882 research outputs found

    Triangular bounded consistency of fuzzy preference relations

    Get PDF
    There are typically two types of consistency of fuzzy preference relations (FPR), namely additive and multiplicative consistency. They are defined based on the assumption that decision makers are rational and can provide strictly consistent FPRs. To take into consideration the bounded rationality of decision makers, the current study relaxes this assumption and proposes a new measure called triangular bounded consistency for judging the consistency of FPRs. To define triangular bounded consistency, a directed triangle is used to represent three FPRs among any three alternatives, with each directed edge representing an FPR. The condition of restricted max–max transitivity (RMMT) in the directed triangle is quantitatively examined. Under the assumption that the bounded rationality of a decision maker is characterized by their historical FPRs, which are represented by directed triangles that satisfy RMMT, triangular bounded consistency is determined using the historical FPRs. We then illustrate how triangular bounded consistency can be used to verify the consistency of FPRs that are newly provided by decision makers and how to estimate some missing FPRs that are not provided by decision makers. Finally, to demonstrate the application of triangular bounded consistency of FPRs in multi-attribute decision analysis, we investigate a problem that involves selecting areas to market products for a company

    Incomplete interval fuzzy preference relations and their applications

    Get PDF
    This paper investigates incomplete interval fuzzy preference relations. A characterization, which is proposed by Herrera-Viedma et al. (2004), of the additive consistency property of the fuzzy preference relations is extended to a more general case. This property is further generalized to interval fuzzy preference relations (IFPRs) based on additive transitivity. Subsequently, we examine how to characterize IFPR. Using these new characterizations, we propose a method to construct an additive consistent IFPR from a set of n − 1 preference data and an estimation algorithm for acceptable incomplete IFPRs with more known elements. Numerical examples are provided to illustrate the effectiveness and practicality of the solution process

    Characterisation of the consistent completion of AHP comparison matrices using graph theory

