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Abstract  Some simple yet pragmatic methods of consistency test are developed to check 

whether an interval fuzzy preference relation is consistent. Based on the definition of additive 

consistent fuzzy preference relations proposed by Tanino [Fuzzy Sets and Systems 12 (1984) 117-

131], a study is carried out to examine the correspondence between the element and weight vector 

of a fuzzy preference relation. Then, a revised approach is proposed to obtain priority weights 

from a fuzzy preference relation. A revised definition is put forward for additive consistent interval 

fuzzy preference relations. Subsequently, linear programming models are established to generate 

interval priority weights for additive interval fuzzy preference relations. A practical procedure is 

proposed to solve group decision problems with additive interval fuzzy preference relations. 

Theoretic analysis and numerical examples demonstrate that the proposed methods are more 

accurate than those in Xu and Chen [European Journal of Operational Research, 184 (2008) 266-

280]. 

Keywords: Multiple criteria decision analysis; interval fuzzy preference relation; 

consistency test; weight generation; additive consistent; linear programming. 

1 Introduction  

A fuzzy preference relation is one of the most common preference relations to 

express a decision-maker’s (DM’s) judgment information. Orlovsky (1978) 

defined fuzzy equivalence and strict preference relations for a given binary fuzzy 

non-strict preference relation and introduced two types of linearity of a fuzzy 

relation, thereby examining the equivalence of unfuzzy non-dominated 

alternatives. Tanino (1984) discussed how to use fuzzy preference orderings in 

group decision making and defined fuzzy preference relations as pairwise 

comparison matrices with additive reciprocity and max-min transitivity. Kacprzyk 

(1986) introduced a fuzzy majority rule characterized by a fuzzy linguistic 
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quantifier to investigate group decision making with a collection of individual 

fuzzy preference relations. Chiclana et al. (2001) studied how to integrate the 

multiplicative preference relations in fuzzy multipurpose decision-making 

problems under different preference representation structures (orderings, utilities 

and fuzzy preference relations), and introduced a new ordered weighted averaging 

(OWA) aggregation operator to aggregate multiplicative preference relations. 

Chiclana et al. (2003) studied conditions under which reciprocity property is 

maintained when aggregating preference relations using an OWA operator guided 

by a relative linguistic quantifier. Chiclana et al. (2007) provided some induced 

OWA operators to aggregate fuzzy preference relations in group decision making 

problems. However, a DM often cannot estimate his/her preference with exact 

numerical values but with interval numbers due to increasing complexity and 

uncertainty in real-life decision problems as well as the DM’s limited attention 

and information processing capability. In such situations, an interval fuzzy 

preference relation (IFPR) becomes suitable for expressing the DM’s uncertain 

preference information.  

For IFPRs, Xu (2004c) defined a compatibility degree between two IFPRs, 

and demonstrated the compatibility relationships among individual and collective 

IFPRs. Herrera et al. (2005) developed an aggregation process for combining 

IFPRs with other types of information such as numerical and linguistic preference 

relations. Jiang (2007) introduced an index to measure the similarity degree of 

two IFPRs, and used an error-propagation principle to determine priority vectors 

for the aggregated IFPRs. Xu and Chen (2008b) defined additive and 

multiplicative consistency for IFPRs, and established linear programming models 

for deriving priority weights from various IFPRs. Genç et al. (2010) examined 

consistency, missing value(s) and derivation of priority vectors from IFPRs. Liu et 

al. (2012a) proposed a new method to obtain priority weights from an IFPR. 

Wang et al. (2012) furnished a new additive consistency definition for IFPRs, and 

developed linear programming models to generate interval priority weights from 

additive consistent or inconsistent IFPRs. Wang and Li (2012) employed interval 

arithmetic to define additive and multiplicative consistency of IFPRs and 

developed goal-programming-based models to derive interval weights from IFPRs 

for both individual and group decision situations.  
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    The aforesaid literature review indicates that weight generation is a popular 

approach to deriving a ranking for alternatives based on fuzzy and interval fuzzy 

preference relations. These weight derivation methods are typically founded upon 

the additive and multiplicative consistency concepts proposed by Tanino (1984) 

for a fuzzy preference relation ( )ij n nR r  . For instance, Chiclana et al. (2001) 

provided a transformation function between multiplicative reciprocal preference 

relations values in the interval scale [1/9, 9] and fuzzy reciprocal preference 

relations with values in [0,1]. Herrera-Viedma et al. (2004) pointed out that the 

additive transitivity defined by Tanino (1984) is acceptable in characterizing 

consistency in fuzzy preference relations. They also showed that the consistency 

definition in the case of multiplicative reciprocal preference relations via the 

transformation function is equivalent to the additive transitivity property. Along 

with multiplicative consistency, additive consistency arises as parallel concept to 

characterize judgment consistency in fuzzy preference relations. The additive 

consistent property has been extended to study incomplete fuzzy preference 

relations (Fedrizzi and Silvio, 2007; Herrera-Viedma et al., 2007a; Herrera-

Viedma et al., 2007b; Wu and Xu, 2012; Xu et al., 2010), complete/incomplete 

linguistic preference relations (Wang and Chen, 2008; Alonso et al., 2009; Dong 

et al., 2008; Cabrerizo et al., 2010b). Although Chiclana et al. (2009b) revealed 

that the multiplicative transitivity property introduced by Tanino (1984) and a 

generic representable uninorm function are most appropriate to depict consistency 

for fuzzy preference relations, it is problematic for a uninorm function to handle 

the cases of (0,1) and (1,0). As a matter of fact, the uninorm function (3) in 

Chiclana et al. (2009b) seems to yield counterintuitive consistent preference 

values when ( , ) {(0,1), (1,0)}x y  . On the other hand, the additive transitivity 

property given by Tanino (1984) is convenient to address these cases. In this 

paper, we further present that the additive consistent fuzzy preference relation 

possesses some desired properties as given in Propositions 1 and 2. For an 

additive consistent fuzzy preference relation ( )ij n nR r  , Tanino (1984) first 

established the correspondence between its elements and a weight vector 

1 2( , ,..., )T
nW w w w such that 0.5 ( )ij i jr w w    (where 0.5  , , 1, 2,...,i j   

n ), but it was later shown that the correspondence is not always valid from 

different perspectives (Liu et al., 2012b; Xu et al., 2009; Xu et al., 2010; Fedrizzi 
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and Brunelli, 2009; Fedrizzi and Brunelli, 2010; Lee and Tseng, 2006; Shen et al., 

2009). Xu and Chen (2008b) extended the correspondence to additive consistent 

IFPRs. In this paper, we shall show that the parameter   should not always be 

set at 0.5, and develop revised models for deriving priority weights based on 

additive consistent or inconsistent IFPRs. 

    It is well known that a consistency test plays an important role in decision 

modeling with preference relations (Wang et al., 2005a). High inconsistency is 

likely to result in unreliable priority weights and final ranking for alternatives. 

Therefore, in order to ensure rationality of decisions, a preference relation should 

pass a consistency test before it is utilized in a decision process. However, limited 

work has been conducted to check whether an IFPR is consistent. This paper 

focuses on consistency test and weight generation from IFPRs based on the 

additive consistency property. 

  The rest of this paper is organized as follows. Section 2 provides 

preliminaries on fuzzy preference relations as well as some new properties of an 

additive consistent fuzzy preference relation. Section 3 develops some simple yet 

pragmatic approaches to checking whether an IFPR is additive consistent. Revised 

models are then presented for deriving priority weights from an additive 

consistent or inconsistent IFPRs. A practical procedure is also proposed to solve 

group decision problems with IFPRs. Section 4 furnishes a numerical example 

and conducts a comparative analysis between the proposed approaches and those 

put forth by Xu and Chen (2008b). Conclusions and future opportunities are 

discussed in Section 5. 

 

2 Preliminaries 

2.1 Basic concepts of a consistent fuzzy preference relation 

    For a multiple criteria decision making problem with a finite set of n  

alternatives, let 1 2{ , ,..., }nX x x x ( 2n  ) be the finite set of alternatives, where 

ix  denotes the ith alternative. The DM often compares each pair of alternatives in 

X  and provides his/her preference degree ijr  of alternative ix  over jx . 

