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Abstract

Methods based on pairwise comparison matrices (PCMs) form a significant part of multi-criteria decision mak-
ing (MCDM) methods. These methods are based on structuring pairwise comparisons (PCs) of objects from a
finite set of objects into a PCM and deriving priorities of objects that represent the relative importance of each
object with respect to all other objects in the set. However, the crisp PCMs are not able to capture uncertainty
stemming from subjectivity of human thinking and from incompleteness of information about the problem that
are often closely related to MCDM problems. That is why the fuzzy extension of methods based on PCMs has
been of great interest.

In order to derive fuzzy priorities of objects from a fuzzy PCM (FPCM), standard fuzzy arithmetic is usually
applied to the fuzzy extension of the methods originally developed for crisp PCMs. However, such approach
fails in properly handling uncertainty of preference information contained in the FPCM. Namely, reciprocity of
the related PCs of objects in a FPCM and invariance of the given method under permutation of objects are
violated when standard fuzzy arithmetic is applied to the fuzzy extension. This leads to distortion of the pref-
erence information contained in the FPCM and consequently to false results. Thus, the first research question
of the thesis is: “Based on a FPCM of objects, how should fuzzy priorities of these objects be determined so
that they reflect properly all preference information available in the FPCM?”

This research question is answered by introducing an appropriate fuzzy extension of methods originally
developed for crisp PCMs. That is, such fuzzy extension that does not violate reciprocity of the related PCs
and invariance under permutation of objects, and that does not lead to a redundant increase of uncertainty of
the resulting fuzzy priorities of objects.

Fuzzy extension of three different types of PCMs is examined in this thesis - multiplicative PCMs, additive
PCMs with additive representation, and additive PCMs with multiplicative representation. In particular, con-
struction of PCMs, verifying consistency, and deriving priorities of objects from PCMs are studied in detail
for each type of these PCMs. First, well-known and in practice most often applied methods based on crisp
PCMs are reviewed. Afterwards, fuzzy extensions of these methods proposed in the literature are reviewed
in detail and their drawbacks regarding the violation of reciprocity of the related PCs and of invariance under
permutation of objects are pointed out. It is shown that these drawbacks can be overcome by properly applying
constrained fuzzy arithmetic instead of standard fuzzy arithmetic to the computations. In particular, we always
have to look at a FPCM as a set of PCMs with different degrees of membership to the FPCM, i.e. we always
have to consider only PCs that are mutually reciprocal. Constrained fuzzy arithmetic allows us to impose the
reciprocity of the related PCs as a constraint on arithmetic operations with fuzzy numbers, and its appropriate
application also guarantees invariance of the methods under permutation of objects. Finally, new fuzzy exten-
sions of the methods are proposed based on constrained fuzzy arithmetic and it is proved that these methods
do not violate the reciprocity of the related PCs and are invariant under permutation of objects. Because of
these desirable properties, fuzzy priorities of objects obtained by the methods proposed in this thesis reflect
the preference information contained in fuzzy PCMs better in comparison to the fuzzy priorities obtained by the
methods based on standard fuzzy arithmetic.

Beside the inability to capture uncertainty, methods based on PCMs are also not able to cope with situations
where it is not possible or reasonable to obtain complete preference information from DMs. This problem
occurs especially in the situations involving large-dimensional PCMs. When dealing with incomplete large-
dimensional PCMs, compromise between reducing the number of PCs required from the DM and obtaining
reasonable priorities of objects is of paramount importance. This leads to the second research question: “How
can the amount of preference information required from the DM in a large-dimensional PCM be reduced while
still obtaining comparable priorities of objects?”

This research question is answered by introducing an efficient two-phase method. Specifically, in the first
phase, an interactive algorithm based on weak-consistency condition is introduced for partially filling an incom-
plete PCM. This algorithm is designed in such a way that minimizes the number of PCs required from the DM
and provides sufficient amount of preference information at the same time. The weak-consistency condition
allows for providing ranges of possible intensities of preference for every missing PC in the incomplete PCM.
Thus, at the end of the first phase, a PCM containing intervals for all PCs that were not provided by the DM is
obtained. Afterward, in the second phase, the methods for obtaining fuzzy priorities of objects from fuzzy PCMs
proposed in this thesis within the answer to the first research question are applied to derive interval priorities
of objects from this incomplete PCM. The obtained interval priorities cover all weakly consistent completions of
the incomplete PCM and are very narrow. The performance of the method is illustrated by a real-life case study
and by simulations that demonstrate the ability of the algorithm to reduce the number of PCs required from
the DM in PCMs of dimension 15 and greater by more than 60% on average while obtaining interval priorities
comparable with the priorities obtainable from the hypothetical complete PCMs.

v



vi



Contents

Dedication i

Acknowledgments iii

Abstract v

I Introduction 1
1.1 Multi-criteria decision making . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Pairwise comparison methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.2 Incomplete pairwise comparison matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Fuzzy multi-criteria decision making . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2.1 Fuzzy pairwise comparison methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.2 Critics of fuzzy extension of AHP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.3 Constrained fuzzy/interval arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Goal of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Structure of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

II Pairwise comparison matrices 7
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Multiplicative pairwise comparison matrices (MPCMs) . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Construction of MPCMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.2 Consistency of MPCMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.2.1 Multiplicative consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.2.2 Weak consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.3 Deriving priorities from MPCMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.3.1 Eigenvector method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.3.2 Geometric-mean method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Additive pairwise comparisons matrices (APCMs) . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.1 Construction of APCMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.2 Additive pairwise comparison matrices with additive representation (APCMs-A) . . . . . . 16

2.3.2.1 Additive consistency of APCMs-A . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.2.2 Deriving priorities from APCMs-A . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.3 Additive pairwise comparison matrices with multiplicative representation (APCMs-M) . . . 21
2.3.3.1 Multiplicative consistency of APCMs-M . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.3.2 Weak consistency of APCMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3.3.3 Deriving priorities from APCMs-M . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4 Transformations between MPCMs and APCMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.4.1 Transformations between MPCMs and APCMs-A . . . . . . . . . . . . . . . . . . . . . . . 25
2.4.2 Transformations between MPCMs and APCMs-M . . . . . . . . . . . . . . . . . . . . . . . 27
2.4.3 Transformations between APCMs-A and APCMs-M . . . . . . . . . . . . . . . . . . . . . 29

III Fuzzy set theory 31
3.1 Introduction to fuzzy sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2 Alpha-cut representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3 Trapezoidal fuzzy numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.4 Standard fuzzy arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.5 Constrained fuzzy arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

vii



IV Fuzzy pairwise comparison matrices 49
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2 Fuzzy multiplicative pairwise comparison matrices (FMPCMs) . . . . . . . . . . . . . . . . . . . . 50

4.2.1 Construction of FMPCMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.2.2 Multiplicative consistency of FMPCMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2.2.1 Review of fuzzy extensions of multiplicative consistency . . . . . . . . . . . . . . 54
4.2.2.2 New fuzzy extension of multiplicative consistency . . . . . . . . . . . . . . . . . 58
4.2.2.3 Fuzzy Consistency Index and Fuzzy Consistency Ratio . . . . . . . . . . . . . . 68
4.2.2.4 Fuzzy maximal eigenvalue of a FMPCM . . . . . . . . . . . . . . . . . . . . . . . 69

4.2.3 Deriving priorities from FMPCMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.2.3.1 Fuzzy extension of the eigenvector method . . . . . . . . . . . . . . . . . . . . . 77
4.2.3.2 Fuzzy extension of the geometric-mean method . . . . . . . . . . . . . . . . . . 82

4.3 Fuzzy additive pairwise comparison matrices (FAPCMs) . . . . . . . . . . . . . . . . . . . . . . . 88
4.3.1 Construction of FAPCMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.3.2 Fuzzy additive pairwise comparison matrices with additive representation (FAPCMs-A) . 90

4.3.2.1 Additive consistency of FAPCMs-A . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.3.2.1.1 Review of fuzzy extensions of additive consistency . . . . . . . . . . . . 90
4.3.2.1.2 New fuzzy extension of additive consistency . . . . . . . . . . . . . . . 95

4.3.2.2 Deriving priorities from FAPCMs-A . . . . . . . . . . . . . . . . . . . . . . . . . . 104
4.3.3 Fuzzy additive pairwise comparison matrices with multiplicative representation (FAPCMs-

M) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
4.3.3.1 Multiplicative consistency of FAPCMs-M . . . . . . . . . . . . . . . . . . . . . . . 110

4.3.3.1.1 Review of fuzzy extensions of multiplicative consistency . . . . . . . . . 110
4.3.3.1.2 New fuzzy extension of multiplicative consistency . . . . . . . . . . . . 114

4.3.3.2 Deriving priorities from FAPCMs-M . . . . . . . . . . . . . . . . . . . . . . . . . 126
4.4 Transformations between FMPCMs and FAPCMs . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

4.4.1 Transformations between FMPCMs and FAPCMs-A . . . . . . . . . . . . . . . . . . . . . 131
4.4.2 Transformations between FMPCMs and FAPCMs-M . . . . . . . . . . . . . . . . . . . . . 133
4.4.3 Transformations between FAPCMs-A and FAPCMs-M . . . . . . . . . . . . . . . . . . . . 135

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

V Incomplete large-dimensional pairwise comparison matrices 139
5.1 Introduction to large-dimensional pairwise comparison problems . . . . . . . . . . . . . . . . . . 139
5.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

5.2.1 Case study: Evaluation model for the Registry of Artistic Performances . . . . . . . . . . 141
5.2.2 Overview of the algorithm of Fedrizzi and Giove (2013) for optimal sequencing in incom-

plete large-dimensional PCMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
5.3 New method for incomplete large-dimensional PCMs . . . . . . . . . . . . . . . . . . . . . . . . . 143

5.3.1 Description of the method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
5.3.2 Illustrative example and comparison study . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
5.3.3 Application of the method to the Evaluation model for the Registry of Artistic Performances150
5.3.4 Simulations and numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

VI Discussion and future research 157
6.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
6.2 Future research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

List of abbreviations 161

List of mathematical symbols 161

References 163

viii



Chapter I

Introduction

1.1 Multi-criteria decision making

Multi-criteria decision making (MCDM) is an extensive sub-discipline of operations research. The Institute for
Operations Research and the Management Science defines operations research as a discipline that deals with
applications of advanced analytical methods to help make better decisions (INFORMS, 2016). Applications of
operations research are abundant - from scheduling airlines, over assigning employees to projects, deciding
the most appropriate location for new facilities, to supply chain optimization.

The aim of MCDM, as its name suggests, is to deal with situations (problems) requiring a decision being
made under the presence of a number of conflicting criteria. Decision making is regarded as a process of
evaluating decision alternatives (courses of action) based on preferences of the decision maker (DM) which
usually results in selecting the “best” alternative, ranking alternatives from the most preferred to the least
preferred, or sorting alternatives into predefined classes. The first case is the most frequent one in practice.
Criteria are measures of the objectives relevant for the decision-making problem. A DM is the subject in
charge of making the decision. It can be, for example, an individual, a group of people, a family, a company, a
government, etc.

Many different terms are being used in the literature besides MCDM: multi-criteria decision aiding (MCDA),
multi-attribute decision making (MADM), multi-objective decision making (MODM), multi-attribute decision aid-
ing, multi-criteria decision analysis, and more. Some researchers perceive the terms as equivalent, others
distinguish between them. Zimmermann (2001) divided MCDM into MODM and MADM, where MODM fo-
cuses on problems with continuous decision spaces while MADM focuses on problems with discrete decision
spaces. In this thesis, MCDM with discrete decision spaces (i.e. MADM according to Zimmermann (2001)) is
of interest and it will be simply referred to as MCDM hereafter.

1.1.1 Pairwise comparison methods

A significant part of MCDM methods is based on pairwise comparison (PC). The first PC method was devel-
oped by Thurstone (1927). Since then, PC methods have undergone a great development. PCs of objects (usu-
ally criteria and alternatives) have been widely used in many well-known MCDM methods such as Analytic Hi-
erarchy Process (AHP), Preference Ranking Organization Method for Enrichment Evaluation (PROMETHEE),
Elimination and Choice Expressing Reality (ELECTRE), and their derivatives; see, e.g., Figueira et al. (2005).

PC methods are based on the idea of comparing only two objects (criteria, alternatives) at a time which is
less demanding on cognitive capabilities than comparing several objects at the same time. The most usual
way to represent PCs of a finite set of objects is to structure them into a pairwise comparison matrix (PCM). A
PCM of n objects o1, . . . , on is a square matrix C = {cij}ni,j=1 where cij expresses the intensity of preference
of object oi over object oj . Clearly, PCs cij and cji are in a reciprocal relation since they express intensities of
preference on the same pair of objects oi and oj , just in a different order. The type of the reciprocity relation
depends on the type of the PCM used.

In this thesis, two types of the reciprocity relation are of interest - multiplicative reciprocity and additive
reciprocity. Multiplicative reciprocity of the related PCs is inherent to multiplicative PCMs that are used to
model preference information provided in form of a preference ratio while additive reciprocity of the related PCs
is inherent to additive PCMs that are used to model preference information provided in form of a preference
difference. Additive PCMs are further divided into additive PCMs with additive representation and additive
PCMs with multiplicative representation.

PCMs have been studied in detail by many researchers, and many different methods based on multiplicative
and additive PCMs have been developed to support MCDM. The methods basically consist in the following
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tasks:

• constructing a PCM, i.e. comparing pairwisely objects in a PCM;

• verifying consistency (or acceptable inconsistency) of the PCM;

• deriving priorities of objects (criteria and alternatives) from the PCM;

• aggregating priorities of criteria and alternatives into final priorities of alternatives representing the final
multi-criteria evaluations of alternatives.

Further extensions of the methods have been developed to deal with decision processes involving several
DMs.

Each of the above mentioned tasks encounters some difficulties. In the first task, constructing a PCM,
the choice of an appropriate scale for expressing the intensities of preference plays a key role. In the second
task, verifying consistency of a PCM, the choice of a proper consistency condition compatible with the type of
preference information provided in the PCM and with the scale chosen for making PCs is very important. In the
third task, deriving priorities of objects from a PCM, it is necessary to choose such method and normalization
condition that are compatible with the type of preference information contained in the PCM. In the fourth task,
the choice of a suitable aggregation method is of crucial importance. Unfortunately, not all of these issues
are addressed properly in the literature, which may lead to wrong results and, consequently, to low-quality
decisions.

1.1.2 Incomplete pairwise comparison matrices
PC methods require complete preference information. However, in practice, it is not always possible to obtain
complete preference information from the DM, e.g. due to time or cost limitations. This problem occurs es-
pecially when the DM is required to provide a large number of PCs. In such cases, PCMs of objects may be
incomplete. That is why a large number of methods for dealing with incomplete large-dimensional PCMs has
been proposed in the literature. These methods usually consist of two main tasks:

• identifying a set of PCs that should be provided by the DM in an incomplete PCM;

• deriving priorities from an incomplete PCM; or automatically completing the incomplete PCM (i.e. without
no additional preference information from the DM) and then deriving priorities from the complete PCM.

Both tasks encounter some challenges. When identifying a set of PCs that should be provided by the DM in
an incomplete large-dimensional PCM, the appropriate choice of the PCs and of the number of PCs required
from the DM plays a key role. When deriving priorities of objects, the choice of an appropriate method is of
crucial importance in order to derive priorities that best represent DM’s preferences and the incompleteness of
preference information. Not all of these issues are addressed properly in the literature which may again lead
to wrong results.

1.2 Fuzzy multi-criteria decision making

The “traditional” MCDM methods were not designed to deal with uncertainty in MCDM problems. However,
human world is full of uncertainties. Uncertainty in decision making has been modeled and analyzed by
means of probabilistic theory and fuzzy set theory.

The aim of probabilistic theory is to capture the stochastic nature of decision making while fuzzy set theory
attempts to capture the subjectivity of human behavior and human thinking. According to Dubois and Prade
(1986), stochastic decision methods do not measure the imprecision in human behavior, but they are suitable
for modeling incomplete knowledge about the environment surrounding humans. Contrarily, fuzzy set theory
is a perfect means for modeling subjectivity (imprecision, uncertainty) which is integral to human mind. The
need for modeling the subjectivity of human behavior in decision making resulted in the development of a new
decision-making field - fuzzy MCDM.

There are two main phases in fuzzy MCDM (Zimmermann, 1987): phase 1 - aggregation of the perfor-
mance scores with respect to all attributes for each alternative, and phase 2 - rank ordering of the alternatives
according to the aggregated scores. Therefore, fuzzy MCDM methods can be classified into two categories
depending on which phase they focus on: (i) fuzzy MCDM methods focusing only on the first phase (or on
both phases), and (ii) fuzzy MCDM methods focusing only on the second phase. The fuzzy MCDM methods
of interest in this thesis are the PC methods that belong to the first category.

The pioneering work in fuzzy MCDM was done by Bellman and Zadeh (1970) who extended the Maxmin
method to fuzzy environment. However, the data in their method are expressed by crisp numbers. The first
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proper fuzzy MCDM methods were developed by Baas and Kwakernaak (1977) and Kwakernaak (1979) who
extended the Simple Additive Weighting method, and by Efstathiou and Rajkovic (1979) who proposed a fuzzy
extension of the Multiple Attribute Utility Function method. Afterwards, many other approaches followed (see,
e.g., Chen and Hwang (2005) for the review).

1.2.1 Fuzzy pairwise comparison methods

Since PCMs (both multiplicative and additive) cannot deal with uncertainty and imprecision, which is integral
to human mind, their extension to fuzzy numbers and intervals has been proposed.

Most often, triangular fuzzy numbers are used for the fuzzy extension of multiplicative PCMs. Less often,
trapezoidal fuzzy numbers or intervals are used for this purpose. Contrarily, unlike multiplicative PCMs, additive
PCMs are usually extended to intervals rather than to fuzzy numbers. Intervals can be understood as a
special case of trapezoidal fuzzy numbers where all elements from the given interval have the same degree of
membership to the fuzzy set. Note that sometimes it will be explicitly distinguished between terms “fuzzy” and
“interval” in this thesis. Often, however, only the term “fuzzy” will be used for the simplicity and, in such case,
intervals will be understood as a particular case of fuzzy numbers, namely of trapezoidal fuzzy numbers.

The fuzzy extension of PC methods to fuzzy numbers (or intervals) basically consists in using fuzzy num-
bers (intervals) at the stage of entering PCs into a PCM. These fuzzy numbers can be either chosen from a
predefined scale of fuzzy numbers assigned to linguistic terms expressing preference intensities, or entered
expertly by the DM without linguistic representation. Having a fuzzy PCM (FPCM), i.e. a PCM with elements
in form of fuzzy numbers, the aim is to obtain fuzzy priorities of these objects.

1.2.2 Critics of fuzzy extension of AHP

Saaty (2006) argued that, in AHP, “the numbers assigned to judgments are already fuzzy and making them
more fuzzy does not help produce more valid outcome” (Saaty (2006), p. 457). Saaty and Tran (2007) demon-
strated on several examples the invalidity of fuzzification of AHP and concluded that “one should never use
fuzzy arithmetic on AHP judgment matrices” (Saaty and Tran (2007), p. 970). Clearly, when the PCs obtained
from a DM are crisp, there is no gain from fuzzifying them without a good reason. However, when the PCs
are vague or when linguistic terms are used to express intensities of preference on pairs of compared objects,
fuzzy numbers should be applied instead of crisp numbers (Krejčı́ et al., 2017). Krejčı́ et al. (2017) further
showed that by neglecting the available information about uncertainty of intensities of preferences an impor-
tant part of knowledge about the decision-making problem is lost which can cause the change in raking of the
alternatives of the decision-making problem.

Besides Saaty and Tran’s critics, very harsh critics of the fuzzy extension of AHP were provided also by
Zhü (2014). He heavily criticizes the well-known fuzzy approaches to AHP and claims fallacy of all of them.
However, Zhü’s critics are based mostly on misinterpreting other researchers’ claims and rejecting consolidated
bases of fuzzy set theory. Fedrizzi and Krejčı́ (2015) showed that no reliable evidence of the fallacy of AHP was
provided by Zhü (2014), and thus fuzzy AHP and more in general methods utilizing multiplicative and additive
FPCMs remain a valid MCDM research area.

It is clear that fuzzy AHP, and in general fuzzy MCDM methods based on multiplicative and additive FPCMs,
have some critical aspects (some of them indicated by Zhü (2014)) that need to be investigated and rectified.
One of them is the issue regarding the reciprocity (multiplicative or additive) of the related PCs, which is an
inherent property of PCMs. Reciprocity of the related PC has been neglected in multiplicative and additive
FPCMs for a long time which led to some incorrect results. Nevertheless, this drawback can be relatively easily
removed by applying constrained fuzzy arithmetic instead of standard fuzzy arithmetic to the computations with
fuzzy numbers (Fedrizzi and Krejčı́, 2015). The following section is devoted to clarify this point.

Another issue related to the extension of methods from PCMs to FPCMs is the invariance under permutation
of objects. A method is said to be invariant under permutation of objects if the result of the method does not
depend on the permutation of objects compared in a PCM. Even though the invariance under permutation
of objects was introduced as one of the axioms which “good” methods should meet (see Fichtner (1986);
Brunelli and Fedrizzi (2015)), many methods proposed for FPCMs violate this property. Nevertheless, also
the invariance under permutation can be reached by applying properly constrained fuzzy arithmetic instead of
standard fuzzy arithmetic to the fuzzy extension of the methods.

1.2.3 Constrained fuzzy/interval arithmetic

Constrained fuzzy arithmetic, introduced by Klir (1997) and Klir and Pan (1998), should be applied to compu-
tations with fuzzy numbers whenever there are interactions of any type present between the fuzzy numbers.
Similarly, constrained interval arithmetic, that was recently introduced by Lodwick and Jenkins (2013), should
be applied to computations with intervals when interactions are present. Constrained interval arithmetic can
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be seen as a special case of constrained fuzzy arithmetic since intervals are special cases of trapezoidal fuzzy
numbers. Therefore, all comments and discussions on constrained fuzzy arithmetic in this thesis apply also
for interval fuzzy arithmetic if not specified otherwise. Motivation for the use of constrained fuzzy arithmetic
is given in the following example. For the simplicity, intervals that are (as we already know) a special case of
trapezoidal fuzzy numbers are used for explanation.

Example 1. Let us assume we have exactly one liter, i.e. 1000 ml, of beer in one bottle and we want to share
it with our friend. We pour half of the beer into a half-liter. Of course, it is highly improbable that we would
manage to pour exactly 500 ml into the half-liter. Our friend has a look on the half-liter and estimates that there
is for sure something between 450 ml and 520 ml of beer inside. What can we say about the rest of the beer
in our bottle? Based on the information from our friend and on our common sense, we can say that there is for
sure something between 480 ml and 550 ml in our bottle. How did we arrive to this conclusion? Well, if there
is 450 ml of beer in our friend’s half-liter, then in our bottle there has to be 1000 − 450 = 550 ml left. In case
there is 520 ml of beer in our friend’s half-liter, then in our bottle there has to be 1000− 520 = 480 ml left. This
is nothing else but the standard interval arithmetic; 1000− [450, 520] = [1000− 520, 100− 450] = [480, 550].

What happens if we pour our friend’s half-liter back to the one-liter bottle? Our common sense says that
we have to get again the exact one liter (1000 ml) of beer, unless we spill some of it. But what mathematics
is behind this very simple task? If we apply again standard interval arithmetic we know, we get [450, 520] +
[480, 550] = [450+ 480, 520+ 550] = [930, 1070]. So this would suggest that there is something between 930 ml
and 1070 ml of beer. But everyone would agree that this is not possible; there has to be 1000 ml again in our
bottle. So what is going on?

The problem is that there are dependencies between the amounts of beer in our friend’s half-liter and in our
bottle. We had exactly 1000 ml of beer at the beginning, and we pour a part of it into a half-liter. Therefore,
no matter what the exact amount x between 450 ml and 520 ml of beer in the half-liter is, we know for sure
that the rest of beer in our bottle is y = 1000 − x ml. When pouring the half-liter back to the bottle, we cannot
forget about this dependency. However, this simple problem requires a more sophisticated approach than just
standard interval arithmetic. We should correctly compute

z = x+ y where

x ∈ [450, 520]

y ∈ [480, 550]

y = 1000− x

This is nothing else than constrained (in this particular case interval) arithmetic. △

Constrained fuzzy (or interval) arithmetic is not applicable only when sharing beer with friends. It should be
applied whenever there are some dependencies between operands in arithmetic operations on fuzzy numbers
(or intervals). As stated at the end of Section 1.2.2, there are dependencies between PCs in a FPCM; in
particular, reciprocal relations between the related PCs. Since reciprocity of the related PCs is an inherent
property of PCMs, it is necessary to extend it properly also to FPCMs.

1.3 Goal of the thesis

As already mentioned in Sections 1.2 and 1.2.1, “traditional” MCDM methods including the methods based on
multiplicative PCMs as well as on additive PCMs (both with additive and multiplicative representation) are often
criticized because of their inability to capture uncertainty stemming from subjectivity of human thinking and from
incompleteness of information that are often closely related to MCDM problems. This uncertainty has an impact
on the PCs provided by DMs in PCMs. In order to capture the uncertainty, the methods originally proposed for
crisp PCMs have been extended to fuzzy numbers and intervals. The fuzzy extension often consists in simply
replacing the crisp PCs in the given model by fuzzy PCs and applying standard fuzzy arithmetic to obtain the
desired fuzzy priorities. However, this approach often fails in handling appropriately the uncertain preference
information contained in the FPCM, which may lead to false results. Therefore, the first research question of
this thesis is:

(1) Based on a FPCM of objects, how should fuzzy priorities of these objects be determined so that
they reflect properly all preference information available in the FPCM?

In order to answer this research question, it is necessary to fully understand the meaning of PCs in a PCM
and to identify inherent properties of PCMs. As discussed in Section 1.2.2, the crucial inherent property of
PCMs is the reciprocity of the related PCs. The concept of reciprocity of the related PCs becomes more com-
plex when extended to FPCMs and handling appropriately the reciprocity property becomes of key importance
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in order to process correctly the preference information contained in the FPCM and to arrive to reasonable
conclusions. Unfortunately, this issue is usually omitted in the literature. This leads to results (resulting fuzzy
priorities of objects in particular) that are often excessively uncertain and do not reflect correctly the preference
information available in the original FPCM.

Another crucial property related to both PCMs and FPCMs is the invariance of methods under permutation
of objects. Many methods based on FPCMs violate this property, which leads to false results.

The drawbacks regarding the violation of the reciprocity property and of the invariance under permutation
of objects can be removed by applying constrained fuzzy arithmetic to the computations instead of standard
fuzzy arithmetic. Unfortunately, the use of constrained fuzzy arithmetic is still neglected in the literature on
fuzzy extension of MCDM methods based on PCMs. In fact, I have encountered only one research paper
dealing with this important topic - Enea and Piazza (2004).

In order to properly answer the research question (1), four tasks are pursued in the thesis:

(1.a) to critically review the well-known and in practice most often applied methods based on PCMs (multi-
plicative PCMs, additive PCMs with additive representation, and additive PCMs with multiplicative repre-
sentation) dealing with the construction of PCMs, consistency verification, and priorities computation;

(1.b) to critically review the existing approaches to the fuzzy extension of the methods reviewed within task (1.a)
and to identify their drawbacks regarding the violation of the reciprocity property and of the invariance
under permutation of objects;

(1.c) to demonstrate the necessity of applying constrained fuzzy arithmetic to the fuzzy extension of MCDM
methods based on PCMs in order to obtain meaningful results reflecting the preference information con-
tained in the original FPCM and not suffering from the drawbacks identified within task (1.b);

(1.d) to propose a new fuzzy extension of the methods critically reviewed within task (1.a) by applying con-
strained fuzzy arithmetic that does not suffer from the drawbacks identified within task (1.b) and that
reflects properly all preference information available in FPCMs.

Note that because of the excessive extent of the topic, only the first three tasks of the PC methods and
their fuzzy extension will be addressed in this thesis, i.e. the construction of PCMs, consistency verification,
and computation of priorities. The study of the fourth task, i.e. aggregation of the priorities of alternatives and
criteria into final priorities of alternatives representing final multi-criteria evaluations of the alternatives, and of
the extension of all four tasks to multiple DMs is left for future research.

Beside the inability to capture uncertainty, the “traditional” methods are also not able to cope with the situ-
ations where it is not possible or reasonable to obtain complete preference information from DMs, for example
due to time or cost limitations. This problem occurs especially in the situations where large-dimensional PCMs
are involved. That is why various methods for dealing with incomplete large-dimensional PCMs have been
proposed in the literature.

When dealing with incomplete large-dimensional PCMs, compromise between reducing the number of PCs
required from the DM as much as possible and obtaining reasonable priorities of objects is of paramount
importance. Thus, the second research question of this thesis is:

(2) How can the amount of preference information required from the DM in a large-dimensional PCM
be reduced while still obtaining comparable priorities of objects?

In order to properly answer this research question, it is necessary to define the meaning of “comparable”
priorities first. In the context of incomplete large-dimensional PCMs in this thesis, by comparable priorities
of objects will be meant such priorities of objects that are close enough to the actual priorities that would be
obtained from the hypothetical complete PCM, i.e. such priorities that approximate the actual priorities well
enough.

The research question (2) is answered in the thesis by pursuing the following two tasks:

(2.a) to propose an efficient method for partially filling an incomplete large-dimensional PCM that minimizes
the number of PCs required from the DM but provides a sufficient amount of preference information;

(2.b) to propose a suitable method for deriving priorities from an incomplete large-dimen- sional PCM that
reflect the incompleteness of preference information and that are “close” to the priorities obtainable from
the hypothetical complete PCM.

The basic idea is to design an algorithm based on an optimal sequential choice of the PCs that should be
provided by the DM and on the concept of weak consistency. Based on the weak consistency, the missing
PCs in the matrix should be replaced by intervals providing ranges for the missing preference information, thus
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obtaining a large-dimensional fuzzy (more precisely interval) PCM. Afterwards, methods for deriving fuzzy
priorities from FPCMs that are going to be proposed in this thesis whithin task (1.d) should be applied in order
to obtain interval priorities that represent properly the incompleteness of preference information contained in
the original incomplete large-dimensional PCM.

Note that because of the excessive extent of the topic only the problems where the DM provides PCs in
the form of crisp numbers are considered in this thesis. The generalization of the proposed method to fuzzy
numbers is again left for future research.

1.4 Structure of the thesis

This thesis is divided into five chapters. This chapter, Chapter I, provides an introduction to the topic of the
thesis and states the research questions and the tasks pursued in the thesis in order to provide answers to the
research questions.

Chapter II provides a critical review of well-known and in real-life MCDM problems most often applied meth-
ods based on PCMs (task (1.a)). Three types of PCMs are studied in this chapter - multiplicative PCMs, additive
PCMs with additive representation, and additive PCMs with multiplicative representation - and transformations
between the three approaches are examined.

Chapter III reviews basic concepts from fuzzy set theory which play a key role in this thesis. Trapezoidal and
triangular fuzzy numbers and intervals, that are later used for the fuzzy extension of methods based on PCMs,
are defined. Standard and constrained fuzzy arithmetic are studied in detail and the necessity of applying
constrained fuzzy arithmetic to arithmetic operations with fuzzy numbers in the presence of constraints on
operands is emphasized.

Chapter IV is the central chapter of the thesis that provides the answer to the research question (1). In this
chapter, the fuzzy extension of the methods reviewed in Chapter II is studied. In particular, the fuzzy extensions
proposed in the literature are critically reviewed and their drawbacks regarding violation of the reciprocity of the
related PCs and of the invariance under permutation of objects are identified (task (1.b)). Necessity of applying
constrained fuzzy arithmetic to the fuzzy extension of the methods is emphasized in order to remove these
drawbacks (task (1.c)) and a proper fuzzy extension of the methods is proposed afterwards (task (1.d)). In
the final part of the chapter, transformations between the new methods based on constrained fuzzy arithmetic
proposed for all three types of FPCMs are studied.

In Chapter V, findings from Chapter IV are utilized in order to answer the research question (2), i.e. to deal
with incomplete PCMs of large dimensions. In particular, an algorithm for identifying iteratively PCs that should
be provided by the DM in an incomplete large-dimensional PCM (task (2.a)) and a method for obtaining interval
priorities from such an incomplete large-dimensional PCM (task (2.b)) are proposed.

Finally, Chapter VI contains discussion and perspectives for future research.
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Chapter II

Pairwise comparison matrices

Part of this chapter has been published in:

Krejčı́ J.: “Obtaining fuzzy priorities from additive fuzzy pairwise comparison matrices”, IMA Journal of
Management Mathematics, First published online: May 2016, doi: 10.1093/imaman/dpw006.

2.1 Introduction

In order to solve a MCDM problem (to choose the best alternative from a set of alternatives, to rank the
alternatives from the most preferred to the least preferred, or to sort the alternatives into predefined classes),
rating of objects (alternatives, criteria) is usually required from decision makers (DMs). However, DMs might
have problems with rating the objects (assigning priorities to the objects) directly. That is because of the
cognitive limitation and incapability to compare several objects at the same time.

This limitation can be easily overcome by providing PCs of objects and then deriving the desired rating
(priorities) of objects. Using PCs allows the DM to consider only two objects at a time which is significantly less
demanding than considering them all. These PCs can be conveniently structured into a pairwise comparison
matrix (PCM). After, an appropriate method is applied to the PCM in order to derive priorities w1, . . . , wn of
objects representing DM’s preferences.

PCs of n objects o1, . . . , on are structured into a PCM C = {cij}ni,j=1 as follows:

C =

o1 o2 . . . on
o1
o2
...
on


c11 c12 . . . c1n
c21 c22 . . . c2n
...

...
. . .

...
cn1 cn2 . . . cnn

 .
(II.1)

The PC cij in the i−th row and the j−th column of the PCM C expresses the intensity of preference of object
oi over object oj . For easier understanding, the rows and the columns in the PCM (II.1) are labeled by the
names of the compared objects. This labeling is usually omitted in the literature and, for simplicity, it will be
omitted also in this thesis.

Notice that the PCs cij and cji express intensities of preference on the same pair of objects oi and oj ; the
PC cij expresses the intensity of preference of object oi over object oj and the PC cji expresses the intensity
of preference of object oj over object oi. Therefore, it is obvious that these PCs are in relation. The type of
relation depends on the type of representation used for expressing PCs. In this thesis, two types of relation
between the PCs cij and cji are of interest: the multiplicative-reciprocity relation cji = 1

cij
and the additive-

reciprocity relation cji = 1 − cij . Reciprocity relation is an inherent property of a PCM that results naturally
from the interpretation of the PCs in a PCM. Both types of the reciprocity relation will be studied in detail in the
following sections.

There exists no canonical order in which to assign to n objects the labels o1, . . . , on. The objects can be
labeled in n! different ways. By changing labeling of objects in a PCM, the preference information contained
in the PCM does not change; the original PCs are only permuted accordingly. Thus, it is desirable that the
priorities of objects derived from a PCM are independent of the order in which the objects are associated with
the rows and the columns of the PCM (Fichtner, 1986). This means that the priorities w1, . . . , wn of objects
should not change under any permutation of the PCM C. Fichtner (1986) introduced the invariance under
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permutation of objects as one of the axioms which “good” methods for deriving priorities from PCMs should
meet.

Being P a permutation matrix, i.e. a square matrix with exactly one entry equal to 1 in each row and column
and 0 elsewhere, Cπ = PCPT is a permutation of C associated with P. Further, let C denote a certain class
of PCMs. Then, invariance under permutation of methods for deriving priorities of objects from PCMs can be
formally defined as follows.

Definition 1. Let a method for deriving priorities w = (w1, . . . , wn)
T of objects from PCMs in a certain class C

be described by a function f : C → Rn, i.e. w = f(C), C ∈ C. Then the method is said to be invariant under
permutation of objects if

f(PCPT ) = Pf(C), ∀C ∈ C and for any permutation matrix P.

In order to obtain reliable priorities of objects from PCMs, DMs should behave rationally when providing
intensities of preference, i.e they should be consistent in their preferences. This basically means that DMs
should not enter PCs into a PCM randomly without thinking carefully about their meaning but they should fully
focus on this task.

Various definitions of consistency as well as inconsistency indices have been defined in the literature in
order to control the consistency of PCMs. Again, it comes natural to require invariance of both the definitions
of consistency and of the inconsistency indices. Brunelli and Fedrizzi (2015) even introduced the invariance
under permutation of objects as one of the axioms characterizing inconsistency indices.

Definition 2. A definition of consistency for PCMs in a certain class C is said to be invariant under permutation
of objects if ∀C ∈ C the following holds:

C consistent ⇒ PCPT consistent for every P,

C not consistent ⇒ PCPT not consistent for any P,

where P is a permutation matrix.

Definition 3. An inconsistency index I : C → R defined on a certain class C of PCMs is said to be invariant
under permutation of objects if

I(PCPT ) = I(C), ∀C ∈ C and for any permutation matrix P.

As already mentioned in Section 1.1.1, there exist two basic types of PCMs in MCDM: multiplicative PCMs
and additive PCMs. The additive PCMs are further divided into two types depending on the representation
used. In the following sections, all three types of PCMs are defined, and well-known and most often applied
consistency conditions, inconsistency indices, and methods for deriving priorities of objects from these PCMs
are reviewed.

2.2 Multiplicative pairwise comparison matrices

The first bases of the theory on multiplicative PCMs were given by Saaty (1977, 1980) who introduced a com-
plete method for supporting MCDM based on this type of PCMs called AHP. AHP covers all main issues, from
structuring the problem into a hierarchy, over the construction of multiplicative PCMs, verifying their consis-
tency, deriving priorities of objects on different levels of the hierarchy, up to the aggregation of the priorities on
different levels of the hierarchy into the final priorities of decision alternatives. In this section, the methods for
constructing multiplicative PCMs, verifying their consistency, and deriving priorities of objects from multiplica-
tive PCMs are reviewed.

2.2.1 Construction of MPCMs

Definition 4. A multiplicative pairwise comparison matrix (MPCM) of n objects o1, . . . , on is a square matrix
M = {mij}ni,j=1 , whose elements mij , i, j = 1, . . . , n, indicate the ratio of preference intensity of object oi to
that of object oj . In other words, element mij indicates that oi is mij−times as good as oj . Further, a MPCM
M = {mij}ni,j=1 has to be multiplicatively reciprocal, i.e.

mij =
1

mji
, i, j = 1, . . . , n. (II.2)
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Example 2. The matrix

M =


1 2 4 7
1
2 1 2 5
1
4

1
2 1 3

1
7

1
5

1
3 1

 (II.3)

represents a MPCM of four objects o1, o2, o3, and o4; the matrix clearly satisfies condition (II.2) of multiplicative
reciprocity required in Definition 4.

According to Definition 4, element m13 = 4 indicates that object o1 is 4−times as good as object o3 (or in
other words: 4−times preferred to o3). Thus, according to the common sense, object o3 should be 1

4−times
as good as object o1 (or in other words: 4−times less preferred to o1), i.e. m31 = 1

4 . Therefore, multiplicative
reciprocity (II.2) is a very natural property of MPCMs resulting from the interpretation of its elements.

Notice that, according to the multiplicative reciprocity, the elements on the main diagonal of the MPCM M
have to be equal to 1, i.e. mii = 1, i = 1, . . . , 4. This requirement is in compliance with the interpretation of
the PCs in the MPCM. The element mii represents the PC of object oi with object oi, i = 1, . . . , 4; i.e, the PC
of one object with itself. It is natural that oi is 1−times as good as itself (or in other words: equally preferred),
which results in mii = 1. △

As shown in Example 2, multiplicative reciprocity (II.2) is an inherent property that results naturally from
the interpretation of the PCs in a MPCM. Thus, it is always sufficient to provide one of the related PCs mij

and mji, i, j ∈ {1, . . . , n} , in a MPCM and the second one is then determined automatically based on the
multiplicative-reciprocity property (II.2).

As already mentioned in Section 1.1.1, various other terms besides “MPCM” are used in the literature.
Most often they are called just “PCMs” (see e.g. Saaty (1977, 2006) etc.). Sometimes they are referred to
as “reciprocal PCMs” or “reciprocal preference relations”. In this thesis, the term “MPCM” is used in order to
emphasize the fact that these PCMs are multiplicatively reciprocal, and to distinguish them clearly from additive
PCMs (defined later in Section 2.3) that are additively reciprocal.

To make PCs of objects, Saaty (1977) suggested to use integer numbers between 1 and 9 and their recip-
rocals. This means that one object can be up to 9−times preferred or more important over another one. The
choice of this 9−point scale was done based on the psychological experiments showing that humans are not
able to compare simultaneously more than 5 to 9 objects (Miller, 1956).

Each integer from the scale is also assigned a linguistic term expressing the intensity of preference/import-
ance of one object over another one. For example, number 1 represents equal preference and number 9 ab-
solute preference. Thus, DMs can express their intensities of preference either numerically using the integers
or linguistically using the assigned linguistic terms. Usually, Saaty’s scale of integers 1, 3, 5, 7, and 9 given
in Tab. II.1 is used for PCs. When there is a need for more detailed PCs, a more detailed scale with inter-
mediate values 2, 4, 6, and 8 is utilized. The intermediate values are expressed using the neighboring terms
and connecting them with the word “between”. For example, 2 is interpreted as “between equal and weak
preference”.

However, even though “being 9−times preferred” is the highest intensity of preference available in Saaty’s
scale to make PCs, it is not a natural maximum of intensity of preference. In fact, there is no natural maximum
of number of times an object can be preferred to another one. Thus, it is quite difficult for DMs to express their
intensities of preference in terms of multiples when they do not have a natural maximum value of intensity of
preference available. On the other hand, number 9 in Saaty’s scale is assigned the linguistic term “absolutely
preferred”. This may cause further confusion to DMs since “absolute preference” is naturally interpreted as the
maximum possible intensity of preference. Similarly, number 3 standing for “3−times preferred” is assigned a
linguistic term “weak preference”. Not even this linguistic term corresponds to human intuition. Most of the DMs
would probably assign “weak preference” to a number much closer to 1, which stands for equal preference, and
would use the number 3 to model much stronger intensity of preference. Thus, it seems that the linguistic terms
in Saaty’s scale do not correspond very well to the respective numerical values that are distributed uniformly in
the interval [1, 9]. Some further problems related to Saaty’s scale will be mentioned in the following section. A
detailed and interesting discussion on modeling linguistic terms from Saaty’s scale is given by Stoklasa (2014).

Usually, either the term “intensity of preference” or the term “intensity of importance” is used in relation to
PCs of objects. The choice of the particular term often depends on the context. When comparing alternatives
with respect to a given criterion, we usually use the term “preference”. When comparing criteria with respect to
the goal of the decision-making problem, the term “importance” is often preferred. For the simplicity, only one
of the terms will always be used hereafter.

Saaty’s discrete scale
{

1
9 ,

1
8 , . . . , 1, 2, . . . , 8, 9

}
is without doubts the most commonly used scale in practice.

However, in general, any scale S of real numbers containing the neutral element 1 and such that for any
element x in S also the element 1

x belongs to S can be used for the construction of MPCMs. Particular cases
of such scale are the intervals

[
1
σ , σ

]
, σ > 1, and ]0,∞[ (Gavalec et al., 2015).
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Table II.1: Saaty’s scale.

Intensity of preference Linguistic term

1 equal preference
3 weak preference
5 strong preference
7 demonstrated preference
9 absolute preference

2, 4, 6, 8 intermediate values between
the two adjacent judgments
connected by word “between”

2.2.2 Consistency of MPCMs
Multiplicative reciprocity (II.2) is an inherent property of MPCMs resulting from the interpretation of the PCs
in the matrices. However, requiring the multiplicative reciprocity of PCs is not sufficient to guarantee that the
preference information contained in a MPCM is reasonable and that the priorities of objects derived from such
a matrix are reliable, i.e. that they represent preferences of the DMs properly.

In order to guarantee reliability of the priorities obtainable from a MPCM, DMs should be consistent in
their preferences when entering PCs into the MPCM. Various consistency conditions have been defined for
MPCMs. A well-known and most often applied consistency condition is the traditional multiplicative-consistency
condition.

2.2.2.1 Multiplicative consistency

Definition 5. (Saaty, 1980) A MPCM M = {mij}ni,j=1 is said to be multiplicatively consistent if it satisfies the
multiplicative-transitivity property

mij = mikmkj , i, j, k = 1, . . . , n. (II.4)

Definition 5 of multiplicative consistency is clearly invariant under permutation of objects compared in the
MPCM M.

Example 3. The MPCM

M =


1 2 4 8
1
2 1 2 4
1
4

1
2 1 2

1
8

1
4

1
2 1

 (II.5)

is multiplicatively consistent according to Definition 5 since it satisfies the multiplicative-transitivity property
(II.4). By permuting the MPCM M using the permutation matrix

P =


1 0 0 0

0 0 0 1

0 1 0 0

0 0 1 0

 , (II.6)

for example, we obtain the MPCM Mπ = PMPT in the form

Mπ =


1 8 2 4
1
8 1 1

4
1
2

1
2 4 1 2
1
4 2 1

2 1

 , (II.7)

which is again multiplicatively consistent according to Definition 5. △

The following theorem provides us with alternative ways to verify multiplicative consistency of MPCMs.

Theorem 1. For a MPCM M = {mij}ni,j=1, the following statements are equivalent:

(i) mij = mikmkj , i, j, k = 1, . . . , n,
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Table II.2: Random index RI.

n 1 2 3 4 5 6 7 8 9 10
RI 0 0 0.52 0.89 1.11 1.25 1.35 1.41 1.45 1.49

(ii) mijmjkmki = 1, i, j, k = 1, . . . , n,

(iii) mijmjkmki = mikmkjmji, i, j, k = 1, . . . , n.

Further, Saaty (1994) derived the following characterization of multiplicatively consistent MPCMs.

Proposition 1. A MPCM M = {mij}ni,j=1 is multiplicatively consistent if and only if there exists a positive
vector w = (w1, . . . , wn)

T such that
mij =

wi

wj
, i, j = 1, . . . , n. (II.8)

The notation w = (w1, . . . , wn)
T will be used hereafter to represent exclusively a priority vector associated

with a MPCM.
According to Proposition 1, when a MPCM M = {mij}ni,j=1 of n objects is multiplicatively consistent,

there exist priorities w1, . . . , wn of objects using which we can determine precisely the original PCs mij , i, j =
1, . . . , n, in the MPCM M by applying the characterization (II.8). In fact, each column of a multiplicatively
consistent MPCM M is a priority vector satisfying these properties. On the other hand, when the priorities
w1, . . . , wn of objects are available, we can construct a multiplicatively consistent MPCM of objects by applying
(II.8). Notice that the multiplicative reciprocity of M is always guaranteed by applying (II.8) since mji =

wj

wi
=

1
wi
wj

= 1
mij

.

Example 4. Since the MPCM (II.5) in Example 3 is multiplicatively consistent, there exists a positive priority
vector w = (w1, w2, w3, w4)

T satisfying the characterization property (II.8). It is, for example, the priority vector
w = (1, 1

2 ,
1
4 ,

1
8 )

T . △

Multiplicative-consistency condition (II.4) seems to be reasonable when using numerical values for express-
ing the intensities of preference. When, for example, object oi is 3−times preferred to object ok(mik = 3), and
object ok is 3−times preferred to object oj(mkj = 3), then it is quite natural to require object oi to be 9−times
preferred to object oj(mij = 3 ·3 = 9). But what happens when mik = 3 and mkj = 5? In order to be consistent
we should write mij = 3 · 5 = 15. However, this numerical value is out of Saaty’s scale that is usually used for
making PCs. Note that this problem would not occur with the scale S =]0,∞[, where for any mik ∈ S,mkj ∈ S
also mij = mikmkj ∈ S.

Clearly, it is very difficult or even impossible (especially for MPCMs of large dimensions) to keep multi-
plicative consistency (II.4) when using only the values from limited Saaty’s scale and their reciprocals. Thus,
Saaty (1980) defined Consistency Index CI to measure inconsistency of MPCMs. CI is given for a MPCM
M = {mij}ni,j=1 as

CI =
λ− n

n− 1
, (II.9)

where n is the number of objects compared in the matrix, and λ is the maximal eigenvalue of the matrix. CI
defined by (II.9) is invariant under permutation of objects compared in the MPCM M (Brunelli and Fedrizzi,
2015). Further, Saaty (1994) showed that when the DM is absolutely consistent in his or her judgments, i.e.
when the MPCM is multiplicatively consistent according to (II.4), then λ = n, and thus CI = 0.

Since reaching absolute multiplicative consistency is very difficult, especially with limited Saaty’s scale,
some degree of inconsistency is allowed. CI is required to be close to 0. However, determining the valued
of CI below which MPCMs are regarded as acceptably inconsistent and above which they are regarded as
inconsistent is complicated. Thus, Saaty (1980) defined Consistency Ratio CR in the form

CR =
CI

RI
, (II.10)

where RI is Random Index that is computed as an average value of CI of MPCMs randomly generated from
the elements of Saaty’s scale separately for each order n of MPCMs. Tab. II.2 shows the values of RI (rounded
to two decimal places) for MPCMs up to dimension n = 10 as given by Alonso and Lamata (2006).

According to Saaty (1980), a MPCM is regarded as acceptably inconsistent if CR ≤ 0.1. A MPCM such
that CR > 0.1 is then considered as inconsistent and the PCs in such a matrix should be reconsidered.
Nevertheless, even the relaxed requirement of CR ≤ 0.1 is quite difficult to reach, especially for MPCMs of
large dimensions.
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Besides CR, many other inconsistency indices have been proposed in the literature for verifying an accept-
able level of inconsistency of MPCMs. Some of them are reviewed e.g. by Brunelli and Fedrizzi (2015) and by
Gavalec et al. (2015).

The interpretation of the multiplicative consistency condition (II.4) does not seem very intuitive when lin-
guistic terms from Saaty’s scale are used for expressing the intensities of preference. When, for example,
object oi is weakly preferred to object ok (mik = 3), and object ok is weakly preferred to object oj (mkj = 3),
then, according to the multiplicative consistency (II.4), it should follow that mij = 3 · 3 = 9, which means that
object oi should be absolutely preferred to object oj . However, absolute preference of oi over oj seems to be
too strong in comparison to weak preferences of oi over ok and of ok over oj . Using a much smaller preference
than the absolute preference would probably be more intuitive in this case. Thus, other consistency conditions
respecting better the linguistic interpretation of preference intensities have been proposed in the literature. One
of them is the weak-consistency condition introduced by Jandová and Talašová (2013) and by Stoklasa et al.
(2013).

2.2.2.2 Weak consistency

Jandová and Talašová (2013) and Stoklasa et al. (2013) proposed the weak-consistency condition as an in-
tuitive minimum consistency requirement for MPCMs M = {mij}ni,j=1. The idea is to require the preference
intensity mij to be at least the maximal value of the preference intensities mik and mkj for each triplet of
objects oi, oj , ok, i, j, k ∈ {1, . . . , n} .

Definition 6. (Jandová and Talašová, 2013) A MPCM M = {mij}ni,j=1 is said to be weakly consistent if

mik > 1 ∧ mkj > 1 ⇒ mij ≥ max {mik,mkj} ,

mik = 1 ∧ mkj ≥ 1 ⇒ mij = max {mik,mkj} ,

mik ≥ 1 ∧ mkj = 1 ⇒ mij = max {mik,mkj} ,

(II.11)

holds for i, j, k = 1, . . . , n.

It is obvious that Definition 6 of weak consistency is again invariant under permutation of objects compared
in the MPCM M.

The weak-consistency condition is suitable especially when linguistic terms are used for expressing the
intensities of preference instead of real numbers. For example, when object oi is weakly preferred to object
ok (mik = 3), and object ok is strongly preferred to object oj (mkj = 5), then object oi has to be at least
strongly preferred to object oj (mij ≥ max {3, 5} = 5). Thus, the requirement of weak consistency seems to
be very natural, and it provides DMs with some space for expressing their intensities of preference - a desired
tolerance. Moreover, it is very easy to control while entering PCs into the MPCM.

The weak-consistency condition was also defined in more relaxed forms by Krejčı́ (2017b) and by Basile
and D’Apuzzo (2002). Recently, Cavallo and D’Apuzzo (2016) proposed a definition of weak consistency very
similar to the weak consistency in Definition 6. In this thesis, the weak-consistency condition given by Definition
6 is adopted and later applied in Chapter V in a novel method for dealing with large-dimensional PCMs.

Jandová and Talašová (2013) derived some rules equivalent to the weak-consistency condition (II.11). They
are formulated in the following theorem.

Theorem 2. (Jandová and Talašová, 2013) For a MPCM M = {mij}ni,j=1 , the following statements are equiv-
alent:

(i) M is weakly consistent according to Definition 6,

(ii) For every i, j, k = 1, . . . , n :

mik < 1 ∧ mkj < 1 ⇒ mij ≤ min {mik,mkj} ,

mik = 1 ∧ mkj ≤ 1 ⇒ mij = min {mik,mkj} ,

mik ≤ 1 ∧ mkj = 1 ⇒ mij = min {mik,mkj} .

(II.12)

(iii) For every i, j, k = 1, . . . , n :

1 < 1
mkj

< mik ⇒ 1
mik

≤ mij ≤ mik,

1 < mik < 1
mkj

⇒ mkj ≤ mij < 1,

1 < 1
mkj

< mik ⇒ 1 < mij ≤ mik.

(II.13)
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(iv) For every i, j, k = 1, . . . , n :

1
mkj

< mik < 1 ⇒ mkj ≤ mij ,

1 < mkj <
1

mik
⇒ mik ≤ mij < 1,

1 < mkj =
1

mik
⇒ 1

mkj
≤ mij ≤ mkj .

(II.14)

Further, Jandová and Talašová (2013) derived some interesting properties of weakly consistent MPCMs.
For example, every weakly consistent MPCM can be permuted in such a way that the objects compared in
the MPCM are ordered from the most preferred to the least preferred. In such an ordered weakly consistent
MPCM, all elements above the main diagonal are greater or equal to 1, i.e. mij ≥ 1, i, j = 1, . . . , n, i < j.
Moreover, the sequences of elements in the rows are non-decreasing and the sequences of elements in the
columns are non-increasing.

Example 5. The MPCM

M =


1 2 5 9
1
2 1 4 7
1
5

1
4 1 6

1
9

1
7

1
6 1

 (II.15)

is obviously weakly consistent according to Definition 6 since the sequences of the PCs in the rows are non-
decreasing and the sequences of the PCs in the columns are non-increasing. △

Jandová and Talašová (2013) showed that every MPCM that is multiplicatively consistent according to
Definition 5 is also weakly consistent according to Definition 6. In fact, from mik > 1 ∧ mkj > 1, it follows
that mij = mikmkj ≥ max {mik,mkj} . For mik = 1 ∧ mkj ≥ 1, and for mik ≥ 1 ∧ mkj = 1, we get
mij = mikmkj = max {mik,mkj} .

The properties of weakly consistent MPCMs reviewed in this section are utilized in the novel method for
dealing with large-dimensional PCMs that is described in detail in Chapter V.

2.2.3 Deriving priorities from MPCMs

Based on the given MPCM M = {mij}ni,j=1 of n objects o1, . . . , on, it is endeavoured to derive the priority
vector w = (w1, . . . , wn)

T that would best represent the relative preference (or importance) of the objects with
respect to the other objects in the set.

We know from the previous section that when a MPCM M={mij}ni,j=1 is multiplicatively consistent accord-
ing to (II.4), then there exists a positive priority vector w = (w1, . . . , wn)

T such that mij = wi

wj
, i, j = 1, . . . , n.

For example, any column of the multiplicatively consistent MPCM can by used to represent the priority vector
w = (w1, . . . , wn)

T . When the MPCM M = {mij}ni,j=1 is not multiplicatively consistent, then the ratios of the
priorities only estimate the PCs in the matrix, i.e.

mij ≈
wi

wj
, i, j = 1, . . . , n. (II.16)

Priorities w1, . . . , wn are given on a ratio scale. Because the ratios wi

wj
, i, j = 1, . . . , n, play a key role, these

ratios cannot change under any normalization of the priorities. Thus, the normalization can be done only by
multiplying the priorities by a constant c > 0 ( c·wi

c·wj
= wi

wj
). This means that when there exists a positive vector

w = (w1, . . . , wn)
T representing the priorities of objects o1, . . . , on, then also any vector obtained from w by the

transformation
wi → c · wi, i = 1, . . . , n, (II.17)

where c > 0, represents the priorities of the objects. In the literature, the normalization condition

n∑
i=1

wi = 1, wi ∈ [0, 1], i = 1, . . . , n, (II.18)

is usually applied in order to reach the uniqueness. This normalization condition is applied also in this thesis,
and for simplicity and when no confusion arises, the normalized priorities are referred to only as priorities.

Many methods have been proposed in the literature for deriving priorities of objects from MPCMs. In this
thesis, two well-known methods, the eigenvector method and the geometric-mean method, are of interest, and
only the extension of these two methods to fuzzy MPCMs will be dealt with here. For a review of other methods,
see, e.g., Gavalec et al. (2015).
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2.2.3.1 Eigenvector method

The eigenvector method (EVM), originally proposed by Saaty (1977) for deriving priorities in AHP, is one of
the oldest methods for deriving priorities of objects from MPCMs. According to this method, the priorities of
objects are calculated as the components w1, . . . , wn of the normalized maximal eigenvector w corresponding
to the maximal eigenvalue λMAX of the MPCM M.

Let A be a square matrix of size n. The scalar λ and the vector w of size n satisfying Aw = λw are called the
eigenvalue and the eigenvector of the matrix A, respectively. The set of all eigenvalues of matrix A is obtained
as the solution to the equation |A − λI| = 0 where I denotes the identity matrix of size n and |.| denotes the
determinant of a given matrix.

From Perron-Frobenius theorem it follows that for a positive matrix A = {aij}ni,j=1 , i.e. aij > 0 for i, j =

1, . . . , n, there exists a positive eigenvalue λMAX such that |λ| < λMAX for any other eigenvalue λ of A. Such
eigenvalue

λMAX = max {λ; |A− λI| = 0} (II.19)

is called the maximal eigenvalue of A. Further, there exists a positive eigenvector

w
MAX

= (w1, . . . , wn)
T : Aw

MAX
= λMAXwMAX

(II.20)

corresponding to λMAX called the maximal eigenvector of A. The maximal eigenvector wMAX is unique up to
a multiplicative constant. That is why normalization (II.18) is usually applied to obtain a unique solution - the
normalized maximal eigenvector

wMAX = (w1, . . . , wn)
T : AwMAX = λMAXwMAX ,

n∑
i=1

wi = 1. (II.21)

A MPCM M = {mij}ni,j=1 is a positive square matrix. Therefore, there always exists a positive maximal
eigenvalue λMAX and a normalized positive maximal eigenvector wMAX . The components of this eigenvector
represent the priorities of objects compared in the MPCM M. When a MPCM M = {mij}ni,j=1 is multiplicatively
consistent according to (II.4), then λMAX = n, and w

MAX
satisfies (II.8). Further, it is a well-known fact that the

EVM is invariant under permutation of objects in the MPCM M (see, e.g., Fichtner (1986)).
Only the maximal eigenvalues and the corresponding maximal eigenvectors are considered in this thesis.

Thus, for the sake of simplicity, the lower index MAX is omitted and only the notation λ and w is used hereafter.
Further, for later use in optimization formulas for deriving fuzzy maximal eigenvalues and normalized fuzzy
maximal eigenvectors of FMPCMs in Sections 4.2.2.4 and 4.2.3.1, it is particularly useful to denote the maximal
eigenvalue λ of matrix M as EVMλ(M) and the normalized maximal eigenvector w of matrix M corresponding
to λ as EVMw(M).

Further, the following property, that is later used in Section 4.2.2.4, results from the Perron-Frobenius
Theorem. Let A = {aij}ni,j=1 and B = {bij}ni,j=1 be two positive matrices, and let aij ≥ bij for i, j = 1, . . . , n

and akl > bkl for k, l ∈ {1, . . . , n} . Then, the maximal eigenvalue of A is greater than the maximal eigenvalue
of B, i.e. EVMλ(A) > EVMλ(B).

2.2.3.2 Geometric-mean method

The geometric mean method (GMM) is another well-known method for deriving priorities of objects from
MPCMs. This method gives the same results as the logarithmic least squares method (LLSM).

LLSM utilizes the characterization property (II.16) of a MPCM M = {mij}ni,j=1 , and it is based on the
minimization of the sum of squared errors of logarithms:

min

n−1∑
i=1

n∑
j=i+1

(
lnmij − ln

wi

wj

)2

→ wi, i = 1, . . . , n. (II.22)

It was shown that the optimal solution of (II.22) is always unique (up to a multiplicative constant) and can
be determined by the geometric mean of the elements in the rows of the MPCM M, i.e.

wi = n

√√√√ n∏
j=1

mij , i = 1, . . . , n. (II.23)
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By employing the normalization condition (II.18), the normalized priorities can be computed directly as

wi =

n

√
n∏

j=1

mij

n∑
k=1

n

√
n∏

j=1

mkj

, i = 1, . . . , n. (II.24)

It can be easily verified that the GMM given by formula (II.24) is invariant under permutation of objects in the
MPCM M.

Furthermore, Saaty and Vargas (1984) showed that when a MPCM is multiplicatively consistent according
to (II.4), then EVM and GMM (or equivalently LLSM) lead to the same results. This means that the priority
vector obtained from a multiplicatively consistent MPCM by GMM satisfies (II.8) too. When a MPCM is close
to multiplicative consistency, then the methods provide very similar but not identical results (Crawford and
Williams, 1985).

There have been many studies comparing EVM and GMM. Saaty and Vargas (1984) compared EVM,
GMM, and the least squares method. They concluded that EVM is the only method that guarantees rank
preservation (i.e., mik ≥ mjk for all k = 1, . . . , n implies wi ≥ wj) under inconsistency. Further, Saaty and
Hu (1998) showed an illustrative example where the ranking of alternatives obtained by GMM differs from the
ranking obtained by EVM. Based on this example, Saaty and Hu concluded that EVM is the only valid method
for deriving priorities from MPCMs, in particular from inconsistent MPCMs. However, it is not acceptable to
derive such a strong conclusion based on one illustrative example. Furthermore, showing that GMM leads to a
ranking different from the one obtained by EVM does not surely demonstrate that GMM leads to rank reversal;
this conclusion is based on the unfounded assumption that EVM provides the correct solution.

Crawford and Williams (1985) ran some simulations to compare the performance of EVM and GMM under
different error distributions and metrics. The simulations suggest better performance of GMM in priorities
estimation as well as in rank preservation. Other studies favoring GMM over EVM have been done, e.g., by
Barzilai (1997), Blaquero et al. (2006) and Dijkstra (2013).

2.3 Additive pairwise comparison matrices

The first bases of the theory of additive PCMs were given by Orlovski (1978), Nurmi (1981), Tanino (1984),
and Kacprzyk (1986). In this section, the methods for constructing additive PCMs are reviewed and two
types of additive PCMs are defined - additive PCMs with additive representation and additive PCMs with
multiplicative representation. Afterwards, definitions of consistency and methods for verifying consistency and
deriving priorities of objects from both types of additive PCMs are reviewed.

2.3.1 Construction of APCMs
Definition 7. An additive pairwise comparison matrix (APCM) of n objects o1, . . . , on is a square matrix A =
{aij}ni,j=1 whose elements aij , i, j = 1, . . . , n, are defined on interval [0, 1]. Further, the matrix is additively
reciprocal, i.e.

aij = 1− aji, i, j = 1, . . . , n. (II.25)

Unlike in the case of MPCMs, there exists no widely accepted discrete scale with assigned linguistic terms
for expressing the intensities of preference for APCMs. Often, the whole interval [0, 1] is used, i.e.

aij = 1 if oi is absolutely preferred to oj ,
aij ∈]0.5, 1[ if oi is preferred to oj ,
aij = 0.5 if oi and oj are indifferent/ equally preferred,
aij ∈]0, 0.5[ if oi is less preferred to oj ,
aij = 0 if oi is absolutely less preferred to oj .

(II.26)

Example 6. Matrix

A =

0.5 0.7 1

0.3 0.5 0.9

0 0.1 0.5

 (II.27)

represents an APCM of three objects o1, o2, and o3; the matrix clearly satisfies condition (II.25) of additive
reciprocity required in Definition 7.

According to Definition 7, element a13 = 1 indicates that object o1 is absolutely preferred to object o3.
Thus, according to the common sense, object o3 should be absolutely less preferred to object o1, i.e. a31 = 0.
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Therefore, additive reciprocity (II.25) is a very natural property of APCMs resulting from the interpretation of its
elements.

Notice that according to the additive reciprocity, the elements on the main diagonal of the APCM A have to
be equal to 0.5, i.e. aii = 0.5, i = 1, 2, 3. This requirement is in compliance with the interpretation of the PCs in
the APCM. The element aii represents the PC of object oi with itself. It is natural that oi is equally preferred to
itself, which means aii = 0.5, i = 1, 2, 3. △

As shown in Example 6, additive reciprocity (II.25) is an inherent property that results naturally from the
interpretation of the PCs in an APCM. Thus, it is always sufficient to provide one of the related PCs aij and
aji, i, j ∈ {1, . . . , n} , in an APCM and the second one is then determined automatically based on the additive-
reciprocity property (II.25).

Various other terms are used in the literature besides “APCM”. Most often they are called “fuzzy pref-
erence relations” (see, e.g., Bezdek et al. (1978); Nurmi (1981); Tanino (1984); Kacprzyk (1986); Cabrerizo
et al. (2014); Gavalec et al. (2015)), sometimes reciprocal relations (see, e.g., Baets et al. (2006); Fedrizzi
and Brunelli (2009, 2010)), additively reciprocal relations (see, e.g., Fedrizzi and Giove (2013)), or reciprocal
preference relations (see, e.g., Chiclana et al. (2009)). In this thesis, the term “APCM” is used in order to
emphasize the fact that these PCMs are additively reciprocal, and to make an analogy to MPCMs that are
multiplicatively reciprocal.

The use of the term “fuzzy preference relation” in this thesis might even be confusing or misleading. Histori-
cally, fuzzy preference relations were defined as a fuzzy extension of binary preference relations (Bezdek et al.
(1978); Nurmi (1981); Tanino (1984); Kacprzyk (1986)). Binary preference relation b on a finite set of objects
O = {o1, . . . , on} is defined as b : O × O → {0, 1} where b(oi, oj) = 1 if oi is preferred to oj , and b(oi, oj) = 0 if
oj is preferred to oi. Fuzzy preference relation b̃ on a finite set of objects O = {o1, . . . , on} is then defined as a
fuzzy set on the cartesian product O ×O characterized by the membership function µb̃ : O ×O → [0, 1] where
µb̃(oi, oj) = α represents the degree of preference of object oi to object oj . (Fuzzy sets will be defined properly
in Chapter III.)

In this thesis, the fuzzy extension of degrees of preference (intensities of preference) is of interest. There-
fore, because the intensities of preference both in MPCMs and APCMs will be later in this thesis modeled by
fuzzy numbers instead of crisp numbers, the world “fuzzy” is reserved for describing these extended versions
of PCMs, i.e. they will be called fuzzy MPCMs and fuzzy APCMs. If the term “fuzzy preference relation” was
used instead of “APCM”, we would have to deal with the fuzzy extension of fuzzy preference relations, i.e.
“fuzzy fuzzy preference relations”, which would create confusion.

Similarly as for MPCMs, the preference information contained in an APCM should be reasonable in order to
ensure that the priorities of objects derived from such a matrix represent properly DMs’ preferences. In order to
verify whether the DMs are consistent in their preferences, it is necessary to define an appropriate consistency
condition for APCMs.

Two traditional and well-known consistency conditions for APCMs are the additive-consistency condition
and the multiplicative-consistency condition introduced by Tanino (1984). Often, APCMs are considered as
one set of matrices for which it is possible to verify both additive and multiplicative consistency. However,
this approach is not correct. Each type of consistency is strictly related to a particular interpretation of the
PCs in the APCM A. In fact, before constructing an APCM A, it is necessary to choose between additive
and multiplicative representation (associated with additive and multiplicative consistency, respectively), which
has an impact on the values of the entries in the APCM A. This means that comparing a set of n objects
pairwisely in an APCM by using additive representation, and comparing the same set of objects pairwisely in
an APCM by using multiplicative representation, we obtain two APCMs with different entries. Depending on the
representation used, we can then verify the associated additive or multiplicative consistency. Furthermore, it is
necessary to distinguish between the two representations also when deriving priorities of objects from APCMs.

The necessity of distinguishing between APCMs with additive and multiplicative representation will be much
clearer as soon as the definitions of both are provided. In Section 2.3.2, APCMs with additive representation
will be introduced, and in Section 2.3.3, APCMs with multiplicative representation will be dealt with.

2.3.2 Additive pairwise comparison matrices with additive representation

Definition 8. An APCM with additive representation (APCM-A) is an APCM R = {rij}ni,j=1 satisfying the
additive-reciprocity property (II.25) where rij − rji indicates the difference of preference intensity of object oi
and of object oj .

2.3.2.1 Additive consistency of APCMs-A

Definition 9. (Tanino, 1984) An APCM-A R = {rij}ni,j=1 is said to be additively consistent if it satisfies the
additive-transitivity property

rij = rik + rkj − 0.5, i, j, k = 1, . . . , n. (II.28)
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Definition 9 of additive consistency is invariant under permutation of objects in the APCM-A R.

Example 7. The APCM-A

R =


0.5 0.6 0.8 0.9

0.4 0.5 0.7 0.8

0.2 0.3 0.5 0.6

0.1 0.2 0.4 0.5

 (II.29)

is additively consistent according to Definition 8 since it satisfies the additive-transitivity property (II.28). Also
the permuted matrix Rπ = PRPT obtained by applying the permutation matrix (II.6) is additively consistent. △

The following theorem provides us with alternative ways to verify additive consistency of APCMs-A.

Theorem 3. For an APCM-A R = {rij}ni,j=1 , the following statements are equivalent:

(i) R is additively consistent according to the additive-transitivity property (II.28),

(ii)
rij + rjk + rki = rik + rkj + rji, i, j, k = 1, . . . , n, (II.30)

(iii)

rij + rjk + rki =
3

2
, i, j, k = 1, . . . , n, (II.31)

Note 1. According to Theorem 3, the additive consistency of APCMs-A can be defined by using any of the
expressions (II.30) and (II.31). These expressions will be referred to later when an extension of the definition
of additive consistency to fuzzy APCMs-A is dealt with.

Further, Tanino (1984) derived the following characterization of additively consistent APCMs-A.

Proposition 2. (Tanino’s characterization) An APCM-A R = {rij}ni,j=1 is additively consistent if and only if

there exists a non-negative vector v = (v1, . . . , vn)
T
, |vi − vj | ≤ 1, i, j = 1, . . . , n, such that

rij = 0.5 (vi − vj + 1) , i, j = 1, . . . , n. (II.32)

The notation v = (v1, . . . , vn)
T will be used hereafter to represent exclusively a priority vector associated

with an APCM-A.
Proposition 2 says that when an APCM-A R = {rij}ni,j=1 of n objects is additively consistent, there exist

priorities v1, . . . , vn of objects using which we can determine precisely the original PCs rij , i, j = 1, . . . , n, in
the APCM-A R by applying Tanino’s characterization (II.32). On the other hand, when the priorities v1, . . . , vn
of objects are given such that |vi − vj | ≤ 1, i, j = 1, . . . , n, we can construct an additively consistent APCM-A
of objects by applying (II.32). Notice that the additive reciprocity of R is always guaranteed by applying (II.32)
since rij = 0.5 (vi − vj + 1) = 1− 0.5(vj − vi + 1) = 1− rji.

Example 8. Since the APCM-A (II.29) in Example 7 is additively consistent, there exists a non-negative priority
vector v = (v1, v2, v3, v4)

T satisfying the characterization property (II.32). It is, for example, the priority vector
v = (0.8, 0.6, 0.2, 0)T . △

Moreover, Tanino’s characterization (II.32) is in line with the interpretation of the differences of PCs in an
APCM-A R as given in Definition 8. In particular, when an APCM-A R is additively consistent according to
(II.28), then the difference of PCs indicating the difference of preference intensity of oi and of oj corresponds
to the difference of their priorities (Krejčı́, 2016), i.e.

rij − rji = vi − vj , i, j = 1, . . . , n. (II.33)

When the APCM-A R is not additively consistent, then

rij − rji ≈ vi − vj , i, j = 1, . . . , n. (II.34)

Example 9. From the intensity of preference r12 = 0.6 in the APCM-A (II.29) we know immediately that the
difference between the priorities v1 and v2 is 0.2 (v1 − v2 = r12 − r21 = 0.6 − 0.4 = 0.2). Similarly also for
the remaining differences between the priorities. The priority vector v = (0.8, 0.6, 0.2, 0)T shown in Example 8
satisfies this property. △
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Similarly to the multiplicative-consistency condition for MPCMs, also the additive-consistency condition
(II.28) is very difficult to keep when PCs in an APCM-A R are done using the scale [0, 1]. Having rik = 0.9 and
rkj = 1, for example, it follows rij = rik + rkj − 0.5 = 1.4, which exceeds the interval [0, 1]. Thus, it is possible
to keep additive consistency only when using the intensities of preference close to the indifference value 0.5.
This is not always reasonable or even possible (in particular for large-dimensional APCMs-A). Thus, other
consistency conditions have been proposed in the literature. One of them is the weak-consistency condition
proposed by Jandová et al. (2017).

The weak-consistency condition as introduced by Jandová et al. (2017) is applied in the same form both
to APCMs-A and to APCMs with multiplicative representation (introduced later) without distinguishing among
them, i.e. the weak-consistency condition is defined in general for APCMs. Therefore, this consistency condi-
tion will be reviewed later in Section 2.3.3.2, after introducing APCMs with multiplicative representation.

2.3.2.2 Deriving priorities from APCMs-A

Based on the given APCM-A R = {rij}ni,j=1 of n objects it is endeavoured to derive the priority vector v =

(v1, . . . , vn)
T that would best represent the relative preference of the objects with respect to the other objects

in the set.
As discussed in the previous section, when an APCM-A R = {rij}ni,j=1 is additively consistent according to

(II.28), then there exist priorities v1, . . . , vn, |vi − vj | ≤ 1, i, j = 1, . . . , n, such that rij = 0.5(vi − vj + 1). When
an APCM-A R = {rij}ni,j=1 is not additively consistent, then the given expression only estimates the PCs in the
matrix, i.e.

rij ≈ 0.5(vi − vj + 1), i, j = 1, . . . , n. (II.35)

Fedrizzi and Brunelli (2010) proved that for an APCM-A R = {rij}ni,j=1 the only vector of priorities (up to an

additive constant) satisfying (II.32) is v = (v1, . . . , vn)
T such that

vi =
2

n

n∑
j=1

rij , i = 1, . . . , n. (II.36)

Notice that the method for deriving priorities of objects from APCMs-A by formula (II.36) is again invariant
under permutation of objects.

Proposition 3. (Krejčı́, 2016) Given an APCM-A R = {rij}ni,j=1 , the priorities v1, . . . , vn obtained from R by
formula (II.36) are such that

n∑
i=1

vi = n. (II.37)

Proof.

n∑
i=1

vi =

n∑
i=1

2

n

n∑
j=1

rij =
2

n

n∑
i=1

n∑
j=1

rij =
2

n

 n∑
i=1

rii +

n∑
i=1

n∑
j=1
j ̸=i

rij

 =

2

n

(
n

2
+

n (n− 1)

2

)
= n

Remark 1. Notice that the property (II.37) of the priorities given by (II.36) is independent of the additive
consistency; it depends only on the additive-reciprocity condition (II.25). This means that also the sum of the
priorities of objects obtained from an additively inconsistent APCM-A still equals n.

As shown by Fedrizzi and Brunelli (2010), there exist infinitely many priority vectors satisfying Proposition
2. These priority vectors can be generated from (II.36) by adding an arbitrary constant. This means that
for a priority vector v = (v1, . . . , vn)

T satisfying Proposition 2, also any priority vector obtained from v by the
transformation

vi → vi + c, i = 1, . . . , n, (II.38)

where c ∈ R, satisfies Proposition 2.
Note that it is not possible to multiply the priorities (II.36) as it is done in the case of MPCMs, where the

ratios of the priorities estimate the original PCs in the matrix. In the case of APCMs-A, the original PCs rij
in the APCM-A R = {rij}ni,j=1 are estimated by the differences between the priorities vi and vj by means of
(II.35) and, thus, these differences have to remain unchanged.
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In order to reach uniqueness, a normalization condition is usually applied to the priority vectors. In the case
of MPCMs, the normalization condition

n∑
i=1

wi = 1, wi ∈ [0, 1] , i = 1, . . . , n, (II.39)

is usually applied, see Section 2.2.3. It is worth to note that the condition (II.39) is reachable independently of
the requirement of multiplicative consistency of MPCMs, i.e. even the priorities obtained from a multiplicatively
inconsistent MPCM can be normalized so that they satisfy (II.39).