    Full text link
    [EN] Decision-making is frequently affected by uncertainty and/or incomplete information, which turn decision-making into a complex task. It is often the case that some of the actors involved in decision-making are not sufficiently familiar with all of the issues to make the appropriate decisions. In this paper, we are concerned about missing information. Specifically, we deal with the problem of consistently completing an analytic hierarchy process comparison matrix and make use of graph theory to characterize such a completion. The characterization includes the degree of freedom of the set of solutions and a linear manifold and, in particular, characterizes the uniqueness of the solution, a result already known in the literature, for which we provide a completely independent proof. Additionally, in the case of nonuniqueness, we reduce the problem to the solution of nonsingular linear systems. In addition to obtaining the priority vector, our investigation also focuses on building the complete pairwise comparison matrix, a crucial step in the necessary process (between synthetic consistency and personal judgement) with the experts. The performance of the obtained results is confirmed.BenĂ­tez LĂłpez, J.; Carpitella, S.; Certa, A.; Izquierdo SebastiĂĄn, J. (2019). Characterisation of the consistent completion of AHP comparison matrices using graph theory. Journal of Multi-Criteria Decision Analysis. 26(1-2):3-15. https://doi.org/10.1002/mcda.1652S315261-2BenĂ­tez, J., CarriĂłn, L., Izquierdo, J., & PĂ©rez-GarcĂ­a, R. (2014). Characterization of Consistent Completion of Reciprocal Comparison Matrices. Abstract and Applied Analysis, 2014, 1-12. doi:10.1155/2014/349729BenĂ­tez, J., Delgado-GalvĂĄn, X., GutiĂ©rrez, J. A., & Izquierdo, J. (2011). Balancing consistency and expert judgment in AHP. Mathematical and Computer Modelling, 54(7-8), 1785-1790. doi:10.1016/j.mcm.2010.12.023BenĂ­tez, J., Delgado-GalvĂĄn, X., Izquierdo, J., & PĂ©rez-GarcĂ­a, R. (2011). Achieving matrix consistency in AHP through linearization. Applied Mathematical Modelling, 35(9), 4449-4457. doi:10.1016/j.apm.2011.03.013BenĂ­tez, J., Delgado-GalvĂĄn, X., Izquierdo, J., & PĂ©rez-GarcĂ­a, R. (2015). Consistent completion of incomplete judgments in decision making using AHP. Journal of Computational and Applied Mathematics, 290, 412-422. doi:10.1016/j.cam.2015.05.023BenĂ­tez, J., Delgado-GalvĂĄn, X., Izquierdo, J., & PĂ©rez-GarcĂ­a, R. (2012). Improving consistency in AHP decision-making processes. Applied Mathematics and Computation, 219(5), 2432-2441. doi:10.1016/j.amc.2012.08.079BenĂ­tez, J., Izquierdo, J., PĂ©rez-GarcĂ­a, R., & Ramos-MartĂ­nez, E. (2014). A simple formula to find the closest consistent matrix to a reciprocal matrix. Applied Mathematical Modelling, 38(15-16), 3968-3974. doi:10.1016/j.apm.2014.01.007Beynon, M., Curry, B., & Morgan, P. (2000). The Dempster–Shafer theory of evidence: an alternative approach to multicriteria decision modelling. Omega, 28(1), 37-50. doi:10.1016/s0305-0483(99)00033-xBozĂłki, S., CsatĂł, L., & Temesi, J. (2016). An application of incomplete pairwise comparison matrices for ranking top tennis players. European Journal of Operational Research, 248(1), 211-218. doi:10.1016/j.ejor.2015.06.069BozĂłki, S., FĂŒlöp, J., & RĂłnyai, L. (2010). On optimal completion of incomplete pairwise comparison matrices. Mathematical and Computer Modelling, 52(1-2), 318-333. doi:10.1016/j.mcm.2010.02.047Certa, A., Enea, M., Galante, G. M., & La Fata, C. M. (2013). A Multistep Methodology for the Evaluation of Human Resources Using the Evidence Theory. International Journal of Intelligent Systems, 28(11), 1072-1088. doi:10.1002/int.21617Crawford, G., & Williams, C. (1985). A note on the analysis of subjective judgment matrices. Journal of Mathematical Psychology, 29(4), 387-405. doi:10.1016/0022-2496(85)90002-1Dong, M., Li, S., & Zhang, H. (2015). Approaches to group decision making with incomplete information based on power geometric operators and triangular fuzzy AHP. Expert Systems with Applications, 42(21), 7846-7857. doi:10.1016/j.eswa.2015.06.007Ergu, D., Kou, G., Peng, Y., Li, F., & Shi, Y. (2014). Data Consistency in Emergency Management. International Journal of Computers Communications & Control, 7(3), 450. doi:10.15837/ijccc.2012.3.1386Ergu, D., Kou, G., Peng, Y., & Zhang, M. (2016). Estimating the missing values for the incomplete decision matrix and consistency optimization in emergency management. Applied Mathematical Modelling, 40(1), 254-267. doi:10.1016/j.apm.2015.04.047Floricel, S., Michela, J. L., & Piperca, S. (2016). Complexity, uncertainty-reduction strategies, and project performance. International Journal of Project Management, 34(7), 1360-1383. doi:10.1016/j.ijproman.2015.11.007Forman, E., & Peniwati, K. (1998). Aggregating individual judgments and priorities with the analytic hierarchy process. European Journal of Operational Research, 108(1), 165-169. doi:10.1016/s0377-2217(97)00244-0Guitouni, A., & Martel, J.-M. (1998). Tentative guidelines to help choosing an appropriate MCDA method. European Journal of Operational Research, 109(2), 501-521. doi:10.1016/s0377-2217(98)00073-3Harker, P. T. (1987). Alternative modes of questioning in the analytic hierarchy process. Mathematical Modelling, 9(3-5), 353-360. doi:10.1016/0270-0255(87)90492-1Ho, W. (2008). Integrated analytic hierarchy process and its applications – A literature review. European Journal of Operational Research, 186(1), 211-228. doi:10.1016/j.ejor.2007.01.004Homenda, W., Jastrzebska, A., & Pedrycz, W. (2016). Multicriteria decision making inspired by human cognitive processes. Applied Mathematics and Computation, 290, 392-411. doi:10.1016/j.amc.2016.05.041Hsu, W.-K. K., Huang, S.-H. S., & Tseng, W.