    Let 1 2( , ,..., )T
nW w w w  be a weight vector of the alternatives, where iw  

( 1,2,...,i n ) are nonnegative and normalized, i.e., 
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                0iw  , 1,2,...,i n , 
1

1
n

i
i

w


                       (1) 

Definition 1. Let ( )ij n nR r   be a preference relation, then R  is called a fuzzy 

preference relation (Kacprzyk, 1986; Chiclana et al., 1998; Chiclana et al., 2002; 

Fan et al., 2006; Herrera-Viedma et al., 2004; Xu et al., 2013b), if  

        
[0,1]ijr  , 1ij jir r  , 0.5iir  , for all , 1,2,...,i j n         (2) 

 

Definition 2. Let ( )ij n nR r   be a fuzzy preference relation, then R  is called an 

additive transitive fuzzy preference relation if the following additive transitivity 

(Tanino, 1984) is satisfied: 

      
0.5ij ik kjr r r   , for all , , 1,2,...,i j k n                     (3) 

 

R  is called a multiplicative consistent fuzzy preference relation if it satisfies 

the multiplicative transitivity property (Tanino, 1984): 

        ji kj ki

ij jk ik

r r r

r r r
 , for all , , 1,2,...,i j k n                         (4) 

where 0ijr  , , 1,2,...,i j n . 

    If there exists 0ijr  , Eq. (4) can be rewritten in a multiplication form as 

ik kj ji ij jk kir r r r r r . 

An additive transitive fuzzy preference relation is also referred to as additive 

consistent (Herrera-Viedma et al., 2004). Furthermore, additive consistency has 

the following desired properties: 

Proposition 1. Let ( )ij n nR r   be an additive consistent fuzzy preference 

relation, then 

(a) if 0.5  , ikr  , kjr  , then ijr  ; 

(b) if 0.5  , ijr  , jkr  , then ikr  . 

Proof. (a) As ( )ij n nR r 
 

is an additive consistent fuzzy preference relation, and 

0.5  , then 

0.5ij ik kjr r r    

  0.5     

    
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(b) if 0.5  ,  

0.5ij ik kjr r r    

  0.5     

    

This property is called center-division transitivity (Yao and Zhang, 1997) and is 

consistent with human beings psychological cognitive characteristics. It implies 

that the cardinality of preference is retained by this transitivity. More specifically, 

    (a) if 0.5  , and ix  is preferred to kx  ( ikr  ), kx  is preferred to jx  

( kjr  ), then ix  should be preferred to jx ( ijr  ) . 

(b) if 0.5  , and kx  is preferred to ix  ( ikr  ), jx  is preferred to kx  

( kjr  ), then jx  should be preferred to ix ( ijr  ). 

 

Proposition 2 (Yao and Zhang, 1997). Let ( )ij n nR r   be an additive consistent 

fuzzy preference relation, if the i th row and i th column are removed from R , 

then the fuzzy preference relation composed by the remainder (n-1) rows and (n-

1) columns of R  remains additive consistent. 

 

Lemma 1 (Xu et al., 2009; Liu et al., 2012b). Let ( )ij n nR r   be a fuzzy 

preference relation, then the sum of all the elements of R  is 2 / 2n , that is 

                          

2

1 1

/ 2
n n

ij
i j

r n
 

  

2.2 New properties of additive consistent fuzzy preference relations 

    In the following, new properties are revealed for additive consistent fuzzy 

preference relations. 

Theorem 1. R  is an additive consistent fuzzy preference relation if and only if 

                 1 1 0.5i ij jr r r   ,    , 1,2,...,i j n                  (5) 

Proof. If R  is an additive consistent fuzzy preference relation, then 

               0.5ik ij jkr r r   , , , 1,2,...,i j k n                     (6) 

Especially, when 1k  , Eq.(6) becomes Eq.(5). 

Conversely, if Eq.(5) holds, then 

             1 1 0.5k kj jr r r                                       (7) 
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              1 1 0.5i ik kr r r    

               1( 0.5) 0.5ik kj jr r r                                (8) 

By Eqs. (5) and (8), we have 

             1 10.5 ( 0.5) 0.5ij j ik kj jr r r r r        

That is 

              0.5ij ik kjr r r  
 

By Definition 2, R  is an additive consistent fuzzy preference relation. 

Similarly, we can get the following result. 

Theorem 2. R  is an additive consistent fuzzy preference relation if and only if 

            1 1 0.5j i ijr r r   ,  , 1,2,...,i j n                         (9) 

 

Remark 1. Theorems 1 and 2 are only special cases of Definition 2. However, it 

is more simpler to check whether a reciprocal fuzzy preference relation is additive 

consistent or not. It could relief the computation burden. This property is extended 

to Theorems 4 and 5. From Tables 1 and 2 in Example 1, we can see that it can 

reduce the computational work. 

 

Lemma 2 (Xu, 2000; Xu et al., 2009). For a complete fuzzy preference relation 

( )ij n nR r  , there exists a weight vector 1 2( , ,..., )T
nW w w w , such that 

           
1

( 1)
2ij i jr w w                                       (10)

           

if and only if R  is additive consistent. Furthermore, 1 2( , ,..., )T
nW w w w  can be 

determined by 

                
1

2 1
1

n

i ik
k

w r
n n

   .                             (11) 

Remark 2. In (Liu et al., 2012b), it was pointed out that the weight vector 

determined by (11) may not always satisfy Eq.(1). For instance, 

               

0.5 0 0

1 0.5 0.5

1 0.5 0.5

R

 
   
  

 

By Definition 2, it is evident that R  is a consistent fuzzy preference relation. By 

Lemma 2, we have 1 1/ 3w   , 2 2 / 3w  , 3 2 / 3w  . It is shown that a negative 
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weight 1 0w   is derived. It has been revealed that Eqs.(1) and (10) are 

incompatible from different points of view (See Fedrizzi and Brunelli (2009; 

2010), Xu et al. (2009; 2010) and Lee and Tseng (2006)). In order to use Eq.(10) 

to reflect the relationship between the element ijr  and the weight vector iw , 

Fedrizzi and Brunelli (2009) suggested that the weight vector should not be 

normalized. A different angle is adopted to examine this problem: the 

normalization condition (1) is maintained, but the relationship between the 

element ijr  and the weight vector iw  will be revised. 

Theorem 3. For a complete fuzzy preference relation ( )ij n nR r  , if R  is 

additive consistent, there always exists a priority weight vector 1 2( , ,W w w  

..., )T
nw  such that 

           0iw   ( 1,2,...,i n ), 
1

1
n

i
i

w


  

The relationship between iw  and ijr  is (Xu, 2000; Xu et al., 2009; Liu et al., 

2012b) 

           
1

1 1
2

2

n

i ik
k

w r n
n n 

    
 
 , 0.5 ( )ij i jr w w              (12) 

where 2 1
max{ }

nn
ikk

r


  . Furthermore, if 
1 1

n n

ik jk
k k

r r
 

  , then i jw w . 

Especially, (i)  if 
1

2

n 
 , 1

2 1

( 1)

n

ikk
i

r
w

n n








; (ii) if 
2

n  , 1
2

2
n

ikk
i

r
w

n
 

. 

Proof. For an additive consistent fuzzy preference relation, by Lemma 1, we have 

              
2

1 1 1

min
2

n n n

ik ik
i k k

n
r n r

  

     
 

   

i.e., 

             
1

min
2

n

ik
k

n
r



 
  

 
  

thus, 

            
1

max 0
2

n

ik
k

n
r



 
  

 
  

Then, for the parameter  , we have 
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1

max 0
2

n

ik
k

n
r



 
   

 
  

And it can be verified that  

             
1

1 1
2

2

n

i ik
k

w r n
n n 

    
 


 

               1

2 2

2

n

ik
k

r n

n






 
  

 


 

               1

2
2

2

n

ik
k

n
r

n






     
  


 

               1 1

2 max
2 2

2

n n

ik ik
k k

n n
r r

n
 

         
    

 
 

               0  

And with Lemma 1, 

  

2
2 2

1 1

1 1 1

2 21 22 1 1 1 1
2 2 2

n n

ikn n n
i k

i ik
i i k

nr n n
w r n

n n n  
 

  

                              


  

 

If R  is additive consistent, plugging the aforesaid iw , we have 

       
1 1

1 1 1
0.5 ( ) 0.5 ( ) 0.5 ( )

2

n n

i j ik jk ij ij
k k

w w r r r r
n n


 

           

Furthermore, since 0  , if 
1 1

n n

ik jkk k
r r

 
  , by the definition of iw  in (12)

, one has i jw w . This shows that the ranking order is preserved regardless of the 

value of  . Especially, if ( 1) / 2n   , 1
2 1

( 1)

n

ikk
i

r
w

n n








; If / 2n  , 

1
2

2
n

ikk
i

r
w

n
 

. In both cases, 2 1
max{ } 0

nn
ikk

r


   , and hence 0iw  .  

