Π΅Π³Π΅Π½Π΅Ρ€Π°Ρ†ΠΈΠΈ ΠΈ ΡƒΡΠΊΠΎΡ€ΠΈΡ‚ΡŒ процСсс замСщСния костного Π΄Π΅Ρ„Π΅ΠΊΡ‚Π° ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с ΠΈΠ·ΠΎΠ»ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹ΠΌ использованиСм Π΄Π΅ΠΏΡ€ΠΎΡ‚Π΅ΠΈΠ½ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΉ костной ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Ρ‹ ΠΈ Π±Π΅Π· рСконструкции костного Π΄Π΅Ρ„Π΅ΠΊΡ‚Π°

    Operations-informed incident response playbooks

    Get PDF
    Cyber security incident response playbooks are critical for establishing an effective incident response capability within organizations. We identify a significant conceptual gap in the current research and practice of cyber security playbook design: the lack of ability to communicate the operational impact of an incident and of incident response on an organization. In this paper, we present a mechanism to address the gap by introducing the operational context into an incident response playbook. This conceptual contribution calls for a shift from playbooks that consist only of process models to playbooks that consist of process models closely linked with a model of operations. We describe a novel approach to embed a model of operations into the incident response playbook and link it with the playbook's incident response activities. This allows to reflect, in an accurate and systematic way, the interdependencies and mutual influences of incident response activities on operations and vice versa. The approach includes the use of a new metric for evaluating the change in operations in coordination with critical thresholds, supporting decision-making during cyber security incident response. We demonstrate the application of the proposed approach to playbook design in the context of a ransomware attack incident response, using a newly developed open-source tool

    ΠžΡ†Π΅Π½ΠΊΠ° in vitro влияния Π°Π»Π»ΠΎΠ³Π΅Π½Π½ΠΎΠΉ костной ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Ρ‹ Π½Π° характСристики ΠΌΠ΅Π·Π΅Π½Ρ…ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹Ρ… ΡΡ‚Ρ€ΠΎΠΌΠ°Π»ΡŒΠ½Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΎΠΊ ΠΈΠ· ΠΆΠΈΡ€ΠΎΠ²ΠΎΠΉ Ρ‚ΠΊΠ°Π½ΠΈ ΠΏΡ€ΠΈ создании ΠΊΠΎΠΌΠ±ΠΈΠ½ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… Ρ‚ΠΊΠ°Π½Π΅ΠΈΠ½ΠΆΠ΅Π½Π΅Ρ€Π½Ρ‹Ρ… конструкций

    Get PDF
    The aim of the study was to evaluate in vitro the effect of native and deproteinized compact and spongy allogenic bone matrices on the characteristics of adipose mesenchymal stromal cells (ASC) in combined tissue engineering.Material and Methods. 24 samples of native and deproteinized compact and spongy bone were examined, which were exposed to mechanical treatment, modeling, followed by sterilization of the samples by ionizing radiation and bacteriological control of sterilization. Some of the samples underwent deproteinization. The characterized cultures of human ASC were used as test cultures to assess the interaction with the bone samples. The Cytation-5 fluorescent imager and Hoechst 3334 fluorochromes (BD Pharmingenβ„’) and calcein (Calcein