-J. (2016). Evaluating the risk of operational safety for dangerous goods in airfreights – A revised risk matrix based on fuzzy AHP. Transportation Research Part D: Transport and Environment, 48, 235-247. doi:10.1016/j.trd.2016.08.018Hua, Z., Gong, B., & Xu, X. (2008). A DS–AHP approach for multi-attribute decision making problem with incomplete information. Expert Systems with Applications, 34(3), 2221-2227. doi:10.1016/j.eswa.2007.02.021Karanik, M., Wanderer, L., Gomez-Ruiz, J. A., & Pelaez, J. I. (2016). Reconstruction methods for AHP pairwise matrices: How reliable are they? Applied Mathematics and Computation, 279, 103-124. doi:10.1016/j.amc.2016.01.008Kubler, S., Robert, J., Derigent, W., Voisin, A., & Le Traon, Y. (2016). A state-of the-art survey & testbed of fuzzy AHP (FAHP) applications. Expert Systems with Applications, 65, 398-422. doi:10.1016/j.eswa.2016.08.064Liu, S., Chan, F. T. S., & Ran, W. (2016). Decision making for the selection of cloud vendor: An improved approach under group decision-making with integrated weights and objective/subjective attributes. Expert Systems with Applications, 55, 37-47. doi:10.1016/j.eswa.2016.01.059Lolli, F., Ishizaka, A., Gamberini, R., & Rimini, B. (2017). A multicriteria framework for inventory classification and control with application to intermittent demand. Journal of Multi-Criteria Decision Analysis, 24(5-6), 275-285. doi:10.1002/mcda.1620Massanet, S., Vicente Riera, J., Torrens, J., & Herrera-Viedma, E. (2016). A model based on subjective linguistic preference relations for group decision making problems. Information Sciences, 355-356, 249-264. doi:10.1016/j.ins.2016.03.040Ortiz-Barrios, M. A., Aleman-Romero, B. A., Rebolledo-Rudas, J., Maldonado-Mestre, H., Montes-Villa, L., De Felice, F., & Petrillo, A. (2017). The analytic decision-making preference model to evaluate the disaster readiness in emergency departments: The A.D.T. model. Journal of Multi-Criteria Decision Analysis, 24(5-6), 204-226. doi:10.1002/mcda.1629Pandey, A., & Kumar, A. (2016). A note on ‘‘Applying fuzzy linguistic preference relations to the improvement of consistency of fuzzy AHP”. Information Sciences, 346-347, 1-5. doi:10.1016/j.ins.2016.01.054Qazi, A., Quigley, J., Dickson, A., & Kirytopoulos, K. (2016). Project Complexity and Risk Management (ProCRiM): Towards modelling project complexity driven risk paths in construction projects. International Journal of Project Management, 34(7), 1183-1198. doi:10.1016/j.ijproman.2016.05.008Saaty, T. L. (1977). A scaling method for priorities in hierarchical structures. Journal of Mathematical Psychology, 15(3), 234-281. doi:10.1016/0022-2496(77)90033-5Saaty, T. L. (2008). Relative measurement and its generalization in decision making why pairwise comparisons are central in mathematics for the measurement of intangible factors the analytic hierarchy/network process. Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, 102(2), 251-318. doi:10.1007/bf03191825Seiti, H., Tagipour, R., Hafezalkotob, A., & Asgari, F. (2017). Maintenance strategy selection with risky evaluations using RAHP. Journal of Multi-Criteria Decision Analysis, 24(5-6), 257-274. doi:10.1002/mcda.1618Shiraishi, S., Obata, T., & Daigo, M. (1998). PROPERTIES OF A POSITIVE RECIPROCAL MATRIX AND THEIR APPLICATION TO AHP. Journal of the Operations Research Society of Japan, 41(3), 404-414. doi:10.15807/jorsj.41.404Srdjevic, B., Srdjevic, Z., & Blagojevic, B. (2014). First-Level Transitivity Rule Method for Filling in Incomplete Pair-Wise Comparison Matrices in the Analytic Hierarchy Process. Applied Mathematics & Information Sciences, 8(2), 459-467. doi:10.12785/amis/080202Vaidya, O. S., & Kumar, S. (2006). Analytic hierarchy process: An overview of applications. European Journal of Operational Research, 169(1), 1-29. doi:10.1016/j.ejor.2004.04.028Van Laarhoven, P. J. M., & Pedrycz, W. (1983). A fuzzy extension of Saaty’s priority theory. Fuzzy Sets and Systems, 11(1-3), 229-241. doi:10.1016/s0165-0114(83)80082-7van Uden , E. 2002 Estimating missing data in pairwise comparison matrices Texts in Operational and Systems Research in the Face to Challenge the XXI Century, Methods and Techniques in Information Analysis and Decision Making Academic Printing House WarsawVargas, L., De Felice, F., & Petrillo, A. (2017). Editorial journal of multicriteria decision analysis special issue on «Industrial and Manufacturing Engineering: Theory and Application using AHP/ANP». Journal of Multi-Criteria Decision Analysis, 24(5-6), 201-202. doi:10.1002/mcda.1632Wang, T.-C., & Chen, Y.-H. (2008). Applying fuzzy linguistic preference relations to the improvement of consistency of fuzzy AHP. Information Sciences, 178(19), 3755-3765. doi:10.1016/j.ins.2008.05.028Wang, Z.-J., & Tong, X. (2016). Consistency analysis and group decision making based on triangular fuzzy additive reciprocal preference relations. Information Sciences, 361-362, 29-47. doi:10.1016/j.ins.2016.04.047Wang, H., & Xu, Z. (2016). Interactive algorithms for improving incomplete linguistic preference relations based on consistency measures. Applied Soft Computing, 42, 66-79. doi:10.1016/j.asoc.2015.09.058Weiss-Cohen, L., Konstantinidis, E., Speekenbrink, M., & Harvey, N. (2016). Incorporating conflicting descriptions into decisions from experience. Organizational Behavior and Human Decision Processes, 135, 55-69. doi:10.1016/j.obhdp.2016.05.005Xu, Y., Chen, L., RodrĂ­guez, R. M., Herrera, F., & Wang, H. (2016). Deriving the priority weights from incomplete hesitant fuzzy preference relations in group decision making. Knowledge-Based Systems, 99, 71-78. doi:10.1016/j.knosys.2016.01.047Zhang, H. (2016). Group decision making based on multiplicative consistent reciprocal preference relations. Fuzzy Sets and Systems, 282, 31-46. doi:10.1016/j.fss.2015.04.009Zhang, H. (2016). Group decision making based on incomplete multiplicative and fuzzy preference relations. Applied Soft Computing, 48, 735-744. doi:10.1016/j.asoc.2016.07.04