 However, if 
1

2
   in Eq.(12), 2 1

1
max{ }

2

nn
ikk

r


    does not always 

hold, leading to 0iw   in some cases. Xu et al. (2009) set / 2n  , and 

referred it as a normalizing rank aggregation method. Xu et al. (2010) assumed 
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( 1) / 2n   , it was shown that both cases yield better performance than the case 

when   takes 0.5. Theorem 3 reveals a relationship between the element ijr  

and the weight vector iw , where the nonnegative weights are normalized to 1. In 

the example given in Remark 1, if Fedrizzi and Brunelli’s (2009) method is 

employed to compute the priority vector, one has 1 0w  , 2 1w  , 3 1w  , 

resulting in a non-normalized weight vector. By Theorem 3, we have 1 1
1 3 3w   , 

1 1
2 3 3 6w w    , where 2 1

max{ } 1
nn

ikk
r


   . By setting different  values 

in (12), one can obtain distinct normalized weight vectors satisfying Eq.(1). On 

the contrary, Fedrizzi and Brunelli’s (2009) method can only get one weight 

vector. It is also shown that, by introducing the parameter  , the proposed 

formula (12) makes the normalization constraint Eq.(1) compatible with additive 

consistency.  

Remark 3. In Theorem 3, iw  can be seen as the priority weight for alternative 

ix , while   can be regarded as an adjusting parameter to obtain a normalized 

priority weight vector. As long as 2 1
max{ } 0

nn
ikk

r


   , despite that the 

priority weight iw  changes with   in Eq.(12), the ranking implied in the 

weight vector W  remains the same. On the other hand, the larger the value of 

 , the smaller the differences among iw ’s. Especially, if   , 1
i nw  , and 

there will be no difference in weights among the alternatives. To maximize the 

discrimination power among weights for the alternatives, one can assign   to its 

lower bound as 2 1
max{ }

nn
ikk

r


  . Liu et al. (2012b) proposed Eq.(12), the 

difference between this paper and Liu et al.’s is that   herein is not a given 

value, while   in Liu et al’s is predetermined. Their condition can only deduce 

one weight vector W , whereas we can obtain diverse weight vectors by setting 

different values for  .  

 

3 Approaches to consistency test and weight generation 

for interval fuzzy preference relations 
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3.1 Consistency test for interval fuzzy preference relations 

    With increasing complexity and uncertainty in real-life decision situations, 

DMs can hardly estimate their preferences with numerical values. Instead it is 

often easier and more practical for DMs to furnish their evaluations in a range of 

values or interval numbers. Hereafter, it is assumed that a DM compares each pair 

of criteria or alternatives in X , and provides his/her interval fuzzy preference 

degree [ , ]ij ij ijr l u  of ix  over jx , where ijr  indicates that ix  is preferred to 

jx  with a preference degree between ijl  and iju . All these interval fuzzy 

preference degrees ijr  ( , 1,2,...,i j n ) consist of IFPR ( )ij n nR r  
 
(Xu, 2004c) 

      

11 11 12 12 1 1

21 21 22 22 2 2

1 1 2 2

[ , ] [ , ] ... [ , ]

[ , ] [ , ] ... [ , ]
( )

[ , ] [ , ] ... [ , ]

n n

n n
ij n n

n n n n nn nn

l u l u l u

l u l u l u
R r

l u l u l u



 
 
  
 
 
 

 
   

 

Where [ , ]ij ij ijr l u , [ , ]ji ji jir l u , 1ij ji ij jil u u l    , 0ij iju l  , 0.5ii iil u  , 

for all , 1,2,...,i j n . 

Definition 3 (Lan et al., 2012). Let ( )ij n nR r    be an IFPR. If there exists an 

additive consistent fuzzy preference relation ( )ij n nR r  , such that 

              ij ij ijl r u  , , 1,2,...,i j n                           (13) 

Then R  is called an additive consistent IFPR and ( )ij n nR r   is called additive 

consistent information in R . 

Theorem 4. ( )ij n nR r    is an additive consistent IFPR if and only if  

         1 1
1

[ , ] [ , ]
n

ij ij j j
j

l u l u


   , 1,2,...,i n                       (14) 

i.e., it satisfies the following inequality constraints: 

        1 1max( 0.5) min( 0.5)ij j ij jjj
l l u u     ,   1,2,...,i n         (15) 

Proof. Necessity: Assume ( )ij n nR r    is an additive consistent IFPR, there exists 

an additive consistent fuzzy preference relation ( )ij n nR r  , such that 

             ij ij ijl r u  ,   , 1,2,...,i j n  ,                        (16) 

Especially, when 1i  , 

            1 1 1j j jl r u  ,   1,2,...,j n                            (17) 
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For any 1,2,...,i n , 

            1 1 1ij j ij j ij jl u r r u l     ,   1,2,...,j n                  (18) 

Since ( )ij n nR r   is an additive consistent fuzzy preference relation, then 

          1 1 0.5ij j ir r r   ,  , 1,2,...,i j n                          (19) 

Eq.(18) can be changed into 

         1 1 10.5ij j i ij jl u r u l      ,  1,2,...,j n                    (20) 

Therefore, 

         1 1 1 1 1
1 1

0.5 [ , ] [ , ] [ , ]
n n

i ij j ij j ij ij j j
j j

r l u u l l u l u
 

          

Thus,  1 1
1

[ , ] [ , ]
n

ij ij j j
j

l u l u


   .  

Since 1 11j ju l  , 1 11j jl u  , then 1 1
1
[ 1, 1]

n

ij j ij j
j

l l u u


      ,  

therefore,  

         
1 1

1
[ 0.5, 0.5]

n

ij j ij j
j

l l u u


       

i.e., 1 1max( 0.5) min( 0.5)ij j ij j
jj

l l u u     , 1,2,...,i n  . 

Sufficiency: if  1 1
1

[ , ] [ , ]
n

ij ij j j
j

l u l u


   , i.e., Eq.(15) holds,  

1 11j ju l  , 1 11j jl u  , then 1 1
1
[ 1, 1]

n

ij j ij j
j

l l u u


      ,  

assume that 

       1 1 1 1
1
[ 1, 1] [ , ]

n

ij j ij j i i
j

l l u u p p 


                                (21) 

 
then 

      1 1max( 1)i ij j
j

p l l    , 1 1min( 1)i ij jj
p u u    , 2,...,i n          (22) 

let 

        1 1 1max{ , }j j ij i
i

p l l p   , 1 1 1min{ , }j j ij ii
p u u p                   (23)        

 1 1ij j ip p p    , 1 1ij j ip p p    ,    2,...,i n                 (24)            

1 1
1 2

j j
j

p p
p

 
 , 1 1

1 0.5
2

i i
i

p p
p

 
  ,                         (25) 

       
2

ij ij
ij

p p
p

 
                                             (26) 
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then 

      1 1 1 1 1 1 1 1( ) ( )

2 2
j i j i j j i i

ij

p p p p p p p p
p

            
   

         1 1 0.5j ip p    

i.e., there exist a fuzzy preference relation P  such that 

          1 1 0.5i ij jp p p   , , 1,2,...,i j n   

By Theorem 1, P  is an additive consistent fuzzy preference relation, and by 

Definition 3, ( )ij n nR r    is an additive consistent IFPR. The proof of Theorem 4 

is thus completed.  

Example 1 is presented in Section 4 to show how an additive fuzzy 

preference relation is constructed by using aforesaid process. 

Remark 4. When 1i  ,  1 1 1 1
1

[ , ] [ , ]
n

j j j j
j

l u l u


   (i.e., Eq.(14)) always holds. 

