1,872 research outputs found

    Framework for a low-cost intra-operative image-guided neuronavigator including brain shift compensation

    Full text link
    In this paper we present a methodology to address the problem of brain tissue deformation referred to as 'brain-shift'. This deformation occurs throughout a neurosurgery intervention and strongly alters the accuracy of the neuronavigation systems used to date in clinical routine which rely solely on pre-operative patient imaging to locate the surgical target, such as a tumour or a functional area. After a general description of the framework of our intra-operative image-guided system, we describe a procedure to generate patient specific finite element meshes of the brain and propose a biomechanical model which can take into account tissue deformations and surgical procedures that modify the brain structure, like tumour or tissue resection

    Intraoperative detection of blood vessels with an imaging needle during neurosurgery in humans

    Get PDF
    Intracranial hemorrhage can be a devastating complication associated with needle biopsies of the brain. Hemorrhage can occur to vessels located adjacent to the biopsy needle as tissue is aspirated into the needle and removed. No intraoperative technology exists to reliably identify blood vessels that are at risk of damage. To address this problem, we developed an “imaging needle” that can visualize nearby blood vessels in real time. The imaging needle contains a miniaturized optical coherence tomography probe that allows differentiation of blood flow and tissue. In 11 patients, we were able to intraoperatively detect blood vessels (diameter, \u3e500 μm) with a sensitivity of 91.2% and a specificity of 97.7%. This is the first reported use of an optical coherence tomography needle probe in human brain in vivo. These results suggest that imaging needles may serve as a valuable tool in a range of neurosurgical needle interventions

    In vivo measurement of human brain elasticity using a light aspiration device

    Full text link
    The brain deformation that occurs during neurosurgery is a serious issue impacting the patient "safety" as well as the invasiveness of the brain surgery. Model-driven compensation is a realistic and efficient solution to solve this problem. However, a vital issue is the lack of reliable and easily obtainable patient-specific mechanical characteristics of the brain which, according to clinicians' experience, can vary considerably. We designed an aspiration device that is able to meet the very rigorous sterilization and handling process imposed during surgery, and especially neurosurgery. The device, which has no electronic component, is simple, light and can be considered as an ancillary instrument. The deformation of the aspirated tissue is imaged via a mirror using an external camera. This paper describes the experimental setup as well as its use during a specific neurosurgery. The experimental data was used to calibrate a continuous model. We show that we were able to extract an in vivo constitutive law of the brain elasticity: thus for the first time, measurements are carried out per-operatively on the patient, just before the resection of the brain parenchyma. This paper discloses the results of a difficult experiment and provide for the first time in-vivo data on human brain elasticity. The results point out the softness as well as the highly non-linear behavior of the brain tissue.Comment: Medical Image Analysis (2009) accept\'

    A surface registration approach for video-based analysis of intraoperative brain surface deformations.

    Get PDF
    Anatomical intra operative deformation is a major limitation of accuracy in image guided neurosurgery. Approaches to quantify these deforamations based on 3D reconstruction of surfaces have been introduced. For accurate quantification of surface deformation, a robust surface registration method is required. In this paper, we propose a new surface registration for video-based analysis of intraoperative brain deformations. This registration method includes three terms: the first term is related to image intensities, the second to Euclidean distance and the third to anatomical landmarks continuously tracked in 2D video. This new surface registration method can be used with any cortical surface textured point cloud computed by stereoscopic or laser range approaches. We have shown the global method, including textured point cloud reconstruction, had a precision within 2 millimeters, which is within the usual rigid registration error of the neuronavigation system before deformations

    Optical techniques for 3D surface reconstruction in computer-assisted laparoscopic surgery

    Get PDF
    One of the main challenges for computer-assisted surgery (CAS) is to determine the intra-opera- tive morphology and motion of soft-tissues. This information is prerequisite to the registration of multi-modal patient-specific data for enhancing the surgeon’s navigation capabilites by observ- ing beyond exposed tissue surfaces and for providing intelligent control of robotic-assisted in- struments. In minimally invasive surgery (MIS), optical techniques are an increasingly attractive approach for in vivo 3D reconstruction of the soft-tissue surface geometry. This paper reviews the state-of-the-art methods for optical intra-operative 3D reconstruction in laparoscopic surgery and discusses the technical challenges and future perspectives towards clinical translation. With the recent paradigm shift of surgical practice towards MIS and new developments in 3D opti- cal imaging, this is a timely discussion about technologies that could facilitate complex CAS procedures in dynamic and deformable anatomical regions

    A Sparse Intraoperative Data-Driven Biomechanical Model to Compensate for Brain Shift during Neuronavigation