The normalization condition (II.39) has been applied also to the priorities obtained from APCMs-A (see
e.g. Xu (2004, 2007a); Xu and Chen (2008a,b); Wang and Li (2012); and the list of other papers provided by
Fedrizzi and Brunelli (2009)). However, Fedrizzi and Brunelli (2009) showed that the normalization condition
(II.39) is incompatible with Proposition 2.

Fedrizzi and Brunelli (2009) proposed a new normalization condition in the form

min
i=1,...,n

vi = 0, vi ∈ [0, 1] , i = 1, . . . , n. (II.40)

However, the normalization condition (II.40) is reachable only for additively consistent APCMs-A. For additively
inconsistent APCMs-A, in general, the normalized priorities satisfying the condition mini=1,...,n vi = 0 do not
satisfy the condition vi ∈ [0, 1] , i = 1, . . . , n, as is illustrated on the following example.

Example 10. Let us examine the priorities obtainable from the APCM-A

A =


0.5 0.8 1

0.2 0.5 0.9

0 0.1 0.5

 , (II.41)

which is not additively consistent; r12 + r23 − 0.5 = 0.8 + 0.9 − 0.5 = 1.2 ̸= 1 = r13. The priorities of objects
obtained by formula (II.36) are in the form v1 = 23

15 , v2 = 16
15 , v3 = 6

15 . By applying the normalization condition
mini=1,...,n vi = 0, we obtain normalized priorities in the form v1 = 17

15 , v2 = 10
15 , v3 = 0. Clearly, v1 > 1 which

violates the normalization condition vi ∈ [0, 1] , i = 1, . . . , n. △

Proposition 4. (Krejčı́, 2016) Given an APCM-A R = {rij}ni,j=1 , n ≥ 3, there exists no normalization condition
of the type (II.38) for the priorities (II.36) that would guarantee the fulfillment of the property vi ∈ [0, 1] , i =
1, . . . , n.

Proof. There exist infinitely many priority vectors obtainable from (II.36) by the transformation (II.38). In order
to modify the priorities so that vi ∈ [0, 1] , i = 1, . . . , n, a suitable constant c has to be added to the priorities
(II.36). Further, we know that the differences between the priorities do not change by adding a constant
to them; (vi + c) − (vj + c) = vi − vj , i, j = 1, . . . , n. Clearly, the priorities (II.36) could be normalized so
that vi + c ∈ [0, 1] , i = 1, . . . , n, if and only if |vi − vj | ≤ 1, i, j = 1, . . . , n. However, it will be shown that
|vi − vj | ≤ 1, i, j = 1, . . . , n, is not reachable in general.

Let oi, i ∈ {1, . . . , n} , be such that it is absolutely preferred to all other objects, and let oj , j ∈ {1, . . . , n} ,
be such that all other objects are absolutely preferred to oj . Then, for n ≥ 3

vi − vj =
2

n

n∑
k=1

rik − 2

n

n∑
k=1

rjk =
2

n
((0.5 + n− 1)− (0.5 + 0)) =

2n− 2

n
> 1.

According to Proposition 4, the property vi ∈ [0, 1] , i = 1, . . . , n, cannot be guaranteed for additively
inconsistent APCMs-A under any normalization condition of the type (II.38). However, as discussed in the
previous section, it is difficult or even impossible to reach additive consistency of APCMs-A in many MCDM
problems, especially because of the restricted scale [0, 1] used for expressing the intensities of preference of
one compared object over another. In general, the higher the dimension of an APCM-A is, the more difficult
reaching the consistency is. Even when the DM is asked to reconsider his or her preferences, it does not have
to lead to an additively consistent APCM-A. Therefore, in real-life applications, priorities of objects have to be
often derived from additively inconsistent APCMs-A. This calls for a normalization condition applicable also
to the priorities obtained from these additively inconsistent APCMs-A. Recall that for MPCMs there is such a
normalization condition - (II.39).
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Since the condition vi ∈ [0, 1] , i = 1, . . . , n, is not reachable for priorities obtained from additively inconsis-
tent APCMs-A, we may weaken the normalization condition (II.39) to

n∑
i=1

vi = 1 (II.42)

without any further constraints on the priorities. By applying this normalization condition to the priorities ob-
tained by formulas (II.36), we derive formulas for obtaining normalized priorities from an APCM-A as

vi =
2

n

n∑
j=1

rij −
n− 1

n
, i = 1, . . . , n. (II.43)

Notice that the method for deriving normalized priorities from an APCM-A by formula (II.43) is again invariant
under permutation of objects.

Proposition 5. (Krejčı́, 2016) Given an APCM-A R = {rij}ni,j=1 , the priorities v1, . . . , vn obtained from R by
formula (II.43) are such that

n∑
i=1

vi = 1 (II.44)

and
−1 < vi ≤ 1, i = 1, . . . , n. (II.45)

Proof.
n∑

i=1

vi =

n∑
i=1

 2

n

n∑
j=1

rij −
n− 1

n

 =
2

n

n∑
i=1

n∑
j=1

rij − (n− 1) = 1,

which proves (II.44).
The value of the priority vi, i ∈ {1, . . . , n} , obtained by formula (II.43) depends only on the PCs in the i−th

row of the matrix, i.e. on the intensities of preference of object oi over the other objects. To prove the inequality
vi ≤ 1, we just need to show that the priority of object oi will not exceed 1 even for the highest possible
intensities of preference of object oi over all other objects.

Let oi, i ∈ {1, . . . , n} , be absolutely preferred to all other objects. Then,

vi =
2

n

n∑
j=1

rij −
n− 1

n
=

1

n

2

n∑
j=1

rij−n+1

=
1

n
(2 (n−1+0.5)− n+1)=1.

Similarly, to prove the inequality −1 < vi we just need to show that the priority of object oi will be greater than
-1 even for the lowest possible intensities of preference of object oi over all other objects. Let oi, i ∈ {1, . . . , n} ,
be absolutely preferred by all other objects. Then,

vi =
2

n

n∑
j=1

rij −
n− 1

n
=

1

n
(2 (0 + 0.5)− n+ 1) =

2− n

n
= −1 +

2

n
> −1

Example 11. The priority vector obtainable from the APCM-A (II.41) in Example 10 by the formulas (II.43)
is in the form v = ( 1315 ,

6
15 ,

−4
15 )

T . This priority vector clearly satisfies both normalization properties (II.44) and
(II.45). △

Liu et al. (2012b) showed that the normalization condition
∑n

i=1 vi = 1, vi ∈ [0, 1], i = 1, . . . , n, is reachable
for the priorities (II.43) obtainable from an additively consistent APCM-A R = {rij}ni,j=1 , if and only if

min
1≤i≤n

n∑
k=1

rik ≥ n− 1

2
.

According to Proposition 5, some of the priorities normalized according to the normalization condition (II.42)
can be negative, i.e. vi < 0, i ∈ {1, . . . , n} . To avoid these situations, Meng et al. (2016) proposed “normaliza-
tion” of the priorities (II.43) as follows:

vi = max

0,
2

n

n∑
j=1

rij −
n− 1

n

 , i,= 1, . . . , n.
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However, such “normalization” of the priorities, similarly to the inappropriate normalization condition (II.39),
distorts the preference information contained in APCMs-A, and thus it is not appropriate. Moreover, the possi-
ble negativity of some of the priorities normalized according to (II.42) is not a problem at all because the scale
on which the priorities are given is an interval scale; the differences between the priorities are meaningful.
For example the normalized priorities v1 = 13

15 , v2 = 6
15 , v3 = −4

15 obtained in Example 11 from the APCM-A
(II.41) by the formula (II.43) tell us that, e.g., r23 − r32 is estimated as v2 − v3 = 2

3 or that r23 is estimated as
0.5 + 0.5 2

3 = 5
6 .

Remark 2. It is necessary to mention that also a more general characterization than Tanino’s characterization
(II.32) has appeared in the literature (see e.g. Xu et al. (2009); Liu et al. (2012b); Xu et al. (2014b)):

rij = 0.5 + β(vi − vj), β ≥ max
i=1,...,n

n

2
−

n∑
j=1

rij

 > 0 (II.46)

together with priorities

vi =
1

nβ

n∑
j=1

rij −
1

2β
+

1

n
(II.47)

satisfying this characterization and normalization condition
∑n

i=1 vi = 1, vi ∈ [0, 1] . More particularly, Xu et al.
(2009) proposed to set β = n

2 and Xu et al. (2011) and Hu et al. (2014) assumed β = n−1
2 . It is true that

by assuming the characterization (II.46) the obtained normalized priorities (II.47) are always non-negative and
constrained to interval [0, 1]. However, the priorities miss an intuitive interpretation. In particular, rij − rji =
0.5 + β(vi − vj) − 0.5 − β(vj − vi) = 2β(vi − vj), which would mean that the difference of priorities gives us
1
2β−th of the difference between the related PCs in the APCM-A. This is quite difficult to interpret. Particularly,
for β = n

2 we obtain vi − vj = 1
n (rij − rji), and for β = n−1

2 we obtain vi − vj = 1
n−1 (rij − rji). Notice that for

β = 1
2 , the characterization (II.46) equals to Tanino’s characterization (II.32) and the corresponding priorities

(II.47) equal to priorities (II.43) with a clear and intuitive interpretation vi − vj = rij − rji.

2.3.3 Additive pairwise comparison matrices with multiplicative representation

Definition 10. An APCM with multiplicative representation (APCM-M) is an APCM Q = {qij}ni,j=1 , qij ∈]0, 1[,
satisfying the additive-reciprocity property (II.25) where qij

qji
indicates the ratio of preference intensity of object

oi to that of object oj , i.e oi is qij
qji

−times as good as oj .

The requirement of qij ∈]0, 1[, i, j = 1, . . . , n, in the definition of an APCM-M means that none of the objects
compared in the APCM-M can be absolutely preferred to another one. This requirement is necessary in
order not to divide by 0 in the ratios qij

qji
. Because of the additive-reciprocity property of APCMs, the constraint

qij ∈]0, 1[, i, j = 1, . . . , n, can be equivalently written as qij > 0, i, j = 1, . . . , n.

2.3.3.1 Multiplicative consistency of APCMs-M

Definition 11. (Tanino, 1984) An APCM-M Q = {qij}ni,j=1 is said to be multiplicatively consistent if it satisfies
the multiplicative-transitivity property

qij
qji

=
qik
qki

qkj
qjk

, i, j, k = 1, . . . , n. (II.48)

Definition 11 of multiplicative consistency is invariant under permutation of objects in the APCM-M Q.

Example 12. The APCM-M

Q =



1
2

3
5

3
5

3
4

2
5

1
2

1
2

2
3

2
5

1
2

1
2

2
3

1
4

1
3

1
3

1
2

 (II.49)

is multiplicatively consistent according to Definition 11 since it satisfies the multiplicative-transitivity property
(II.48). Furthermore, also the permuted matrix Qπ = PQPT obtained by using the permutation matrix (II.6) is
multiplicatively consistent. △

The following theorem provides us with alternative ways to verify multiplicative consistency of APCMs-M.
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Theorem 4. For an APCM-M Q = {qij}ni,j=1 , qij > 0, i, j = 1, . . . , n, the following statements are equivalent:

(i) Q is multiplicatively consistent according to Tanino’s multiplicative-transitivity property (II.48),

(ii)
qijqjkqki = qikqkjqji, i, j, k = 1, . . . , n, (II.50)

(iii)
qij
qji

qjk
qkj

qki
qik

= 1, i, j, k = 1, . . . , n, (II.51)

(iv)
qij
qji

qjk
qkj

qki
qik

=
qik
qki

qkj
qjk

qji
qij

, i, j, k = 1, . . . , n. (II.52)

(v)
qij =

qikqkj
qikqkj + (1− qik)(1− qkj)

i, j, k = 1, . . . , n. (II.53)

Further, Tanino (1984) derived the following characterization of multiplicatively consistent APCMs-M.

Proposition 6. (Tanino’s characterization) An APCM-M Q = {qij}ni,j=1 , qij > 0, i, j = 1, . . . , n, is multiplica-

tively consistent if and only if there exists a positive vector u = (u1, . . . , un)
T such that

qij =
ui

ui + uj
, i, j = 1, . . . , n. (II.54)

The notation u = (u1, . . . , un)
T will be used hereafter to represent exclusively a priority vector associated

with an APCM-M.
Proposition 6 says that when an APCM-M Q = {qij}ni,j=1 of n objects is multiplicatively consistent then

there exist non-negative priorities u1, . . . , un of objects using which we can determine precisely the original
PCs qij in the APCM-M Q by applying Tanino’s characterization (II.54). On the other hand, when the non-
negative priorities u1, . . . , un of objects are known, we can construct a multiplicatively consistent APCM-M of
objects by applying (II.54). Notice that the additive reciprocity of Q is always guaranteed by applying (II.54)

since qij =
ui

ui+uj
= 1

1+
uj
ui

= 1−
uj
ui

1+
uj
ui

= 1− uj

uj+ui
= 1− qji.

Example 13. Since the APCM-M (II.49) in Example 12 is multiplitively consistent, there exists a positive priority
vector u = (u1, u2, u3, u4)

T satisfying Tanino’s characterization property (II.54). It is, for example, the priority
vector u = (1, 2

3 ,
2
3 ,

1
3 )

T . △

Moreover, Tanino’s characterization (II.54) is in line with the interpretation of the ratios of PCs in an APCM-
M Q as given Definition 10. In particular, when an APCM-M Q is multiplicatively consistent according to (II.48),
then the ratio of PCs indicating the ratio of preference intensity of oi to that of oj corresponds to the ratio of
their priorities, i.e.

qij
qji

=
ui

uj
, i, j = 1, . . . , n. (II.55)

When the APCM-M Q is not multiplicatively consistent, then

qij
qji

≈ ui

uj
, i, j = 1, . . . , n. (II.56)

Example 14. From the intensity of preference q12 = 3
5 in the APCM-M (II.49) we know immediately that the

ratio of the priorities u1 and u2 is 3
2 (u1

u2
= q12

q21
= 3

5
5
2 = 3

2 ). Similarly also for the remaining differences between
the priorities. The priority vector u = (1, 2

3 ,
2
3 ,

1
3 )

T shown in Example 13 satisfies this property. △

Unlike in the case of the additive-consistency condition (II.28) for APCMs-A, the interval ]0, 1[ can never
be exceeded when trying to keep the multiplicative consistency (II.48) for APCMs-M. That is why APCMs-M
become of more and more interest to researchers. However, despite this advantage, the interpretation of the
multiplicative consistency is not very intuitive for DMs. Further, DMs have difficulties using the open interval
]0, 1[ for expressing the intensities of preferences since this scale has no minimum and maximum.

Various other consistency conditions with more intuitive interpretation have been introduced. One of them is
the weak-consistency condition proposed by Jandová et al. (2017) which was already mentioned in relation to
APCMs-A. Since the weak-consistency condition is defined for APCMs without distinguishing between APCMs-
A and APCMs-M, it is reviewed separately in the following section.
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2.3.3.2 Weak consistency of APCMs

Analogously to the weak consistency for MPCMs defined by Jandová and Talašová (2013), also the weak-
consistency condition introduced in this section for APCMs is based on the properties that are intuitively sup-
posed to hold.

Definition 12. (Jandová et al., 2017) An APCM A = {aij}ni,j=1 is said to be weakly consistent if

aik > 0.5 ∧ akj > 0.5 ⇒ aij ≥ max {aik, akj} ,

aik = 0.5 ∧ akj ≥ 0.5 ⇒ aij = max {aik, akj} ,

aik ≥ 0.5 ∧ akj = 0.5 ⇒ aij = max {aik, akj} ,

(II.57)

holds for i, j, k = 1, . . . , n.

It is easy to verify that Definition 12 of weak consistency is invariant under permutation of objects in the
APCM A.

Definition 12 does not distinguish between APCMs-A and APCMs-M; for both types of APCMs, the weak-
consistency condition is defined in the same form.

Similarly as for the weak-consistency condition (II.11) for MPCMs, weak-consistency condition (II.57) for
APCMs provides an intuitive minimum consistency requirement for APCMs. For example, when object oi is
preferred to object ok with intensity 0.8, and object ok is preferred to object oj with intensity 0.6, then object
oi has to be preferred to object oj with intensity at least 0.8 (aij ≥ max {0.8, 0.6} = 0.8). Thus, the require-
ment of weak consistency is very intuitive, it provides DMs with some space for expressing their intensities of
preference, and it is very easy to control while entering PCs into the APCM.

In this thesis, the weak-consistency condition given by Definition 12 is adopted and later applied in Chapter
V in a novel method for dealing with large-dimensional PCMs. However, it is worth to note that the weak
consistency given by Definition 12 is not the only weak version of consistency for APCMs. For example, even
a more relaxed form of the weak-consistency condition (II.11) for APCMs, strong stochastic transitivity, was
introduced already half a century ago by Luce and Suppes (1965).

In the following theorem, rules equivalent to the weakly-consistency condition (II.57) are formulated.

Theorem 5. (Jandová et al., 2017) For an APCM A = {aij}ni,j=1 , the following statements are equivalent:

(i) A is weakly consistent according to Definition 12,

(ii) For every i, j, k = 1, . . . , n :

aik < 0.5 ∧ akj < 0.5 ⇒ aij ≤ min {aik, akj} ,

aik = 0.5 ∧ akj ≤ 0.5 ⇒ aij = min {aik, akj} ,

aik ≤ 0.5 ∧ akj = 0.5 ⇒ aij = min {aik, akj} .

(II.58)

(iii) For every i, j, k = 1, . . . , n :

0.5 < 1− akj < aik ⇒ 1− aik ≤ aij ≤ aik,

0.5 < aik < 1− akj ⇒ akj ≤ aij < 0.5,

0.5 < 1− akj < aik ⇒ 0.5 < aij ≤ aik.

(II.59)

(iv) For every i, j, k = 1, . . . , n :

1− akj < aik < 1 ⇒ akj ≤ aij ,

0.5 < akj < 1− aik ⇒ aik ≤ aij < 0.5,

0.5 < akj = 1− aik ⇒ 1− akj ≤ aij ≤ akj .

(II.60)

Similarly to Definition 6 of weak consistency for MPCMs, it is possible to derive some interesting properties
for APCMs weakly consistent according to Definition 12. Every weakly consistent APCM A = {aij}ni,j=1 can
be permuted in such a way that the objects compared in the APCM are ordered from the most preferred to the
least preferred. In such an ordered weakly consistent APCM, all the elements above the main diagonal are
greater or equal to 0.5, i.e. aij ≥ 0.5, i, j = 1, . . . , n, i < j. Further, the sequences of elements in the rows are
non-decreasing and the sequences of elements in the columns are non-increasing.

The following propositions show that the weak-consistency condition is weaker than both the additive-
consistency condition for APCMs-A and the multiplicative-consistency condition for APCMs-M.
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Figure II.1: Relations between MPCMs, APCMs-A, APCMs-M, and the associated definitions of consistency.

Proposition 7. An APCM-A R = {rij}ni,j=1 additively consistent according to Definition 9 is also weakly con-
sistent according to Definition 12.

Proof. For rik > 0.5 ∧ rkj > 0.5, we get immediately rij = rik+rkj−0.5 > max {rik, rkj} . For rik = 0.5 ∧ rkj ≥
0.5 we get rij = rik + rkj − 0.5 = rkj ≥ max {rik, rkj} , and analogously for rijk ≥ 0.5 ∧ rkj = 0.5.

Proposition 8. An APCM-M Q = {qij}ni,j=1 multiplicatively consistent according to Definition 11 is also weakly
consistent according to Definition 12.

Proof. It is convenient to consider the multiplicative-consistency condition in the form (II.53) for the proof. The
proof for qik = 0.5 ∧ qkj ≥ 0.5 (respectively for qik ≥ 0. ∧ qkj = 0.5) is trivial:

qij =
qikqkj

qikqkj + (1− qik)(1− qkj)
=

0.5 · qkj
0.5 · qkj + 0.5(1− qkj)

= qkj = max {qik, qkj} .

The validity for qik > 0.5 ∧ qkj > 0.5 is demonstrated by contradiction. Without the loss of generality, let us
assume qik ≥ qkj > 0.5, and suppose the proposition is false, i.e. qij < max {qik, qkj}. It follows that qij < qik.
Thus, we have

qikqkj
qikqkj + (1− qik)(1− qkj)

< qik

⇓
qkj

qikqkj + (1− qik)(1− qkj)
< 1

⇓
qkj < 2qikqkj + 1− qik − qkj

⇓
qik − 1 < qkj(2qik − 2)

⇓
qkj < 0.5

which is in contradiction with the assumption qkj > 0.5.

The properties of weakly consistent APCMs described in this section are utilized in the new method for
dealing with large-dimensional PCMs that is described in detail in Chapter V.

The relations between MPCMs, APCMs-A, APCMs-M, and the associated definitions of consistency re-
viewed in Sections 2.2 and 2.3 are represented by a diagram in Fig. II.1.

2.3.3.3 Deriving priorities from APCMs-M

As discussed in the previous section, when an APCM-M Q = {qij}ni,j=1 is multiplicatively consistent according
to (II.48), then there exist positive priorities u1, . . . , un such that qij = ui

ui+uj
. When the APCM-M Q = {qij}ni,j=1
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is not multiplicatively consistent, then the given expression only estimates the PCs in the matrix, i.e.

qij ≈
ui

ui + uj
, i, j = 1, . . . , n. (II.61)

Fedrizzi and Brunelli (2010) proved that, for an APCM-M Q = {qij}ni,j=1 , the only vector of priorities (up to

a multiplicative constant) satisfying (II.54) is u = (u1, . . . , un)
T such that

ui = n

√√√√ n∏
j=1

qij
qji

, i = 1, . . . , n. (II.62)

This method is again invariant under permutation of objects in APCMs-M. Further, as pointed out by Xia and
Xu (2011), the priorities (II.62) are such that

∏n
i=1 ui = 1.

Because the priorities (II.62) can be multiplied by any positive constant, it is possible to apply the normal-
ization condition (II.18), similarly as in the case of the priorities obtained from a MPCM. Thus, the normalized
priorities can be computed from an APCM-M Q = {qij}ni,j=1 , directly as

ui =

n

√
n∏

j=1

qij
qji

n∑
k=1

n

√
n∏

j=1

qkj

qjk

, i = 1, . . . , n. (II.63)

Remark 3. Even though the representation of PCs in APCMs-M is not very intuitive for DMs, they have a great
advantage over APCMs-A regarding the normalization of the priorities. In particular, the priorities obtained
from these matrices can be normalized by using the widely accepted normalization condition (II.18) with the
normalized priorities still lying in the interval ]0, 1[. As discussed in the previous section, this normalization
condition is unreachable for priorities obtainable from APCMs-A.

2.4 Transformations between MPCMs and APCMs

In this section, transformations between MPCMs, APCMs-A, and APCMs-M, and between the priorities obtain-
able from these PCMs are reviewed and discussed.

2.4.1 Transformations between MPCMs and APCMs-A
It is a well-known fact that MPCMs and APCMs-A are equivalent. Fedrizzi (1990) showed that a MPCM
M = {mij}ni,j=1 can be transformed into an APCM-A R = {rij}ni,j=1 by applying the transformation formula

rij =
1

2
(1 + log9 mij) , i, j = 1, . . . , n. (II.64)

The values in interval [ 19 , 9] (Saaty’s scale) are transformed into values in interval [0, 1], the multiplicative reci-
procity (II.2) is transformed into the additive reciprocity (II.25), and the multiplicative consistency (II.4) is trans-
formed into the additive consistency (II.28) by the formula (II.64) (Fedrizzi and Brunelli, 2010).

Analogously, the inverse transformation formula

mij = 92rij−1, i, j = 1, . . . , n, (II.65)

can be used to transform an APCM-A R = {rij}ni,j=1 into a MPCM M = {mij}ni,j=1 with all its relevant
properties.

Further, the following theorem is valid for the transformation of the weak-consistency condition.

Theorem 6. Let M = {mij}ni,j=1 be a MPCM weakly consistent according to Definition 6. Then the APCM-A
R = {rij}ni,j=1 obtained from M by transformations (II.64) is weakly consistent according to Definition 12.

Proof. It is sufficient to show that when the weak-consistency condition (II.11) is valid for a MPCM M, then the
weak-consistency condition (II.57) is valid for the APCM-A obtained from M by the transformation (II.64). By
substituting (II.65) into the first part of (II.11), we obtain

92rik−1 > 1 ∧ 92rkj−1 > 1 ⇒ 92rij−1 ≥ max
{
92rij−1, 92rjk−1

}
⇓

2rik − 1 > 0 ∧ 2rkj − 1 > 0 ⇒ 2rij − 1 ≥ max {2rik − 1, 2rkj − 1}
⇓

rik > 0.5 ∧ rkj > 0.5 ⇒ rij ≥ {rik, rkj} ,
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which is the first part of (II.57). Analogously, for the other two parts of (II.11) we obtain the other two parts of
(II.57).

Corollary 1. Let R = {rij}ni,j=1 be an APCM-A weakly consistent according to Definition 12. Then the MPCM
M = {mij}ni,j=1 obtained from R by transformations (II.65) is weakly consistent according to Definition 6.

Remark 4. The validity of Corollary 1 follows immediately from Theorem 6 by utilizing properties of an inverse
function. Note that this form of representing the results is used in the whole section. This means that the
transformation of a particular property is formulated in a theorem and proved only in one direction. Afterwards,
each such theorem is followed by a corollary showing the transformation of the property in the opposite direction
without providing the proof.

Fedrizzi and Brunelli (2010) showed that priorities w1, . . . , wn of objects obtained from a MPCM M by
formulas (II.23) can be transformed into the priorities v1, . . . , vn obtainable from the corresponding APCM-A R
by (II.36) by using the transformation formula

vi = 1 + log9 wi, i = 1, . . . , n. (II.66)

The inverse transformation formula is

wi = 9vi−1, i = 1, . . . , n. (II.67)

Furthermore, Fedrizzi and Brunelli (2010) demonstrated that w = (w1, . . . , wn)
T being a priority vector

representing priorities of objects compared in a MPCM, the vector v = (v1, . . . , wn)
T obtained as

vi = c+ log9 wi, c ∈ R, i = 1, . . . , n, (II.68)

is a priority vector representing the priorities of objects compared in the corresponding APCM-A. The inverse
transformation is

wi = 9vi−c, c ∈ R, i = 1, . . . , n. (II.69)

Note that it is also possible to derive a relation between the normalized priorities (II.24) obtainable from
a MPCM and the normalized priorities (II.43) obtainable from the corresponding APCM-A. In particular, the
normalized priorities (II.24) can be expressed as

wi =

n

√
n∏

j=1

mij

n∑
k=1

n

√
n∏

j=1

mkj

=

n

√
n∏

j=1

92rij−1

n∑
k=1

n

√
n∏

j=1

92rkj−1

=
9

1
n

n∑
j=1

(2rij−1)

n∑
k=1

9
1
n

n∑
j=1

(2rkj−1)
=

9
2
n

n∑
j=1

rij−n−1
n − 1

n

n∑
k=1

9
2
n

n∑
j=1

rkj−n−1
n − 1

n

(II.43)
=

9vi−
1
n

n∑
k=1

9vk−
1
n

.

(II.70)

Therefore, in order to obtain the normalized priority wi of object oi from the MPCM, the normalized priorities
vj , j = 1, . . . , n, of all objects are necessary. This is due to the fact that the normalized priority wi obtained by
the formula (II.24) depends on all PCs in the MPCM, while the normalized priority vi obtained by the formula
(II.43) depends only on the PCs in the i−th row of the corresponding APCM-A.

In fact, as proved in Proposition 3, the sum of the non-normalized priorities (II.36) obtainable from an
APCM-A always equals n, i.e. the sum of the priorities is independent of the PCs in the APCM-A. Thus, in
order to normalize the priorities (II.36), the constant −n−1

n is always added, i.e.

vi → vi −
n− 1

n
, i = 1, . . . , n.

Contrarily, the sum of the non-normalized priorities (II.23) obtainable from a MPCM is not constant; it depends
on the values of the PCs in the MPCM. Therefore, in order to normalize the priorities obtainable from a MPCM,
we have to divide them by their sum, i.e.

wi → wi
n∑

k=1

wk

, i = 1, . . . , n.
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Thus, it is not possible to derive a general formula that would transform a normalized priority wi obtained by the
formula (II.24) into the corresponding normalized priority vi obtained by the formula (II.43) and vice versa. In
other words, wi is not a function of the single value vi, but, on the contrary, it depends on the values v1, . . . , vn,
as highlighted in the expression (II.70). Nevertheless, having a particular MPCM and the corresponding APCM-
A, there always exists a constant c such that the normalized priorities (II.24) can be transformed into the nor-
malized priorities (II.43) by the transformation formula (II.68), or, in the opposite direction, by the transformation
formula (II.69).

Example 15. Let us consider the APCM-A

R =


0.5 0.6 0.7 0.9

0.4 0.5 0.6 0.8

0.3 0.4 0.5 0.7

0.1 0.2 0.3 0.5

 . (II.71)

The non-normalized priority vector obtained from the APCM-A R by the formula (II.36) is

v = (1.35, 1.15, 0.95, 0.55)T . (II.72)

The MPCM M obtained from R by the transformation formula (II.65) is

M =


1 1.5518 2.4082 5.7995
1

1.5518 1 1.5518 3.7372
1

2.4082
1

1.5518 1 2.4082
1

5.7995
1

3.7372
1

2.4082 1

 . (II.73)

The non-normalized priority vector obtained from the MPCM M by the formula (II.23) is

w = (2.1577, 1.3904, 0.8960, 0.3720)T . (II.74)

The same priority vector would be obtained also by applying the transformation (II.67) to the priority vector
(II.72).

Further, the normalized priority vector obtained from the APCM-A R by the formula (II.43) is v = (0.6, 0.4, 0.2,
−0.2)T , and the normalized priority vector obtained from the MPCM M by the formula (II.24) is w = (0.4480,
0.2887, 0.1860, 0.0772)T . These normalized priority vectors can be transformed one into the other by using the
transformations (II.68) and (II.69) with the constant c = 0.9654.

Notice that the APCM-A (II.71) is weakly consistent according to Definition 12. Thus, according to Corollary
1, the MPCM (II.73) is weakly consistent according to Definition 6. △

2.4.2 Transformations between MPCMs and APCMs-M
Chiclana et al. (1998) showed that a MPCM M can be transformed into an APCM-M Q by applying the trans-
formation formula

qij =
mij

1 +mij
, i, j = 1, . . . , n. (II.75)

The values in interval [ 19 , 9] (Saaty’s scale) are transformed into values in interval [ 1
10 ,

9
10 ] ⊂]0, 1[, the mul-

tiplicative reciprocity (II.2) transforms to the additive reciprocity (II.25), and the multiplicative consistency (II.4)
transforms to the multiplicative consistency (II.48).

Analogously, the inverse transformation formula

mij =
qij
qji

, i, j = 1, . . . , n, (II.76)

transforms an APCM-M Q = {qij}ni,j=1 , qij ∈
[

1
10 ,

9
10

]
, to a MPCM M = {mij}ni,j=1 , mij ∈

[
1
9 , 9
]
, with all

relevant properties. Note that there is no transformation formula that would transform the interval
[
1
9 , 9
]

to the
open interval ]0, 1[ and vice versa.

Further, the following theorem is valid for the transformation of the weak-consistency condition.

Theorem 7. Let M = {mij}ni,j=1 be a MPCM weakly consistent according to Definition 6. Then the APCM-M
Q = {qij}ni,j=1 obtained from M by transformations (II.75) is weakly consistent according to Definition 12.
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Proof. It is sufficient to show that when the weak-consistency condition (II.11) is valid for a MPCM M, then the
weak-consistency condition (II.57) is valid for the APCM-M obtained from M by the transformation (II.75). By
substituting (II.76) into the first part of (II.11), we obtain

qik
qki

> 1 ∧ qkj

qjk
> 1 ⇒ qij

qji
≥ max

{
qik
qki

,
qkj

qjk

}
.

Further,
qik
qki

> 1 ⇔ qik
1− qik

> 1 ⇔ qik > 1− qik ⇔ qik > 0.5,

and similarly we obtain qkj > 0.5. Then,

qij
qji

≥ max

{
qik
qki

,
qkj
qjk

}
⇔ 1

qji
− 1 ≥ max

{
1

qki
− 1,

1

qjk
− 1

}
⇔

1

qji
≥ max

{
1

qki
,
1

qjk

}
⇔ qji ≤ min {qki, qjk} ⇔

1− qij ≤ min {1− qik, 1− qkj} ⇔ qij ≥ max {qik, qkj} .
Thus, we obtain qik > 0.5 ∧ qkj > 0.5 ⇒ qij ≥ max {qik, qkj} , which is the first part of (II.57). Analogously,
from the remaining two parts of (II.11) we obtain the remaining two parts of (II.57).

Corollary 2. Let Q = {qij}ni,j=1 be an APCM-M weakly consistent according to Definition 12. Then the MPCM
M = {mij}ni,j=1 obtained from Q by transformations (II.76) is weakly consistent according to Definition 6.

Fedrizzi and Brunelli (2010) showed that the priorities w1, . . . , wn of objects obtained from a MPCM M
by formulas (II.23) and the priorities u1, . . . , un of objects obtainable from the corresponding APCM-M Q by
formulas (II.62) are identical, i.e.

wi = ui, i = 1, . . . , n. (II.77)
Furthermore, Fedrizzi and Brunelli (2010) demonstrated that u = (u1, . . . , un)

T being a priority vector
representing the priorities of objects compared in an APCM-M, the vector w = (w1, . . . , wn)

T obtained as

wi = c · ui, c > 0, i = 1, . . . , n, (II.78)

is a priority vector representing the priorities of objects compared in the corresponding MPCM. The inverse
transformation is then

ui =
1

c
· wi, c > 0, i = 1, . . . , n. (II.79)

Note that in this case it is also possible to derive a direct relation between the normalized priorities (II.24)
obtainable from a MPCM and the normalized priorities (II.63) obtainable from the corresponding APCM-M. In
particular,

wi =

n

√
n∏

j=1

mij

n∑
k=1

n

√
n∏

j=1

mkj

(II.76)
=

n

√
n∏

j=1

qij
qji

n∑
k=1

n

√
n∏

j=1

qkj

qjk

= ui.

This means that the normalized priorities (II.24) and (II.63) obtained from the MPCM and from the correspond-
ing APCM-M, respectively, are identical. This simple relation between the normalized priority vectors w and u
was possible to obtain only because the priority vectors are normalized in the same way;

wi → wi
n∑

k=1

wk

, ui → ui
n∑

k=1

uk

, i = 1, . . . , n.

Example 16. Let us consider the MPCM M given by (II.73). The APCM-M obtained from M by the transfor-
mation formula (II.75) is

Q =


0.5 0.6081 0.7066 0.8529

0.3919 0.5 0.6081 0.7889

0.2934 0.3919 0.5 0.7066

0.1471 0.2111 0.2934 0.5

 . (II.80)

The non-normalized priority vector obtained from the APCM-M Q by the formula (II.62) is

u = (2.1577, 1.3904, 0.8960, 0.3720)T , (II.81)

i.e. it is identical to the priority vector (II.74). This result is in line with the transformation formula (II.77).
Notice that the APCM-M (II.80) is weakly consistent according to Definition 12. This conclusion follows also

from Corollary 2. △
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2.4.3 Transformations between APCMs-A and APCMs-M
Since there exist transformations between MPCMs and APCMs-A and between MPCMs and APCMs-M, it is
clear that there exist also transformations between APCMs-A and APCMs-M. These transformations can be
derived directly by composing the corresponding formulas from the previous two sections as specified in the
following theorems.

Theorem 8. An APCM-A R = {rij}ni,j=1 can be transformed into an APCM-M Q = {qij}ni,j=1 with qij ∈
[ 1
10 ,

9
10 ], i, j = 1, . . . , n, by transformation formula

qij =
92rij−1

1 + 92rij−1
, i, j = 1, . . . , n. (II.82)

Proof. Because the transformation formula (II.65) transforms an APCM-A into a MPCM, and (II.75) transforms
a MPCM into an APCM-M, then the composition of these formulas transforms an APCM-A into an APCM-M.
By composing (II.65) and (II.75) we immediately obtain (II.82).

Corollary 3. An APCM-M Q = {qij}ni,j=1 with qij ∈ [ 1
10 ,

9
10 ], i, j = 1, . . . , n, can be transformed into an APCM-A

R = {rij}ni,j=1 by transformation formula

rij =
1

2

(
1 + log9

qij
qji

)
, i, j = 1, . . . , n. (II.83)

Theorem 9. Let R = {rij}ni,j=1 be an APCM-A additively consistent according to Definition 9. Then the APCM-
M Q = {qij}ni,j=1 obtained from R by transformations (II.82) is multiplicatively consistent according to Definition
11.

Proof. Because the transformation formula (II.65) transforms additive consistency (II.28) of an APCM-A into
multiplicative consistency (II.4) of the corresponding MPCM, and (II.75) transforms multiplicative consistency
(II.4) of a MPCM into multiplicative consistency (II.48) of the corresponding APCM-M, then the composition
(II.82) of these formulas transforms additive consistency of an APCM-A into multiplicative consistency of the
corresponding APCM-M.

Corollary 4. Let Q = {qij}ni,j=1 be an APCM-M multiplicatively consistent according to Definition 11. Then
the APCM-A R = {rij}ni,j=1 obtained from Q by transformations (II.83) is additively consistent according to
Definition 9.

Further, the following theorem is valid for the transformation of the weak-consistency condition.

Theorem 10. Let R = {rij}ni,j=1 be an APCM-A weakly consistent according to Definition 12. Then also the
APCM-M Q = {qij}ni,j=1 obtained from R by transformations (II.82) is weakly consistent according to Definition
12.

Proof. Because the transformation formula (II.65) transforms the weak consistency (II.57) of an APCM-A into
the weak consistency (II.11) of the corresponding MPCM, and (II.75) transforms weak consistency (II.11) of
a MPCM into weak consistency (II.57) of the corresponding APCM-M, then the composition (II.82) of these
formulas transforms weak consistency of an APCM-A into weak consistency of the corresponding APCM-
M.

Corollary 5. Let Q = {qij}ni,j=1 be an APCM-M weakly consistent according to Definition 12. Then also the
APCM-A R = {rij}ni,j=1 obtained from Q by transformations (II.83) is weakly consistent according to Definition
12.

Theorem 11. Priorities v1, . . . , vn of objects obtained from an APCM-A by formula (II.36) can be transformed
into priorities u1, . . . , un obtainable by formulas (II.62) from the corresponding APCM-M by using the transfor-
mation formula

ui = 9vi−1, i = 1, . . . , n. (II.84)

Proof. The proof is analogous to the proof of Theorem 8.

Corollary 6. Priorities u1, . . . , un of objects obtained from an APCM-M by formula (II.62) can be transformed
into priorities v1, . . . , vn obtainable by formulas (II.36) from the corresponding APCM-A by using the transfor-
mation formula

vi = 1 + log9 ui, i = 1, . . . , n. (II.85)
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Figure II.2: Transformations between MPCMs, APCMs-A, and APCMs-M.

The issue with transformations between the normalized priority vectors (II.43) and (II.63) is the same as
described in Section 2.4.1. That is, there is no explicit formula for transforming the normalized priority vector
(II.43) obtainable from an APCM-A into the normalized priority vector (II.63) obtainable from the corresponding
APCM-M and vice versa. This is again caused by the fact that the normalized priorities (II.43) depend only on
PCs in the given row of the APCM-A while the normalized priorities (II.63) depend on all PCs in the APCM-M.

Example 17. Let us consider the MPCM Q given by (II.80). The APCM-A obtainable from Q by the transforma-
tion formula (II.83) is again the APCM-A R given by (II.71) with the associated non-normalized priority vector v
given as (II.72). The priority vector (II.72) could be again obtained directly from the priority vector (II.81) by the
transformation formula (II.85). △

For better illustration, the transformations between MPCMs, APCMs-A, and APCMs-M and between the
associated priority vectors are represented by a diagram in Fig. II.2. This diagram is a complement of the
diagrams provided by Fedrizzi and Brunelli (2010).
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Chapter III

Fuzzy set theory

3.1 Introduction to fuzzy sets

The traditional “crisp” set theory is based on the concept of “crisp set”. A crisp set is defined in such a way that
there exists a precise unambiguous distinction between the elements that belong to the crisp set and those
that do not belong to the crisp set. A crisp set S on a given universe U can be defined in three basic ways (Klir
and Yuan, 1995):

• Set S is defined by listing all its members, i.e. S = {m1, . . . ,mk} denotes the set S whose members are
m1, . . . ,mk. Only finite sets can be defined in this way.

• Set S is defined by formulating a property that is met by all its members, i.e. S = {x; f(x)} denotes the
set S on the universe U whose members x ∈ U satisfy the property f.

• Set S is defined by providing a characteristic function χS : U → {0, 1} declaring which elements of the
universe U are members of the set and which are not as

χS(x) =

{
1 for x ∈ S;
0 for x /∈ S.

Example 18. The set of all even numbers on a dice can be defined as S1 = {2, 4, 6} . The set of men who
are at least 190 cm tall can be defined as S2 = {x;x ≥ 190} , where x ∈ U2 is actually the height of a man
in centimeters. The sets S1 and S2 are defined unambiguously; there exists a clear distinction between the
elements that belong to the sets and those that do not belong there. For example, the number 1 from the
universe U1 = {1, 2, . . . , 6} of all numbers on a dice clearly does not belong to the set S1 = {2, 4, 6} , i.e.
1 /∈ S1, while the number 4 clearly belongs there, i.e. 4 ∈ S1. Similarly, a man who is 160 cm tall obviously
does not belong the set of men tall at least 190 cm, i.e. 160 /∈ S2, while a man tall 195 cm obviously belong
there, i.e. 195 ∈ S2.

Now assume we want to define a set of tall men, i.e. without explicitly defining their height in cm. First of
all, the meaning of the adjective “tall” depends on the context. Do we want to define the set of tall men on
the universe of basketball players, horse racers, Vietnamese, Norwegians, . . . ? Further, the meaning of “tall
man” is perceived subjectively by every evaluator. An evaluator who is 200 cm tall will probably not consider
a 185 cm tall man as tall while an evaluator that is only 150 cm tall will probably do. Since the meaning of the
adjective “tall” is vague, even for a particular universe of men and for a particular evaluator, it is very difficult to
define the set of tall men. Let say I, 167 cm tall woman, am the evaluator and I attempt to define the meaning
of “tall European man”. Any European man over 190 cm is definitely tall for me. Any man under 170 cm is not
tall. But what about the men between 170 and 190 cm tall? Are they tall or not? It is difficult to draw a line
above which I perceive a European man as tall and below which I perceive a European man as not tall. For
example, if I chose 180 cm as the border, a man of 181 cm would be considered tall and a man of 179 cm
would be considered not tall. This is not acceptable.

The traditional “crisp” set theory is clearly not able to deal with this paradox. Thus other tools are needed.
It feels very natural to describe the European men between 170 and 190 cm as “tall in some degree”, i.e. by
using “a partial degree of membership”. This is the concept of fuzzy set theory. △

Fuzzy set theory was initiated by Zadeh (1965, 1975a,b,c). Zadeh (1965) introduced a fuzzy set as a
generalization of a crisp set with not precise boundaries.

Definition 13. Let U be a nonempty universe. A fuzzy set S̃ on U is characterized by its membership function
µS̃(x) which associates to each element x ∈ U a real number in the interval [0, 1], i.e. µS̃ : U → [0, 1]. µS̃(x) is
called the degree of membership of the element x to the fuzzy set S̃.
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Figure III.1: Membership function of the fuzzy set “tall European man”.
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The membership function µS̃ : U → [0, 1] is a generalization of the characterization function χS : U →
{0, 1} which besides the values 1 and 0 representing the total membership and the total non-membership,
respectively, allows the values between 0 and 1 for expressing degrees of membership to the fuzzy set S̃.

Example 19. By applying the concept of fuzzy sets, we can now easily define the meaning of “tall European
men”. One may define the fuzzy set S̃ of tall European men by the membership function

µS̃(x) =

 0 for x ≤ 170,
x−170

20 for 170 < x < 190,
1 for + 69 ≥ 190.

The membership function is graphically represented in Fig. III.1. However, as mentioned in Example 18, the
actual membership function can differ for every evaluator. △

Note 2. For simplicity, S̃(x) will be used hereafter to denote a membership function of a fuzzy set S̃ instead of
µS̃(x).

A fuzzy set S̃ is defined uniquely by its membership function S̃(x) : U → [0, 1]. Besides the membership
function, also other characteristics of fuzzy sets are used to describe them.

Definition 14. Let S̃ be a fuzzy set defined on the universe U. The set Core S̃ :=
{
x ∈ U ; S̃ (x) = 1

}
de-

notes the core of S̃, the set Supp S̃ :=
{
x ∈ U ; S̃ (x) > 0

}
denotes the support of S̃, and the set S̃(α) :={

x ∈ U ; S̃(x) ≥ α
}
, α ∈]0, 1], denotes the α−cut of S̃. Fuzzy set S̃ is said to be a normal fuzzy set if ∃x ∈ U :

S̃(x) = 1, i.e. if Core S̃ ̸= ∅.
The set of all fuzzy sets defined on R is denoted F(R).

Definition 15. Let S̃1, . . . , S̃k be k fuzzy sets defined on the universes U1, . . . , Uk, respectively. The Cartesian
product of S̃1, . . . , S̃k is a fuzzy set S̃1 × · · · × S̃k on U1 × · · · × Uk with the membership function

S̃1 × · · · × S̃k(x1, . . . , xk) = min
{
S̃1(x1), . . . , S̃k(xk)

}
. (III.1)

In order to generalize mathematical concepts for crisp sets to fuzzy sets, the extension principle was intro-
duced.

Definition 16. Let S̃1, . . . , S̃k be k fuzzy sets defined on the universes U1, . . . , Uk, respectively, and let U =
U1 × · · · × Uk. Further, let f be a mapping from the universe U to the universe V, y = f(x1, . . . , xk). The
extension principle defines the membership function of a fuzzy set S̃ on V as

S̃(y) =


sup

{
min

{
S̃1(x1), . . . , S̃k(xk)

}
; (x1, . . . , xk) ∈ U : y = f(x1, . . . , xk)

}
if {(x1, . . . , xk) ∈ U : y = f(x1, . . . , xk)} ̸= ∅,

0, otherwise.

(III.2)

Various types of fuzzy sets have been defined in the literature. Fuzzy numbers, a particular type of the fuzzy
sets defined on R proved to be of a particular significance. “They should capture our intuitive conceptions of
approximate numbers or intervals, such as “numbers that are close to a given real number” or “numbers that
are around a given interval of real numbers”. Such concepts are essential for characterizing states of fuzzy
variables and, consequently, play an important role in many applications, including fuzzy control, decision
making, approximate reasoning, optimization, and statistics with imprecise probabilities” (Klir and Yuan (1995),
p. 97).
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Definition 17. A fuzzy set ñ on R is said to be a fuzzy number if it satisfies the following properties:

(i) ñ is a normal fuzzy set, i.e. ∃x ∈ R : ñ(x) = 1;

(ii) the α−cuts ñ(α) are closed intervals for every α ∈]0, 1];

(iii) the support of ñ is bounded, i.e. ∃r1, r2 ∈ R : Supp ñ ⊆ [r1, r2].

A fuzzy number ñ is said to be positive if ∃r1, r2 ∈ R+ : Supp ñ ⊆ [r1, r2]. The set of all fuzzy numbers is
denoted by FN (R) and the set of all positive fuzzy numbers is denoted by FN (R+).

3.2 Alpha-cut representation

In the previous section, a definition of α−cuts of a fuzzy set was provided. In this Section, α−cuts will be
reviewed in more detail since they are of a particular usefulness in fuzzy set theory. For the sake of this section
integrity, the definition of α−cuts will be recalled here once again.

In the literature, two basic types of α−cuts are used.

Definition 18. Let S̃ be a fuzzy set on a nonempty universe U. Then, the set S̃(α) =
{
x ∈ U ; S̃(x) ≥ α

}
for

α ∈]0, 1] is called (weak) α−cut (or (weak) α−level set) of S̃. The set S̃>
(α) =

{
x ∈ U ; S̃(x) > α

}
for α ∈ [0, 1[ is

called strong α−cut (or strong α−level set) of S̃.

When the membership function S̃(x) of S̃ is continuous, the distinction between the (weak) α−cuts and the
strong α−cuts is not necessary in applications. In the following, only the (weak) α−cuts are considered.

Remark 5. Notice that α−cut of S̃ is not defined for α = 0. However, for later use, it is convenient to define
0−cut of S̃ as the closure1 of the support of S̃, S̃(0) = Cl(Supp S̃).

Theorem 12. Let S̃ be a fuzzy set on a nonempty universe U. Then its membership function S̃(x) is given as
S̃(x) = sup

{
α; x ∈ S̃(α), α ∈ [0, 1]

}
, ∀x ∈ U.

Definition 19. Let S̃ be a fuzzy set on a nonempty universe U. Then the α−multiple of S̃ is a fuzzy set αS̃ on
U with the membership function (αS̃)(x) = α · S̃(x),∀x ∈ U.

Definition 20. Let S̃i, i = 1, . . . , k, be fuzzy sets on a nonempty universe U. Then the union of S̃i, i = 1, . . . , k,

is a fuzzy set S̃ =
∪k

i=1 S̃i on U with the membership function S̃(x) = max
{
S̃1(x), . . . , S̃k(x)

}
,∀x ∈ U.

Using Definition 18 of α−cuts of a fuzzy set and Definitions 19 and 20 of the α−multiple and of the union
of fuzzy sets, respectively, it is possible to derive another representation of fuzzy sets.

Theorem 13. Let S̃ be a fuzzy set on a nonempty universe U. Then

S̃ =

1∪
α=0

αS̃(α). (III.3)

The α−cut representation (III.3) is particularly convenient for fuzzy numbers, for which it can be defined
easily by providing two functions.

Theorem 14. Let ñ ∈ FN (R) and let ñ(α) = [nL
(α), n

U
(α)], α ∈ [0, 1]. Fuzzy number ñ can be determined uniquely

by two functions n−, n+ : [0, 1] → R defining the lower and upper boundary values nL
(α), n

U
(α) of the α−cuts

ñ(α), α ∈ [0, 1], of ñ satisfying

(i) n− : nL
(α) = n−(α) is a bounded monotonic non-decreasing left-continuous function for α ∈]0, 1] and

right-continuous for α = 0;

(ii) n+ : nU
(α) = n+(α) is a bounded monotonic non-increasing left-continuous function for α ∈]0, 1] and

right-continuous for α = 0;

(iii) ∀α ∈ [0, 1] : nL
(α) ≤ nU

(α).

1The closure of interval u is the smallest closed interval containing u; e.g. Cl(]1, 3[) = [1, 3].
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3.3 Trapezoidal fuzzy numbers

In the fuzzy extension of MCDM methods, and in particular in the fuzzy extension of the MCDM methods based
on PCMs, special types of fuzzy numbers are usually used; namely, triangular and trapezoidal fuzzy numbers,
and intervals. All three types of fuzzy numbers are introduced in this section.

Triangular fuzzy numbers were introduced as a special case of fuzzy numbers by Laarhoven and Pedrycz
(1983).

Definition 21. A triangular fuzzy number t̃ is a fuzzy number whose membership function is given as

t̃ (x) =



x−tL

tM−tL
, tL < x < tM ,

1, x = tM ,

tU−x
tU−tM

, tM < x < tU ,

0, otherwise,

(III.4)

where tL and tU are called the lower and upper boundary values of the triangular fuzzy number t̃, and tM is
called the middle value of t̃. Every triangular fuzzy number can be uniquely described by a triplet of these
representing values; the notation t̃ =

(
tL, tM , tU

)
is used.

A triangular fuzzy number t̃ =
(
tL, tM , tU

)
is positive if tL > 0. The core of t̃ =

(
tL, tM , tU

)
is the singleton

set Core t̃ =
{
tM
}

, and the support is an open interval Supp t̃ =]tL, tU [. The α−cut, α ∈ [0, 1], of the triangular
fuzzy number t̃ =

(
tL, tM , tU

)
is a closed interval t̃(α) = [tL(α), t

U
(α)], where tL(α) = αtM + (1 − α)tL, tU(α) =

αtM + (1− α)tU .

Example 20. Triangular fuzzy number t̃ = (1, 2, 4), given in Fig. III.2, is positive, its core is the singleton set
Core t̃ = {2} , and its support is the open interval Supp t̃ =]1, 4[. The α−cuts, α ∈ [0, 1], are closed intervals
t̃(α) = [tL(α), t

U
(α)] such that tL(α) = 1 + α, tU(α) = 4− 2α. △

A couple of years later, trapezoidal fuzzy numbers were introduced by Buckley (1985b) even though they
got their name later.

Definition 22. A trapezoidal fuzzy number z̃ is a fuzzy number whose membership function is given as

z̃ (x) =



x−zα

zβ−zα , zα < x < zβ ,

1, zβ ≤ x ≤ zγ ,

zδ−x
zδ−zγ , zγ < x < zδ,

0, otherwise.

(III.5)

Every trapezoidal fuzzy number can be uniquely described by a quadruple of its representing values; the
notation z̃ =

(
zα, zβ , zγ , zδ

)
is used.

A trapezoidal fuzzy number z̃ =
(
zα, zβ , zγ , zδ

)
is positive if zα > 0. The core of z̃ =

(
zα, zβ , zγ , zδ

)
is a

closed interval Core z̃ =
[
zβ , zγ

]
, and the support is an open interval Supp z̃ =]zα, zδ[. The α−cut, α ∈ [0, 1],

of the trapezoidal fuzzy number z̃ =
(
zα, zβ , zγ , zδ

)
is a closed interval z̃(α) = [zL(α), z

U
(α)], where

zL(α) = αzβ + (1− α)zα, zU(α) = αzγ + (1− α)zδ. (III.6)

Figure III.2: Triangular fuzzy number t̃ = (1, 2, 4).
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Example 21. Trapezoidal fuzzy number z̃ = (−2.5,−2, 0, 1), given in Fig. III.3, is not positive since zα = −2.5 ≯
0. The core of z̃ is the closed interval Core z̃ = [−2, 0] and its support is the open interval Supp z̃ =] − 2.5, 1[.
The α−cuts, α ∈ [0, 1], are closed intervals z̃(α) = [zL(α), z

U
(α)] such that zL(α) = −2.5 + 0.5α, zU(α) = 1− α. △

Even intervals can be understood and dealt with as fuzzy numbers.

Definition 23. An interval v is a fuzzy number whose membership function is given as

v (x) =

{
1, vL ≤ x ≤ vU ,

0, otherwise.
(III.7)

Every interval can be uniquely described by the pair of its lower and upper boundary values; the notation
v = [vL, vU ] is used.

An interval v = [vL, vU ] is positive if vL > 0. The core and the support of v = [vL, vU ] are obviously identical
to the interval v, i.e Core v = Supp v = [vL, vU ]. Also all the α−cuts, α ∈ [0, 1], of the interval v = [vL, vU ] are
identical to the interval, i.e. v(α) = [vL, vU ].

Remark 6. Notice that the interval v in Definition 23 is denoted by instead of ˜, which is usual for fuzzy
numbers. That is because the notation is more common than ˜ to refer to intervals in the literature. Thus,
the same notation was opted for in this thesis. Nevertheless, this notation does not change anything on the
fact that intervals can be looked at as a particular case of fuzzy numbers.

Not only are triangular fuzzy numbers, trapezoidal fuzzy numbers, and intervals special cases of fuzzy
numbers, but triangular fuzzy numbers and intervals are also special cases of trapezoidal fuzzy numbers. In
particular, a triangular fuzzy number t̃ = (tL, tM , tU ) can be written in the form t̃ = (tL, tM , tM , tU ) which
satisfies Definition 22 of trapezoidal fuzzy number, but the membership function given by (III.5) still has the
form of a triangular fuzzy number. Analogously, an interval v = [vL, vU ] can be written in the form ṽ =
(vL, vL, vU , vU ) which satisfies Definition 22 of trapezoidal fuzzy number, but the membership function given
by (III.5) still has the form of an interval. Thus all concepts, definitions, and arithmetic operations provided for
trapezoidal fuzzy numbers are automatically applicable also to triangular fuzzy numbers and intervals.

In the rest of this section, some important terms that are going to be used in the following chapters are
defined.

Definition 24. Let w̃i ∈ FN (R), i = 1, . . . , n. The vector w̃ = (w̃1, . . . , w̃n)
T ∈ FN (R)n is called a fuzzy vector

in FN (R)n. The membership function of w̃ is defined as w̃(w) = min
i=1,...,n

{w̃i(wi)} , where w = (w1, . . . , wn)
T .

Further, let w̃i = (wα
i , w

β
i , w

γ
i , w

δ
i ) ∈ FN (R), i = 1, . . . , n, be trapezoidal fuzzy numbers. Then the fuzzy

vector w̃ = (w̃1, . . . , w̃n)
T ∈ FN (R)n can be written as w̃ = (wα, wβ , wγ , wδ), where wα = (wα

1 , . . . , w
α
n)

T ,

wβ = (wβ
1 , . . . , w

β
n)

T , wγ = (wγ
1 , . . . , w

γ
n)

T , and wδ = (wδ
1, . . . , w

δ
n)

T , are called the representing vectors of the
fuzzy vector w̃.

Definition 25. Let m̃ij ∈ FN (R), i, j = 1, . . . , n. Then M̃ = {m̃ij}ni,j=1 ∈ FN (R)n2

is called a fuzzy matrix in

FN (R)n2

. The membership function of M̃ is defined as M̃(M) = min
i,j=1,...,n

{m̃ij(mij)} , where M = {mij}ni,j=1 .

In order to defuzzify fuzzy numbers, the center-of-area defuzzification method (Takagi and Sugeno, 1985),
sometimes called also the center-of-gravity method or the centroid method, is often used because of its com-
putational simplicity and well accepted results.

Definition 26. Let z̃ = (zα, zβ , zγ , zδ) be a trapezoidal fuzzy number. The center of area COAz̃ of z̃ is defined
as

COAz̃ =
1

3

(zδ)2 + (zγ)2 − (zβ)2 − (zα)2 + zδzγ − zβzα

zδ + zγ − zβ − zα
. (III.8)

Figure III.3: Trapezoidal fuzzy number z̃ = (−2.5,−2, 0, 1).
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Note 3. Note that for a triangular fuzzy number t̃ = (tL, tM , tU ), the formula (III.8) is reduced to

COAt̃ =
tL + tM + tU

3
,

and for an interval v = [vL, vU ], it is reduced to

COAv =
vL + vU

2
.

Example 22. Centers of area of the triangular fuzzy number t̃ = (1, 2, 4) and of the trapezoidal fuzzy number
z̃ = (−2.5,−2, 0, 1) are COAt̃ =

7
3 and COAz̃ = − 19

22 . △

In the following, Ruspini’s fuzzy partition (often called also fuzzy scale) is introduced as it is particularly
suitable for modeling the meaning of linguistic terms from a predefined scale used for comparing objects
pairwisely.

Definition 27. (Ruspini, 1969) A set of fuzzy numbers ñ1, . . . , ñk, k > 1, defined on interval [a, b] is called
Ruspini’s fuzzy partition of [a, b], if ñi ̸= ∅, i = 1, . . . , k, and

∑k
i=1 ñi (x) = 1,∀x ∈ [a, b] .

For trapezoidal fuzzy numbers, the following proposition is valid.

Proposition 9. A set of trapezoidal fuzzy numbers z̃i =
(
zαi , z

β
i , z

γ
i , z

δ
i

)
, i = 1, . . . , k, defined on interval [a, b]

and numbered in the conformity with their linear ordering forms Ruspini’s fuzzy partition of interval [a, b] if and
only if

zα1 = zβ1 = a,

zγi−1 = zαi , i = 2, . . . , k,

zδi−1 = zβi , i = 2, . . . , k,

zγk = zδk = b.

(III.9)

Proof. Interval [a, b] can be written as the union [a, b] =
k∪

i=1

[zβi , z
γ
i ] ∪

k∪
i=2

]zαi , z
β
i [. For x ∈ [zβi , z

γ
i ], i ∈ {1, . . . , k} ,

it holds that z̃i(x) = 1 and z̃j(x) = 0 for j = 1, . . . , k, j ̸= i. Therefore,
k∑

j=1

z̃j(x) = z̃i(x) = 1. Further, for

x ∈]zαi , z
β
i [=]zγi−1, z

δ
i−1[, i ∈ {2, . . . , k} , by applying (III.4), we obtain z̃i (x) =

x−zα
i

zβ
i −zα

i

, z̃i−1 (x) =
zδ
i−1−x

zδ
i−1−zγ

i−1

=

zβ
i −x

zβ
i −zα

i

, and z̃j (x) = 0 for j = 1, . . . , k, j ̸= i, i − 1. Therefore, for x ∈]zαi , z
β
i [, i ∈ {2, . . . , k} , the equation

k∑
j=1

z̃j (x) = z̃i−1 (x) + z̃i (x) =
zβ
i −x

zβ
i −zα

i

+
x−zα

i

zβ
i −zα

i

=
zβ
i −x+x−zα

i

zβ
i −zα

i

= 1 holds, which completes the proof.

Note 4. Proposition 9 is a generalization of the proposition regarding Ruspini’s fuzzy partition for triangular
fuzzy numbers which was provided and proved by Krejčı́ (2017b).

Example 23. Trapezoidal fuzzy numbers z̃1 = (0, 0, 1, 2), z̃2 = (1, 2, 3, 4), z̃3 = (3, 4, 5, 5), given in Fig. III.4,
form Ruspini’s fuzzy partition of interval [0, 5]. △

Figure III.4: Ruspini’s fuzzy partition of interval [0, 5].
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In the following chapter, a fuzzy extension of Saaty’s scale given in Tab. II.1 will be proposed in such a way
that the fuzzy numbers modeling the meaning of the linguistic terms from the scale and their reciprocals form
Ruspini’s fuzzy partition of the given interval.

As discussed in the previous chapter, the priorities of objects derived from a PCM are usually normalized.
Most often, the normalization condition (II.18),

∑n
i=1 wi = 1, wi ∈ [0, 1], i = 1, . . . , n, is utilized; in particular for

the priorities obtained from MPCMs and APCMs-M by the methods reviewed in the previous chapter. Recall
that it was shown in Section 2.3.2.2 that the normalization condition (II.18) is not compatible with Tanino’s char-
acterization (II.32) for the priorities obtained from APCMs-A, and thus a weaker version of the normalization
condition (II.18) is needed in this case.

When extending MCDM methods based on PCMs to fuzzy numbers it is necessary, besides other issues,
to handle properly the fuzzy extension of the normalization condition (II.18). Many definitions of normalized
interval and fuzzy vectors have been proposed in the literature; see, e.g. Chang and Lee (1995), Jiménez et al.
(2003), Wang and Elhag (2006), and Sevastjanov et al. (2012). In this thesis, the approach of Wang and Elhag
(2006) is considered. The reason for choosing this approach will be clarified in Chapter IV after introducing
fuzzy PCMs and methods for deriving fuzzy priorities of objects from them.

Wang and Elhag (2006) provided a definition of the normalized interval vector and they extended this
definition to general fuzzy numbers given by means of their α−cuts.

Definition 28. (Wang and Elhag, 2006) Let wi = [wL
i , w

U
i ], i = 1, . . . , n, be intervals, wi ⊆ [0, 1], i = 1, . . . , n,

and let

Nw =

{
w = (w1, . . . , wn)

T ;

n∑
i=1

wi = 1, wL
i ≤ wi ≤ wU

i , i = 1, . . . , n

}
(III.10)

be a set of normalized vectors constructed from the intervals. The intervals w1, . . . , wn are said to be normal-
ized if

(i) there exists at least one normalized vector w = (w1, . . . , wn)
T in Nw;

(ii) the lower and upper boundary values wL
i and wU

i of wi, i = 1, . . . , n, are attainable in Nw.

The vector w = (w1, . . . , wn)
T of normalized intervals will be called a normalized interval vector.

Remark 7. As already pointed out by Pavlačka (2014), the validity of the condition (ii) in Definition 28 auto-
matically implies the validity of the condition (i). This means that the condition (i) could be omitted in Definition
28.

According to the condition (ii), for every lower boundary value wL
i , i ∈ {1, . . . , n} , there have to exist values

wj ∈ [wL
j , w

U
j ], j = 1, . . . , n, j ̸= i, such that wL

i +
∑n

j=1
j ̸=i

wj = 1, and analogously, for every upper boundary

value wU
i , i ∈ {1, . . . , n} , there have to exist values wj ∈ [wL

j , w
U
j ], j = 1, . . . , n, j ̸= i, such that wU

i +∑n
j=1
j ̸=i

wj = 1.

Wang and Elhag (2006) formulated the following theorem to verify whether a set of intervals is normalized.

Theorem 15. (Wang and Elhag, 2006) Let wi = [wL
i , w

U
i ], i = 1, . . . , n, be intervals, wi ⊆ [0, 1], i = 1, . . . , n.

Then the intervals are normalized according to Definition 28 if and only if the inequalities

wL
i +

n∑
j=1
j ̸=i

wU
j ≥ 1, wU

i +

n∑
j=1
j ̸=i

wL
j ≤ 1 (III.11)

are satisfied for all i = 1, . . . , n.

Remark 8. From the inequalities (III.11) it is obvious that a set of intervals wi = [wL
i , w

U
i ], i = 1, . . . , n, is

normalized according to Definition 28 if and only if for any wi ∈ [wL
i , w

U
i ], i ∈ {1, . . . , n} , there exist wj ∈

[wL
j , w

U
j ], j = 1, . . . , n, j ̸= i, such that

∑n
k=1 wk = 1. In other words, any value wi from the interval wi =

[wL
i , w

U
i ], i ∈ {1, . . . , n} , is a part of a normalized vector w = (w1, . . . , wn)

T belonging to the set (III.10) of
normalized vectors constructed from the intervals.

Based on Definition 28 and on Remark 8, the definition of a normalized interval vector can be extended
intuitively to a definition of a normalized trapezoidal fuzzy vector.

Definition 29. Let w̃i = (wα
i , w

β
i , w

γ
1 , w

δ
1), i = 1, . . . , n, be trapezoidal fuzzy numbers, w̃i ⊆ [0, 1], i = 1, . . . , n.

The trapezoidal fuzzy numbers w̃1, . . . , w̃n are said to be normalized if

∀wiα∈ w̃i(α) ∃wjα∈ w̃j(α), j = 1, . . . , n, j ̸= i : wiα +

n∑
j=1
j ̸=i

wjα = 1 (III.12)
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for all α ∈ [0, 1] and i = 1, . . . , n.
The vector w̃ = (w̃1, . . . , w̃n)

T ∈ FN (R)n of normalized trapezoidal fuzzy numbers will be called the nor-
malized fuzzy vector.

Theorem 15 can be extended to trapezoidal fuzzy numbers as follows.

Theorem 16. Let w̃i = (wα
i , w

β
i , w

γ
i , w

δ
i ), i = 1, . . . , n, be trapezoidal fuzzy numbers, w̃i ⊆ [0, 1], i = 1, . . . , n.

Then the trapezoidal fuzzy numbers are normalized according to Definition 29 if and only if the inequalities

wα
i +

n∑
j=1
j ̸=i

wδ
j ≥ 1, wδ

i +

n∑
j=1
j≠i

wα
j ≤ 1, wβ

i +

n∑
j=1
j ̸=i

wγ
j ≥ 1, wγ

i +

n∑
j=1
j ̸=i

wβ
j ≤ 1 (III.13)

are satisfied for all i = 1, . . . , n.

Proof. First, let us show that (III.12) implies (III.13). For α = 0, it follows from (III.12) that for wα
i , i ∈

{1, . . . , n} , ∃wj ∈
[
wα

j , w
δ
j

]
, j = 1, . . . , n, j ̸= i : wα

i +
∑n

j=1
j ̸=i

wj = 1. Because wδ
j ≥ wj , then clearly

wα
i +

∑n
j=1
j ̸=i

wδ
j ≥ 1. Similarly, for wδ

i , i ∈ {1, . . . , n} , ∃wj ∈
[
wα

j , w
δ
j

]
, j = 1, . . . , n, j ̸= i : wδ

i +
∑n

j=1
j ̸=i

wj = 1.

Because wα
j ≤ wj , then clearly wδ

i +
∑n

j=1
j ̸=i

wα
j ≤ 1. Analogously, for α = 1, the inequalities wβ

i +
∑n

j=1
j ̸=i

wγ
j ≥ 1

and wγ
i +

∑n
j=1
j ̸=i

wβ
j ≤ 1 are derived from (III.12).

Now, let us show that (III.13) implies (III.12). From the inequalities wδ
i +
∑n

j=1
j ̸=i

wα
j ≤ 1 and wα

i +
∑n

j=1
j ̸=i

wδ
j ≥ 1,

the inequalities wi+
∑n

j=1
j ̸=i

wα
j ≤ 1 and wi+

∑n
j=1
j ̸=i

wδ
j ≥ 1 follow ∀wi ∈

[
wα

i , w
δ
i

]
. Therefore, ∃wj ∈

[
wα

j , w
δ
j

]
, j =

1, . . . , n, j ̸= i : wi +
∑n

j=1
j ̸=i

wj = 1, which implies (III.12) for α = 0. Analogously, from the inequalities wγ
i +∑n

j=1
j ̸=i

wβ
j ≤ 1 and wβ

i +
∑n

j=1
j ̸=i

wγ
j ≥ 1, the inequalities wi +

∑n
j=1
j ̸=i

wβ
j ≤ 1 and wi +

∑n
j=1
j ̸=i

wγ
j ≥ 1 follow

∀wi ∈
[
wβ

i , w
γ
i

]
. Therefore, ∃wj ∈

[
wβ

j , w
γ
j

]
, j = 1, . . . , n, j ̸=: wi +

∑n
j=1
j ̸=i

wj = 1, which implies (III.12) for

α = 1.
The proof of the validity of (III.12) for α ∈]0, 1[ is analogous; it is sufficient to show that the inequalities (III.13)

hold also for the α−cuts w̃i(α) =
[
wL

i(α), w
U
i(α)

]
of the trapezoidal fuzzy numbers w̃i = (wα

i , w
β
i , w

γ
i , w

δ
i ), i ∈

{1, . . . , n} , i.e.

wL
i(α) +

n∑
j=1
j ̸=i

wU
j(α) ≥ 1, wU

i(α) +

n∑
j=1
j ̸=i

wL
j(α) ≤ 1. (III.14)

Then it is enough to take the α−cuts w̃i(α) =
[
wL

i(α), w
U
i(α)

]
of w̃i, i = 1, . . . , n, for

[
wα

i , w
δ
i

]
in the above part of

the proof.
Using the definition (III.6) of α−cuts and formulas (III.13), we obtain

wU
i(α) +

n∑
j=1
j ̸=i

wL
j(α) = αwγ

i + (1− α)wδ
i +

n∑
j=1
j ̸=i

[
αwβ

j + (1− α)wα
j

]
=

α

wγ
i +

n∑
j=1
j ̸=i

wβ
j

+ (1− α)

wδ
i +

n∑
j=1
j ̸=i

wα
j

 ≤ α+ (1− α) = 1

and analogously the inequality wL
i(α) +

∑n
j=1
j ̸=i

wU
j(α) ≥ 1 could be demonstrated.

Remark 9. Note that for normalized triangular fuzzy numbers w̃i = (wL
i , w

M
i , wU

i ), i = 1, . . . , n, the inequalities
(III.13) are reduced to

wL
i +

n∑
j=1
j ̸=i

wU
j ≥ 1, wU

i +

n∑
j=1
j ̸=i

wL
j ≤ 1,

n∑
i=1

wM
i = 1. (III.15)

Example 24. Triangular fuzzy numbers w̃1 = (0.05, 0.1, 0.2), w̃2 = (0.1, 0.3, 0.4), w̃3 = (0.5, 0.6, 0.7), given in
Fig. III.5, are normalized. △
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Figure III.5: Normalized triangular fuzzy numbers.
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3.4 Standard fuzzy arithmetic

In Definition 16, the extension principle for fuzzy sets was formulated. The extension principle (III.2) allows
us to define arithmetic operations on fuzzy numbers. In this section, standard fuzzy arithmetic is defined by
using both the membership functions and the α−cuts of fuzzy numbers. Afterwards, simplified standard fuzzy
arithmetic is defined for trapezoidal fuzzy numbers.

There are four basic binary arithmetic operations on crisp numbers - addition, subtraction, multiplication,
and division (+,−, ·, /). Let ∗ denote one of them.

Definition 30. Let ñ1, ñ2 ∈ FN (R) and let ∗ : R2 → R be a binary arithmetic operation, z = x ∗ y. Then the
extension of the arithmetic operation ∗ to fuzzy numbers, ∗ : FN (R)2 → FN (R), is defined as ñ = ñ1 ∗ ñ2 with
the membership function

ñ(z) =


sup

{
min {ñ1(x), ñ2(y)} ; (x, y) ∈ R2 : z = x ∗ y

}
if
{
(x, y) ∈ R2; z = x ∗ y

}
̸= ∅,

0, otherwise.

(III.16)

Note 5. In the literature, the fuzzy extension of the binary arithmetic operations +,−, ·, / to fuzzy numbers
is often denoted as ⊕,⊖,⊙,⊘. Nevertheless, for simplicity of notation, the standard notation +,−, ·, / will be
used in this thesis for arithmetic operations defined on fuzzy numbers. Thus, for ñ1, ñ2 ∈ FN (R), the notation
ñ1 + ñ2, ñ1 − ñ2, ñ1 · ñ2 (or simply just ñ1ñ2), and ñ1/ñ2 (or ñ1

ñ2
) will be used.

Note 6. We know that division by 0 is not defined. Similarly, this limitation holds also for division of fuzzy
numbers. In other words, ñ2 ∈ FN (R) in Definition 30 has to be such that 0 /∈ Cl(Supp ñ2) when division
ñ1/ñ2 is performed. Analogously, in the rest of this chapter, whenever arithmetic operation ∗ ∈ {+,−, ·, /} is
considered on ñ1 and ñ2, it is automatically assumed that 0 /∈ Cl(Supp ñ2) for the case ∗ = /.

Besides the four binary arithmetic operations, also the fuzzy extension of the p−th power of the variable is
needed for the fuzzy extension of the methods reviewed in Chapter II.

Definition 31. Let ñ ∈ FN (R) and let (.)p : R → R, p ∈ R, be the p−th power of the variable, y = xp. Then
the extension of (.)p to fuzzy numbers, (.)p : FN (R) → FN (R), is defined as m̃ = (ñ)p with the membership
function

m̃(y) =

{
sup {ñ(x); x ∈ R : y = xp} if {x ∈ R; y = xp} ̸= ∅,

0, otherwise.
(III.17)

In particular, definitions of the reciprocal 1
ñ and of the k−th root k

√
ñ, k ∈ N, of fuzzy number ñ ∈ F(R+) are

needed. Note that the reciprocal 1
ñ is obtained by substituting p = −1 in Definition 31, and the k−th root k

√
ñ is

obtained by substituting p = 1
k , k ∈ N, in Definition 31.

In Section 3.2, it was shown that ñ ∈ FN (R) can be represented uniquely by its α−cuts; ñ =
∪1

α=0 α[n
L
(α), n

U
(α)].

This representation allows for an alternative definition of the fuzzy extension of arithmetic operations based on
standard fuzzy arithmetic.

Definition 32. Let ñ1, ñ2 ∈ FN (R) be given by their α−cuts as ñ1 =
∪1

α=0 α[n
L
1(α), n

U
1(α)], ñ2 =

∪1
α=0 α[n

L
2(α),

nU
2(α)]. Further, let ∗ : R2 → R be a binary arithmetic operation, z = x ∗ y. Then the extension of the arithmetic

operation ∗ to fuzzy numbers, ∗ : FN (R)2 → FN (R), is defined as ñ = ñ1 ∗ ñ2 with the α−cut representation
ñ =

∪1
α=0 α[n

L
(α), n

U
(α)] :

nL
(α)= min

{
x ∗ y; x ∈ [nL

1(α), n
U
1(α)], y ∈ [nL

2(α), n
U
2(α)]

}
,

nU
(α)= max

{
x ∗ y; x ∈ [nL

1(α), n
U
1(α)], y ∈ [nL

2(α), n
U
2(α)]

}
.

(III.18)
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Definition 33. Let ñ ∈ FN (R) be given by its α−cuts as ñ =
∪1

α=0 α[n
L
(α), n

U
(α)]. Further, let (.)p : R → R be

the p−th power of the variable, y = xp. Then the extension of (.)p to fuzzy numbers, (.)p : FN (R) → FN (R), is
defined as m̃ = (ñ)p with the α−cut representation m̃ =

∪1
α=0 α[m

L
(α),m

U
(α)] :

mL
(α)= min

{
xp; x ∈ [nL

(α), n
U
(α)]
}
,

mU
(α)= max

{
xp; x ∈ [nL

(α), n
U
(α)]
}
.