    Managing Incomplete Preference Relations in Decision Making: A Review and Future Trends

    Get PDF
    In decision making, situations where all experts are able to efficiently express their preferences over all the available options are the exception rather than the rule. Indeed, the above scenario requires all experts to possess a precise or sufficient level of knowledge of the whole problem to tackle, including the ability to discriminate the degree up to which some options are better than others. These assumptions can be seen unrealistic in many decision making situations, especially those involving a large number of alternatives to choose from and/or conflicting and dynamic sources of information. Some methodologies widely adopted in these situations are to discard or to rate more negatively those experts that provide preferences with missing values. However, incomplete information is not equivalent to low quality information, and consequently these methodologies could lead to biased or even bad solutions since useful information might not being taken properly into account in the decision process. Therefore, alternative approaches to manage incomplete preference relations that estimates the missing information in decision making are desirable and possible. This paper presents and analyses methods and processes developed on this area towards the estimation of missing preferences in decision making, and highlights some areas for future research

    Consistency test and weight generation for additive interval fuzzy preference relations

    Get PDF
    Some simple yet pragmatic methods of consistency test are developed to check whether an interval fuzzy preference relation is consistent. Based on the definition of additive consistent fuzzy preference relations proposed by Tanino (Fuzzy Sets Syst 12:117–131, 1984), a study is carried out to examine the correspondence between the element and weight vector of a fuzzy preference relation. Then, a revised approach is proposed to obtain priority weights from a fuzzy preference relation. A revised definition is put forward for additive consistent interval fuzzy preference relations. Subsequently, linear programming models are established to generate interval priority weights for additive interval fuzzy preference relations. A practical procedure is proposed to solve group decision problems with additive interval fuzzy preference relations. Theoretic analysis and numerical examples demonstrate that the proposed methods are more accurate than those in Xu and Chen (Eur J Oper Res 184:266–280, 2008b)
    • 

    corecore