Similarly, we have:    

Theorem 5. If ( )ij n nR r    is an additive consistent IFPR, then for any 

1,2,...,j n ,  1 1
1

[ , ] [ , ]
n

ij ij i i
i

l u l u


   , i.e.,  

       1 1max( 0.5) min( 0.5)ij i ij i
ii

l l u u     , 1,2,...,j n              (27) 

 

Theorem 6. ( )ij n nR r    is an additive consistent IFPR if and only if it satisfies 

the following inequality constraints: 

      max( 0.5) min( 0.5)ij jk ij jk
jj

l l u u     , , , 1,2,...,i j k n          (28) 

Proof. If R  is an additive consistent IFPR, then there exists an additive 

consistent fuzzy preference relation ( )ij n nR r   such that 

          ij ij ijl r u  , , 1,2,...,i j n                               (29) 

          jk jk jkl r u  , , 1,2,...,j k n                              (30) 

By (29) and (30), we have 

    0.5 0.5 0.5ij jk ij jk ij jkl l r r u u        ,   , , 1,2,...,i j k n         (31) 

Since (31) holds for any 1,...,j n , it follows that max( 0.5)ij jk
j

l l    

min( 0.5)ij jk
j

u u   holds for all , , 1,2,...,i j k n  . 
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Conversely, if (28) holds for , , 1,2,...,i j k n  , then there exists a fuzzy 

preference relation ( )ij n nR r 
 
such that ik ik ikl r u  , for all , 1,2,...,i k n . By 

Definition 3, R  is an additive consistent IFPR. 

Theorem 7. ( )ij n nR r    is an additive consistent IFPR if and only if it satisfies  

1
( 0.5)

n

ij jk
j

r r


     , , , 1,2,...,i j k n                          (32) 

Proof. Necessity: If ( )ij n nR r    is an additive consistent IFPR, by Definition 3, 

there exists an additive consistent fuzzy preference relation ( )ij n nR r   such that 

ij ij ijl r u  , , 1,2,...,i j n  , that is, for all , , 1,2,...,i j k n , 0.5ik ij jkr r r    

0.5ij jkr r    . Thus, for all , , 1,2,...,i j k n , 
1
( 0.5)

n

ij jk
j

r r


     . 

Sufficiency: If 
1
( 0.5)

n

ij jk
j

r r


     , , 1,2,...,i k n  , assume that 

            
1
( 0.5) [ , ]

n

ij jk ij ij
j

r r p p 


     

It is obvious that there exists max( 0.5) min( 0.5)ij jk ij ij ij jkjj
l l p p u u        . 

By Theorem 6, ( )ij n nR r    is an additive consistent IFPR, which completes the 

proof of Theorem 7. 
 

Remark 5. Theorems 4 and 5 can be regarded as special cases of Theorems 6 and 

7 where 1k  . But Theorems 4 and 5 are simpler than Theorems 6 and 7 due to 

their computation convenience. Theorems 4-7 can be used to judge whether an 

IFPR is consistent without solving any mathematical programming model. It only 

requires simple algebraic operations. This feature will be illustrated in the 

numerical examples in Section 4. Since an IFPR is reciprocal in nature, only its 

upper or lower triangular elements have to be checked. 

 

3.2  Linear programming models for generating weights 

Definition 4. Let ( )ij n nR r    be an IFPR, where [ , ]ij ij ijr l u , for all , 1,2,i j   

...,n , if there exists a vector 1 2( , ,..., )T
nW w w w  and 0  , such that 

        0.5 ( )ij i j ijl w w u    , for all , 1,2,...,i j n                 (33) 
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where W  satisfies the condition (1), then R  is called an additive consistent 

IFPR. 

    Based on Theorem 3, it is easy to know that Definition 3 is equivalent to 

Definition 4.  

Definition 5. Let ( )ij n nR r    be an interval fuzzy preference relation, where 

[ , ]ij ij ijr l u , for all , 1,2,...,i j n , if there exists a vector 1 2( , ,..., )T
nW w w w  

and 0  , such that 

     0.5 ( )ij i j ijl w w u    , for all 1,2,..., 1i n  ; 1,...,j i n  .      (34) 

where W  satisfies the condition (1), then R  is called an additive consistent 

IFPR. 

Remark 6. Xu and Chen (2008b) defined the additive consistent IFPR by setting 

1/ 2   in Eqs. (33) and (34), while our definition does not require   to be a 

specific value as long as it is positive. As one can see in the numerical examples 

in Section 4, when   takes different values, different weight vectors W  are 

obtained accordingly, and then by Eq. (12), different fuzzy preference relations 

( )ij n nR r  , satisfying Eq. (13), are derived. However, if Xu and Chen’s method 

is adopted by setting 1/ 2  , it is possible that there does not exist any weight 

vector satisfying Eq. (33), asserting an inconsistent fuzzy preference relation. On 

the other hand, if our definition is utilized, by increasing  , one could find 

corresponding weight vectors and fuzzy preference relations, leading to a 

consistent relation (see Examples 1 and 2 in Section 4 for details).  

    By the definition of IFPR, it is easy to prove the equivalence between 

Definitions 4 and 5. Definition 5 shows that it is only necessary to check the upper 

or lower triangular elements of an IFPR for additive consistency. 

Remark 7. In Definition 4,   is a positive parameter. By Theorem 3, if R  is 

an additive consistent IFPR, then there exists at least one additive consistent fuzzy 

preference relation ( )ij n nR r   satisfying Eq.(13), then there exists a weight 

vector 1 2( , ,..., )T
nW w w w  and 0  , satisfying 0.5 ( )ij i jr w w   , this 

means that Eq.(33) holds. On the other hand, if R  is not an additive consistent 

IFPR, then there does not exist any additive consistent fuzzy preference relation 
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( )ij n nR r   satisfying Eq.(13). This means that there does not exist any vector 

1 2( , ,..., )T
nW w w w  satisfying Eq.(33).  

    If ( )ij n nR r  
 
is an additive consistent IFPR, then the priority vector W   

1 2( , ,..., )T
nw w w  generated from ( )ij n nR r  

 
should satisfy the conditions Eq.(1) 

and Eq.(34). In general, for each  , a priority weight vector can be obtained, 

therefore, as long as such a priority vector satisfying (1) and (34) is not unique, 

each weight iw  ( 1,2,...,i n ) should fall within a range. As a result, based on the 

conditions (1) and (34), the following two linear programming models are 

established: 

 (M-1)       mini iw w   

       s.t.

1

( ) 0.5 , 1,2,..., 1; 1,..., ,

( ) 0.5 , 1, 2,..., 1; 1,..., ,

1,

0, 1, 2,..., .

i j ij

i j ij

n

i
i

i

w w l i n j i n

w w u i n j i n

w

w i n







      
       




  


 

(M-2)       maxi iw w   

       s.t.

1

( ) 0.5 , 1,2,..., 1; 1,..., ,

( ) 0.5 , 1, 2,..., 1; 1,..., ,

1,

0, 1, 2,..., .

i j ij

i j ij

n

i
i

i

w w l i n j i n

w w u i n j i n

w

w i n







      
       




  


 

Solving the models (M-1) and (M-2) yields interval priority weights 

[ , ]i i iw w w  , 1,2,...,i n . 

Generally, ( )ij n nR r  
 
provided by the DM is not always additive 

consistent, in other words, there may not exist any vector 1 2( , ,..., )T
nW w w w  

and 0  such that Eq.(34) holds, and no feasible solution exists for the models  

(M-1) and (M-2). In this case, similar to the idea in Wang et al. (2005b), Xu and 

Chen (2008b), the models (M-1) and (M-2) are extended to accommodate 

inconsistent judgments by introducing deviation variables ijd  and ijd   for (34) , 

1,2,..., 1i n  ; 1,...,j i n  : 

   0.5 ( )ij ij i j ij ijl d w w u d       , for 1, 2,..., 1i n  , 1,...,j i n     (35) 
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where ijd   and ijd   are both non-negative. Especially, if both ijd   and ijd   are 

equal to zero, then the condition (35) is reduced to (34). 

    Obviously, the smaller the deviation variables ijd   and ijd  , the closer the 

R  to an additive consistent IFPR. As a result, the following optimization model 

is put forward: 

(M-3)    
1

1 1

min ( )
n n

ij ij
i j i

J d d


 

  

    

        

1

( ) 0.5 , 1, 2,..., 1; 1,..., ,

( ) 0.5 , 1, 2,..., 1; 1,..., ,

1,

0, 1, 2,..., .

, 0, 1, 2,..., 1; 1,..., .

i j ij ij

i j ij ij

n

i
i

i

ij ij

w w d l i n j i n

w w d u i n j i n

w

w i n

d d i n j i n











 

        


       

 

  


    

  

    Solving this model, one can get optimal deviation values ijd   and ijd  , 

1,2,..., 1i n  ; 1,...,j i n  . From the model (M-3), we can get the following 

result easily: 

Theorem 9. R  is an additive consistent IFPR if and only if there exists a weight 

vector 1 2( , ,..., )T
nW w w w  and 0   such that 0J  . 