(III.19)

As already mentioned in Section 3.3, triangular and trapezoidal fuzzy numbers and intervals are most often
used for the fuzzy extension of MCDM methods based on PCMs. This class of fuzzy numbers is used for the
fuzzy extension also in this thesis. Thus, the arithmetic operations are going to be introduced in detail for this
particular class of fuzzy numbers. The α−cut representation of the fuzzy extension of arithmetic operations
given by Definitions 32 and 33 is going to be used for this purpose as it is more convenient than the membership
representation given by Definitions 30 and 31.

Let c̃ =
(
cα, cβ , cγ , cδ

)
and d̃ =

(
dα, dβ , dγ , dδ

)
be two trapezoidal fuzzy numbers. The sum of c̃ and d̃

obtained by applying the extension principle (III.18) is again a trapezoidal fuzzy number given as

c̃+ d̃ =
(
cα + dα, cβ + dβ , cγ + dγ , cδ + dδ

)
, (III.20)

and their difference is a trapezoidal fuzzy number given as

c̃− d̃ =
(
cα − dδ, cβ − dγ , cγ − dβ , cδ − dα

)
. (III.21)

Unlike the sum and the difference, the product and the quotient of two trapezoidal fuzzy numbers as well
as the reciprocal and the k−th root of a trapezoidal fuzzy number are not trapezoidal fuzzy numbers anymore
when extension principle (III.18) is applied. Analogously, also the product and the quotient of two triangular
fuzzy numbers as well as the reciprocal and the k−th root of a triangular fuzzy number are not in general
triangular fuzzy numbers any more. However, for the sake of computational simplicity, it is a common practice
in fuzzy MCDM based on fuzzy PCMs to approximate the results of these arithmetic operations by trapezoidal
and triangular fuzzy numbers, respectively. Usually, authors do not even mention that simplified standard fuzzy
arithmetic is used in their papers instead of standard fuzzy arithmetic.

According to simplified standard fuzzy arithmfetic, arithmetic operations are performed only on the rep-
resenting values of trapezoidal fuzzy numbers thus obtaining representing values of the resulting trapezoidal
fuzzy numbers. This means that the product and the quotient of two trapezoidal fuzzy numbers c̃ =

(
cα, cβ , cγ , cδ

)
and d̃ =

(
dα, dβ , dγ , dδ

)
are trapezoidal fuzzy numbers given as p̃ = c̃ · d̃ =

(
pα, pβ , pγ , pδ

)
where

pα = min
{
cα · dα, cα · dδ, cδ · dα, cδ · dδ

}
,

pβ = min
{
cβ · dβ , cβ · dγ , cγ · dβ , cγ · dγ

}
,

pγ = max
{
cβ · dβ , cβ · dγ , cγ · dβ , cγ · dγ

}
,

pδ = max
{
cα · dα, cα · dδ, cδ · dα, cδ · dδ

}
,

(III.22)

and q̃ = c̃

d̃
=
(
qα, qβ , qγ , qδ

)
, 0 /∈

[
dα, dδ

]
, where

qα = min
{

cα

dα ,
cα

dδ ,
cδ

dα ,
cδ

dδ

}
,

qβ = min
{

cβ

dβ ,
cβ

dγ ,
cγ

dβ ,
cγ

dγ

}
,

qγ = max
{

cβ

dβ ,
cβ

dγ ,
cγ

dβ ,
cγ

dγ

}
,

qδ = max
{

cα

dα ,
cα

dδ ,
cδ

dα ,
cδ

dδ

}
,

(III.23)

respectively. Analogously, the reciprocal of a trapezoidal fuzzy number c̃ =
(
cα, cβ , cγ , cδ

)
, cα > 0, is a trape-

zoidal fuzzy number
1

c̃
=

(
1

cδ
,
1

cγ
,
1

cβ
,
1

cα

)
, (III.24)

and the k−th root of c̃ =
(
cα, cβ , cγ , cδ

)
, cα > 0, is a trapezoidal fuzzy number

k
√
c̃ =

(
k
√
cα,

k
√
cβ , k

√
cγ ,

k
√
cδ
)
. (III.25)
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In the fuzzy extension of the MCDM methods based on MPCMs and APCMs reviewed in Chapter II, only
positive fuzzy numbers are present. This enables us to further simplify the formulas (III.22) and (III.23). For
c̃ =

(
cα, cβ , cγ , cδ

)
∈ FN (R+) and d̃ =

(
dα, dβ , dγ , dδ

)
∈ FN (R+), the formulas (III.22) and (III.23) are simplified

to

c̃ · d̃ =
(
cα · dα, cβ · dβ , cγ · dγ , cδ · dδ

)
, (III.26)

and
c̃

d̃
=

(
cα

dδ
,
cβ

dγ
,
cγ

dβ
,
cδ

dα

)
, (III.27)

respectively.
The product, the quotient, the reciprocal, and the k−th root of trapezoidal fuzzy numbers (III.22)–(III.25), re-

spectively, obtained by simplified standard fuzzy arithmetic have the same representing values as the results of
these arithmetic operations obtained by properly applying extension principles (III.18) and (III.19), respectively,
in standard fuzzy arithmetic. That means that the support and the core of the results of these arithmetic oper-
ations are determined correctly by applying simplified standard fuzzy arithmetic, and the left and right sides of
the resulting fuzzy numbers are approximated by linear functions. This approximation is generally accepted as
sufficient in the literature on the fuzzy extension of the MCDM methods based on PCMs.

The following example is provided in order to demonstrate better the difference between the standard fuzzy
arithmetic and the simplified standard fuzzy arithmetic.

Example 25. Let us consider the trapezoidal fuzzy number c̃ = (2, 3, 4, 6) and the triangular fuzzy number
d̃ = (1, 2.5, 3). Clearly, d̃ can be written as a trapezoidal fuzzy number in the form d̃ = (1, 2.5, 2.5, 3). By
applying the formulas (III.20), (III.21), and (III.24)–(III.27) based on simplified standard fuzzy arithmetic to the
computation with the trapezoidal fuzzy numbers c̃ and d̃, we obtain the trapezoidal fuzzy numbers

c̃+ d̃ = (3, 5.5, 6.5, 9), c̃− d̃ = (−1, 0.5, 1.5, 5),

c̃ · d̃ = (2, 7.5, 10, 18), c̃

d̃
=

(
2
3 ,

6
5 ,

8
5 , 6
)
,

1
c̃ =

(
1

6
,
1

4
,
1

3
,
1

2

)
,

2
√
c̃ = ( 2

√
2, 2

√
3, 2, 2

√
6).

The resulting trapezoidal fuzzy numbers are represented in Fig. III.6 together with the actual results of the
arithmetic operations given by the extension principles (III.18) and (III.19). The actual results of the arithmetic
operations are given by a dotted line and their trapezoidal approximations are given by a solid line. Notice
that the sum and the difference of the trapezoidal fuzzy numbers c̃ and d̃ obtained by using standard fuzzy
arithmetic are again trapezoidal fuzzy numbers. In fact, as it is obvious from Fig. III.6, the results obtained by
using standard fuzzy arithmetic coincide with the results obtained by using simplified standard fuzzy arithmetic.
Contrarily, the results of other four arithmetic operations obtained by applying standard fuzzy arithmetic are not
trapezoidal fuzzy numbers anymore. Nevertheless, as it is obvious from Fig. III.6, the trapezoidal approxima-
tions of these results obtained by applying simplified standard fuzzy arithmetic have the same support and the
same core as the actual results obtained by applying standard fuzzy arithmetic. △

Since intervals are a particular case of trapezoidal fuzzy numbers, the arithmetic operations with intervals
are performed according to the formulas (III.20)–(III.25) as well. Recall that interval c = [cL, cU ] can be easily
written as trapezoidal fuzzy number c̃ = (cL, cL, cU , cU ). However, intervals are also a particular class of crisp
sets on R with a well-defined interval arithmetic for performing arithmetic operations on intervals. The interval
arithmetic allows us to perform arithmetic operations on intervals in a much simpler way than the fuzzy arith-
metic does. Nevertheless, both interval arithmetic and standard fuzzy arithmetic applied to intervals provide
the same results. Unlike for the case of triangular and trapezoidal fuzzy numbers, the results of arithmetic
operations with intervals are again intervals. Thus, there is no need for defining simplified standard fuzzy (in-
terval) arithmetic for intervals. Let u = [uL, uU ] and v = [vL, vU ] be two positive intervals, i.e. uL > 0, vL > 0.
Then the arithmetic operations are defined by using standard interval arithmetic as

u+ v = [uL + vL, uU + vU ], (III.28)

u− v = [uL − vU , uU − vL], (III.29)

u · v = [uL · vL, uU · vU ], (III.30)

u

v
=

[
uL

vU
,
uU

vL

]
, (III.31)
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Figure III.6: Arithmetic operations with trapezoidal fuzzy numbers.
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, (III.32)

k
√
u =

[
k
√
uL,

k
√
uU
]
. (III.33)

The extension of single arithmetic operations on fuzzy numbers to functions combining the arithmetic oper-
ations is straightforward.

Definition 34. Let ñi ∈ FN (R), i = 1, . . . , k, and let f : Rk → R be a function defined by means of any
combination of arithmetic operations, z = f(x1, . . . , xk). Then the extension of the function f to fuzzy numbers,
f : FN (R)k → FN (R), is defined as ñ = f(ñ1, . . . , ñk) with the membership function

ñ(z) =


sup

{
min {ñ1(x1), . . . , ñk(xk)} ; (x1, . . . , xk) ∈ Rk : z = f(x1, . . . , xk)

}
if
{
(x1, . . . , xk) ∈ Rk; z = f(x1, . . . , xk)

}
̸= ∅,

0, otherwise.

(III.34)

Definition 35. Let ñi ∈ FN (R) be given by their α−cuts as ñi =
∪1

α=0 α[n
L
i(α), n

U
i(α)], i = 1, . . . , k. Further, let

f : Rk → R be a function defined by means of any combination of arithmetic operations, z = f(x1, . . . , xk).
Then the extension of the function f to fuzzy numbers, f : FN (R)k → FN (R), is defined as ñ = f(ñ1, . . . , ñk)
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with the α−cut representation ñ =
∪1

α=0 α[n
L
(α), n

U
(α)] :

nL
(α)= min

{
f(x1, . . . , xk); xi ∈ [nL

i(α), n
U
i(α)], i = 1, . . . , k

}
,

nU
(α)= max

{
f(x1, . . . , xk); xi ∈ [nL

i(α), n
U
i(α)], i = 1, . . . , k

}
.

(III.35)

The result of applying standard fuzzy arithmetic in Definitions 34 and 35 to the computations with trapezoidal
fuzzy numbers can be approximated according to simplified standard fuzzy arithmetic by a trapezoidal fuzzy
number ñ = (nα, nβ , nγ , nδ) :

nα= min
{
f(x1, . . . , xk); xi ∈ [nα

i , n
δ
i ], i = 1, . . . , k

}
,

nβ= min
{
f(x1, . . . , xk); xi ∈ [nβ

i , n
γ
i ], i = 1, . . . , k

}
,

nγ= max
{
f(x1, . . . , xk); xi ∈ [nβ

i , n
γ
i ], i = 1, . . . , k

}
,

nδ= max
{
f(x1, . . . , xk); xi ∈ [nα

i , n
δ
i ], i = 1, . . . , k

}
.

(III.36)

3.5 Constrained fuzzy arithmetic

Constrained fuzzy arithmetic was introduced by Klir (1997) and Klir and Pan (1998) to handle correctly arith-
metic operations on fuzzy numbers in the presence of constraints on operands. “When arithmetic operations
are performed on real numbers, they follow unique rules that are independent of what is represented by the
numbers involved. That is, the result of each particular arithmetic operation on real numbers depends only
on the numbers involved and not on the entities represented by the numbers. As it is well known, the valid-
ity of this simple principle is also tacitly assumed in the usual interval arithmetic as well as fuzzy arithmetic”
(Klir (1997), p. 167). Klir (1997) and Klir and Pan (1998) argued that this principle is valid neither for interval
arithmetic nor for fuzzy arithmetic. Contrarily to standard arithmetic on real numbers, interval arithmetic and
fuzzy arithmetic depend not only on the intervals or fuzzy numbers involved, but also on their meanings that
impose constraints on the operands. These constraints often appear when different operands represent the
same linguistic variable or when there are any relations among the operands.

Example 26. Let us consider function f(x) = x−x. Clearly, f(x) = 0 for any x ∈ R since both operands in the
subtraction are the same.

Now let us examine the extension of the function f to fuzzy numbers ñ ∈ FN (R). According to standard
fuzzy arithmetic (in particular Definition 30) the fuzzy extension of the function f is given as m̃ = f(ñ) = ñ− ñ
with the membership function

m̃(z) =


sup

{
min {ñ(x), ñ(y)} ; (x, y) ∈ R2 : z = x− y

}
if
{
(x, y) ∈ R2; z = x− y

}
̸= ∅,

0, otherwise.

(III.37)

For trapezoidal fuzzy numbers ñ = (nα, nβ , nγ , nδ) ∈ FN (R) in particular, we obtain

m̃ = f(ñ, ñ) = ñ− ñ = (nα − nδ, nβ − nγ , nγ − nβ , nδ − nα) ̸= 0. (III.38)

Let us consider a trivial example: We have a bottle of water and we drink it all. How much is left? Nothing,
right? How did we arrive to this simple solution? The problem can be solved by using the function f defined
above. When there is 1 l of water and we drink it all then there is f(1) = 1− 1 = 0 l left. When there is 650 ml
and we drink it all then there is again f(650) = 650− 650 = 0 ml left.

Now let us consider we do not know precisely the amount of water in the bottle. Let us say there is about
1 l, which can be described by the triangular fuzzy number ñ = (0.95, 1, 1.05), for example. How much will be
now left when we drink it all? The common sense again suggests that nothing should be left. But if we apply
fuzzy arithmetic to find the solution of this simple problem, we get into difficulties. By using the formula (III.38)
we obtain f(ñ) = ñ − ñ = (0.95 − 1.05, 1 − 1, 1.05 − 0.95) = (−0.1, 0, 0.1). So according to the standard fuzzy
arithmetic there should be something between -0.1 l and 0.1 l left. This conclusion is obviously nonsensical.

The problem is that we did not consider the meaning of the operands in the subtraction. From the definition
of the problem, it is clear that the operands of the subtraction are in interaction. In particular, only the same
values of operands are admissible; whatever the amount of water in the bottle is, we drink this exact amount.
This constraint has to be considered in the computations. △
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Klir (1997) and Klir and Pan (1998) examined various types of constraints on operands in constrained fuzzy
arithmetic, in particular equality, inequality, and probabilistic constraints. In this thesis, only equality constraints
are of interest.

Definition 36. Let ñ1, ñ2 ∈ FN (R) and let ∗ : R2 → R be a binary arithmetic operation, z = x ∗ y. Further,
let the equality constraint g(x, y) = 0 express an interaction between the operands. Then, considering the
constraint g(x, y) = 0 on the values of the operands, the extension of the arithmetic operation ∗ to fuzzy
numbers, ∗ : FN (R)2 → F(R), is defined as ñ = ñ1 ∗ ñ2 with the membership function

ñ(z)=


sup

{
min {ñ1(x), ñ2(y)} ; (x,y) ∈ R2 : z = x ∗ y, g(x, y) = 0

}
if
{
(x, y) ∈ R2; z = x ∗ y, g(x, y) = 0

}
̸= ∅,

0, otherwise.

(III.39)

Note that the result of constrained fuzzy arithmetic given by the extension principle (III.39) on fuzzy numbers
is a fuzzy set but not a fuzzy number in general. This is caused by the presence of the interaction constraint
g(x, y) = 0. To guarantee that the result of constrained fuzzy arithmetic applied to fuzzy numbers is again
a fuzzy number, i.e. that ∗ in Definition 36 is such that ∗ : FN (R)2 → FN (R), further requirements on the
constraint g(x, y) = 0 have to be imposed.

Some constraining requirements were given by Klir and Pan (1998). In this thesis, only a particular type of
equality constraint g(x, y) = 0 is needed to extend appropriately the formulas defined for PCMs in Chapter II
to fuzzy PCMs. The equality constraints of the type g(x, y) = 0 that are going to be applied in Chapter IV are
such that G =

{
(x, y) ∈ R2; g(x, y) = 0

}
is a connected set2. Being G a connected set, it is sufficient to require{

(x, y) ∈ R2; ñ1(x) = 1, ñ2(y) = 1, g(x, y) = 0
}
̸= ∅

to guarantee that the result of the constrained fuzzy arithmetic on fuzzy numbers given by the extension
principle (III.39) is again a fuzzy number.

Analogously to standard fuzzy arithmetic, the α−cut representation of fuzzy numbers can be conveniently
used also to define constrained fuzzy arithmetic.

Definition 37. Let ñ1, ñ2 ∈ FN (R) be given by their α−cuts as ñ1 =
∪1

α=0 α[n
L
1(α), n

U
1(α)], ñ2 =

∪1
α=0 α[n

L
2(α),

nU
2(α)]. Further, let ∗ : R2 → R be a binary arithmetic operation, z = x∗y, and let the equality constraint g(x, y) =

0 express an interaction between the operands. If G =
{
(x, y) ∈ R2; g(x, y) = 0

}
is a connected set and if

{(x, y) ∈ R2; ñ1(x) = 1, ñ2(y) = 1, g(x, y) = 0} ̸= ∅, then the extension of the arithmetic operation ∗ to fuzzy
numbers, ∗ : FN (R)2 → FN (R), is defined as ñ = ñ1∗ñ2 with the α−cut representation ñ =

∪1
α=0 α[n

L
(α), n

U
(α)] :

nL
(α)= min

{
x ∗ y; x ∈ [nL

1(α), n
U
1(α)], y ∈ [nL

2(α), n
U
2(α)], g(x, y) = 0

}
,

nU
(α)= max

{
x ∗ y; x ∈ [nL

1(α), n
U
1(α)], y ∈ [nL

2(α), n
U
2(α)], g(x, y) = 0

}
.

(III.40)

As already mentioned in the previous section, simplified standard fuzzy arithmetic is commonly used in
fuzzy MCDM based on fuzzy PCMs in order to keep the computational procedure simple. The results of
arithmetic operations with triangular or trapezoidal fuzzy numbers are thus still triangular or trapezoidal fuzzy
numbers, respectively, whose supports and cores correspond to the supports and cores of the actual results of
the arithmetic operations determined precisely by applying extension principles (III.39) and (III.40). Recall that
there is no need for simplified fuzzy arithmetic to perform arithmetic operations on intervals since the results
are always intervals.

In order to be consistent with this approach, it is necessary to apply the simplified version of fuzzy arithmetic
also when there appear any constraints on the operands in the computational procedure. This basically means
that we want to reflect the constraints given on operands in the outcome of the computation, but, at the same
time, we want to approximate the outcome by a triangular or trapezoidal fuzzy number, respectively, to keep
the computational procedure as simple as possible still obtaining reliable results. Simplified constrained fuzzy
arithmetic, a combination of simplified fuzzy arithmetic and constrained fuzzy arithmetic, is thus needed.

According to the simplified constrained fuzzy arithmetic, for two trapezoidal fuzzy numbers ñ1 = (nα
1 , n

β
1 , n

γ
1 , n

δ
1),ñ2 =

(nα
2 , n

β
2 , n

γ
2 , n

δ
2) ∈ FN (R), only the representing values nα, nβ , nγ , nδ of the resulting fuzzy number ñ = ñ1 ∗ ñ2

are computed. However, unlike in the case of simplified standard fuzzy arithmetic, the representing values of
ñ are not obtained by performing the arithmetic operation ∗ on the representing values of the fuzzy numbers
ñ1, ñ2. The formulas for performing arithmetic operations on trapezoidal fuzzy numbers based on the simplified
constrained fuzzy arithmetic are more complex than the formulas based on the simplified standard fuzzy arith-
metic; solving optimization problems is necessary to obtain the representing values of the resulting trapezoidal
fuzzy number ñ = (nα, nβ , nγ , nδ).

2Set G is connected if it cannot be divided into two disjoint closed sets.
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Let ∗ : R2 → R be an arithmetic operation, z = x ∗ y, and let g(x, y) = 0 represent a constraint imposed
on the operands, G =

{
(x, y) ∈ R2; g(x, y) = 0

}
being a connected set. Further, let ñ1 = (nα

1 , n
β
1 , n

γ
1 , n

δ
1), ñ2 =

(nα
2 , n

β
2 , n

γ
2 , n

δ
2) ∈ FN (R) be trapezoidal fuzzy numbers such that

{
(x, y) ∈ R2; ñ1(x) = 1, ñ2(y) = 1, g(x, y) = 0

}̸
=

∅. Then the fuzzy extension of the arithmetic operation ∗ to trapezoidal fuzzy numbers ñ1 and ñ2 based on the
simplified constrained fuzzy arithmetic is defined as ñ = ñ1 ∗ ñ2 with the representation ñ = (nα, nβ , nγ , nδ) :

nα= min
{
x ∗ y; x ∈ [nα

1 , n
δ
1], y ∈ [nα

2 , n
δ
2], g(x, y) = 0

}
,

nβ= min
{
x ∗ y; x ∈ [nβ

1 , n
γ
1 ], y ∈ [nβ

2 , n
γ
2 ], g(x, y) = 0

}
,

nγ= max
{
x ∗ y; x ∈ [nβ

1 , n
γ
1 ], y ∈ [nβ

2 , n
γ
2 ], g(x, y) = 0

}
,

nδ= max
{
x ∗ y; x ∈ [nα

1 , n
δ
1], y ∈ [nα

2 , n
δ
2], g(x, y) = 0

}
.
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Difference between standard and constrained fuzzy arithmetic is demonstrated on the following illustrative
example.

Example 27. Let us consider trapezoidal fuzzy number c̃ = (0.2, 0.3, 0.4, 0.6) and let us compute trapezoidal
fuzzy number d̃ as d̃ = 1 − c̃ = (0.4, 0.6, 0.7, 0.8). Clearly, trapezoidal fuzzy numbers c̃ and d̃ are in relation; to
any value x ∈ Cl(Supp c̃) corresponds a value y ∈ Cl(Supp d̃) such that y = 1− x.

Let us compute the product ẽ = c̃ · d̃. By applying the simplified standard fuzzy arithmetic, and in particular
formula (III.26), we obtain trapezoidal fuzzy number ẽSS = (0.08, 0.18, 0.28, 0.48). In Fig. III.7, you can compare
this trapezoidal approximation with the actual outcome ẽS of the multiplication obtainable by applying standard
fuzzy arithmetic (III.18).

The relation y = 1 − x between the operands represented by trapezoidal fuzzy numbers c̃ and d̃ was
not taken into account when computing their product by using the formulas (III.26) and (III.18). Thus, the
obtained results ẽSS and ẽS are both imprecise, too vague. In order to eliminate the excessive vagueness, it is
necessary to apply properly the constrained fuzzy arithmetic (III.40) or, alternatively, the simplified constrained
fuzzy arithmetic (III.41).

First, let us verify the requirements for the constraint on the operands. The constraint y = 1 − x can
be written as g(x, y) = x + y − 1 = 0. The set G =

{
(x, y) ∈ R2; x+ y − 1 = 0

}
is clearly connected and

{(x, y) ∈ R2; c̃(x) = 1, d̃(y) = 1, x+ y − 1 = 0} ={(x, 1− x) ∈ [0.3, 0.4]× [0.6, 0.7]} ̸= ∅. This guarantees that
the result of the constrained fuzzy arithmetic applied to c̃ and d̃ is again a fuzzy number. By applying (III.41)
with the function f : R2 → R in the form f(x, y) = x · y and the constraint g(x, y) = 0 in the form x+ y − 1 = 0,
we obtain trapezoidal fuzzy number ẽSC = (eα, eβ , eγ , eδ) :

eα = min {x · y; x ∈ [0.2, 0.6], y ∈ [0.4, 0.8], x+ y − 1 = 0} =

min {x(1− x); x ∈ [0.2, 0.6]} = 0.16,

eβ = min {x · y; x ∈ [0.3, 0.4], y ∈ [0.6, 0.7], x+ y − 1 = 0} =

min {x(1− x); x ∈ [0.3, 0.4]} = 0.21,

eγ = max {x · y; x ∈ [0.3, 0.4], y ∈ [0.6, 0.7], x+ y − 1 = 0} =

max {x(1− x); x ∈ [0.3, 0.4]} = 0.24,

eδ = max {x · y; x ∈ [0.2, 0.6], y ∈ [0.4, 0.8], x+ y − 1 = 0} =

max {x(1− x); x ∈ [0.2, 0.6]} = 0.25.

(III.42)

Figure III.7: Product of c̃ and d̃ obtained by standard fuzzy arithmetic and by simplified standard fuzzy arith-
metic.
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Figure III.8: Product of c̃ and d̃ obtained by constrained fuzzy arithmetic and by simplified constrained fuzzy
arithmetic.
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Figure III.9: Product of c̃ and d̃ obtained by constrained and standard fuzzy arithmetics.
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Again, trapezoidal approximation ẽSC is displayed in Fig. III.8 together with the actual outcome ẽC of the
constrained fuzzy arithmetic performed by applying (III.40).

The product ẽSC = (0.16, 0.21, 0.24, 0.25) obtained by simplified constrained fuzzy arithmetic is significantly
less vague than the product ẽSS = (0.08, 0.18, 0.28, 0.48) obtained by simplified standard fuzzy arithmetic. The
difference in vagueness of both trapezoidal fuzzy numbers is even more noticeable from graphical represen-
tation, see Fig. III.9. It is clearly visible from the figure how significant the reduction of vagueness is when
applying properly (simplified) constrained fuzzy arithmetic instead of (simplified) standard fuzzy arithmetic.
Therefore, in order to obtain more reliable results, it is indispensable to take into account all relations between
operands when performing arithmetic operations on fuzzy numbers.

△

Example 28. In Example 26, a simple problem that cannot be solved by using standard fuzzy arithmetic was
shown. Let us now apply constrained fuzzy arithmetic to the same problem. As already argued in Example
26, the operands in the subtraction f(ñ, ñ) = ñ − ñ are in interaction - they are equal. This interaction can be
modeled by the function g(x, y) = x− y = 0.

The set G =
{
(x, y) ∈ R2; g(x, y) = x− y = 0

}
is connected and, further, {(x, y) ∈ R2; ñ(x) = 1, ñ(y) =

1, g(x, y) = x−y = 0} =
{
(x, x) ∈ R2; x ∈ Core ñ

}
̸= ∅ for ñ ∈ FN (R). Applying the extension principle (III.40)

to the function f(ñ) = ñ− ñ with the entry ñ = (0.95, 1, 1.05), we obtain m̃ = (mL,mM ,mU ) = ñ− ñ :

mL =min {x− y; x ∈ [0.95, 1.05], y ∈ [0.95, 1.05], x− y = 0} =
min {x− x; x ∈ [0.95, 1.05]} = 0,

mM=min {x− y; x ∈ [1, 1], y ∈ [1, 1], x− y = 0} =
min {x− x; x = 1} = 0,

mU =max {x− y; x ∈ [0.95, 1.05], y ∈ [0.95, 1.05], x− y = 0} =
max {x− x; x ∈ [0.95, 1.05]} = 0.

Thus, we finally get the correct solution to our problem. Namely, when there is about 1 l of water (ñ =
(0.95, 1, 1.05)) in the bottle and we drink it all, then nothing is left; ñ− ñ = (0.95, 1, 1.05)− (0.95, 1, 1.05) = 0. △

The extension of single arithmetic operations with constraints on operands to functions combining arithmetic
operations is straightforward.

Definition 38. Let ñi ∈ FN (R), i = 1, . . . , k. Further, let f : Rk → R be a function defined by means of any
combination of arithmetic operations, z = f(x1, . . . , xk), and let the equality constraints gj(x1, . . . , xk) = 0,
j = 1, . . . , l, express interactions between the operands. If Gj =

{
(x1, . . . , xk) ∈ Rk; gj(x1, . . . , xk) = 0

}
, j =

1, . . . , l, are connected sets and if
{
(x1, . . . , xk) ∈ Rk; ñi(xi) = 1, i=1, . . . , k, gj(x1, . . . , xk)=0, j=1, . . . , l

}̸
=

46



∅, then the extension of the function f to fuzzy numbers, f : FN (R)k → FN (R), is defined as ñ = f(ñ1, . . . , ñk)
with the membership function

ñ(z) =


sup

{
min {ñ1(x1), . . . , ñk(xk)} ;

(x1, . . . , xk) ∈ Rk : z = f(x1, . . . , xk),

gj(x1, . . . , xk) = 0, j = 1, . . . , l

}
if
{
(x1, . . . , xk) ∈ Rk; z = f(x1, . . . , xk),
gj(x1, . . . , xk) = 0, j = 1, . . . , l

}
̸= ∅,

0, otherwise.

(III.43)

Definition 39. Let ñi ∈ FN (R) be given by their α−cuts as ñi =
∪1

α=0 α[n
L
i(α), n

U
i(α)], i = 1, . . . , k. Further, let

f : Rk → R be a function defined by means of any combination of arithmetic operations, z = f(x1, . . . , xk),
and let the equality constraints gj(x1, . . . , xk) = 0, j = 1, . . . , l, express interactions between the operands. If
Gj ={(x1, . . . , xk)∈Rk; gj(x1, . . . , xk)=0}, j=1, . . . , l, are connected sets and if {(x1, . . . , xk) ∈ Rk; ñi(xi)=
1, i = 1, . . . , k, gj(x1, . . . , xk) = 0, j = 1, . . . , l} ̸= ∅, then the extension of the function f to fuzzy numbers,
f : FN (R)k → FN (R), is defined as ñ = f(ñ1, . . . , ñk) with the α−cut representation ñ =

∪1
α=0 α[n

L
(α), n

U
(α)] :

nL
(α)= min

{
f(x1, . . . , xk);

xi ∈ [nL
i(α), n

U
i(α)], i = 1, . . . , k,

gj(x1, . . . , xk) = 0, j = 1, . . . , l

}
,

nU
(α)= max

{
f(x1, . . . , xk);

xi ∈ [nL
i(α), n

U
i(α)], i = 1, . . . , k,

gj(x1, . . . , xk) = 0, j = 1, . . . , l

}
.

(III.44)

The result of applying constrained fuzzy arithmetic in Definitions 38 and 39 to the computations with trape-
zoidal fuzzy numbers can be approximated according to simplified constrained fuzzy arithmetic by a trapezoidal
fuzzy number ñ = (nα, nβ , nγ , nδ) :

nα= min

{
f (x1, . . . , xk) ;

xi ∈ [nα
i , n

δ
i ], i = 1, . . . , k,

gj(x1, . . . , xk) = 0, j = 1, . . . , l

}
,

nβ= min

{
f (x1, . . . , xk) ;

xi ∈ [nβ
i , n

γ
i ], i = 1, . . . , k,

gj(x1, . . . , xk) = 0, j = 1, . . . , l

}
,

nγ= max

{
f (x1, . . . , xk) ;

xi ∈ [nβ
i , n

γ
i ], i = 1, . . . , k,

gj(x1, . . . , xk) = 0, j = 1, . . . , l

}
,

nδ= max

{
f (x1, . . . , xk) ;

xi ∈ [nα
i , n

δ
i ], i = 1, . . . , k,

gj(x1, . . . , xk) = 0, j = 1, . . . , l

}
.

(III.45)

The simplified constrained fuzzy arithmetic will be applied in the following chapter in order to preserve the
reciprocity of the related PCs of objects in FPCMs. For the simplicity, the terms “standard fuzzy arithmetic” and
“constrained fuzzy arithmetic” will be used hereafter. However, the terms will always refer to their simplified
versions with results in the form of trapezoidal fuzzy numbers (triangular fuzzy numbers and intervals being
special cases) if not specified otherwise.
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Chapter IV

Fuzzy pairwise comparison matrices

Part of this chapter has been published in:

J. Krejčı́: “Obtaining fuzzy priorities from additive fuzzy pairwise comparison matrices”, IMA Journal of
Management Mathematics, First published online: May 2016, doi: 10.1093/imaman/dpw006.

J. Krejčı́: “Fuzzy eigenvector method for obtaining normalized fuzzy weights from fuzzy pairwise com-
parison matrices”, Fuzzy Sets and Systems, 315(1):26-43, 2017.

J. Krejčı́, O. Pavlačka and J. Talašová: “A fuzzy extension of Analytic Hierarchy Process based on the
constrained fuzzy arithmetic”, Fuzzy Optimization and Decision Making, 16(1):89-110, 2017.

J. Krejčı́: “Additively reciprocal fuzzy pairwise comparison matrices and multiplicative fuzzy priorities”,
Soft Computing, 21(12):3177-3192, 2017.

M. Fedrizzi and J. Krejčı́: “A note on the paper ‘Fuzzy Analytic Hierarchy Process: Fallacy of the Popular
Methods”, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 23(6), 2015, p.
965–970.

J. Krejčı́ and J. Stoklasa: “Fuzzified AHP in the evaluation of scientific monographs”, Central European
Journal of Operational Research 24(2), 2015, p. 353–370.

J. Krejčı́: “Fuzzy maximal eigenvalues of fuzzy pairwise comparison matrices”, Proceedings of the 32nd
International Conference on Mathematical Methods in Economics 2014, Olomouc, Czech Republic, ISBN:
978-80-244-4209-9, 2014, p. 500–505.

4.1 Introduction

In Chapter II, crisp PCMs were studied in detail. However, as mentioned in Section 1.2.1, crisp PCs are not
suitable for every MCDM problem. For example, when linguistic terms are used to provide intensities of pref-
erence or when the information about the problem is imprecise, fuzzy numbers seem to be more appropriate
for expressing the PCs. In Chapter III, fuzzy numbers were defined together with all concepts indispensable
for properly replacing crisp PCs in PCMs by fuzzy PCs in form of fuzzy numbers and for adapting the related
methods accordingly. (The word “crisp” is used here to emphasize the distinction from “fuzzy”.)

By a FPCM of n objects o1, . . . , on we will understand a PCM whose elements are fuzzy numbers, i.e.
C̃ = {c̃ij}ni,j=1 , c̃ij ∈ FN (R), i, j = 1, . . . , n. Note that also a crisp PCM C = {cij}ni,j=1 is actually a FPCM
since crisp numbers are a special case of fuzzy numbers.

In Section 2.1, two key properties of PCMs and of the relevant methods were identified - reciprocity of the
related PCs and invariance of methods under permutation of objects. When extending crisp PCMs to FPCMs
it is necessary to handle properly these two key properties.

As stated in Section 2.1, reciprocity is an inherent property of crisp PCMs resulting from the interpretation
of the related PCs cij and cji. An appropriate extension of the reciprocity relation to FPCMs is of key impor-
tance for processing correctly the preference information contained in FPCMs and for deriving conclusions that
reflect DM’s preferences reliably. For this it is necessary to understand and interpret correctly the information
contained in a FPCM. A FPCM C̃ = {c̃ij}ni,j=1 is not just a matrix with entries in form of fuzzy numbers that
express uncertain preference information and that are in a reciprocity relation. It is necessary to look at the
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FPCM C̃ = {c̃ij}ni,j=1 as a set of crisp PCMs C = {cij}ni,j=1 with different degrees of membership to the FPCM
C̃. Each such PCM C = {cij}ni,j=1 carries particular preference information and has all the properties of a
PCM discussed in Chapter II. This fact has to be considered when extending to FPCMs the methods originally
proposed for crisp PCMs.

Similarly as for crisp PCMs, there exists no canonical order for assigning the labels o1, . . . , on to n objects.
Thus, regardless of the permutation of a FPCM C̃, the methods applied to FPCMs have to lead to the same
results, i.e. they have to be invariant under permutation of objects. In particular, the invariance under per-
mutation is required for definitions of consistency and inconsistency indices defined for FPCMs as well as for
methods for deriving fuzzy priorities of objects from FPCMs.

Being P a permutation matrix, C̃π = PC̃PT is a permutation of C̃ associated with P. Further, let C̃ denote a
certain class of PCMs. Then, invariance under permutation for definitions of consistency, inconsistency indices,
and methods for deriving priorities of objects from FPCMs can be formally defined as follows.

Definition 40. A definition of consistency for FPCMs in a certain class C̃ is invariant under permutation of
objects if ∀C̃ ∈ C̃ the following holds:

C̃ consistent ⇒ PC̃PT consistent for every P,

C̃ not consistent ⇒ PC̃PT not consistent for any P,

where P is a permutation matrix.

Definition 41. An inconsistency index I : C̃ → FN (R) defined on a certain class C̃ of FPCMs is invariant under
permutation of objects if

I(PC̃PT ) = I(C̃), ∀C̃ ∈ C̃ and for any permutation matrix P.

Definition 42. Let a method for deriving fuzzy priorities w̃ = (w̃1, . . . , w̃n)
T of objects from FPCMs in a certain

class C̃ be described by a function f : C̃ → FN (R)n, i.e. w̃ = f(C̃), C̃ ∈ C̃. Then the method is said to be
invariant under permutation of objects if

f(PC̃PT ) = Pf(C̃), ∀C̃ ∈ C̃ and for any permutation matrix P.

In Chapter II, three types of PCMs were studied: MPCMs, APCMs-A, and APCMs-M. In the following
sections of this chapter, the fuzzy extension of all three types of PCMs and of the reviewed definitions of con-
sistency, inconsistency idices, and methods for deriving priorities from them is studied in detail. The focus is
put on preserving the reciprocity of PCs and the invariance under permutation of objects. This is achieved
by applying constrained fuzzy arithmetic instead of standard fuzzy arithmetic to the fuzzy extension of the
methods reviewed in Chapter II. As mentioned in Section 3.5, constrained fuzzy arithmetic allows for consid-
ering constraints on operands when performing arithmetic operations on fuzzy numbers. Thus, it enables us
to introduce reciprocity of the related PCs as a constraint on fuzzy arithmetic operations with the entries of a
FPCM. After introducing a proper fuzzy extension of the methods reviewed in Chapter II, it is shown that the
three types of FPCMs are equivalent and transformations between the approaches are examined. Note that
Gavalec et al. (2015) presented a more general framework for FPCMs. They defined FPCMs as PCMs with
fuzzy elements being fuzzy numbers of an abelian linearly ordered group on R.

4.2 Fuzzy multiplicative pairwise comparison matrices

This section deals with the fuzzy extension of the methods related to MPCMs that were reviewed in Section 2.2.
In Section 4.2.1, a fuzzy MPCM is defined properly and the construction of fuzzy MPCMs is studied. Section
4.2.2 is dedicated to the consistency of fuzzy MPCMs. In particular, the fuzzy extension of the multiplicative-
consistency condition (II.4) and of the consistency ratio (II.10) for verifying acceptable level of inconsistency
are dealt with, and a detailed study of the fuzzy maximal eigenvalues of fuzzy MPCMs is provided. Finally,
Section 4.2.3 is focused on methods for obtaining fuzzy priorities from fuzzy MPCMs, in particular on the fuzzy
extension of the EVM and the GMM.

4.2.1 Construction of FMPCMs
Definition 43. A fuzzy multiplicative pairwise comparison matrix (FMPCM) of n objects o1, . . . , on is a square
matrix M̃ = {m̃ij}ni,j=1, whose elements m̃ij , i, j = 1, . . . , n, are fuzzy numbers indicating the ratio of prefer-
ence intensity of object oi to that of object oj . That is, element m̃ij indicates that oi is m̃ij−times as good as
oj . Further, a FMPCM M̃ = {m̃ij}ni,j=1 has to be multiplicatively reciprocal, i.e.

m̃ij =
1

m̃ji
, i, j = 1, . . . , n, (IV.1)
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and
m̃ii = 1, i = 1, . . . , n. (IV.2)

Definition 43 is very general; elements m̃ij of a FMPCM M̃ are meant to be arbitrary fuzzy numbers
satisfying the multiplicative-reciprocity condition (IV.1). In practice, these fuzzy numbers can be triangular,
trapezoidal, or general fuzzy numbers defined by their α−cuts, intervals, or it can even be a mix of all of them.
Note that even a MPCM M = {mij}nij=1 given by Definition 4 is a FMPCM since crisp numbers are a special
case of fuzzy numbers and since a MPCM M satisfies (IV.1) as well as (IV.2).

In the literature, it is common that FMPCMs are defined by using triangular fuzzy numbers (see, e.g.,
Laarhoven and Pedrycz (1983); Chang (1996); Enea and Piazza (2004); Ishizaka and Nguyen (2013)). How-
ever, some papers provide a more general approach by using trapezoidal fuzzy numbers (see, e.g., Buckley
(1985a); Csutora and Buckley (2001); Ishizaka (2014)).

We already know from Section 3.4 that the reciprocal 1
c̃ of a trapezoidal fuzzy number c̃ is not a trapezoidal

fuzzy number any more; it is a general fuzzy number described uniquely by its α−cuts. This means that if we
provide a PC m̃ij of objects oi and oj as a trapezoidal fuzzy number (e.g. m̃ij = (2, 3, 4, 5)) then, according to
the multiplicative-reciprocity property (IV.1), the entry m̃ji of the FMPCM M̃ is not a trapezoidal fuzzy number
any more. This makes the construction of FMPCMs and the related methods much more complicated. First,
there is no simple way to identify uniquely a general fuzzy number m̃ji; it is not possible to use just a quadruple
of its representing values as in the case of the trapezoidal fuzzy number m̃ij . Second, having some of the
entries in the FMPCM M̃ in the form of general fuzzy numbers, methods related to FMPCMs would become
much more complex and not transparent for DMs, and the resulting fuzzy priorities of objects obtained from
such FMPCMs would be general fuzzy numbers.

As already mentioned in Chapter III, this problem is solved in the literature by simply approximating the
results of arithmetic operations with trapezoidal fuzzy numbers by trapezoidal fuzzy numbers, i.e. by using the
simplified standard fuzzy arithmetic introduced in Section 3.4 instead of standard fuzzy arithmetic. This means
that the reciprocals of trapezoidal fuzzy PCs in a FMPCM are approximated by trapezoidal fuzzy numbers.
Similarly, also the results of fuzzy arithmetic operations with the entries of a trapezoidal FMPCM are approxi-
mated by trapezoidal fuzzy numbers. These trapezoidal-fuzzy-number approximations have the same support
and the core as the actual results of the arithmetic operations obtainable by applying standard fuzzy arithmetic.

It is obvious that by this approximation some information contained in the original general fuzzy numbers
is lost. On the other hand, this approximation allows us to keep the computational process much simpler and
transparent. Thus, it is a standard procedure to approximate all results of arithmetic operations with trape-
zoidal fuzzy numbers by trapezoidal fuzzy numbers. This approach is so deep-rooted in the literature on the
fuzzy extension of MCDM methods based on PCMs (in fact, all papers cited in this thesis apply this approach)
that the authors of the research papers often do not even mention the fact that the simplified standard fuzzy
arithmetic is applied to the computations in their papers instead of the standard fuzzy arithmetic. However, as
far as I am aware, there are no studies showing how good or bad this approximation really is, and how much
the results of fuzzy MCDM methods based on FPCMs with applied simplified standard fuzzy arithmetic vary
from the hypothetical actual results obtainable by applying standard fuzzy arithmetic properly. Nevertheless,
this simplification consisting in applying simplified standard fuzzy arithmetic to arithmetic operations with trape-
zoidal fuzzy numbers instead of standard fuzzy arithmetic is used also in this thesis in order to be in line with
the main research stream.

As already mentioned in Section 2.2.1, integer numbers from Saaty’s scale given in Tab. II.1 with assigned
linguistic terms and their reciprocals are usually used for expressing PCs in crisp MPCMs. However, since the
linguistic terms in Saaty’s scale are vague, it is more natural to model their meanings by using fuzzy rather than
crisp numbers. Many different approaches to the fuzzy extension of Saaty’s scale have been proposed in the
literature. Ishizaka and Nguyen (2013) provided a review of various fuzzy extensions of Saaty’s scale applied
to real-world MCDM problems. Most often, the meaning of the linguistic terms from Saaty’s scale is modeled
by triangular fuzzy numbers, less often by trapezoidal fuzzy numbers.

However, Saaty’s scale is not always fuzzified properly. Most problems are usually related to the modeling
of the linguistic term “equal preference”. We have to distinguish whether oi and oj are the same objects or not.
For i = j, there is obviously no uncertainty in the comparison as we compare one object with itself. Therefore,
m̃ii, i = 1, . . . , n, has to be set as 1, i.e. it is a crisp number. On the other hand, when two different objects oi
and oj , i ̸= j, are assessed to be “equally preferred”, then this PC is very likely to contain some uncertainty.
In such case, “equal preference” should be modeled by a fuzzy number “about 1”, not necessarily by crisp
number 1.

In the literature, “equal preference” is usually modeled by triangular fuzzy number 1̃ = (1, 1, c) , c = 2 or
c = 3; see the literature review provided by Ishizaka and Nguyen (2013). However, 1̃ defined in this way is
not appropriate for modeling the meaning of the linguistic term “equal preference”. If a DM assesses oi to be
equally preferred to oj , then common sense suggests that also oj should be equally preferred to oi. But, if
we enter PC m̃ij = (1, 1, c) into a FMPCM M̃, then, based on the multiplicative-reciprocity property (IV.1), it
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Table IV.1: Fuzzy extension of Saaty’s 5-point scale.

Intensity of preference Linguistic term(
1
3 , 1, 3

)
equal preference

(1, 3, 5) weak preference
(3, 5, 7) strong preference
(5, 7, 9) demonstrated preference
(7, 9, 9) absolute preference

Table IV.2: Fuzzy extension of Saaty’s 9-point scale.

Intensity of preference Linguistic term(
1
2 , 1, 2

)
equal preference

(1, 2, 3) between equal and weak preference
(2, 3, 4) weak preference
(3, 4, 5) between weak and strong preference
(4, 5, 6) strong preference
(5, 6, 7) between strong and demonstrated preference
(6, 7, 8) demonstrated preference
(7, 8, 9) between demonstrated and absolute preference
(8, 9, 9) absolute preference

follows that m̃ji =
1

(1,1,c) =
(
1
c , 1, 1

)
. Obviously,

(
1
c , 1, 1

)
̸= (1, 1, c) for c > 1, and even

(
1
c , 1, 1

)
< (1, 1, c). Thus,

m̃ji < m̃ij , which contradicts the statement that oi is equally preferred to oj .

Based on the reasoning in the previous paragraph, if m̃ij = 1̃, then it should also hold that m̃ji = 1̃.

Therefore, based on the multiplicative-reciprocity property (IV.1), the equality 1̃ = 1
1̃

should hold. This means
that 1̃ := (cL, cM , cU ) has to satisfy

(cL, cM , cU ) =
1

(cL, cM , cU )
. (IV.3)

By solving (IV.3) we obtain 1̃ defined as

1̃ =

(
1

c
, 1, c

)
, c ≥ 1. (IV.4)

Based on the same reasoning, if we wanted to use a trapezoidal fuzzy number instead of a triangular fuzzy
number to model the linguistic term “equal preference”, this would have to be in the form

1̃ =

(
1

c
,
1

b
, b, c

)
, c ≥ b ≥ 1. (IV.5)

Interestingly, the appropriate representation of “equal preference” in the form (IV.4) (or (IV.5) for trapezoidal
representation) has been found only in two papers (Enea and Piazza (2004) and Javanbarg et al. (2012)).

Note 7. From now on, the term “FMPCM” will be used exclusively for a FMPCM that is given by Definition
43 and that satisfies the indispensable condition 1̃ = 1

1̃
for the fuzzy number modeling the meaning of the

linguistic term “equal preference”, i.e. (IV.4) and (IV.5) in the case of triangular and trapezoidal fuzzy numbers,
respectively.

As for the representation of other linguistic terms from Saaty’s scale, it is reasonable to define the respective
fuzzy numbers and their reciprocals in such a way that they form Ruspini’s fuzzy partition of interval

[
1
9 , 9
]
. In

this way any element in the interval [ 19 , 9] has linguistic interpretation (Stoklasa, 2014). Using triangular fuzzy
numbers, such fuzzy extension of Saaty’s scale with the main 5 linguistic terms is given in Tab. IV.1, while the
fuzzy extension of Saaty’s scale with intermediate linguistic terms included is given in Tab. IV.2 (Krejčı́ and
Talašová, 2013).

The triangular fuzzy numbers in the fuzzy scales given in Tab. IV.1 and in Tab. IV.2 model the meanings of
the corresponding linguistic terms more naturally than the crisp numbers in original Saaty’s scale. However, as
already emphasized in Section 2.2.1, the uniform distribution of the numerical values assigned to the linguistic
terms in Saaty’s scale on interval [1, 9] does not seem to be appropriate (e.g. “weakly preferred” does not
really correspond to “3-times preferred”). Thus, before actually modeling the meanings of the linguistic terms
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by fuzzy numbers, the original scale should be revised and more intuitive meanings should be found for each
linguistic term. Moreover, since every DM perceives the linguistic terms from Saaty’s scale differently, the scale
should be calibrated for each particular decision-making problem in cooperation with the DM. Such idea was
applied e.g. by Ishizaka and Nguyen (2013) to a current bank account selection.

The idea of customizing Saaty’s scale presented by Ishizaka and Nguyen (2013) is an innovative step in the
direction of taking into account subjectivity of every single DM. However, the proposed process of calibration
suffers from some severe drawbacks. For instance, an inappropriate form of the triangular fuzzy number
modeling the meaning of the linguistic term “equal preference” is used for the calibration. In particular, Ishizaka
and Nguyen (2013) suggest to model the meaning of the linguistic term “equal preference” by the triangular
fuzzy number (1, 1.1, 1.2). Thus, if m̃ij = (1, 1.1, 1.2) > 1, then m̃ji =

1
m̃ij

= ( 1
1.2 ,

1
1.1 , 1) < 1. This clearly does

not model the desired preference information “objects oi and oj are equally preferred” but rather “oi is about 1.1-
times preferred to oj”. Thus, using the triangular fuzzy number (1, 1.1, 1.2) to model “equal preference” would
actually have more severe negative impact on the result of a MCDM problem than using the crisp number 1 as
suggested in original Saaty’s scale or the fuzzy number 1̃ = (1, 1, c), c > 1.

Besides providing preference information linguistically by using linguistic terms from Saaty’s scale, it is
possible to enter expert numerical judgments into a MPCM. Especially when the information about the given
problem is uncertain or incomplete, it is more appropriate to provide numerical judgments in form of fuzzy
numbers rather than crisp numbers as illustrated by the following example.

Example 29. Let us assume we are searching for a new job. We have two interesting job offers, J1 and J2,
and we evaluate them based on the expected income. Let us express our preferences by using the interval
[ 19 , 9], where 1 stands for equal preference and 9 stands for absolute preference.

First, let us assume the expected income from J1 is 2 500 e per month, and the expected income from
J2 is 1 000 e per month. For me, for example, the income 2 500 e may be 5-times preferred to 1 000 e, i.e.
m12 = 5.

Now, let us assume, the income from J1 is not known precisely, but it may be between 2 000 e and 3 000
e with the most possible income 2 500 e. In this case it would be quite difficult to express our preferences by
using one crisp number, would not it? The preference information obtained from a DM in this case may have
the following form. “If the income from J1 is 2 500 e, then I prefer J1 5-times over J2. If the income from J1
is 3 000 e, then J1 is 7-times preferred to J2. However, if the income from J1 is only 2 000 e, then J1 is only
4-times preferred to J2.” It is very natural to model this preference information by a triangular fuzzy number (i.e.
m̃12 = (4, 5, 7) in this case) rather than by just one crisp number. △

Saaty (2006) argues that “what fuzziness does by wholesale change of judgments numerically without
obtaining the consent of the DM for each judgment goes against the grain of what decision making is all about,
namely using experts to input valid judgments to obtain valid decisions” (Saaty (2006), p. 462). I fully agree with
this argument - replacing crisp numerical judgments in a PCM by fuzzy numbers blindly without the consent
of the DM does not lead to valid results. When linguistic terms are used for providing PCs, the meaning of
the linguistic terms should be modeled for every particular MCDM problem in cooperation with the DM, i.e.
calibration of the scale should be done. Nevertheless, using linguistic scales given in Tab. IV.1 and IV.2 is
sufficient for the scope of this thesis since only theoretical results are presented here without any particular
MCDM application and a particular DM.

There is no doubt that by means of fuzzy numbers we can describe possible uncertainty involved in DM’s
judgments or incompleteness of information in a decision-making problem. For instance, by the triangular
fuzzy number m̃ij = (3, 4, 6) we can model the case when a DM says that oi is about 4−times preferred to oj ,
definitely not less than 3−times preferred and not more than 6−times preferred to oj . On the other hand, if the
DM is sure about his/her judgment, e.g. if he/she is sure that oi is 4−times preferred to oj , we can appropriately
describe this information by the triangular fuzzy number m̃ij = (4, 4, 4) that corresponds to the crisp number 4.

4.2.2 Multiplicative consistency of FMPCMs
As stated in Section 2.2.2, examining consistency or acceptable inconsistency of MPCMs is crucial in order
to derive reliable priorities of objects. In the case of FMPCMs, this task is of the same importance. That is
the reason why the fuzzy extension of definitions of consistency for FMPCMs has been studied extensively
(see, e.g., Buckley (1985a); Wang et al. (2005b); Liu (2009); Liu et al. (2014); Zheng et al. (2012); Gavalec
et al. (2015); Wang (2015a,b); Li et al. (2016)). Multiplicative consistency (II.4) is the basic and the most often
applied consistency condition for MPCMs. Therefore, in this section, the fuzzy extension of this consistency
condition is of interest.

In Section 4.2.2.1, a review of definitions of multiplicatively consistent FMPCMs proposed in the literature
is given. In Section 4.2.2.2, a new fuzzy extension of the definition of multiplicative consistency based on the
constrained fuzzy arithmetic is proposed. In Section 4.2.2.3, a fuzzy extension of Consistency Index (II.9) is
proposed. Finally, in Section 4.2.2.4, the fuzzy maximal eigenvalue of a FMPCM is studied in detail.

53



4.2.2.1 Review of fuzzy extensions of multiplicative consistency

Many definitions of consistency based on the extension of multiplicative-transitivity property (II.4) have been
proposed in the literature. Buckley (1985a) proposed a fuzzy extension of multiplicative consistency to FM-
PCMs based on a parameter. Wang et al. (2005a) proposed a definition of multiplicative consistency for
interval FMPCMs and they proposed an algorithm for deriving interval priorities from interval FMPCMs based
on minimizing the inconsistency. Liu (2009) defined multiplicative consistency and acceptable inconsistency
for interval FMPCMs. Liu et al. (2014) extended this definition to triangular FMPCMs and they proposed a
procedure for obtaining a consistent triangular FMPCM from n-1 fuzzy PCs. Wang (2015a) showed that the
definition of consistency proposed by Liu (2009) is not invariant under permutation of objects and he introduced
a new definition of multiplicative consistency for interval FMPCMs. Similarly, Wang (2015b) showed that the
definition of consistency proposed by Liu et al. (2014) is not invariant under permutation of objects. Afterwards,
he introduced a new definition of multiplicative consistency for triangular FMPCMs and proposed formulas for
converting normalized fuzzy priorities into a consistent triangular FMPCM. Gavalec et al. (2015) introduced a
more general definition of multiplicative consistency for FMPCMs, so called α−consistency, α ∈ [0, 1], which
can be looked at as an acceptable-consistency definition.

In this section, the definitions of multiplicative consistency for interval, triangular, and trapezoidal FMPCMs
introduced by Buckley (1985a), Wang et al. (2005a), Liu (2009), Liu et al. (2014) and Wang (2015a,b) are
reviewed. Furthermore, the drawbacks in the definitions proposed by Liu (2009), Liu et al. (2014), and Wang
(2015a,b) are pointed out. In particular, violation of the invariance under permutation of objects and violation
of the reciprocity of PCs, which is the key property of MPCMs, are emphasized.

Buckley (1985a) defined multiplicative consistency for FMPCMs with trapezoidal fuzzy numbers.

Definition 44. (Buckley, 1985a) Let M̃ = {m̃ij}ni,j=1 , m̃ij =
(
mα

ij ,m
β
ij ,m

γ
ij ,m

δ
ij

)
, be a trapezoidal FMPCM.

Then M̃ is said to be multiplicatively consistent if m̃ikm̃kj ≈ m̃ij . Otherwise, M̃ is said to be multiplicatively
inconsistent.

In Definition 44, Buckley defined the approximate equality ≈ as follows. Having

ν(c̃ ≥ d̃) = sup
x≥y

{
min

{
c̃(x), d̃(y)

}}
,

the fuzzy number c̃ is greater than the fuzzy number d̃, c̃ > d̃, if ν(c̃ ≥ d̃) = 1 and ν(d̃ ≥ c̃) < θ, where θ is a fixed
value from interval ]0, 1]. If c̃ is not greater than d̃ and d̃ is not greater than c̃, i.e. min

{
ν(c̃ ≥ d̃), ν(d̃ ≥ c̃)

}
≥ θ,

then c̃ and d̃ are said to be approximately equal, c̃ ≈ d̃.
Further, Buckley (1985a) derived the following theorem for trapezoidal FMPCMs.

Theorem 17. (Buckley, 1985a) Let M̃ = {m̃ij}ni,j=1 , m̃ij =
(
mα

ij ,m
β
ij ,m

γ
ij ,m

δ
ij

)
, be a trapezoidal FMPCM,

and let mij ∈
[
mα

ij ,m
δ
ij

]
, i, j = 1, . . . , n. If M = {mij}ni,j=1 is multiplicatively consistent according to (II.4), then

M̃ is multiplicatively consistent according to Definition 44.

Definition 44 is invariant under permutation of objects in trapezoidal FMPCM M̃. However, it is dependent
on the value of the parameter θ, and there are no studies regarding an appropriate choice of the value of θ. Fur-
ther, Theorem 17 is not very helpful in verifying multiplicative consistency of trapezoidal FMPCMs. The theorem
helps to identify only a small part of multiplicatively consistent trapezoidal FMPCMs. Trapezoidal FMPCMs mul-
tiplicatively consistent according to Definition 44 for which there do not exist mij ∈

[
mα

ij ,m
δ
ij

]
, i, j = 1, . . . , n,

such that M = {mij}ni,j=1 would be multiplicatively consistent according to (II.4) cannot be identified by using
this theorem.

Another definition of consistency was proposed by Wang et al. (2005a). This definition of consistency will
be studied in more detail in the following section. To distinguish easily this definition of consistency from others,
consistency according to this definition will be called multiplicative weak consistency. The reason for the use
of the word “weak” in the name will be clarified right after providing the definition.

Definition 45. (Wang et al., 2005a) Let M = {mij}ni,j=1 ,mij =
[
mL

ij ,m
U
ij

]
, be an interval FMPCM. If S ={

(w1, . . . , wn) ∈ Rn;mL
ij ≤ wi

wj
≤ mU

ij ,
∑n

i=1 wi=1, wi>0, i=1, . . . , n
}
̸= ∅, then M is said to be multiplicatively

weakly consistent. Otherwise, M is said to be multiplicatively weakly inconsistent.

Definition 45 of multiplicative weak consistency for interval FMPCMs is clearly based on Proposition 1 for
MPCMs. According to the definition, an interval FMPCM M is multiplicatively weakly consistent if there exists a
vector w = (w1, . . . , wn)

T which we can use to construct a multiplicatively consistent MPCM M∗ =
{
m∗

ij

}n
i,j=1

such that m∗
ij ∈ [mL

ij ,m
U
ij ], i, j = 1, . . . , n.
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The requirement of at least one multiplicatively consistent MPCM obtainable from the interval FMPCM is
very weak (that is why the name multiplicative “weak” consistency). Therefore, it is quite easy to satisfy the
multiplicative-consistency condition in Definition 45 when constructing interval FMPCMs. The multiplicative-
consistency conditions reviewed in the rest of this section are significantly stronger and thus much more difficult
to fulfill.

Wang et al. (2005b) derived the following theorem which provides a useful tool for verifying the multiplicative
weak consistency according to Definition 45.

Theorem 18. (Wang et al., 2005b) An interval FMPCM M = {mij}ni,j=1 ,mij =
[
mL

ij ,m
U
ij

]
, is multiplicatively

weakly consistent if and only if it satisfies the inequalities

max
k=1,...,n

{
mL

ikm
L
kj

}
≤ min

k=1,...,n

{
mU

ikm
U
kj

}
, i, j = 1, . . . , n. (IV.6)

The following theorem shows the relation between Definitions 44 and 45.

Theorem 19. An interval FMPCM M = {mij}ni,j=1 ,mij =
[
mL

ij ,m
U
ij

]
, multiplicatively weakly consistent ac-

cording to Definition 45 is also multiplicatively consistent according to Definition 44.

Proof. Let M = {mij}ni,j=1 ,mij =
[
mL

ij ,m
U
ij

]
, be multiplicatively consistent according to Definition 45. Then,

from Proposition 1, it follows that there exists a MPCM M = {mij}ni,j=1 ,mij = wi

wj
∈ [mL

ij ,m
U
ij ], i, j = 1, . . . , n,

that is multiplicatively consistent according to (II.4). Thus, based on Theorem 17, intervals being a particular
case of trapezoidal fuzzy numbers, it follows that M is multiplicatively consistent according to Definition 44.

Another definition of multiplicative consistency for interval FMPCMs was given by Liu (2009).

Definition 46. (Liu, 2009) Let M = {mij}ni,j=1 ,mij =
[
mL

ij ,m
U
ij

]
, be an interval FMPCM. Further, let MPCMs

C = {cij}ni,j=1 , D = {dij}ni,j=1 be constructed from the interval FMPCM M as

cij =


mL

ij , i < j
1, i = j
mU

ij , i > j
dij =


mU

ij , i < j
1, i = j
mL

ij , i > j
. (IV.7)

If the matrices C,D are multiplicatively consistent according to (II.4), then M is said to be multiplicatively
consistent. Otherwise, M is said to be multiplicatively inconsistent.

Later, Liu et al. (2014) extended Definition 46 of multiplicative consistency for interval FMPCMs to triangular
and to trapezoidal FMPCMs.

Definition 47. (Liu et al., 2014) Let M̃ = {m̃ij}ni,j=1 , m̃ij =
(
mα

ij ,m
β
ij ,m

γ
ij ,m

δ
ij

)
, be a trapezoidal FMPCM.

Further, let MPCMs A = {aij}ni,j=1 , B = {bij}ni,j=1 , C = {cij}ni,j=1, and D = {dij}ni,j=1 be constructed from

the trapezoidal FMPCM M̃ as

aij=


mα

ij , i<j
1, i=j
mδ

ij , i>j
, bij=

mβ
ij , i<j

1, i=j
mγ

ij , i >j

, cij=


mγ

ij , i<j

1, i=j

mβ
ij , i>j

, dij=


mδ

ij , i<j
1, i=j
mα

ij , i>j
. (IV.8)

If the matrices A,B,C, and D are multiplicatively consistent according to (II.4), then M̃ is said to be multiplica-
tively consistent. Otherwise, M̃ is said to be multiplicatively inconsistent.

The definition of multiplicative consistency for triangular FMPCMs proposed by Liu et al. (2014) is actually
obtainable by adjusting Definition 47 to triangular fuzzy numbers. Note that also Definition 46 of multiplicative
consistency for interval FMPCMs is just a particular case of Definition 47.

Liu et al. (2014) stated that Definition 47 of multiplicative consistency naturally reflects the multiplicative-
reciprocity property of trapezoidal FMPCMs since the matrices A,B,C, and D are clearly reciprocal. Fur-
thermore, the authors claim that the definition of multiplicative consistency is closely related to Definition 5 of
multiplicative consistency for MPCMs given by Saaty (1980). However, as demonstrated by Wang (2015b),
Definition 47 highly depends on the ordering of objects compared in the trapezoidal FMPCM, i.e. it is not
invariant under permutation of objects. Analogously, Wang (2015a) demonstrated the invalidity of Definition 46
for interval FMPCMs.

The drawback in Definition 47 is caused by the fact that the MPCMs A,B,C, and D given as (IV.8) are not
invariant under permutation of objects. There is no logical justification for choosing the lower boundary values
of trapezoidal fuzzy numbers above the main diagonal and the upper boundary values of the trapezoidal fuzzy
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numbers below the main diagonal to construct the MPCM A. A similar problem appears also for the MPCMs
B,C, and D. This way of constructing MPCMs from a trapezoidal FMPCM does not reflect naturally the
multiplicative-reciprocity property of trapezoidal FMPCMs; the MPCMs A,B,C, and D change completely with
a permutation of compared objects. Definition 46 of multiplicative consistency for interval FMPCMs suffers
from the same drawbacks, and the same is valid also for the multiplicative consistency of triangular FMPCMs
defined by Liu et al. (2014).

Clearly, Definitions 46 and 47 are not proper fuzzy extensions of Definition 5 of multiplicative consistency
proposed by Saaty (1980). Properly defined multiplicative consistency for FMPCMs has to be invariant under
permutation of objects and, naturally, as already pointed out by Liu et al. (2014), it has to preserve multiplicative
reciprocity.

Wang (2015a,b) proposed definitions of multiplicative consistency for interval and triangular FMPCMs in-
variant under permutation of objects as follows.

Definition 48. (Wang, 2015a) Let M = {mij}ni,j=1 ,mij =
[
mL

ij ,m
U
ij

]
, be an interval FMPCM. M = {mij}ni,j=1

is said to be multiplicatively consistent if

mL
ijm

U
ij = mL

ikm
U
ikm

L
kjm

U
kj , i, j, k = 1, . . . , n. (IV.9)

Definition 49. (Wang, 2015b) Let M̃ = {m̃ij}ni,j=1 , m̃ij =
(
mL

ij ,m
M
ij ,m

U
ij

)
, be a triangular FMPCM. M̃ =

{m̃ij}ni,j=1 is said to be multiplicatively consistent if

m̃ijm̃jkm̃ki = m̃ikm̃kjm̃ji, i, j, k = 1, . . . , n. (IV.10)

Furthermore, Wang (2015b) formulated the following theorem.

Theorem 20. (Wang, 2015b) The following statements are equivalent for a triangular FMPCM M̃={m̃ij}ni,j=1 ,

m̃ij=
(
mL

ij ,m
M
ij ,m

U
ij

)
:

(i) M̃ is multiplicatively consistent according to Definition 49,

(ii) mM
ij = mM

ikm
M
kj , m

L
ijm

U
ij = mL

ikm
U
ikm

L
kjm

U
kj , i, j, k = 1, . . . , n,

(iii) mM
ij m

M
jkm

M
ki = mM

ikm
M
kjm

M
ji , m

L
ijm

L
jkm

L
ki = mL

ikm
L
kjm

L
ji, i, j, k = 1, . . . , n,

(iv) mM
ij m

M
jkm

M
ki = mM

ikm
M
kjm

M
ji , m

U
ijm

U
jkm

U
ki = mU

ikm
U
kjm

U
ji, i, j, k = 1, . . . , n.

A theorem similar to Theorem 20 could be formulated for interval FMPCMs M = {mij}ni,j=1 by just removing
the middle values mM

ij , i, j = 1, . . . , n, and the associated equations.

Remark 10. Multiplication in the formula (IV.10) is done according to the simplified standard fuzzy arithmetic
as defined in Section 3.4, in particular by the formula (III.26). In fact, using the simplified standard fuzzy
arithmetic, the formula (IV.10) can be written as (iii) and (iv) of Theorem 20. Therefore, based on Theorem
20, it follows that Definitions 48 and 49 for interval and triangular FMPCMs, respectively, are practically the
same (keeping in mind that one is given for interval FMPCMs and one for triangular FMPCMs), although the
multiplicative-consistency conditions (IV.9) and (IV.10) seem to have different forms.

In order to demonstrate the inappropriateness of Definitions 48 and 49, let us analyze in more detail the
requirement of multiplicative reciprocity of PCs in FMPCMs and its impact on the multiplicative-consistency
condition. As stated in Section 2.2.1, multiplicative reciprocity of PCs is an inherent property of every MPCM
M = {mij}ni,j=1. When, for example, the intensity of preference of object oi over object oj is mij = 3 (i.e. oi

is 3-times preferred to oj), then the intensity of preference of object oj over object oi has to be mji =
1
3 (i.e.

oj has to be 3-times less preferred to oi). Therefore, multiplicative reciprocity is a reasonable property that
results from the interpretation of PCs of objects in MPCMs. Because of the multiplicative reciprocity of PCs,
the multiplicative-consistency condition (II.4) for MPCMs is equivalent to the statements (ii) and (iii) in Theorem
1.

Conception of the multiplicative reciprocity becomes more complicated when extended to fuzzy numbers.
For a triangular FMPCM M̃ = {m̃ij}ni,j=1 , m̃ij =

(
mL

ij ,m
M
ij ,m

U
ij

)
, multiplicative reciprocity is defined as m̃ji =

1
m̃ij

=
(

1
mU

ij
, 1
mM

ij
, 1
mL

ij

)
. According to this property, when, e.g., the highest possible intensity of preference mU

ij

of object oi over object oj is mU
ij = 5 (i.e. oi is at most 5-times preferred to oj), this means that the lowest

possible intensity of preference mL
ji of object oj over object oi is automatically mL

ji = 1
5 (i.e. oj is at least

5-times less preferred to oi). However, this is not all.
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FMPCMs carry much more information about the preference intensities. For example, when we consider
any particular value m∗

ij of m̃ij =
(
mL

ij ,m
M
ij ,m

U
ij

)
, i.e. m∗

ij ∈ [mL
ij ,m

U
ij ], as a possible intensity of preference of

object oi over object oj , this intensity of preference is associated inseparably with the corresponding intensity
of preference m∗

ji of m̃ji =
(
mL

ji,m
M
ji ,m

U
ji

)
such that m∗

ji =
1

m∗
ij
; remember that m∗

ij and m∗
ji have to express

the same preference information about oi and oj . This property results naturally from the meaning of PCs.
Wang (2015b) defined multiplicative consistency of triangular FMPCMs by fuzzifying the expression (iii) in

Theorem 1 using the simplified standard fuzzy arithmetic; see Definition 49. As emphasized by Wang (2015b),
the definition is invariant under permutation of objects in the triangular FMPCM. This is definitely an advantage
over Definition 47 formerly proposed by Liu et al. (2014).

Since Wang (2015b) applied simplified standard fuzzy arithmetic to the computations with triangular fuzzy
numbers, the expression (IV.10) is nothing else but the statements (iii) and (iv) in Theorem 20. However, the
expressions mL

ijm
L
jkm

L
ki = mL

ikm
L
kjm

L
ji and mU

ijm
U
jkm

U
ki = mU

ikm
U
kjm

U
ji in the statements (iii) and (iv) violate

the multiplicative reciprocity of PCs. For example, in the first expression, the intensity of preference mL
ij of oi

over oj and the intensity of preference mL
ji of oj over oi are used at the same time. This clearly violates the

multiplicative reciprocity of PCs since mL
ji =

1
mU

ij
̸= 1

mL
ij

(unless mL
ij = mU

ij =
1

mL
ji

= 1
mU

ji
).

Example 30. Let us consider the interval FMPCM

M =


1

[
3
2 , 2
]
[x, y][

1
2 ,

2
3

]
1
[
3
2 , 2
][

1
y ,

1
x

][
1
2 ,

2
3

]
1

 (IV.11)

where the PCs m13 and m31 = 1
m13

are unknown. First, let us apply Definition 48 proposed by Wang (2015a)
in order to find out which values of m13 are allowed to preserve the multiplicative consistency.

By applying Definition 48, for i = 1, k = 2, j = 3, we obtain

xy =
3

2
· 2 · 3

2
· 2 = 9.

Therefore, the interval PC m13 = [x, y] , x ≤ y, can be in the form
[
9
y , y
]
, y ∈ [3, 9] , in order to keep multi-

plicative consistency of M. This means that even the whole interval [1, 9] can be used to model the intensity of
preference of o1 over o3, i.e. m13 = [1, 9].

Let us have a closer look on the intensities of preferences in such interval FMPCM. Clearly, object o1 is
preferred to object o2 and object o2 is preferred to object o3 since m12 = m23 =

[
3
2 , 2
]
, 3
2 > 1. Therefore, object

o1 should be also preferred to object o3. However, according to m13 = [1, 9] , equal preference (mL
13 = 1) of

objects o1 and o3 is admitted.
Moreover, the intensity of preference of object o1 over object o2 is at most 2 (between equal and weak

preference) and also the intensity of preference of object o2 over object o3 is at most 2. However, the intensity
of preference of object o1 over object o3 can be up to 9 (absolute preference) which is much higher than 2·2 = 4.
In fact, there are no intensities of preference m12 ∈

[
mL

12,m
U
12

]
and m23 ∈

[
mL

23,m
U
23

]
such that m12m23 = 1 or

m12m23 = 9.
According to Theorem 20 (properly adjusted for interval FMPCMs) the multiplicative consistency can be

checked by using the equivalent multiplicative-consistency condition

mL
ijm

L
jkm

L
ki = mL

ikm
L
kjm

L
ji, i, j, k = 1, . . . , n.

Assuming m13 = [1, 9] in the interval FMPCM M given by (IV.11), this basically means to verify the multiplicative
consistency of the matrix

ML =


1 3

2 1

1
2 1 3

2

1
9

1
2 1

 . (IV.12)

by using the property (iii) of Theorem 1. However, the matrix (IV.12) is not multiplicatively reciprocal, i.e. it is
not even a MPCM. Therefore, verifying its multiplicative consistency is meaningless. △

Even though Definitions 48 and 49 of multiplicatively consistent interval and triangular FMPCMs are in-
variant under permutation of objects in the FMPCMs, their meaning is questionable since they violate the
multiplicative reciprocity of PCs. Furthermore, when applying the simplified standard fuzzy arithmetic, as
Wang (2015b) did, the condition (IV.10) is not equivalent neither to m̃ij = m̃ikm̃kj , i, j, k = 1, . . . , n, nor to
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m̃ijm̃jkm̃ki = 1, i, j, k = 1, . . . , n. The same is true for Definition 48 of multiplicative consistency for inter-
val FMPCMs. This means that, for Definitions 48 and 49 of multiplicative consistency proposed by Wang
(2015a,b), Theorem 1 cannot be extended to interval and triangular FMPCMs, respectively. Definition 5 of
multiplicative consistency for MPCMs should be extended to FMPCMs in such a way that Theorem 1 can be
extended to FMPCMs accordingly. This is possible to do by employing properly the multiplicative-reciprocity
property.

Another serious drawback of applying the simplified standard fuzzy arithmetic to computation with PCs in
triangular FMPCMs (and, of course, FMPCMs in general) is the fact that

m̃ijm̃ji =
(
mL

ijm
L
ji,m

M
ij m

M
ji ,m

U
ijm

U
ji

)
=

(
mL

ij

mU
ij

, 1,
mU

ij

mL
ij

)
̸= 1, i, j = 1, . . . , n. (IV.13)

From the multiplicative-reciprocity property m̃ij =
1

m̃ji
of FMPCMs, it should follow that m̃ijm̃ji = 1. Obviously,

the expression (IV.13) violates the multiplicative-reciprocity property of PCs.
We know that constrained fuzzy arithmetic has to be applied whenever there are any interactions among

operands. Clearly, there is an interaction between fuzzy PCs m̃ij and m̃ji; from the multiplicative reciprocity
of PCs it follows that any intensity of preference m∗

ij ∈ m̃ij of object oi over object oj is associated with the
corresponding intensity of preference m∗

ji = 1
m∗

ij
of object oj over object oi. Thus, c̃ = m̃ijm̃ji should be

correctly computed according to the constrained fuzzy arithmetic (III.41) as c̃ = (cL, cM , cU ) :

cL = min

{
mijmji; mij ∈ [mL

ij ,m
U
ij ],mji ∈ [mL

ji,m
U
ji],mji =

1

mij

}
=

= min

{
mij

1

mij
; mij ∈ [mL

ij ,m
U
ij ]

}
= 1

cM = mM
ij m

M
ji = mM

ij

1

mM
ij

= 1

cU = max

{
mijmji; mij ∈ [mL

ij ,m
U
ij ],mji ∈ [mL

ji,m
U
ji],mji =

1

mij

}
=

= max

{
mij

1

mij
; mij ∈ [mL

ij ,m
U
ij ]

}
= 1

Keeping in mind the importance of the multiplicative-reciprocity property of PCs in FMPCMs, multiplicative
consistency needs to be defined accordingly so that it does not violate the multiplicative reciprocity. In the
following section, two definitions of multiplicatively consistent trapezoidal FMPCMs respecting the multiplicative
reciprocity of PCs and invariant under permutation of objects are proposed.

4.2.2.2 New fuzzy extension of multiplicative consistency

In this section, Definition 45 of multiplicative weak consistency given by Wang et al. (2005a) is extended to
trapezoidal FMPCMs and another definition of multiplicative consistency much stronger than Definition 45 is
proposed. Tools for verifying both the multiplicative weak consistency and the multiplicative consistency are
provided and some properties of multiplicatively weakly consistent and multiplicatively consistent trapezoidal
FMPCMs are derived. Both definitions preserve two desired properties - invariance under permutation of
objects and multiplicative reciprocity of PCs.