AM, BD Pharmingenβ„’) were used to characterize the degree of adhesion, migration, and viability of ASC on bone matrix samples. Matrix cytotoxicity was evaluated by MTT assay on days 1 and 7 of extraction.Results. The bone matrix samples are characterized by the absence of cytotoxicity (rank 1). ASC demonstrated good adhesion and migration on any surface of the bone matrix and preservation of cell viability during 7 days of observation. Nuclei sizes of the cells adhered to the deproteinized bone matrix of the spongy structure increased by 25–30% compared to other samples. The cells on deproteinized bone matrix had greater size (the size of the cells from nuclei 8.8 to 11.5 ΞΌm, the average size of cells nuclei from an 86.3 ΞΌm to 129,0 ΞΌm, the average perimeter of the cells nuclei from 30.7 ΞΌm to 40.7 ΞΌm) than in the native bone matrix samples.Conclusion. The results of the study of various allogeneic bone matrices demonstrate that deep purification of the bone matrix determines the absence of cytotoxicity and the most favorable conditions for the adhesion, migration, proliferation and viability of ASC. Also makes it possible to use tissue engineering based on bone matrices of different structures. Deproteinized spongy bone matrices are best suited for this purpose.ЦСль исслСдования β€” ΠΎΡ†Π΅Π½ΠΊΠ° in vitro влияния Π½Π°Ρ‚ΠΈΠ²Π½ΠΎΠΉ ΠΈ Π΄Π΅ΠΏΡ€ΠΎΡ‚Π΅ΠΈΠ½ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΉ ΠΊΠΎΠΌΠΏΠ°ΠΊΡ‚Π½ΠΎΠΉ ΠΈ Π³ΡƒΠ±Ρ‡Π°Ρ‚ΠΎΠΉ Π°Π»Π»ΠΎΠ³Π΅Π½Π½Ρ‹Ρ… костных ΠΌΠ°Ρ‚Ρ€ΠΈΡ† Π½Π° характСристики ΠΌΠ΅Π·Π΅Π½Ρ…ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹Ρ… ΡΡ‚Ρ€ΠΎΠΌΠ°Π»ΡŒΠ½Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΎΠΊ ΠΈΠ· ΠΆΠΈΡ€ΠΎΠ²ΠΎΠΉ Ρ‚ΠΊΠ°Π½ΠΈ (МБК Π–Π’) для создания эффСктивной ΠΊΠΎΠΌΠ±ΠΈΠ½ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΉ Ρ‚ΠΊΠ°Π½Π΅ΠΈΠ½ΠΆΠ΅Π½Π΅Ρ€Π½ΠΎΠΉ конструкции.ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π» ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹. ИсслСдовали 24 ΠΎΠ±Ρ€Π°Π·Ρ†Π° Π½Π°Ρ‚ΠΈΠ²Π½ΠΎΠΉ ΠΈ Π΄Π΅ΠΏΡ€ΠΎΡ‚Π΅ΠΈΠ½ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΉ ΠΊΠΎΠΌΠΏΠ°ΠΊΡ‚Π½ΠΎΠΉ ΠΈ Π³ΡƒΠ±Ρ‡Π°Ρ‚ΠΎΠΉ костной Ρ‚ΠΊΠ°Π½ΠΈ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΏΠΎΠ΄Π²Π΅Ρ€Π³Π°Π»ΠΈ мСханичСской ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠ΅, ΠΌΠΎΠ΄Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΡŽ с ΠΏΠΎΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅ΠΉ стСрилизациСй ΠΎΠ±Ρ€Π°Π·Ρ†ΠΎΠ² ΠΈΠΎΠ½ΠΈΠ·ΠΈΡ€ΡƒΡŽΡ‰ΠΈΠΌ ΠΈΠ·Π»ΡƒΡ‡Π΅Π½ΠΈΠ΅ΠΌ ΠΈ бактСриологичСским ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»Π΅ΠΌ стСрилизации. Π§Π°ΡΡ‚ΡŒ ΠΎΠ±Ρ€Π°Π·Ρ†ΠΎΠ² ΠΏΡ€ΠΎΡ…ΠΎΠ΄ΠΈΠ»Π° ΠΏΡ€ΠΎΡ†Π΅Π΄ΡƒΡ€Ρƒ Π΄Π΅ΠΏΡ€ΠΎΡ‚Π΅ΠΈΠ½ΠΈΠ·Π°Ρ†ΠΈΠΈ. Π’ качСствС тСстовых ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€ для ΠΎΡ†Π΅Π½ΠΊΠΈ взаимодСйствия с исслСдуСмыми ΠΎΠ±Ρ€Π°Π·Ρ†Π°ΠΌΠΈ костной Ρ‚ΠΊΠ°Π½ΠΈ использовали ΠΎΡ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΠΎΠ²Π°Π½Π½Ρ‹Π΅ ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€Ρ‹ МБК Π–Π’ Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ°. Для характСристики