Remark 8. Similar to Remark 6, the difference between (M-1), (M-2), Theorem 9 

and Xu and Chen’s (2008b) model is that our model allows   to be set at 

different values other than 0.5   only in Xu and Chen’s model. It is apparent 

that Xu and Chen (2008b) imposes a more restrictive consistency condition, while 

our model is more relaxed in finding a weight vector satisfying Eq. (33) by 

setting a different value of   than 0.5. Examples 1 and 2 in Section 4 verify 

these points. 

    If R  is not an additive consistent IFPR, then based on the optimal deviation 

values ijd   and ijd  , 1,2,..., 1i n  ; 1,...,j i n  , similar to the models (M-1) 

and (M-2), we further establish the following two linear programming models: 

(M-4) mini iw w    
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       s.t.

1

( ) 0.5 , 1, 2,..., 1; 1,..., ,

( ) 0.5 , 1, 2,..., 1; 1,..., ,

1,

0, 1, 2,..., .

i j ij ij

i j ij ij

n

i
i

i

w w d l i n j i n

w w d u i n j i n

w

w i n











        


       





  






 

(M-5)       maxi iw w   

       s.t.

1

( ) 0.5 , 1, 2,..., 1; 1,..., ,

( ) 0.5 , 1, 2,..., 1; 1,..., ,

1,

0, 1, 2,..., .

i j ij ij

i j ij ij

n

i
i

i

w w d l i n j i n

w w d u i n j i n

w

w i n











        


       





  







 

    Solving the models (M-4) and (M-5) generates the interval priority weights 

[ , ]i i iw w w  , 1,2,...,i n . 

    From the aforesaid analysis, we know that the priority weights derived from 

an interval fuzzy preference relation are in the form of interval numbers. Let 

[ , ]i i iw w w   and [ , ]j j jw w w   be any two interval weights, where 0 iw  

1iw  , 0 1j jw w    ,then the degree of possibility of i jw w   is defined as 

(Wang et al., 2005b): 

          
max{0, } max{0, }

( ) i j i j
i j

i i j j

w w w w
p w w

w w w w

   

   

  
 

  
               (36) 

For other equivalent forms of possibility degrees, readers are referred to (Xu 

and Chen, 2008b).    

 

3.3 Application to group decision making with IFPRs 

Let 1 2{ , ,..., }nX x x x  be a finite set of alternatives, 1 2{ , ,..., }mE e e e  be a 

finite set of DMs, and 1 2( , ,..., )T
m     be the weight vector of DMs, such that 

1
1

m

kk



 , and 0k  ( 1,2,...,k m ). Suppose that the m  DMs provide their 

preference relations over the n  decision alternatives as ( ) ( )k
ij n nR r   , 1,2,k   

...,m , where [ , ]ij ij ijr l u , [ ,ji jir l ]jiu , 1ij ji ij jil u u l    , 1 0ij iju l   , 

0.5ii iil u  , for all , 1,2,...,i j n . 
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    Xu (2004c) presented that a combination of IFPRs is also an IFPR. Next, we 

further obtain the following result. 

Theorem 10. Let ( )kR  ( 1,2,...,k m ) be m  additive consistent IFPRs provided 

by the DMs, 1 2( , ,..., )T
m     be the weight of DMs, where 0k   ( 1,2,k   

...,m ), 
1

1
m

kk



 , then the weighted average 

               (1) (2) ( )
1 2 ... m

mR R R R                               (37) 

is also an additive consistent IFPR. 

Proof.  Let 

            (1) (2) ( )
1 2 ... m

mR R R R         . 

           ( )ij n nr    

where ( ) ( )

1 1

[ , ] ,
m m

k k
ij ij ij k ij k ij

k k

r l u l u 
 

     
  .                             (38) 

Since ( )kR  ( 1,2,...,k m ) are m  additive consistent IFPRs, then there exist m  

additive consistent fuzzy preference relations ( ) ( )( )k k
ij n nR r  ( 1,2,...,k m ) such 

that 

        ( ) ( ) ( )k k k
ij ij ijl r u  ,  1,2,...,k m ,  , 1,2,...,i j n                (39)            

Therefore, 

                ( ) ( ) ( )

1 1 1

m m m
k k k

k ij k ij k ij
k k k

l r u  
  

                         (40) 

Let ( )ij n nR r  , where ( )

1

m
k

ij k ij
k

r r


  .  

Then Eq.(40) can be rewritten as: 

                ij ij ijl r u                                       (41) 

By Definition 3, R  is an additive consistent IFPR. This completes the proof. 

    In the following, an algorithm is presented to solve group decision problems 

with IFPRs: 

Step 1: For a group decision problem, each DM provides his/her IFPR ( )kR   

( )( )k
ij n nr  , where [ , ]ij ij ijr l u , [ , ]ji ji jir l u , 1ij ji ij jil u u l    , 0ij iju l  , iil   

0.5iiu  , for all , 1,2,...,i j n . 
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Step 2. Utilize the commonly used additive weighted averaging operator (AWA) 

(Eq.(37)) to aggregate all opinions into a collective interval fuzzy preference 

relation R . 

Step 3. Utilize model (M-3) to derive optimal deviation values. Then, utilize 

models M-4 and M-5 to derive the interval priority weights iw ( 1,2,...,i n ) 

(Generally setting ( 1) / 2n    or / 2n  ). 

Step 4. Apply Eq.(36) to compare each iw  with jw ( 1,2,...,j n ). Denote 

ijp  ( )i jp w w  , a complementary matrix can be derived as ( )ij n nP p  , where  

             0ijp  , 1ij jip p  , 0.5iip  , , 1,2,...,i j n  

Utilize the normalizing rank aggregation method (Xu et al., 2009)  

         1

2 / 2

n

ij
j

i

p

v
n



, 1,2,...,i n                                   (42) 

to derive a priority vector  1 2( , ,..., )T
nv v v v of the complementary matrix P . 

Then, iw  ( 1,2,...,i n ) can be ranked in a descending order as per the values of 

iv  ( 1,2,...,i n ). 

Step 5. End. 

 

4 Numerical examples and comparative analysis 

Example 1. As a premier scenic attraction in China, Jiuzhaigou Valley has been 

attracting an increasing number of tourists every year (adapted from (Wang et al., 

2012)). One of the challenges faced by the tourism authority is to plan the traffic 

so that a balanced distribution of tourists can be achieved among different scenic 

areas. Four alternatives were proposed to address this issue, denoted as 

1 2 3 4{ , , , }X x x x x . Jiuzhaigou Valley authority compared these four programs 

and constructed the following IFPR R  (Wang et al., 2012): 

        

[0.50,0.50] [0.39,0.41] [0.29,0.31] [0.19,0.21]

[0.59,0.61] [0.50,0.50] [0.39,0.41] [0.29,0.31]

[0.69,0.71] [0.59,0.61] [0.50,0.50] [0.39,0.41]

[0.79,0.81] [0.69,0.71] [0.59,0.61] [0.50,0.50]

R

 
 
 
 
 
 


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Table 1. Consistency test for Example 1 by Eq.(28) of Theorem 6 

Judgment 
element 

i  k  j  0.5ij jkl l   0.5ij jku u   Consistency test 

12r  

1 2 1 0.39 0.41 max( 0.5) 0.39ij jkl l    

1 2 3 0.38 0.42 min( 0.5) 0.41ij jku u    

1 2 4 0.38 0.42 passed 

13r  

1 3 1 0.29 0.31 max( 0.5) 0.29ij jkl l    

1 3 2 0.28 0.32 min( 0.5) 0.31ij jku u    

1 3 4 0.28 0.32 passed 

14r  

1 4 1 0.19 0.21 max( 0.5) 0.19ij jkl l    

1 4 2 0.18 0.22 min( 0.5) 0.21ij jku u    

1 4 3 0.18 0.22 passed 

23r  

2 3 1 0.38 0.42 max( 0.5) 0.39ij jkl l    

2 3 2 0.39 0.41 min( 0.5) 0.41ij jku u    

2 3 4 0.38 0.42 passed 

24r  

2 4 1 0.28 0.32 max( 0.5) 0.29ij jkl l    

2 4 2 0.29 0.31 min( 0.5) 0.31ij jku u    

2 4 3 0.28 0.32 passed 

34r  

3 4 1 0.38 0.42 max( 0.5) 0.39ij jkl l    

3 4 2 0.38 0.42 min( 0.5) 0.41ij jku u    

3 4 3 0.39 0.41 passed 

 