Definition 50. Let M̃ = {m̃ij}ni,j=1 , m̃ij =
(
mα

ij ,m
β
ij ,m

γ
ij ,m

δ
ij

)
, be a trapezoidal FMPCM. M̃ is said to be

multiplicatively weakly consistent if there exists a positive vector w = (w1, . . . , wn)
T such that

mα
ij ≤

wi

wj
≤ mδ

ij , i, j = 1, . . . , n. (IV.14)

Notice that when Definition 50 is applied to interval FMPCMs, it is identical to Definition 45 proposed by
Wang et al. (2005a).

Proposition 10. Let M̃ = {m̃ij}ni,j=1 , m̃ij =
(
mα

ij ,m
β
ij ,m

γ
ij ,m

δ
ij

)
, be a trapezoidal FMPCM. M̃ = {m̃ij}ni,j=1 is

multiplicatively weakly consistent according to Definition 50 if and only if there exist elements m∗
ij ∈

[
mα

ij ,m
δ
ij

]
,i, j =

1, . . . , n, such that M∗ =
{
m∗

ij

}n
i,j=1

is a MPCM multiplicatively consistent according to Definition 5.

Proof. First, let M̃ = {m̃ij}ni,j=1 , m̃ij =
(
mα

ij ,m
β
ij ,m

γ
ij ,m

δ
ij

)
, be a trapezoidal FMPCM multiplicatively weakly

consistent according to Definition 50. Let us denote m∗
ij :=

wi

wj
. From (IV.14), it follows that m∗

ij ∈
[
mα

ij ,m
δ
ij

]
, i, j =
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1, . . . , n. Further, we have m∗
ii = wi

wi
= 1, and m∗

ji = wi

wj
= 1

wj
wi

= 1
m∗

ij
, i, j = 1, . . . , n. From [mα

ij ,m
δ
ij ] ⊆

[ 19 , 9], i, j = 1, . . . , n, it follows that also m∗
ij ⊆ [ 19 , 9], i, j = 1, . . . , n. Therefore, M∗ =

{
m∗

ij

}n
i,j=1

is a MPCM.

Finally, m∗
ikm

∗
kj = wi

wk

wk

wj
= wi

wj
= m∗

ij , i, j, k = 1, . . . , n, which means that M∗ =
{
m∗

ij

}n
i,j=1

is multiplicatively
consistent according to (II.4).

In the opposite direction, let M̃ = {m̃ij}ni,j=1 , m̃ij =
(
mα

ij ,m
β
ij ,m

γ
ij ,m

δ
ij

)
, be a trapezoidal FMPCM and

let M∗ =
{
m∗

ij

}n
i,j=1

,m∗
ij ∈

[
mα

ij ,m
δ
ij

]
, i, j = 1, . . . , n, be a MPCM multiplicatively consistent according to

Definition 5. Then, from Proposition 1, it follows that there exists a vector w = (w1, . . . , wn)
T such that m∗

ij =
wi

wj
, i, j = 1, . . . , n. Because, m∗

ij ∈
[
mα

ij ,m
δ
ij

]
, i, j = 1, . . . , n, then clearly (IV.14) holds.

Remark 11. According to Proposition 10 and its proof, a trapezoidal FMPCM M̃ = {m̃ij}ni,j=1 , m̃ij =
(
mα

ij ,m
β
ij ,

mγ
ij ,m

δ
ij

)
, is multiplicatively weakly consistent if and only if there exists a multiplicatively consistent MPCM

M∗ =
{
m∗

ij

}n
i,j=1

such that m∗
ij ∈

[
mα

ij ,m
δ
ij

]
. This consistency condition is quite easy to reach. That is why

the consistency according to Definition 50 is called weak. Later in this section, also a much stronger definition
of multiplicative consistency for trapezoidal FMPCMs will be given.

Definition 50 of multiplicative weak consistency satisfies two desirable properties - it is invariant under
permutation of objects and it preserves the multiplicative reciprocity of PCs in trapezoidal FMPCMs.

Theorem 21. Definition 50 of multiplicative weak consistency is invariant under permutation of objects in
trapezoidal FMPCMs.

Proof. For a multiplicatively consistent trapezoidal FMPCM M̃ = {m̃ij}ni,j=1 , m̃ij =
(
mα

ij ,m
β
ij ,m

γ
ij ,m

δ
ij

)
, there

exists a positive priority vector w = (w1, . . . , wn)
T , such that the inequality mα

ij ≤ wi

wj
≤ mδ

ij is required to hold

for every single PC m̃ij . By permuting the FMPCM M̃ to M̃π = PM̃PT , the original PC m̃ij in the i−th
row and in the j−th column of M̃ is moved to the π(i)−th row and to the π(j)−th column of the permuted
trapezoidal FMPCM M̃π as m̃π

π(i)π(j), but still keeping m̃ij = m̃π
π(i)π(j), i, j = 1, . . . , n. Thus, there exists a

vector wπ = (wπ
1 , . . . , w

π
n)

T , obtained by permuting the vector w, i.e. wπ = Pw, with the components satisfying
the inequalities mπα

ij ≤ wπ
i

wπ
j
≤ mπδ

ij for every i, j = 1, . . . , n.

Theorem 22. Definition 50 of multiplicative weak consistency preserves the multiplicative reciprocity of PCs
in trapezoidal FMPCMs in the sense that any fixed value mij ∈ [mα

ij ,m
δ
ij ], i, j ∈ {1, . . . , n} , representing the

intensity of preference of object oi over object oj is associated with the corresponding value mji ∈ [mα
ji,m

δ
ji],

representing the intensity of preference of object oj over object oi such that mji =
1

mij
.

Proof. The existence of a priority vector w = (w1, . . . , wn)
T satisfying the inequalities (IV.14) means that there

exists a MPCM M = {mij}ni,j=1 ,mij ∈ [mα
ij ,m

δ
ij ], such that mij = wi

wj
, i, j = 1, . . . , n. M is multiplicatively

reciprocal from the definition, i.e. every PC mij is associated with the PC mji such that mji =
1

mij
.

Remark 12. Note that Theorem 22 does not simply state that a FMPCM M̃ = {m̃ij}ni,j=1 multiplicatively weakly
consistent according to Definition 50 is multiplicatively reciprocal, i.e. m̃ji =

1
m̃ij

, i, j = 1, . . . , n. The validity of
this property automatically follows from Definition 43 of a FMPCM; every FMPCM is multiplicatively reciprocal,
and thus, also a FMPCM that is multiplicatively weakly consistent according to Definition 50 is multiplicatively
reciprocal.

As explained on p. 56, the extension of the multiplicative-reciprocity property from MPCMs to FMPCMs
does not concern only the “simple” multiplicative reciprocity of the related fuzzy PCs m̃ij and m̃ji in the sense
that m̃ji = 1

m̃ij
, i, j = 1, . . . , n. The conception of the multiplicative reciprocity becomes more complex for

FMPCMs. In particular, every intensity of preference m∗
ij ∈ m̃ij of object oi over object oj is associated

inseparably with the corresponding intensity of preference m∗
ji ∈ m̃ji such that m∗

ji = 1
m∗

ij
since both m∗

ij

and m∗
ji have to express the same preference information about the objects oi and oj . Theorem 22 states

that Definition 50 is in accordance with this conception of multiplicative reciprocity, i.e. only multiplicatively
reciprocal PCs are involved in Definition 50 of multiplicative weak consistency.

Theorem 18 for verifying multiplicative weak consistency of interval FMPCMs can be extended to trape-
zoidal FMPCMs as follows.
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Theorem 23. A trapezoidal FMPCM M̃ = {m̃ij}ni,j=1 , m̃ij =
(
mα

ij ,m
β
ij ,m

γ
ij ,m

δ
ij

)
, is multiplicatively weakly

consistent according to Definition 50 if and only if

max
k=1,...,n

{
mα

ikm
α
kj

}
≤ min

k=1,...,n

{
mδ

ikm
δ
kj

}
, i, j = 1, . . . , n. (IV.15)

Proof. The proof is the same as the proof of Theorem 18; it is sufficient to substitute mL
ik,m

L
kj ,m

U
ik,m

U
kj with

mα
ik,m

α
kj ,m

δ
ik,m

δ
kj , respectively.

The following theorem shows that it is sufficient to verify the inequality (IV.15) only for i, j = 1, . . . , n, i < j,
thus saving half of the computations.

Theorem 24. A trapezoidal FMPCM M̃ = {m̃ij}ni,j=1 , m̃ij =
(
mα

ij ,m
β
ij ,m

γ
ij ,m

δ
ij

)
, is multiplicatively weakly

consistent according to Definition 50 if and only if

max
k=1,...,n

{
mα

ikm
α
kj

}
≤ min

k=1,...,n

{
mδ

ikm
δ
kj

}
, i, j = 1, . . . , n, i < j. (IV.16)

Proof. It is sufficient to show that the validity of inequalities (IV.16) for i, j = 1, . . . , n, i < j implies automatically
their validity for all i, j = 1, . . . , n, i.e. the validity of (IV.15). The validity of inequalities (IV.15) for i = j is trivial
from the definition of trapezoidal FMPCMs since

max
k=1,...,n

{mα
ikm

α
ki} = max

k=1,...,n

{
mα

ik

mδ
ik

}
≤ 1 ≤ min

k=1,...,n

{
mδ

ik

mα
ik

}
= min

k=1,...,n

{
mδ

ikm
δ
ki

}
.

Further, for i > j, by using (IV.16) and the multiplicative-reciprocity properties, we get

max
k=1,...,n

{
mα

ikm
α
kj

}
= max

k=1,...,n

{
1

mδ
ki

1

mδ
jk

}
=

1

min
k=1,...,n

{
mδ

jkm
δ
ki

} ≤

1

max
k=1,...,n

{
mα

jkm
α
ki

} = min
k=1,...,n

{
1

mα
jk

1

mα
ki

}
= min

k=1,...,n

{
mδ

ikm
δ
kj

}
.

Remark 13. An alternative definition of multiplicative weak consistency to Definition 50 might be formulated
as follows.

Let M̃ = {m̃ij}ni,j=1 , m̃ij =
(
mα

ij ,m
β
ij ,m

γ
ij ,m

δ
ij

)
, be a trapezoidal FMPCM. M̃ is said to be multiplicatively

weakly consistent if there exists a positive vector w = (w1, . . . , wn)
T such that

mβ
ij ≤

wi

wj
≤ mγ

ij , i, j = 1, . . . , n. (IV.17)

Notice that this definition is stronger than Definition 50. In fact, every trapezoidal FMPCM multiplicatively
weakly consistent according to this definition is also multiplicatively weakly consistent according to Definition
50 since (IV.17) implies (IV.14). Further, when this definition is applied to interval FMPCMs, it is again identical
to Definition 45 proposed by Wang et al. (2005a).

All theorems regarding FMPCMs multiplicatively weakly consistent according to Definition 50 formulated
above can be easily reformulated for FMPCMs multiplicatively weakly consistent according to this definition; it
is sufficient to consider mβ

ij and mγ
ij instead of mα

ij and mδ
ij , respectively, where appropriate.

In the following definition, a stronger version of multiplicative consistency for trapezoidal FMPCMs is formu-
lated.

Definition 51. Let M̃ = {m̃ij}ni,j=1 , m̃ij =
(
mα

ij ,m
β
ij ,m

γ
ij ,m

δ
ij

)
, be a trapezoidal FMPCM. M̃ is said to be

multiplicatively consistent if for each triplet (i, j, k) ⊆ {1, . . . , n} the following holds:

∀mij ∈
[
mα

ij ,m
δ
ij

]
∃mik ∈

[
mα

ik,m
δ
ik

]
∧ ∃mkj ∈

[
mα

kj ,m
δ
kj

]
: mij = mikmkj , (IV.18)

∀mij ∈
[
mβ

ij ,m
γ
ij

]
∃mik ∈

[
mβ

ik,m
γ
ik

]
∧ ∃mkj ∈

[
mβ

kj ,m
γ
kj

]
: mij = mikmkj . (IV.19)
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Remark 14. Definition 51 is a natural fuzzy extension of Definition 5 of multiplicative consistency proposed
by Saaty (1980). According to this definition, for any value mij ∈ m̃ij , i, j ∈ {1, . . . , n} , there exist values
mik ∈ m̃ik and mkj ∈ m̃kj , k ∈ {1, . . . , n} , such that they satisfy the multiplicative-consistency property (II.4).
Analogously, for any value mij ∈ Core m̃ij , i, j ∈ {1, . . . , n} , there exist possible values mik ∈ Core m̃ik and
mkj ∈ Core m̃kj , k ∈ {1, . . . , n} , such that they satisfy (II.4). Clearly, in comparison to the multiplicative weak
consistency given by Definition 50, the multiplicative consistency given by Definition 51 is very strong.

Unlike Definitions 46 and 47 of multiplicative consistency for FMPCMs proposed by Liu (2009) and Liu et al.
(2014), respectively, Definition 51 is invariant under permutation of objects compared in trapezoidal FMPCMs.

Theorem 25. Definition 51 of multiplicative consistency is invariant under permutation of objects in trapezoidal
FMPCMs.

Proof. For a multiplicatively consistent trapezoidal FMPCM M̃ = {m̃ij}ni,j=1 , m̃ij = (mα
ij ,m

β
ij ,m

γ
ij ,m

δ
ij), the

conditions (IV.18) and (IV.19) are satisfied for every triplet (i, j, k)⊆ {1, . . . , n} . By permuting the FMPCM M̃

to M̃π = PM̃PT , the original PC m̃ij in the i−th row and in the j−th column of M̃ moves to the π(i)−th row
and to the π(j)−th column of M̃π preserving m̃π

π(i)π(j) = m̃ij . Thus, by permuting M̃, also the validity of the
conditions (IV.18) and (IV.19) is preserved, i.e.

∀mπ
ij ∈

[
mπα

ij ,m
πδ
ij

]
∃mπ

ik∈
[
mπα

ik ,m
πδ
ik

]
∧ ∃mπ

kj ∈
[
mπα

kj ,m
πδ
kj

]
: mπ

ij=mπ
ikm

π
kj ,

∀mπ
ij ∈

[
mπβ

ij ,m
πγ
ij

]
∃mπ

ik∈
[
mπβ

ik ,m
πγ
ik

]
∧ ∃mπ

kj ∈
[
mπβ

kj ,m
πγ
kj

]
: mπ

ij=mπ
ikm

π
kj ,

for every triplet (i, j, k) ⊆ {1, . . . , n} . Thus, M̃π is multiplicatively consistent according to Definition 51.

Further, unlike Definitions 48 and 49 of multiplicatively consistent interval and triangular FMPCMs pro-
posed by Wang (2015a) and Wang (2015b), respectively, new Definition 51 does not violate the multiplicative
reciprocity of the related PCs.

Theorem 26. Definition 51 of multiplicative consistency preserves the multiplicative reciprocity of PCs in trape-
zoidal FMPCMs in the sense that any fixed value mij ∈

[
mα

ij ,m
δ
ij

]
, i, j ∈ {1, . . . , n} , representing the intensity

of preference of object oi over object oj is associated with the corresponding value mji ∈
[
mα

ji,m
δ
ji

]
represent-

ing the intensity of preference of object oj over object oi such that mji =
1

mij
.

Proof. It is sufficient to show that expressions (IV.18) and (IV.19) do not violate the multiplicative-reciprocity
property in the sense that when two particular intensities of preference mij ∈ m̃ij and mji ∈ m̃ji on the pair
of objects oi and oj are considered at the same time in the expressions (IV.18) and (IV.19), then they are such
that mji =

1
mij

.

For a triplet (i, j, k) ⊆ {1, . . . , n} , i ̸= j ̸= k, no reciprocals appear in expression mij = mikmkj for any
mij ∈

[
mα

ij ,m
δ
ij

]
. For i = j = k, expression (IV.18) reduces to: ∀mii = 1 ∃m∗

ii = 1 ∧ ∃m∗∗
ii = 1 : 1 = 1 ·1,

which again does not violate the multiplicative reciprocity. Further, for i ̸= j = k, expression (IV.18) is as:
∀mij ∈

[
mα

ij ,m
δ
ij

]
∃m∗

ij ∈
[
mα

ij ,m
δ
ij

]
∧ ∃mjj = 1: mij = m∗

ij · 1. This means that m∗
ij = mij and, therefore, the

multiplicative reciprocity is not violated. For i = k ̸= j the proof is analogous. Finally, for i = j ̸= k, expression
(IV.18) is as

∀mii = 1 ∃mik ∈
[
mα

ik,m
δ
ik

]
∧ ∃m∗

ki ∈
[
mα

ki,m
δ
ki

]
+ : 1 = mikm

∗
ki.

This means that m∗
ki =

1
mik

and, therefore, the multiplicative reciprocity is preserved.
The proof for the expression (IV.19) is analogous.

Remark 15. Similarly to Theorem 22, also Theorem 26 does not simply state that a FMPCM M̃ = {m̃ij}ni,j=1

multiplicatively consistent according to Definition 51 is multiplicatively reciprocal since this property automat-
ically follows from Definition 43 of a FMPCM. Theorem 26 states that Definition 51 is in accordance with the
conception of multiplicative reciprocity discussed on p. 56, i.e. only multiplicatively reciprocal PCs are involved
in Definition 51 of multiplicative consistency. For more details, see Remark 12.

By handling properly the multiplicative reciprocity of the related PCs, Theorem 1 can be extended to trape-
zoidal FMPCMs as follows.

Theorem 27. For a trapezoidal FMPCM M̃ = {m̃ij}ni,j=1 , m̃ij =
(
mα

ij ,m
β
ij ,m

γ
ij ,m

δ
ij

)
, the following statements

are equivalent:

(i) M̃ is multiplicatively consistent according to Definition 51.
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(ii) For every i, j, k = 1, . . . , n :

∀mij ∈
[
mα

ij ,m
δ
ij

]
∃mjk ∈

[
mα

jk,m
δ
jk

]
∧ ∃mki ∈

[
mα

ki,m
δ
ki

]
: mijmjkmki = 1, (IV.20)

∀mij ∈
[
mβ

ij ,m
γ
ij

]
∃mjk ∈

[
mβ

jk,m
γ
jk

]
∧ ∃mki ∈

[
mβ

ki,m
γ
ki

]
: mijmjkmki = 1, (IV.21)

(iii) For every i, j, k = 1, . . . , n :

∀mij ∈
[
mα

ij ,m
δ
ij

]
∃mjk ∈

[
mα

jk,m
δ
jk

]
∧ ∃mki ∈

[
mα

ki,m
δ
ki

]
:

mijmjkmki = mikmkjmji,mji =
1

mij
,mki =

1

mik
,mjk =

1

mkj
, (IV.22)

∀mij ∈
[
mβ

ij ,m
γ
ij

]
∃mjk ∈

[
mβ

jk,m
γ
jk

]
∧ ∃mki ∈

[
mβ

ki,m
γ
ki

]
:

mijmjkmki = mikmkjmji,mji =
1

mij
,mki =

1

mik
,mjk =

1

mkj
. (IV.23)

Proof. From the multiplicative-reciprocity property m̃ij = 1
m̃ji

, i, j = 1, . . . , n, it follows that ∀mij ∈
[
mα

ij ,m
δ
ij

]
∃mji ∈

[
mα

ji,m
δ
ji

]
: mji =

1
mij

, and ∀mij ∈
[
mβ

ij ,m
γ
ij

]
∃mji ∈

[
mβ

ji,m
γ
ji

]
: mji =

1
mij

.

(a) First, let us show that the statements (i) and (ii) are equivalent. Because of the multiplicative-reciprocity
property, (IV.18) can be equivalently written as

∀mij ∈
[
mα

ij ,m
δ
ij

]
∃mki ∈

[
mα

ki,m
δ
ki

]
∧ ∃mjk ∈

[
mα

jk,m
δ
jk

]
: mij =

1

mjk

1

mki
,

which is equivalent to (IV.20). Analogously, the equivalence of (IV.19) and (IV.21) is proved.

(b) Now, let us show that the statements (ii) and (iii) are equivalent. The expression (IV.20) can be equiva-
lently written as

∀mij ∈
[
mα

ij ,m
δ
ij

]
∃mjk ∈

[
mα

jk,m
δ
jk

]
∧ ∃mki ∈

[
mα

ki,m
δ
ki

]
: m2

ijm
2
jkm

2
ki = 1. (IV.24)

Because all fuzzy numbers in a trapezoidal FMPCM are positive, the second power can be removed
from expression m2

ijm
2
jkm

2
ki = 1, which means that (IV.20) is equivalent to (IV.22). Analogously, the

equivalence of (IV.21) and (IV.23) is proved.

The following theorems give us useful tools for verifying multiplicative consistency of trapezoidal FMPCMs.

Theorem 28. A trapezoidal FMPCM M̃ = {m̃ij}ni,j=1 , m̃ij =
(
mα

ij ,m
β
ij ,m

γ
ij ,m

δ
ij

)
, is multiplicatively consistent

according to Definition 51 if and only if the inequalities

mα
ij ≥ mα

ikm
α
kj , mδ

ij ≤ mδ
ikm

δ
kj , (IV.25)

mβ
ij ≥ mβ

ikm
β
kj , mγ

ij ≤ mγ
ikm

γ
kj , (IV.26)

hold for every i, j, k=1, . . . , n, i< j, k ̸= i, j.

Proof. It is sufficient to demonstrate the equivalence of the expressions (IV.25) and (IV.18). The demonstration
of the equivalence of (IV.26) and (IV.19) is analogous.

First, let us demonstrate that when the inequalities (IV.25) hold for every i, j, k=1, . . . , n, i<j, k ̸= i, j, then
they hold for every i, j, k=1, . . . , n. The inequalities (IV.25) are always satisfied for i, j, k = 1, . . . , n, such that
i = j ̸= k, or i ̸= j = k, or j ̸= k = i, or i = j = k :

mα
ikm

α
ki =

mα
ik

mδ
ik

≤ 1 = mα
ii, mδ

ikm
δ
ki =

mδ
ik

mα
ik

≥ 1 = mδ
ii,

mα
ijm

α
jj = mα

ij , mδ
ijm

δ
jj = mδ

ij ,

mα
iim

α
ij = mα

ij , mδ
iim

δ
ij = mδ

ij ,
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mα
iim

α
ii = 1 = mα

ii, mδ
iim

δ
ii = 1 = mδ

ij .

Further, when the inequalities (IV.25) are satisfied for i, j, k = 1, . . . , n, i < j, k ̸= i, j, then they are satisfied
also for j, i, k = 1, . . . , n, j > i, k ̸= i, j :

mα
jkm

α
ki =

1

mδ
kj

1

mδ
ik

=
1

mδ
ikm

δ
kj

≤ 1

mδ
ij

= mα
ji,

mδ
jkm

δ
ki =

1

mα
kj

1

mα
ik

=
1

mα
ikm

α
kj

≥ 1

mα
ij

= mδ
ji.

To finalize the proof, it is sufficient to show that the inequalities (IV.25) are equivalent to the condition
(IV.18) for every i, j, k = 1, . . . , n. First, let M̃ be a trapezoidal FMPCM multiplicatively consistent according
to Definition 51. Then, for mij := mα

ij ∃mik ∈
[
mα

ik,m
δ
ik

]
∧ ∃mkj ∈

[
mα

kj ,m
δ
kj

]
: mα

ij = mikmkj . Since

mik ≥ mα
ik,mkj ≥ mα

kj , then clearly mα
ij ≥ mα

ikm
α
kj . Analogously, for mij := mδ

ij ∃mik ∈
[
mα

ik,m
δ
ik

]
∧ ∃mkj ∈[

mα
kj ,m

δ
kj

]
: mδ

ij = mikmkj . Since mik ≤ mδ
ik,mkj ≤ mδ

kj , then mδ
ij ≤ mδ

ikm
δ
kj .

Second, let (IV.25) be valid for a trapezoidal FMPCM M̃. Then, from inequalities (IV.25) we get ∀mij ∈[
mα

ij ,m
δ
ij

]
: mα

ikm
α
kj ≤ mij ≤ mδ

ikm
δ
kj and, therefore, (IV.18) is satisfied.

Theorem 29. A trapezoidal FMPCM M̃ = {m̃ij}ni,j=1 , m̃ij =
(
mα

ij ,m
β
ij ,m

γ
ij ,m

δ
ij

)
, is multiplicatively consistent

according to Definition 51 if and only if the inequalities

mα
ij ≥ max

k=1,...,n

k ̸=i,j

{
mα

ikm
α
kj

}
, mδ

ij ≤ min
k=1,...,n

k ̸=i,j

{
mδ

ikm
δ
kj

}
, (IV.27)

mβ
ij ≥ min

k=1,...,n

k ̸=i,j

{
mβ

ikm
β
kj

}
, mγ

ij ≤ min
k=1,...,n

k≠i,j

{
mγ

ikm
γ
kj

}
, (IV.28)

hold for every i, j = 1, . . . , n, i < j.

Proof. The inequalities (IV.27) and (IV.28) follow immediately from Theorem 28.

In the following example, Definition 51 of multiplicative consistency for trapezoidal FMPCMs is confronted
with Definitions 46 and 48. In particular, it is demonstrated how the drawbacks regarding the dependence of
Definition 46 on permutation of objects and violation of multiplicative-reciprocity property in Definition 48 are
removed by Definition 51. Further, multiplicative weak consistency according to Definition 50 is examined.

Example 31. Let us examine the interval FMPCM M of objects o1, o2, o3 given as

M =


1
[
2
5 ,

2
3

][
1
5 ,

2
3

][
3
2 ,

5
2

]
1

[
1
2 , 1
][

3
2 , 5
]
[1, 2] 1

 . (IV.29)

and its permutation M
π
= PMPT given as

M
π
=


1

[
1
2 , 1
][

3
2 ,

5
2

]
[1, 2] 1

[
3
2 , 5
][

2
5 ,

2
3

][
1
5 ,

2
3

]
1

 (IV.30)

which is obtained from M by applying the permutation matrix

P =

0 1 0

0 0 1

1 0 0

 . (IV.31)

As pointed out by Wang (2015a) and Wang (2015b) and mentioned in Section 4.2.2.1, Definitions 46 and
47 of multiplicative consistency for interval and trapezoidal FMPCMs, respectively, are not invariant under
permutation of objects. In fact, the interval FMPCM (IV.29) results to be multiplicatively consistent, and its
permutation (IV.30) results to be inconsistent according to Definition 46.

Now, let us apply Definition 51 to the interval FMPCM (IV.29). By using Theorem 28, the interval FMPCM
(IV.29) is judged as multiplicatively consistent since it satisfies the inequalities (IV.25); see Tab. IV.3. Also
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Table IV.3: Inequality conditions (IV.25) for the interval FMPCM (IV.29).

i < j : mL
ij ≥ mL

ikm
L
kj mU

ij ≤ mU
ikm

U
kj

1, 2 : 2
5 ≥ 1

5 · 1 2
3 ≤ 2

3 · 2

1, 3 : 1
5 ≥ 2

5 · 1
2

2
3 ≤ 2

3 · 1

2, 3 : 1
2 ≥ 3

2 · 1
5 1 ≤ 5

2 · 2
3

Table IV.4: Inequality conditions (IV.25) for the permuted interval FMPCM (IV.30).

i < j : mL
ij ≥ mL

ikm
L
kj mU

ij ≤ mU
ikm

U
kj

1, 2 : 1
2 ≥ 3

2 · 1
5 1 ≤ 5

2 · 2
3

1, 3 : 3
2 ≥ 1

2 · 3
2

5
2 ≤ 1 · 5

2, 3 : 3
2 ≥ 1 · 3

2 5 ≤ 2 · 5
2

the permuted interval FMPCM (IV.30) satisfies the inequalities (IV.25); see Tab. IV.4. Therefore, it is again
judged as multiplicatively consistent. Moreover, from Theorem 25 it follows that any permutation of the interval
FMPCM (IV.29) is multiplicatively consistent according to Definition 51.

In Example 30, it was demonstrated that Definition 48 violates the multiplicative reciprocity of PCs. In
fact, by using the property (iii) of Theorem 20 (more precisely a version of the theorem adapted for interval
FMPCMs), the multiplicative consistency of the matrix

ML =


1 2

5
1
5

3
2 1 1

2

3
2 1 1

 (IV.32)

is checked in order to verify multiplicative consistency of the interval FMPCM (IV.29) according to Definition
48. The matrix (IV.32) is not multiplicatively reciprocal, and thus it is not even a MPCM. Therefore, verifying its
consistency is nonsensical.

According to Theorem 26, the multiplicative-reciprocity property is preserved by new Definition 51. This
basically means that by taking any value from any interval PC in the interval FMPCM (IV.29), there exist values
in the remaining interval PCs such that they form a multiplicatively consistent MPCM. Let us examine the triplet
i=1, j =2, k= 3of indices and let us consider the value m12 = 1

2 ∈
[
2
5 ,

2
3

]
. Then, according to (IV.18), there

exist values m13 ∈
[
1
5 ,

2
3

]
and m32 ∈ [1, 2] such that 1

2 = m13m32. It is, for example, m13 = 1
4 ,m32 = 2. The

multiplicative reciprocity is clearly not violated. More interestingly, let us consider the triplet i=1, j =1, k=2.
Then, according to (IV.18), there exist values m12 ∈

[
2
5 ,

2
3

]
and m21 ∈

[
3
2 ,

5
2

]
such that 1 = m12m21. This

equality is satisfied by any value m12 ∈
[
2
5 ,

2
3

]
and the corresponding value m21 ∈

[
3
2 ,

5
2

]
such that m21 = 1

m12
,

which again preserves the multiplicative reciprocity.
By verifying the inequalities (IV.16) we also find out that the interval FMPCM (IV.29) is multiplicatively

consistent according to Definition 50; see Tab. IV.5. Analogously it could be shown that also the permuted
interval FMPCM (IV.30) is multiplicatively weakly consistent according to Definition 50. △

In the following example, Definition 51 of multiplicative consistency is applied to an incomplete FMPCM in
order to identify a missing PC.

Table IV.5: Inequality conditions (IV.16) for the interval FMPCM (IV.29).

i < j : max
k=1,...,n

{
mL

ikm
L
kj

}
≤ min

k=1,...,n

{
mU

ikm
U
kj

}
1, 2 : max

{
2
5 ,

2
5 ,

1
5

}
≤ min

{
2
3 ,

2
3 ,

4
3

}
1, 3 : max

{
1
5 ,

1
5 ,

1
5

}
≤ min

{
2
3 ,

2
3 ,

2
3

}
2, 3 : max

{
3
10 ,

1
2 ,

1
2

}
≤ min

{
5
3 , 1, 1

}
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Example 32. Let us consider the interval FMPCM in the form (IV.11) with unknown interval PCs m13 and
m31 = 1

m13
examined in Example 30. It was shown in example 30 that applying Definition 48 to identify the

missing PCs leads to unreasonable results.
Now let us apply Definition 51 to the interval FMPCM (IV.11). By using Theorem 29, we obtain the following:

i = 1, j = 2 : 3
2 ≥ x · 1

2 = x
2 ⇒ x ≤ 3, 2 ≤ y · 2

3 ⇒ y ≥ 3

i = 1, j = 3 : x ≥ 3
2 · 3

2 = 9
4 ⇒ x ≥ 9

4 , y ≤ 2 · 2 ⇒ y ≤ 4

i = 2, j = 3 : 3
2 ≥ 1

2 · x = x
2 ⇒ x ≤ 3, 2 ≤ 2

3 · y ⇒ y ≥ 3

Therefore, the interval FMPCM (IV.11) is multiplicatively consistent according to Definition 51 if m13 = [x, y] , x ≤
y, is such that x ∈

[
9
4 , 3
]
, y ∈ [3, 4] . This means that the lowest possible intensity of preference of object o1

over object o3 is at least 9
4 > 1, i.e. object o1 is preferred to object o3. Moreover, the highest possible intensity

of preference of object o1 over object o3 is 4, which is reachable under the multiplicative consistency condition
for m12 = 2 ∈

[
3
2 , 2
]
,m23 = 2 ∈

[
3
2 , 2
]
. △

In the rest of this section, some interesting properties of multiplicatively weakly consistent and multiplica-
tively consistent trapezoidal FMPCMs are examined. The following theorem shows the relation between Defi-
nition 51 of multiplicative consistency and Definition 50 of multiplicative weak consistency.

Theorem 30. Let M̃ = {m̃ij}ni,j=1 , m̃ij = (mα
ij ,m

β
ij ,m

γ
ij ,m

δ
ij), be a trapezoidal FMPCM. If M̃ = {m̃ij}ni,j=1 is

multiplicatively consistent according to Definition 51, then it is also multiplicatively weakly consistent according
to Definition 50.

Proof. The statement follows immediately from Theorem 29. In particular, the inequality (IV.16) is obtained
immediately from the inequalities (IV.27).

Remark 16. According to Theorem 30, when a trapezoidal FMPCM is multiplicatively consistent according to
Definition 51 then it is also automatically multiplicatively weakly consistent according to Definition 50. How-
ever, this does not hold the other way around. Clearly, the definition of multiplicative weak consistency is
much weaker than the definition of multiplicative consistency; it only requires existence of one crisp multiplica-
tively consistent MPCM obtainable by combining particular elements from the closures of the supports of the
trapezoidal fuzzy numbers in the trapezoidal FMPCM. Thus, the set of all trapezoidal FMPCMs multiplicatively
consistent according to Definition 51 is a proper subset of the set of all trapezoidal FMPCMs multiplicatively
weakly consistent according to Definition 50.

In the following example, the multiplicative consistency given by Definition 51 and the multiplicative weak
consistency given by Definition 50 are examined.

Example 33. Let us consider the trapezoidal FMPCM

M̃ =


1 (2, 3, 4, 5) (2, 3, 3, 4) (1, 1, 2, 3)(

1
5 ,

1
4 ,

1
3 ,

1
2

)
1 (1, 2, 3, 3)

(
1, 3

2 , 2, 2
)(

1
4 ,

1
3 ,

1
3 ,

1
2

)(
1
3 ,

1
3 ,

1
2 , 1
)

1
(
2
5 ,

3
5 ,

4
5 , 1
)(

1
3 ,

1
2 , 1, 1

) (
1
2 ,

1
2 ,

2
3 , 1
)(
1, 5

4 ,
5
3 ,

5
2

)
1

 . (IV.33)

M̃ is not multiplicatively consistent according to new Definition 51 of multiplicative consistency since inequali-
ties (IV.27) are violated; e.g.,

max
k=2,3

{mα
1km

α
k4} = max

{
2,

4

5

}
= 2 � 1 = mα

14.

However, M̃ is multiplicatively consistent according to Definition 50 since inequalities (IV.16) are satisfied; see
Tab. IV.6. Therefore, according to Definition 50, there exists at least one multiplicatively consistent MPCM
M =

{
wi

wj

}n

i,j=1
, such that mα

ij ≤ wi

wj
≤ mδ

ij , i, j = 1, . . . , n,
∑n

i=1 wi = 1. It is, for example,

M =


1 2 2 2
1
2 1 1 1
1
2 1 1 1
1
2 1 1 1

 ,

with the priority vector w = ( 25 ,
1
5 ,

1
5 ,

1
5 )

T . △
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Table IV.6: Inequality conditions (IV.16) for the interval FMPCM (IV.33).

i < j : max
k=1,...,4

{
mα

ikm
α
kj

}
≤ min

k=1,...,4

{
mδ

ikm
δ
kj

}
1, 2 : max

{
2, 2, 2

3 ,
1
2

}
≤ min {5, 5, 4, 3}

1, 3 : max {2, 2, 2, 1} ≤ min
{
4, 15, 4, 15

2

}
1, 4 : max

{
1, 2, 4

5 , 1
}

≤ min {3, 10, 4, 3}
2, 3 : max

{
2
5 , 1, 1, 1

}
≤ min {2, 3, 3, 5}

2, 4 : max
{

1
5 , 1,

2
5 , 1
}

≤ min
{

3
2 , 2, 3, 2

}
3, 4 : max

{
1
4 ,

1
3 ,

2
5 ,

2
5

}
≤ min

{
3
2 , 2, 1, 1

}

Theorem 31. Let M̃ be a trapezoidal FMPCM multiplicatively weakly consistent according to Definition 50. A
trapezoidal FMPCM M̃∗ constructed by eliminating the l-th row and the l-th column, l ∈ {1, . . . , n} , of M̃ is
again multiplicatively weakly consistent.

Proof. For M̃ , the inequalities (IV.16) are valid for every i, j, k = 1, . . . , n. After eliminating the l-th row and the
l-th column of M̃ , the inequalities (IV.16) are still valid for every remaining i, j, k ∈ {1, . . . , n} \ {l} . Therefore,
the new trapezoidal FMPCM M̃∗ is still multiplicatively weakly consistent.

The same holds also for multiplicatively consistent trapezoidal FMPCMs.

Theorem 32. Let M̃ be a trapezoidal FMPCM multiplicatively consistent according to Definition 51. A trape-
zoidal FMPCM M̃∗ constructed by eliminating the l-th row and the l-th column, l ∈ {1, . . . , n} , of M̃ is again
multiplicatively consistent.

Proof. For M̃ , the inequalities (IV.27) and (IV.28) are valid for each i, j, k ∈ {1, . . . , n} . After eliminating the
l-th row and the l-th column of M̃ , (IV.27) and (IV.28) are still valid for each remaining i, j, k ∈ {1, . . . , n} \ {l} .
Therefore, the new trapezoidal FMPCM M̃∗ is still multiplicatively consistent.

Remark 17. Theorems 31 and 32 are useful in situations when the set of objects compared pairwisely is being
reduced. According to the theorems, elimination of one or more objects has no impact on the multiplicative or
multiplicative weak consistency of fuzzy PCs of the remaining objects.

The following theorems provide results regarding aggregation of multiplicatively and multiplicatively weakly
consistent trapezoidal FMPCMs, which are particularly useful in group decision making.

Theorem 33. Let M̃1 =
{
m̃1

ij

}n
i,j=1

, m̃1
ij = (m1α

ij ,m
1β
ij ,m

1γ
ij , m

1δ
ij ), and M̃2 =

{
m̃2

ij

}n
i,j=1

, m̃2
ij = (m2α

ij ,m
2β
ij ,

m2γ
ij ,m

2δ
ij ), be trapezoidal FMPCMs multiplicatively weakly consistent according to Definition 50. Then M̃ =

{m̃ij}ni,j=1 , m̃ij = (mα
ij ,m

β
ij ,m

γ
ij ,m

δ
ij), such that

mα
ij = (m1α

ij )
ϵ(m2α

ij )
1−ϵ, mβ

ij = (m1β
ij )

ϵ(m2β
ij )

1−ϵ,

mγ
ij = (m1γ

ij )
ϵ(m2γ

ij )
1−ϵ, mδ

ij = (m1δ
ij )

ϵ(m2δ
ij )

1−ϵ,

is a multiplicatively weakly consistent trapezoidal FMPCM for any ϵ ∈ [0, 1] .

Proof. First, let us show that M̃ is a trapezoidal FMPCM. For i = 1, . . . , n, we get

mα
ii = (m1α

ii )
ϵ(m2α

ii )
1−ϵ = 1ϵ11−ϵ = 1, mδ

ii = (m1δ
ii )

ϵ(m2δ
ii )

1−ϵ = 1ϵ11−ϵ = 1.

Similarly, mβ
ii = 1,mγ

ii = 1, and thus, m̃ii = 1, i = 1, . . . , n. Further,

mα
ij = (m1α

ij )
ϵ(m2α

ij )
1−ϵ =

(
1

m1δ
ji

)ϵ(
1

m2δ
ji

)1−ϵ

=
1

(m1δ
ji )

ϵ(m2δ
ji )

1−ϵ
=

1

mδ
ji

,

mδ
ij = (m1δ

ij )
ϵ(m2δ

ij )
1−ϵ =

(
1

m1α
ji

)ϵ(
1

m2α
ji

)1−ϵ

=
1

(m1α
ji )

ϵ(m2α
ji )

1−ϵ
=

1

mα
ji

,

and analogously we obtain mβ
ij =

1
mγ

ji
,mγ

ij =
1

mβ
ji

. Therefore, m̃ij =
1

m̃ji
, i, j = 1, . . . , n.
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Second, let us show that M̃ is multiplicatively weakly consistent. It is sufficient to prove inequalities (IV.16).
Since (IV.16) is valid for FMPCMs M̃1 and M̃2, we obtain

max
k=1,...,n

{
mα

ikm
α
kj

}
= max

k=1,...,n

{(
m1α

ik

)ϵ (
m2α

ik

)1−ϵ (
m1α

kj

)ϵ (
m2α

kj

)1−ϵ
}
≤

max
k=1,...,n

{
(m1α

ik m
1α
kj )

ϵ
}

max
k=1,...,n

{
(m2α

ik m
2α
kj )

1−ϵ
}
≤

min
k=1,...,n

{
(m1δ

ikm
1δ
kj)

ϵ
}

min
k=1,...,n

{
(m2δ

ikm
2δ
kj)

1−ϵ
}
≤

min
k=1,...,n

{(
m1δ

ik

)ϵ (
m2δ

ik

)1−ϵ (
m1δ

kj

)ϵ (
m2δ

kj

)1−ϵ
}
= min

k=1,...,n

{
mδ

ikm
δ
kj

}
which proves the theorem.

Theorem 33 can be further extended to the aggregation of p ≥ 2 multiplicatively weakly consistent trape-
zoidal FMPCMs as follows.

Theorem 34. Let M̃τ =
{
m̃τ

ij

}n
i,j=1

, m̃τ
ij = (mτα

ij ,mτβ
ij ,m

τγ
ij ,m

τδ
ij ), τ = 1, . . . , p, be trapezoidal FMPCMs multi-

plicatively weakly consistent according to Definition 50. Then M̃ = {m̃ij}ni,j=1 , such that

m̃ij=
(
mα

ij ,m
β
ij ,m

γ
ij ,m

δ
ij

)
=

(
p∏

τ=1

(
mτα

ij

)ϵτ
,

p∏
τ=1

(mτβ
ij )

ϵτ ,

p∏
τ=1

(
mτγ

ij

)ϵτ
,

p∏
τ=1

(
mτδ

ij

)ϵτ)
,

is a multiplicatively weakly consistent trapezoidal FMPCM for any ϵτ ∈ [0, 1] , τ = 1, . . . , p, with
∑p

τ=1 ϵτ = 1.

Proof. The proof is analogous to the proof of Theorem 33.

Similar theorems are formulated also for multiplicatively consistent trapezoidal FMPCMs.

Theorem 35. Let M̃1 =
{
m̃1

ij

}n
i,j=1

, m̃1
ij =

(
m1α

ij ,m
1β
ij ,m

1γ
ij ,m

1δ
ij

)
, and M̃2 =

{
m̃2

ij

}n
i,j=1

, m̃2
ij =

(
m2α

ij ,m
2β
ij ,

m2γ
ij ,m

2δ
ij

)
, be trapezoidal FMPCMs multiplicatively consistent according to Definition 51. Then M̃ = {m̃ij}ni,j=1 ,

such that
mα

ij = (m1α
ij )

ϵ(m2α
ij )

1−ϵ, mβ
ij = (m1β

ij )
ϵ(m2β

ij )
1−ϵ,

mγ
ij = (m1γ

ij )
ϵ(m2γ

ij )
1−ϵ, mδ

ij = (m1δ
ij )

ϵ(m2δ
ij )

1−ϵ,

is a multiplicatively consistent trapezoidal FMPCM for any ϵ ∈ [0, 1].

Proof. From Theorem 33 we already know that M̃ is a FMPCM. It remains to show that M̃ is multiplicatively
consistent. It is sufficient to prove inequalities (IV.25) and (IV.26). Since (IV.25) are valid for the FMPCMs M̃1

and M̃2, we obtain

mα
ikm

α
kj = (m1α

ik )
ϵ(m2α

ik )
1−ϵ(m1α

kj )
ϵ(m2α

kj )
1−ϵ =

(m1α
ik m

1α
kj )

ϵ(m2α
ik m

2α
kj )

1−ϵ ≤ (m1α
ij )

ϵ(m2α
ij )

1−ϵ = mα
ij ,

mδ
ikm

δ
kj = (m1δ

ik )
ϵ(m2δ

ik )
1−ϵ(m1δ

kj)
ϵ(m2δ

kj)
1−ϵ =

(m1δ
ikm

1δ
kj)

ϵ(m2δ
ikm

2δ
kj)

1−ϵ ≥ (m1δ
ij )

ϵ(m2δ
ij )

1−ϵ = mδ
ij .

Analogously, the validity of inequalities (IV.26) is proved.

Theorem 35 can be further extended to the aggregation of p ≥ 2 multiplicatively consistent trapezoidal
FMPCMs as follows.

Theorem 36. Let M̃τ =
{
m̃τ

ij

}n
i,j=1

, m̃τ
ij =

(
mτα

ij ,mτβ
ij ,m

τγ
ij ,m

τδ
ij

)
, τ = 1, . . . , p, be trapezoidal FMPCMs

multiplicatively consistent according to Definition 51. Then M̃ = {m̃ij}ni,j=1 , such that

m̃ij=
(
mα

ij ,m
β
ij ,m

γ
ij ,m

δ
ij

)
=

(
p∏

τ=1

(
mτα

ij

)ϵτ
,

p∏
τ=1

(mτβ
ij )

ϵτ ,

p∏
τ=1

(
mτγ

ij

)ϵτ
,

p∏
τ=1

(
mτδ

ij

)ϵτ)
,

is a multiplicatively consistent trapezoidal FMPCM for any ϵτ ∈ [0, 1] , τ = 1, . . . , p, with
∑p

τ=1 ϵτ = 1.

Proof. The proof is similar to the proof of Theorem 35.

Reaching full consistency is not always managable in practice. Often, even when DMs are asked to recon-
sider their inconsistent preference information they are not able to provide a consistent FMPCM. That is why
the problem of measuring acceptable inconsistency of FMPCMs has been addressed in the literature.
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4.2.2.3 Fuzzy Consistency Index and Fuzzy Consistency Ratio

A number of inconsistency indices for measuring an acceptable level of inconsistency of MPCMs has been
proposed in the literature. One of the well-known and most often applied ones is the Consistency Index
(II.9) proposed by Saaty (1980). Strangely, the problem of verifying an acceptable level of inconsistency of
FMPCMs has been quite neglected in the literature. Very often, authors dealing with the fuzzy extension
of methods based on MPCMs do not address the issue of (in)consistency at all; see, e.g., the well-known
theoretical articles by Laarhoven and Pedrycz (1983); Chang (1996); Enea and Piazza (2004). Similarly, also
most real-application articles do not address this important issue.

In some real-application articles, the authors verify the acceptable inconsistency of a FMPCM by means of
CR only for the crisp MPCM M =

{
mM

ij

}n
i,j=1

constructed from the middle values of the triangular FMPCM

M̃ = {m̃ij}ni,j=1 , m̃ij = (mL
ij ,m

M
ij ,m

U
ij), i, j = 1, . . . , n; see, e.g., Tesfamariam and Sadiq (2006); Pan (2008);

Vahidnia et al. (2009). However, by verifying acceptable inconsistency of just one particular matrix of crisp
numbers obtained from the original FMPCM (in this case the middle values of the triangular fuzzy numbers)
the uncertainty modeled by the fuzzy numbers in the FMPCM is neglected. This is inconsistent with the
original intention to model the incompleteness of information as well as the linguistically expressed preference
information by fuzzy numbers.

A similar approach was considered by Zheng et al. (2012), although they suggested to compute CR

for the crisp matrix M∗ = {m∗
ij}ni,j=1 whose elements are obtained from the trapezoidal FMPCM M̃ =

{mij}ni,j=1 , m̃ij = (mα
ij ,m

β
ij ,m

γ
ij ,m

δ
ij), by formula

m∗
ij =

mα
ij + 2mβ

ij + 2mγ
ij +mδ

ij

6
, i, j = 1, . . . , n. (IV.34)

It is worth to note that the obtained matrix M∗ is in general not multiplicatively reciprocal; for example, for
m̃ij = (2, 3, 4, 6) and m̃ji =

(
1
6 ,

1
4 ,

1
3 ,

1
2

)
, we obtain m∗

ij = 22
6 and m∗

ji = 11
36 ̸= 22

6 = 1
m∗

ij
. Thus, verifying

acceptable inconsistency of such a matrix is meaningless.
Liu (2009) proposed a method for verifying acceptable level of inconsistency (he actually calls it acceptable

consistency) of interval FMPCMs. For an interval FMPCM M = {mij}ni,j=1 ,mij = [mL
ij ,m

U
ij ], Liu (2009)

constructs two MPCMs C and D by using (IV.7) and verifies their acceptable inconsistency by comparing
their Consistency Ratio (II.10) with the boundary value 0.1, i.e. CR ≤ 0.1. When both MPCMs C and D are
acceptably inconsistent, then also the interval FMPCM M is said to be acceptably inconsistent. When at least
one of the MPCMs C and D is not acceptably inconsistent, then also the interval FMPCM M is considered as
inconsistent. However, this method, similarly to Definition 46 of multiplicative consistency for interval FMPCMs
proposed by Liu (2009) is not invariant under permutation of objects.

Another index of inconsistency for FMPCMs was proposed by Ramı́k and Korviny (2010). This index is
based on the idea of measuring distance of the FMPCM from the closest fuzzy matrix of ratios of fuzzy priorities.
The advantage of this approach is that, unlike the two approaches mentioned above, it takes into account the
uncertainty present in the FMPCM.

Since in the focus of this thesis is the fuzzy extension of well-known and most often applied methods based
on PCMs, only CI and CR and their extension to FMPCMs are dealt with here.

As already reviewed in Section 2.2.2, using the maximal eigenvalue of a MPCM, Saaty defined the Con-
sistency Index CI and the Consistency Ratio CR to verify an acceptable level of inconsistency of the matrix.
In order to verify an acceptable level of inconsistency of FMPCMs, these two measures should be fuzzified
properly.

In order to compute CI, it is necessary to know the maximal eigenvalue of the given MPCM. Having a
FMPCM whose entries are fuzzy numbers, it is natural to compute the maximal eigenvalue of this matrix in
form of a fuzzy number as well. This fuzzy maximal eigenvalue will then substitute the crisp maximal eigenvalue
in the formula (II.9), which can be easily fuzzified in order to obtain CI in the form of a fuzzy number.

The question is how to obtain the fuzzy maximal eigenvalue of a FMPCM. This task is not as simple as
it might seem at first sight. Several methods for deriving the fuzzy maximal eigenvalue from a FMPCM have
been proposed in the literature, but, as it will be shown in the following section, these methods suffer from
severe drawbacks. An appropriate method for deriving the fuzzy maximal eigenvalue is indispensable not
only for verifying acceptable inconsistency of a FMPCM by using the Fuzzy Consistency Ratio, but it is also
necessary for the fuzzy extension of the EVM for deriving fuzzy priorities of objects from a FMPCM. Thus, later
in the following section, particular attention will be paid to the problem of deriving properly the fuzzy maximal
eigenvalue from a FMPCM.

For a trapezoidal FMPCM M̃ = {m̃ij}ni,j=1, Fuzzy Consistency Index C̃I is defined in the form

C̃I =
λ̃− n

n− 1
=

(
λα − n

n− 1
,
λβ − n

n− 1
,
λγ − n

n− 1
,
λδ − n

n− 1

)
, (IV.35)
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where λ̃ =
(
λα, λβ , λγ , λδ

)
is the fuzzy maximal eigenvalue of M̃ (for whose computation the formulas will be

provided in the following section). Fuzzy Consistency Ratio C̃R is defined as

C̃R =
C̃I

RI
=

(
λα − n

RI (n− 1)
,

λβ − n

RI (n− 1)
,

λγ − n

RI (n− 1)
,

λδ − n

RI (n− 1)

)
. (IV.36)

Notice that Random Index RI used in the formula (IV.36) is the same as RI used for crisp MPCMs; the
values of RI are given in Tab. II.2. Analogously as in the case of crisp MPCMs, we need to compare C̃R with
the boundary value 0.1 in order to decide whether the FMPCM is acceptably inconsistent or not. This might
be done easily by defuzzifying the trapezoidal fuzzy number C̃R by the center-of-area defuzzification method
using formula (III.8) first, and then comparing the center of area COA

C̃R
of C̃R with the boundary value 0.1.

Thus, the FMPCM M̃ is said to be acceptably inconsistent if

COA
C̃R

≤ 0.1. (IV.37)

4.2.2.4 Fuzzy maximal eigenvalue of a FMPCM

As reviewed in Section 2.2, the maximal eigenvalue of a MPCM is utilized in the consistency index (II.9) to
verify acceptable multiplicative inconsistency of a MPCM and in the EVM method (II.21) to obtain normalized
priorities of objects from a MPCM. In this section, extension of the maximal eigenvalue to the fuzzy maximal
eigenvalue of a FMPCM is studied. The formulas for obtaining the fuzzy maximal eigenvalue of a FMPCM
formerly proposed in the literature are reviewed, deficiencies of these formulas are pointed out, and then new
formulas are proposed. Subsequently, properties of the new fuzzy maximal eigenvalue are discussed.

Csutora and Buckley (2001) proposed formulas for obtaining α−cuts, α ∈ [0, 1] , of the fuzzy maximal eigen-
value of a FMPCM. For the sake of simplicity, this thesis is limited to trapezoidal fuzzy numbers. Therefore, the
formulas of Csutora and Buckley (2001) will be shown for trapezoidal fuzzy numbers here.

By applying the trapezoidal approximation, the representing values of the fuzzy maximal eigenvalue λ̃S =
(λα

S , λ
β
S , λ

γ
S , λ

δ
S) (the lower index S stands for standard fuzzy arithmetic which is applied to obtain the fuzzy

maximal eigenvalue) of a trapezoidal FMPCM M̃ = {m̃ij}ni,j=1 , m̃ij = (mα
ij ,m

β
ij ,m

γ
ij ,m

δ
ij), is obtained as

λα
S =EVMλ(M

α), where Mα =
{
mα

ij

}n
i,j=1

, (IV.38)

λβ
S =EVMλ(M

β), where Mβ =
{
mβ

ij

}n

i,j=1
, (IV.39)

λγ
S =EVMλ(M

γ), where Mγ =
{
mγ

ij

}n
i,j=1

, (IV.40)

λδ
S =EVMλ(M

δ), where M δ =
{
mδ

ij

}n
i,j=1

. (IV.41)

This means that the lower boundary value λα
S of the fuzzy maximal eigenvalue λ̃S of a trapezoidal FMPCM

M̃ is computed as the maximal eigenvalue of the matrix Mα =
{
mα

ij

}n
i,j=1

, whose elements are the lower

boundary values of the trapezoidal fuzzy numbers from the trapezoidal FMPCM M̃ . Analogously, the upper
boundary value λδ

S is computed as the maximal eigenvalue of the matrix of the upper boundary values of the
trapezoidal fuzzy numbers from the trapezoidal FMPCM M̃ , similarly for the representing values λβ

S and λγ
S of

the resulting fuzzy maximal eigenvalue λ̃S .
Clearly, none of the matrices Mα,Mβ ,Mγ , and M δ is multiplicatively reciprocal. Csutora and Buckley

(2001) observed this fact, but they did not consider it to be a flaw. Also Wang and Chin (2006), who adopted
formulas (IV.38)–(IV.41) in their method for obtaining the fuzzy priorities of objects from FMPCMs, did not
realize the flaw.

However, as already emphasized, multiplicative reciprocity is a key property of MPCMs, and thus it has
to be preserved also under the fuzzy extension. Unless M̃ = {m̃ij}ni,j=1 , m̃ij =

(
mα

ij ,m
β
ij ,m

γ
ij ,m

δ
ij

)
, is a

crisp MPCM, it is meaningless to consider the matrix Mα =
{
mα

ij

}n
i,j=1

of the lower boundary values of M̃

for the computation of the fuzzy maximal eigenvalue λ̃S (in particular its lower boundary value λα
S). Since

Mα =
{
mα

ij

}n
i,j=1

does not satisfy the multiplicative-reciprocity property (II.2), it is not even a MPCM, and thus

it does not reflect the preference information provided by the DM in the original trapezoidal FMPCM M̃. The
same holds also for the matrices Mβ =

{
mβ

ij

}n

i,j=1
,Mγ =

{
mγ

ij

}n
i,j=1

, and M δ =
{
mδ

ij

}n
i,j=1

.
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Despite the violation of the multiplicative reciprocity of PCs, we have to acknowledge that the method
proposed by Csutora and Buckley (2001) is at least invariant under permutation of objects in the FMPCM M̃.

By permuting M̃ = {m̃ij}ni,j=1 to M̃π = PM̃PT , using any permutation matrix P, the matrices Mα,Mβ ,Mγ ,

and M δ used in the formulas (IV.38)–(IV.41) are permuted in the same way, which does not have any impact
on the resulting maximal eigenvalues λα

S , λ
β
S , λ

γ
S , and λδ

S . Thus, the resulting fuzzy maximal eigenvalue λ̃S

remains unchanged under any permutation of objects compared in the FMPCM M̃.

Example 34. Let us apply the approach for obtaining the fuzzy maximal eigenvalue proposed by Csutora and
Buckley (2001) to the FMPCM

M̃ =


1 (2, 2, 3, 4) (2, 4, 5, 8)(

1
4 ,

1
3 ,

1
2 ,

1
2

)
1 (4, 5, 6, 7)(

1
8 ,

1
5 ,

1
4 ,

1
2

)(
1
7 ,

1
6 ,

1
5 ,

1
4

)
1

 . (IV.42)

By applying the formulas (IV.38)–(IV.41), we actually compute the maximal eigenvalues λα, λβ , λγ , and λδ of
the matrices

Mα=

1 2 2
1
4 1 4
1
8

1
7 1

, Mβ=

1 2 4
1
3 1 5
1
5

1
6 1

, Mγ=

1 3 5
1
2 1 6
1
4

1
5 1

, M δ=

1 4 8
1
2 1 7
1
2

1
4 1

, (IV.43)

respectively. The fuzzy maximal eigenvalue obtained by the formulas (IV.38)–(IV.41) is in the form λ̃S =
(2.4376, 2.8680, 3.4480, 4.4739).

However, as we can see from (IV.43), none of the matrices Mα,Mβ ,Mγ , and M δ is multiplicatively re-
ciprocal. This means that they are not MPCMs. Therefore, computing their maximal eigenvalues in order to
verify the acceptable consistency or to derive priorities is nonsensical as these matrices do not represent the
preference information contained in the FMPCM (IV.42). △

Also Ishizaka (2014) used formulas (IV.38)–(IV.41) to obtain the fuzzy maximal eigenvalue of a trapezoidal
FMPCM. However, in his method, a particular approach for the construction of the trapezoidal FMPCM was
employed. In order to distinguish the method proposed by Ishizaka (2014) from the method proposed by
Csutora and Buckley (2001), the FMPCM and the fuzzy maximal eigenvalue obtained by formulas (IV.38)–
(IV.41) in the approach of Ishizaka (2014) will be denoted M̃I = {m̃Iij}ni,j=1 , and λ̃I =

(
λα
I , λ

β
I , λ

γ
I , λ

δ
I

)
,

respectively.
Ishizaka (2014) constructed the multiplicative reciprocals of trapezoidal fuzzy numbers m̃Iij = (mα

Iij ,m
β
Iij ,

mγ
Iij ,m

δ
Iij), i, j = 1, . . . , n, i < j, in the trapezoidal FMPCM M̃I = {m̃Iij}ni,j=1 as m̃Iji =

(
1

mα
Iij

, 1

mβ
Iij

, 1
mγ

Iij
, 1
mδ

Iij

)
.

Thus, m̃Iji does not represent a (trapezoidal) fuzzy number anymore since 1
mα

Iij
≥ 1

mβ
Iij

≥ 1
mγ

Iij
≥ 1

mδ
Iij

; it is just

a quadruple of real numbers. This means that Ishizaka’s approach violates even the widely accepted approach
to the construction of FMPCMs.

Furthermore, the resulting fuzzy maximal eigenvalue λ̃I is not invariant under permutation of objects in the
FMPCM M̃, which will be demonstrated on an illustrative example. Moreover, because of the inappropriate
construction of the reciprocals of the fuzzy numbers in the FMPCM M̃I , it is not even guaranteed that the fuzzy
maximal eigenvalue λ̃I obtained by formulas (IV.38)–(IV.41) is a fuzzy number; in general, it is just a quadruple
of real numbers similarly as for the reciprocals of m̃Iij , i, j = 1, . . . , n, i < j, in M̃I = {m̃Iij}ni,j=1.

Example 35. Let us apply the method for obtaining the fuzzy maximal eigenvalue proposed by Ishizaka (2014)
to the FMPCM M̃ in the form (IV.42) examined in Example 34.

The corresponding matrix M̃I utilized in the approach of Ishizaka (2014) is given as

M̃I =


1 (2, 2, 3, 4) (2, 4, 5, 8)(

1
2 ,

1
2 ,

1
3 ,

1
4

)
1 (4, 5, 6, 7)(

1
2 ,

1
4 ,

1
5 ,

1
8

)(
1
4 ,

1
5 ,

1
6 ,

1
7

)
1

 . (IV.44)

Obviously, the elements below the main diagonal of the matrix M̃I are not trapezoidal fuzzy numbers as they
do not satisfy Definition 22. In fact, mα

Iji ≥ mβ
Iji ≥ mγ

Iji ≥ mδ
Iji, i, j = 1, . . . , n, i < j. The fuzzy maximal eigen-

value obtained by formulas (IV.38)–(IV.41) from the matrix M̃I is in the form λ̃I = (3.2174, 3.0940, 3.1851, 3.1769),
which again does not satisfy Definition 22 of a trapezoidal fuzzy number.
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Let us now permute the FMPCM (IV.42) to M̃π by applying the permutation matrix P in the form (IV.31).
The corresponding permuted matrix M̃π

I is in the form

M̃π
I =


1 (4, 5, 6, 7)

(
1
4 ,

1
3 ,

1
2 ,

1
2

)(
1
4 ,

1
5 ,

1
6 ,

1
7

)
1

(
1
8 ,

1
5 ,

1
4 ,

1
2

)
(4, 3, 2, 2) (8, 5, 4, 2) 1

 . (IV.45)

The fuzzy maximal eigenvalue λ̃π
I obtained from this permuted matrix is in the form λ̃π

I = (3.0536, 3.1356, 3.1356,

3.4357). We see that λ̃π
I ̸= λ̃I , which means that the method for obtaining the fuzzy maximal eigenvalue from a

FMPCM proposed by Ishizaka (2014) is not invariant under permutation of objects in FMPCMs. △

It is obvious that the reciprocals of the fuzzy numbers in the FMPCM have to be constructed properly, as
given in Definition 43 of a FMPCM. Furthermore, it is necessary to consider the multiplicative reciprocity of
PCs in a FMPCM also in the process of deriving the fuzzy maximal eigenvalue since it is an inherent property
of FMPCMs (see discussions on p. 49 and p. 56). For this it is necessary to apply constrained fuzzy arithmetic
(III.43) instead of standard fuzzy arithmetic (III.34) when extending the formula (II.19) for obtaining the maximal
eigenvalue of a MPCM to fuzzy numbers.

By applying simplified constrained fuzzy arithmetic (III.45), the fuzzy maximal eigenvalue λ̃C = (λα
C , λ

β
C , λ

γ
C , λ

δ
C)

(the lower index C stands for applying constrained fuzzy arithmetic) of a trapezoidal FMPCM M̃ = {m̃ij}ni,j=1 ,

m̃ij = (mα
ij ,m

β
ij ,m

γ
ij ,m

δ
ij), is obtained as:

λα
C = min

{
EVMλ(M);

M = {mrs}nr,s=1 ,mrs ∈
[
mα

rs,m
δ
rs

]
,

msr = 1
mrs

, r, s = 1, . . . , n

}
, (IV.46)

λβ
C = min

{
EVMλ(M);

M = {mrs}nr,s=1 ,mrs ∈
[
mβ

rs,m
γ
rs

]
,

msr = 1
mrs

, r, s = 1, . . . , n

}
, (IV.47)

λγ
C = max

{
EVMλ(M);

M = {mrs}nr,s=1 ,mrs ∈
[
mβ

rs,m
γ
rs

]
,

msr = 1
mrs

, r, s = 1, . . . , n

}
, (IV.48)

λδ
C = max

{
EVMλ(M);

M = {mrs}nr,s=1 ,mrs ∈
[
mα

rs,m
δ
rs

]
,

msr = 1
mrs

, r, s = 1, . . . , n

}
. (IV.49)

By using constrained fuzzy arithmetic (III.45) in the formulas (IV.46)–(IV.49) in order to reflect multiplicative
reciprocity of the related PCs, all redundant vagueness is eliminated from the fuzzy maximal eigenvalue λ̃C ,

which is the advantage over the method proposed by Csutora and Buckley (2001). Thus, λ̃C represents the
actual fuzzy maximal eigenvalue (more precisely its best trapezoidal approximation) of a trapezoidal FMPCM.
Further, unlike the method proposed by Ishizaka (2014), the new method is invariant under permutation of
objects.

Theorem 37. Let M̃ = {m̃ij}ni,j=1 be a trapezoidal FMPCM. The fuzzy maximal eigenvalue λ̃C of M̃ obtained
by the formulas (IV.46)–(IV.49) is invariant under permutation of objects in FMPCMs.

Proof. We already know from Section 2.2.3.1 that the maximal eigenvalue λ = EVMλ(M) is invariant under
permutation of objects in a MPCM M, i.e. EVMλ(M) = EVMλ(PMPT ) for every permutation matrix P. Thus
also the maximal eigenvalue of any MPCM M constructed from the elements from the closures of the supports
of the trapezoidal fuzzy numbers m̃ij = (mα

ij ,m
β
ij ,m

γ
ij ,m

δ
ij) in the FMPCM M̃ = {m̃ij}ni,j=1 is invariant under

permutation of objects in M. Therefore, also the minimum λα
C and the maximum λδ

C of these maximal eigen-
values obtained by the formulas (IV.46) and (IV.49), respectively, are invariant under permutation of objects.
Similarly, also λβ

C and λγ
C obtained by the formulas (IV.47) and (IV.48), respectively, are invariant under permu-

tation of objects. Thus, it results that the fuzzy maximal eigenvalue λ̃C = (λα
C , λ

β
C , λ

γ
C , λ

δ
C) is invariant under

permutation of objects in FMPCMs.

Using the properties of the maximal eigenvalues reviewed in Section 2.2.3.1, it is possible to derive some
properties of the fuzzy maximal eigenvalue of a trapezoidal FMPCM obtained by the new formulas (IV.46)–
(IV.49) as well as of the fuzzy maximal eigenvalue obtained by the formulas (IV.38)–(IV.41) in the approaches
proposed by Csutora and Buckley (2001) and by Ishizaka (2014). The case when the trapezoidal FMPCM
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M̃ = {m̃ij}ni,j=1 , m̃ij =
(
mα

ij ,m
β
ij ,m

γ
ij ,m

δ
ij

)
, is a crisp MPCM, i.e. mα

ij = mδ
ij , i, j = 1, . . . , n, is not interesting

regarding the properties of the fuzzy maximal eigenvalue as this is simply a crisp number λ ≥ n. Without loss
of generality, let us consider trapezoidal FMPCMs M̃ = {m̃ij}ni,j=1 , m̃ij =

(
mα

ij ,m
β
ij ,m

γ
ij ,m

δ
ij

)
, for which

∃k, l ∈ {1, . . . , n} : mα
kl < mβ

kl < mγ
kl < mδ

kl.

Being M̃ = {m̃ij}ni,j=1 , m̃ij =
(
mα

ij ,m
β
ij ,m

γ
ij ,m

δ
ij

)
, a positive trapezoidal FMPCM, i.e. mα

ij > 0, i, j =

1, . . . , n, the maximal eigenvalue of any matrix constructed from the elements from the closures of the supports
of its fuzzy elements is positive too. Since the representing values of the fuzzy maximal eigenvalue λ̃C =(
λα
C , λ

β
C , λ

γ
C , λ

δ
C

)
are obtained from MPCMs that are multiplicatively reciprocal (see formulas (IV.46)–(IV.49)),

the inequalities λα
C ≥ n, λβ

C ≥ n, λγ
C ≥ n, λδ

C ≥ n necessarily hold.
The lower boundary value λα

C and the upper boundary value λδ
C of the fuzzy maximal eigenvalue λ̃C are

obtained as the minimum and the maximum, respectively, of function EVMλ defined on the closures of the
supports of the trapezoidal fuzzy numbers in the trapezoidal FMPCM. Analogously, λβ

C and λγ
C are obtained as

the minimum and the maximum, respectively, of function EVMλ defined on the cores of the trapezoidal fuzzy
numbers in the trapezoidal FMPCM. Therefore, the inequalities λα

C ≤ λβ
C ≤ λγ

C ≤ λδ
C necessarily hold. Thus,

overall, for the fuzzy maximal eigenvalue obtained by formulas (IV.46)–(IV.49), the inequalities n ≤ λα
C ≤ λβ

C ≤
λγ
C ≤ λδ

C hold.
In the special case where there exists a multiplicatively consistent MPCM obtainable by combining particular

elements from the cores of the trapezoidal fuzzy numbers m̃ij , i, j = 1, . . . , n, in the trapezoidal FMPCM M̃ , the
representing values of the fuzzy maximal eigenvalue λ̃C =

(
λα
C , λ

β
C , λ

γ
C , λ

δ
C

)
are in the form n = λα

C = λβ
C <

λγ
C < λδ

C . In the case where there does not exist a multiplicatively consistent MPCM obtainable by combining
elements from the cores of the trapezoidal fuzzy numbers m̃ij , i, j = 1, . . . , n, but where there exist elements
in the closures of the supports of the trapezoidal fuzzy numbers m̃ij , i, j = 1, . . . , n, in M̃ = {m̃ij}ni,j=1 such
that they form a multiplicatively consistent MPCM, the representing values of the fuzzy maximal eigenvalue of
the FMPCM are in the form n = λα

C < λβ
C < λγ

C < λδ
C .

Because the inequalities mα
ij ≤ mβ

ij ≤ mγ
ij ≤ mδ

ij hold for i, j = 1, . . . , n, and because ∃k, l ∈ {1, . . . , n} :

mα
kl < mβ

kl < mγ
kl < mδ

kl , then, clearly, the inequalities λα
S < λβ

S < λγ
S < λδ

S hold for the fuzzy maximal
eigenvalue λ̃S = (λα

S , λ
β
S , λ

γ
S , λ

δ
S) obtained by the formulas (IV.38)–(IV.41) in Csutora and Buckley’s method.

The properties mentioned above do not hold for the fuzzy maximal eigenvalue λ̃I =
(
λα
I , λ

β
I , λ

γ
I , λ

δ
I

)
of the

particular FMPCM M̃I = {m̃Iij}ni,j=1 obtained by the formulas (IV.38)–(IV.41) in Ishizaka’s approach. Since

there are n2−n
2 elements m̃Iij in the FMPCM M̃I = {m̃Iij}ni,j=1 , m̃Iij =

(
mα

Iij ,m
β
Iij ,m

γ
Iij ,m

δ
Iij

)
, such that the

inequalities mα
Iij ≤ mβ

Iij ≤ mγ
Iij ≤ mδ

Iij do not hold for them, then also the inequalities λα
I < λβ

I < λγ
I < λδ

I

cannot be guarantied for the resulting fuzzy maximal eigenvalue λ̃I . Thus, in general, the resulting quadruple
λ̃I =

(
λα
I , λ

β
I , λ

γ
I , λ

δ
I

)
does not represent a fuzzy number, which is a very serious flaw of the method.

There exists a very interesting relation between the fuzzy maximal eigenvalues λ̃C = (λα
C , λ

β
C , λ

γ
C , λ

δ
C) and

λ̃S = (λα
S , λ

β
S , λ

γ
S , λ

δ
S). Since λα

S is the maximal eigenvalue of Mα =
{
mα

ij

}n
i,j=1

and λα
C is the maximal eigen-

value of a multiplicatively reciprocal matrix M∗ =
{
m∗

ij

}n
i,j=1

,m∗
ij ∈

[
mα

ij ,m
δ
ij

]
, mα

ij ≤ m∗
ij , i, j = 1, . . . , n,

with at least one strict inequality, then the inequality λα
S < λα

C follows from the Perron-Frobenius Theorem.
Analogously, since λδ

S is the maximal eigenvalue of M δ =
{
mδ

ij

}n
i,j=1

and λδ
C is the maximal eigenvalue of

a multiplicatively reciprocal matrix M∗∗ =
{
m∗∗

ij

}n
i,j=1

,m∗∗
ij ∈

[
mα

ij ,m
δ
ij

]
, mδ

ij ≥ m∗∗
ij , i, j = 1, . . . , n, with at

least one strict inequality, then also the inequality λδ
C < λδ

S holds. Therefore, the support of the fuzzy maximal
eigenvalue λ̃C of a given FMPCM M̃ is a proper subset of the support of the fuzzy maximal eigenvalue λ̃S of
M̃ , i.e. ]λα

C , λ
δ
C [⊂]λα

S , λ
δ
S [. The same holds also for the cores of the fuzzy maximal eigenvalues λ̃C and λ̃S , i.e.

[λβ
C , λ

γ
C ] ⊂ [λβ

S , λ
γ
S ]. Thus, by employing the multiplicative-reciprocity condition in formulas (IV.46)–(IV.49), all

unfeasible combinations of elements from the supports of the fuzzy numbers in the FMPCM are eliminated.
As a consequence, the resulting fuzzy maximal eigenvalue λ̃C is less vague than the original fuzzy maximal
eigenvalue λ̃S obtained by the formulas (IV.38)–(IV.41) proposed by Csutora and Buckley (2001) where the
multiplicative reciprocity of PCs is violated.

The properties of the fuzzy maximal eigenvalues derived above are valid for a trapezoidal FMPCM M̃ =
{m̃ij}ni,j=1 , m̃ij = (mα

ij ,m
β
ij ,m

γ
ij ,m

δ
ij), such that mα

ij ≤ mβ
ij ≤ mγ

ij ≤ mδ
ij , i, j = 1, . . . , n, and ∃k, l ∈

{1, . . . , n} : mα
kl < mβ

kl < mγ
kl < mδ

kl. This means that triangular FMPCMs were excluded from the anal-
ysis above. Therefore, some interesting properties that appear only for the fuzzy maximal eigenvalues of
triangular FMPCMs will be shown here. Without loss of generality, let as assume a triangular FMPCM M̃ =
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Figure IV.1: Fuzzy maximal eigenvalues λ̃ and λ̃C of the FMPCM (IV.50).
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{m̃ij}ni,j=1 , m̃ij = (mL
ij ,m

M
ij ,m

U
ij), such that mL

ij ≤ mM
ij ≤ mU

ij , i, j = 1, . . . , n, and ∃k, l ∈ {1, . . . , n} : mL
kl <

mM
kl < mU

kl. Since MM =
{
mM

ij

}n
i,j=1

is multiplicatively reciprocal, the inequality λM
S ≥ n holds for its maximal

eigenvalue λ̃S = (λL
S , λ

M
S , λU

S ). In the special case where MM =
{
mM

ij

}n
i,j=1

is multiplicatively consistent ac-
cording to (II.4), the equality λM

S = n occurs. Furthermore, in such case, the representing values of the fuzzy
maximal eigenvalue λ̃C =

(
λL
C , λ

M
C , λU

C

)
are in the form n = λL

C = λM
C < λU

C .

In the following three examples, the fuzzy maximal eigenvalues λ̃C of three different FMPCMs are exam-
ined. In particular, based on the analysis above, three main types of the fuzzy maximal eigenvalues λ̃C are
identified and studied. For the simplicity of presentation, triangular FMPCMs are considered. In addition,
in each example, the fuzzy maximal eigenvalues λ̃S and λ̃I obtained by formulas (IV.38)–(IV.41) in the ap-
proaches proposed by Csutora and Buckley (2001) and by Ishizaka (2014) are computed and confronted with
the fuzzy maximal eigenvalue λC obtained by the formulas (IV.46)–(IV.49).

Example 36. Let us consider the triangular FMPCM of four objects o1, o2, o3, and o4 given as

M̃ =


1 (2, 3, 4) (4, 5, 6) (8, 9, 9)(

1
4 ,

1
3 ,

1
2

)
1 (2, 3, 4) (6, 7, 8)(

1
6 ,

1
5 ,

1
4

)(
1
4 ,

1
3 ,

1
2

)
1 (4, 5, 6)(

1
9 ,

1
9 ,

1
8

)(
1
8 ,

1
7 ,

1
6

)(
1
6 ,

1
5 ,

1
4

)
1

 . (IV.50)

The fuzzy maximal eigenvalue obtained by the formulas (IV.46)–(IV.49) is λ̃C = (4.0312, 4.1707, 4.4115).