    Get PDF
    BACKGROUND AND PURPOSE: Intraoperative brain deformation is an important factor compromising the accuracy of image-guided neurosurgery. The purpose of this study was to elucidate the role of a model-updated image in the compensation of intraoperative brain shift. MATERIALS AND METHODS: An FE linear elastic model was built and evaluated in 11 patients with craniotomies. To build this model, we provided a novel model-guided segmentation algorithm. After craniotomy, the sparse intraoperative data (the deformed cortical surface) were tracked by a 3D LRS. The surface deformation, calculated by an extended RPM algorithm, was applied on the FE model as a boundary condition to estimate the entire brain shift. The compensation accuracy of this model was validated by the real-time image data of brain deformation acquired by intraoperative MR imaging. RESULTS: The prediction error of this model ranged from 1.29 to 1.91 mm (mean, 1.62 +/- 0.22 mm), and the compensation accuracy ranged from 62.8% to 81.4% (mean, 69.2 +/- 5.3%). The compensation accuracy on the displacement of subcortical structures was higher than that of deep structures (71.3 +/- 6.1%; 66.8 +/- 5.0%, P \u3c .01). In addition, the compensation accuracy in the group with a horizontal bone window was higher than that in the group with a nonhorizontal bone window (72.0 +/- 5.3%; 65.7 +/- 2.9%, P \u3c .05). CONCLUSIONS: Combined with our novel model-guided segmentation and extended RPM algorithms, this sparse data-driven biomechanical model is expected to be a reliable, efficient, and convenient approach for compensation of intraoperative brain shift in image-guided surgery

    Bio-Mechanical Model of the Brain for a Per-Operative Image-Guided Neuronavigator Compensating for "Brain-Shift" Deformations

    Full text link
    In this paper we present a methodology to address the problem of brain tissue deformation referred to as 'brain-shift'. This deformation occurs throughout a neurosurgery intervention and strongly alters the accuracy of the neuronavigation systems used to date in clinical routine which rely solely on pre-operative patient imaging to locate the surgical target, such as a tumour or a functional area. After a general description of the framework of our intra-operative image-guided system, we describe a procedure to generate patient specific finite element meshes of the brain and propose a biomechanical model which can take into account tissue deformations and surgical procedures that modify the brain structure, like tumour or tissue resection

    A method for the assessment of time-varying brain shift during navigated epilepsy surgery

    Get PDF
    Image guidance is widely used in neurosurgery. Tracking systems (neuronavigators) allow registering the preoperative image space to the surgical space. The localization accuracy is influenced by technical and clinical factors, such as brain shift. This paper aims at providing quantitative measure of the time-varying brain shift during open epilepsy surgery, and at measuring the pattern of brain deformation with respect to three potentially meaningful parameters: craniotomy area, craniotomy orientation and gravity vector direction in the images reference frame

    Accuracy and precision of navigated transcranial magnetic stimulation

    Get PDF
    Objective. Transcranial magnetic stimulation (TMS) induces an electric field (E-field) in the cortex. To facilitate stimulation targeting, image-guided neuronavigation systems have been introduced. Such systems track the placement of the coil with respect to the head and visualize the estimated cortical stimulation location on an anatomical brain image in real time. The accuracy and precision of the neuronavigation is affected by multiple factors. Our aim was to analyze how different factors in TMS neuronavigation affect the accuracy and precision of the coil-head coregistration and the estimated E-field. Approach. By performing simulations, we estimated navigation errors due to distortions in magnetic resonance images (MRIs), head-to-MRI registration (landmark- and surface-based registrations), localization and movement of the head tracker, and localization of the coil tracker. We analyzed the effect of these errors on coil and head coregistration and on the induced E-field as determined with simplistic and realistic head models. Main results. Average total coregistration accuracies were in the range of 2.2-3.6 mm and 1 degrees; precision values were about half of the accuracy values. The coregistration errors were mainly due to head-to-MRI registration with average accuracies 1.5-1.9 mm/0.2-0.4 degrees and precisions 0.5-0.8 mm/0.1-0.2 degrees better with surface-based registration. The other major source of error was the movement of the head tracker with average accuracy of 1.5 mm and precision of 1.1 mm. When assessed within an E-field method, the average accuracies of the peak E-field location, orientation, and magnitude ranged between 1.5 and 5.0 mm, 0.9 and 4.8 degrees, and 4.4 and 8.5% across the E-field models studied. The largest errors were obtained with the landmark-based registration. When computing another accuracy measure with the most realistic E-field model as a reference, the accuracies tended to improve from about 10 mm/15 degrees/25% to about 2 mm/2 degrees/5% when increasing realism of the E-field model. Significance. The results of this comprehensive analysis help TMS operators to recognize the main sources of error in TMS navigation and that the coregistration errors and their effect in the E-field estimation depend on the methods applied. To ensure reliable TMS navigation, we recommend surface-based head-to-MRI registration and realistic models for E-field computations.Peer reviewe
    • …
    corecore