Table 2. Consistency test for Example 1 by Eq.(15) of Theorem 4 

Judgment element i  j  1 0.5ij jl l   1 0.5ij ju u   Consistency test 

21r  

2 1 0.59 0.61 1max( 0.5) 0.59ij jl l    

2 3 0.58 0.62 1min( 0.5) 0.61ij ju u    

2 4 0.58 0.62 passed 
      

31r  
3 1 0.69 0.71 1max( 0.5) 0.69ij jl l    

3 2 0.68 0.72 1min( 0.5) 0.71ij ju u    

3 4 0.68 0.72 passed 
      

41r  
4 1 0.79 0.81 1max( 0.5) 0.79ij jl l    

4 2 0.78 0.82 1min( 0.5) 0.81ij ju u    

4 3 0.78 0.82 passed 
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Table 3. Interval weights 

  1w  2w  3w  4w  

0.57 [0,0] [0.1579,0.1579] [0.3333,0.3333] [0.5088,0.5088] 
1.5 [0.145,0.155] [0.2117,0.2217] [0.2783,0.2833] [0.345,0.355] 
2 [0.1713,0.1788] [0.2213,0.2288] [0.2713,0.2788] [0.3213,0.3288] 
10 [0.2343,0.2358] [0.2443,0.2457] [0.2543,0.2558] [0.2643,0.2658] 

100 [0.2484,0.2485] [0.2494,0.2495] [0.2504,0.2506] [0.2514,0.2516] 
1000 [0.2498,0.2499] [0.2499,0.2500] [0.2500,0.2501] [0.2501,0.2502] 
10000 [0.2500,0.2500] [0.2500,0.2500] [0.2500,0.2500] [0.2500,0.2500] 

       

 

If Eq.(14) is employed to test the consistency for R , according to Remark 3, it 

always holds when 1i  , so the remaining calculation is carried out for i = 2, 3, 

and 4 only: 

 
4

2 2 1 1
1

[ , ] [ , ] [0.09,0.11] [0.09,0.11] [0.08,0.12] [0.08,0.12]j j j j
j

l u l u


      

                                      [0.09,0.11]    

 
4

3 3 1 1
1

[ , ] [ , ] [0.19,0.21] [0.18,0.21] [0.19,0.21] [0.18,0.21]j j j j
j

l u l u


      

                                     [0.19,0.21]    

 
4

4 4 1 1
1

[ , ] [ , ] [0.29,0.31] [0.28,0.32] [0.28,0.32] [0.29,0.31]j j j j
j

l u l u


      

                                     [0.29,0.31]    

Thus, R  is an additive consistency interval fuzzy preference relation. The 

consistency of R  can also be tested by using Eq.(15) of Theorem 4 and Eq.(28) 

of Theorem 6. Next we construct an additive consistent fuzzy preference relation 

as per the procedure in the proof of Theorem 4. 

By Eq.(21), we have 

  21 0.09p  , 21 0.11p  , 31 0.19p  , 31 0.21p  , 41 0.29p  , 41 0.31p  , 

let 

   12 max{0.39,0.5 0.11,0.59 0.21,0.69 0.31} 0.39p      , 

   12 min{0.41,0.5 0.09,0.61 0.19,0.71 0.29} 0.41p      , 

   13 max{0.29,0.39 0.11,0.50 0.21,0.59 0.31} 0.29p      , 

   13 min{0.31,0.41 0.09,0.50 0.19,0.61 0.29} 0.31p      , 

   14 max{0.19,0.29 0.11,0.39 0.21,0.50 0.31} 0.19p      , 

   13 min{0.21,0.31 0.09,0.41 0.19,0.50 0.29} 0.21p      , 

By Eq.(24), we have 



23 

   

[0.50,0.50] [0.39,0.41] [0.29,0.31] [0.19,0.21]

[0.59,0.61] [0.50,0.50] [0.40,0.40] [0.30,0.30]

[0.69,0.71] [0.60,0.60] [0.50,0.50] [0.40,0.40]

[0.79,0.81] [0.7,0.70] [0.60,0.60] [0.50,0.50]

P

 
 
 
 
 
 

  

then by Eq.(26), we have 

0.5 0.4 0.3 0.2

0.6 0.5 0.4 0.3

0.7 0.6 0.5 0.4

0.8 0.7 0.6 0.5

P

 
 
 
 
 
 

 

Obviously, P  is an additive consistent fuzzy preference relation, thus, R  is a 

consistent IFPR. 

Tables 1, 2 and the aforesaid process show the consistency test results using 

Theorems 6 and 4, respectively. It is clear that R  passes the consistency test and, 

hence, is a consistent IFPR. Generally speaking, Table 2 is simpler than Table 1, 

and consistency test calculations by Eq. (14) are the simplest. Therefore, it is 

recommended to employ Eq.(14) (Theorem 4) for testing consistency. As R  is 

additive consistent, models (M-1) and (M-2) can be applied to derive the interval 

weights. Alternatively, model (M-3) can also be utilized to judge whether R  is 

additive consistent. Setting ( 1) / 2 1.5n     ( or / 2 2n   ), one can find 

that there exists a weight vector 1 2 3 4( , , , )TW w w w w  such that 0J  , 

indicating that R  is a consistent IFPR. In this case, models (M-4) and (M-5) will 

be reduced to (M-1) and (M-2), respectively. Table 3 shows different interval 

weights by setting distinct values for  . It is clear that, if     (for example 

10000  ), then all iw ’s become a constant 1/ n (0.25), verifying the results of 

Theorem 3. But in remaining cases, one has 4 3 2 1w w w w      . On the other 

hand, if 0.57  , one will have 0J  . For instance, if 0.5  , by using Xu 

and Chen’s (2008b) method, one can get 0.07 0J   , and the optimal deviation 

values are 12 0.0167d   , 13 14 0.0267d d   , with remaining deviations being 

zero, implying that R  is not a consistent IFPR by Xu and Chen’s additive 

consistency definition [59]. Wang et al. (2012) also pointed out that this IFPR 

does not satisfying additive or multiplicative consistency conditions as defined by 

Xu and Chen (2008b). Furthermore, if 0.57  , a unique crisp weight vector 

(0,0.1579,0.3333,0.5088)TW   is obtained by using model (M-3), which 
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satisfies Eqs.(33) and, hence, (34), i.e., it satisfies Definition 3. Then, by Eq.(12), 

the following fuzzy preference relation can be derived 

            1

0.5 0.41 0.31 0.21

0.59 0.5 0.4 0.3

0.69 0.6 0.5 0.4

0.79 0.7 0.6 0.5

R

 
 
 
 
 
 

 

It is evident that the fuzzy preference relation 1R  satisfies Eq.(13), i.e., IFPR R  

contains an additive consistent fuzzy preference relation. If 2  , one can obtain 

a normalized weight vector (0.1775,0.2275,0.2725,0.3225)TW  , and by Eq. 

(12), we have  

           2

0.5 0.4 0.31 0.21

0.6 0.5 0.41 0.31

0.69 0.59 0.5 0.4

0.79 0.69 0.6 0.5

R

 
 
 
 
 
 

 

Similarly, when 2  , one can get another weight vector (0.175,0.225,W   

0.275,0.325)T , by Eq.(12), we have 

            3

0.5 0.4 0.3 0.2

0.6 0.5 0.4 0.3

0.7 0.6 0.5 0.4

0.8 0.7 0.6 0.5

R

 
 
 
 
 
 

 

As a matter of fact, from the interval weight vector corresponding to each 

0.57 10000   in Table 3, numerous weight vectors satisfying Eq.(33) can be 

obtained, then by Eq.(12), one can derive numerous corresponding fuzzy 

preference relations satisfying Eq.(13). This example illustrates that the additive 

interval consistency defined by Xu and Chen (2008b) needs stricter conditions 

than that proposed in this paper. 