Since λL
C = 4.0312 > n = 4, it is clear that there does not exist a single MPCM M∗ =

{
m∗

ij

}4
i,j=1

,m∗
ij ∈[

mL
ij ,m

U
ij

]
, i, j = 1, . . . , 4, that would be multiplicatively consistent according to (II.4). According to Theorem

37, by permuting the FMPCM M̃ , the corresponding fuzzy maximal eigenvalue λ̃C obtained by the formulas
(IV.46)–(IV.49) remains unchanged.

Note that the triangular fuzzy number λ̃C = (4.0312, 4.1707, 4.4115) is only a triangular approximation of
the actual fuzzy maximal eigenvalue of the FMPCM M̃. The actual fuzzy maximal eigenvalue λ̃ obtained by
applying properly constrained fuzzy arithmetic (III.43), i.e., λ̃ =

∪1
α=0 α[λ

L
(α), λ

U
(α)] such that

λL
(α) =min

{
EVMMAX(M);

M = {mrs}nr,s=1 , mrs ∈ [mL
rs(α),m

U
rs(α)],

msr = 1
mrs

, r, s = 1, . . . , n

}
,

λU
(α) =max

{
EVMMAX(M);

M = {mrs}nr,s=1 , mrs ∈ [mL
rs(α),m

U
rs(α)],

msr = 1
mrs

, r, s = 1, . . . , n

}
,

(IV.51)

and its triangular approximation λ̃C = (4.0312, 4.1707, 4.4115) are displayed in Fig. IV.1. It is clear from Fig.
IV.1 that the actual fuzzy maximal eigenvalue λ̃ is not triangular (but such a result was expected since even
a product of two triangular fuzzy numbers is not a triangular fuzzy number anymore). However, the triangular
fuzzy maximal eigenvalue λ̃C = (4.0312, 4.1707, 4.4115) is a sufficient approximation since the lower and upper
boundary values and the middle value of the fuzzy maximal eigenvalue λ̃ are computed correctly.

The fuzzy maximal eigenvalue λ̃S obtained from the FMPCM (IV.50) by the formulas (IV.38)–(IV.41) is in
the form λ̃S = (3.5653, 4.1707, 4.9446), and thus it is obviously much vaguer than λ̃C = (4.0312, 4.1707, 4.4115).
The huge difference in vagueness of both fuzzy maximal eigenvalues is even more noticeable from graphical
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Figure IV.2: Fuzzy maximal eigenvalues λ̃C and λ̃S of the FMPCM (IV.50).
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Figure IV.3: Fuzzy maximal eigenvalues λ̃ and λ̃C of the FMPCM (IV.52) .
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representation, see Fig. IV.2. By applying the approach of Ishizaka (2014), the fuzzy maximal eigenvalue
λ̃I obtained by the formulas (IV.38)–(IV.41) from the matrix M̃I corresponding to the FMPCM (IV.50) is in the
form λ̃I = (4.0458, 4.1707, 4.3675). It is only a coincidence that λ̃I is such that λL

I ≤ λM
I ≤ λU

I ; in general, this
property is not satisfied. △

Example 37. Let us consider the FMPCM M̃

M̃ =


1 (1, 2, 3) (2, 3, 4) (3, 4, 5)(

1
3 ,

1
2 , 1
)

1 (1, 2, 3) (3, 4, 5)(
1
4 ,

1
3 ,

1
2

)(
1
3 ,

1
2 , 1
)

1 (2, 3, 4)(
1
5 ,

1
4 ,

1
3

)(
1
5 ,

1
4 ,

1
3

)(
1
4 ,

1
3 ,

1
2

)
1

 . (IV.52)

The fuzzy maximal eigenvalue obtained by the formulas (IV.46)–(IV.49) is λ̃C = (4, 4.0875, 4.4453). Since
λL
C = 4 = n, it is clear that there exists a MPCM M∗ =

{
m∗

ij

}4
i,j=1

,m∗
ij ∈

[
mL

ij ,m
U
ij

]
, i, j = 1, . . . , n, that is

multiplicatively consistent according to (II.4). It is, for example,

M∗ =


1 1 2 5

1 1 2 5
1
2

1
2 1 2.5

1
5

1
5

1
2.5 1

 , (IV.53)

but there exist infinitely many of them.
Again, the triangular fuzzy number λ̃C = (4, 4.0875, 4.4453) is only a triangular approximation of the actual

fuzzy maximal eigenvalue of the FMPCM M̃. The actual fuzzy maximal eigenvalue λ̃ =
∪1

α=0 α[λ
L
(α), λ

U
(α)]

obtainable by the formula (IV.51) is given in Fig. IV.3 together with the triangular fuzzy maximal eigenvalue
λ̃C = (4, 4.0875, 4.4453).

Notice the particular form of the actual fuzzy maximal eigenvalue λ̃ in Fig. IV.3; the degree of membership
of λL is not 0. This is caused by the fact that there exist infinitely many multiplicatively consistent MPCMs
M = {mij}ni,j=1 (i.e. their maximal eigenvalue equals 4) obtainable from the FMPCM M̃. The degree of
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Figure IV.4: Fuzzy maximal eigenvalues λ̃C and λ̃S of the FMPCM (IV.52).
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membership of some of these MPCMs to the FMPCM M̃ (computed according to Definition 25) is non-zero.
The degree of membership of the maximal eigenvalue λL = 4 to the actual fuzzy maximal eigenvalue λ̃ is
0.1843, i.e. λ̃(λL) = 0.1843. The corresponding multiplicatively consistent MPCM M∗ (i.e. the MPCM M∗ such
that M̃(M∗) = 0.1843) is in the form

M∗ =


1 1.1887 2.1843 4.7681
1

1.1887 1 1.8372 4.0121
1

2.1843
1

1.8372 1 2.1843
1

4.7681
1

4.0121
1

2.1843 1

 . (IV.54)

The fuzzy maximal eigenvalue λ̃S obtained from the FMPCM (IV.52) by the formulas (IV.38)–(IV.41) is in
the form λ̃S = (3.1056, 4.0875, 5.5250), and thus it is again significantly vaguer than λ̃C = (4, 4.0875, 4.4453).
The huge difference in vagueness of both fuzzy maximal eigenvalues is even more noticeable from graphical
representation, see Fig. IV.4. By applying the approach of Ishizaka (2014), the fuzzy maximal eigenvalue λ̃I

obtained by the formulas (IV.38)–(IV.41) from the matrix M̃I corresponding to the FMPCM (IV.52) is in the form
λ̃I = (4.1031, 4.0875, 4.1407). Thus, λ̃I is not a fuzzy number since λL

I > λM
I . △

Example 38. Let us consider the FMPCM

M̃ =


1

(
1
2 , 1, 2

)
(1, 2, 3) (5, 6, 7)(

1
2 , 1, 2

)
1 (1, 2, 3) (5, 6, 6)(

1
3 ,

1
2 , 1
) (

1
3 ,

1
2 , 1
)

1 (2, 3, 4)(
1
7 ,

1
6 ,

1
5

)(
1
6 ,

1
6 ,

1
5

)(
1
4 ,

1
3 ,

1
2

)
1

 (IV.55)

The fuzzy maximal eigenvalue obtained by the formulas (IV.46)–(IV.49) is λ̃C = (4, 4, 4.2961). Since λL
C =

λM
C = 4 = n, it is clear that MPCM MM =

{
mM

ij

}4
i,j=1

is multiplicatively consistent according to (II.4). However,
there exist infinitely many multiplicatively consistent MPCMs obtainable from the FMPCM (IV.55).

Again, the triangular fuzzy number λ̃C = (4, 4, 4.2961) is only a sufficient triangular approximation of the
actual fuzzy maximal eigenvalue λ̃ of the FMPCM M̃. The actual fuzzy maximal eigenvalue λ̃ obtainable by
the formula (IV.51) is given together with its triangular approximation λ̃C in Fig. IV.5.

The fuzzy maximal eigenvalue λ̃S obtained from the FMPCM (IV.52) by the formulas (IV.38)–(IV.41) is in
the form λ̃S = (3.0815, 4, 5.6300), and thus it is obviously much vaguer than λ̃C = (4, 4, 4.2961). The huge
difference in vagueness of both fuzzy maximal eigenvalues is even more noticeable from graphical repre-
sentation, see Fig. IV.6. By applying the approach of Ishizaka (2014), the fuzzy maximal eigenvalue λ̃I

obtained by the formulas (IV.38)–(IV.41) from the matrix M̃I corresponding to the FMPCM (IV.52) is in the form
λ̃I = (4.1674, 4, 4.0972). Thus, as in the previous example, λ̃I is again not a fuzzy number. △

Since the fuzzy maximal eigenvalue λ̃C obtained by the formulas (IV.46)–(IV.49) has all desired properties,
it can be used in the formulas (IV.35) and (IV.36) for computing C̃I and C̃R, respectively, in order to verify
acceptable inconsistency of FMPCMs.

Theorem 38. Fuzzy consistency index C̃I given by the formula (IV.35) with the fuzzy maximal eigenvalue λ̃C

given by the formulas (IV.46)–(IV.49) is invariant under permutation of objects in FMPCMs.
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Figure IV.5: Fuzzy maximal eigenvalues λ̃ and λ̃C of the FMPCM (IV.55).
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Figure IV.6: Fuzzy maximal eigenvalues λ̃C and λ̃S of the FMPCM (IV.55).
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Proof. According to Theorem 37, the fuzzy maximal eigenvalue λ̃C = (λα
C , λ

β
C , λ

γ
C , λ

δ
C) obtained by the for-

mulas (IV.46)–(IV.49) is invariant under permutation of objects in FMPCMs. Thus, also the expressions
λα
C−n
n−1 ,

λβ
C−n

n−1 ,
λγ
C−n

n−1 , and λδ
C−n
n−1 in the formula (IV.35) are invariant under permutation of objects. This means

that C̃I given by the formula (IV.35) is invariant under permutation of objects in FMPCMs.

4.2.3 Deriving priorities from FMPCMs
In this section, the focus is put on methods for obtaining fuzzy priorities of objects from FMPCMs. The notation
w̃ = (w̃1, . . . , w̃n)

T , w̃i = (wα
i , w

β
i , w

γ
i , w

δ
i ), i = 1, . . . , n, will be used hereafter to represent exclusively a fuzzy

priority vector associated with a FMPCM.
Analogously as for MPCMs, the fuzzy priorities obtained from a FMPCM are usually normalized to reach

uniqueness. In MPCMs theory, the normalization condition (II.18),
∑n

i=1 wi = 1, wi ∈ [0, 1], i = 1, . . . , n,
is usually applied to the priorities. This normalization condition is usually extended to the fuzzy priorities
w̃i = (wα

i , w
β
i , w

γ
i , w

δ
i ), i = 1, . . . , n, as

wα
i +

n∑
j=1
j ̸=i

wδ
j ≥ 1, wδ

i +
n∑

j=1
j ̸=i

wα
j ≤ 1, wβ

i +
n∑

j=1
j ̸=i

wγ
j ≥ 1, wγ

i +
n∑

j=1
j ̸=i

wβ
j ≤ 1, (IV.56)

which is in fact Definition 28 of the normalized fuzzy vector.
There exist several well-known methods for deriving priorities of objects from FMPCMs. Laarhoven and

Pedrycz (1983) proposed the fuzzy logarithmic least squares method for obtaining fuzzy priorities of objects
from FMPCMs. Later, fuzzy extension of the GMM was proposed by Buckley (1985a) in order to obtain fuzzy
priorities. Chang (1996) introduced the extent analysis method to obtain crisp priorities from FMPCMs. How-
ever, this method has been severely criticized, especially because the priorities determined by this method do
not represent the relative importance of objects; see, e.g., Wang et al. (2008). Despite this criticism, the extent
analysis method seems to be the most popular in practice, mainly because of its computational simplicity; see
Kubler et al. (2016). Csutora and Buckley (2001) proposed a fuzzy extension of the EVM in order to obtain
fuzzy priorities of objects. Mikhailov (2003) proposed a fuzzy preference programming method for obtaining
crisp priorities from FMPCMs.

In this thesis only the methods based on the fuzzy extension of well-known methods originally developed
for PCMs are of interest. In Section 2.2.3, two famous methods for obtaining priorities from MPCMs were
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reviewed - the EVM and the GMM. The fuzzy extension of these two methods to FMPCMs is studied in detail
in the following two subsections.

4.2.3.1 Fuzzy extension of the eigenvector method

This section focuses on the methods for obtaining the fuzzy maximal eigenvector corresponding to the fuzzy
maximal eigenvalue of a FMPCM. The methods proposed by Csutora and Buckley (2001), Wang and Chin
(2006), and Ishizaka (2014) are reviewed an their drawbacks regarding the violation of the multiplicative reci-
procity of the related PCs and the invariance under permutation of objects are pointed out. Afterwards, a new
method for deriving the fuzzy maximal eigenvector corresponding to the fuzzy maximal eigenvalue obtained by
the formulas proposed in the previous section is introduced.

Csutora and Buckley (2001) proposed a procedure for obtaining the lower and upper boundary values of
α-cuts of the fuzzy maximal eigenvector corresponding to the fuzzy maximal eigenvalue λ̃S of a given FMPCM
M̃ = {m̃ij}ni,j=1 , m̃ij = (mα

ij ,m
β
ij ,m

γ
ij ,m

δ
ij). Simplification to trapezoidal representation is used here to review

their method.
Csutora and Buckley (2001) computed the normalized maximal eigenvectors wα∗, wβ∗, wγ∗, wδ∗ corre-

sponding to the representing values of the fuzzy maximal eigenvalue λ̃S = (λα
S , λ

β
S , λ

γ
S , λ

δ
S) obtained by the

formulas (IV.38)–(IV.41) as follows:

wα∗ =(wα∗
1 , . . . , wα∗

n )
T
: wα∗ =EVMw(M

α), Mα =
{
mα

ij

}n
i,j=1

, (IV.57)

wβ∗ = (wβ∗
1 , . . . , wβ∗

n )T : wβ∗ =EVMw(M
β), Mβ =

{
mβ

ij

}n

i,j=1
, (IV.58)

wγ∗ =
(
wγ∗

1 , . . . , wγ∗
n

)T
: wγ∗ =EVMw(M

γ), Mγ =
{
mγ

ij

}n
i,j=1

, (IV.59)

wδ∗ =
(
wδ∗

1 , . . . , wδ∗
n

)T
: wδ∗ =EVMw(M

δ), M δ =
{
mδ

ij

}n
i,j=1

. (IV.60)

Since the maximal eigenvectors wα∗, wβ∗, wγ∗, wδ∗ are normalized, it is clear that the resulting fuzzy vector
w̃ = (wα∗, wβ∗, wγ∗, wδ∗) is not a vector of trapezoidal fuzzy numbers; the inequalities wα∗

i ≤ wβ∗
i ≤ wγ∗

i ≤
wδ∗

i are not satisfied for each i = 1, . . . , n (unless M̃ is a crisp MPCM). Thus, Csutora and Buckley (2001)
proposed to adjust the resulting maximal eigenvectors in the following way. First, the normalized maximal

eigenvector wM = (wM
1 . . . , wM

n )T ,
∑n

i=1 w
M
i = 1, of the MPCM MM =

{
mM

ij

}n
i,j=1

,mM
ij =

√
mβ

ijm
γ
ij , is

computed. Afterwards, the fuzzy maximal eigenvector w̃ =
(
wα, wβ , wγ , wδ

)
, wα = (wα

1 , . . . , w
α
n)

T
, wβ =

(wβ
1 , . . . , w

β
n)

T , wγ = (wγ
1 , . . . , w

γ
n)

T
, wδ =

(
wδ

1, . . . , w
δ
n

)T corresponding to the fuzzy maximal eigenvalue λ̃S is
obtained as

kβ = min

{
wM

i

wβ∗
i

; i = 1, . . . , n

}
→ wβ = kβwβ∗, (IV.61)

kγ = max

{
wM

i

wγ∗
i

; i = 1, . . . , n

}
→ wγ = kγwγ∗, (IV.62)

kα = min

{
wβ

i

wα∗
i

; i = 1, . . . , n

}
→ wα = kαwα∗, (IV.63)

kδ = max

{
wγ

i

wδ∗
i

; i = 1, . . . , n

}
→ wδ = kδwδ∗. (IV.64)

Note that the fuzzy maximal eigenvector w̃ =
(
wα, wβ , wγ , wδ

)
is a vector of trapezoidal fuzzy numbers

w̃i =
(
wα

i , w
β
i , w

γ
i , w

δ
i

)
, i = 1, . . . , n, i.e. it can be written as w̃ = (w̃1, . . . , w̃n)

T
. However, for the convenience

of representation, the different notation is used in the method given by the formulas (IV.57)–(IV.64).

Example 39. Let us examine the method for obtaining the fuzzy maximal eigenvector proposed by Csutora
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and Buckley (2001) on the trapezoidal FMPCM

M̃ =


1 (1, 1, 2, 3) (2, 2.5, 3, 4)(4, 6, 7, 8)(

1
3 ,

1
2 , 1, 1

)
1 (3, 4, 4, 5) (4, 5, 6, 6)(

1
4 ,

1
3 ,

1
2.5 ,

1
2

)(
1
5 ,

1
4 ,

1
4 ,

1
3

)
1 (1, 2, 2, 3)(

1
8 ,

1
7 ,

1
6 ,

1
4

) (
1
6 ,

1
6 ,

1
5 ,

1
4

)(
1
3 ,

1
2 ,

1
2 , 1
)

1

 (IV.65)

of four objects o1, o2, o3, and o4.

The fuzzy maximal eigenvalue obtained from the FMPCM (IV.65) by the formulas (IV.38)–(IV.41) is λ̃S =
(3.1250, 3.7752, 4.4053, 5.5024). The fuzzy priorities of objects obtained by the formulas (IV.57)–(IV.64) are given
as

w̃1 = (0.3747, 0.3838, 0.4843, 0.5574),

w̃2 = (0.3284, 0.3657, 0.4057, 0.4057),

w̃3 = (0.1053, 0.1254, 0.1254, 0.1497),

w̃4 = (0.0643, 0.0643, 0.0659, 0.0867).

(IV.66)

△

Ishizaka (2014) proposed another approach for obtaining the fuzzy maximal eigenvector of a trapezoidal
FMPCM. In this approach, the fuzzy maximal eigenvector w̃I =

(
wα

I , w
β
I , w

γ
I , w

δ
I

)
, similarly to the fuzzy

maximal eigenvalue λ̃I in Section 4.2.2.4, is obtained from the fuzzy matrix M̃I = {m̃Iij}ni,j=1 , m̃Iij =(
mα

Iij ,m
β
Iij ,m

γ
Iij ,m

δ
Iij

)
, such that m̃Iji =

(
1

mα
Iij

, 1

mβ
Iij

, 1
mγ

Iij
, 1
mδ

Iij

)
, i < j. In particular, the fuzzy maximal

eigenvector w̃I =
(
wα

I , w
β
I , w

γ
I , w

δ
I

)
is obtained as

wα
I = (wα

I1, . . . , w
α
In)

T
: wα

I = EVMw(M
α
I ), M

α
I =

{
mα

Iij

}n
i,j=1

, (IV.67)

wβ
I = (wβ

I1, . . . , w
β
In)

T : wβ
I = EVMw(M

β
I ), M

β
I =

{
mβ

Iij

}n

i,j=1
, (IV.68)

wγ
I = (wγ

I1, . . . , w
γ
In)

T
: wγ

I = EVMw(M
γ
I ), M

γ
I =

{
mγ

Iij

}n

i,j=1
, (IV.69)

wδ
I =

(
wδ

I1, . . . , w
δ
In

)T
: wδ

I = EVMw(M
δ
I ), M

δ
I =

{
mδ

Iij

}n
i,j=1

. (IV.70)

However, similarly as for λ̃I obtained from the FMPCM M̃I , also the elements w̃Ii =
(
wα

Ii, w
β
Ii, w

γ
Ii, w

δ
Ii

)
,

i = 1, . . . , n, of w̃I are not even fuzzy numbers in general, just quadruples of real numbers. This is caused
not only by the inappropriate form of the fuzzy maximal eigenvalue λ̃I used in the formulas (IV.67)–(IV.70) but
also by the inappropriate normalization of the maximal eigenvectors wα

I , w
β
I , w

γ
I , and wδ

I . Since
∑n

i=1 w
α
Ii =

1,
∑n

i=1 w
β
Ii = 1,

∑n
i=1, w

γ
Ii = 1,

∑n
i=1 w

δ
Ii = 1, then clearly, the inequalities wα

Ii ≤ wβ
Ii ≤ wγ

Ii ≤ wδ
Ii, i = 1, . . . , n,

cannot be guaranteed. Moreover, since Ishizaka’s method for obtaining the fuzzy maximal eigenvalue λ̃I

reviewed in Section 4.2.2.4 is not invariant under permutation of objects in the FMPCM, it is obvious that also
the method for obtaining the fuzzy maximal eigenvector w̃I is not invariant under permutation of objects.

Example 40. Let us examine the method for obtaining the fuzzy maximal eigenvector proposed by Ishizaka
(2014) on the trapezoidal FMPCM (IV.65) from Example 39. The corresponding matrix M̃I used in Ishizaka’s
approach is

M̃I =


1 (1, 1, 2, 3) (2, 2.5, 3, 4)(4, 6, 7, 8)(

1, 1, 1
2 ,

1
3

)
1 (3, 4, 4, 5) (4, 5, 6, 6)(

1
2 ,

1
2.5 ,

1
3 ,

1
4

)(
1
3 ,

1
4 ,

1
4 ,

1
5

)
1 (1, 2, 2, 3)(

1
4 ,

1
6 ,

1
7 ,

1
8

) (
1
4 ,

1
5 ,

1
6 ,

1
6

)(
1, 1

2 ,
1
2 ,

1
3

)
1

 . (IV.71)

The fuzzy maximal eigenvalue obtained from (IV.71) by the formulas (IV.38)–(IV.41) is λ̃I = (4.0458, 4.0319,

4.0863, 4.2184). Obviously, λ̃I is not a fuzzy number since λα
I = 4.0458 � 4.0319 = λβ

I . The corresponding fuzzy
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priorities of objects obtained by the formulas (IV.67)–(IV.70) are given as

w̃I1 = (0.3606, 0.3837, 0.4753, 0.5379),

w̃I2 = (0.3946, 0.4151, 0.3466, 0.3088),

w̃I3 = (0.1376, 0.1311, 0.1182, 0.1055),

w̃I4 = (0.1072, 0.0701, 0.0599, 0.0478).

(IV.72)

Notice that w̃I2, w̃I3, and w̃I4 are not trapezoidal fuzzy numbers since the inequalities wα
Ii ≤ wβ

Ii ≤ wγ
Ii ≤

wδ
Ii, i = 2, 3, 4, are not satisfied.

Let us now permute the trapezoidal FMPCM (IV.65) to M̃π = PM̃PT by using the permutation matrix

P =


0 0 0 1

0 0 1 0

1 0 0 0

0 1 0 0

 . (IV.73)

The corresponding matrix in Ishizaka’s approach is

M̃π
I =


1

(
1
3 ,

1
2 ,

1
2 , 1
) (

1
8 ,

1
7 ,

1
6 ,

1
4

) (
1
6 ,

1
6 ,

1
5 ,

1
4

)
(3, 2, 2, 1) 1

(
1
4 ,

1
3 ,

1
2.5 ,

1
2

)(
1
5 ,

1
4 ,

1
4 ,

1
3

)
(8, 7, 6, 4)(4, 3, 2.5, 2) 1 (1, 1, 2, 3)

(6, 6, 5, 4) (5, 4, 4, 3)
(
1, 1, 1

2 ,
1
3

)
1

 . (IV.74)

The fuzzy maximal eigenvalue obtained from (IV.74) by the formulas (IV.38)–(IV.41) is λ̃π
I = (4.0720, 4.0133,

4.1193, 4.2606). The corresponding fuzzy priorities of objects obtained by the formulas (IV.67)–(IV.70) are given
as

w̃π
Iπ(1) = (0.4171, 0.4017, 0.4560, 0.4738),

w̃π
Iπ(2) = (0.4191, 0.4162, 0.3472, 0.4738),

w̃π
Iπ(3) = (0.1119, 0.1201, 0.1295, 0.1332),

w̃π
Iπ(4) = (0.0519, 0.0620, 0.0674, 0.0997).

(IV.75)

Again, λ̃π
I , w̃

π
I1, w̃

π
I2 are not fuzzy numbers. Further, we see that λ̃π

I ̸= λ̃I and w̃π
Iπ(i) ̸= w̃Ii, i = 1 . . . , 4, which

means that the method is not invariant under permutation of objects. △

Wang and Chin (2006) revised the method for obtaining the fuzzy maximal eigenvector proposed by Csu-
tora and Buckley (2001). They argued that the fuzzy maximal eigenvector obtained by formulas (IV.57)–(IV.64)
is not normalized according to Definition 29, and they proposed a new procedure for obtaining the normalized
fuzzy maximal eigenvector corresponding to the fuzzy maximal eigenvalue λ̃S obtained by formulas (IV.38)–
(IV.41). First, formulas (IV.57)–(IV.60) for obtaining the normalized maximal eigenvectors wα∗, wβ∗, wγ∗, wδ∗

corresponding to the maximal eigenvalues λα
S , λ

β
S , λ

γ
S , λ

δ
S obtained by formulas (IV.38)–(IV.41), respectively,

are applied. Afterwards, the normalization constants kα, kβ , kγ , and kδ are searched for to obtain wα =
kαwα∗, wβ = kβwβ∗, wγ = kγwγ∗, and wδ = kδwδ∗ so that w̃ =

(
wα, wβ , wγ , wδ

)
is a normalized fuzzy vector

according to (III.13), i.e. the inequalities

kαwα∗
i +

n∑
j=1,j ̸=i

kδwδ∗
j ≥ 1, kδwδ∗

i +

n∑
j=1,j ̸=i

kαwα∗
j ≤ 1,

kβwβ∗
i +

n∑
j=1,j ̸=i

kγwγ∗
j ≥ 1, kγwγ∗

i +

n∑
j=1,j ̸=i

kβwβ∗
j ≤ 1,

hold for every i = 1, . . . , n. The inequalities can be further written as

kαwα∗
i + kδ

(
1− wδ∗

i

)
≥ 1, kδwδ∗

i + kα (1− wα∗
i ) ≤ 1,

kβwβ∗
i + kγ

(
1− wγ∗

i

)
≥ 1, kγwγ∗

i + kβ(1− wβ∗
i ) ≤ 1.

Obviously, 0 ≤ kα ≤ kβ ≤ 1 ≤ kγ ≤ kδ.
In order not to lose any information obtained in the fuzzy maximal eigenvector, parameters kα, kβ , kγ , and kδ

are chosen in such a form that the supports of the trapezoidal fuzzy numbers in the fuzzy maximal eigenvector
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are as wide as possible. It means that the parameters kα and kβ are minimized and the parameters kγ and
kδ are maximized. The parameters kα, kβ , kγ , and kδ can be obtained as the solution of the following linear
programming problem (Wang and Chin, 2006):

J∗ = max kα + δ1 + δ2 + δ3

s.t. kδ
(
1− wδ∗

i

)
+ kαwα∗

i ≥ 1,

kδwδ∗
i + kα (1− wα∗

i ) ≤ 1,

kγ
(
1− wγ∗

i

)
+ kβwβ∗

i ≥ 1,

kγwγ∗
i + kβ(1− wβ∗

i ) ≤ 1,

kδwδ∗
i − kγwγ∗

i − δ1 ≥ 0,

kγwγ∗
i − kβwβ∗

i − δ2 ≥ 0,

kβwβ∗
i − kαwα∗

i − δ3 ≥ 0,

kα, δ1, δ2, δ3 ≥ 0,

i = 1, . . . , n. (IV.76)

Readers can refer to Wang and Chin (2006) and to Krejčı́ (2017a) for more details. The notation w̃S =

(w̃S1, . . . , w̃Sn)
T , w̃Si = (wα

Si, w
β
Si, w

γ
Si, w

δ
Si) will be used hereafter to refer to the normalized fuzzy maximal

eigenvector obtained by the formulas (IV.57)–(IV.60) and (IV.76) corresponding to the fuzzy maximal eigenvalue
λ̃S (the lower index S stands for standard fuzzy arithmetic that is used in the formulas (IV.38)–(IV.41)).

It is true that the supports of the trapezoidal fuzzy numbers w̃Si = (wα
Si, w

β
Si, w

γ
Si, w

δ
Si), i = 1, . . . , n, in

the fuzzy vector w̃S obtained by the method proposed by Wang and Chin (2006) are as wide as possible still
meeting the condition (III.13) of normalized fuzzy numbers. Moreover, the method for deriving the normalized
fuzzy maximal eigenvector proposed by Wang and Chin (2006) is invariant under permutation of objects.
However, the fuzzy vector w̃S does not represent the actual normalized fuzzy maximal eigenvector of the
FMPCM M̃. First of all, as already shown in Section 4.2.2.4, the fuzzy maximal eigenvalue λ̃S obtained by
formulas (IV.38)–(IV.41) does not represent the actual fuzzy maximal eigenvalue of a FMPCM M̃ since it
violates the multiplicative reciprocity of PCs. Thus, it should not be used in the process of deriving the fuzzy
maximal eigenvectors of FMPCMs. However, just simply replacing the fuzzy maximal eigenvalue λ̃S by the
fuzzy maximal eigenvalue λ̃C in the method for deriving the normalized fuzzy maximal eigenvector is not
sufficient.

A severe drawback independent of the formulas for obtaining the fuzzy maximal eigenvalue is that the
normalized fuzzy vector w̃S obtained by the formulas (IV.57)–(IV.60) and (IV.76) does not “consist” of nor-
malized eigenvectors. For example, the eigenvector wα = kαwα∗ = (kαwα∗

1 , . . . , kαwα∗
n )T obtained as the

maximal eigenvector of the matrix Mα =
{
mα

ij

}n
i,j=1

corresponding to the maximal eigenvalue λα
S is not nor-

malized,
∑n

i=1 k
αwα∗

i < 1. This drawback would occur even if the eigenvector wα was obtained as the maximal
eigenvector of the MPCM M∗ = {mij}ni,j=1 corresponding to the maximal eigenvalue λα

C obtainable by the
formula (IV.46). The same drawback occurs also for the eigenvector wβ = kβwβ∗ = (kβwβ∗

1 , . . . , kβwβ∗
n )T , i.e.∑n

i=1 k
βwβ∗

i < 1, unless Mβ = Mγ . Analogously, also the eigenvectors wδ = kδwδ∗ and wγ = kγwγ∗ are such
that

∑n
i=1 k

δwδ∗
i > 1 and

∑n
i=1 k

γwγ∗
i > 1, unless Mβ = Mγ .

Example 41. Let us examine the method for obtaining the fuzzy maximal eigenvector proposed by Wang and
Chin (2006) on the trapezoidal FMPCM (IV.65) from Example 39. The fuzzy priorities obtained by the formulas
(IV.57)–(IV.60) and (IV.76) are

w̃S1 = (0.2584, 0.2969, 0.5704, 0.6565),

w̃S2 = (0.2265, 0.2829, 0.4778, 0.4778),

w̃S3 = (0.0726, 0.0970, 0.1477, 0.1763),

w̃S4 = (0.0444, 0.0497, 0.0777, 0.1022).

(IV.77)

It can be easily verified by using (III.13) that the fuzzy priorities are normalized.
In the approach of Wang and Chin (2006), as well as in the original approach of Csutora and Buckley

(2001), the representing values of the fuzzy priorities w̃Si are obtained from matrices that are not multiplicatively
reciprocal. For example, the lower boundary values wα

Si, i = 1, . . . , 4, are obtained as the components of the
maximal eigenvector of matrix

Mα =


1 1 2 4
1
3 1 3 4
1
4

1
5 1 1

1
8

1
6

1
3 1

 (IV.78)
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which does not keep multiplicative reciprocity of the related PCs. The meaning of the maximal eigenvectors
obtained from such matrices is questionable. This violation of multiplicative reciprocity of PCs occurs both in
the approach of Wang and Chin (2006) as well as in the approach of Csutora and Buckley (2001).

Further, the fuzzy vector w̃S = (w̃S1, w̃S2, w̃S3, w̃S4)
T with the components given as (IV.77) does not really

represent a normalized fuzzy maximal eigenvector of the trapezoidal FMPCM (IV.65) since it does not consist
of normalized eigenvectors. For example, the vector wα

S = (0.2584, 0.2265, 0.0726, 0.0444)T obtained as the
maximal eigenvector of the matrix (IV.78) is not normalized;

∑4
i=1 w

α
Si = 0.6019 < 1. △

As emphasized repeatedly, it is necessary to consider the multiplicative reciprocity of the related PCs
when performing operations on the elements of a FMPCM in order to reflect properly the preference infor-
mation contained in the FMPCM. Thus, similar to the formulas for obtaining the fuzzy maximal eigenvalue
λ̃C of a FMPCM, it is necessary to apply constrained fuzzy arithmetic to the fuzzy extension of the formula
(II.21) in order to obtain the normalized fuzzy maximal eigenvector of a FMPCM. For a trapezoidal FMPCM
M̃ = {m̃ij}ni,j=1 , m̃ij = (mα

ij ,m
β
ij ,m

γ
ij ,m

δ
ij), the components w̃Ci = (wα

Ci, w
β
Ci, w

γ
Ci, w

δ
Ci), i = 1, . . . , n, of the

normalized fuzzy maximal eigenvector w̃C (the lower index C stands for the applied concept of constrained
fuzzy arithmetic (III.45)) should be obtained as:

wα
Ci = min

{
wi ;

w=(w1, ..., wi, ..., wn)
T, w=EVMw(M), M={mrs}nr,s=1 ,

mrs∈ [mα
rs,m

δ
rs], msr=

1
mrs

, r, s=1, . . . , n

}
, (IV.79)

wβ
Ci = min

{
wi ;

w=(w1, ..., wi, ..., wn)
T, w=EVMw(M), M={mrs}nr,s=1 ,

mrs∈ [mβ
rs,m

γ
rs], msr=

1
mrs

, r, s=1, . . . , n

}
, (IV.80)

wγ
Ci = max

{
wi ;

w=(w1, ..., wi, ..., wn)
T, w=EVMw(M), M={mrs}nr,s=1 ,

mrs∈ [mβ
rs,m

γ
rs], msr=

1
mrs

, r, s=1, . . . , n

}
, (IV.81)

wδ
Ci = max

{
wi ;

w=(w1, ..., wi, ..., wn)
T , w=EVMw(M),M={mrs}nr,s=1 ,

mrs∈ [mα
rs,m

δ
rs], msr=

1
mrs

, r, s=1, . . . , n

}
. (IV.82)

Theorem 39. The fuzzy priorities w̃Ci = (wα
Ci, w

β
Ci, w

γ
Ci, w

δ
Ci), i = 1, . . . , n, obtained from a FMPCM M̃ by the

formulas (IV.79)–(IV.82) are normalized.

Proof. It is sufficient to prove that the fuzzy priorities w̃Ci, i = 1, . . . , n, satisfy the inequalities (III.13). From the
formula (IV.79), it follows that wα

Ci was obtained as the i−th component of the normalized maximal eigenvector
of one particular MPCM Mαi = {mpq}np,q=1 ,mpq ∈ [mα

pq,m
δ
pq], p, q = 1, . . . , n. Let us denote by wαi

k the priorities
of objects ok, k ̸= i, obtainable from the same MPCM Mαi, i.e. (wαi

1 , . . . , wα
Ci, . . . , w

αi
n )T is the normalized

maximal eigenvector of Mαi. Obviously, wα
Ci +

∑n
k=1
k ̸=i

wαi
k = 1, and wαi

k ∈ [wα
Ck, w

δ
Ck], k ̸= i. From this, it follows

that wα
Ci +

∑n
k=1
k ̸=i

wδ
Ck ≥ 1. The remaining inequalities in (III.13) are proved analogously.

Remark 18. According to Theorem 39, the fuzzy maximal eigenvector w̃C obtained from a FMPCM by the
formulas (IV.79)–(IV.82) is normalized in the sense of Definition 29, i.e. we can really call w̃C the normalized
fuzzy maximal eigenvector. Notice that the normality of the fuzzy maximal eigenvector was reached naturally by
just properly applying constrained fuzzy arithmetic to the fuzzy extension of the formula (II.21) for obtaining the
normalized maximal eigenvector of a MPCM; no forced normalization was done as in the case of normalizing
the fuzzy maximal eigenvector in the method proposed by Wang and Chin (2006). Therefore, the normalized
fuzzy vector given by Definition 29 is a natural counterpart of the normalized crisp vector given by (II.18).

Theorem 40. The fuzzy extension of the EVM based on the formulas (IV.79)–(IV.82) is invariant under permu-
tation of objects in FMPCMs.

Proof. It is sufficient to show that for a given object oi, i ∈ {1, . . . , n} , its priority w̃Ci corresponding to the i−th
component of the normalized maximal eigenvector w̃ does not change under permutation of objects in the
FMPCM M̃.

From the invariance of the EVM reviewed in Section 2.2.3.1, it follows that the normalized maximal eigen-
vector w of the given MPCM M does not change under any permutation Mπ = PMPT of M , but it is
just permuted accordingly to the normalized maximal eigenvector wπ. This means that each component
wi, i ∈ {1, . . . , n} , of the normalized maximal eigenvector w is equal to the corresponding component wπ

π(i)

of the permuted normalized maximal eigenvector wπ. Therefore, neither the minimum wα
Ci nor the maximum

wδ
Ci of the component wi of the normalized maximal eigenvector w over all MPCMs obtainable from the clo-

sures of the supports of the trapezoidal fuzzy numbers in the trapezoidal FMPCM M̃ = {m̃ij}ni,j=1 , m̃ij =
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Figure IV.7: Fuzzy maximal eigenvectors w̃C and w̃S of the FMPCM (IV.65).
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(mα
ij ,m

β
ij ,m

γ
ij ,m

δ
ij), change under permutation of objects in the FMPCM M̃. Analogously, also the minimum

wβ
Ci and the maximum wγ

Ci of the component wi of the normalized maximal eigenvector w over all MPCMs
obtainable from the cores of the trapezoidal fuzzy numbers in the trapezoidal FMPCM M̃ = {m̃ij}ni,j=1 do not
change under permutation. Therefore, the fuzzy priority w̃Ci = (wα

Ci, w
β
Ci, w

γ
Ci, w

δ
Ci) obtained by the formulas

(IV.79)–(IV.82) does not change under permutation of objects in FMPCMs (it is only permuted accordingly),
which concludes the proof.

Example 42. Let us apply the new method given by formulas (IV.79)–(IV.82) to the FMPCM (IV.65). The
fuzzy maximal eigenvalue obtained by the formulas (IV.46)–(IV.49) is λ̃C = (4, 4.0104, 4.1245, 4.4747) and the
normalized fuzzy maximal eigenvector w̃C obtained by the formulas (IV.79)–(IV.82) is given as

w̃C1 = (0.3256, 0.3786, 0.4795, 0.5711),

w̃C2 = (0.2551, 0.3367, 0.4267, 0.4639),

w̃C3 = (0.0821, 0.1182, 0.1313, 0.1781),

w̃C4 = (0.0478, 0.0599, 0.0701, 0.1072).

(IV.83)

The fuzzy priorities are normalized, i.e. they satisfy the inequalities (III.13).
The normalized fuzzy maximal eigenvector w̃C given by (IV.83) differs significantly from the fuzzy maximal

eigenvector w̃S given by (IV.77) that was obtained by the formulas (IV.57)–(IV.60) and (IV.76). For easier
comparison, both fuzzy maximal eigenvectors are displayed in Fig. IV.7.

Let us now examine the lower boundary value wα
C1 = 0.3256 of w̃C1. It was obtained as the solution of

the optimization problem (IV.79), in particular as the first component of the normalized maximal eigenvector
w=(0.3256, 0.4631, 0.1451, 0.0662)T of the MPCM

Mα =


1 1 2 4

1 1 5 6
1
2

1
5 1 3

1
4

1
6

1
3 1

 . (IV.84)

Similarly any other element from the closure of the support of any fuzzy priority w̃Ci, i = 1, . . . , 4, is an element
of a normalized maximal eigenvector corresponding to a MPCM obtainable from the closures of the supports
of the trapezoidal fuzzy numbers in the FMPCM (IV.65). △

4.2.3.2 Fuzzy extension of the geometric-mean method

In this section, the fuzzy extension of the GMM to FMPCMs is dealt with. The methods proposed by Buckley
(1985a) and by Liu (2009) are reviewed and their drawbacks regarding the violation of multiplicative reciprocity
and of invariance under permutation are pointed out. Afterwards, the formulas proposed by Enea and Piazza
(2004) based on constrained fuzzy arithmetic are analyzed and some interesting properties are derived.

Buckley (1985a) proposed a fuzzy extension of the GMM to compute α−cuts of the fuzzy priorities of
objects from FMPCMs. Trapezoidal representation is again used here to review the method.

Buckley (1985a) first computed the geometric mean g̃i = (gαi , g
β
i , g

γ
i , g

δ
i ), i = 1, . . . , n, of the elements in

each row of the FMPCM M̃ = {m̃ij}ni,j=1 , m̃ij = (mα
ij ,m

β
ij ,m

γ
ij ,m

δ
ij), by applying standard fuzzy arithmetic to
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the fuzzy extension of the formula (II.23). Thus, the representing values of the geometric means g̃i, i = 1, . . . , n,

of the elements in the rows of the FMPCM M̃ are computed as

gαi = n

√√√√ n∏
j=1

mα
ij , gβi =

n

√√√√ n∏
j=1

mβ
ij , gγi =

n

√√√√ n∏
j=1

mγ
ij , gδi =

n

√√√√ n∏
j=1

mδ
ij . (IV.85)

The geometric means g̃i = (gαi , g
β
i , g

γ
i , g

δ
i ), i = 1, . . . , n, represent the non-normalized fuzzy priorities of objects

compared in the FMPCM M̃. Notice that simplified standard fuzzy arithmetic (III.36) is used in (IV.85).
Afterwards, Buckley (1985a) divided each geometric mean by their sum, analogously to the formula (II.24),

in order to normalize the fuzzy priorities of objects Standard fuzzy arithmetic was again used for this purpose.
Thus, according to Buckley (1985a), the trapezoidal fuzzy priorities w̃Si = (wα

Si, w
β
Si, w

γ
Si, w

δ
Si), i = 1, . . . , n,

(the lower index S stands for the standard fuzzy arithmetic that is applied to the formulas) are obtained from a
trapezoidal FMPCM M̃ = {m̃ij}ni,j=1 , m̃ij = (mα

ij ,m
β
ij ,m

γ
ij ,m

δ
ij), as

wα
Si =

n

√∏n
j=1 m

α
ij∑n

k=1
n

√∏n
j=1 m

δ
kj

, (IV.86)

wβ
Si =

n

√∏n
j=1 m

β
ij∑n

k=1
n

√∏n
j=1 m

γ
kj

, (IV.87)

wγ
Si =

n

√∏n
j=1 m

γ
ij∑n

k=1
n

√∏n
j=1 m

β
kj

, (IV.88)

wδ
Si =

n

√∏n
j=1 m

δ
ij∑n

k=1
n

√∏n
j=1 m

α
kj

. (IV.89)

It is a well-known fact that the fuzzy extension of the GMM given by the formulas (IV.86)–(IV.89) is invariant
under permutation of objects.

The fuzzy priorities w̃Si, i = 1, . . . , n, obtained by the formulas (IV.86)–(IV.89) are not normalized according
to Definition 28 as they do not satisfy the inequalities (III.13). In fact, they are not even constrained to the
interval [0, 1]. Thus, Buckley (1985a) suggested to multiply all fuzzy priorities w̃Si, i = 1, . . . , n, by a suitable
normalization constant c < 1 in order to limit them to the interval [0, 1]. However, such fuzzy priorities still do
not satisfy the inequalities (III.13), i.e. they are not normalized.

Furthermore, the representing values wα
Si, w

β
Si, w

γ
Si, w

δ
Si given by (IV.86)–(IV.89), respectively, are not ob-

tained from MPCMs. In particular, in the formula (IV.86), the upper boundary values mδ
kj of all PCs m̃kj , k, j =

1, . . . , n, are used. This violates the multiplicative reciprocity of PCs since mδ
kj ̸= 1

mδ
jk

(unless m̃kj is a crisp

number). In addition, also the lower boundary values mα
ij of the PCs m̃ij , j = 1, . . . , n, in the i−th row of the

FMPCM are present in the formula. This even violates the extension principle (III.2) since two different values,
in particular mα

ij and mδ
ij , j = 1, . . . , n, of one variable are used in the formula at the same time. The formulas

(IV.87), (IV.88), and (IV.89) suffer from the same drawbacks.
Liu (2009) proposed the following extension of the GMM to interval FMPCMs. For an interval FMPCM

M = {mij}ni,j=1 ,mij = [mL
ij ,m

U
ij ], he constructed two MPCMs C = {cij}ni,j=1 and D = {dij}ni,j=1 by applying

(IV.7). Afterwards, he derived non-normalized priorities wi(C) and wi(D), i = 1, . . . , n, of objects from these
MPCMs C and D, respectively, by using the formula (II.23). The interval priorities wi = [wL

i , w
U
i ], i = 1, . . . , n,

were then determined as

wL
i = min {wi(C), wi(D)} , wU

i = max {wi(C), wi(D)} . (IV.90)

This method, similarly to Definitions 46 and 47 of multiplicative consistency for interval and triangular FMPCMs
proposed by Liu (2009) and Liu et al. (2014), respectively, reviewed already in Section 4.2.2.1, is not invariant
under permutation of objects. This drawback is illustrated on the following example.

Example 43. Let us apply the method for obtaining interval priorities proposed by Liu (2009) to the interval
FMPCM (IV.29). The interval priorities of objects obtained by the formula (IV.90) are

w1 = [0.4309, 0.7631], w2 = [1.0772, 1.1447], w3 = [1.1447, 2.1544].
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By applying the formula (IV.90) to the permuted interval FMPCM (IV.30), the interval priorities of objects are
obtained as

wπ
π(1) = [0.4309, 0.7631], wπ

π(2) = [0.9086, 1.3572], wπ
π(3) = [1.4422, 1.7100].

We see that wπ
π(2) ̸= w2 and wπ

π(3) ̸= w3, which demonstrates that the method for obtaining interval priorities
from interval FMPCMs proposed by Liu (2009) is not invariant under permutation of objects.

The non-normalized interval priorities obtained from the interval FMPCM (IV.29) by the formulas (IV.85) are

w1 = [0.4309, 0.7631], w2 = [0.9086, 1.3572], w3 = [1.1447, 2.1544].

The same interval priorities are obtained by the formulas (IV.85) also from the permuted interval FMPCM
(IV.30), i.e. wπ

π(i) = wi, i = 1, 2, 3. △

Note that the formulas (IV.85) for obtaining non-normalized fuzzy priorities do not violate the multiplicative-
reciprocity property as well as the invariance under permutation of objects. That follows from the absence of
mutually reciprocal PCs in the formulas. Therefore, use of standard fuzzy arithmetic instead of constrained
fuzzy arithmetic is sufficient here. Contrarily, the formulas (IV.86)–(IV.89) violate the multiplicative reciprocity
and the formulas (IV.90) violate the invariance under permutation of objects. The reason is that the formulas
(IV.86)–(IV.89) are based on standard fuzzy arithmetic instead of constrained fuzzy arithmetic, which is in this
case indispensable, whereas the formulas (IV.90) are not even based on standard fuzzy arithmetic.

In order to handle properly the multiplicative reciprocity of PCs, and thus automatically ensuring also the
invariance under permutation, it is necessary to follow the same approach as in the previous section where
the fuzzy extension of the EVM was dealt with. This means that constrained fuzzy arithmetic has to be ap-
plied to the fuzzy extension of the formula (II.24) instead of standard fuzzy arithmetic in order to respect the
multiplicative reciprocity of PCs in the FMPCM. Enea and Piazza (2004) realized this necessity and proposed
appropriate fuzzy extension of the formula (II.24) to triangular FMPCM.

Extending the method proposed by Enea and Piazza (2004) to trapezoidal FMPCMs M̃ = {m̃ij}ni,j=1 , m̃ij =

(mα
ij ,m

β
ij ,m

γ
ij ,m

δ
ij), fuzzy priorities w̃Ci =

(
wα

Ci, w
β
Ci, w

γ
Ci, w

δ
Ci

)
, i = 1, . . . , n, (the lower index C stands for the

applied concept of constrained fuzzy arithmetic (III.45)) are obtained in the following form:

wα
Ci = min


n

√
n∏

j=1

mij

n∑
k=1

n

√
n∏

j=1

mkj

;

mrs ∈
[
mα

rs,m
δ
rs

]
,

msr = 1
mrs

,

r, s = 1, . . . , n

 , (IV.91)

wβ
Ci = min


n

√
n∏

j=1

mij

n∑
k=1

n

√
n∏

j=1

mkj

;

mrs ∈
[
mβ

rs,m
γ
rs

]
,

msr = 1
mrs

,

r, s = 1, . . . , n

 , (IV.92)

wγ
Ci = max


n

√
n∏

j=1

mij

n∑
k=1

n

√
n∏

j=1

mkj

;

mrs ∈
[
mβ

rs,m
γ
rs

]
,

msr = 1
mrs

,

r, s = 1, . . . , n

 , (IV.93)

wδ
Ci = max


n

√
n∏

j=1

mij

n∑
k=1

n

√
n∏

j=1

mkj

;

mrs ∈
[
mα

rs,m
δ
rs

]
,

msr = 1
mrs

,

r, s = 1, . . . , n

 . (IV.94)

Theorem 41. The fuzzy priorities w̃Ci = (wα
Ci, w

β
Ci, w

γ
Ci, w

δ
Ci), i = 1, . . . , n, obtained from a FMPCM M̃ by the

formulas (IV.91)–(IV.94) are normalized.

Proof. It is sufficient to prove that the fuzzy priorities w̃Ci, i = 1, . . . , n, satisfy the inequalities (III.13). From the
formula (IV.91), it follows that wα

Ci was obtained by applying the formula (II.24) to one particular MPCM Mαi =
{mpq}np,q=1 ,mpq ∈ [mα

pq,m
δ
pq], p, q = 1, . . . , n. Let wαi

k denote the priorities of objects ok, k ̸= i, obtainable by
the formula (II.24) from the same MPCM Mαi. Obviously, wα

Ci +
∑n

k=1
k ̸=i

wαi
k = 1, and wαi

k ∈ [wα
Ck, w

δ
Ck], k ̸= i.

From this, it follows that wα
Ci+

∑n
k=1
k ̸=i

wδ
Ck ≥ 1. The remaining inequalities in (III.13) are proved analogously.
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Remark 19. According to Theorem 41, the fuzzy priorities w̃Ci, i = 1, . . . , n, obtained from a FMPCM by the
formulas (IV.91)–(IV.94) are normalized in the sense of Definition 29. Notice that the normality of the fuzzy
priorities was reached naturally by just properly applying constrained fuzzy arithmetic to the fuzzy extension
of the formula (II.24) for obtaining normalized priorities from a MPCM; no forced normalization was needed,
unlike in the case of the “normalization” of the fuzzy priorities (IV.86)–(IV.89) as suggested by Buckley (1985a).

Theorem 42. The fuzzy extension of the GMM based on the formulas (IV.91)–(IV.94) is invariant under per-
mutation of objects in FMPCMs.

Proof. It is sufficient to show that for a given object oi, i ∈ {1, . . . , n} , its priority w̃Ci obtained by the formulas
(IV.91)–(IV.94) does not change under permutation of objects in a FMPCM M̃.

From the invariance of the GMM reviewed in Section 2.2.3.2, it follows that the priority wi of object oi
determined by the formula (II.24) from the given MPCM M does not change under any permutation Mπ =
PMPT of M , it is just permuted accordingly. This means that the priority wi obtained from M is equal to the
corresponding priority wπ

π(i) obtained from Mπ.

Therefore, also the minimum wα
Ci and the maximum wδ

Ci of the priority wi of object oi obtained by (II.24) over
all MPCMs obtainable from the closures of the supports of the trapezoidal fuzzy numbers in the trapezoidal
FMPCM M̃ = {m̃ij}ni,j=1 , m̃ij = (mα

ij ,m
β
ij ,m

γ
ij ,m

δ
ij), do not change. Analogously, also the minimum wβ

Ci and
the maximum wγ

Ci of the priority wi of object oi obtained by (II.24) over all MPCMs obtainable from the cores
of the trapezoidal fuzzy numbers in the trapezoidal FMPCM M̃ = {m̃ij}ni,j=1 do not change.

Therefore, the fuzzy priority w̃Ci = (wα
Ci, w

β
Ci, w

γ
Ci, w

δ
Ci) obtained by the formulas (IV.91)–(IV.94) does not

change under permutation of objects in FMPCMs (it is only permuted accordingly), which concludes the proof.

In the following example, the difference between the fuzzy priorities obtained by formulas (IV.86)–(IV.89) and
by formulas (IV.91)–(IV.94) is illustrated, and the drawbacks in the formulas (IV.86)–(IV.89) are demonstrated.

Example 44. Let us consider the FMPCM M̃ given by (IV.65). The fuzzy priorities of objects obtained from this
FMPCM by the fuzzy extension of the GMM proposed both by Buckley (1985a) and by Enea and Piazza (2004)
are given in Tab. IV.7. The fuzzy priorities obtained by formulas (IV.91)–(IV.94) are significantly less uncertain
than the fuzzy priorities obtained by formulas (IV.86)–(IV.89). Moreover, the closures of the supports of the
fuzzy priorities obtained by formulas (IV.91)–(IV.94) are the proper subsets of the closures of the supports of
the fuzzy priorities obtained by formulas (IV.86)–(IV.89). Analogously, the cores of the fuzzy priorities obtained
by formulas (IV.91)–(IV.94) are proper subsets of the cores of the fuzzy priorities obtained by formulas (IV.86)–
(IV.89). This is caused by using constrained fuzzy arithmetic (that preserves the multiplicative reciprocity of
PCs) in the formulas (IV.91)–(IV.94).

Table IV.7: Fuzzy priorities of objects obtained from the FMPCM (IV.65).

Fuzzy priorities obtained Fuzzy priorities obtained

by formulas (IV.86)–(IV.89) by formulas (IV.91)–(IV.94)

w̃S1 = (0.2469, 0.3401, 0.5399, 0.8114) w̃C1 = (0.3294, 0.3789, 0.4795, 0.5689)

w̃S2 = (0.2076, 0.3073, 0.4694, 0.6067) w̃C2 = (0.2539, 0.3350, 0.4262, 0.4647)

w̃S3 = (0.0694, 0.1104, 0.1418, 0.2180) w̃C3 = (0.0821, 0.1188, 0.1309, 0.1767)

w̃S4 = (0.0424, 0.0571, 0.0762, 0.1296) w̃C4 = (0.0496, 0.0614, 0.0703, 0.1069)

Further, let us illustrate inappropriateness of the formulas (IV.86)–(IV.89) for computing the fuzzy priorities
of objects from a FMPCM. For this purpose, let us see how the lower boundary value wα

S1 of the fuzzy priority
w̃S1 was obtained. The intensities of preference figuring in the formula (IV.86) for obtaining the lower boundary
value wα

S1 = 0.2469 are highlighted in bold in the FMPCM

M̃ =


1 (1, 1, 2,3) (2, 2.5, 3,4)(4, 6, 7,8)(

1
3 ,

1
2 , 1,1

)
1 (3, 4, 4,5) (4, 5, 6,6)(

1
4 ,

1
3 ,

1
2.5 ,

1
2

)(
1
5 ,

1
4 ,

1
4 ,

1
3

)
1 (1, 2, 2,3)(

1
8 ,

1
7 ,

1
6 ,

1
4

) (
1
6 ,

1
6 ,

1
5 ,

1
4

) (
1
3 ,

1
2 ,

1
2 ,1
)

1

 . (IV.95)
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Figure IV.8: Fuzzy priority vectors w̃C and w̃S of the FMPCM (IV.65).
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From (IV.95) we see that two different intensities of preference of object o1 over the other objects are used in the
formula (IV.86) at the same time. Moreover, the multiplicative reciprocity of PCs in the matrix is violated. This
adds redundant vagueness to the fuzzy priorities, which leads to the distortion of the information contained in
the FMPCM (IV.65).

Contrarily, the lower boundary value wα
C1 = 0.3294 of the fuzzy priority w̃C1 was obtained from a multiplica-

tively reciprocal matrix, in particular from the MPCM

M =


1 1 2 4

1 1 5 6

1
2

1
5 1 3

1
4

1
6

1
3 1

 . (IV.96)

In the same way, it could be shown that all representing values of all four fuzzy priorities were obtained from
MPCMs by the formulas (IV.91)–(IV.94). △

In general, the optimization problems solved in (IV.91)–(IV.94) have n2−n variables and n2−n
2 multiplicative-

reciprocity constraints (the number of variables and multiplicative-reciprocity constraints gets reduced when
crisp numbers are present above and below the main diagonal of the FMPCM). Thus, the computational
complexity of the optimization problems increases rapidly with an increasing dimension n. However, the fol-
lowing theorem shows that the optimization problems (IV.91)–(IV.94) can be simplified significantly. First, the
multiplicative-reciprocity constraints can be incorporated into the objective functions. Second, when wα

Ci is
computed, the variables mij , j = 1, . . . , n, can be fixed as the lower boundary values of the trapezoidal fuzzy
numbers in the i-th row of the FMPCM, i.e. as mij := mα

ij . Analogously, also for the representing values
wβ

Ci, w
γ
Ci, and wδ

Ci. In this way, the number of variables is reduced from n2 − n to n2−n
2 − (n− 1).

Theorem 43. Let M̃ = {m̃ij}ni,j=1, m̃ij =
(
mα

ij ,m
β
ij ,m

γ
ij ,m

δ
ij

)
, be a trapezoidal FMPCM. The optimization

problems (IV.91)–(IV.94) can be simplified for i = 1, . . . , n in the following way:

wα
Ci =

n

√
n∏

j=1

mα
ij

n

√
n∏

j=1

mα
ij +max


n∑

k=1
k ̸=i

n

√√√√√ 1
mα

ik

k−1∏
l=1
l ̸=i

1

mlk

n∏
l=k+1
l ̸=i

mkl ;

mrs∈
[
mα

rs,m
δ
rs

]
,

r = 1, . . . , n− 1,

s = r + 1, . . . , n,

r, s ̸= i


,

(IV.97)

wβ
Ci =

n

√
n∏

j=1

mβ
ij

n

√
n∏

j=1

mβ
ij +max


n∑

k=1
k ̸=i

n

√√√√√ 1

mβ
ik

k−1∏
l=1
l ̸=i

1

mlk

n∏
l=k+1
l ̸=i

mkl ;

mrs∈
[
mβ

rs,m
γ
rs

]
,

r = 1, . . . , n− 1,

s = r + 1, . . . , n,

r, s ̸= i


,

(IV.98)
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wγ
Ci =

n

√
n∏

j=1

mγ
ij

n

√
n∏

j=1

mγ
ij +min


n∑

k=1
k ̸=i

n

√√√√√ 1
mγ

ik

k−1∏
l=1
l ̸=i

1

mlk

n∏
l=k+1
l ̸=i

mkl ;

mrs∈
[
mβ

rs,m
γ
rs

]
,

r = 1, . . . , n− 1,

s = r + 1, . . . , n,

r, s ̸= i


,

(IV.99)

wδ
Ci =

n

√
n∏

j=1

mδ
ij

n

√
n∏

j=1

mδ
ij +min


n∑

k=1
k ̸=i

n

√√√√√ 1
mδ

ik

k−1∏
l=1
l ̸=i

1

mlk

n∏
l=k+1
l ̸=i

mkl ;

mrs∈
[
mα

rs,m
δ
rs

]
,

r = 1, . . . , n− 1,

s = r + 1, . . . , n,

r, s ̸= i


.

(IV.100)

Proof. First, let us show that the formulas (IV.91) and (IV.97) are identical. For any i ∈ {1, . . . , n}, the formula
(IV.91) can be written in the following way:

wα
Ci = min



n

√
n∏

j=1

mij

n

√
n∏

j=1

mij +
n∑

k=1
k ̸=i

n

√√√√ 1

mik

n∏
j=1

j ̸=i

mkj

;

mrs ∈
[
mα

rs,m
δ
rs

]
,

msr = 1
mrs

,

r, s = 1, . . . , n,


.

Let us denote xi := n

√√√√ n∏
j=1

mij , and yi :=

n∑
k=1
k ̸=i

n

√√√√√ 1

mik

n∏
j=1

j ̸=i

mkj .

Obviously, xi > 0 for mis ∈
[
mα

is,m
δ
is

]
, s = 1, . . . , n, and yi > 0 for mrs ∈

[
mα

rs,m
δ
rs

]
, msr = 1/mrs, r, s =

1, . . . , n. Further, let us denote fi :=
xi

xi+yi
. Then ∂fi

∂xi
= yi

(xi+yi)
2 > 0, and ∂fi

∂yi
= −xi

(xi+yi)
2 < 0. Hence, fi is an

increasing function of xi and a decreasing function of yi. It means that for minimizing the function fi, we have
to minimize xi and maximize yi. The function xi is increasing in all the variables. Therefore,

x′
i := min

{
xi ; mij ∈

[
mα

ij ,m
δ
ij

]
, j = 1, . . . , n

}
= n

√√√√ n∏
j=1

mα
ij .

The function yi is decreasing in the variables mi1, . . . ,min. Therefore,

y′i := max

{
yi ;

mrs ∈
[
mα

rs,m
δ
rs

]
,msr = 1

mrs
,

r, s = 1, . . . , n

}

=


n∑

k=1
k ̸=i

n

√√√√√ 1

mα
ik

n∏
j=1

j ̸=i

mkj ;
mrs ∈

[
mα

rs,m
δ
rs

]
,msr = 1

mrs
,

r, s = 1, . . . , n


Finally, thanks to the reciprocity of M̃ , we can also replace all the elements msr, r, s = 1, . . . , n, r < s, i.e.
the elements below the main diagonal, by the reciprocals 1/mrs of the corresponding elements mrs above the
main diagonal. By that we obtain formula (IV.97).

Analogously, it can be demonstrated that (IV.92) is equivalent to (IV.98), (IV.93) is equivalent to (IV.99), and
(IV.94) is equivalent (IV.100).

In Example 44, it was pointed out that the cores and the closures of the supports of the fuzzy priorities in
Tab. IV.7 obtained by formulas (IV.91)–(IV.94) are proper subsets of the cores and closures of the supports of
the fuzzy priorities obtained by formulas (IV.86)–(IV.89), respectively. The following theorem shows that this
property is valid in general for trapezoidal FMPCMs with at least one entry that is not a crisp number.
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Theorem 44. Let M̃ = {m̃ij}ni,j=1, m̃ij =
(
mα

ij ,m
β
ij ,m

γ
ij ,m

δ
ij

)
, be a trapezoidal FMPCM. Further, let w̃S1, . . . , w̃Sn

be trapezoidal fuzzy priorities obtained by formulas (IV.86)–(IV.89), and w̃C1, . . . , w̃Cn be trapezoidal fuzzy
priorities obtained by formulas (IV.91)–(IV.94). If there exists at least one m̃kl, k, l ∈ {1, . . . , n} , such that
mα

kl < mδ
kl, then

[wα
Ci, w

δ
Ci] ⊂ [wα

Si, w
δ
Si] and [wβ

Ci, w
γ
Ci] ⊆ [wβ

Si, w
γ
Si], i = 1, . . . , n. (IV.101)

The equality
[wβ

Ci, w
γ
Ci] = [wβ

Si, w
γ
Si], i = 1, . . . , n, (IV.102)

occurs only when mβ
ij = mγ

ij for all i, j = 1, . . . , n.

Proof. First, let us demonstrate the validity of [wα
Ci, w

δ
Ci] ⊂ [wα

Si, w
δ
Si], i = 1 . . . , n. Presence of at least one fuzzy

number m̃kl = (mα
kl,m

β
kl,m

γ
kl,m

δ
kl) that is not a crisp number, i.e. mα

kl < mδ
kl, implies the strict inequalities
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mkl

.
(IV.103)

Thus, for any i ∈ {1, . . . , n}:

wα
Si

(IV.86)
=

n

√
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ij
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√
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ij +

n∑
k=1, k ̸=i

n

√
n∏

j=1

mδ
kj

(IV.103)
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(IV.97)
= wα

Ci,

and

wδ
Si

(IV.88)
=
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(IV.99)
= wδ

Ci.

Analogously, validity of [wβ
Ci, w

γ
Ci] ⊆ [wβ

Si, w
γ
Si], i = 1, . . . , n, is demonstrated.

Further, let us prove the validity of (IV.102). The equality mβ
ij = mγ

ij , i, j = 1, . . . , n, means that the
trapezoidal FMPCM M̃ is reduced to a triangular FMPCM. The domains of all variables in the formulas
(IV.92) and (IV.93) are thus reduced to singletons. This basically means that the formula (IV.92) is reduced
to the formula (IV.87) and the formula (IV.93) is reduced to the formula (IV.88). Thus, wβ

Ci = wβ
Si and

wγ
Ci = wγ

Si, i = 1, . . . , n. Furthermore, the formulas (IV.87) and (IV.88) give the same results since they have
the same entries mβ

ij = mγ
ij . Thus, wβ

Ci = wβ
Si = wγ

Ci = wγ
Si, i = 1, . . . , n.

4.3 Fuzzy additive pairwise comparison matrices

Similarly as in the case of MPCMs, also the PCs in APCMs are done either expertly or by using linguistic
terms from a predefined scale. Especially when information about the decision-making problem is incomplete

88



or imprecise, it is more appropriate to provide the expert numerical judgments in form of fuzzy numbers rather
than crisp numbers. The use of fuzzy numbers is more natural also when modeling the meaning of linguistic
terms from a predefined scale (see the discussion in Section 4.2.1). Thus, in this section, the fuzzy extension
of APCMs is dealt with. In particular, in Section 4.3.1, the construction of fuzzy APCMs is studied and the
fuzzy extension of APCMs-A and of APCMs-M is defined. In Section 4.3.2, fuzzy APCMs-A are then studied
in detail and Section 4.3.3 is focused on fuzzy APCMs-M.

4.3.1 Construction of FAPCMs
In Section 4.2, the fuzzy extension of MPCMs was dealt with. As it is obvious from the literature review provided
in Section 4.2, MPCMs are most often extended to fuzzy numbers (usually triangular or trapezoidal), less often
to intervals. That is probably because fuzzy numbers allow for more subtle modeling of preference intensities
by using different degrees of membership. Intervals do not provide this option; all elements in the given interval
have the same degree of membership.

The situation is different with APCMs. In the literature, the trend is to extend APCMs to intervals rather than
to fuzzy numbers in general. The reason behind this might be the fact that APCMs are already perceived as
fuzzy having the elements defined on interval [0, 1]. Thus, the intensity of preference of each PC in the APCM
is looked at as a degree of membership to a fuzzy set, and modeling a degree of membership by a fuzzy
number is not a common practice.

As already mentioned in Section 2.3.1, APCMs are often called “fuzzy preference relations” in the literature.
Therefore, another reason why APCMs are usually extended to intervals rather than to fuzzy numbers in
general might be the issue of terminology. Interval extension of a fuzzy preference relation is simply called
“interval fuzzy preference relation” which probably seems to be acceptable (something “fuzzy” is extended to
intervals). Extending fuzzy preference relations to fuzzy numbers sounds somehow wrong; “fuzzy preference
relations” are already fuzzy and by extending them to fuzzy numbers we would obtain “fuzzy fuzzy preference
relations”?

As shown in Section 2.4, MPCMs, APCMs-A, and APCMs-M are equivalent; each representation can be
transformed into the others. This means that an APCM defined on interval [0, 1] can be transformed into a
MPCM defined on interval [ 19 , 9] (or [ 1S , S], S > 1, in general) and vice versa. It will be shown later that there
exist transformations also between the fuzzy extensions of MPCMs, APCMs-A, and APCMs-M. Therefore,
using fuzzy numbers for one representation of preference information (in this case MPCMs), it does not seem
reasonable to avoid using fuzzy numbers for other representations of preference information (APCMs-A and
APCMs-M). If there is a need for more subtle modeling of preference intensities in MPCMs by using fuzzy
numbers, why should these not be used for modeling preference intensities in APCMs as well? Why should
the imprecision of information and vagueness of human judgment be modeled solely by intervals rather than
by fuzzy numbers in general in the case of APCMs?

In this section, the methods related to APCMs will be extended not only to interval FAPCMs but, more in
general, to fuzzy APCMs.

Definition 52. A fuzzy additive pairwise comparison matrix (FAPCM) of n objects o1, ..., on is a square matrix
Ã = {ãij}ni,j=1 , whose elements ãij , i, j = 1, . . . , n, are fuzzy numbers defined on interval [0, 1]. Further, the
matrix is additively reciprocal, i.e.

ãij = 1− ãji, i, j = 1, . . . , n, (IV.104)

and
ãii = 0.5, i, j = 1, . . . , n. (IV.105)

Definition 52 of a FAPCM is very general; elements ãij of Ã are arbitrary fuzzy numbers satisfying the
additive-reciprocity condition (IV.104). In practice, these fuzzy numbers are usually intervals, less often trian-
gular or trapezoidal fuzzy numbers. In general, more types of fuzzy numbers and intervals can be present in a
FAPCM at the same time. Even an APCM A = {aij}ni,j=1 given by Definition 7 is a FAPCM since crisp numbers
are a special case of fuzzy numbers and since an APCM A satisfies (IV.105).

As already mentioned above, intervals are most often used in the literature to model intensities of prefer-
ence in FAPCMs. Interval representation will be preserved when reviewing the existing approaches to interval
extension of APCMs. However, in order to be coherent with Section 4.2 on the fuzzy extension of MPCMs,
the new approaches and formulas related to the fuzzy extension of APCMs proposed in this thesis will be pre-
sented for trapezoidal fuzzy numbers. Since intervals are a special case of trapezoidal fuzzy numbers, there
will be no difficulties in confronting the new approaches and formulas presented for trapezoidal fuzzy numbers
with the original approaches and formulas presented for intervals.

Being ãij = (aαij , a
β
ij , a

γ
ij , a

δ
ij) a trapezoidal fuzzy number, then also ãji = 1 − ãij is a trapezoidal fuzzy

number. Thus, unlike in the case of FMPCMs, there is no need for simplified fuzzy arithmetic when constructing
a FAPCM Ã.
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When constructing a FAPCM by using a scale of predefined linguistic terms, it is necessary to model
appropriately the meaning of the linguistic term “equal preference”. Similarly as in the case of FMPCMs,
we have to distinguish whether oi and oj are the same objects or not. For i = j, it is necessary to set
ãii = 0.5, i = 1, . . . , n, because there is no vagueness in the PC; we compare one object with itself. On the
other hand, when two different objects are assessed as “equally preferred”, there is very likely to be some
vagueness contained in such PC. Therefore, in this case, “equal preference” should be modeled by a fuzzy
number “about 0.5”, i.e. 0̃.5, not necessarily by crisp number 0.5. Furthermore, similarly as in the case of
FMPCMs, it is again necessary to preserve 0̃.5 = 1− 0̃.5 (a detailed reasoning behind this requirement is given
in Section 4.2.1). Therefore, the fuzzy number 0̃.5 := (cα, cβ , cγ , cδ) has to satisfy

(cα, cβ , cγ , cδ) = 1− (cα, cβ , cγ , cδ). (IV.106)

By solving (IV.106), we obtain 0̃.5 defined as

0̃.5 = (1− c, 1− b, b, c), 0.5 ≤ b ≤ c ≤ 1. (IV.107)

Note 8. From now on, by a FAPCM will be meant a FAPCM given by Definition 52 satisfying the indispensable
condition 0̃.5 = 1− 0̃.5 for the fuzzy number 0̃.5 modeling the meaning of the linguistic term “equal preference”,
i.e. (IV.107) in the case of trapezoidal fuzzy numbers.

Similarly as in the case of FMPCMs, also for FAPCMs it seems to be reasonable to define the fuzzy numbers
modeling the meanings of linguistic terms in a predefined scale in such a way that they form Ruspini’s fuzzy
partition of interval [0, 1]. Defining a particular fuzzy scale is, however, out of the scope of the thesis as this
should be done in cooperation with the particular DM. In the illustrative examples in this thesis only expertly
defined fuzzy PCs without assigned linguistic terms will be used.

Analogously to APCMs, also in the case of FAPCMs it is necessary to distinguish between FAPCMs with
additive representation and FAPCMs with multiplicative representation depending on the represention used
when constructing a FAPCM.

Definition 53. A FAPCM with additive representation (FAPCM-A) is a FAPCM R̃ = {r̃ij}ni,j=1 , where r̃ij − r̃ji
indicates the difference of preference intensity of object oi and of object oj .

Definition 54. A FAPCM with multiplicative representation (FAPCM-M) is a FAPCM Q̃ = {q̃ij}ni,j=1 , q̃ij ∈]0, 1[,
where q̃ij

q̃ji
indicates the ratio of preference intensity of object oi to that of object oj , i.e. oi is q̃ij

q̃ji
−times as good

as oj .

4.3.2 Fuzzy additive pairwise comparison matrices with additive representation
In this Section, the fuzzy extension of the methods related to APCMs-A reviewed in Section 2.3.2 is dealt
with. In particular, Section 4.3.2.1 is dedicated to the extension of additive-consistency condition (II.28) to
FAPCMs-A and Section 4.3.2.2 is focused on methods for obtaining fuzzy priorities from FAPCMs-A.

4.3.2.1 Additive consistency of FAPCMs-A

In this section, additive consistency of FAPCMs-A is studied. First, in Section 4.3.2.1.1, definitions of additive
consistency for interval FAPCMs-A based on Tanino’s characterization (II.32) proposed in the literature are
reviewed and some drawbacks of the definitions are pointed out. Afterwards, in Section 4.3.2.1.2, two new
definitions of additive consistency for FAPCMs-A are proposed.

4.3.2.1.1 Review of fuzzy extensions of additive consistency

Many definitions of consistency for interval FAPCMs-A have been proposed in the literature. These defi-
nitions are most often based on interval extension of additive-transitivity property (II.28) and related Tanino’s
characterization (II.32), or, alternatively, on interval extension of the more general characterization (II.46) re-
viewed in Remark 2 of Section 2.3.2.2.

Xu (2007a) introduced a weak version of additive consistency for interval FAPCMs-A based on Tanino’s
characterization (II.32). Wang and Li (2012) proposed another definition of additive consistency based on
Tanino’s additive-transitivity property (II.28). Qian et al. (2014) proposed a method for constructing additively
consistent interval FAPCMs-A satisfying definition proposed by Wang and Li (2012) from inconsistent inter-
val FAPCMs-A. Another definition of additive consistency for interval FAPCMs-A based on Tanino’s additive-
transitivity property (II.28) was proposed by Liu et al. (2012a). Xu et al. (2014a) proposed another definition
of additive consistency for interval FAPCMs-A and introduced a method for completing incomplete interval
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FAPCMs-A based on this additive-consistency condition. Wang (2014) pointed out that the additive consis-
tency defined by Xu et al. (2014a) is not invariant under permutation of objects. Further, they approved the
definition of additive consistency proposed by Wang and Li (2012) and derived some further properties. Wang
et al. (2012) introduced a definition of consistency using a particular characterization based on logarithms.
However, the interpretation of such characterization based on logarithms was not clarified.

As discussed in Remark 2, priorities (II.47) corresponding to more general characterization (II.46) lack in-
tuitive representation. Therefore, in this section, the focus is put only on traditional Tanino’s characterization
(II.32). Definitions of additively consistent interval FAPCMs-A based on interval extension of Tanino’s charac-
terization (II.32) are reviewed in detail and some drawbacks are identified. In particular, it will be shown that
some definitions are not invariant under permutation of objects in interval FAPCMs-A and some violate additive
reciprocity of PCs of objects. Afterwards, it will be shown that the drawbacks can be eliminated by employing
the constrained fuzzy arithmetic.

Xu (2007b) defined the additive consistency of interval FAPCMs-A as follows:

Definition 55. (Xu, 2007b) Let R = {rij}ni,j=1 , rij =
[
rLij , r

U
ij

]
, be an interval FAPCM-A. If there exists a vector

v = (v1, . . . , vn)
T
,
∑n

i=1 vi = 1, vi ≥ 0, i = 1, . . . , n, such that

rLij ≤ 0.5(vi − vj + 1) ≤ rUij , i, j = 1, . . . , n, (IV.108)

then R is called an additively consistent interval FAPCM-A.

Xu and Chen (2008a) formulated the following theorem in order to verify additive consistency of interval
FAPCMs-A according to Definition 55.

Theorem 45. An interval FAPCM-A R = {rij}ni,j=1 , rij =
[
rLij , r

U
ij

]
, is additively consistent according to Defi-

nition 55 if and only if the solution of the optimization model

J∗ = min
n−1∑
i=1

n∑
j=i+1

(d−ij + d+ij)

s.t. 0.5(vi − vj + 1) + dLij ≥ rLij , i, j = 1, . . . , n, i < j,

0.5(vi − vj + 1)− dUij ≤ rUij , i, j = 1, . . . , n, i < j,
n∑

i=1

vi = 1, vi ≥ 0, i = 1, . . . , n,

dLij , d
U
ij ≥ 0, i, j = 1, . . . , n, i < j,

(IV.109)

is J∗ = 0.