выраТСнности Π°Π΄Π³Π΅Π·ΠΈΠΈ, ΠΌΠΈΠ³Ρ€Π°Ρ†ΠΈΠΈ ΠΈ ТизнСспособности МБК Π½Π° ΠΎΠ±Ρ€Π°Π·Ρ†Π°Ρ… костного матрикса использовали флуорСсцСнтный ΠΈΠΌΠΈΠ΄ΠΆΠ΅Ρ€ Cytation-5 ΠΈ Ρ„Π»ΡƒΠΎΡ€ΠΎΡ…Ρ€ΠΎΠΌΡ‹ Hoechst 3334 (BD Pharmingenβ„’) ΠΈ ΠΊΠ°Π»ΡŒΡ†Π΅ΠΈΠ½ (Calcein AM, BD Pharmingenβ„’). Π¦ΠΈΡ‚ΠΎΡ‚ΠΎΠΊΡΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ ΠΌΠ°Ρ‚Ρ€ΠΈΡ† ΠΎΡ†Π΅Π½ΠΈΠ²Π°Π»ΠΈ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ МВВ-тСста послС 1 ΠΈ 7 сут. экстракции.Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. ΠžΠ±Ρ€Π°Π·Ρ†Ρ‹ исслСдуСмых костных ΠΌΠ°Ρ‚Ρ€ΠΈΡ† Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΡƒΡŽΡ‚ΡΡ отсутствиСм цитотоксичности (Ρ€Π°Π½Π³ 1). Π­Ρ‚ΠΎ сопровоТдаСтся Ρ…ΠΎΡ€ΠΎΡˆΠ΅ΠΉ Π°Π΄Π³Π΅Π·ΠΈΠ΅ΠΉ ΠΈ ΠΌΠΈΠ³Ρ€Π°Ρ†ΠΈΠ΅ΠΉ МБК Π–Π’ Π½Π° любой повСрхности костного матрикса ΠΈ сохранСниСм ТизнСспособности ΠΊΠ»Π΅Ρ‚ΠΎΠΊ Π² Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ 7 сут. наблюдСния. Π’ большСй стСпСни измСнСния ΠΊΠ°ΡΠ°ΡŽΡ‚ΡΡ увСличСния Ρ€Π°Π·ΠΌΠ΅Ρ€ΠΎΠ² ядСр ΠΊΠ»Π΅Ρ‚ΠΎΠΊ, Π°Π΄Π³Π΅Π·ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… Π½Π° Π΄Π΅ΠΏΡ€ΠΎΡ‚Π΅ΠΈΠ½ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΉ костной ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Π΅ Π³ΡƒΠ±Ρ‡Π°Ρ‚ΠΎΠΉ структуры, Π½Π° 25–30% ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с Π²Π΅Π»ΠΈΡ‡ΠΈΠ½ΠΎΠΉ Π°Π½Π°Π»ΠΎΠ³ΠΈΡ‡Π½ΠΎΠ³ΠΎ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π° Π½Π° Π΄Ρ€ΡƒΠ³ΠΈΡ… ΠΎΠ±Ρ€Π°Π·Ρ†Π°Ρ…. ΠŸΡ€ΠΈ этом Ρ€Π°Π·ΠΌΠ΅Ρ€Ρ‹ ΠΊΠ»Π΅Ρ‚ΠΎΠΊ Π½Π° Π΄Π΅ΠΏΡ€ΠΎΡ‚Π΅ΠΈΠ½ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΉ костной ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Π΅ нСсколько большС (Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π° ядСр ΠΊΠ»Π΅Ρ‚ΠΎΠΊ с 8,8 Π΄ΠΎ 11,5 ΠΌΠΊΠΌ, срСдняя ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ ядСр ΠΊΠ»Π΅Ρ‚ΠΎΠΊ ΠΎΡ‚ 86,3 ΠΌΠΊΠΌ Π΄ΠΎ 129,0 ΠΌΠΊΠΌ, срСдний ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ ядСр ΠΊΠ»Π΅Ρ‚ΠΎΠΊ с 30,7 ΠΌΠΊΠΌ Π΄ΠΎ 40,7 ΠΌΠΊΠΌ), Ρ‡Π΅ΠΌ Π½Π° ΠΎΠ±Ρ€Π°Π·Ρ†Π°Ρ… Π½Π°Ρ‚ΠΈΠ²Π½ΠΎΠΉ костной ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Ρ‹.Π—Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ исслСдования Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… Π°Π»Π»ΠΎΠ³Π΅Π½Π½Ρ‹Ρ… костных ΠΌΠ°Ρ‚Ρ€ΠΈΡ† Π΄Π΅ΠΌΠΎΠ½ΡΡ‚Ρ€ΠΈΡ€ΡƒΡŽΡ‚, Ρ‡Ρ‚ΠΎ глубокая ΡΡ‚Π΅ΠΏΠ΅Π½ΡŒ очистки костной ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Ρ‹ опрСдСляСт отсутствиС цитотоксичности ΠΈ Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ благоприятныС условия для Π°Π΄Π³Π΅Π·ΠΈΠΈ, ΠΌΠΈΠ³Ρ€Π°Ρ†ΠΈΠΈ, ΠΏΡ€ΠΎΠ»ΠΈΡ„Π΅Ρ€Π°Ρ†ΠΈΠΈ ΠΈ ТизнСспособности МБК Π–Π’. Π­Ρ‚ΠΎ обусловливаСт Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ создания Ρ‚ΠΊΠ°Π½Π΅ΠΈΠ½ΠΆΠ΅Π½Π΅Ρ€Π½Ρ‹Ρ… конструкций Π½Π° основС ΠΌΠ°Ρ‚Ρ€ΠΈΡ† ΠΈΠ· костной Ρ‚ΠΊΠ°Π½ΠΈ Ρ€Π°Π·Π»ΠΈΡ‡Π½ΠΎΠΉ структуры. ΠΠ°ΠΈΠ»ΡƒΡ‡ΡˆΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ для этой Ρ†Π΅Π»ΠΈ подходят Π΄Π΅ΠΏΡ€ΠΎΡ‚Π΅ΠΈΠ½ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Π΅ Π³ΡƒΠ±Ρ‡Π°Ρ‚Ρ‹Π΅ костныС ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Ρ‹
    • …
    corecore