Example 2. Xu and Chen (2008b) presented a case study about three equally 

weighted experts ke  ( 1, 2,3k  ) evaluating six agro-ecological regions in the 

province of Hubei in Central China. It is assumed that each expert furnishes 

his/her assessments on jx  ( 1,2,...,6j  ) as an IFPR ( ) ( )
6 6( )k k

ijR r    ( 1,2,3k  ) 

as follows (Xu and Chen, 2008b): 
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(1)

[0.5,0.5] [0.5,0.7] [0.7,0.8] [0.5,0.6] [0.6,0.7] [0.8,1.0]

[0.3,0.5] [0.5,0.5] [0.6,0.7] [0.3,0.4] [0.5,0.6] [0.5,0.9]

[0.2,0.3] [0.3,0.4] [0.5,0.5] [0.3,0.5] [0.4,0.5] [0.6,0.8]

[0.4,0.5] [0.6,0.7] [0.5,0.7] [0.5,
R 

0.5] [0.5,0.7] [0.7,0.8]

[0.3,0.4] [0.4,0.5] [0.5,0.6] [0.3,0.5] [0.5,0.5] [0.4,0.8]

[0.0,0.2] [0.1,0.5] [0.2,0.4] [0.2,0.3] [0.2,0.6] [0.5,0.5]

 
 
 
 
 
 
 
 
 

 

    

(2)

[0.5,0.5] [0.6,0.7] [0.6,0.9] [0.4,0.7] [0.6,0.8] [0.8,0.9]

[0.3,0.4] [0.5,0.5] [0.5,0.8] [0.4,0.5] [0.5,0.7] [0.5,0.9]

[0.1,0.4] [0.2,0.5] [0.5,0.5] [0.4,0.5] [0.4,0.6] [0.7,0.8]

[0.3,0.6] [0.5,0.6] [0.5,0.6] [0.5,
R 

0.5] [0.6,0.7] [0.7,0.9]

[0.2,0.4] [0.3,0.5] [0.4,0.6] [0.3,0.4] [0.5,0.5] [0.5,0.8]

[0.1,0.2] [0.1,0.5] [0.2,0.3] [0.1,0.3] [0.2,0.5] [0.5,0.5]

 
 
 
 
 
 
 
 
 

 

    

(3)

[0.5,0.5] [0.4,0.6] [0.5,0.7] [0.4,0.7] [0.6,0.8] [0.7,0.8]

[0.4,0.6] [0.5,0.5] [0.4,0.6] [0.3,0.5] [0.4,0.6] [0.6,0.9]

[0.3,0.5] [0.4,0.6] [0.5,0.5] [0.4,0.6] [0.4,0.7] [0.5,0.8]

[0.3,0.6] [0.5,0.7] [0.4,0.6] [0.5,
R 

0.5] [0.6,0.8] [0.4,0.7]

[0.2,0.4] [0.4,0.6] [0.3,0.6] [0.2,0.4] [0.5,0.5] [0.6,0.7]

[0.2,0.3] [0.1,0.4] [0.2,0.5] [0.3,0.6] [0.3,0.4] [0.5,0.5]

 
 
 
 
 
 
 
 
 

 

    Xu and Chen (2008b) first utilized a fuzzy weighted averaging operator 

( (1/ 3,1/ 3,1/ 3)T  ) to aggregate individual IFPRs ( ) ( )
6 6( )k k

ijR r    ( 1,2,3k  ) 

into a collective IFPR 6 6( )ijR r    as shown below: 

[0.50,0.50] [0.50,0.67] [0.60,0.80] [0.43,0.67] [0.60,0.77] [0.77,0.90]

[0.33,0.50] [0.50,0.50] [0.50,0.70] [0.33,0.47] [0.47,0.63] [0.53,0.90]

[0.20,0.40] [0.30,0.50] [0.50,0.50] [0.37,0.53] [0.40,0.60] [0.60,0.80
R 

]

[0.33,0.57] [0.53,0.67] [0.47,0.63] [0.50,0.50] [0.57,0.73] [0.60,0.80]

[0.23,0.40] [0.37,0.53] [0.40,0.60] [0.27,0.43] [0.50,0.50] [0.50,0.77]

[0.10,0.23] [0.10,0.47] [0.20,0.40] [0.20,0.40] [0.23,0.50] [0.50,0.50]

 
 
 
 
 
 
 
 
 

 

    To test the consistency of (1)R , (2)R , (3)R  and R , any of Theorems 4-7 

can be used. To minimize the computational burden, Eq.(14) is employed. By 

Eq.(14), for (1)R , we have: 

 
6

2 2 1 1
1

[ , ] [ , ] [ 0.2,0] [ 0.2,0] [ 0.2,0] [ 0.3, 0.1] [ 0.2,0]j j j j
j

l u l u


           
 

          

[ 0.5,0.1] [ 0.2, 0.1]      
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 
6

3 3 1 1
1

[ , ] [ , ] [ 0.3, 0.2] [ 0.4, 0.1] [ 0.3, 0.2] [ 0.3,0]j j j j
j

l u l u


            
     

      

[ 0.3, 0.1] [ 0.4,0] [ 0.3, 0.2]        

 
6

4 4 1 1
1

[ , ] [ , ] [ 0.1,0] [ 0.1,0.2] [ 0.3,0] [ 0.1,0] [ 0.2,0.1]j j j j
j

l u l u


                       

[ 0.3,0] [ 0.1,0]      

 
6

5 5 1 1
1

[ , ] [ , ] [ 0.2, 0.1] [ 0.3,0] [ 0.3, 0.1] [ 0.3,0]j j j j
j

l u l u


                       

[ 0.2, 0.1] [ 0.6,0] [ 0.2, 0.1]        

 
6

6 6 1 1
1

[ , ] [ , ] [ 0.5, 0.3] [ 0.6,0] [ 0.6, 0.3] [ 0.4, 0.2]j j j j
j

l u l u


                        

[ 0.5,0] [ 0.5, 0.3] [ 0.4, 0.3]        

For (2)R , we have: 

 
6

2 2 1 1
1

[ , ] [ , ] [ 0.2, 0.1] [ 0.2, 0.1] [ 0.4,0.2] [ 0.3,0.1]j j j j
j

l u l u


                       

[ 0.3,0.1] [ 0.4,0.1] [ 0.2, 0.1]       

 
6

3 3 1 1
1

[ , ] [ , ] [ 0.4, 0.1] [ 0.5, 0.1] [ 0.4, 0.1] [ 0.3,0.1]j j j j
j

l u l u


                        

[ 0.4,0] [ 0.2,0] [ 0.2, 0.1]       

 
6

4 4 1 1
1

[ , ] [ , ] [ 0.2,0.1] [ 0.2,0] [ 0.4,0] [ 0.2,0.1] [ 0.2,0.1]j j j j
j

l u l u


                       

[ 0.2,0.1] [ 0.2,0]     

 
6

5 5 1 1
1

[ , ] [ , ] [ 0.3, 0.1] [ 0.4, 0.1] [ 0.5,0] [ 0.4,0]j j j j
j

l u l u


                       

[ 0.3, 0.1] [ 0.4,0] [ 0.3, 0.1]        

 
6

6 6 1 1
1

[ , ] [ , ] [ 0.4, 0.3] [ 0.6, 0.1] [ 0.7, 0.3] [ 0.6, 0.1]j j j j
j

l u l u


                         

[ 0.6, 0.1] [ 0.4, 0.3] [ 0.4, 0.3]          

For (3)R , we have 

 
6

2 2 1 1
1

[ , ] [ , ] [ 0.1,0.1] [ 0.1,0.1] [ 0.3,0.1] [ 0.4,0.1] [ 0.4,0]j j j j
j

l u l u


                      

[ 0.2,0.2] [ 0.1,0.1]      

 
6

3 3 1 1
1

[ , ] [ , ] [ 0.2,0] [ 0.2,0.2] [ 0.2,0] [ 0.3,0.2] [ 0.4,0.1]j j j j
j

l u l u


                      

[ 0.3,0.1] [ 0.2,0]     
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 
6

4 4 1 1
1

[ , ] [ , ] [ 0.2,0.1] [ 0.1,0.3] [ 0.3,0.1] [ 0.2,0.1]j j j j
j

l u l u


                               

                  [ 0.2,0.2] [ 0.4,0] [ 0.2,0]      

 
6

5 5 1 1
1

[ , ] [ , ] [ 0.3, 0.1] [ 0.2,0.2] [ 0.4,0.1] [ 0.5,0]j j j j
j

l u l u


                               

                  [ 0.3, 0.1] [ 0.2,0] [ 0.2,0]       

 
6

6 6 1 1
1

[ , ] [ , ] [ 0.3, 0.2] [ 0.5,0] [ 0.5,0] [ 0.4,0.2]j j j j
j

l u l u


                                 

                  [ 0.5, 0.2] [ 0.3, 0.2] [ 0.3, 0.2]         