Definition 55 of additive consistency for interval FAPCMs-A is clearly based on Proposition 2 for APCMs-A.
According to the definition, an interval FAPCM-A R = {rij}ni,j=1 , rij =

[
rLij , r

U
ij

]
, is additively consistent if

there exists a vector v = (v1, . . . , vn)
T using which we can construct an additively consistent APCM-A R∗ ={

r∗ij
}n
i,j=1

such that r∗ij ∈ [rLij , r
U
ij ], i, j = 1, . . . , n. However, extension of Proposition 2 to Definition 55 is not

done appropriately. The vector v = (v1, . . . , vn)
T in Proposition 2 is such that |vi − vj | ≤ 1, i, j = 1, . . . , n, while

in Definition 55, the vector should satisfy the normalization condition

n∑
i=1

vi = 1, vi ≥ 0, i = 1, . . . , n. (IV.110)

The same normalization condition is employed also in the optimization model (IV.109).
The incompatibility of the normalization condition (IV.110) and Tanino’s characterization (II.32) for APCMs-A

was demonstrated by Fedrizzi and Brunelli (2009). They showed that for some additively consistent APCMs-A,
there exists no vector satisfying the normalization condition (IV.110). The inappropriateness of Definition 55 of
additive consistency is demonstrated on the following illustrative example.

Example 45. Let us examine the interval FAPCM-A

R =


0.5 [0.5, 0.6] [0.8, 0.9] [0.9, 1]

[0.4, 0.5] 0.5 [0.6, 0.7] [0.6, 0.9]

[0.1, 0.2] [0.3, 0.4] 0.5 [0.5, 0.7]

[0, 0.1] [0.1, 0.4] [0.3, 0.5] 0.5

 . (IV.111)
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By solving the optimization model (IV.109), we obtain J∗ = 0.1. Thus, based on Theorem 45, the interval
FAPCM-A R is not additively consistent according to Definition 55. This means that there does not exist an
APCM-A R∗ =

{
r∗ij
}n
i,j=1

obtainable from the interval FAPCM-A (IV.111) that would be additively consistent
according to Definition 9. However, this conclusion is wrong.

There do exist additively consistent APCMs-A obtainable from (IV.111); one of them is, for example,

R∗ =


0.5 0.6 0.8 1

0.4 0.5 0.7 0.9

0.2 0.3 0.5 0.7

0 0.1 0.3 0.5

 (IV.112)

with the corresponding priority vector v = (1.45, 1.25, 0.85, 0.45)T satisfying |vi−vj | ≤ 1, i, j = 1, . . . , n. Because
there does not exist a priority vector corresponding to the APCM-A R∗ that would satisfy the inappropriate
normalization condition (IV.110), it could not have been revealed by solving the optimization model (IV.109).
Thus, by utilizing Definition 55 in real-life applications, a DM who provided the interval FAPCM-A (IV.111) would
be judged as inconsistent in his or her preferences even though the opposite is true. △

Because the normalization condition (IV.110) is not compatible with Tanino’s characterization for APCMs-A,
it is clearly not reasonable to employ it in the definition of additively consistent interval FAPCMs-A (APCMs-A
being a special case of interval FAPCMs-A where rLij = rUij , i, j = 1, . . . , n).

Liu et al. (2012a) defined additive consistency in the following way.

Definition 56. (Liu et al., 2012a) Let R = {rij}ni,j=1 , rij =
[
rLij , r

U
ij

]
, be an interval FAPCM-A. R is called

additively consistent if the APCMs-A C = {cij}ni,j=1 and D = {dij}ni,j=1 :

cij =


rLij , i < j
0.5, i = j
rUij , i > j

, dij =


rUij , i < j
0.5, i = j
rLij , i > j

, i, j = 1, . . . , n, (IV.113)

are additively consistent according to Definition 9.

However, Definition 56 is not invariant under permutation of objects. This serious drawback is demonstrated
on the following example.

Example 46. Let us consider the interval FAPCM-A R in the form

R =


0.5 [0.6, 0.7] [0.8, 1]

[0.3, 0.4] 0.5 [0.7, 0.8]

[0, 0.2] [0.2, 0.3] 0.5

 . (IV.114)

The corresponding APCMs-A C and D given by (IV.113) are in the form

C =


0.5 0.6 0.8

0.4 0.5 0.7

0.2 0.3 0.5

 , D =


0.5 0.7 1

0.3 0.5 0.8

0 0.2 0.5

 .

Both C and D satisfy the additive-transitivity condition (II.28), which means that they are additively consistent
according to Definition 9. Therefore, according to Definition 56, the interval FAPCM-A R is additively consistent.

Now, let us permute the interval FAPCM-A (IV.114) by using the permutation matrix

P =


0 0 1

1 0 0

0 1 0

 (IV.115)

to the interval FAPCM-A R
π
= PRPT :

R
π
=


0.5 [0, 0.2] [0.2, 0.3]

[0.8, 1] 0.5 [0.6, 0.7]

[0.7, 0.8] [0.3, 0.4] 0.5

 . (IV.116)
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The corresponding APCMs-A Cπ and Dπ given by (IV.113) are in the form

Cπ =


0.5 0 0.2

1 0.5 0.6

0.8 0.4 0.5

 , Dπ =


0.5 0.2 0.3

0.8 0.5 0.7

0.7 0.3 0.5

 .

We can see that neither Cπ nor Dπ satisfies the additive-transitivity condition (II.28), and thus, according to
Definition 56, the interval FAPCM-A R

π
is not additively consistent.

Obviously, the PCs of objects in the interval FAPCMs-A R and R
π

are the same; they are just provided in
different orders. Therefore, also the conclusion about the additive consistency should be the same for both
interval FAPCMs-A. However, as demonstrated, according to Definition 56, the interval FAPCM-A R results to
be additively consistent while the interval FAPCM-A R

π
results to be additively inconsistent. △

Another definition of additive consistency for interval FAPCMs-A was proposed by Wang and Li (2012).

Definition 57. (Wang and Li, 2012) Let R = {rij}ni,j=1 , rij =
[
rLij , r

U
ij

]
, be an interval FAPCM-A. R is called

additively consistent if it satisfies the additive-transitivity condition

rij + rjk + rki = rkj + rji + rik, i, j, k = 1, . . . , n. (IV.117)

Wang and Li (2012) defined the additive-transitivity condition (IV.117) by using the standard interval arith-
metic, i.e. addition is done according to formula (III.20). Therefore, the equation (IV.117) is nothing else but
the equations

rLij + rLjk + rLki = rLkj + rLji + rLik,

rUij + rUjk + rUki = rUkj + rUji + rUik,
i, j, k = 1, . . . , n. (IV.118)

Further, Wang and Li (2012) formulated the following proposition.

Proposition 11. (Wang and Li, 2012) Let R = {rij}ni,j=1 be an interval FAPCM-A. If there exists a normalized
interval vector v = (v1, . . . , vn)

T , vi = [vLi , v
U
i ], i = 1, . . . , n, such that

rij = [0.5(vLi − vUj + 1), 0.5(vUi − vLj + 1)],

then R is additively consistent according to Definition 57.

According to Proposition 11, a crisp APCM-A R = {rij}ni,j=1 , which is a particular case of interval FAPCMs-
A, is additively consistent according to Definition 2 if there exists a priority vector v = (v1, . . . , vn)

T satisfying
Tanino’s characterization (II.32) and the normalization condition (IV.110). However, the normalization condition
(IV.110) is incompatible with Tanino’s Proposition 2 (see Fedrizzi and Brunelli (2009)).

Furthermore, Wang and Li (2012) pointed out that “due to the fact that a − a does not always yield 0, we
cannot derive rij + rji = 1 any more” (Wang and Li (2012), p.183). For example, for rij = [0.7, 0.8], we obtain
rij + rji = [0.7, 0.8] + [0.2, 0.3] = [0.9, 1.1] ̸= 1. Wang and Li (2012) conclude that “due to the possibility of
a− a ̸= 0, which makes it impossible to manipulate an interval-valued equation by moving terms from one side
to the other, (IV.117) may not necessarily be able to produce equation

rij = rik − rjk + 0.5 (IV.119)

in contrast to the case of regular APCMs-A where these two expressions are equivalent” (Wang and Li (2012),
p.183). This is why Wang and Li (2012) defined the additive consistency of interval FAPCMs-A (Definition 57)
by extending the property (II.30) of APCMs-A.

However, it is necessary to point out here that Wang and Li’s assertion that “we cannot derive rij + rji = 1”
is not true. At the end of this section, it will be demonstrated that the validity of equation rij + rji = 1 can
be easily achieved by applying appropriately the constrained fuzzy arithmetic instead of the standard fuzzy
arithmetic (or equivalently by applying constrained interval arithmetic (Lodwick and Jenkins (2013)) instead
of the standard interval arithmetic in this case). Furthermore, it will be shown that Definition 57 of additive
consistency is inappropriate since it violates the additive reciprocity of PCs. Before doing that, let us finalize
the literature review.

Definition 58. (Xu et al., 2014a) Let R = {rij}ni,j=1 , rij =
[
rLij , r

U
ij

]
, be an interval FAPCM-A. R is called an

additively consistent interval FAPCM-A if

rij + rjk = rik + [0.5, 0.5] , i < j < k, i, j, k = 1, . . . , n. (IV.120)
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Wang (2014) demonstrated that Definition 58 of additive consistency is dependent on objects labeling,
i.e. it is not invariant under permutation of objects. Further, Wang (2014) adopted Definition 57 of additive
consistency since it is invariant under permutation of objects and derived the following theorem.

Theorem 46. (Wang, 2014) Let R = {rij}ni,j=1 , rij =
[
rLij , r

U
ij

]
, be an interval FAPCM-A. R is additively

consistent (according to Definition 57) if and only if

rLij + rUij − (rLik + rUik) = rLlj + rUlj − (rLlk + rUlk), i, j, k, l = 1, . . . , n. (IV.121)

Based on Theorem 46, Wang (2014) formulated also the following proposition.

Proposition 12. (Wang, 2014) Let R = {rij}ni,j=1 , rij =
[
rLij , r

U
ij

]
, be an interval FAPCM-A. R is additively

consistent (according to Definition 57) if and only if

rLij + rUij + rLjk + rUjk + rLki + rUki = 3, i, j, k = 1, . . . , n. (IV.122)

In order to demonstrate the inappropriateness of Definition 57 and thus also of Theorem 46 and Proposition
12, let us analyze in more detail the requirement of additive reciprocity of PCs in APCMs and interval FAPCMs.
As stated in Section 2.3.1, the additive reciprocity of PCs is an inherent property of APCMs. Because of the
additive-reciprocity property, the PCs rii, i = 1, . . . , n, in an APCM are always equal to 0.5 standing for equal
preference. This result is very natural since the PC rii expresses the intensity of preference of object oi over
itself (clearly, any object has to be equally preferred to itself). Further, because of the additive reciprocity of
PCs, the additive-transitivity property (II.28) for APCMs-A is equivalent to statements (ii) and (iii) in Theorem 3.

Conception of additive reciprocity becomes more complicated when extended to intervals. For an interval
FAPCM R = {rij}ni,j=1 , rij =

[
rLij , r

U
ij

]
, the additive reciprocity is defined as rji = 1 − rij = [1 − rUij , 1 − rLij ].

According to this property, when, e.g., the highest possible intensity of preference rUij of object oi over object
oj is rUij = 0.9, this means that the lowest possible intensity of preference rLji = 1− rUij of object oj over object
oi is automatically rLji = 0.1. However, this is not all.

FAPCMs carry more information about the preference intensities. In particular, any value r∗ij ∈ rij =[
rLij , r

U
ij

]
expressing a possible intensity of preference of object oi over object oj is associated with a corre-

sponding intensity of preference r∗ji ∈ rji =
[
rLji, r

U
ji

]
such that r∗ji = 1 − r∗ij ; r

∗
ij and r∗ji express the same

preference information about oi and oj . This property results naturally from the meaning of PCs in an interval
FAPCM. The same holds for trapezoidal FAPCMs in general.

Wang and Li (2012) and Wang (2014), similarly to other researchers whose work was reviewed in this sec-
tion, applied the standard interval arithmetic to the computations with intervals. This means that the additive-
consistency condition (IV.117) is equivalent to equations (IV.118) which are equivalent to (IV.121) and (IV.122).
However, the equations (IV.118), (IV.121), and (IV.122) do not preserve the additive reciprocity of PCs. In
equations (IV.118), each intensity of preference rLpq or rUpq, p, q = 1, . . . , n, always appears in a pair with the
intensity of preference rLqp or rUqp, respectively. And since rLpq = 1 − rUqp ̸= 1 − rLqp (unless rLpq = rUpq), the
additive reciprocity of PCs is violated. Similarly, in equations (IV.121) and (IV.122), each intensity of preference
rLpq, p, q = 1, . . . , n, appears in a pair with the intensity of preference rUpq. This again violates the additive reci-
procity since rUpq = 1−rLqp and rLpq ̸= 1−rLqp. The problem is for better understanding illustrated on the following
example.

Example 47. Let us examine the additive consistency of the interval FAPCM-A R given by (IV.114) by applying
Definition 57. The expressions (IV.118) mean that we construct matrices RL =

{
rLij
}n
i=1

and RU =
{
rUij
}n
i=1

from the interval FAPCM-A (IV.114) as

RL =


0.5 0.6 0.8

0.3 0.5 0.7

0 0.2 0.5

 , RU =


0.5 0.7 1

0.4 0.5 0.8

0.2 0.3 0.5

 ,

and we verify their additive consistency by utilizing the property (II.30). However, we can easily see that neither
RL nor RU is additively reciprocal, which means that both RL and RU are not even APCMs-A according to
Definition 8. Therefore, it is nonsensical to verify their “additive consistency”. △

As already mentioned in the discussion following Definition 57, Wang and Li (2012) claim that it is not
possible to derive the equality rij + rji = 1 due to the fact that a− a does not always yield 0. Obviously, for an
interval FAPCM-A R = {rij}ni,j=1 , rij = [rLij , r

U
ij ], by applying the standard fuzzy arithmetic, we obtain

rij + rji = [rLij , r
U
ij ] + [rLji, r

U
ji] = [rLij , r

U
ij ] + [1− rUij , 1− rLij ] =

= [1 + rLij − rUij , 1 + rUij − rLij ] ̸= 1,
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unless rLij = rUij . Similarly for a = [aL, aU ], we obtain

a− a = [aL, aU ]− [aL, aU ] = [aL − aU , aU − aL] ̸= 0, unless aL = aU .

However, applying the standard fuzzy arithmetic in this case is not appropriate; the constrained fuzzy
arithmetic needs to be applied whenever there are any interactions among operands. Obviously, there is an
interaction between interval PCs rij and rji; from the additive reciprocity of PCs it follows that any intensity
of preference r∗ij ∈ rij of object oi over object oj is associated with the corresponding intensity of preference
r∗ji = 1 − r∗ij of object oj over object oi. Thus, b = rij + rji should be correctly computed according to the
constrained fuzzy arithmetic (III.40) as b = [bL, bU ] :

bL = min
{
rij + rji; rij ∈ [rLij , r

U
ij ], rji ∈ [rLji, r

U
ji], rji = 1− rij

}
=

= min
{
rij + 1− rij ; rij ∈ [rLij , r

U
ij ]
}
= 1,

bU = max
{
rij + rji; rij ∈ [rLij , r

U
ij ], rji ∈ [rLji, r

U
ji], rji = 1− rij

}
=

= max
{
rij + 1− rij ; rij ∈ [rLij , r

U
ij ]
}
= 1,

where the constraint g(rij , rji) = 0 is in the form rji = 1− rij (equivalently written as rij + rji − 1 = 0).
Analogously, c = a− a should be computed as c = [cL, cU ] :

cL = min
{
a1 − a2; a1 ∈ [aL, aU ], a2 ∈ [aL, aU ], a1 = a2

}
=

= min
{
a1 − a1; a1 ∈ [aL, aU ]

}
= 0,

cU = max
{
a1 − a2; a1 ∈ [aL, aU ], a2 ∈ [aL, aU ], a1 = a2

}
=

= max
{
a1 − a1; a1 ∈ [aL, aU ]

}
= 0.

Keeping in mind the importance of the additive-reciprocity property of PCs in FAPCMs-A, additive consis-
tency needs to be defined accordingly so that it does not violate the additive reciprocity. In the following section,
two definitions of additively consistent trapezoidal FAPCMs-A respecting the additive reciprocity of PCs and
invariant under permutation of objects are provided.

4.3.2.1.2 New fuzzy extension of additive consistency

In this section, additive weak consistency for trapezoidal FAPCMs-A is defined by removing the mistake in
Definition 55 of additive consistency for interval FAPCMs-A. Further, another definition of additive consistency
much stronger than the definition of additive weak consistency is proposed. Tools for verifying both the additive
weak consistency and additive consistency are provided and some properties of both additively weakly con-
sistent and additively consistent FAPCMs-A are derived. Both new definitions are invariant under permutation
and preserve the additive reciprocity of PCs.

An additively weakly consistent trapezoidal FAPCM-A is defined as follows.

Definition 59. Let R̃ = {r̃ij}ni,j=1 , r̃ij =
(
rαij , r

β
ij , r

γ
ij , r

δ
ij

)
, be a trapezoidal FAPCM-A. R̃ is said to be additively

weakly consistent if there exists a vector v = (v1, . . . , vn)
T
, |vi − vj | ≤ 1, i, j = 1, . . . , n, such that

rαij ≤ 0.5(vi − vj + 1) ≤ rδij , i, j = 1, . . . , n. (IV.123)

Definition 59 is obtained by correcting the error concerning the normalization of vector v = (v1, . . . , vn)
T

in Definition 55. As already mentioned in the previous section, the normalization condition (IV.110) used in
Definition 55 is not compatible with Tanino’s characterization (II.32). Therefore, the original normalization
condition v = (v1, . . . , vn)

T
, |vi − vj | ≤ 1, i, j = 1, . . . , n, used in Tanino’s characterization was employed in

Definition 59 instead. Definition 59 is confronted with Definition 55 in the following example.

Example 48. Let us examine the additive weak consistency of the interval FAPCM-A R̃ given by (IV.111). It
was shown in Example 45 that R̃ is wrongly judged as additively inconsistent according to Definition 55. By
applying Definition 59, we can find out that there exists a vector v = (v1, v2, v3, v4)

T satisfying the appropriate
normalization condition |vi − vj | ≤ 1, i, j = 1, . . . , 4. It is, for example, the vector v = (1.45, 1.25, 0.85, 0.45)T

with the corresponding additively consistent APCM-A given as (IV.112). The reader can easily verify that this
vector satisfies the inequalities (IV.123). Thus, the interval FAPCM-A R̃ given by (IV.111) is correctly judged as
additively weakly consistent. △

Based on Proposition 2 for FAPCMs-A, the following proposition can be formulated for interval FAPCMs-A.
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Proposition 13. Let R̃ = {r̃ij}ni,j=1 , r̃ij =
(
rαij , r

β
ij , r

γ
ij , r

δ
ij

)
, be a trapezoidal FAPCM-A. R̃ = {r̃ij}ni,j=1 is

additively weakly consistent according to Definition 59 if and only if there exist elements r∗ij ∈
[
rαij , r

δ
ij

]
, i, j =

1, . . . , n, such that R∗ =
{
r∗ij
}n
i,j=1

is an APCM-A additively consistent according to Definition 9.

Proof. First, let R̃ = {r̃ij}ni,j=1 , r̃ij =
(
rαij , r

β
ij , r

γ
ij , r

δ
ij

)
, be a trapezoidal FAPCM-A additively weakly consistent

according to Definition 59. Let us denote r∗ij := 0.5(vi−vj+1). From (IV.123), it follows that r∗ij ∈
[
rαij , r

δ
ij

]
, i, j =

1, . . . , n. Further, we have r∗ii = 0.5(vi−vi+1) = 0.5, i = 1, . . . , n, and r∗ji = 0.5(vj−vi+1) = 1−0.5(vi−vj+1) =

1− r∗ij , i, j = 1, . . . , n. From [rαij , r
δ
ij ] ⊆ [0, 1], i, j = 1, . . . , n, it follows that r∗ij ∈ [0, 1], i, j = 1, . . . , n. Therefore,

R∗ =
{
r∗ij
}n
i,j=1

is an APCM-A. Finally, r∗ik+r∗kj−0.5 = 0.5(vi−vk+1)+ 0.5(vk−vj+1)−0.5 = 0.5(vi−vj+1) =

r∗ij , i, j, k = 1, . . . , n, which means that R∗ =
{
r∗ij
}n
i,j=1

is additively consistent according to (II.28).

In the opposite direction, let R̃ = {r̃ij}ni,j=1 , r̃ij =
(
rαij , r

β
ij , r

γ
ij , r

δ
ij

)
, be a trapezoidal FAPCM-A and let

R∗ =
{
r∗ij
}n
i,j=1

, r∗ij ∈
[
rαij , r

δ
ij

]
, i, j = 1, . . . , n, be an APCM-A additively consistent according to Definition 9.

Then, from Proposition 2, it follows that there exists a vector v = (v1, . . . , vn)
T
, |vi − vj | ≤ 1, i, j = 1, . . . , n,

such that r∗ij = 0.5(vi − vj + 1), i, j = 1, . . . , n. Because, r∗ij ∈
[
rαij , r

δ
ij

]
, i, j = 1, . . . , n, then clearly (IV.123)

holds.

Remark 20. According to Proposition 13 and its proof, a trapezoidal FAPCM-A R̃ = {r̃ij}ni,j=1 , r̃ij =
(
rαij , r

β
ij ,

rγij , r
δ
ij

)
, is additively weakly consistent if and only if there exists an additively consistent APCM-A R∗ ={

r∗ij
}n
i,j=1

such that r∗ij ∈
[
rαij , r

δ
ij

]
. This consistency condition is quite easy to reach. That is why the con-

sistency according to Definition 59 is called weak. Later in this section, also a much stronger definition of
additive consistency for trapezoidal FAPCMs-A will be given.

Definition 59 of additive weak consistency satisfies two desirable properties - invariance under permutation
of objects and additive reciprocity of PCs in interval FAPCMs-A.

Theorem 47. Definition 59 of additive weak consistency is invariant under permutation of objects in trapezoidal
FAPCMs-A.

Proof. There exists a priority vector v = (v1, . . . , vn)
T , |vi − vj | ≤ 1, i, j = 1, . . . , n, such that the inequality

rαij ≤ 0.5(vi − vj + 1) ≤ rδij is required to hold for every single PC r̃ij =
(
rαij , r

β
ij , r

γ
ij , r

δ
ij

)
in an additively

consistent trapezoidal FAPCM-A R̃ = {r̃ij}ni,j=1 . By permuting the FAPCM-A R̃ to R̃π = PR̃PT , the original
PC r̃ij in the i−th row and in the j−th column of R̃ is moved to the π(i)−th row and to the π(j)−th column of
the permuted trapezoidal FAPCM-A R̃π as r̃ππ(i)π(j), but still keeping r̃ij = r̃ππ(i)π(j), i, j = 1, . . . , n. Thus, there
exists a vector vπ = (vπ1 , . . . , v

π
n)

T , obtained by permuting the vector v, i.e. vπ = Pv, with the components
satisfying the inequalities rπαij ≤ 0.5(vπi − vπj + 1) ≤ rπδij as well as the normalization condition |vπi − vπj | ≤ 1 for
every i, j = 1, . . . , n.

Theorem 48. Definition 59 of additive weak consistency does not violate the additive reciprocity of PCs
in a trapezoidal FAPCM-A R̃ = {r̃ij}ni,j=1 , r̃ij = (rαij , r

β
ij , r

γ
ij , r

δ
ij), in the sense that any fixed value rij ∈

[rαij , r
δ
ij ], i, j ∈ {1, . . . , n} , representing the intensity of preference of object oi over object oj is associated

with the corresponding value rji ∈ [rαji, r
δ
ji] representing the intensity of preference of object oj over object oi

such that rji = 1− rij .

Proof. The existence of the priority vector v = (v1, . . . , vn)
T satisfying the inequalities (IV.123) means that there

exists an APCM-A R = {rij}ni,j=1 , rij ∈ [rαij , r
δ
ij ], such that rij = 0.5(vi − vj + 1), i, j = 1, . . . , n. R is additively

reciprocal from the definition, i.e. every PC rij is associated with the PC rji such that rji = 1− rij .

Remark 21. Note that Theorem 48 does not simply state that a FAPCM-A R̃ = {r̃ij}ni,j=1 additively weakly
consistent according to Definition 59 is additively reciprocal, i.e. r̃ji = 1− r̃ij , i, j = 1, . . . , n. The validity of this
property automatically follows from Definition 52 of a FAPCM; every FAPCM is additively reciprocal, and thus,
also a FAPCM-A that is additively weakly consistent according to Definition 59 is additively reciprocal.

As explained on p. 94, the extension of the additive-reciprocity property from APCMs to FAPCMs does
not concern only the “simple” additive reciprocity of the related fuzzy PCs r̃ij and r̃ji in the sense that r̃ji =
1 − r̃ij , i, j = 1, . . . , n. The conception of the additive reciprocity becomes more complex for FAPCMs. In
particular, every possible intensity of preference r∗ij ∈ r̃ij of object oi over object oj is associated inseparably
with the corresponding possible intensity of preference r∗ji ∈ r̃ji such that r∗ji = 1 − r∗ij since both r∗ij and
r∗ji have to express the same preference information about the objects oi and oj . Theorem 48 states that
Definition 59 is in accordance with this conception of additive reciprocity, i.e. that only additively reciprocal PCs
are involved in Definition 59 of additive weak consistency.
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The following theorems provide useful tools for verifying additive weak consistency of trapezoidal FAPCMs-
A.

Theorem 49. A trapezoidal FAPCM-A R̃ = {r̃ij}ni,j=1 , r̃ij =
(
rαij , r

β
ij , r

γ
ij , r

δ
ij

)
, is additively weakly consistent

according to Definition 59 if and only if

max
k=1,...,n

{
rαik + rαkj − 0.5

}
≤ min

k=1,...,n

{
rδik + rδkj − 0.5

}
, i, j = 1, . . . , n. (IV.124)

Proof. From the inequalities (IV.123), it follows that rαik ≤ 0.5(vi−vk+1) ≤ rδik and rαkj ≤ 0.5(vk−vj +1) ≤ rδkj .
Thus, for every k ∈ {1, . . . , n} :

rαik + rαkj ≤ 0.5(vi − vk + 1) + 0.5(vk − vj + 1) ≤ rδik + rδkj

rαik + rαkj − 0.5 ≤ 0.5(vi − vj + 1) ≤ rδik + rδkj − 0.5.

From this we obtain

max
k=1,...,n

{
rαik + rαkj − 0.5

}
≤ 0.5(vi − vj + 1) ≤ min

k=1,...,n

{
rδik + rδkj − 0.5

}
,

and thus (IV.124) holds for every i, j = 1, . . . , n.
In the opposite direction, let (IV.124) hold. Then, for every i, j, k ∈ {1, . . . , n} :

rαij ≤ max
k=1,...,n

{
rαik + rαkj − 0.5

}
≤ min

k=1,...,n

{
rδik + rδkj − 0.5

}
≤ rδij .

Thus, for every i, j, k ∈ {1, . . . , n} :

∃r∗ij ∈
[

max
k=1,...,n

{
rαik + rαkj − 0.5

}
, min
k=1,...,n

{
rδik + rδkj − 0.5

}]
⊆ [rαij , r

δ
ij ]

∧∃r∗ik ∈ [rαik, r
δ
ik] ∧ ∃r∗kj ∈ [rαkj , r

δ
kj ] : r

∗
ij = r∗ik + r∗kj − 0.5.

This means that R∗ =
{
r∗ij
}n
i,j=1

is an APCM-A. Thus, according to Proposition 2, there exists a vector
v = (v1, . . . , vn)

T , |vi−vj | ≤ 1, i, j = 1, . . . , n, such that r∗ij = 0.5(vi−vj+1). Since r∗ij ∈ [rαij , r
δ
ij ], i, j = 1, . . . , n,

we obtain the inequality (IV.123).

The following theorem shows that it is sufficient to verify the inequality (IV.124) only for i, j = 1, . . . , n, i < j,
thus saving half of the computations.

Theorem 50. A trapezoidal FAPCM-A R̃ = {r̃ij}ni,j=1 , r̃ij =
(
rαij , r

β
ij , r

γ
ij , r

δ
ij

)
, is additively weakly consistent

according to Definition 59 if and only if

max
k=1,...,n

{
rαik + rαkj − 0.5

}
≤ min

k=1,...,n

{
rδik + rδkj − 0.5

}
, i, j = 1, . . . , n, i < j. (IV.125)

Proof. It is sufficient to show that the validity of inequalities (IV.125) for i, j = 1, . . . , n, i < j, implies automati-
cally their validity for all i, j = 1, . . . , n, i.e. the validity of (IV.124). The validity of inequalities (IV.124) for i = j
is trivial from the definition of trapezoidal FAPCMs-A since

max
k=1,...,n

{rαik + rαki − 0.5} = max
k=1,...,n

{
rαik + 1− rδik − 0.5

}
≤ 0.5 ≤

min
k=1,...,n

{
rδik + 1− rαik − 0.5

}
= min

k=1,...,n

{
rδik + rδki − 0.5

}
.

Further, for i > j, by using (IV.125) and the additive-reciprocity properties, we obtain

max
k=1,...,n

{
rαik + rαkj − 0.5

}
= max

k=1,...,n

{
1− rδki + 1− rδjk − 0.5

}
=

1− min
k=1,...,n

{
rδjk + rδki − 0.5

}
≤ 1− max

k=1,...,n

{
rαjk + rαki − 0.5

}
=

min
k=1,...,n

{
1− 1 + rδkj − 1 + rδik + 0.5

}
= min

k=1,...,n

{
rδik + rδkj − 0.5

}
.
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Remark 22. An alternative definition of additive weak consistency to Definition 59 might be formulated as
follows.

Let R̃ = {r̃ij}ni,j=1 , r̃ij =
(
rαij , r

β
ij , r

γ
ij , r

δ
ij

)
, be a trapezoidal FAPCM-A. R̃ is said to be additively weakly

consistent if there exists a vector v = (v1, . . . , vn)
T , |vi − vj | ≤ 1, i, j = 1, . . . , n, such that

rβij ≤ 0.5(vi − vj + 1) ≤ rγij , i, j = 1, . . . , n. (IV.126)

Notice that this definition is stronger than Definition 59. In fact, every trapezoidal FAPCM-A additively
weakly consistent according to this definition is also additively weakly consistent according to Definition 59
since (IV.126) automatically implies (IV.123).

All theorems regarding FAPCMs-A additively weakly consistent according to Definition 59 formulated above
can be easily reformulated for FAPCMs-A additively weakly consistent according to this definition; it is sufficient
to consider rβij and rγij instead of rαij and rδij , respectively, where appropriate.

In the following definition, a stronger version of additive consistency for trapezoidal FAPCMs-A is formulated.

Definition 60. Let R̃ = {r̃ij}ni,j=1 , r̃ij =
(
rαij , r

β
ij , r

γ
ij , r

δ
ij

)
, be a trapezoidal FAPCM-A. R̃ is said to be additively

consistent if for each triplet (i, j, k) ⊆ {1, . . . , n} the following holds:

∀rij ∈
[
rαij , r

δ
ij

]
∃rik ∈

[
rαik, r

δ
ik

]
∧ ∃rkj ∈

[
rαkj , r

δ
kj

]
: rij = rik + rkj − 0.5, (IV.127)

∀rij ∈
[
rβij , r

γ
ij

]
∃rik ∈

[
rβik, r

γ
ik

]
∧ ∃rkj ∈

[
rβkj , r

γ
kj

]
: rij = rik + rkj − 0.5. (IV.128)

Remark 23. Definition 60 is a natural fuzzy extension of Definition 9 of additive consistency proposed by
Tanino (1984). According to this definition, for any possible value rij ∈ r̃ij , i, j ∈ {1, . . . , n} , there exist possible
values rik ∈ r̃ik and rkj ∈ r̃kj , k ∈ {1, . . . , n} , such that they satisfy the additive-transitivity property (II.28).
Analogously, for any possible value rij ∈ Core r̃ij , i, j ∈ {1, . . . , n} , there exist possible values rik ∈ Core r̃ik
and rkj ∈ Core r̃kj , k ∈ {1, . . . , n} , such that they satisfy (II.28). Clearly, in comparison to the additive weak
consistency given by Definition 59, the additive consistency given by Definition 60 is very strong.

Unlike Definitions 56 and 58 of additively consistent interval FAPCMs-A proposed by Liu et al. (2012a)
and Xu et al. (2014a), respectively, new Definition 60 is invariant under permutation of objects compared in
FAPCMs-A.

Theorem 51. Definition 60 of additive consistency is invariant under permutation of objects in trapezoidal
FAPCMs-A.

Proof. For a trapezoidal FAPCM-A R̃ = {r̃ij}ni,j=1 , r̃ij = (rαij , r
β
ij , r

γ
ij , r

δ
ij), additively consistent according to

Definition 60, the conditions (IV.127) and (IV.128) are satisfied for every triplet (i, j, k) ⊆ {1, . . . , n} . By permut-
ing the FAPCM-A R̃ to R̃π = PR̃PT , the original PC r̃ij in the i−th row and in the j−th column of R̃ moves
to the π(i)−th row and to the π(j)−th column of R̃π preserving r̃ππ(i)π(j) = r̃ij . Thus, by permuting R̃, also the
validity of the conditions (IV.127) and (IV.128) is preserved, i.e.

∀rπij ∈
[
rπαji , rπδij

]
∃rπik ∈

[
rπαik , rπδik

]
∧ ∃rπkj ∈

[
rπαkj , r

πδ
kj

]
: rπij = rπik + rπkj − 0.5,

∀rπij ∈
[
rπβji , r

πγ
ij

]
∃rπik ∈

[
rπβik , rπγik

]
∧ ∃rπkj ∈

[
rπβkj , r

πγ
kj

]
: rπij = rπik + rπkj − 0.5,

for every triplet (i, j, k) ∈ {1, . . . , n} . Thus, R̃π is additively consistent according to Definition 60.

Further, unlike Definition 57 of additively consistent interval FAPCMs-A proposed by Wang and Li (2012),
and the equivalent conditions derived by Wang (2014), Definition 60 does not violate the additive reciprocity of
PCs.

Theorem 52. Definition 60 of additive consistency preserves the additive reciprocity of PCs in trapezoidal
FAPCMs-A in the sense that any fixed value rij ∈ [rαij , r

δ
ij ], i, j ∈ {1, . . . , n} , representing the intensity of

preference of object oi over object oj is associated with the corresponding value rji ∈ [rαji, r
δ
ji] representing the

intensity of preference of object oj over object oi such that rji = 1− rij .

Proof. It is sufficient to show that expressions (IV.127) and (IV.128) do not violate the additive-reciprocity prop-
erty in the sense that when two particular intensities of preference rij ∈ r̃ij and rji ∈ r̃ji on the pair of objects
oi and oj are considered at the same time in the expressions (IV.127) and (IV.128), then they are such that
rji = 1− rij .
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For a triplet (i, j, k) ⊆ {1, . . . , n} , i ̸= j ̸= k, no reciprocals appear in the expression rij = rik + rkj − 0.5 for
any rij ∈ [rαij , r

δ
ij ]. For i = j = k, the expression (IV.127) reduces to: ∀rii = 0.5 ∃r∗ii = 0.5 ∧ ∃r∗∗ii = 0.5 : 0.5 =

0.5 + 0.5 − 0.5, which again does not violate the additive reciprocity. Further, for i ̸= j = k, the expression
(IV.127) is as: ∀rij ∈ [rαij , r

δ
ij ] ∃r∗ij ∈ [rαij , r

δ
ij ] ∧ ∃rjj = 0.5 : rij = r∗ij + 0.5− 0.5. This means that r∗ij = rij and,

therefore, the additive reciprocity is not violated. For i = k ̸= j the proof is analogous. Finally, for i = j ̸= k,
the expression (IV.127) is as:

∀rij = 0.5 ∃rik ∈ [rαik, r
δ
ik] ∧ ∃r∗ki ∈ [rαki, r

δ
ki] : 0.5 = rik + r∗ki − 0.5.

This means that rik = 1− r∗ki and, thus, the additive reciprocity is again preserved.
The proof for the expression (IV.128) is analogous.

Remark 24. Similarly to Theorem 48, also Theorem 52 does not simply state that a FAPCM-A R̃ = {r̃ij}ni,j=1

additively consistent according to Definition 60 is additively reciprocal since this property automatically follows
from Definition 52 of a FAPCM. Theorem 52 states that Definition 60 is in accordance with the conception
of additive reciprocity discussed on p. 94, i.e. only additively reciprocal PCs are involved in Definition 60 of
additive consistency. For more details, see Remark 21.

By handling properly the additive-reciprocity property of PCs, Theorem 3 can be easily extended to trape-
zoidal FAPCMs-A as follows.

Theorem 53. For a trapezoidal FAPCM-A R̃ = {r̃ij}ni,j=1 , r̃ij =
(
rαij , r

β
ij , r

γ
ij , r

δ
ij

)
, the following statements are

equivalent:

(i) R̃ is additively consistent according to Definition 60.

(ii) For every i, j, k = 1, . . . , n :

∀rij ∈
[
rαij , r

δ
ij

]
∃rjk∈

[
rαjk, r

δ
jk

]
∧ ∃rki∈

[
rαki, r

δ
ki

]
: rij + rjk + rki=rik + rkj + rji,

rij=1−rji, rjk=1−rkj , rki=1−rik. (IV.129)

∀rij ∈
[
rβij , r

γ
ij

]
∃rjk∈

[
rβjk, r

γ
jk

]
∧ ∃rki∈

[
rβki, r

γ
ki

]
: rij+rjk+rki=rik+rkj+rji,

rij = 1− rji, rjk=1−rkj , rki=1−rik. (IV.130)

(iii) For every i, j, k = 1, . . . , n :

∀rij ∈
[
rαij , r

δ
ij

]
∃rjk ∈

[
rαjk, r

δ
jk

]
∧ ∃rki ∈

[
rαki, r

δ
ki

]
: rij + rjk + rki =

3

2
. (IV.131)

∀rij ∈
[
rβij , r

γ
ij

]
∃rjk ∈

[
rβjk, r

γ
jk

]
∧ ∃rki ∈

[
rβki, r

γ
ki

]
: rij + rjk + rki =

3

2
. (IV.132)

Proof. From the additive-reciprocity property r̃ij = 1 − r̃ji, i, j = 1, . . . , n, it follows that ∀rij ∈
[
rαij , r

δ
ij

]
∃rji ∈[

rαji, r
δ
ji

]
: rji = 1− rij , and ∀rij ∈

[
rβij , r

γ
ij

]
∃rji ∈

[
rβji, r

γ
ji

]
: rji = 1− rij .

(a) First, let us show that the statements (i) and (iii) are equivalent. Because of the reciprocity property,
(IV.127) can be equivalently written as

∀rij ∈
[
rαij , r

δ
ij

]
∃rjk ∈

[
rαjk, r

δ
jk

]
∧ ∃rki ∈

[
rαki, r

δ
ki

]
: rij = (1− rki) + (1− rjk) + 0.5,

which is equivalent to (IV.131). Analogously, the equivalence of (IV.128) and (IV.132) is proved.

(b) Now, let us show that the statements (ii) and (iii) are equivalent. Because of the reciprocity property,
(IV.129) can be equivalently written as

∀rij ∈
[
rαij , r

δ
ij

]
∃rjk ∈

[
rαjk, r

δ
jk

]
∧ ∃rki ∈

[
rαki, r

δ
ki

]
:

rij + rjk + rki = (1− rki) + (1− rjk) + (1− rij),

which is equivalent to (IV.131). Analogously, the equivalence of (IV.130) and (IV.132) is proved.

The following theorems give us useful tools for verifying additive consistency of trapezoidal FAPCMs-A.
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Theorem 54. A trapezoidal FAPCM-A R̃ = {r̃ij}ni,j=1 , r̃ij =
(
rαij , r

β
ij , r

γ
ij , r

δ
ij

)
, is additively consistent according

to Definition 60 if and only if the inequalities

rαij ≥ rαik + rαkj − 0.5, rδij ≤ rδik + rδkj − 0.5, (IV.133)

rβij ≥ rβik + rβkj − 0.5, rγij ≤ rγik + rγkj − 0.5, (IV.134)

hold for every i, j, k = 1, . . . , n, i < j, k ̸= i, j.

Proof. It is sufficient to demonstrate the equivalence of the expressions (IV.133) and (IV.127). The demonstra-
tion of the equivalence of (IV.134) and (IV.128) is analogous.

First, let us demonstrate that when the inequalities (IV.133) hold for every i, j, k = 1, . . . , n, i < j, k ̸= i, j,
then they hold for every i, j, k = 1, . . . , n. The inequalities (IV.133) are always satisfied for i, j, k = 1, . . . , n such
that i = j ̸= k, or i ̸= j = k, or j ̸= k = i, or i = j = k:

rαik + rαki − 0.5 = 0.5− (rδik − rαik) ≤ 0.5 = rαii, rδik + rδki − 0.5 = 0.5 + (rδik − rαik) ≥ 0.5 = rδii,

rαij + rαjj − 0.5 = rαij , rδij + rδjj − 0.5 = rδij ,

rαii + rαij − 0.5 = rαij , rδii + rδij − 0.5 = rδij ,

rαii + rαii − 0.5 = 0.5 = rαii, rδii + rδii − 0.5 = 0.5 = rδii.

Further, when the inequalities (IV.133) are satisfied for i, j, k = 1, . . . , n, i < j, k ̸= i, j, then they are
satisfied also for j, i, k = 1, . . . , n, j > i, k ̸= i, j :

rαjk + rαki − 0.5 = 1− rδik + 1− rδkj − 0.5 = 1− (rδik + rδkj − 0.5) ≤ 1− rδij = rαji,

rδjk + rδki − 0.5 = 1− rαik + 1− rαkj − 0.5 = 1− (rαik + rαkj − 0.5) ≥ 1− rαij = rδji.

To finalize the proof, it is sufficient to show that the inequalities (IV.133) are equivalent to the condition
(IV.127) for every i, j, k = 1, . . . , n. First, let R̃ be a trapezoidal FAPCM-A additively consistent according to
Definition 60. Then for rij := rαij ∃rik ∈

[
rαik, r

δ
ik

]
∧∃rkj ∈

[
rαkj , r

δ
kj

]
: rαij = rik + rkj − 0.5. Since rik ≥ rαik, rkj ≥

rαkj , then clearly rαij ≥ rαik + rαji − 0.5. Analogously, for rij := rδij ∃rik ∈
[
rαik, r

δ
ik

]
∧ ∃rkj ∈

[
rαkj , r

δ
kj

]
: rδij =

rik + rkj − 0.5. Since rik ≤ rδik, rkj ≤ rδkj , then clearly rδij ≤ rδik + rδkj − 0.5.
Second, let (IV.133) be valid for a trapezoidal FAPCM-A R̃. From inequalities (IV.133) we get ∀rij ∈[

rαij , r
δ
ij

]
: rαik + rαkj − 0.5 ≤ rij ≤ rδik + rδkj − 0.5 and, therefore, (IV.127) is satisfied.

Theorem 55. A trapezoidal FAPCM-A R̃ = {r̃ij}ni,j=1 , r̃ij =
(
rαij , r

β
ij , r

γ
ij , r

δ
ij

)
, is additively consistent according

to Definition 60 if and only if

rαij ≥ max
k=1,...,n

k ̸=i,j

{
rαik + rαkj − 0.5

}
, rδij ≤ min

k=1,...,n

k≠i,j

{
rδik + rδkj − 0.5

}
, (IV.135)

rβij ≥ max
k=1,...,n

k ̸=i,j

{
rβik + rβkj − 0.5

}
, rγij ≤ min

k=1,...,n

k≠i,j

{
rγik + rγkj − 0.5

}
, (IV.136)

hold for every i, j = 1, . . . , n, i < j.

Proof. The inequatilies (IV.135) and (IV.136) follow immediately from Theorem 54.

In the following example, Definition 60 of additive consistency is confronted with Definitions 56, 57, and
58. In particular, it is demonstrated how the drawbacks regarding the dependence of Definitions 56 and 58
on permutation of objects and violation of the additive-reciprocity property in Definition 57 are removed by
Definition 60.

Example 49. Let us examine the interval FAPCM-A given by (IV.114). In Example 46, it was demonstrated
that Definition 56 is not invariant under permutation of objects since the interval FAPCM-A (IV.114) is judged
as additively consistent while its permutation (IV.116) is judged as additively inconsistent.

Similarly, the interval FAPCM-A (IV.114) is judged additively consistent also according to Definition 58 since
the expression (IV.120) is valid for i = 1, j = 2, k = 3 : [0.6, 0.7] + [0.7, 0.8] = [0.8, 1] + [0.5, 0.5]. The permuted
interval FAPCM-A (IV.116) is, however, judged as additively inconsistent since the expression (IV.120) is not
valid: [0, 0.2] + [0.6, 0.7] ̸= [0.2, 0.3] + [0.5, 0.5].
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Table IV.8: Inequality conditions (IV.133) for the interval FAPCM-A (IV.114).

i < j : rLij ≥ rLik + rLkj − 0.5 rUij ≤ rUik + rUkj − 0.5

1, 2 : 0.6 ≥ 0.8 + 0.2− 0.5 0.7 ≤ 1 + 0.3− 0.5

1, 3 : 0.8 ≥ 0.6 + 0.7− 0.5 1 ≤ 0.7 + 0.8− 0.5

2, 3 : 0.7 ≥ 0.3 + 0.8− 0.5 0.8 ≤ 0.4 + 1− 0.5

Table IV.9: Inequality conditions (IV.133) for the permuted interval FAPCM-A (IV.116).

i < j : rLij ≥ rLik + rLkj − 0.5 rUij ≤ rUik + rUkj − 0.5

1, 2 : 0 ≥ 0.2 + 0.3− 0.5 0.2 ≤ 0.3 + 0.4− 0.5

1, 3 : 0.2 ≥ 0 + 0.6− 0.5 0.3 ≤ 0.2 + 0.7− 0.5

2, 3 : 0.6 ≥ 0.8 + 0.2− 0.5 0.7 ≤ 1 + 0.3− 0.5

Now let us apply Definition 60 to the interval FAPCM-A (IV.114). By using Theorem 54, the interval FAPCM-
A (IV.114) is judged additively consistent since it satisfies the inequalities (IV.133); see Tab. IV.8. Also the
permuted interval FAPCM-A (IV.116) satisfies the inequalities (IV.133); see Tab. IV.9. Therefore, it is again
judged as additively consistent. Moreover, from Theorem 51 it follows that any permutation of the interval
FAPCM-A (IV.114) is additively consistent.

In Example 47, it was demonstrated that Definition 57 violates the additive reciprocity of PCs. According
to Theorem 52, the additive-reciprocity property is preserved in new Definition 60. This basically means that
by taking any value from any interval PC in the interval FAPCM-A (IV.114), there exist values in the remaining
interval PCs such that they form an additively consistent APCM-A. Let us examine the triplet i = 1, j = 2, k = 3
of indices and let us consider the value r12 = 0.65 ∈ [0.6, 0.7]. Then, according to (IV.127), there exist values
r13 ∈ [0.8, 1] and r32 ∈ [0.2, 0.3] such that 0.65 = r13 + r32 − 0.5. It is, for example, r13 = 0.9, r32 = 0.25. The
additive reciprocity is clearly not violated. More interestingly, let us consider the triplet i = 1, j = 1, k = 2.
Then, according to (IV.127), there exist values r12 ∈ [0.6, 0.7] and r21 ∈ [0.3, 0.4] such that 0.5 = r12 + r21 − 0.5.
This equality is satisfied by any value r12 ∈ [0.6, 0.7] and the corresponding value r21 ∈ [0.3, 0.4] such that
r21 = 1− r12, which again preserves the additive reciprocity. △

In the rest of this section, some interesting properties of additively weakly consistent and additively consis-
tent trapezoidal FAPCMs-A are examined. The following theorem shows the relation between Definition 60 of
additive consistency and Definition 59 of additive weak consistency.

Theorem 56. Let R̃ = {r̃ij}ni,j=1 , r̃ij =
(
rαij , r

β
ij , r

γ
ij , r

δ
ij

)
, be a trapezoidal FAPCM-A. If R̃ = {r̃ij}ni,j=1 is addi-

tively consistent according to Definition 60, then it is also additively weakly consistent according to Definition
59.

Proof. The statement follows immediately from Theorem 55. In particular, the inequality (IV.125) is obtained
immediately from the inequalities (IV.135).

Remark 25. According to Theorem 56, when a trapezoidal FAPCM-A is additively consistent according to
Definition 60, then it is also automatically additively weakly consistent according to Definition 59. However,
this does not hold true the other way around. Clearly, the definition of additive weak consistency is much
weaker then the definition of additive consistency; it only requires existence of one crisp additively consistent
APCM-A obtainable by combining particular elements from the closures of the supports of the trapezoidal
fuzzy numbers in the trapezoidal FAPCM-A. Thus, the set of all trapezoidal FAPCMs-A additively consistent
according to Definition 60 is a proper subset of the set of all trapezoidal FAPCMs-A additively weakly consistent
according to Definition 59.

Example 50. Let us examine additive consistency and additive weak consistency of the trapezoidal FAPCM-A

R̃=


0.5 (0.5, 0.6, 0.65, 0.7)(0.7, 0.8, 0.9, 0.95)(0.85, 0.9, 0.95, 1)

(0.3, 0.35, 0.4, 0.5) 0.5 (0.6, 0.65, 0.7, 0.7) (0.6, 0.7, 0.8, 0.9)

(0.05, 0.1, 0.2, 0.3)(0.3, 0.3, 0.35, 0.4) 0.5 (0.5, 0.55.0.6, 0.7)

(0, 0.05, 0.1, 0.15) (0.1, 0.2, 0.3, 0.4) (0.3, 0.4, 0.45, 0.5) 0.5

. (IV.137)

101



Table IV.10: Condition (IV.125) for the trapezoidal FAPCM-A (IV.137).

i < j : max
k=1,...,4

{
rαik + rαkj − 0.5

}
≤ min

k=1,...,4

{
rδik + rδkj − 0.5

}
1, 2 : max {0.5, 0.5, 0.45, 0.45} ≤ min {0.7, 0.7, 0.8, 0.9}
1, 3 : max {0.7, 0.6, 0.7, 0.65} ≤ min {0.9, 0.95, 0.9, 1}
1, 4 : max {0.85, 0.6, 0.7, 0.85} ≤ min {1, 1.1, 1.1, 1}
2, 3 : max {0.5, 0.6, 0.6, 0.4} ≤ min {0.9, 0.75, 0.75, 0.9}
2, 4 : max {0.65, 0.6, 0.6, 0.6} ≤ min {1, 0.9, 0.95, 0.9}
3, 4 : max {0.45, 0.35, 0.5, 0.5} ≤ min {0.8, 0.8, 0.7, 0.7}

Let us, for example, use Theorem 54 to verify the additive consistency of R̃. We find out that R̃ is not additively
consistent because it violates the inequalities (IV.133) and (IV.134); for example, rδ13 = 0.95 ̸≤ rδ12 + rδ23 − 0.5 =
0.9.

Even though R̃ is not additively consistent, it can still be at least additively weakly consistent. Let us verify
that by using Theorem 50. According to Tab. IV.10, the condition (IV.125) is satisfied, and thus R̃ is additively
weakly consistent.

A vector satisfying the inequalities (IV.123) in Definition 59 is, for example, v = (1.45, 1.25, 0.85, 0.45)T . The
corresponding APCM-A R∗ is in the form

R∗ =


0.5 0.6 0.8 1

0.4 0.5 0.7 0.9

0.2 0.3 0.5 0.7

0 0.1 0.3 0.5

 . (IV.138)

△

Theorem 57. Let R̃ be a trapezoidal FAPCM-A additively weakly consistent according to Definition 59. The
trapezoidal FAPCM-A R̃∗ constructed from R̃ by eliminating the l-th row and the l-th column, l ∈ {1, . . . , n} , is
again additively weakly consistent.

Proof. For R̃, the inequalities (IV.123) are valid for every i, j = 1, . . . , n. After eliminating the l-th row and the
l-th column of R̃, (IV.123) is still valid for every remaining i, j ∈ {1, . . . , n} \ {l} . Therefore, the new trapezoidal
FAPCM-A R̃∗ is still additively weakly consistent.

The same holds also for additively consistent trapezoidal FAPCMs-A.

Theorem 58. Let R̃ be a trapezoidal FAPCM-A additively weakly consistent according to Definition 60. The
trapezoidal FAPCM-A R̃∗ constructed from R̃ by eliminating the l-th row and the l-th column, l ∈ {1, . . . , n} , is
again additively consistent.

Proof. For R̃, the inequalities (IV.127) and (IV.128) are valid for every i, j, k = 1, . . . , n. After eliminating the
l-th row and the l-th column of R̃, (IV.127) and (IV.128) is still valid for every remaining i, j, k ∈ {1, . . . , n} \ {l} .
Therefore, the new trapezoidal FAPCM-A R̃∗ is additively consistent.

Remark 26. Theorems 57 and 58 are useful in situations when the set of objects compared pairwisely is being
reduced. According to the theorems, elimination of one or more objects has no impact on the additive or
additive weak consistency of fuzzy PCs of the remaining objects.

The following theorems provide some results regarding aggregation of additively and additively weakly con-
sistent trapezoidal FAPCMs-A into one trapezoidal FAPCM-A, which are particularly useful in group decision
making.

Theorem 59. Let R̃1 =
{
r̃1ij
}n
i,j=1

, r̃1ij =
(
r1αij , r1βij , r

1γ
ij , r

1δ
ij

)
, and R̃2 =

{
r̃2ij
}n
i,j=1

, r̃2ij =
(
r2αij , r2βij , r

2γ
ij , r

2δ
ij

)
,

be trapezoidal FAPCMs-A additively weakly consistent according to Definition 59. Then R̃ = {r̃ij}ni,j=1 , r̃ij =(
rαij , r

β
ij , r

γ
ij , r

δ
ij

)
, such that

rαij = ϵr1αij + (1−ϵ)r2αij , rβij = ϵr1βij + (1−ϵ)r2βij ,

rγij = ϵr1γij + (1−ϵ)r2γij , rδij = ϵr1δij + (1−ϵ)r2δij ,

is an additively weakly consistent trapezoidal FAPCM-A for any ϵ ∈ [0, 1].
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Proof. First, let us show that R̃ is a trapezoidal FAPCM-A. For i = 1, . . . , n we get

rαii = ϵr1αii + (1−ϵ)r2αii = 0.5ϵ+ 0.5(1−ϵ) = 0.5,

rδii = ϵr1δii + (1−ϵ)r2δii = 0.5ϵ+ 0.5(1−ϵ) = 0.5.

Similarly, rβii = 0.5, rγii = 0.5, and thus, r̃ii = 0.5, i = 1, . . . , n. Further, for i ̸= j we have

rαij = ϵr1αij + (1−ϵ)r2αij = ϵ(1− r1δji ) + (1−ϵ)(1− r2δji ) = 1−
[
ϵr1δji + (1−ϵ)r2δji

]
= 1− rδji,

rδij = ϵr1δij + (1−ϵ)r2δij = ϵ(1− r1αji ) + (1−ϵ)(1− r2αji ) = 1−
[
ϵr1αji + (1−ϵ)r2αji

]
= 1− rαji,

and analogously we obtain rβij = 1− rγji, r
γ
ij = 1− rβji. Therefore, r̃ij = 1− r̃ji, i, j = 1, . . . , n. Finally,

rαij = ϵr1αij + (1−ϵ)r2αij ≥ ϵ · 0 + (1−ϵ) · 0 = 0

rδij = ϵr1δij + (1−ϵ)r2δij = ϵ+ (1−ϵ) = 1,

i.e. [rαij , r
δ
ij ] ⊆ [0, 1].

Second, let us show that R̃ is additively weakly consistent. It is sufficient to prove inequalities (IV.125).
Since (IV.125) is valid for FAPCMs-A R̃1 and R̃2, we obtain

max
k=1,...,n

{
rαik + rαkj − 0.5

}
= max

k=1,...,n

{
ϵr1αik + (1−ϵ)r2αik + ϵr1αkj + (1−ϵ)r2αkj − 0.5

}
≤

max
k=1,...,n

{
ϵ[r1αik + r1αkj − 0.5]

}
+ max

k=1,...,n

{
(1−ϵ)[r2αik + r2αkj − 0.5]

}
≤

min
k=1,...,n

{
ϵ[r1δik + r1δkj − 0.5]

}
+ min

k=1,...,n

{
(1−ϵ)[r2δik + r2δkj − 0.5]

}
≤

min
k=1,...,n

{
ϵr1δik + (1−ϵ)r2δik + ϵr1δkj + (1−ϵ)r2δkj − 0.5

}
= min

k=1,...,n

{
rδik + rδkj − 0.5

}
which proves the theorem.

Theorem 59 can be further extended to the aggregation of p ≥ 2 additively weakly consistent trapezoidal
FAPCMs-A as follows.

Theorem 60. Let R̃τ =
{
r̃τij
}n
i,j=1

, r̃τij =
(
rταij , rτβij , rτγij , r

τδ
ij

)
, τ = 1, . . . , p, be trapezoidal FAPCMs-A additively

weakly consistent according to Definition 59. Then R̃ = {r̃ij}ni,j=1 such that

r̃ij =
(
rαij , r

β
ij , r

γ
ij , r

δ
ij

)
=

(
p∑

τ=1

ϵτr
τα
ij ,

p∑
τ=1

ϵτr
τβ
ij ,

p∑
τ=1

ϵτr
τγ
ij ,

p∑
τ=1

ϵτr
τδ
ij

)
, (IV.139)

is an additively weakly consistent trapezoidal FAPCM-A for any ϵτ ∈ [0, 1] , τ = 1, . . . , p, with
∑p

τ=1 ϵτ = 1.

Proof. The proof is analogous to the proof of Theorem 59.

Similar theorems are formulated also for additively consistent trapezoidal FAPCMs-A.

Theorem 61. Let R̃1 =
{
r̃1ij
}n
i,j=1

, r̃1ij =
(
r1αij , r1βij , r

1γ
ij , r

1δ
ij

)
, and R̃2 =

{
r̃2ij
}n
i,j=1

, r̃2ij =
(
r2αij , r2βij , r

2γ
ij , r

2δ
ij

)
, be

trapezoidal FAPCMs-A additively consistent according to Definition 60. Then R̃ = {r̃ij}ni,j=1 , r̃ij =
(
rαij , r

β
ij , r

γ
ij , r

δ
ij

)
,

such that
rαij = ϵr1αij + (1−ϵ)r2αij , rβij = ϵr1βij + (1−ϵ)r2βij ,

rγij = ϵr1γij + (1−ϵ)r2γij , rδij = ϵr1δij + (1−ϵ)r2δij ,

is an additively consistent trapezoidal FAPCM-A for any ϵ ∈ [0, 1].

Proof. From Theorem 59, we already know that R̃ is a trapezoidal FAPCM-A. Therefore, we only need to show
that R̃ is additively consistent according to Definition 60.

It is sufficient to prove the inequalities (IV.133) and (IV.134). Since (IV.133) are valid for interval FAPCMs-A
R̃1 and R̃2, we obtain

rαik + rαkj − 0.5 =
[
ϵr1αik + (1−ϵ)r2αik

]
+
[
ϵr1αkj + (1−ϵ)r2αkj

]
− 0.5

= ϵ(r1αik + r1αkj − 0.5) + (1−ϵ)(r2αik + r2αkj − 0.5)

≤ ϵr1αij + (1−ϵ)r2αij = rαij ,

rδik + rδkj − 0.5 =
[
ϵr1δik + (1−ϵ)r2δik

]
+
[
ϵr1δkj + (1−ϵ)r2δkj

]
− 0.5

= ϵ(r1δik + r1δkj − 0.5) + (1−ϵ)(r2δik + r2δkj − 0.5)

≥ ϵr1δij + (1−ϵ)r2δij = rδij .

Analogously, the validity of inequalities (IV.134) is proved.
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Table IV.11: Inequality conditions (IV.135) for the interval FAPCM-A (IV.140).

i < j : rαij ≥ max
k=2,3

{
rαik+rαkj−0.5

}
rδij ≤ min

k=2,3

{
rδik+rδkj−0.5

}
1, 2 : 0.5 ≥ max {0.5, 0.4} 0.6 ≤ min {0.7, 0.7}
1, 3 : 0.6 ≥ max {0.5, 0.5} 0.7 ≤ min {0.7, 0.75}
1, 4 : 0.7 ≥ max {0.65, 0.7} 0.85 ≤ min {0.9, 0.9}
2, 3 : 0.5 ≥ max {0.5, 0.45} 0.6 ≤ min {0.7, 0.7}
2, 4 : 0.65 ≥ max {0.6, 0.6} 0.8 ≤ min {0.85, 0.8}
3, 4 : 0.6 ≥ max {0.5, 0.55} 0.7 ≤ min {0.75, 0.8}

Theorem 61 can be further extended to the aggregation of p ≥ 2 additively consistent interval FAPCMs-A
as follows.

Theorem 62. Let R̃τ =
{
r̃τij
}n
i,j=1

, r̃τij =
(
rταij , rτβij , rτγij , r

τδ
ij

)
, τ = 1, . . . , p, be trapezoidal FAPCMs-A additively

consistent according to Definition 60. Then R̃ = {r̃ij}ni,j=1 such that

r̃ij =
(
rαij , r

β
ij , r

γ
ij , r

δ
ij

)
=

(
p∑

τ=1

ϵτr
τα
ij ,

p∑
τ=1

ϵτr
τβ
ij ,

p∑
τ=1

ϵτr
τγ
ij ,

p∑
τ=1

ϵτr
τδ
ij

)
,

is an additively consistent trapezoidal FAPCM-A for any ϵτ ∈ [0, 1] , τ = 1, . . . , p, with
∑p

τ=1 ϵτ = 1.

Proof. The proof is analogous to the proof of Theorem 61.

Example 51. Let us assume that two DMs m1 and m2 compared pairwisely four objects in interval FAPCMs-A
R̃1 and R̃2, respectively, as follows:

R̃1 =


0.5 [0.5, 0.6] [0.6, 0.7] [0.7, 0.85]

[0.4, 0.5] 0.5 [0.5, 0.6] [0.65, 0.8]

[0.3, 0.4] [0.4, 0.5] 0.5 [0.6, 0.7]

[0.15, 0.3] [0.2, 0.35] [0.3, 0.4] 0.5

 , (IV.140)

R̃2 =


0.5 [0.5, 0.6] [0.55, 0.7] [0.8, 1]

[0.4, 0.5] 0.5 [0.55, 0.65] [0.7, 0.9]

[0.3, 0.45] [0.35, 0.45] 0.5 [0.6, 0.8]

[0, 0.2] [0.1, 0.3] [0.2, 0.4] 0.5

 . (IV.141)

First, let us verify their additive consistency by applying Theorem 55. From Tab. IV.11 we see that the
inequality conditions (IV.135) are satisfied for the interval FAPCM-A R̃1. Therefore, R̃1 is additively consistent
according to Definition 60. Additive consistency of the interval FAPCM-A R̃2 is verified in an analogous way.

Because the interval FAPCMs-A R̃1 and R̃2 are additively consistent according to Definition 60, then, based
on Theorem 56, they are also additively weakly consistent according to Definition 59.

Let us now aggregate the interval FAPCMs-A (IV.140) and (IV.141) into one interval FAPCM-A R̃ represent-
ing the preferences of both DMs. Let us use the formula (IV.139) with the importance of the DM m1 given as
ϵ1 = 0.4 and the importance of the DM m2 given as ϵ2 = 0.6, ϵ1 + ϵ2 = 1. The resulting interval FAPCM-A R̃ is
in the form

R̃ =


0.5 [0.5, 0.6] [0.57, 0.7] [0.76, 0.94]

[0.4, 0.5] 0.5 [0.53, 0.63] [0.68, 0.86]

[0.3, 0.43] [0.37, 0.47] 0.5 [0.6, 0.76]

[0.06, 0.24] [0.14, 0.32] [0.24, 0.4] 0.5

 . (IV.142)

According to Theorem 55, the interval FAPCM-A (IV.142) is again additively consistent (the reader can again
verify that the inequalities (IV.135) are satisfied). Further, based on Theorem 56, it is also additively weakly
consistent. △

4.3.2.2 Deriving priorities from FAPCMs-A

In this section, the focus is put on methods for obtaining fuzzy priorities of objects from FAPCMs-A. The
notation ṽ = (ṽ1, . . . , ṽn)

T , ṽi = (vαi , v
β
i , v

γ
i , v

δ
i ), i = 1, . . . , n, will be used hereafter to represent exclusively a

fuzzy priority vector associated with a FAPCM-A.
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In the literature, various methods have been proposed to obtain interval priorities from interval FAPCMs-A.
Most of these methods are based on linear programming models rather than on interval arithmetic. Xu (2007a)
and Xu and Chen (2008a) proposed linear programming models for obtaining interval priorities of objects from
interval FAPCMs-A additively consistent according to Definition 55. The solution of the models is a set of
priority vectors satisfying the inequalities (IV.108) and the normalization condition (IV.110). Further, Xu and
Chen (2008a) proposed a modification of these linear programming models to obtain interval priorities also
from additively inconsistent interval FAPCMs-A. The modification is based on introducing a set of deviation
variables relaxing the inequalities (IV.108). However, as already mentioned in Section 2.3.2.2, the normal-
ization condition (IV.110) is not compatible with Tanino’s characterization (II.32). Similar linear programming
models for obtaining interval priorities from interval FAPCMs-A were proposed by Wang and Li (2012). How-
ever, they again employed the inappropriate normalization condition (IV.110) in their models. Hu et al. (2014)
later proposed a modification of the linear programming models introduced by Xu and Chen (2008a) by replac-
ing Tanino’s characterization with the characterization (II.46), and Xu et al. (2014b) generalized the models by
adding a parameter into the characterization. Wang et al. (2012) introduced linear programming models for
obtaining interval priorities using a particular characterization based on logarithms.

The number of papers proposing linear programming models based on Tanino’s characterization (II.32) or
on alternative characterizations is extensive. Nevertheless, the focus of this thesis is put only on the methods
based on applying fuzzy arithmetic to the fuzzy extension of Tanino’s characterization.

From Section 2.3.2.2, we know that the only appropriate formula (up to addition of a constant) for obtaining
priorities from APCMs-A, compatible with Tanino’s characterization (II.32) is the formula (II.36). So far, I have
not encountered any research paper dealing with the fuzzy extension of this formula to FAPCMs-A by applying
fuzzy arithmetic. As far as I am aware, the only approach for obtaining interval priorities from interval FAPCMs-
A based on interval arithmetic is the approach proposed by Liu et al. (2012a).

Liu et al. (2012a) proposed to transform an interval FAPCM-A into an interval FMPCM and then to compute
interval priorities by using the formulas (IV.90). Putting aside the fact that such interval priorities are not
invariant under permutation of objects, it is important to realize that priorities obtained in such a way do not
reflect the preference information in the interval FAPCMs-A by means of differences; they reflect, instead,
by means of ratios, the preference information contained in the corresponding interval FMPCMs. It is very
important to realize this difference. Nevertheless, Liu et al. (2012a) completely omitted this issue.

The necessity of distinguishing between these two types of priorities was emphasized by Krejčı́ (2017b),
who proposed a method based on the constrained fuzzy arithmetic for obtaining “multiplicative” fuzzy priorities
from triangular FAPCMs-A. Note that the method for obtaining “multiplicative” fuzzy priorities proposed by
Krejčı́ (2017b) is invariant under permutation of objects and preserves the additive reciprocity of PCs as it is
based on the formulas (IV.97)–(IV.100).

In this section, the fuzzy extension of the formula (II.36) to FAPCMs-A is introduced and properties of
the new formulas are discussed. Further, it is demonstrated that the new formulas preserve two desirable
properties - additive reciprocity of PCs and invariance under permutation of objects.

We already know from Section 2.3.2.2 that the usual normalization condition (II.39),
∑n

i=1 vi = 1, vi ∈
[0, 1], i = 1, . . . , n, is not reachable for the priorities obtainable from APCMs-A. Thus, Fedrizzi and Brunelli
(2009) proposed the normalization condition (II.40), mini∈{1,...,n} vi = 0, vi ∈ [0, 1], i = 1, . . . , n, for the priorities
obtainable from APCMs-A. However, as demonstrated in Section 2.3.2.2, when an APCM-A is not additively
consistent, reaching the property (II.40) is not guaranteed anymore. Therefore, the weakened normalization
condition (II.42),

∑n
i=1 vi = 1, was introduced in Section 2.3.2.2 for the priorities obtainable from APCMs-A in

order to make an analogy to the normalization condition (II.39) for the priorities obtainable from MPCMs and
from APCMs-M. In this section, the normalization condition (II.42) is extended to fuzzy priorities obtainable
from FAPCMs-A.

First, let us start with the fuzzy extension of the formulas (II.36) for obtaining non-normalized priorities
from APCMs-A. By applying constrained fuzzy arithmetic (III.45) to the formula (II.36), the representing values
of the fuzzy priorities ṽi =

(
vαi , v

β
i , v

γ
i , v

δ
i

)
, i = 1, . . . , n, obtained from a FAPCM-A R̃ = {r̃ij}ni,j=1 , r̃ij =(

rαij , r
β
ij , r

γ
ij , r

δ
ij

)
, are given as:

vαi = min

 2

n

n∑
j=1

rij ;
rpq ∈

[
rαpq, r

δ
pq

]
,

rpq = 1− rqp,
p, q = 1, . . . , n

 , (IV.143)

vβi = min

 2

n

n∑
j=1

rij ;
rpq ∈

[
rβpq, r

γ
pq

]
,

rpq = 1− rqp,
p, q = 1, . . . , n

 , (IV.144)

105



vγi = max

 2

n

n∑
j=1

rij ;
rpq ∈

[
rβpq, r

γ
pq

]
,

rpq = 1− rqp,
p, q = 1, . . . , n

 , (IV.145)

vδi = max

 2

n

n∑
j=1

rij ;
rpq ∈

[
rαpq, r

δ
pq

]
,

rpq = 1− rqp,
p, q = 1, . . . , n

 . (IV.146)

Because the function optimized in the formulas (IV.143)–(IV.146) is increasing in all variables, the formulas
can be further simplified so that no optimization is needed:

vαi =
2

n

n∑
j=1

rαij , vβi =
2

n

n∑
j=1

rβij , vγi =
2

n

n∑
j=1

rγij , vδi =
2

n

n∑
j=1

rδij . (IV.147)

Remark 27. It is worth to note that the elimination of the optimization problems in the formulas (IV.143)–(IV.146)
and their replacement by very simple formulas (IV.147) was possible to do only because the constraints of the
optimization problems have no effect on the optima; the additive-reciprocity condition rij = 1 − rji has no
influence since only the PCs from the i−th row of the FAPCM-A are present in the optimized function. Thus, in
this particular case, the formulas (IV.143)–(IV.146) based on the constrained fuzzy arithmetic actually give the
same results as the formulas (IV.147) based on the standard fuzzy arithmetic.

Notice that also the formulas (IV.85) for computing fuzzy priorities from FMPCMs proposed by Buckley
(1985a) reviewed in Section 4.2.3.2 have this simple form. Also in this case the multiplicative-reciprocity
condition mij =

1
mji

would have no impact since only the PCs from the i−th row of the FMPCM are present in
the optimized function. Thus, the standard fuzzy arithmetic is sufficient here.

Usually, however, the formulas based on the constrained fuzzy arithmetic cannot be simplified to standard
fuzzy arithmetic by simply eliminating the constraints and thus avoiding solving an optimization problem; the
formulas (IV.91)–(IV.94) for obtaining normalized fuzzy priorities from FMPCMs serve as an example.

There are interactions between the fuzzy priorities ṽi, i = 1, . . . , n, obtained by formulas (IV.147). The
property (II.37) valid for the priorities obtained from an APCM-A by the formulas (II.36) is extended to the fuzzy
priorities as

∀vi ∈ ṽi(α) ∃vj ∈ ṽj(α), j = 1, . . . , n, j ̸= i : vi +

n∑
j=1
j ̸=i

vj = n, (IV.148)

for all α ∈ [0, 1] and i = 1, . . . , n. This interaction property will be formulated properly and proved later. First,
the following proposition is needed.

Proposition 14. The interaction property (IV.148) between the trapezoidal fuzzy numbers ṽi =
(
vαi , v

β
i , v

γ
i , v

δ
i

)
,

i = 1, . . . , n, is valid if and only if

vαi +

n∑
j=1
j ̸=i

vδj ≥ n, vδi +

n∑
j=1
j ̸=i

vαj ≤ n, vβi +

n∑
j=1
j ̸=i

vγj ≥ n, vγi +

n∑
j=1
j ̸=i

vβj ≤ n. (IV.149)

Proof. First, let us show that (IV.148) implies (IV.149). For α = 0, it follows from (IV.148) that for vαi , i ∈
{1, . . . , n} , ∃vj ∈

[
vαj , v

δ
j

]
, j = 1, . . . , n, j ̸= i : vαi +

∑n
j=1
j ̸=i

vj = n. Because vδj ≥ vj , then clearly vαi +
∑n

j=1
j ̸=i

vδj ≥

n. Similarly, for vδi , i ∈ {1, . . . , n} , ∃vj ∈
[
vαj , v

δ
j

]
, j = 1, . . . , n, j ̸= i : vδi +

∑n
j=1
j ̸=i

vj = n. Because vαj ≤ vj ,

then clearly vδi +
∑n

j=1
j ̸=i

vαj ≤ n. Analogously, for α = 1, it follows from (IV.148) that for vβi , i ∈ {1, . . . , n} ,

∃vj ∈
[
vβj , v

γ
j

]
, j = 1, . . . , n, j ̸= i : vβi +

∑n
j=1
j ̸=i

vj = n. Because vγj ≥ vj , then clearly vβi +
∑n

j=1
j ̸=i

vγj ≥ n.

Similarly, for vγi , i ∈ {1, . . . , n} ,∃vj ∈
[
vβj , v

γ
j

]
, j = 1, . . . , n, j ̸= i : vγi +

∑n
j=1
j ̸=i

vj = n. Because vβj ≤ vj , then

clearly vγi +
∑n

j=1
j ̸=i

vβj ≤ n.

Now, let us show that (IV.149) implies (IV.148). From the inequalities vδi +
∑n

j=1
j≠i

vαj ≤ n and vαi +
∑n

j=1
j ̸=i

vδj ≥

n, the inequalities vi +
∑n

j=1
j ̸=i

vαj ≤ n and vi +
∑n

j=1
j ̸=i

vδj ≥ n follow ∀vi ∈
[
vαi , v

δ
i

]
. Therefore, ∃vj ∈

[
vαj , v

δ
j

]
:

vi +
∑n

j=1
j ̸=i

vj = n, which implies (IV.148) for α = 0. Analogously, from the inequalities vγi +
∑n

j=1
j ̸=i

vβj ≤ n and
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vβi +
∑n

j=1
j ̸=i

vγj ≥ n, the inequalities vi +
∑n

j=1
j ̸=i

vβj ≤ n and vi +
∑n

j=1
j ̸=i

vγj ≥ n follow ∀vi ∈
[
vβi , v

γ
i

]
. Therefore,

∃vj ∈
[
vβj , v

γ
j

]
: vi +

∑n
j=1
j ̸=i

vj = n, which implies (IV.148) for α = 1.

The proof of the validity of (IV.148) for α ∈]0, 1[ is analogous; it is sufficient to show that the inequalities
(IV.149) hold also for the α−cuts ṽi(α) =

[
vLi(α), v

U
i(α)

]
of the trapezoidal fuzzy numbers ṽi = (vαi , v

β
i , v

γ
i , v

δ
i ), i.e.

vLi(α) +

n∑
j=1
j ̸=i

vUj(α) ≥ n, vUi(α) +

n∑
j=1
j ̸=i

vLj(α) ≤ n. (IV.150)

Then it is enough to take the α−cuts ṽi(α) =
[
vLi(α), v

U
i(α)

]
of ṽi, i = 1, . . . , n, for

[
vαi , v

δ
i

]
, i = 1, . . . , n, in the

above part of the proof.
Using the definition (III.6) of α−cuts and formulas (IV.149), we have

vUi(α) +

n∑
j=1
j ̸=i

vLj(α) = αvγi + (1− α)vδi +

n∑
j=1
j ̸=i

[
αvβj + (1− α)vαj

]
=

α

vγi +

n∑
j=1
j ̸=i

vβj

+ (1− α)

vδi + n∑
j=1
j ̸=i

vαj

 ≤ αn+ (1− α)n = n

and analogously the inequality vLi(α) +
∑n

j=1
j ̸=i

vUj(α) ≥ n could be demonstrated.

Now, by utilizing Proposition 14, we can formulate and prove the following theorem.

Theorem 63. Let ṽi =
(
vαi , v

β
i , v

γ
i , v

δ
i

)
, i = 1, . . . , n, be trapezoidal fuzzy priorities obtained from a FAPCM-A

by formulas (IV.147). Then the property (IV.148) holds for all α ∈ [0, 1] and i = 1, . . . , n.

Proof. By utilizing Proposition 14, it is sufficient to show that the fuzzy priorities obtained by formulas (IV.147)
satisfy (IV.149).

vαi +

n∑
j=1
j ̸=i

vδj =
2

n

n∑
k=1

rαik +

n∑
j=1
j ̸=i

2

n

n∑
k=1

rδjk =
2

n

 n∑
k=1

rαik +

n∑
j=1
j ̸=i

n∑
k=1

rδjk

 =

2

n

0.5n+ (n− 1) +

n∑
j=1
j ̸=i

n∑
k=1
k ̸=i
k ̸=j

rδjk

 ≥ 2

n

(
0.5n+ (n− 1) +

(n− 1) (n− 2)

2

)
= n

vδi +

n∑
j=1
j ̸=i

vαj =
2

n

n∑
k=1

rδik +

n∑
j=1
j ̸=i

2

n

n∑
k=1

rαjk =
2

n

 n∑
k=1

rδik +

n∑
j=1
j ̸=i

n∑
k=1

rαjk

 =

2

n

0.5n+ (n− 1) +

n∑
j=1
j ̸=i

n∑
k=1
k ̸=i
k ̸=j

rαjk

 ≤ 2

n

(
0.5n+ (n− 1) +

(n− 1) (n− 2)

2

)
= n

Validity of the remaining two inequalities is proved in an analogous way.

The interaction property (IV.148) corresponds to the fact that, for any i ∈ {1, . . . , n} , and for any value
vi ∈ ṽi(α), α ∈ [0, 1] , there exist values vj ∈ ṽj(α), j ̸= i, such that they are all obtained by the formula (II.36)
from the same APCM-A R belonging to the FAPCM-A R̃. According to Proposition 3, these priorities are such
that

∑n
i=1 vi = n. The following example is given to illustrate better this interaction property.
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Example 52. Let us consider the FAPCM-A

R̃ =


0.5 (0.6, 0.7, 0.8, 0.9) (0.8, 0.9, 0.9, 1)

(0.1, 0.2, 0.3, 0.4) 0.5 (0.5, 0.6, 0.7, 0.8)

(0, 0.1, 0.1, 0.2) (0.2, 0.3, 0.4, 0.5) 0.5

 . (IV.151)

The fuzzy priorities of objects obtained by formulas (IV.147) are

ṽ1 =

(
19

15
,
21

15
,
22

15
,
24

15

)
, ṽ2 =

(
11

15
,
13

15
,
15

15
,
17

15

)
, ṽ3 =

(
7

15
,
9

15
,
10

15
,
12

15

)
. (IV.152)

Let us fix, for example, the upper boundary value vδ1 = 24
15 of ṽ1 and let us show that there exist priorities v2 ∈ ṽ2

and v3 ∈ ṽ3 such that all three priorities are obtained from the same APCM-A belonging to the FAPCM-A
(IV.151) and

∑3
i=1 vi = 3.

In order not to violate the additive reciprocity of the related PCs, vδ1 must have been obtained from the
matrix 

0.5 0.9 1

0.1 0.5 ...

0 ... 0.5

 (IV.153)

since 2
3 (0.5 + 0.9 + 1) = 24

15 = vδ1. Notice that in order to obtain the priority vi, i ∈ {1, . . . , n} , by formula (II.36)
we do not need to know all the PCs in the APCM-A; the PCs in the i−th row are sufficient. The possible values
v2, v3 of the fuzzy priorities ṽ2, ṽ3 corresponding to the possible value v1 are then obtainable from APCMs-A

0.5 0.9 1

0.1 0.5 x

0 1− x 0.5

 , x ∈ [0.5, 0.8] ,

in order to preserve the additive reciprocity of PCs. The sum of the priorities obtained from such matrices is
always equal to 3:

3∑
i=1

vi =
24

15
+

2

3
(0.1 + 0.5 + x) +

2

3
(0 + (1− x) + 0.5) = 3

△
Let us now focus on the fuzzy extension of the weakened normalization condition (II.42) introduced in

Section 2.3.2.2 for the priorities obtainable from APCMs-A. By applying constrained fuzzy arithmetic (III.45) to
the fuzzy extension of the formula (II.43), the normalized fuzzy priorities ṽi =

(
vαi , v

β
i , v

γ
i , v

δ
i

)
, i = 1, . . . , n, are

derived from a FAPCM-A R̃ = {r̃ij}ni,j=1 , r̃ij =
(
rαij , r

β
ij , r

γ
ij , r

δ
ij

)
, as:

vαi = min

 2

n

n∑
j=1

rij −
n− 1

n
;
rpq ∈

[
rαpq, r

δ
pq

]
,

rpq = 1− rqp,
p, q = 1, . . . , n

 , (IV.154)

vβi = min

 2

n

n∑
j=1

rij −
n− 1

n
;
rpq ∈

[
rβpq, r

γ
pq

]
,

rpq = 1− rqp,
p, q = 1, . . . , n

 , (IV.155)

vγi = max

 2

n

n∑
j=1

rij −
n− 1

n
;
rpq ∈

[
rβpq, r

γ
pq

]
,

rpq = 1− rqp,
p, q = 1, . . . , n

 , (IV.156)

vδi = max

 2

n

n∑
j=1

rij −
n− 1

n
;
rpq ∈

[
rαpq, r

δ
pq

]
,

rpq = 1− rqp,
p, q = 1, . . . , n

 . (IV.157)

Analogously as in the case of the formulas (IV.143)–(IV.146), also the formulas (IV.154)–(IV.157) can be sim-
plified so that no optimization is needed:

vαi =
2

n

n∑
j=1

rαij −
n− 1

n
, vβi =

2

n

n∑
j=1

rβij −
n− 1

n
,

vγi =
2

n

n∑
j=1

rγij −
n− 1

n
, vδi =

2

n

n∑
j=1

rδij −
n− 1

n
.

(IV.158)
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The normalization property (II.44) valid for the priorities (II.43) obtained from an APCM-A is extended to the
fuzzy priorities (IV.158) as

∀vi ∈ ṽi(α) ∃vj ∈ ṽj(α), j = 1, . . . , n, j ̸= i : vi +

n∑
j=1
j ̸=i

vj = 1, (IV.159)

for all α ∈ [0, 1] and i = 1, . . . , n. Similarly to Proposition 14 and Theorem 63, the following properties are valid.

Proposition 15. The interaction property (IV.159) between the trapezoidal fuzzy numbers ṽi =
(
vαi , v

β
i , v

γ
i , v

δ
i

)
,

i = 1, . . . , n, is valid if and only if

vαi +

n∑
j=1
j ̸=i

vδj ≥ 1, vδi +

n∑
j=1
j ̸=i

vαj ≤ 1, vβi +

n∑
j=1
j ̸=i

vγj ≥ 1, vγi +

n∑
j=1
j ̸=i

vβj ≤ 1, (IV.160)

for all α ∈ [0, 1] and i = 1, . . . , n.

Proof. The proof is analogous to the proof of Proposition 14.

Theorem 64. Let ṽi =
(
vαi , v

β
i , v

γ
i , v

δ
i

)
, i = 1, . . . , n, be fuzzy priorities obtained from a FAPCM-A by formulas

(IV.158). Then the property (IV.159) holds for all α ∈ [0, 1] and i = 1, . . . , n.

Proof. The proof is analogous to the proof of Theorem 63.

Remark 28. The interaction property (IV.159) is in fact the interaction property (III.12) from Definition 29
of the normalized fuzzy vector. However, the fuzzy priorities obtainable from a FAPCM-A by the formulas
(IV.158) satisfying the property (IV.159) are not constrained to the interval [0, 1] as it is required in Definition
29. Therefore, they are not normalized in the sense of Definition 29. Nevertheless, for the simplicity, they will
be called “normalized” here (keeping in mind the slight difference in the definitions).

Proposition 16. Let ṽi =
(
vαi , v

β
i , v

γ
i , v

δ
i

)
, i = 1, . . . , n, be normalized fuzzy priorities obtained by formulas

(IV.158). Then
−1 < ṽi ≤ 1, i = 1, . . . , n. (IV.161)

Proof. It is sufficient to prove inequalities −1 < vαi and vδi ≤ 1, i = 1, . . . , n. The proof is analogous to the proof
of Proposition 5.

Remark 29. As mentioned in Section 2.3.2.2, for an APCM-A, any vector derived from the priority vector
(II.36) by adding an arbitrary constant, i.e. by the transformation (II.38), is again a priority vector. For the
case of FAPCMs-A, the formulas (IV.158) for obtaining normalized fuzzy priorities are in fact obtained from
the formulas (IV.147) by adding constant −n−1

n . That is, the shape of the trapezoidal fuzzy numbers and the
distances between them remain unchanged by applying the normalization condition (IV.159); the whole set of
trapezoidal fuzzy numbers is just shifted back on the scale of real numbers by −n−1

n .

Example 53. Let us consider the FAPCM-A (IV.151). The fuzzy priorities obtained by formulas (IV.147) are
given as (IV.152), and the normalized fuzzy priorities obtained by formulas (IV.158) are given as

ṽN1 =

(
9

15
,
11

15
,
12

15
,
14

15

)
, ṽN2 =

(
1

15
,
3

15
,
5

15
,
7

15

)
, ṽN3 =

(
−3

15
,
−1

15
, 0,

2

15

)
. (IV.162)

The fuzzy priorities (IV.152) and the normalized fuzzy priorities (IV.162) are depicted in Fig. IV.9. It is evident
from the figure that the normalized fuzzy priorities have the same shape as the original non-normalized fuzzy
priorities; they are just moved backwards by − 2

3 . △
Theorem 65. The method for obtaining the normalized fuzzy priorities of objects from FAPCMs-A by using the
formulas (IV.158) is invariant under permutation of objects in FAPCMs-A.

Proof. It is sufficient to show that for a given object oi, i ∈ {1, . . . , n} , its priority ṽi obtained by the formulas
(IV.158) does not change under permutation of objects in a FAPCM-A R̃.

From the invariance of the formula (II.43) reviewed in Section 2.3.2.2, it follows that the priority vi of object
oi determined by the formula (II.43) from the given APCM-A R does not change under any permutation Rπ =
PRPT of R, it is just permuted accordingly. This means that the priority vi obtained from R is equal to the
corresponding priority vππ(i) obtained from Rπ.

From this it follows that the priorities vαi , v
β
i , v

γ
i , and vδi obtained by the formulas (IV.158) from a FAPCM-A

R̃ = {r̃ij}ni,j=1 , r̃ij = (rαij , r
β
ij , r

γ
ij , r

δ
ij), do not change under permutation (they are just permuted accordingly).

Therefore, the fuzzy priority ṽi = (vαi , v
β
i , v

γ
i , v

δ
i ) does not change for any permutation of objects in a FAPCM-A

(it is only permuted accordingly), which concludes the proof.
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Figure IV.9: Fuzzy priorities of the FAPCM-A (IV.151).
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4.3.3 Fuzzy additive pairwise comparison matrices with multiplicative representa-
tion

In this Section, the fuzzy extension of the methods related to APCMs-M reviewed in Section 2.3.3 is dealt with.
In particular, Section 4.3.3.1 is dedicated to the extension of the multiplicative-consistency condition (II.48) to
FAPCMs-M and Section 4.3.3.2 is focused on methods for obtaining fuzzy priorities of objects from FAPCMs-M.

4.3.3.1 Multiplicative consistency of FAPCMs-M

In this section, multiplicative consistency of FAPCMs-M is studied. First, definitions of multiplicative consistency
for interval FAPCMs-M based on Tanino’s characterization (II.54) proposed in the literature are reviewed and
some drawbacks of the definitions are pointed out in Section 4.3.3.1.1. Afterwards, in Section 4.3.3.1.2, a new
definition of multiplicative consistency for FAPCMs-M is proposed.

4.3.3.1.1 Review of fuzzy extensions of multiplicative consistency

In order to examine consistency of interval FAPCMs-M, many definitions of consistency have been pro-
posed in the literature. These definitions are mostly based on interval extension of multiplicative-transitivity
property (II.48) and related Tanino’s characterization (II.54).

Xu and Chen (2008a) proposed a weak version of multiplicative consistency for interval FAPCMs-M based
on Tanino’s characterization. Xia and Xu (2011) defined perfect multiplicative consistency for interval FAPCMs-
M based on an extension of Tanino’s multiplicative-transitivity property and discussed its properties. Wang and
Li (2012) proposed another definition of multiplicative consistency for interval FAPCMs-M based on an inter-
val extension of a property equivalent to Tanino’s multiplicative-transitivity property. Wu and Chiclana (2014a)
defined multiplicative consistency of interval FAPCMs-M based on a direct extension of Tanino’s multiplicative-
transitivity property to intervals and proposed a consistency index for measuring inconsistency of interval
FAPCMs-M. Wu and Chiclana (2014b) proposed another extension of Tanino’s multiplicative-transitivity prop-
erty to define multiplicative consistency of interval FAPCMs-M, and they further extended the definition to
intuitionistic FAPCMs-M.

In this section, all these definitions of multiplicatively consistent interval FAPCMs-M are reviewed in detail
and some drawbacks are pointed out. In particular, it is shown that some definitions are not invariant under
permutation of objects in interval FAPCMs-M and some violate additive reciprocity of PCs of objects. After-
wards, it is shown that the drawbacks can be eliminated by employing the constrained fuzzy arithmetic into
computations instead of the standard fuzzy arithmetic.

Xu and Chen (2008) defined a weak version of multiplicative consistency for interval FAPCMs-M. This
definition of consistency will be studied in more detail in the following section. In order to distinguish easily this
definition of consistency from others, consistency according to this definition will be simply called multiplicative
weak consistency.

Definition 61. (Xu and Chen, 2008a) Let Q =
{
qij
}n
i,j=1

, qij =
[
qLij , q

U
ij

]
, be an interval FAPCM-M. If there

exists a positive vector u = (u1, . . . , un)
T such that

qLij ≤
ui

ui + uj
≤ qUij , i, j = 1, . . . , n, (IV.163)

then Q is called a multiplicatively weakly consistent interval FAPCM-M.
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Definition 61 of multiplicative weak consistency for interval FAPCMs-M is clearly based on Proposition 6
for APCMs-M. According to the definition, an interval FAPCM-M Q is multiplicatively multiplicatively consistent
if there exists a vector u = (u1, . . . , un)

T using which we can construct a multiplicatively consistent APCM-M
Q∗ =

{
q∗ij
}n
i,j=1

such that q∗ij ∈
[
qLij , q

U
ij

]
, i, j = 1, . . . , n.

The requirement of at least one multiplicatively consistent APCM-M obtainable from the interval FAPCM-M
is very weak. Therefore, it is quite easy to satisfy the multiplicative-consistency condition in Definition 61 when
constructing an interval FAPCM-M. The multiplicative consistency conditions reviewed in the rest of this section
are significantly stronger and thus much more difficult to fulfill.

Xia and Xu (2011) defined multiplicative consistency for interval FAPCMs-M as follows.

Definition 62. (Xia and Xu, 2011) Let Q =
{
qij
}n
i,j=1

, qij =
[
qLij , q

U
ij

]
, be an interval FAPCM-M. Q is called

multiplicatively consistent if the APCMs-M C = {cij}ni,j=1 , D = {dij}ni,j=1 such that

cij =


qLij , i < j
0.5, i = j
qUij , i > j

, dij =


qUij , i < j
0.5, i = j
qLij , i > j

, i, j = 1, . . . , n, (IV.164)

are multiplicatively consistent according to (II.53).

However, Definition 62 is not invariant under permutation of objects in the interval FAPCM-M. This serious
drawback is demonstrated on the following example.

Example 54. Let us consider interval FAPCM-M Q of three objects o1, o2, and o3 in the form

Q =


1
2

[
1
2 ,

3
5

][
3
5 ,

6
7

][
2
5 ,

1
2

]
1
2

[
3
5 ,

4
5

][
1
7 ,

2
5

][
1
5 ,

2
5

]
1
2

 . (IV.165)

The corresponding APCMs-M C and D given by (IV.164) are in the form

C =


1
2

1
2

3
5

1
2

1
2

3
5

2
5

2
5

1
2

 , D =


1
2

3
5

6
7

2
5

1
2

4
5

1
7

1
5

1
2

 .

Both APCMs-M C and D satisfy the property (II.53), which means that they are multiplicatively consistent
according to Definition 11. Therefore, according to Definition 62, the interval FAPCM-M Q is multiplicatively
consistent.

Now, let us permute the interval FAPCM-M Q to the interval FAPCM-M Q
π
= PQPT by using the permuta-

tion matrix (IV.115):

Q
π
=


1
2

[
1
7 ,

2
5

][
1
5 ,

2
5

][
3
5 ,

6
7

]
1
2

[
1
2 ,

3
5

][
3
5 ,

4
5

][
2
5 ,

1
2

]
1
2

 . (IV.166)

The corresponding APCMs-M Cπ and Dπ given by (IV.164) are in the form

Cπ =


1
2

1
7

1
5

6
7

1
2

1
2

4
5

1
2

1
2

 , Dπ =


1
2

2
5

2
5

3
5

1
2

3
5

3
5

2
5

1
2

 ,

and they clearly do not satisfy the property (II.53). Therefore, according to Definition 62, the interval FAPCM-M
Q

π
is not multiplicatively consistent.
Obviously, the PCs of objects o1, o2, and o3 in interval FAPCMs-M Q and Q

π
are the same, they vary only in

the order in which they are associated with the rows and the columns of the interval FAPCM-M. Therefore, also
the conclusion about the multiplicative consistency should be the same for both interval FAPCMs-M. However,
as demonstrated, the interval FAPCM-M Q is judged as multiplicatively consistent while the interval FAPCM-M
Q

π
results to be inconsistent according to Definition 62. △

Wang and Li (2012) proposed the following definition of multiplicative consistency for interval FAPCMs-M.
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Definition 63. (Wang and Li, 2012) Let Q =
{
qij
}n
i,j=1

, qij =
[
qLij , q

U
ij

]
, be an interval FAPCM-M. Q is called

multiplicatively consistent if the multiplicative-transitivity condition

qji
qij

qkj
qjk

qik
qki

=
qjk
qkj

qij
qji

qki
qik

, i, j, k = 1, . . . , n, (IV.167)

is satisfied.

Wang and Li (2012) applied the standard interval arithmetic to extend the multiplicative consistency of
APCMs-M to interval FAPCMs-M in Definition 63. Therefore, the equation (IV.167) is equivalent to the equation

qLjiq
L
kjq

L
ik

qUijq
U
jkq

U
ki

=
qLjkq

L
ijq

L
ki

qUkjq
U
jiq

U
ik

, i, j, k = 1, . . . , n. (IV.168)

Beside claiming that qij + qji = 1 cannot be reached, as reviewed in Section 4.3.2.1.1, Wang and Li (2012)
pointed out that “due to the possibility of a

a ̸= 1 for intervals, (IV.167) is not equivalent to

qik
qki

qkj
qjk

=
qij
qji

, i, j, k = 1, . . . , n, (IV.169)

as in the case of regular APCMs-M” (Wang and Li (2012), p. 183). However, it is necessary to clarify here
that, in contrast to Wang and Li’s assertion, it is possible to ensure easily the validity of a

a = 1. At the end
of this section, it will be demonstrated that the validity of equation a

a = 1 can be easily achieved by applying
appropriately the constrained fuzzy arithmetic instead of the standard fuzzy arithmetic. Furthermore, it will be
shown that Definition 63 of multiplicative consistency is inappropriate since it violates the additive reciprocity
of PCs. Before doing that, let us finalize the literature review.

Wu and Chiclana (2014a) and Wu and Chiclana (2014b) defined multiplicative transitivity for interval FAPCMs-
M. However, since the multiplicative-transitivity property is normally used to define the multiplicative consis-
tency (and this is what is done in this thesis), the expression “multiplicative consistency” will be used in their
definition instead of “multiplicative transitivity” in order to keep the same terminology.

Definition 64. (Wu and Chiclana, 2014a) Let Q =
{
qij
}n
i,j=1

, qij =
[
qLij , q

U
ij

]
, be an interval FAPCM-M. Q is

called multiplicatively consistent if

qki
qik

=
qkj
qjk

qji
qij

, i < j < k, i, j, k = 1, . . . , n. (IV.170)

Wu and Chiclana (2014a) defined multiplicatively consistent interval FAPCMs-M by extending the multiplicative-
transitivity property (II.48). For the extension, they used the standard interval arithmetic. Therefore, Wu and
Chiclana (2014a) derived that the equation (IV.170) is equivalent to the equations

1
qLik

− 1 =
(

1
qLij

− 1
)(

1
qLjk

− 1
)
,

1
qUik

− 1 =
(

1
qUij

− 1
)(

1
qUjk

− 1
)
,

i < j < k, i, j, k = 1, . . . , n, (IV.171)

which can be further written as

qLik =
qLijq

L
jk

qLijq
L
jk+(1−qLij)(1−qLjk)

,

qUik =
qUijq

U
jk

qUijq
U
jk+(1−qUij)(1−qUjk)

,
i < j < k, i, j, k = 1, . . . , n. (IV.172)

However, it will be demonstrated on the following example that Definition 64, similarly to Definition 62, is
not invariant under permutation of objects in interval FAPCMs-M.

Example 55. Let us consider again the interval FAPCM-M Q of three objects o1, o2, and o3 in the form (IV.165).
In order to evaluate whether Q is multiplicatively consistent according to Definition 64, we only need to verify
whether the equations (IV.172) are satisfied for i = 1, j = 2, k = 3. Since

qL12q
L
23

qL12q
L
23 + (1− qL12)(1− qL23)

=
1
2
3
5

1
2
3
5 + 1

2
2
5

=
3

5
= qL13

and
qU12q

U
23

qU12q
U
23 + (1− qU12)(1− qU23)

=
3
5
4
5

3
5
4
5 + 2

5
1
5

=
6

7
= qU13,
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we can conclude that the interval FAPCM-M (IV.165) is multiplicatively consistent according to Definition 64.
Now, let us consider the permuted interval FAPCM-M Q

π
given by (IV.166). By verifying equations (IV.172)

for i = 1, j = 2, k = 3, we obtain

q∗L12 q
∗L
23

q∗L12 q
∗L
23 + (1− q∗L12 )(1− q∗L23 )

=
1
7
1
2

1
7
1
2 + 6

7
1
2

=
1

7
≠ q∗L13

and
q∗U12 q∗U23

q∗U12 q∗U23 + (1− q∗U12 )(1− q∗U23 )
=

2
5
3
5

2
5
3
5 + 3

5
2
5

=
1

2
̸= q∗U13 ,

which means that the permuted interval FAPCM-M (IV.166) is not multiplicatively consistent according to Defi-
nition 64. Therefore, it results that Definition 64 of multiplicative consistency is not invariant under permutation
of objects in interval FAPCMs-M. △

Definition 65. (Wu and Chiclana, 2014b) Let Q =
{
qij
}n
i,j=1

, qij =
[
qLij , q

U
ij

]
, be an interval FAPCM-M. Q is

called multiplicatively consistent if

qLijq
L
jkq

L
ki = qLikq

L
kjq

L
ji,

qUijq
U
jkq

U
ki = qUikq

U
kjq

U
ji,

i, j, k = 1, . . . , n. (IV.173)

The equations (IV.173) are equivalent to the equation

qijqjkqki = qikqkjqji, i, j, k = 1, . . . , n, (IV.174)

when using standard fuzzy arithmetic (and in particular the formula (III.26) for the multiplication of trapezoidal
fuzzy numbers). Therefore, Definition 65 suffers again from the same drawbacks as Definition 63; the additive
reciprocity of PCs is violated. For a detailed discussion on the issue of additive reciprocity, see p. 94.

The problem is caused by the fact that both Wang and Li (2012) and Wu and Chiclana (2014b), similarly to
other researchers whose work has been reviewed in this section, applied the standard interval arithmetic to the
computations with intervals. This means that the multiplicative-consistency condition (IV.167) is equivalent to
the equation (IV.168) and the multiplicative-consistency condition (IV.173) is equivalent to the equation (IV.174).
Similarly to the additive-consistency conditions (IV.117), (IV.121), and (IV.122) described in Section 4.3.2.1.1,
none of the multiplicative-consistency conditions (IV.167) and (IV.173) preserves the additive reciprocity of PCs.
This drawback is demonstrated on the following example.

Example 56. Let us examine Definitions 63 and 65 of multiplicative consistency on the interval FAPCM-M Q
given by (IV.165). The expressions (IV.173) basically mean that we construct matrices QL =

{
qLij
}n
i=1

and
QU =

{
qUij
}n
i=1

from the interval FAPCM-M (IV.165) as

QL =


1
2

1
2

3
5

2
5

1
2

3
5

1
7

1
5

1
2

 , QU =


1
2

3
5

6
7

2
5

1
2

4
5

2
5

2
5

1
2

 ,

and we verify their multiplicative consistency by utilizing the property (II.50). However, we can easily see that
neither QL nor QU is additively reciprocal, which means that both QL and QU are not even APCMs-M according
to Definition 10. Therefore, it is nonsensical to verify their “multiplicative consistency”.

An analogous drawback appears also when using Definition 63. In addition, two values of each inten-
sity of preference qij , i, j = 1, 2, 3, i ̸= j appear in the expression (IV.168) at the same time. For example,
the intensities 1

2 and 3
5 of preference of object o1 over object o2 are considered at the same time, which is

nonsensical. △

As already mentioned in the discussion following Definition 63, Wang and Li (2012) claim that it is not
possible to obtain the equality a

a = 1. Obviously, for a = [aL, aU ], we obtain

a

a
=

[aL, aU ]

[aL, aU ]
=

[
aL

aU
,
aU

aL

]
̸= 1, unless aL = aU .

Applying the standard fuzzy arithmetic in this case is not appropriate; the constrained fuzzy arithmetic
needs to be applied whenever there are any interactions among fuzzy numbers. The presence of interactions
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in the expression a
a is clear since the intervals in the expression represent the same variable. Therefore, d = a

a

should be computed by using the constrained fuzzy arithmetic (III.40) as d = [dL, dU ] :

dL = min
{

a1

a2
; a1 ∈ [aL, aU ], a2 ∈ [aL, aU ], a1 = a2

}
=

= min
{

a1

a1
; a1 ∈ [aL, aU ]

}
= 1,

dU = max
{

a1

a2
; a1 ∈ [aL, aU ], a2 ∈ [aL, aU ], a1 = a2

}
=

= max
{

a1

a1
; a1 ∈ [aL, aU ]

}
= 1.

Keeping in mind the importance of the additive-reciprocity property of PCs in interval FAPCMs-M, multi-
plicative consistency needs to be defined accordingly so that it does not violate the additive reciprocity. In
the following section, two definitions of multiplicatively consistent trapezoidal FAPCMs-M keeping the additive
reciprocity of PCs and invariant under permutation of objects are proposed.

4.3.3.1.2 New fuzzy extension of multiplicative consistency

In this section, Definition 61 of multiplicative weak consistency given by Xu and Chen (2008a) is extended
to trapezoidal FAPCMs-M and another definition of multiplicative consistency much stronger than Definition 61
is proposed. Tools for verifying both the multiplicative weak consistency and the multiplicative consistency are
provided and some properties of multiplicatively weakly consistent and multiplicatively consistent trapezoidal
FAPCMs-M are derived. Both definitions preserve two desired properties - invariance under permutation of
objects and additive reciprocity of the related PCs.

Definition 66. Let Q̃ = {q̃ij}ni,j=1 , q̃ij = (qαij , q
β
ij , q

γ
ij , q

δ
ij), be a trapezoidal FAPCM-M. Q̃ is said to be multiplica-

tively weakly consistent if there exists a positive vector u = (u1, . . . , un)
T such that

qαij ≤
ui

ui + uj
≤ qδij , i, j = 1, . . . , n. (IV.175)

Note that when Definition 66 is applied to interval FAPCMs-M, it is identical to Definition 61 proposed by Xu
and Chen (2008a).

Proposition 17. Let Q̃ = {q̃ij}ni,j=1 , q̃ij = (qαij , q
β
ij , q

γ
ij , q

δ
ij), be a trapezoidal FAPCM-M. Q̃ = {q̃ij}ni,j=1 is multi-

plicatively weakly consistent according to Definition 66 if and only if there exist elements q∗ij ∈
[
qαij , q

δ
ij

]
, i, j =

1, . . . , n, such that Q∗ =
{
q∗ij
}n
i,j=1

is an APCM-M multiplicatively consistent according to Definition 11.

Proof. First, let Q̃ = {q̃ij}ni,j=1 , q̃ij = (qαij , q
β
ij , q

γ
ij , q

δ
ij), be a trapezoidal FAPCM-M multiplicatively weakly con-

sistent according to Definition 66. Let us denote q∗ij :=
ui

ui+uj
. From (IV.175) it follows that q∗ij ∈

[
qαij , q

δ
ij

]
, i, j =

1, . . . , n. Further, we have q∗ii = ui

ui+ui
= 0.5 and q∗ji =

uj

uj+ui
= 1 − ui

ui+uj
= 1 − q∗ij , i, j = 1, . . . , n. From

[qαij , q
δ
ij ] ⊆]0, 1[, i, j = 1, . . . , n, it follows that q∗ij ∈]0, 1[, i, j = 1, . . . , n. Therefore, Q∗ =

{
q∗ij
}n
i,j=1

is a FAPCM-
M.

Finally,
q∗ik
q∗ki

q∗kj
q∗jk

=

ui

ui+uk

uk

uk+ui

uk

uk+uj

uj

uj+uk

=
ui

uj
=

ui

ui+uj

uj

uj+ui

=
q∗ij
q∗ji

, i, j, k = 1, . . . , n,

which means that Q∗ =
{
q∗ij
}n
i,j=1

is multiplicatively consistent according to (II.48).

In the opposite direction, let Q̃ = {q̃ij}ni,j=1 , q̃ij = (qαij , q
β
ij , q

γ
ij , q

δ
ij), be a trapezoidal FAPCM-M and let

Q∗ =
{
q∗ij
}n
i,j=1

, q∗ij ∈
[
qαij , q

δ
ij

]
, i, j = 1, . . . , n, be an APCM-M multiplicatively consistent according to (II.48).

Then, from Proposition 6, it follows that there exists a vector u = (u1, . . . , un)
T
, ui > 0, i, j = 1, . . . , n, such

that q∗ij =
ui

ui+uj
, i, j = 1, . . . , n. Because, q∗ij ∈

[
qαij , q

δ
ij

]
, i, j = 1, . . . , n, then (IV.175) holds.

Remark 30. According to Proposition 17 and its proof, a trapezoidal FAPCM-M Q̃ = {q̃ij}ni,j=1 , q̃ij = (qαij , q
β
ij , q

γ
ij , q

δ
ij),

is multiplicatively weakly consistent if and only if there exists a multiplicatively consistent APCM-M Q∗ ={
q∗ij
}n
i,j=1

such that q∗ij ∈
[
qαij , q

δ
ij

]
. This consistency condition is quite easy to reach. That is why the multi-

plicative consistency according to Definition 66 is called weak. Later in this section, a much stronger definition
of multiplicative consistency for trapezoidal FAPCMs-M will be given.

Definition 66 of multiplicative weak consistency satisfies two desirable properties - invariance under permu-
tation of objects and additive reciprocity of PCs in trapezoidal FAPCMs-M.
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Theorem 66. Definition 66 of multiplicative weak consistency is invariant under permutation of objects in
FAPCMs-M.

Proof. For a multiplicatively weakly consistent trapezoidal FAPCM-M Q̃ = {q̃ij}ni,j=1 , q̃ij =
(
qαij , q

β
ij , q

γ
ij , q

δ
ij

)
,

there exists a positive priority vector u = (u1, . . . , un)
T , such that the inequality qαij ≤ ui

ui+uj
≤ qδij is required

to hold for every single PC q̃ij . By permuting the FAPCM-M Q̃ to Q̃π = PQ̃PT , the original PC q̃ij in the i−th
row and in the j−th column of Q̃ is moved to the π(i)−th row and to the π(j)−th column of the permuted
trapezoidal FAPCM-M Q̃π as q̃ππ(i)π(j), but still keeping q̃ij = q̃ππ(i)π(j), i, j = 1, . . . , n. Thus, there exists a vector
uπ = (uπ

1 , . . . , u
π
n)

T , obtained by permuting the vector u, i.e. uπ = Pu, with the components satisfying the
inequalities qπαij ≤ ui

ui+uj
≤ qπδij for every i, j = 1, . . . , n.

Theorem 67. Definition 66 of multiplicative weak consistency does not violate the additive reciprocity of PCs
in trapezoidal FAPCMs-M in the sense that any fixed value qij ∈ [qαij , q

δ
ij ], i, j ∈ {1, . . . , n} , representing the

intensity of preference of object oi over object oj is associated with the corresponding values qji ∈ [qαji, q
δ
ji]

representing the intensity of preference of object oj over object oi such that qji = 1− qij .

Proof. The existence of the positive priority vector u = (u1, . . . , un)
T satisfying the inequalities (IV.175) means

that there exists an APCM-M Q = {qij}ni,j=1 , qij ∈ [qαij , q
δ
ij ], such that qij = ui

ui+uj
, i, j = 1, . . . , n. Q is additively

reciprocal from the definition, i.e. every PC qij is associated with the PC qji such that qji = 1− qij .

Remark 31. Note that Theorem 67 does not simply state that a FAPCM-M Q̃ = {q̃ij}ni,j=1 multiplicatively
weakly consistent according to Definition 66 is additively reciprocal, i.e. q̃ji = 1 − q̃ij , i, j = 1, . . . , n. Theorem
67 states that only additively reciprocal PCs are involved in Definition 66 of multiplicative weak consistency,
which is in accordance with the conception of additive reciprocity discussed on p. 94. For more detailed
discussion, see Remark 21.

The following theorems provide useful tools for verifying multiplicative weak consistency of trapezoidal
FAPCMs-M.

Theorem 68. A trapezoidal FAPCM-M Q̃ = {q̃ij}ni,j=1 , q̃ij =
(
qαij , q

β
ij , q

γ
ij , q

δ
ij

)
, is multiplicatively weakly con-

sistent according to Definition 66 if and only if

max
k=1,...,n

{
qαikq

α
kj

qαikq
α
kj + (1− qαik)(1− qαkj)

}
≤ min

k=1,...,n

{
qδikq

δ
kj

qδikq
δ
kj + (1− qδik)(1− qδkj)

}
,

i, j = 1, . . . , n.

(IV.176)

Proof. From the inequalities (IV.175), it follows that qαik ≤ ui

ui+uk
≤ qδik and qαkj ≤ uk

uk+uj
≤ qδkj . Thus, ∀k ∈

{1, . . . , n} the following inequalities hold:

qαikq
α
kj ≤

ui

ui + uk

uk

uk + uj
≤ qδikq

δ
kj ,

1−qαik ≥ uk

ui + uk
≥ 1−qδik, 1−qαkj ≥

uj

uk + uj
≥ 1−qδkj ,

(1−qαik)(1−qαkj) ≥
uk

ui + uk

uj

uk + uj
≥ (1−qδik)(1−qδkj).

Putting all together we obtain ∀k ∈ {1, . . . , n}

qαikq
α
kj

qαikq
α
kj + (1−qαik)(1−qαkj)

≤ ui

ui + uj
≤

qδikq
δ
kj

qδikq
δ
kj + (1−qδik)(1−qδkj)

,

and thus (IV.176) holds.
In the opposite direction, let (IV.176) hold. Then, ∀i, j, k ∈ {1, . . . , n} :

qαij ≤ max
k=1,...,n

{
qαikq

α
kj

qαikq
α
kj + (1−qαik)(1−qαkj)

}
≤

min
k=1,...,n

{
qδikq

δ
kj

qδikq
δ
kj + (1−qδik)(1−qδkj)

}
≤ qδij .
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Thus, ∀i, j, k ∈ {1, . . . , n} :

∃q∗ij ∈

[
max

k=1,...,n

{
qαikq

α
kj

qαikq
α
kj+(1−qαik)(1−qαkj)

}
, min
k=1,...,n

{
qδikq

δ
kj

qδikq
δ
kj+(1−qδik)(1−qδkj)

}]

∧∃q∗ik ∈ [qαik, q
δ
ik] ∧ ∃q∗kj ∈ [qαkj , q

δ
kj ] : q

∗
ij = q∗ik + q∗kj − 0.5.

This means that Q∗ =
{
q∗ij
}n
i,j=1

is an APCM-M. Thus, according to Proposition 6, there exists a positive
vector u = (u1, . . . , un)

T such that q∗ij = ui

ui+uj
. Since q∗ij ∈ [qαij , q

δ
ij ], i, j = 1, . . . , n, we obtain the inequality

(IV.175).

The following theorem shows that it is sufficient to verify the inequality (IV.176) only for i, j = 1, . . . , n, i < j,
thus saving half of the computations.

Theorem 69. A trapezoidal FAPCM-M Q̃ = {q̃ij}ni,j=1 , q̃ij =
(
qαij , q

β
ij , q

γ
ij , q

δ
ij

)
, is multiplicatively weakly con-

sistent according to Definition 66 if and only if

max
k=1,...,n

{
qαikq

α
kj

qαikq
α
kj + (1− qαik)(1− qαkj)

}
≤ min

k=1,...,n

{
qδikq

δ
kj

qδikq
δ
kj + (1− qδik)(1− qδkj)

}
,

i, j = 1, . . . , n, i < j.

(IV.177)

Proof. It is sufficient to show that the validity of inequalities (IV.177) for i, j = 1, . . . , n, i < j, implies automati-
cally their validity for all i, j = 1, . . . , n, i.e. the validity of (IV.176). The validity of inequalities (IV.176) for i = j
is trivial from the definition of trapezoidal FAPCMs-M since

max
k=1,...,n

{
qαikq

α
ki

qαikq
α
ki + (1− qαik)(1− qαki)

}
= max

k=1,...,n

{
qαikq

α
ki

qαikq
α
ki + qδkiq

δ
ik

}
≤ 0.5 ≤

min
k=1,...,n

{
qδikq

δ
ki

qδikq
δ
ki + qαkiq

α
ik

}
= min

k=1,...,n

{
qδikq

δ
ki

qδikq
δ
ki + (1− qδik)(1− qδki)

}
.

Further, for i > j, by using (IV.177) and the additive-reciprocity properties, we obtain

max
k=1,...,n

{
qαikq

α
kj

qαikq
α
kj+(1−qαik)(1−qαkj)

}
= max

k=1,...,n

{
1−

qδkiq
δ
jk

qδkiq
δ
jk+(1−qδki)(1−qδjk)

}
=

1− min
k=1,...,n

{
qδjkq

δ
ki

qδjkq
δ
ki+(1−qδjk)(1−qδki)

}
≤ 1− max

k=1,...,n

{
qαjkq

α
ki

qαjkq
α
ki+(1−qαjk)(1−qαki)

}
=

min
k=1,...,n

{
1−

qαjkq
α
ki

qαjkq
α
ki+(1−qαjk)(1−qαki)

}
= min

k=1,...,n

{
qδikq

δ
kj

qδikq
δ
kj+(1−qδik)(1−qδkj)

}
.

Remark 32. An alternative definition of multiplicative weak consistency to Definition 66 might be formulated
as follows.

Let Q̃ = {q̃ij}ni,j=1 , q̃ij =
(
qαij , q

β
ij , q

γ
ij , q

δ
ij

)
, be a trapezoidal FAPCM-M. Q̃ is said to be multiplicatively

weakly consistent if there exists a positive vector u = (u1, . . . , un)
T such that

qβij ≤
ui

ui + uj
≤ qγij , i, j = 1, . . . , n. (IV.178)

Notice that this definition is stronger than Definition 66. In fact, every trapezoidal FAPCM-M multiplicatively
weakly consistent according to this definition is also multiplicatively weakly consistent according to Definition 66
since (IV.178) automatically implies (IV.175). Furthermore, when this definition is applied to interval FAPCMs-
M, it is again identical to Definition 61 proposed by Xu and Chen (2008a).

All theorems regarding FAPCMs-M multiplicatively weakly consistent according to Definition 66 formulated
above can be easily reformulated for FAPCMs-M multiplicatively weakly consistent according to this definition;
it is sufficient to consider qβij and qγij instead of qαij and qδij , respectively, where appropriate.

In the following definition, a stronger version of mutiplicative consistency for trapezoidal FAPCMs-M is
formulated.
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Definition 67. Let Q̃ = {q̃ij}ni,j=1 , q̃ij =
(
qαij , q

β
ij , q

γ
ij , q

δ
ij

)
, be a trapezoidal FAPCM-M. Q̃ is said to be multi-

plicatively consistent if for each triplet (i, j, k) ⊆ {1, . . . , n} the following holds:

∀qij ∈
[
qαij , q

δ
ij

]
∃qik∈

[
qαik, q

δ
ik

]
∧ ∃qkj ∈

[
qαkj , q

δ
kj

]
: qij=

qikqkj
qikqkj+(1−qik)(1−qkj)

, (IV.179)

∀qij ∈
[
qβij , q

γ
ij

]
∃qik∈

[
qβik, q

γ
ik

]
∧ ∃qkj ∈

[
qβkj , q

γ
kj

]
: qij=

qikqkj
qikqkj+(1−qik)(1−qkj)

. (IV.180)

Remark 33. Definition 67 provides a natural extension of multiplicative consistency from APCMs-M to trape-
zoidal FAPCMs-M. According to this definition, for any possible value qij ∈ q̃ij , i, j ∈ {1, . . . , n} , there exist
possible values qik ∈ q̃ik and qkj ∈ q̃kj , k ∈ {1, . . . , n} , such that they satisfy (II.53), which is equivalent to
the multiplicative-transitivity property (II.48) for APCMs-M. Analogously, for any possible value qij ∈Core q̃ij ,
i, j∈{1, . . . , n} , there exist possible values qik∈Coreq̃ik and qkj ∈Coreq̃kj , k∈{1, . . . , n} , such that they satisfy
(II.53). Clearly, in comparison to the multiplicative weak consistency given by Definition 66, the multiplicative
consistency given by Definition 67 is very strong.

Note that any of the properties (II.48)–(II.52) could have been used in Definition 67 instead of the property
(II.53) as they are all equivalent (see Theorem 4).

Unlike Definitions 62 and 64 of multiplicatively consistent interval FAPCMs-M proposed by Xia and Xu
(2011) and by Wu and Chiclana (2014a), respectively, new Definition 67 is invariant under permutation of
objects compared in FAPCMs-M.

Theorem 70. Definition 67 of multiplicative consistency is invariant under permutation of objects in FAPCMs-M.

Proof. For a multiplicatively consistent trapezoidal FAPCM-M Q̃ = {q̃ij}ni,j=1 , q̃ij = (qαij , q
β
ij , q

γ
ij , q

δ
ij), the condi-

tions (IV.179) and (IV.180) are satisfied for every triplet (i, j, k) ⊆ {1, . . . , n} . By permuting the FAPCM-M Q̃ to
Q̃π = PQ̃PT , the original PC q̃ij in the i−th row and in the j−th column of Q̃ moves to the π(i)−th row and to
the π(j)−th column of Q̃π preserving q̃ππ(i)π(j) = q̃ij . Thus, by permuting Q̃, also the validity of the conditions
(IV.179) and (IV.180) is preserved, i.e.

∀qπij∈
[
qπαij , q

πδ
ij

]
∃qπik∈

[
qπαik , q

πδ
ik

]
∧ ∃qπkj∈

[
qπαkj , q

πδ
kj

]
: qπij=

qπikq
π
kj

qπikq
π
kj+(1−qπik)(1−qπkj)

,

∀qπij∈
[
qπβij , q

πγ
ij

]
∃qπik∈

[
qπβik , q

πγ
ik

]
∧ ∃qπkj∈

[
qπβkj , q

πγ
kj

]
: qπij=

qπikq
π
kj

qπikq
π
kj+(1−qπik)(1−qπkj)

,

for every triplet (i, j, k) ⊆ {1, . . . , n} . Thus, Q̃π is multiplicatively consistent according to Definition 67.

Further, unlike Definitions 63 and 65 of multiplicatively consistent interval FAPCMs-M proposed in Wang
and Li (2012) and Wu and Chiclana (2014b), respectively, Definition 67 does not violate the additive reciprocity
of PCs.

Theorem 71. Definition 67 of multiplicative consistency does not violate the additive reciprocity of PCs in
trapezoidal FAPCMs-M in the sense that any fixed value qij ∈ [qαij , q

δ
ij ], i, j ∈ {1, . . . , n} , representing the

intensity of preference of object oi over object oj is associated with the corresponding value qji ∈ [qαji, q
δ
ji]

representing the intensity of preference of object oj over object oi such that qji = 1− qij .

Proof. It is sufficient to show that expressions (IV.179) and (IV.180) do not violate the additive-reciprocity prop-
erty in the sense that when two particular intensities of preference qij ∈ q̃ij and qji ∈ q̃ji on the pair of objects
oi and oj are considered at the same time in the expressions (IV.179) and (IV.180), then they are such that
qji = 1− qij .

For a triplet (i, j, k) ⊆ {1, . . . , n} , i ̸= j ̸= k, no reciprocals appear in expression

qij =
qikqkj

qikqkj + (1− qik)(1− qkj)

for any qij ∈
[
qαij , q

δ
ij

]
. For i = j = k, expression (IV.179) reduces to: ∀qii = 0.5 ∃q∗ii = 0.5 ∧ ∃q∗∗ii = 0.5 : 0.5 =

0.5·0.5
0.5·0.5+0.5·0.5 , which again does not violate the additive reciprocity. Further, for i ̸= j = k, expression (IV.179)
is as:

∀qij ∈
[
qαij , q

δ
ij

]
∃q∗ij ∈

[
qαij , q

δ
ij

]
∧ ∃qjj = 0.5: qij =

q∗ij · 0.5
q∗ij · 0.5 + (1− q∗ij) · 0.5

.

117



This means that q∗ij = qij and, therefore, the additive reciprocity is not violated. For i = k ̸= j the proof is
analogous. Finally, for i = j ̸= k, expression (IV.179) is as

∀qii = 0.5 ∃qik ∈
[
qαik, q

δ
ik

]
∧ ∃q∗ki ∈

[
qαki, q

δ
ki

]
: 0.5 =

qikq
∗
ki

qikq∗ki + (1− qik)(1− q∗ki)
.

This means that q∗ki = 1− qik and, therefore, the additive reciprocity is preserved.
The proof for the expression (IV.180) is analogous.

Remark 34. Similarly to Theorem 67, also Theorem 71 does not simply state that a FAPCM-M Q̃ = {q̃ij}ni,j=1

multiplicatively consistent according to Definition 67 is additively reciprocal since this property automatically
follows from Definition 52 of a FAPCM. Theorem 67 states that only additively reciprocal PCs are involved
in Definition 67 of multiplicative onsistency, which is in accordance with the conception of additive reciprocity
discussed on p. 94. For more detailed discussion, see Remark 21.

By handling properly the additive-reciprocity property of PCs, Theorem 4 can be easily extended to interval
FAPCMs-M as follows.

Theorem 72. For a trapezoidal FAPCM-M Q̃= {q̃ij}ni,j=1 , q̃ij =
(
qαij , q

β
ij , q

γ
ij , q

δ
ij

)
, the following statements are

equivalent:

(i) Q̃ is multiplicatively consistent according to Definition 67.

(ii) For every i, j, k = 1, . . . , n :

∀qij ∈
[
qαij , q

δ
ij

]
∃qjk ∈

[
qαjk, q

δ
jk

]
∧ ∃qki ∈

[
qαki, q

δ
ki

]
: qijqjkqki = qikqkjqji,

qij = 1− qji, qjk = 1− qkj , qki = 1− qik. (IV.181)

∀qij ∈
[
qβij , q

γ
ij

]
∃qjk ∈

[
qβjk, q

γ
jk

]
∧ ∃qki ∈

[
qβki, q

γ
ki

]
: qijqjkqki = qikqkjqji,

qij = 1− qji, qjk = 1− qkj , qki = 1− qik. (IV.182)

(iii) For every i, j, k = 1, . . . , n :

∀qij ∈
[
qαij , q

δ
ij

]
∃qjk ∈

[
qαjk, q

δ
jk

]
∧ ∃qki ∈

[
qαki, q

δ
ki

]
:
qij
qji

qjk
qkj

qki
qik

= 1,

qij = 1− qji, qjk = 1− qkj , qki = 1− qik. (IV.183)

∀qij ∈
[
qβij , q

γ
ij

]
∃qjk ∈

[
qβjk, q

γ
jk

]
∧ ∃qki ∈

[
qβki, q

γ
ki

]
:
qij
qji

qjk
qkj

qki
qik

= 1,

qij = 1− qji, qjk = 1− qkj , qki = 1− qik. (IV.184)

(iv) For every i, j, k = 1, . . . , n :

∀qij ∈
[
qαij , q

δ
ij

]
∃qjk∈

[
qαjk, q

δ
jk

]
∧ ∃qki∈

[
qαki, q

δ
ki

]
:
qij
qji

qjk
qkj

qki
qik

=
qik
qki

qkj
qjk

qji
qij

,

qij = 1− qji, qjk = 1− qkj , qki = 1− qik. (IV.185)

∀qij ∈
[
qβij , q

γ
ij

]
∃qjk ∈

[
qβjk, q

γ
jk

]
∧ ∃qki ∈

[
qβki, q

γ
ki

]
:
qij
qji

qjk
qkj

qki
qik

=
qik
qki

qkj
qjk

qji
qij

,

qij = 1− qji, qjk = 1− qkj , qki = 1− qik. (IV.186)

(v) For every i, j, k = 1, . . . , n :

∀qij ∈
[
qαij , q

δ
ij

]
∃qjk ∈

[
qαjk, q

δ
jk

]
∧ ∃qki ∈

[
qαki, q

δ
ki

]
:
qij
qji

=
qik
qki

qkj
qjk

,

qij = 1− qji, qjk = 1− qkj , qki = 1− qik. (IV.187)

∀qij ∈
[
qβij , q

γ
ij

]
∃qjk ∈

[
qβjk, q

γ
jk

]
∧ ∃qki ∈

[
qβki, q

γ
ki

]
:
qij
qji

=
qik
qki

qkj
qjk

,

qij = 1− qji, qjk = 1− qkj , qki = 1− qik. (IV.188)
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Proof. From the additive-reciprocity property q̃ij = 1 − q̃ji, i, j = 1, . . . , n, it follows that ∀qij ∈
[
qαij , q

δ
ij

]
∃qji ∈[

qαji, q
δ
ji

]
: qji = 1− qij and ∀qij ∈

[
qβij , q

γ
ij

]
∃qji ∈

[
qβji, q

γ
ji

]
: qji = 1− qij .

Obviously, the statements (ii), (iii) and (v) are equivalent since the expressions in the statements are ob-
tained by a simple reordering. Therefore, it is sufficent to prove the equivalence of statements (i) and (ii), and
the equivalence of statements (iii) and (iv).

(a) First, let us show that the statements (i) and (ii) are equivalent. Because of the reciprocity property,
(IV.181) can be equivalently written as

∀qij ∈
[
qαij , q

δ
ij

]
∃qik ∈

[
qαik, q

δ
ik

]
∧ ∃qkj ∈

[
qαkj , q

δ
kj

]
:

qij(1− qkj)(1− qik) = qikqkj(1− qij). (IV.189)

The expression qij(1− qkj)(1− qik) = qikqkj(1− qij) can be further rewritten as

qij =
qikqkj

qikqkj + (1− qik)(1− qkj)
.

This means that the statement (IV.181) is equivalent to (IV.179). Analogously, the equivalence of (IV.182)
and (IV.180) is proved.

(b) Now, let us show that the statements (iii) and (iv) are equivalent. The expression qij
qji

qjk
qkj

qki

qik
= qik

qki

qkj

qjk

qji
qij

in

the statement (IV.185) can be equivalently written as
(

qij
qji

qjk
qkj

qki

qik

)2
= 1, which is equivalent to qij

qji

qjk
qkj

qki

qik
=

1. Therefore, the statement (IV.185) is equivalent to the statement (IV.183). Analogously, the equivalence
of (IV.186) and (IV.184) is proved.

The following theorems give us useful tools for verifying the multiplicative consistency of trapezoidal FAPCMs-
M.

Theorem 73. A trapezoidal FAPCM-M Q̃ = {q̃ij}ni,j=1 , q̃ij =
(
qαij , q

β
ij , q

γ
ij , q

δ
ij

)
, is multiplicatively consistent

according to Definition 67 if and only if the inequalities

qαij ≥
qαikq

α
kj

qαikq
α
kj + (1− qαik)(1− qαkj)

, qδij ≤
qδikq

δ
kj

qδikq
δ
kj + (1− qδik)(1− qδkj)

, (IV.190)

qβij ≥
qβikq

β
kj

qβikq
β
kj + (1− qβik)(1− qβkj)

, qγij ≤
qγikq

γ
kj

qγikq
γ
kj + (1− qγik)(1− qγkj)

, (IV.191)

hold for every i, j, k = 1, . . . , n, i < j, k ̸= i, j.

Proof. It is sufficient to demonstrate the equivalence of the expression (IV.190) and (IV.179). The demonstra-
tion of the equivalence of (IV.191) and (IV.180) is analogous.

First, let us demonstrate that when the inequalities (IV.190) hold for every i, j, k = 1, . . . , n, i < j, k ̸= i, j,
then they hold for every i, j, k = 1, . . . , n. The inequalities (IV.190) are always satisfied for i, j, k = 1, . . . , n such
that

(i) i = j ̸= k :
qαikq

α
ki

qαikq
α
ki + (1− qαik)(1− qαki)

=
qαikq

α
ki

qαikq
α
ki + qδikq

δ
ki

≤ qαikq
α
ki

2qαikq
α
ki

= 0.5 = qαii

qδikq
δ
ki

qδikq
δ
ki + (1− qδik)(1− qδki)

=
qδikq

δ
ki

qδikq
δ
ki + qαikq

α
ki

≥ qδikq
δ
ki

2qδikq
δ
ki

= 0.5 = qδii

(ii) i ̸= j = k :
qαijq

α
jj

qαijq
α
jj + (1− qαij)(1− qαjj)

=
0.5qαij

0.5qαij + 0.5(1− qαij)
= qαij

qδijq
δ
jj

qδijq
δ
jj + (1− qδij)(1− qδjj)

=
0.5qδij

0.5qδij + 0.5(1− qδij)
= qδij
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(iii) j ̸= k = i :
qαiiq

α
ij

qαiiq
α
ij + (1− qαii)(1− qαij)

=
0.5qαij

0.5qαij + 0.5(1− qαij)
= qαij

qδijq
δ
jj

qδiiq
δ
ij + (1− qδii)(1− qδij)

=
0.5qδij

0.5qδij + 0.5(1− qδij)
= qδij

(iv) i = j = k :
qαiiq

α
ii

qαiiq
α
ii + (1− qαii)(1− qαii)

=
0.5 · 0.5

0.5 · 0.5 + 0.5 · 0.5
= 0.5 = qαij

qδiiq
δ
ii

qδiiq
δ
ii + (1− qδii)(1− qδii)

=
0.5 · 0.5

0.5 · 0.5 + 0.5 · 0.5
= 0.5 = qδij

Further, when the inequalities (IV.190) are satisfied for i, j, k = 1, . . . , n, i < j, k ̸= i, j, then they are
satisfied also for j, i, k = 1, . . . , n, j > i, k ̸= i, j,

qαjkq
α
ki

qαjkq
α
ki + (1− qαjk)(1− qαki)

=
qαjkq

α
ki

qαjkq
α
ki+qδjkq

δ
ki

= 1− qδikq
δ
kj

qαjkq
α
ki+qδikq

δ
kj

= 1− qδikq
δ
kj

qδikq
δ
kj+(1−qδik)(1−qδkj)

≤ 1− qδij = qαji,

qδjkq
δ
ki

qδjkq
δ
ki + (1− qδjk)(1− qδki)

=
qδjkq

δ
ki

qδjkq
δ
ki+qαjkq

α
ki

= 1− qαikq
α
kj

qδjkq
δ
ki+qαikq

α
kj

= 1− qαikq
α
kj

qαikq
α
kj+(1−qαik)(1−qαkj)

≥ 1− qαij = qδji.

To finalize the proof, it is sufficient to show that the inequalities (IV.190) are equivalent to the condition
(IV.179) for every i, j, k = 1, . . . , n.

First, let Q̃ be a trapezoidal FAPCM-M multiplicatively consistent according to Definition 67. Then for
qij := qαij ∃qik ∈

[
qαik, q

δ
ik

]
∧ ∃qkj ∈

[
qαkj , q

δ
kj

]
: qαij =

qikqkj

qikqkj+(1−qik)(1−qkj)
. Since qik ≥ qαik, qkj ≥ qαkj , and since

qikqkj

qikqkj+(1−qik)(1−qkj)
is increasing in both variables on interval ]0, 1[, then clearly (IV.190) is valid. Analogously,

for qij := qδij ∃qik ∈
[
qαik, q

δ
ik

]
∧ ∃qkj ∈

[
qαkj , q

δ
kj

]
: qδij =

qikqkj

qikqkj+(1−qik)(1−qkj)
. Since qik ≤ qδik, qkj ≤ qδkj , then

clearly (IV.191) is valid.
Second, let the expression (IV.190) be valid for a trapezoidal FAPCM-M Q̃. Because qikqkj

qikqkj+(1−qik)(1−qkj)
is

increasing in both variables qik and qkj on intervals [qαik, q
δ
ik] and [qαkj , q

δ
kj ], respectively, then from the inequali-

ties (IV.190) we get

∀qij ∈
[
qαij , q

δ
ij

]
:

qαikq
α
kj

qαikq
α
kj + (1− qαik)(1− qαkj)

≤ qij ≤
qδikq

δ
kj

qδikq
δ
kj + (1− qδik)(1− qδkj)

and, therefore, (IV.179) is satisfied.

Theorem 74. A trapezoidal FAPCM-M Q̃ = {q̃ij}ni,j=1 , q̃ij =
(
qαij , q

β
ij , q

γ
ij , q

δ
ij

)
, is multiplicatively consistent

according to Definition 67 if and only if

qαij≥ max
k=1,...,n

k ̸=i,j

{
qαikq

α
kj

qαikq
α
kj+(1−qαik)(1−qαkj)

}
, qδij≤ min

k=1,...,n

k ̸=i,j

{
qδikq

δ
kj

qδikq
δ
kj+(1−qδik)(1−qδkj)

}
, (IV.192)

qβij≥ max
k=1,...,n

k ̸=i,j

{
qβikq

β
kj

qβikq
β
kj+(1−qβik)(1−qβkj)

}
, qγij≤ min

k=1,...,n

k ̸=i,j

{
qγikq

γ
kj

qγikq
γ
kj+(1−qγik)(1−qγkj)

}
, (IV.193)

hold for every i, j = 1, . . . , n, i < j.

Proof. The inequalities (IV.192) and (IV.193) follow immediately from Theorem 73.

Theorem 75. A trapezoidal FAPCM-M Q̃ = {q̃ij}ni,j=1 , q̃ij =
(
qαij , q

β
ij , q

γ
ij , q

δ
ij

)
, is multiplicatively consistent

according to Definition 67 if and only if one of the following conditions holds for every i, j, k = 1, . . . , n, i <
j, k ̸= i, j :
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(i)
qαijq

δ
jkq

δ
ki ≥ qαikq

α
kjq

δ
ji, qδijq

α
jkq

α
ki ≤ qδikq

δ
kjq

α
ji (IV.194)

qβijq
γ
jkq

γ
ki ≥ qβikq

β
kjq

γ
ji, qγijq

β
jkq

β
ki ≤ qγikq

γ
kjq

β
ji (IV.195)

(ii)
qαij
qδji

qδjk
qαkj

qδki
qαik

≥ 1,
qδij
qαji

qαjk
qδkj

qαki
qδik

≤ 1 (IV.196)

qβij
qγji

qγjk

qβkj

qγki
qβik

≥ 1,
qγij

qβji

qβjk
qγkj

qβki
qγik

≤ 1 (IV.197)

(iii)
qαij
qδji

qδjk
qαkj

qδki
qαik

≥ qαik
qδki

qαkj
qδjk

qδji
qαij

,
qδij
qαji

qαjk
qδkj

qαki
qδik

≤ qδik
qαki

qδkj
qαjk

qαji
qδij

(IV.198)

qβij
qγji

qγjk

qβkj

qγki
qβik

≥
qβik
qγki

qβkj
qγjk

qγji

qβij
,

qγij

qβji

qβjk
qγkj

qβki
qγik

≤
qγik
qβki

qγkj

qβjk

qβji
qγij

(IV.199)

(iv)
qαij
qδji

≥ qαik
qδki

qαkj
qδjk

,
qδij
qαji

≤ qδik
qαki

qδkj
qαjk

(IV.200)

qβij
qγji

≥
qβik
qγki

qβkj
qγjk

,
qγij

qβji
≤

qγik
qβki

qγkj

qβjk
(IV.201)

Proof. The inequalities (i)–(iv) are obtained directly from the inequalities (IV.190) and (IV.191) by applying the
additive-reciprocity properties qαpq = 1− qδqp, q

β
pq = 1− qγqp, q

γ
pq = 1− qβqp, q

δ
pq = 1− qαqp, p, q = i, j, k.

Remark 35. Notice the similarities between the inequality conditions (i)–(iv) in Theorem 75 and the inequalities
(IV.190), (IV.191) in Theorem 73, and the definitions of multiplicatively consistent interval FAPCMs-M reviewed
in Section 4.3.3.1.1. In particular, the inequalities (IV.194) are in some sense similar to the multiplicative-
transitivity property (IV.173) in Wu and Chiclana’s Definition 65. Condition (IV.198) has a form similar to the
condition (IV.168), which was derived from the condition (IV.167). Finally, the inequalities (IV.190) are similar
to the condition (IV.172) in Wu and Chiclana’s Definition 64.

However, there is a significant difference between the definitions reviewed in Section 4.3.3.1.1 and the new
Definition 67 and the inequality properties in Theorem 75. Definitions 62–65 were obtained by extending the
expressions from Theorem 4 that are mutually equivalent thanks to the additive reciprocity of PCs in APCMs-
M. However, because the interval extension of the expressions from Theorem 4 was done by applying the
standard interval arithmetic, the additive reciprocity of PCs is not preserved anymore in interval FAPCMs-M.
This drawback leads to the fact that Definitions 62–65 are not mutually equivalent. Remember that Wang and
Li (2012) even stated that “ (IV.169) is not equivalent to (IV.167) as in the case of regular APCMs-M” (Wang
and Li (2012), p. 183). This does not hold true for new Definition 67. The constrained fuzzy arithmetic was
applied properly to the fuzzy extension of the condition (II.53) in order to preserve the additive reciprocity of
PCs in trapezoidal FAPCMs-M. As a result, it was possible to extend also the conditions from Theorem 4 so
that their fuzzy extensions are mutually equivalent, see Theorem 72.

In the following example, Definition 67 of multiplicative consistency is confronted with Definitions 62–66.
In particular, it is demonstrated how the drawbacks regarding the dependence of Definitions 62 and 64 on
permutation of objects and violation of the additive-reciprocity property in Definitions 63 and 65 are removed
by Definition 67.

Example 57. Let us examine the interval FAPCM-M given by (IV.165). In Example 54, it was demonstrated
that Definition 62 is not invariant under permutation of objects since the interval FAPCM-M (IV.165) is judged as
multiplictively consistent while its permutation (IV.166) is judged as multiplicatively inconsistent. Analogously,
in Example 55, it was demonstrated that Definition 64 is not invariant under permutation of objects since the
interval FAPCM-M (IV.165) is judged as multiplictively consistent while its permutation (IV.166) is judged as
multiplicatively inconsistent according to the definition.

Now, let us apply Definition 67 to the interval FAPCM-M (IV.165). By using Theorem 73, the interval FAPCM-
A (IV.165) is judged multiplicatively consistent since it satisfies the inequalities (IV.190); see Tab. IV.12. Also
the permuted interval FAPCM-A (IV.166) satisfies the inequalities (IV.190); see Tab. IV.13. Therefore, it is again
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judged as multiplicatively consistent. Moreover, from Theorem 70 it follows that any permutation of the interval
FAPCM-M (IV.165) is multiplicatively consistent.

In Example 56, it was shown that Definitions 63 and 65 violate additive reciprocity of PCs in the interval
FAPCM-M (IV.165). According to Theorem 71, the additive-reciprocity property is preserved in new Definition
67. This basically means that by taking any value from any interval PC in the interval FAPCM-M (IV.165),
there exist values in the remaining interval PCs such that they form a multiplicatively consistent APCM-M. Let
us examine the triplet i = 1, j = 2, k = 3 of indices and let us consider the value q12 = 3

5 ∈ [ 12 ,
3
5 ]. Then,

according to (IV.179), there exist values q13 ∈ [ 35 ,
6
7 ] and q32 ∈ [ 15 ,

2
5 ] such that 3

5 = q13q32
q13q32+(1−q13)(1−q32)

. It is, for
example, q13 = 4

5 , q32 = 3
11 . The additive reciprocity is clearly not violated. More interestingly, let us consider

the triplet i = 1, j = 1, k = 2. Then, according to (IV.179), there exist values q12 ∈ [ 12 ,
3
5 ] and q21 ∈ [ 25 ,

1
2 ] such

that 1
2 = q12q21

q12q21+(1−q12)(1−q21)
. This equality is satisfied by any value q12 ∈ [ 12 ,

3
5 ] and the corresponding value

q21 ∈ [ 12 ,
2
5 ] such that q21 = 1− q12, which again preserves the additive reciprocity.

Notice that the interval FAPCM-M (IV.165) is also multiplicatively weakly consistent according to Definition
66. For example, the priority vector u = (0.5217, 0.3478, 0.1304)T satisfies the condition (IV.175). △

In the following theorem, the relation between the multiplicative consistency and the multiplicative weak
consistency given by Definitions 67 and 66, respectively, is formulated.

Theorem 76. Let Q̃ = {q̃ij}ni,j=1 , q̃ij =
(
qαij , q

β
ij , q

γ
ij , q

δ
ij

)
, be a trapezoidal FAPCM-M. If Q̃ is multiplicatively

consistent according to Definition 67, then it is also multiplicatively weakly consistent according to Definition
66.

Proof. The statement follows immediately from Theorem 74. In particular, the inequality (IV.176) is obtained
immediately from the inequalities (IV.192).

Remark 36. According to Theorem 76, when a trapezoidal FAPCM-M is multiplicatively consistent according
to Definition 67, then it is also automatically multiplicatively weakly consistent according Definition 66. How-
ever, this does not hold the other way around. Clearly, the multiplicative weak consistency is much weaker
than the multiplicative consistency; it only requires existence of one crisp multiplicatively consistent FAPCM-M
obtainable by combining particular elements from the closures of the supports of trapezoidal FAPCM-M. Thus,
the set of all trapezoidal FAPCMs-M multiplicatively consistent according to Definition 67 is a proper subset of
the set of all trapezoidal FAPCMs-M multiplicatively weakly consistent according to Definition 66.

Example 58. Let us examine multiplicative consistency and multiplicative weak consistency of the trapezoidal
FAPCM-M

Q̃ =



1
2

(
8
15 ,

9
15 ,

10
15 ,

11
15

) (
16
20 ,

16
20 ,

17
20 ,

18
20

) (
16
20 ,

17
20 ,

18
20 ,

19
20

)(
4
15 ,

5
15 ,

6
15 ,

7
15

)
1
2

(
13
20 ,

14
20 ,

15
20 ,

15
20

) (
15
20 ,

16
20 ,

17
20 ,

17
20

)(
2
20 ,

3
20 ,

4
20 ,

4
20

) (
5
20 ,

6
20 ,

6
20 ,

7
20

)
1
2

(
9
20 ,

10
20 ,

12
20 ,

13
20

)(
1
20 ,

2
20 ,

3
20 ,

4
20

) (
3
20 ,

3
20 ,

4
20 ,

5
20

) (
7
20 ,

8
20 ,

10
20 ,

11
20

)
1
2

 . (IV.202)

By verifying the inequalities (IV.190) and (IV.191), we find out that Q̃ is not multiplicatively consistent; e.g.

qδ12q
δ
24

qδ12q
δ
24 + (1− qδ12)(1− qδ24)

=
11
15

17
20

11
15

17
20 + 4

15
3
20

=
187

199
̸≥ qδ14 =

19

20
.

However, Q̃ can still be at least multiplicatively weakly consistent. Let us verify that by using Theorem 69.
According to Tab. IV.14, the property (IV.177) is satisfied, and thus Q̃ is multiplicatively weakly consistent.

Table IV.12: Inequality conditions (IV.190) for the interval FAPCM-M (IV.165).

i < j : qLij ≥
qLikq

L
kj

qLikq
L
kj+(1−qLik)(1−qLkj)

qUij ≤
qUikq

U
kj

qUikq
U
kj+(1−qUik)(1−qUkj)

1, 2 : 1
2 ≥

3
5
1
5

3
5
1
5 + 2

5
4
5

3
5 ≤

6
7
2
5

6
7
2
5 + 1

7
3
5

1, 3 : 3
5 ≥

1
2
3
5

1
2
3
5 + 1

2
2
5

6
7 ≤

3
5
4
5

3
5
4
5 + 2

5
1
5

2, 3 : 3
5 ≥

2
5
3
5

2
5
3
5 + 3

5
2
5

4
5 ≤

1
2
6
7

1
2
6
7 + 1

2
1
7
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Table IV.13: Inequality conditions (IV.190) for the permuted interval FAPCM-M (IV.166).

i < j : qLij ≥
qLikq

L
kj

qLikq
L
kj+(1−qLik)(1−qLkj)

qUij ≤
qUikq

U
kj

qUikq
U
kj+(1−qUik)(1−qUkj)

1, 2 : 1
7 ≥

1
5
2
5

1
5
2
5 + 4

5
3
5

2
5 ≤

2
5
1
2

2
5
1
2 + 3

5
1
2

1, 3 : 1
5 ≥

1
7
1
2

1
7
1
2 + 6

7
1
2

2
5 ≤

2
5
3
5

2
5
3
5 + 3

5
2
5

2, 3 : 1
2 ≥

3
5
1
5

3
5
1
5 + 2

5
4
5

3
5 ≤

6
7
2
5

6
7
2
5 + 1

7
3
5

Table IV.14: Condition (IV.177) for the trapezoidal FAPCM-M (IV.202).

i < j : max
k=1,...,4

{
qαikq

α
kj

qαikq
α
kj+(1−qαik)(1−qαkj)

}
≤ min

k=1,...,4

{
qδikq

δ
kj

qδikq
δ
kj+(1−qδik)(1−qδkj)

}
1, 2 : max

{
8
15 ,

8
15 ,

4
7 ,

12
29

}
≤ min

{
11
15 ,

11
15 ,

63
76 ,

19
20

}
1, 3 : max

{
16
20 ,

104
153 ,

16
20 ,

28
41

}
≤ min

{
18
20 ,

35
37 ,

18
20 ,

209
218

}
1, 4 : max

{
16
20 ,

24
31 ,

36
47 ,

16
20

}
≤ min

{
19
20 ,

187
199 ,

117
124 ,

19
20

}
2, 3 : max

{
16
27 ,

13
20 ,

13
20 ,

21
34

}
≤ min

{
63
71 ,

15
20 ,

15
20 ,

187
214

}
2, 4 : max

{
16
27 ,

15
20 ,

117
194 ,

15
20

}
≤ min

{
133
141 ,

19
20 ,

39
46 ,

19
20

}
3, 4 : max

{
8
27 ,

1
2 ,

9
20 ,

9
20

}
≤ min

{
19
23 ,

119
158 ,

13
20 ,

13
20

}

A vector satisfying the inequalities (IV.175) in Definition 66 is, for example, u =
(

9
16 ,

9
32 ,

3
32 ,

1
16

)T with the
corresponding APCM-M Q∗ in the form

Q∗ =


1
2

2
3

6
7

9
10

1
3

1
2

3
4

9
11

1
7

1
4

1
2

3
5

1
10

2
11

2
5

9
11

 . (IV.203)

△

In the rest of this section, some interesting properties of multiplicatively weakly consistent and multiplica-
tively consistent trapezoidal FAPCMs-M are examined.

Theorem 77. Let Q̃ be a trapezoidal FAPCM-M multiplicatively weakly consistent according to Definition 66.
The interval FAPCM-M Q̃∗ constructed from Q̃ by eliminating the l-th row and the l-th column, l ∈ {1, . . . , n} ,
is again multiplicatively weakly consistent.

Proof. For Q̃, (IV.175) is valid for every i, j = 1, . . . , n. After eliminating the l-th row and the l-th column of Q̃,
(IV.175) is still valid for every remaining i, j ∈ {1, . . . , n} \ {l} . Therefore, the new trapezoidal FAPCM-M Q̃∗ is
still multiplicatively weakly consistent.

The same holds also for multiplicatively consistent trapezoidal FAPCMs-M.

Theorem 78. Let Q̃ be a trapezoidal FAPCM-M multiplicatively consistent according to Definition 67. The
trapezoidal FAPCM-M Q̃∗ constructed from Q̃ by eliminating the l-th row and the l-th column, l ∈ {1, . . . , n} , is
again multiplicatively consistent.

Proof. For Q̃, (IV.179) is valid for every i, j, k = 1, . . . , n. After eliminating the l-th row and the l-th column of
Q̃, (IV.179) is still valid for every remaining i, j, k ∈ {1, . . . , n} \ {l} . Therefore, the new interval FAPCM-M Q̃∗

is multiplicatively consistent.

Remark 37. Theorems 77 and 78 are useful in situations when the set of objects compared pairwisely is being
reduced. According to the theorems, elimination of one or more objects has no impact on the multiplicative or
multiplicative weak consistency of fuzzy PCs of remaining objects.
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The following theorems provide some results regarding aggregation of multiplicatively and multiplicatively
weakly consistent trapezoidal FAPCMs-M into one trapezoidal FAPCM-M, which are particularly useful in group
decision making.

Theorem 79. Let Q̃1 =
{
q̃1ij
}n
i,j=1

, q̃1ij =
(
q1αij , q1βij , q

1γ
ij , q

1δ
ij

)
, and Q̃2 =

{
q̃2ij
}n
i,j=1

, q̃2ij =
(
q2αij , q2βij , q

2γ
ij , q

2δ
ij

)
, be

trapezoidal FAPCMs-M multiplicatively weakly consistent according to Definition 66. Then Q̃ = {q̃ij}ni,j=1 , q̃ij =(
qαij , q

β
ij , q

γ
ij , q

δ
ij

)
, such that

qαij =

(
q1αij
q1δji

)ϵ (
q2αij
q2δji

)1−ϵ

(
q1αij
q1δji

)ϵ ( q2αij
q2δji

)1−ϵ

+ 1

, qβij =

(
q1βij

q1γji

)ϵ(
q2βij

q2γji

)1−ϵ

(
q1βij

q1γji

)ϵ(
q2βij

q2γji

)1−ϵ

+ 1

,

qγij =

(
q1γij

q1βji

)ϵ(
q2γij

q2βji

)1−ϵ

(
q1γij

q1βji

)ϵ(
q2γij

q2βji

)1−ϵ

+ 1

, qδij =

(
q1δij
q1αji

)ϵ(
q2δij
q2αji

)1−ϵ

(
q1δij
q1αji

)ϵ ( q2δij
q2αji

)1−ϵ

+ 1

,

is a multiplicatively weakly consistent trapezoidal FAPCM-M for any ϵ ∈ [0, 1].

Proof. First, let us show that Q̃ is a trapezoidal FAPCM-M. For i = 1, . . . , n, we get

qαii =

(
q1αii
q1δii

)ϵ (
q2αii
q2δii

)1−ϵ

(
q1αii
q1δii

)ϵ (
q2αii
q2δii

)1−ϵ

+ 1
=

1ϵ11−ϵ

1ϵ11−ϵ + 1
= 0.5,

Similarly, qβii = 0.5, qγii = 0.5, qδii = 0.5, and thus, q̃ii = 0.5, i = 1, . . . , n. Further, for i ̸= j, we have

qαij =

(
q1αij
q1δji

)ϵ (
q2αij
q2δji

)1−ϵ

(
q1αij
q1δji

)ϵ ( q2αij
q2δji

)1−ϵ

+ 1

=
(q1αij )ϵ(q2αij )1−ϵ

(q1αij )ϵ(q2αij )1−ϵ + (q1δji )
ϵ(q2δji )

1−ϵ

=
1(

q1δji
q1αij

)ϵ ( q2δji
q2αij

)1−ϵ

+ 1

= 1−

(
q1δji
q1αij

)ϵ(
q2δji
q2αij

)1−ϵ

(
q1δji
q1αij

)ϵ ( q2δji
q2αij

)1−ϵ

+ 1

= 1− qδji,

and, analogously, the equalities qβij = 1 − qγji, q
γ
ij = 1 − qβji, q

δ
ij = 1 − qαji are derived. Therefore, q̃ij =

1− q̃ji, i, j = 1, . . . , n. Finally, because ∀i, j = 1, . . . , n : q̃1ij ⊆]0, 1[, q̃2ij ⊆]0, 1[, then also q̃ij ⊆]0, 1[.