For R , we have: 

 
6

2 2 1 1
1

[ , ] [ , ] [ 0.17,0] [ 0.17,0] [ 0.3,0.1] [ 0.34,0.04]j j j j
j

l u l u


                            

                   [ 0.3,0.03] [ 0.37,0.13] [ 0.17,0]      

 
6

3 3 1 1
1

[ , ] [ , ] [ 0.3, 0.1] [ 0.23,0] [ 0.3, 0.1] [ 0.4,0.1]j j j j
j

l u l u


           
  

                 

                   [ 0.23,0] [ 0.3,0.03] [ 0.23, 0.1]       

 
6

4 4 1 1
1

[ , ] [ , ] [ 0.17,0.07] [ 0.14,0.17] [ 0.33,0.03]j j j j
j

l u l u


                   

[ 0.17,0.07] [ 0.2,0.13] [ 0.3,0.03] [ 0.14,0.03]        

 
6

5 5 1 1
1

[ , ] [ , ] [ 0.27, 0.1] [ 0.3,0.03] [ 0.4,0] [ 0.4,0]j j j j
j

l u l u


                               

                   [ 0.27, 0.1] [ 0.4,0] [ 0.27, 0.1]       

 
6

6 6 1 1
1

[ , ] [ , ] [ 0.4, 0.27] [ 0.57, 0.03] [ 0.6, 0.2]j j j j
j

l u l u


          
   

                     

              [ 0.47, 0.03] [ 0.54, 0.1] [ 0.4, 0.23] [ 0.4, 0.27]            

The aforesaid computational analysis indicates that (1)R , (2)R , (3)R  and R  are 

all additive consistent IFPRs. As such, (M-1) and (M-2) can be employed to 

derive interval weights iw  ( 1,2,...,6i  ). To facilitate a comparative study with 

the approach in Xu and Chen (2008b), we only compute the interval weights for 

the collective IFPR R . The determination of interval weights for (1)R , (2)R , 

(3)R  can be carried out in the same way and, hence, is omitted here. Table 4 

displays the interval weights of R  by setting different values for  . If model 

(M-3) is entertained, one can confirm that 0J   and optimal deviation variables 

are equal to zero when 0.6  , certifying that R  is a consistent IFPR. Table 4 
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shows  that the lower bound iw  and the upper bound iw  of iw  are equal 

when 0.6  , When the value of   increases, the dispersion between iw  and 

iw  first increases, then gradually decreases. When   , the dispersion 

decreases to zero, and all the iw  ( 1,2,...,6i  ) tend to be equal ( i.e., 

1/ 6 0.1667iw   ). By Eq.(36), we have 1 4 2 3 5 6w w w w w w           in all the 

cases. Furthermore, if 0.6  , applying model (M-3) yields a crisp weight 

vector (0.45,0.1667,0.1667,0.2167,0,0)TW  , which satisfies Eqs.(33) (and, 

hence, (34)), i.e., it satisfies Definition 3. Then, by Eq.(12), the following fuzzy 

preference relation can be obtained: 

Table 4. Interval weights of R  

  1w  2w  3w  4w  5w  6w  

0.6 [0.45,0.45] [0.1667,0.1667] [0.1667,0.1667] [0.2167,0.2167] [0,0] [0,0]
3 [0.1911,0.2361] [0.1539,0.1928] [0.1411,0.18] [0.1733,0.2122] [0.1261,0.175] [0.085,0.1333] 
10 [0.174,0.1875] [0.1628,0.1745] [0.159,0.1707] [0.1687,0.1803] [0.1545,0.1692] [0.1422,0.1567] 
100 [0.1674,0.1688] [0.1663,0.1675] [0.1659,0.1671] [0.1669,0.1680] [0.1655,0.1669] [0.1642,0.1657] 
1000 [0.1667,0.1669] [0.1666,0.1667] [0.1666,0.1667] [0.1667,0.1668] [0.1665,0.1667] [0.1664,0.1666]

 

              

1

0.5 0.67 0.67 0.64 0.77 0.77

0.33 0.5 0.5 0.47 0.6 0.6

0.33 0.5 0.5 0.47 0.6 0.6

0.36 0.53 0.53 0.5 0.63 0.63

0.23 0.4 0.4 0.37 0.5 0.5

0.23 0.4 0.4 0.37 0.5 0.5

R

 
 
 
 

  
 
 
 
 

 

It is apparent that the fuzzy preference relation 1R  satisfies Eq.(13), or the IFPR 

R  contains an additive consistent fuzzy preference relation. If 3  , one can 

get a normalized weight vector (0.2,0.19,0.1633,0.2,0.1467,0.1)TW  , and by 

Eq.(12), we have 

          

2

0.5 0.53 0.6101 0.5 0.6599 0.8

0.47 0.5 0.5801 0.47 0.6299 0.77

0.3899 0.4199 0.5 0.3899 0.5498 0.6899

0.5 0.53 0.6101 0.5 0.6599 0.8

0.3401 0.3701 0.4502 0.3401 0.5 0.6401

0.2 0.23 0.3101 0.2 0.3599 0.5

R

 
 
 
 

  
 
 
 
 

 

Similarly, numerous weight vectors satisfying Eq.(33) can be obtained, then by 

Eq.(12), one can get numerous corresponding fuzzy preference relations satisfying 
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Eq.(13). This confirms that the collective IFPR R  is consistent. Given that R  is 

a weighted average of additive consistent IFPRs 1R , 2R , 3R , Theorem 10 is also 

verified. However, if 0.6  , then one will get 0J  . For example, if 0.5  , 

Xu and Chen (2008b) got 0.05J   by solving the model (M-3), and the optimal 

deviation values are 16 0.025d   , 36 0.025d   , and other deviations are equal to 

zero. Based on the consistency definition in Xu and Chen (2008b), R  is not an 

additive consistent IFPR. This example illustrates that Xu and Chen’s definition 

of additive consistency is more restrictive than the one presented in this paper.  

 

Remark 7. In the above computation, interval weights are only determined for the 

collective IFPR R  in order to compare with Xu and Chen’s results in (Xu and 

Chen, 2008b). Similarly, one can compute individual interval weights for 1R , 

2R and 3R  by setting 1   for 1R , 1   for 2R , 0.9   for 3R , 

respectively. 

 

5 Conclusions 

Motivated by the research in Xu and Chen (2008b), this paper investigates how to 

derive interval weights from an IFPR. New properties are derived for additive 

consistent fuzzy preference relations and a correspondence relationship is 

established between the element ijr  of an additive fuzzy preference relation and a 

weight vector 1 2( , ,..., )T
nW w w w . Some simple yet practical approaches are 

developed to check whether an IFPR is additive consistent. Based on the 

correspondence between the element ijr  and the weight vector 1 2( , ,W w w  

..., )T
nw , additive consistency is extended to IFPRs, and a  revised definition is 

put forward. Optimization models are then established to generate interval priority 

weights from additive consistent or inconsistent IFPRs. A practical procedure is 

presented to solve group decision problems with IFPRs assessment data. To 

illustrate the proposed methods, two numerical examples are adapted from 

existing literature and a comparative study is conducted between the proposed 

methods and those given in Xu and Chen (2008b). Numerical experiment by 

appropriately adjusting the value of a parameter   indicates that one can find an 
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additive consistent fuzzy preference relation contained in a given IFPR, but the 

method in Xu and Chen (2008b) fails to identify such a fuzzy preference relation. 

Furthermore, if an IFPR is additive consistent, different weight vectors can be 

obtained by setting different   without affecting the ranking order. 

The proposed approaches assume that IFPRs provided by DMs are complete. 

However, in real decision situations, there may be cases where DMs express their 

judgments by using preference relations with incomplete information (Alonso et 

al., 2004; 2008; Fedrizzi and Silvio, 2007; Genç et al., 2010; Herrera-Viedma et 

al., 2007a; 2007b; Lee et al., 2007; Liu et al., 2012b; Xu et al., 2010; Xu, 2004b; 

2004a; Xu and Chen, 2008a; Xu and Da, 2008; 2009; Chiclana et al., 2008; Gong, 

2008; Alonso et al., 2009; Alonso et al., 2010; Cabrerizo et al., 2010a; Chiclana et 

al., 2009a; Xu et al., 2013a; Xu and Wang, 2013). It is a worthy topic to examine 

how the proposed models can be modified to accommodate incomplete IFPRs.  
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