Second, let us show that Q̃ is multiplicatively weakly consistent. It is sufficient to prove inequalities
(IV.175). Since (IV.175) is valid for Q̃1 and Q̃2, there exist non-negative vectors u1 =

(
u1
1, . . . , u

1
n

)T and

u2 =
(
u2
1, . . . , u

2
n

)T such that q1αij ≤ u1
i

u1
i+u1

j
≤ q1δij , q

2α
ij ≤ u2

i

u2
i+u2

j
≤ q2δij , i, j, k = 1, . . . , n. From this, it follows

∀i, j, k = 1, . . . , n :

qαij =

(
q1αij

q1δ
ji

)ϵ(
q2αij

q2δ
ji

)1−ϵ

(
q1α
ij

q1δ
ji

)ϵ( q2α
ij

q2δ
ji

)1−ϵ

+1

=

(
q1αij

1−q1α
ij

)ϵ(
q2αij

1−q2α
ij

)1−ϵ

(
q1α
ij

1−q1α
ij

)ϵ( q2α
ij

1−q2α
ij

)1−ϵ

+1

≤


u1
i

u1
i
+u1

j

1−
u1
i

u1
i
+u1

j


ϵ

u2
i

u2
i
+u2

j

1−
u2
i

u2
i
+u2

j


1−ϵ


u1
i

u1
i
+u1

j

1−
u1
i

u1
i
+u1

j


ϵ

u2
i

u2
i
+u2

j

1−
u2
i

u2
i
+u2

j


1−ϵ

+1

=

(
u1
i

u1
j

)ϵ(
u2
i

u2
j

)1−ϵ

(
u1
i

u1
j

)ϵ(
u2
i

u2
j

)1−ϵ

+1

=

(u1
i )

ϵ(u2
i )

1−ϵ

(u1
i )

ϵ(u2
i )

1−ϵ+(u1
j )

ϵ(u2
j )

1−ϵ = · · · ≤ qδij .

Thus, by denoting ui := (u1
i )

ϵ(u2
i )

1−ϵ, i = 1, . . . , n, we get a non-negative vector u = (u1, . . . , un)
T satisfying

the inequalities (IV.175), which means that Q̃ is multiplicatively weakly consistent.

Theorem 79 can be further extended to the aggregation of p ≥ 2 multiplicatively weakly consistent trape-
zoidal FAPCMs-M as follows.
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Theorem 80. Let Q̃τ =
{
q̃τij
}n
i,j=1

, q̃τij =
(
qταij , qτβij , qτγij , qτδij

)
, τ = 1, . . . , p, be trapezoidal FAPCMs-M multi-

plicatively weakly consistent according to Definition 66. Then Q̃ = {q̃ij}ni,j=1 such that q̃ij =
(
qαij , q

β
ij , q

γ
ij , q

δ
ij

)
=

p∏
τ=1

(
qτα
ij

qτδ
ji

)ϵτ
p∏

τ=1

(
qτα
ij

qτδ
ji

)ϵτ
+ 1

,

p∏
τ=1

(
qτβ
ij

qτγ
ji

)ϵτ

p∏
τ=1

(
qτβ
ij

qτγ
ji

)ϵτ

+ 1

,

p∏
τ=1

(
qτγ
ij

qτβ
ji

)ϵτ

p∏
τ=1

(
qτγ
ij

qτβ
ji

)ϵτ

+ 1

,

p∏
τ=1

(
qτδ
ij

qτα
ji

)ϵτ

p∏
τ=1

(
qτδ
ij

qτα
ji

)ϵτ
+ 1


is a multiplicatively weakly consistent trapezoidal FAPCM-M for any ϵτ ∈ [0, 1] , τ = 1, . . . , p, with

∑p
τ=1 ϵτ = 1.

Proof. The proof is analogous to the proof of Theorem 79.

Similar theorems are formulated also for multiplicatively consistent trapezoidal FAPCMs-M.

Theorem 81. Let Q̃1 =
{
q̃1ij
}n
i,j=1

, q̃1ij =
(
q1αij , q1βij , q

1γ
ij , q

1δ
ij

)
, and Q̃2 =

{
q̃2ij
}n
i,j=1

, q̃2ij =
(
q2αij , q2βij , q

2γ
ij , q

2δ
ij

)
,

be trapezoidal FAPCMs-M multiplicatively consistent according to Definition 67. Then Q̃ = {q̃ij}ni,j=1 , q̃ij =(
qαij , q

β
ij , q

γ
ij , q

δ
ij

)
, such that

qαij =

(
q1αij
q1δji

)ϵ (
q2αij
q2δji

)1−ϵ

(
q1αij
q1δji

)ϵ ( q2αij
q2δji

)1−ϵ

+ 1

, qβij =

(
q1βij

q1γji

)ϵ(
q2βij

q2γji

)1−ϵ

(
q1βij

q1γji

)ϵ(
q2βij

q2γji

)1−ϵ

+ 1

,

qγij =

(
q1γij

q1βji

)ϵ(
q2γij

q2βji

)1−ϵ

(
q1γij

q1βji

)ϵ(
q2γij

q2βji

)1−ϵ

+ 1

, qδij =

(
q1δij
q1αji

)ϵ(
q2δij
q2αji

)1−ϵ

(
q1δij
q1αji

)ϵ ( q2δij
q2αji

)1−ϵ

+ 1

,

is a multiplicatively consistent trapezoidal FAPCM-M for any ϵ ∈ [0, 1].

Proof. From the first part of the proof of Theorem 79 we know that Q̃ is a trapezoidal FAPCM-M. Therefore, it
is sufficient to show that Q̃ satisfies the inequalities (IV.190) and (IV.191). Only the inequalities (IV.190) will be
proven here; the proof of the inequalities (IV.191) is analogous.

Q̃1 and Q̃2 satisfy the inequalities (IV.190), i.e.

q1αij ≥
q1αik q1αkj

q1αik q1αkj + (1− q1αik )(1− q1αkj )
, q1δij ≤

q1δik q
1δ
kj

q1δik q
1δ
kj + (1− q1δik )(1− q1δkj)

, (IV.204)

q2αij ≥
q2αik q2αkj

q2αik q2αkj + (1− q2αik )(1− q2αkj )
, q2δij ≤

q2δik q
2δ
kj

1q2δik q
2δ
kj + (1− q2δik )(1− q2δkj)

. (IV.205)

By applying the inequalities (IV.204) and (IV.205), we obtain

qαij =

(
q1αij

q1δ
ji

)ϵ(
q2αij

q2δ
ji

)1−ϵ

(
q1α
ij

q1δ
ji

)ϵ( q2α
ij

q2δ
ji

)1−ϵ

+1

≥


q1αik q1αkj

q1α
ik

q1α
kj

+q1δ
ki

q1δ
jk

1−
q1α
ik

q1α
kj

q1α
ik

q1α
kj

+q1δ
ki

q1δ
jk


ϵ

q2αik q2αkj

q2α
ik

q2α
kj

+q2δ
ki

q2δ
jk

q2δ
ik

q2δ
kj

q2α
ik

q2α
kj

+q2δ
ki

q2δ
jk


1−ϵ

(
q1α
ik

q1α
kj

q1δ
jk

q1δ
ki

)ϵ(
q2α
ik

q2α
kj

q2δ
jk

q2δ
ki

)1−ϵ

+1

=


(

q1αik
q1δ
ki

)ϵ(
q2αik
q2δ
ki

)1−ϵ

(
q1α
ik

q1δ
ki

)ϵ( q2α
ik

q2δ
ki

)1−ϵ

+1




 q1αkj

q1δ
jk

ϵ q2αkj

q2δ
jk

1−ϵ

 q1α
kj

q1δ
jk

ϵ q2α
kj

q2δ
jk

1−ϵ

+1




(
q1α
ik

q1δ
ki

)ϵ( q2α
ik

q2δ
ki

)1−ϵ

(
q1α
ik

q1δ
ki

)ϵ( q2α
ik

q2δ
ki

)1−ϵ

+1




 q1α
kj

q1δ
jk

ϵ q2α
kj

q2δ
jk

1−ϵ

 q1α
kj

q1δ
jk

ϵ q2α
kj

q2δ
jk

1−ϵ

+1

+ 1( q1α
ik

q1δ
ki

)ϵ( q2α
ik

q2δ
ki

)1−ϵ

+1

 q1α
kj

q1δ
jk

ϵ q2α
kj

q2δ
jk

1−ϵ

+1



=
qαikq

α
kj

qαikq
α
kj+

(q1δ
ki

)ϵ(q2δ
ki

)1−ϵ

(q1δ
ki

)ϵ(q2δ
ki

)1−ϵ+(q1α
ik

)ϵ(q2α
ik

)1−ϵ

(q1δ
jk

)ϵ(q2δ
jk

)1−ϵ

(q1δ
jk

)ϵ(q2δ
jk

)1−ϵ+(q1α
kj

)ϵ(q2α
kj

)1−ϵ

=
qαikq

α
kj

qαikq
α
kj+

(
q1δ
ki

q1α
ik

)ϵ(
q2δ
ki

q2α
ik

)1−ϵ

(
q1δ
ki

q1α
ik

)ϵ(
q2δ
ki

q2α
ik

)1−ϵ

+1

 q1δ
jk

q1α
kj

ϵ q2δ
jk

q2α
kj

1−ϵ

 q1δ
jk

q1α
kj

ϵ q2δ
jk

q2α
kj

1−ϵ

+1

=
qαikq

α
kj

qαikq
α
kj+(1−qαik)(1−qαkj)

.
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Analogously, the inequality qδij ≤
qδikq

δ
kj

qδikq
δ
kj+(1−qδik(1−qδkj

is proved.

Theorem 81 can be further extended to the aggregation of p ≥ 2 multiplicatively consistent interval FAPCMs-
M as follows.

Theorem 82. Let Q̃τ =
{
q̃τij
}n
i,j=1

, q̃τij =
(
qταij , qτβij , qτγij , qτδij

)
, τ = 1, . . . , p, be trapezoidal FAPCMs-M multi-

plicatively consistent according to Definition 67. Then Q̃ = {q̃ij}ni,j=1 such that q̃ij =
(
qαij , q

β
ij , q

γ
ij , q

δ
ij

)
=


p∏

τ=1

(
qτα
ij

qτδ
ji

)ϵτ
p∏

τ=1

(
qτα
ij

qτδ
ji

)ϵτ
+ 1

,

p∏
τ=1

(
qτβ
ij

qτγ
ji

)ϵτ

p∏
τ=1

(
qτβ
ij

qτγ
ji

)ϵτ

+ 1

,

p∏
τ=1

(
qτγ
ij

qτβ
ji

)ϵτ

p∏
τ=1

(
qτγ
ij

qτβ
ji

)ϵτ

+ 1

,

p∏
τ=1

(
qτδ
ij

qτα
ji

)ϵτ

p∏
τ=1

(
qτδ
ij

qτα
ji

)ϵτ
+ 1


is a multiplicatively consistent trapezoidal FAPCM-M for any ϵτ ∈ [0, 1] , τ = 1, . . . , p, with

∑p
τ=1 ϵτ = 1.

Proof. The proof is analogous to the proof of Theorem 81.

4.3.3.2 Deriving priorities from FAPCMs-M

In this section, the focus is put on methods for obtaining fuzzy priorities of objects from FAPCMs-M. The
notation ũ = (ũ1, . . . , ũn)

T , ũi = (uα
i , u

β
i , u

γ
i , u

δ
i ), i = 1, . . . , n, will be used hereafter to represent exclusively a

fuzzy priority vector associated with a FAPCM-M.
Various methods have been proposed to derive interval priorities of objects from interval FAPCMs-M. These

methods are mostly based on linear programming models rather than on interval arithmetic. Xu and Chen
(2008a), for example, proposed linear programming models for obtaining interval priorities of objects from
interval FAPCMs-M. The models are based on satisfying the inequalities (IV.163) in the case when the inter-
val FAPCM-M is multiplicatively consistent according to Definition 61 or on satisfying a relaxed version of the
inequalities (IV.163) with additional deviation variables in the case when the interval FAPCM-M is not multiplica-
tively consistent. Genç et al. (2010) showed that in the case of multiplicative consistency, the interval priority
vector can be calculated from the multiplicatively consistent interval FAPCM-M directly without the need to
solve the linear programming models. Very similar linear programming models for obtaining interval priorities
from interval FAPCMs-M based on Tanino’s characterization were also proposed by Wang and Li (2012).

As far as I am aware, the only approach for obtaining interval priorities from interval FAPCMs-M not based
on linear programming models is the approach presented by Xia and Xu (2011). Xia and Xu (2011) derived
formulas for obtaining interval priorities from interval FAPCMs-M based on the extension of the formula (II.62).
This approach is reviewed at the beginning of this section and it is shown that this approach is not invariant
under permutation of objects. Afterwards, new formulas for obtaining fuzzy priorities from FAPCMs-M are
proposed and their properties are discussed. In particular, it is proved that the new formulas preserve the two
desired properties - invariance under permutation and additive reciprocity of PCs.

Xia and Xu (2011) proposed an extension of the formula (II.62) to interval FAPCMs-M. For an interval
FAPCM-M Q =

{
qij
}n
i,j=1

, qij = [qLij , q
U
ij ], they constructed two APCMs-M C = {cij}ni,j=1 and D = {dij}ni,j=1

by applying (IV.164). Afterwards, they derived priorities ui(C) and ui(D), i = 1, . . . , n, of objects from these
APCMs-M C and D, respectively, by using the formula (II.62). The interval priorities ui = [uL

i , u
U
i ], i = 1, . . . , n,

are then determined as

uL
i = min {ui(C), ui(D)} , uU

i = max {ui(C), ui(D)} . (IV.206)

However, this method, similarly to Definition 62 of multiplicative consistency for interval FAPCMs-M pro-
posed by Xia and Xu (2011) and reviewed already in Section 4.3.3.1.1, is not invariant under permutation of
objects. This drawback is illustrated on the following example.

Example 59. Let us consider the interval FAPCM-M Q of three objects o1, o2, and o3 given by (IV.165). The
interval priorities of the objects obtained by the formulas (IV.206) are in the form

u1 = [1.1447, 2.0801], u2 = [1.1447, 1.3867], u3 = [0.3467, 0.7631].

Now, let us consider the corresponding permuted interval FAPCM-M Q
π

given as (IV.166). The interval
priorities of objects obtained from the permuted interval FAPCM-M Q

π
by the formulas (IV.206) are in the form

uπ
π(1) = [1.3104, 1.8171], uπ

π(2) = [1.0000, 1.5874], uπ
π(3) = [0.3467, 0.7631].

As we can see, u1 ̸= uπ
π(1) and u2 ̸= uπ

π(2). △
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Since the method for deriving interval priorities from interval FAPCMs-M proposed by Xia and Xu (2011) is
not invariant under permutation of objects, it is not suitable for deriving interval priorities. It is indispensable
to obtain the interval priorities from interval FAPCMs-M in such a way that they do not change under the
permutation of objects in the interval FAPCMs-M.

The formula (II.62) for obtaining non-normalized priorities from APCMs-M has to be again extended to
FAPCMs-M by properly applying constrained fuzzy arithmetic. For a trapezoidal FAPCM-M Q̃ = {q̃ij}ni,j=1 , q̃ij =

(qαij , q
β
ij , q

γ
ij , q

δ
ij), the non-normalized fuzzy priorities ũi = (uα

i , u
β
i , u

γ
i , u

δ
i ), i = 1, . . . , n, should be obtained by

applying (III.45) as:

uα
i =min

 n

√√√√ n∏
j=1

qij
qji

;

qij ∈
[
qαij , q

δ
ij

]
,

qji = 1− qij ,

j = 1, . . . , n

 , (IV.207)

uβ
i =min

 n

√√√√ n∏
j=1

qij
qji

;

qij ∈
[
qβij , q

γ
ij

]
,

qji = 1− qij ,

j = 1, . . . , n

 , (IV.208)

uγ
i =max

 n

√√√√ n∏
j=1

qij
qji

;

qij ∈
[
qβij , q

γ
ij

]
,

qji = 1− qij ,

j = 1, . . . , n

 , (IV.209)

uδ
i =max

 n

√√√√ n∏
j=1

qij
qji

;

qij ∈
[
qαij , q

δ
ij

]
,

qji = 1− qij ,

j = 1, . . . , n

 . (IV.210)

Unlike in the formulas (IV.143)–(IV.146), the additive-reciprocity constraints in the formulas (IV.207)–(IV.210)
are indispensable since with every PC qij also the reciprocal PC qji appears in the optimized function. Never-
theless, also in this case the optima of the optimization problems (IV.207)–(IV.210) can be determined easily:

uα
i = n

√√√√ n∏
j=1

qαij
qδji

= n

√√√√ n∏
j=1

qαij
1− qαij

, (IV.211)

uβ
i = n

√√√√ n∏
j=1

qβij
qγji

= n

√√√√ n∏
j=1

qβij

1− qβij
, (IV.212)

uγ
i = n

√√√√ n∏
j=1

qγij

qβji
= n

√√√√ n∏
j=1

qγij
1− qγij

, (IV.213)

uδ
i = n

√√√√ n∏
j=1

qδij
qαji

= n

√√√√ n∏
j=1

qδij
1− qδij

. (IV.214)

Note that the formulas (IV.211)–(IV.214) could be obtained also by simply applying simplified standard fuzzy
arithmetic (III.36) to the fuzzy extension of the formula (II.62) since both constrained and standard fuzzy arith-
metic give the same results in this particular case. As it will be shown later, such simplification is not possible
when extending the formula (II.63) to FAPCMs-M.

Example 60. Let us consider the interval FAPCM-M Q given by (IV.165). The interval priorities of objects
obtained by formulas (IV.211)–(IV.214) are

u1 = [1.1447, 2.0801], u2 = [1, 1.15874], u3 = [0.3467, 0.7631].

The same interval priorities are obtained also from the permuted interval FAPCM-M Q
π

given as (IV.166), i.e.
uπ
π(1) = u1, u

π
π(2) = u2, u

π
π(3) = u3. Compare the resulting interval priorities with the interval priorities in Example

59 obtained by applying the method proposed by Xia and Xu (2011). △
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Analogously as in the previous sections, formula (II.63) for obtaining normalized priorities from APCMs-M
needs to be extended to FAPCMs-M by using the constrained fuzzy arithmetic. Only in this way the preservation
of the additive reciprocity of PCs and of invariance under permutation of objects can be guaranteed.

By applying constrained fuzzy arithmetic (III.45) to the fuzzy extension of the formula (II.63) for obtain-
ing normalized priorities of objects, the fuzzy priorities ũCi =

(
uα
Ci, u

β
Ci, u

γ
Ci, u

δ
Ci

)
, i = 1, . . . , n, (the lower

index C stands for the applied concept of constrained fuzzy arithmetic) are obtained from a FAPCM-M Q̃ =
{q̃ij}ni,j=1 , q̃ij = (qαij , q

β
ij , q

γ
ij , q

δ
ij), in this form:

uα
Ci = min


n

√
n∏

j=1

qij
qji

n∑
k=1

n

√
n∏

j=1

qkj

qjk

;

qrs ∈
[
qαrs, q

δ
rs

]
,

qsr = 1− qrs,

r, s = 1, . . . , n

 , (IV.215)

uβ
Ci = min


n

√
n∏

j=1

qij
qji

n∑
k=1

n

√
n∏

j=1

qkj

qjk

;

qrs ∈
[
qβrs, q

γ
rs

]
,

qsr = 1− qrs,

r, s = 1, . . . , n

 , (IV.216)

uγ
Ci = max


n

√
n∏

j=1

qij
qji

n∑
k=1

n

√
n∏

j=1

qkj

qjk

;

qrs ∈
[
qβrs, q

γ
rs

]
,

qsr = 1− qrs,

r, s = 1, . . . , n

 , (IV.217)

uδ
Ci = max


n

√
n∏

j=1

qij
qji

n∑
k=1

n

√
n∏

j=1

qkj

qjk

;

qrs ∈
[
qαrs, q

δ
rs

]
,

qsr = 1− qrs,

r, s = 1, . . . , n

 . (IV.218)

Theorem 83. The fuzzy priorities ũCi = (uα
Ci, u

β
Ci, u

γ
Ci, u

δ
Ci), i = 1, . . . , n, obtained from a FAPCM-M Q̃ =

{q̃ij}ni,j=1 by the formulas (IV.215)–(IV.218) are normalized.

Proof. It is sufficient to prove that the fuzzy priorities ũCi, i = 1, . . . , n, obtained by the formulas (IV.215)–
(IV.218) satisfy the inequalities (III.13). From the formula (IV.215), it follows that uα

Ci was obtained by applying
the formula (II.63) to one particular APCM-M Qαi = {qrs}nr,s=1 , qrs ∈ [qαrs, q

δ
rs], r, s = 1, . . . , n. Let us denote

uαi
k the priorities of objects ok, k ̸= i, obtainable by the formula (II.63) from the same APCM-M Qαi. Obviously,

uα
Ci +

∑n
k=1
k ̸=i

uαi
k = 1, and uαi

k ∈ [uα
Ck, u

δ
Ck], k ̸= i. From this, it follows that uα

Ci +
∑n

k=1
k ̸=i

uδ
Ck ≥ 1. The remaining

inequalities in (III.13) are proved analogously.

Remark 38. According to Theorem 83, the fuzzy priorities ũCi, i = 1, . . . , n, obtained from a FAPCM-M by
the formulas (IV.215)–(IV.218) are normalized in the sense of Definition 29. Notice that the normality of the
fuzzy priorities was again reached naturally by just properly applying constrained fuzzy arithmetic to the fuzzy
extension of the formula (II.63) for obtaining normalized priorities from an APCM-M, similarly as in the case of
the fuzzy extension of the EVM and the GMM; no forced normalization was needed.

Theorem 84. The method for obtaining the normalized fuzzy priorities of objects from FAPCMs-M by using the
formulas (IV.215)–(IV.218) is invariant under permutation of objects in FAPCMs-M.

Proof. It is sufficient to show that for a given object oi, i ∈ {1, . . . , n} , its priority ũCi obtained by the formulas
(IV.215)–(IV.218) does not change under permutation of objects in a FAPCM-M Q̃.

From the invariance of the formula (II.63) reviewed in Section 2.3.3.3, it follows that the priority ui of object
oi determined by the formula (II.63) from the given APCM-M Q does not change under any permutation Qπ =
PQPT of Q, it is just permuted accordingly. This means that the priority ui obtained from Q is equal to the
corresponding priority uπ

π(i) obtained from Qπ.

Therefore, neither the minimum uα
Ci nor the maximum uδ

Ci of the priority ui of object oi obtained by (II.63)
over all APCMs-M obtainable from the closures of the supports of the trapezoidal fuzzy numbers in the trape-
zoidal FAPCM-M Q̃ = {q̃ij}ni,j=1 , q̃ij = (qαij , q

β
ij , q

γ
ij , q

δ
ij), change. Analogously, also the minimum uβ

Ci and the
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maximum uγ
Ci of the priority ui obtained by (II.63) over all APCMs-M obtainable from the cores of the trape-

zoidal fuzzy numbers in the trapezoidal FAPCM-M Q̃ = {q̃ij}ni,j=1 do not change. Therefore, the fuzzy priority
ũCi = (uα

Ci, u
β
Ci, u

γ
Ci, u

δ
Ci) obtained by the formulas (IV.215)–(IV.218) does not change under permutation (it is

only permuted accordingly), which concludes the proof.

The optimization problems solved in (IV.215)–(IV.218) have n2 − n variables and n2−n
2 additive-reciprocity

constraints (the number of variables and additive-reciprocity constraints gets reduced when crisp numbers
are present above and below the main diagonal of the FAPCM-M). Thus, the computational complexity of the
optimization problems increases rapidly with an increasing dimension n. However, the following theorem shows
that the optimization problems (IV.215)–(IV.218) can be simplified significantly. First, the additive-reciprocity
constraints can be incorporated into the objective functions. Second, when uα

Ci is computed, the variables qij ,
j = 1, . . . , n, can be fixed as the lower boundary values of the trapezoidal fuzzy numbers in the i-th row of
the FAPCM, i.e. as qij := qαij . Analogously, also for the representing values uβ

Ci, u
γ
Ci, and uδ

Ci. In this way, the
number of variables is reduced from n2 − n to n2−n

2 − (n− 1).

Theorem 85. Let Q̃ = {q̃ij}ni,j=1, q̃ij =
(
qαij , q

β
ij , q

γ
ij , q

δ
ij

)
, be a trapezoidal FAPCM-M. The optimization prob-

lems (IV.215)–(IV.218) can be simplified for i = 1, . . . , n in the following way:

uα
Ci =

n

√
n∏

j=1

qαij
1−qαij

n

√
n∏

j=1

qαij
1−qαij

+max


n∑

k=1
k ̸=i

n

√√√√√ 1−qαik
qαik

k−1∏
l=1
l ̸=i

1−qlk
qlk

n∏
l=k+1
l ̸=i

qkl

1−qkl
;

qrs ∈
[
qαrs, q

δ
rs

]
,

r = 1, . . . , n− 1,

s = r + 1, . . . , n,

r, s ̸= i


,

(IV.219)

uβ
Ci =

n

√
n∏

j=1

qβij

1−qβij

n

√
n∏

j=1

qβij

1−qβij
+max


n∑

k=1
k ̸=i

n

√√√√√ 1−qβik
qβik

k−1∏
l=1
l ̸=i

1−qlk
qlk

n∏
l=k+1
l ̸=i

qkl

1−qkl
;

qrs ∈
[
qβrs, q

γ
rs

]
,

r = 1, . . . , n− 1,

s = r + 1, . . . , n,

r, s ̸= i


,

(IV.220)

uγ
Ci =

n

√
n∏

j=1

qγij
1−qγij

n

√
n∏

j=1

qγij
1−qγij

+min


n∑

k=1
k ̸=i

n

√√√√√ 1−qγik
qγik

k−1∏
l=1
l ̸=i

1−qlk
qlk

n∏
l=k+1
l ̸=i

qkl

1−qkl
;

qrs ∈
[
qβrs, q

γ
rs

]
,

r = 1, . . . , n− 1,

s = r + 1, . . . , n,

r, s ̸= i


,

(IV.221)

uδ
Ci =

n

√
n∏

j=1

qδij
1−qδij

n

√
n∏

j=1

qδij
1−qδij

+min


n∑

k=1
k ̸=i

n

√√√√√ 1−qδik
qδik

k−1∏
l=1
l ̸=i

1−qlk
qlk

n∏
l=k+1
l ̸=i

qkl

1−qkl
;

qrs ∈
[
qαrs, q

δ
rs

]
,

r = 1, . . . , n− 1,

s = r + 1, . . . , n,

r, s ̸= i


.

(IV.222)

Proof. First, let us show that the formulas (IV.215) and (IV.219) are identical. For any i ∈ {1, . . . , n}, the formula
(IV.215) can be written in the following way:

uα
Ci = min



n

√
n∏

j=1

qij
1−qij

n

√
n∏

j=1

qij
1−qij

+
n∑

k=1
k ̸=i

n

√√√√ 1−qik
qik

n∏
j=1

j ̸=i

qkj

1−qkj

;

qrs ∈
[
qαrs, q

δ
rs

]
,

qsr = 1− qrs,

r, s = 1, . . . , n


.
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Let us denote xi := n

√√√√ n∏
j=1

qij
1− qij

, and yi :=

n∑
k=1
k ̸=i

n

√√√√√1− qik
qik

n∏
j=1

j ̸=i

qkj
1− qkj

.

Obviously, xi > 0 for qis ∈
[
qαis, q

δ
is

]
, s = 1, . . . , n, and yi > 0 for qrs ∈

[
qαrs, q

δ
rs

]
, qsr = 1 − qrs, r, s = 1, . . . , n.

Further, xi is increasing in all variables qis, s ̸= i :

∂xi

∂qis
=

 n∏
j=1

j ̸=s

(
qij

1− qij

) 1
n

 1

n

(
qis

1− qis

) 1−n
n 1

(1− qis)2
> 0,

qik ∈ [qαik, q
δ
ik],

k = 1, . . . , n,

and yi is decreasing in variables qis, s ̸= i :

∂yi
∂qis

=

 n∏
j=1

j ̸=i

(
qsj

1− qsj

) 1
n

· 1n ·
(
1− qis
qis

) 1−n
n

· −1

q2is
< 0,

qkj ∈ [qαkj , q
δ
kj ],

k, j = 1, . . . , n.

Further, let us denote fi :=
xi

xi+yi
. Then ∂fi

∂xi
= yi

(xi+yi)
2 > 0, and ∂fi

∂yi
= −xi

(xi+yi)
2 < 0. Hence, fi is an increasing

function of xi and a decreasing function of yi. It means that for minimizing the function fi, we have to minimize
xi and maximize yi. Since the function xi is increasing in all the variables, we obtain

x′
i := min

{
xi ; qij ∈

[
qαij , q

δ
ij

]
, j = 1, . . . , n

}
= n

√√√√ n∏
j=1

qαij
1− qαij

.

Since the function yi is decreasing in the variables qi1, . . . , qin, we obtain

y′i := max

{
yi ;

qrs ∈
[
qαrs, q

δ
rs

]
, qsr = 1− qrs,

r, s = 1, . . . , n

}
=

n∑
k=1
k ̸=i

n

√√√√√1− qαik
qαik

n∏
j=1

j ̸=i

qkj
1− qkj

;
qrs ∈

[
qαrs, q

δ
rs

]
, qsr = 1− qrs,

r, s = 1, . . . , n


Finally, thanks to the additive reciprocity of Q̃, we can also replace all the elements qsr, r, s = 1, . . . , n, r < s,
i.e. the elements below the main diagonal, by the reciprocals 1− qrs of the corresponding elements qrs above
the main diagonal. By that we obtain formula (IV.219).

Analogously, it can be demonstrated that (IV.216) is equivalent to (IV.220), (IV.217) is equivalent to (IV.221),
and (IV.218) is equivalent (IV.222).

Example 61. Let us consider the trapezoidal FAPCM-M

Q̃ =


1
2

(
1
3 ,

1
2 ,

1
2 ,

2
3

) (
4
8 ,

5
8 ,

6
8 ,

7
8

) (
6
9 ,

7
9 ,

7.5
9 , 8

9

)(
1
3 ,

1
2 ,

1
2 ,

2
3

)
1
2

(
1
2 ,

1
2 ,

3
5 ,

3
5

) (
4.5
7 , 5

7 ,
5.5
7 , 6

7

)(
1
8 ,

2
8 ,

3
8 ,

4
8

) (
2
5 ,

2
5 ,

1
2 ,

1
2

)
1
2

(
4
6 ,

4.5
6 , 5

6 ,
5
6

)(
1
9 ,

1.5
9 , 2

9 ,
3
9

)(
1
7 ,

1.5
7 , 2

7 ,
2.5
7

)(
1
6 ,

1
6 ,

1.5
6 , 2

6

)
1

 . (IV.223)

The fuzzy priorities of objects obtained from this FAPCM-M by the formulas (IV.219)–(IV.222) are given as

ũ1 = (0.2096, 0.3358, 0.4251, 0.6036),
ũ2 = (0.1774, 0.2666, 0.3378, 0.4493),
ũ3 = (0.1161, 0.1894, 0.2914, 0.3455),
ũ4 = (0.0438, 0.0666, 0.1001, 0.1472).

(IV.224)

Let us now examine in detail how the upper boundary value uδ
2 = 0.4493 of the fuzzy priority ũ2 was

obtained. By applying the formula (IV.222) for the fixed i = 2, the optimum 0.4493 was obtained from an
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additively reciprocal matrix, in particular from the APCM-M

Q∗ =


1
2

1
3 0.5359 6

9

2
3

1
2

3
5

6
7

0.4641 2
5

1
2

4
6

3
9

1
7

2
6

1
2

 . (IV.225)

The elements of this APCM-M clearly belong to the closures of the supports of the respective trapezoidal fuzzy
numbers in the trapezoidal FAPCM-M (IV.223). In the same way, it could be shown that all representing values
of all four fuzzy priorities were obtained from APCMs-M by the formulas (IV.215)–(IV.218). △

4.4 Transformations between FMPCMs and FAPCMs

In Section 2.4, transformations between MPCMs, APCMs-A, and APCMs-M, and between the related consis-
tency conditions and the priority vectors obtainable from these PCMs were reviewed. In this section it will be
proved that also FMPCMs, FAPCMs-A, and FAPCMs-M and the related methods proposed in Sections 4.2 and
4.3 are equivalent.

4.4.1 Transformations between FMPCMs and FAPCMs-A

In this section, transformation between FMPCMs and FAPCMs-A and between the related methods proposed
in Sections 4.2 and 4.3.2, respectively, are examined.

Theorem 86. A trapezoidal FMPCM M̃ = {m̃ij}ni,j=1 , m̃ij = (mα
ij ,m

β
ij ,m

γ
ij ,m

δ
ij), can be transformed into a

trapezoidal FAPCM-A R̃ = {r̃ij}ni,j=1 , r̃ij = (rαij , r
β
ij , r

γ
ij , r

δ
ij), by transformation formulas

rαij =
1

2
(1 + log9 m

α
ij), rβij =

1

2
(1 + log9 m

β
ij),

rγij =
1

2
(1 + log9 m

γ
ij), rδij =

1

2
(1 + log9 m

δ
ij).

(IV.226)

Proof. From the transformation formula (II.64) for transforming a MPCM into an APCM-A it is obvious that
r̃ij ∈ [0, 1] and r̃ii = 0.5. It remains to show that R̃ is additively reciprocal, i.e. rαij = 1− rδji, r

β
ij = 1− rγji, i, j =

1, . . . , n. Clearly

rαij =
1

2
(1 + log9 m

α
ij) =

1

2
(1 + log9

1

mδ
ji

) = 1− 1

2
(1 + log9 m

δ
ji) = 1− rδji.

Analogously, the validity of rβij = 1− rγji is proved.

Corollary 7. A trapezoidal FAPCM-A R̃ = {r̃ij}ni,j=1 , r̃ij = (rαij , r
β
ij , r

γ
ij , r

δ
ij), can be transformed into a trape-

zoidal FMPCM M̃ = {m̃ij}ni,j=1 , m̃ij = (mα
ij ,m

β
ij ,m

γ
ij ,m

δ
ij), by transformation formulas

mα
ij = 92r

α
ij−1, mβ

ij = 92r
β
ij−1,

mγ
ij = 92r

γ
ij−1, mδ

ij = 92r
δ
ij−1.

(IV.227)

Remark 39. The validity of Corollary 7 follows immediately from Theorem 86 by utilizing properties of an
inverse function. Note that this form of representing the results is used in the whole section. This means
that the transformation of a particular property is formulated in a theorem and proved only in one direction.
Afterwards, each such theorem is followed by a corollary showing the transformation of the property in the
opposite direction without providing the proof.

In the following, it is proved that the transformation formulas (IV.226) and (IV.227) transform the multiplicative
weak consistency into the additive weak consistency and vice versa.

Theorem 87. Let M̃ = {m̃ij}ni,j=1 , m̃ij = (mα
ij ,m

β
ij ,m

γ
ij ,m

δ
ij), be a trapezoidal FMPCM multiplicatively weakly

consistent according to Definition 50. Then the trapezoidal FAPCM-A R̃ = {r̃ij}ni,j=1 , r̃ij = (rαij , r
β
ij , r

γ
ij , r

δ
ij),

obtained from M̃ by the transformations (IV.226) is additively weakly consistent according to Definition 59.
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Proof. It is sufficient to show that when the inequalities (IV.16) are valid for a FMPCM M, then the inequalities
(IV.125) are valid for the FAPCM-A R̃ obtained from M̃ by the transformations (IV.226).

max
k=1,...,n

{
rαik+rαkj−0.5

}
= max

k=1,...,n

{
1

2
(1+log9 m

α
ik)+

1

2

(
1+log9 m

α
kj

)
−0.5

}
=

max
k=1,...,n

{
1

2
log9 m

α
ik+

1

2
log9 m

α
kj +

1

2

}
= max

k=1,...,n

{
1

2
log9

(
mα

ikm
α
kj

)
+
1

2

}
(IV.16)
≤

min
k=1,...,n

{
1

2
log9

(
mδ

ikm
δ
kj

)
+
1

2

}
= min

k=1,...,n

{
1

2
log9 m

δ
ik+

1

2
log9 m

δ
kj+

1

2

}
=

min
k=1,...,n

{
1

2

(
1+log9 m

δ
ik

)
+
1

2

(
1+log9 m

δ
kj

)
−0.5

}
= min

k=1,...,n

{
rδik+rδkj−0.5

}
.

Corollary 8. Let R̃ = {r̃ij}ni,j=1 , r̃ij = (rαij , r
β
ij , r

γ
ij , r

δ
ij), be a trapezoidal FAPCM-A additively weakly consistent

according to Definition 59. Then the trapezoidal FMPCM M̃ = {m̃ij}ni,j=1 , m̃ij = (mα
ij ,m

β
ij ,m

γ
ij ,m

δ
ij), obtained

from R̃ by the transformations (IV.227) is multiplicatively weakly consistent according to Definition 50.

Similarly, also multiplicative consistency is transformed into additive consistency and vice versa by the
transformation formulas (IV.226) and (IV.227), respectively.

Theorem 88. Let M̃ = {m̃ij}ni,j=1 , m̃ij = (mα
ij ,m

β
ij ,m

γ
ij ,m

δ
ij), be a trapezoidal FMPCM multiplicatively consis-

tent according to Definition 51. Then the trapezoidal FAPCM-A R̃ = {r̃ij}ni,j=1 , r̃ij = (rαij , r
β
ij , r

γ
ij , r

δ
ij), obtained

from M̃ by the transformations (IV.226) is additively consistent according to Definition 60.

Proof. It is sufficient to show that when the inequalities (IV.25) and (IV.26) are valid for a FMPCM M̃, then the
inequalities (IV.133) and (IV.134) are valid for the FAPCM-A R̃ obtained from M̃ by the transformations (IV.226).

rαik+rαkj − 0.5=
1

2
(1+log9 m

α
ik) +

1

2

(
1+log9 m

α
kj

)
− 0.5=

1

2

(
1+log9

(
mα

ikm
α
kj

)) (IV.25)
≤ 1

2

(
1+log9 m

α
ij

)
=rαij .

The remaining inequalities are proved in the same way.

Corollary 9. Let R̃ = {r̃ij}ni,j=1 , r̃ij = (rαij , r
β
ij , r

γ
ij , r

δ
ij), be a trapezoidal FAPCM-A additively consistent ac-

cording to Definition 60. Then the trapezoidal FMPCM M̃ = {m̃ij}ni,j=1 , m̃ij = (mα
ij ,m

β
ij ,m

γ
ij ,m

δ
ij), obtained

from R̃ by the transformations (IV.227) is multiplicatively consistent according to Definition 51.

In the following, a relation between fuzzy priorities obtained from FMPCMs and from FAPCMs-A is shown.

Theorem 89. Let M̃ = {m̃ij}ni,j=1 , m̃ij = (mα
ij ,m

β
ij ,m

γ
ij ,m

δ
ij), be a trapezoidal FMPCM and let w̃ = (w̃1, . . . , w̃n)

T ,

w̃i = (wα
i , w

β
i , w

γ
i , w

δ
i ), i = 1, . . . , n, be the fuzzy priority vector obtained from M̃ by the formulas (IV.85). The

fuzzy priority vector w̃ = (w̃1, . . . , w̃n)
T can be transformed into a fuzzy priority vector ṽ = (ṽ1, . . . , ṽn)

T , ṽi =

(vαi , v
β
i , v

γ
i , v

δ
i ), i = 1, . . . , n, obtainable by formulas (IV.147) from the corresponding FAPCM-A R̃ = {r̃ij}ni,j=1 ,

r̃ij = (rαij , r
β
ij , r

γ
ij , r

δ
ij), by using the transformation formulas

vαi = 1 + log9 w
α
i , vβi = 1 + log9 w

β
i ,

vγi = 1 + log9 w
γ
i , vδi = 1 + log9 w

δ
i .

(IV.228)

Proof. The validity of the transformation formulas follows immediately from the transformation formula (II.66)
for the crisp case.

Corollary 10. Let R̃ = {r̃ij}ni,j=1 , r̃ij = (rαij , r
β
ij , r

γ
ij , r

δ
ij), be a trapezoidal FAPCM-A and let ṽ = (ṽ1, . . . , ṽn)

T ,

ṽi = (vαi , v
β
i , v

γ
i , v

δ
i ), i = 1, . . . , n, be the fuzzy priority vector obtained from R̃ by the formulas (IV.147). The

fuzzy priority vector ṽ = (ṽ1, . . . , ṽn)
T can be transformed into a fuzzy priority vector w̃ = (w̃1, . . . , w̃n)

T , w̃i =

(wα
i , w

β
i , w

γ
i , w

δ
i ), i = 1, . . . , n, obtainable by formulas (IV.85) from the corresponding FMPCM M̃ = {m̃ij}ni,j=1 ,

m̃ij = (mα
ij ,m

β
ij ,m

γ
ij ,m

δ
ij), by using the transformation formulas

wα
i = 9v

α
i −1, wβ

i = 9v
β
i −1,

wγ
i = 9v

γ
i −1, wδ

i = 9v
δ
i −1.

(IV.229)
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Similarly to the crisp case (see the discussion on p. 26), it is not possible to derive transformation formulas
for transforming normalized fuzzy priorities (IV.91)–(IV.94) obtained from a FMPCM into the normalized fuzzy
priorities (IV.158) obtained from the corresponding FAPCM-A and vice versa.

4.4.2 Transformations between FMPCMs and FAPCMs-M
In this section, transformation between FMPCMs and FAPCMs-M and between the related methods proposed
in Sections 4.2 and 4.3.3, respectively, are examined.

Theorem 90. A trapezoidal FMPCM M̃ = {m̃ij}ni,j=1 , m̃ij = (mα
ij ,m

β
ij ,m

γ
ij ,m

δ
ij), can be transformed into a

trapezoidal FAPCM-M Q̃ = {q̃ij}ni,j=1 , q̃ij = (qαij , q
β
ij , q

γ
ij , q

δ
ij), by transformation formulas

qαij =
mα

ij

1 +mα
ij

, qβij =
mβ

ij

1 +mβ
ij

,

qγij =
mγ

ij

1 +mγ
ij

, qδij =
mδ

ij

1 +mδ
ij

.

(IV.230)

Proof. From the transformation formula (II.75) for transforming a MPCM into an APCM-M it is obvious that
q̃ij ∈]0, 1[ and q̃ii = 0.5. It remains to show that Q̃ is additively reciprocal, i.e. qαij = 1− qδji, q

β
ij = 1− qγji, i, j =

1, . . . , n. Clearly

qαij =
mα

ij

1 +mα
ij

=

1
mδ

ji

1 + 1
mδ

ji

=
1

1 +mδ
ji

= 1−
mδ

ji

1 +mδ
ji

= 1− qδji.

Analogously, the validity of qβij = 1− qγji is proved.

Corollary 11. A trapezoidal FAPCM-M Q̃ = {q̃ij}ni,j=1 , q̃ij = (qαij , q
β
ij , q

γ
ij , q

δ
ij), can be transformed into a

trapezoidal FMPCM M̃ = {m̃ij}ni,j=1 , m̃ij = (mα
ij ,m

β
ij ,m

γ
ij ,m

δ
ij), by transformation formulas

mα
ij =

qαij
qδji

, mβ
ij =

qβij
qγji

,

mγ
ij =

qγij

qβji
, mδ

ij =
qδij
qαji

.

(IV.231)

In the following, it is proved that the transformation formulas (IV.230) and (IV.231) transform the multiplicative
weak consistency for FMPCMs into the multiplicative weak consistency for FAPCMs-M and vice versa.

Theorem 91. Let M̃ = {m̃ij}ni,j=1 , m̃ij = (mα
ij ,m

β
ij ,m

γ
ij ,m

δ
ij), be a trapezoidal FMPCM multiplicatively weakly

consistent according to Definition 50. Then the trapezoidal FAPCM-M Q̃ = {q̃ij}ni,j=1 , q̃ij = (qαij , q
β
ij , q

γ
ij , q

δ
ij),

obtained from M̃ by the transformations (IV.230) is multiplicatively weakly consistent according to Definition
66.

Proof. It is sufficient to show that when the inequalities (IV.16) are valid for a FMPCM M̃, then the inequalities
(IV.177) are valid for the FAPCM-M Q̃ obtained from M̃ by the transformations (IV.230).

max
k=1,...,n

{
qαikq

α
kj

qαikq
α
kj+(1−qαik)(1−qαkj)

}
= max

k=1,...,n


mα

ik

1+mα
ik

mα
kj

1+mα
kj

mα
ik

1+mα
ik

mα
kj

1+mα
kj
+ 1

1+mα
ik

1
1+mα

kj

=

max
k=1,...,n

{
mα

ikm
α
kj

1 +mα
ikm

α
kj

}
=

1

min
k=1,...,n

{
1+mα

ikm
α
kj

mα
ikm

α
kj

} =
1

1 + 1

max
k=1,...,n

{mα
ikm

α
kj}

(IV.16)
≤

1

1 + 1

min
k=1,...,n

{mδ
ikm

δ
kj}

=
1

max
k=1,...,n

{
1+mδ

ikm
δ
kj

mδ
ikm

δ
kj

} = min
k=1,...,n

{
mδ

ikm
δ
kj

1 +mδ
ikm

δ
kj

}
=

min
k=1,...,n


qδik
qαki

qδkj

qαjk

1 +
qδik
qαki

qδkj

qαjk

 = min
k=1,...,n

{
qδikq

δ
kj

qδikq
δ
kj + (1− qδik)(1− qδkj)

}
.
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Corollary 12. Let Q̃ = {q̃ij}ni,j=1 , q̃ij = (qαij , q
β
ij , q

γ
ij , q

δ
ij), be a trapezoidal FAPCM-M multiplicatively weakly con-

sistent according to Definition 66. Then the trapezoidal FMPCM M̃ = {m̃ij}ni,j=1 , m̃ij = (mα
ij ,m

β
ij ,m

γ
ij ,m

δ
ij),

obtained from Q̃ by the transformations (IV.231) is multiplicatively weakly consistent according to Definition 50.

Similarly, also the multiplicative consistency is transformed into the multiplicative consistency and vice versa
by the transformation formulas (IV.230) and (IV.231), respectively.

Theorem 92. Let M̃ = {m̃ij}ni,j=1 , m̃ij = (mα
ij ,m

β
ij ,m

γ
ij ,m

δ
ij), be a trapezoidal FMPCM multiplicatively consis-

tent according to Definition 51. Then the trapezoidal FAPCM-M Q̃ = {q̃ij}ni,j=1 , q̃ij = (qαij , q
β
ij , q

γ
ij , q

δ
ij), obtained

from M̃ by the transformations (IV.230) is multiplicatively consistent according to Definition 67.

Proof. It is sufficient to show that when the inequalities (IV.25) and (IV.26) are valid for a FMPCM M, then
the inequalities (IV.190) and (IV.191) are valid for the FAPCM-M Q̃ obtained from M̃ by the transformations
(IV.230).

qαikq
α
kj

qαikq
α
kj+(1− qαik)(1− qαkj)

=
mα

ikm
α
kj

1+mα
ikm

α
kj

(IV.25)
≤

mα
ij

1+mα
ij

=

qαij
qδji

1+
qαij
qδji

=
qαij

qαij+qδji
=qαij .

The remaining inequalities are proved in the same way.

Corollary 13. Let Q̃ = {q̃ij}ni,j=1 , q̃ij = (qαij , q
β
ij , q

γ
ij , q

δ
ij), be a trapezoidal FAPCM-M multiplicatively consistent

according to Definition 67. Then the trapezoidal FMPCM M̃ = {m̃ij}ni,j=1 , m̃ij = (mα
ij ,m

β
ij ,m

γ
ij ,m

δ
ij), obtained

from Q̃ by the transformations (IV.231) is multiplicatively consistent according to Definition 51.

In the following, a relation between fuzzy priorities obtained from FMPCMs and from FAPCMs-M is shown.

Theorem 93. Let M̃ = {m̃ij}ni,j=1 , m̃ij = (mα
ij ,m

β
ij ,m

γ
ij ,m

δ
ij), be a trapezoidal FMPCM and let w̃ = (w̃1, . . . , w̃n)

T ,

w̃i = (wα
i , w

β
i , w

γ
i , w

δ
i ), i = 1, . . . , n, be the fuzzy priority vector obtained from M̃ by the formulas (IV.85).

The fuzzy priority vector w̃ = (w̃1, . . . , w̃n)
T is identical to the fuzzy priority vector ũ = (ũ1, . . . , ũn)

T , ũi =

(uα
i , u

β
i , u

γ
i , u

δ
i ), i = 1, . . . , n, obtainable by the formulas (IV.211)–(IV.214) from the corresponding trapezoidal

FAPCM-M Q̃ = {q̃ij}ni,j=1 , q̃ij = (qαij , q
β
ij , q

γ
ij , q

δ
ij), i.e.

w̃ = ũ. (IV.232)

Proof. The validity of the transformation formulas follows immediately from the transformation formula (II.77)
for the crisp case.

Moreover, similarly to the crisp case, also the normalized fuzzy priorities obtained from a FMPCM and from
the corresponding FAPCM-M are identical.

Theorem 94. Let M̃ = {m̃ij}ni,j=1 , m̃ij = (mα
ij ,m

β
ij ,m

γ
ij ,m

δ
ij), be a trapezoidal FMPCM and let w̃C =

(w̃C1, . . . , w̃Cn)
T , w̃Ci = (wα

Ci, w
β
Ci, w

γ
Ci, w

δ
Ci), i = 1, . . . , n, be the normalized fuzzy priority vector obtained

from M̃ by the formulas (IV.91)–(IV.94). The normalized fuzzy priority vector w̃C = (w̃C1, . . . , w̃Cn)
T is iden-

tical to the normalized fuzzy priority vector ũC = (ũC1, . . . , ũCn)
T , ũCi = (uα

Ci, u
β
Ci, u

γ
Ci, u

δ
Ci), i = 1, . . . , n,

obtainable by the formulas (IV.215)–(IV.218) from the corresponding trapezoidal FAPCM-M Q̃ = {q̃ij}ni,j=1 ,

q̃ij = (qαij , q
β
ij , q

γ
ij , q

δ
ij), i.e.

w̃C = ũC . (IV.233)

Proof. Let us demonstrate the equality of the lower boundary values of the fuzzy priorities w̃Ci and ũCi obtained
by (IV.91) and (IV.215), respectively. The equality of the remaining representing values would be demonstrated
in the same way.

By applying (IV.231), and mrs =
qrs
qsr

, r, s = 1, . . . , n, to the optimization problem (IV.91), we obtain
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δ
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]
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[
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δ
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]
,

qsr = 1− qrs,

r, s = 1, . . . , n

 = uα
Ci.

4.4.3 Transformations between FAPCMs-A and FAPCMs-M
In this section, transformations between FAPCMs-A and FAPCMs-M and between the related methods pro-
posed in Sections 4.3.2 and 4.3.3, respectively, are examined. Analogously as for the transformations between
APCMs-A and APCMs-M, the transformation formulas can be derived directly by composing the corresponding
formulas from the previous two sections as specified in the following theorems.

Theorem 95. A trapezoidal FAPCM-A R̃ = {r̃ij}ni,j=1 , r̃ij = (rαij , r
β
ij , r

γ
ij , r

δ
ij), can be transformed into a trape-

zoidal FAPCM-M Q̃ = {q̃ij}ni,j=1 , q̃ij = (qαij , q
β
ij , q

γ
ij , q

δ
ij), by transformation formulas

qαij =
92r

α
ij−1

1 + 92r
α
ij−1 , qβij =

92r
β
ij−1

1 + 92r
β
ij−1

,

qγij =
92r

γ
ij−1

1 + 92r
γ
ij−1

, qδij =
92r

δ
ij−1

1 + 92r
δ
ij−1

.

(IV.234)

Proof. Because the transformation formulas (IV.227) transform a FAPCM-A into a FMPCM, and the transforma-
tion formulas (IV.230) transform a FMPCM into a FAPCM-M, then the composition of these formulas transforms
a FAPCM-A into a FAPCM-M. By composing (IV.227) and (IV.230) we immediately obtain (IV.234).

Corollary 14. A trapezoidal FAPCM-M Q̃ = {q̃ij}ni,j=1 , q̃ij = (qαij , q
β
ij , q

γ
ij , q

δ
ij), can be transformed into a

trapezoidal FAPCM-A R̃ = {r̃ij}ni,j=1 , r̃ij = (rαij , r
β
ij , r

γ
ij , r

δ
ij), by transformation formulas

rαij =
1

2

(
1 + log9

qαij
qδji

)
, rβij =

1

2

(
1 + log9

qβij
qγji

)
,

rγij =
1

2

(
1 + log9

qγij

qβji

)
, rδij =

1

2

(
1 + log9

qδij
qαji

)
.

(IV.235)

In the following, it is proved that additive weak consistency is transformed into multiplicative weak consis-
tency and vice versa by the transformation formulas (IV.234) and (IV.235), respectively.

Theorem 96. Let R̃ = {r̃ij}ni,j=1 , r̃ij = (rαij , r
β
ij , r

γ
ij , r

δ
ij), be a trapezoidal FAPCM-A additively weakly consistent

according to Definition 59. Then the trapezoidal FAPCM-M Q̃ = {q̃ij}ni,j=1 , q̃ij = (qαij , q
β
ij , q

γ
ij , q

δ
ij), obtained from

R̃ by the transformations (IV.234) is multiplicatively weakly consistent according to Definition 66.

Proof. Because the transformation formulas (IV.227) transform the additive weak consistency (IV.123) of a
FAPCM-A into the multiplicative weak consistency (IV.14) of the corresponding FMPCM, and the transforma-
tion formulas (IV.230) transform multiplicative weak consistency (IV.14) of a FMPCM into multiplicative weak
consistency (IV.175) of the corresponding FAPCM-M, then the composition of these formulas transforms addi-
tive weak consistency of a FAPCM-A into multiplicative weak consistency of the corresponding FAPCM-M. By
composing (IV.227) and (IV.230) we immediately obtain (IV.234).

Corollary 15. Let Q̃ = {q̃ij}ni,j=1 , q̃ij = (qαij , q
β
ij , q

γ
ij , q

δ
ij), be a trapezoidal FAPCM-M multiplicatively weakly

consistent according to Definition 66. Then the trapezoidal FAPCM-A R̃ = {r̃ij}ni,j=1 , r̃ij = (rαij , r
β
ij , r

γ
ij , r

δ
ij),

obtained from Q̃ by the transformations (IV.235) is additively weakly consistent according to Definition 59.
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Similarly, also the additive consistency is transformed into the multiplicative consistency and vice versa by
the transformation formulas (IV.234) and (IV.235), respectively.

Theorem 97. Let R̃ = {r̃ij}ni,j=1 , r̃ij = (rαij , r
β
ij , r

γ
ij , r

δ
ij), be a trapezoidal FAPCM-A additively consistent

according to Definition 60. Then the trapezoidal FAPCM-M Q̃ = {q̃ij}ni,j=1 , q̃ij = (qαij , q
β
ij , q

γ
ij , q

δ
ij), obtained

from R̃ by the transformations (IV.234) is multiplicatively consistent according to Definition 67.

Proof. Because the transformation formulas (IV.227) transform the additive consistency (IV.127)–(IV.128) of
a FAPCM-A into the multiplicative consistency (IV.18)–(IV.19) of the corresponding FMPCM, and the trans-
formation formulas (IV.230) transform multiplicative consistency (IV.18)–(IV.19) of a FMPCM into multiplicative
consistency (IV.179)–(IV.180) of the corresponding FAPCM-M, then the composition of these formulas trans-
forms additive consistency of a FAPCM-A into multiplicative consistency of the corresponding FAPCM-M. By
composing (IV.227) and (IV.230) we immediately obtain (IV.234).

Corollary 16. Let Q̃ = {q̃ij}ni,j=1 , q̃ij = (qαij , q
β
ij , q

γ
ij , q

δ
ij), be a trapezoidal FAPCM-M multiplicatively consistent

according to Definition 67. Then the trapezoidal FAPCM-A R̃ = {r̃ij}ni,j=1 , r̃ij = (rαij , r
β
ij , r

γ
ij , r

δ
ij), obtained

from Q̃ by the transformations (IV.235) is addititively consistent according to Definition 60.

In the following, a relation between fuzzy priorities obtained from FAPCMs-A and from FAPCMs-M is shown.

Theorem 98. Let R̃ = {r̃ij}ni,j=1 , r̃ij = (rαij , r
β
ij , r

γ
ij , r

δ
ij), be a trapezoidal FAPCM-A and let ṽ = (ṽ1, . . . , ṽn)

T ,

ṽi = (vαi , v
β
i , v

γ
i , v

δ
i ), i = 1, . . . , n, be the fuzzy priority vector obtained from R̃ by the formulas (IV.147). The

fuzzy priority vector ṽ = (ṽ1, . . . , ṽn)
T can be transformed into the fuzzy priority vector ũ = (ũ1, . . . , ũn)

T ,

ũi = (uα
i , u

β
i , u

γ
i , u

δ
i ), i = 1, . . . , n, obtainable by formulas (IV.211)–(IV.214) from the corresponding FAPCM-M

by using the transformation formulas

uα
i = 9v

α
i −1, uβ

i = 9v
β
i −1,

uγ
i = 9v

γ
i −1, uδ

i = 9v
δ
i −1.

(IV.236)

Proof. Because the transformation formulas (IV.229) transform the fuzzy priority vector (IV.147) of a FAPCM-
A into the fuzzy priority vector (IV.85) of the corresponding FMPCM, and the transformation formula (IV.232)
transforms the fuzzy priority vector (IV.85) of a FMPCM into the fuzzy priority vector (IV.211)–(IV.214) of the
corresponding FAPCM-M, then the composition of these transformation formulas transforms the fuzzy priority
vector (IV.147) of a FAPCM-A into the fuzzy priority vector (IV.211)–(IV.214) of the corresponding FAPCM-M.
By composing (IV.229) and (IV.232) we immediately obtain (IV.236).

Corollary 17. Let Q̃ = {q̃ij}ni,j=1 , q̃ij = (qαij , q
β
ij , q

γ
ij , q

δ
ij), be a trapezoidal FAPCM-M and let ũ = (ũ1, . . . , ũn)

T ,

ũi = (uα
i , u

β
i , u

γ
i , u

δ
i ), i = 1, . . . , n, be the fuzzy priority vector obtainable from Q̃ by the formulas (IV.211)–

(IV.214). The fuzzy priority vector ũ = (ũ1, . . . , ũn)
T can be transformed into the fuzzy priority vector ṽ =

(ṽ1, . . . , ṽn)
T , ṽi = (vαi , v

β
i , v

γ
i , v

δ
i ), i = 1, . . . , n, obtainable by formulas (IV.147) from the corresponding FAPCM-

A R̃ = {r̃ij}ni,j=1 , r̃ij = (rαij , r
β
ij , r

γ
ij , r

δ
ij), by using the transformation formulas

vαi = 1 + log9 u
α
i , vβi = 1 + log9 u

β
i ,

vγi = 1 + log9 u
γ
i , vδi = 1 + log9 u

δ
i .

(IV.237)

Similarly to the crisp case, it is not possible to derive transformation formulas for transforming normalized
fuzzy priorities (IV.158) obtained from a FAPCM-A into normalized fuzzy priorities (IV.215)–(IV.218) obtained
from the corresponding FAPCM-M and vice versa; see the discussion on p. 26 and p. 30.

4.5 Conclusion

In this Chapter, the first research question, “Based on a FPCM of objects, how should fuzzy priorities of these
objects be determined so that they reflect properly all preference information available in the FPCM?”, was
answered. Three types of FPCMs were examined in this chapter - FMPCMs, FAPCMs-A, and FAPCMs-M.
Construction of FPCMs, defining and verifying their consistency, and deriving fuzzy priorities of objects from
them have been studied in detail for each of the three types of FPCMs.

First, the relevant methods proposed in the literature based on the fuzzy extension of methods originally
proposed for PCMs were reviewed and their major drawbacks were identified (task (1.b) formulated in Section
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1.3). In particular, it was find out that “equal preference” of two compared objects is very often modeled
inappropriately in FPCMs which results in misinterpretation of the preference information provided by the DM
and leads to false results. Further, it was find out that most of the definitions of consistency reviewed in this
chapter violate the reciprocity of PCs in FPCMs or are not invariant under permutation of objects. These
are sever drawbacks that lead to false conclusions about consistency/inconsistency of the FPCMs. Similarly,
also the reviewed approaches for obtaining fuzzy maximal eigenvalues of FMPCMs violate the reciprocity
of the related PCs or the invariance under permutation of objects. This again leads to the distortion of the
preference information contained in FMPCMs. In particular, the fuzzy maximal eigenvalue obtained by these
approaches is not necessarily greater or equal to the dimension of the FMPCM, which is an inherent property
of the maximal eigenvalues of MPCMs. Analogously, also the reviewed methods for deriving fuzzy priorities of
objects from FPCMs violate the reciprocity of the related PCs or the invariance under permutation of objects.
The consequences in this case are even more critical. The fuzzy priorities of objects obtained by applying
these defective methods do not reflect properly the preference information contained in the FPCM. Such fuzzy
priorities are not only excessively uncertain, but often completely distorted, which may also lead to a completely
different ranking of the compared objects and thus to a decision that is not optimal. Second, it was shown that
in order to reflect appropriately the preference information contained in the FPCM, in particular the reciprocity
of the related PCs, it is necessary to apply constrained fuzzy arithmetic to the fuzzy extension of the methods
instead of standard fuzzy arithmetic (task (1.c) formulated in Section 1.3). From the multiplicative reciprocity
mji =

1
mij

, i, j = 1, . . . , n, for MPCMs, the equality mijmji = 1, i, j = 1, . . . , n, automatically follows. Similarly,
from the additive reciprocity aji = 1 − aij , i, j = 1, . . . , n, for APCMs, the equality aij + aji = 1, i, j =
1, . . . , n, follows. These properties are inherent to every MPCM and every APCM, respectively. However,
these properties are not preserved for FMPCMs and FAPCMs when standard fuzzy arithmetic is applied to
the computations. In particular, the multiplicative reciprocity m̃ji = 1

m̃ij
, i, j = 1, . . . , n, holds for FMPCMs

but m̃ijm̃ji ̸= 1, i, j = 1, . . . , n, i ̸= j. Similarly, the additive reciprocity ãji = 1 − ãij , i, j = 1, . . . , n, holds
for FAPCMs but ãij + ãji ̸= 1, i, j = 1, . . . , n, i ̸= j. This s a serious drawback. It was shown that validity
of the equalities m̃ijm̃ji = 1 and ãij + ãji = 1, i, j = 1, . . . , n, can be guaranteed by appropriately applying
constrained fuzzy arithmetic.

Third, a complete approach based on constrained fuzzy arithmetic was proposed to deal with all three
types of FPCMs (task (1.d) formulated in Section 1.3). Namely, it was shown how to appropriately model the
meaning of the linguistic term “equal preference” used for PCs in FPCMs. Further, definitions of consistency for
FMPCMs, FAPCMs-A, and FAPCMs-M were proposed in such a way that they are invariant under permutation
of objects and do not violate the reciprocity of the related PCs. Two definitions of consistency, weak version and
strong version, were proposed for each type of FPCMs, and useful tools for verifying the consistency according
to each definition were provided. Moreover, by using constrained fuzzy arithmetic, it was also possible to
properly extend to FPCMs the properties equivalent to the corresponding consistency conditions for PCMs
in such a way that they are still equivalent. This was not possible with standard fuzzy arithmetic. Further,
a method for obtaining the fuzzy maximal eigenvalue of a FMPCM was proposed in such a way that it is
invariant under permutation of objects and does not violate the reciprocity of the related PCs in a FMPCM. By
preserving the reciprocity of the related PCs, the fuzzy maximal eigenvalue is always greater than (or equal to)
the dimension of the FMPCM, which is an inherent property of the maximal eigenvalues of MPCMs. Afterwards,
methods for obtaining fuzzy priorities of objects from FMPCMs, FAPCMs-A, and FAPCMs-M were proposed
based on constrained fuzzy arithmetic so that they preserve the reciprocity of the related PCs and are invariant
under permutation of objects. The fuzzy priorities obtained by these methods thus properly represent the
preference information contained in the FPCMs. Moreover, applying constrained fuzzy arithmetic to the fuzzy
extension of the formulas for obtaining normalized priorities preserves the normality property, i.e. the fuzzy
priorities obtained by these methods form a normalized fuzzy vector. This was again not possible by using
standard fuzzy arithmetic. The approaches defined for each type of the FPCMs are mutually equivalent; each
type of the FPCMs can be transformed into another together with the respective consistency properties. In the
same way, fuzzy priorities obtained from each type of the FPCMs can be transformed one into another.
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Chapter V

Incomplete large-dimensional pairwise
comparison matrices

Part of this chapter has been published in:

V. Jandová,J. Krejčı́, J. Stoklasa and M. Fedrizzi: “Computing interval weights from incomplete pairwise
comparison matrices of large dimension - a weak consistency based approach”, IEEE Transactions on
Fuzzy Systems, 25(6):1714-1728, 2017. c⃝2016 IEEE

5.1 Introduction to large-dimensional pairwise comparison problems

In Chapter II, methods for dealing with PC problems were reviewed. These methods are based on constructing
PCMs where every to objects from a given set of n objects are compared pairwisely. As we know from Chapter
II, n(n − 1)/2 PCs are required to compare n objects pairwisely. To compare 5 objects, for example, 10
PCs need to be provided by the DM. Now imagine that 20 objects need to be compared. In this case, 190
PCs are required from the DM. This number is clearly very high. Such a high number of PCs is not easy to
obtain in sufficient quality. In fact, the more PCs need to be made, the less reliable the information expressed
by the DMs might be (due to fatigue, due to time constraints and similar factors). In these cases, Saaty
(1977, 2008) suggests to split a large-dimensional problem into several subproblems of smaller dimensions.
This implies creating supercategories of objects. The objects are then compared pairwisely only within the
defined supercategories. Additionally, PCs of the supercategories have to be also provided. This results in the
reduction of the complexity of the problem and in making the preference information requirements (the number
of PCs needed) feasible. However, this procedure also results in a slight loss of information; the objects from
different supercategories are not directly compared pairwisely. This loss of information can be to some extent
compensated for by introducing a strong enough consistency condition on the preferences expressed by the
experts, which provides means of calculating the missing values in the PCM.

For some real-life problems, the above described approach works well. There are, however, situations
when splitting the problem into several smaller ones renders parts of the problem too abstract and hence
intractable for the experts providing the information on the preferences among objects. Stoklasa et al. (2013)
provided a real-life example of such a problem in the area of arts evaluation. Stoklasa et al. (2013) refers to
the development of the evaluation model for the Registry of Artistic Performances that has been used in the
Czech Republic within the principles and rules of financing public universities; see Ministry of Education of the
Czech Republic (2011). This model has been used since 2012 to provide a basis for the distribution of a part of
the subsidy from the state budget among public universities in the Czech Republic. The mathematical model
presented by Stoklasa et al. (2013) is designed to compute evaluations (priorities) for different categories of
works of art (currently 27 categories) based on combination of expert assessment of the significance of the
respective work of art and two more objective criteria (extent and institutional reception). The authors dealt
with a 27x27 PCM that represents a problem that could not be split into several smaller ones due to partial
dependencies among the evaluation criteria and due to the necessity of providing real-life examples to all the
compared categories for the experts to be able to express their intensities of preference.

In large-dimensional PC problems which cannot be split into smaller subproblems, the required priorities
of objects may be obtained from incomplete PCMs. In that case, focusing on an appropriate reduction of the
number of PCs which have to be provided by the DM and obtaining enough preference information in the
incomplete PCM to be able to compute the priorities of objects are of paramount importance. When using
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incomplete PCMs, we have to deal adequately with two key tasks: (i) finding a method for efficiently selecting
the subset of the n(n− 1)/2 PCs that should be provided by the DM, and (ii) finding an appropriate method for
deriving the priority vector from the incomplete PCM.

Harker (1987a,b,c) and later Harker and Millet (1990) were the first to deal with the problem of reducing
the number of PCs. They proposed to perform only a part of the n(n − 1)/2 PCs by means of an algorithm
which iteratively selects the PCs to be submitted to the DM. This selection is made according to the largest
modification in the priority vector. The process of inputting PCs is then stopped when the provided PC changes
the priority vector by less than a fixed threshold. Wedley et al. (1993) focused on the choice of only n−1
PCs, which is the minimum number required for comparing n objects, and they compared and discussed
several methods of entering them. Sanchez and Soyer (1998) proposed to use entropy-based measures of the
information content to evaluate judgment accuracy and to state a stopping rule of the process of inputting PCs.
Ra (1999) worked with n PCs which form a closed chain. Fedrizzi and Giove (2013) proposed a method for
selecting PCs in an incomplete PCM which takes into account both the robustness of the collected data and
the consistency of the expressed preferences.

For what concerns the methods for deriving the priority vector from incomplete PCMs, several different
approaches have been proposed; see e.g. Alonso et al. (2008); Chen and Triantaphillou (2001); Fedrizzi and
Giove (2007, 2013); Harker (1987a,b); Harker and Millet (1990); Kwiesielewicz (1996); Kwiesielewicz and van
Uden (2003); Ramı́k (2016); Shiraishi et al. (1998); Xu (2004, 2005). Some of these methods are aimed at
automatically determining the missing PCs in order to complete the incomplete PCM. Once the PCM is filled
in, one of known methods for deriving the priorities from a complete PCM can be used. Conversely, other
methods compute the priorities from the incomplete PCM directly. Clearly, having first computed the priorities,
every missing PCs in the incomplete PCM can then be determined accordingly, thus completing the PCM.

In this chapter, we aim to propose a method for obtaining priorities of objects from large-dimensional in-
complete PCMs where the consistency preservation plays a crucial role. In particular, the weak consistency
defined in Section 2.2.2.2 for MPCMs and in Section 2.3.3.2 for APCMs is employed in the method as a min-
imum requirement of consistency that has to be satisfied. The method differs from the other PC methods
mentioned above since the weak consistency of the incomplete PCM is preserved in every step of the method.
A similar property is not required in any other known method.

The objective of the method proposed in this chapter is not simply reducing the number of PCs required from
the DM. It is known that this number could be radically reduced to n−1, as proposed by Wedley et al. (1993);
Herrera-Viedma et al. (2004) and others. Such choice completely fulfills the requirement of maximally reducing
the number of PCs required from the DM. However, it gives up the fundamental characterizing property of the
PC methods - the ability to use the redundancy of information contained in a PCM in order to suitably manage
the unavoidable inconsistency of human judgments. In the numerical example in Section 5.3.2, it will be
demonstrated that the methods requiring only n−1 PCs do not always result in reliable outcomes.

The main objective of the method proposed in this chapter is to find an ideal compromise between requiring
as little preference information from the DM as possible and still obtaining enough information to calculate
priorities of objects that are close to the hypothetical full-information case (i.e. the case when the DM provides
all PCs in the PCM). Moreover, the final priorities of objects provided by the new method are computed in such
a way that they contain information concerning the uncertainty which stems from the fact that some PCs are
not provided by the DM, nor are they entered automatically by the proposed algorithm. The priorities of objects
are computed as intervals in order to reflect the missing information in the incomplete PCM and to provide
ranges for the values of the crisp priorities of objects obtainable from any weakly consistent completion of the
incomplete PCM. The range of the interval priorities depends on the amount of preference information that is
missing in the incomplete PCM. The formulas for calculating fuzzy priorities introduced in Sections 4.2, 4.3.2,
and 4.3.3 are applied to the method depending on the type of the PCM used for expressing DM’s preferences.

In the following section, preliminaries indispensable for introducing the new method for large-dimensional
PC problems and for demonstrating its performance are given.

5.2 Background

In this section the large-dimensional evaluation model for the registry of artistic performances proposed by
Stoklasa et al. (2013) is described in more detail as its results are later confronted with the results obtained
by the new method. Further, an overview of the algorithm for the optimal choice of PCs in incomplete large-
dimensional PCMs proposed by Fedrizzi and Giove (2013) is given here since this algorithm is partially utilized
in the new method.
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5.2.1 Case study: Evaluation model for the Registry of Artistic Performances
The evaluation model for the Registry of Artistic Performances as mentioned in Section 5.1 was a motivation
for developing the novel method for large-dimensional pairwise-comparison problems. This evaluation model
will be also used later in this chapter to validate the performance of the new method. Therefore, it is necessary
to introduce the original evaluation model in more detail. For a more detailed description of the model, the
readers can refer to Stoklasa et al. (2013).

The outputs of artistic performance are currently evaluated in the Czech Republic based on the following
three criteria, for each of which there are three levels distinguished:
Criterion 1 - Relevance or significance of the piece of art

A - a new piece of art or a performance of crucial significance
B - a new piece of art or a performance containing numerous important innovations
C - a new piece of art or a performance pushing forward modern trends

Criterion 2 - Extent of the piece of art
K - a piece of art or a performance of large extent
L - a piece of art or a performance of medium extent
M - a piece of art or a performance of limited extent

Criterion 3 - Institutional and media reception/impact of the piece of art
X - international reception/impact
Y - national reception/impact
Z - regional reception/impact

Criterion 1 is an expertly assessed criterion that brings a peer-review element into the evaluation. Each
segment of art provided a general linguistic specification for each level of this criterion to be made available for
the expert evaluators, real-life (historical) examples for levels A, B, and C are also available. Also the levels of
Criterion 2 are specified linguistically. This criterion was, however, intended to be measurable for each segment
on such a level of accuracy that most of the ambiguity in categorizing works of art according to this criterion is
removed. For Criterion 3, lists of institutions corresponding to level X, Y and Z are provided. Hence, there is
no subjectivity in evaluation against this criterion in the process.

By combining the various levels of the three criteria, 27 categories of works of art can be defined. These
categories are represented in the model by triplets of the capital letters identifying the levels (e.g. AKY, BLZ, or
CMZ). Each of these 27 categories needs to be assigned a score (priority). The original idea was to obtain all
PCs of the 27 well-represented (that is represented by real-life examples) categories of works of art (351 PCs
in total) using Saaty’s scale given in Tab. II.1, and afterwards, to compute the score for each category using
the GMM (II.24).

Because the MPCMs and Saaty’s scale were not intended for large-dimensional problems, Saaty (1977)
proposed to approach these problems by splitting them into subproblems of lower dimensions. However, this
approach was not applicable to the problem in question for the following reasons: a) there are some depen-
dencies among the criteria which are not easy to describe or capture, b) to compare various levels of one
criterion (e.g. big, medium and small) without any real-life representatives (good representatives for such
broad categories proved to be difficult to find) is not easy for the experts, c) the experts were not able to
express their preferences between the criteria (these too proved to be too abstract to provide enough repre-
sentation for the experts to be able to express their preferences). For these reasons, all 27 categories were
compared pairwisely. Since the multiplicative-consistency condition (II.4) is almost impossible to achieve for
large-dimensional MPCMs, the much more relaxed weak-consistency condition (II.11) was used to control the
consistency of the PCs of the categories provided by the experts. The weak consistency was considered as a
minimum requirement on the consistency of the MPCM.

As the weak-consistency condition (II.11) is easy to check during the process of inputting preferences, and
even more so when the rows and columns of the MPCM are ordered in accordance with the preference ordering
of the categories (from the most preferred to the least preferred one), the 27 categories were first ordered
according to their preference using the PC method; see Stoklasa et al. (2013) for more details. Afterwards, the
experts provided 351 PCs of the categories using the elements from Saaty’s scale given in Tab. II.1 and the
normalized priorities of the categories were obtained from the complete MPCM by using the GMM (II.24). The
MPCM and the derived priorities of all 27 categories are shown later in Section 5.3.3 where these results are
compared with the results obtained by applying the novel method that is going to be proposed in Section 5.3.1.

After two years of using the described model and the computed evaluations, minor adjustments to the
evaluation methodology proved to be necessary. Adding one more level to one of the criteria and changing
the initial preference ordering of the categories were considered; see Stoklasa et al. (2016). Changing the
preference ordering of the categories would result in the need of inputting the large MPCM again. In the
case of adding one level of one of the criteria the dimension of the MPCM would increase, thus dramatically
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increasing the number of PCs required. Generally, it has to be expected that these changes might occur in the
model in the future in order to meet new requirements. If such an adaptation results in the need of providing
all the PCs again (or even in providing more of them), an algorithm capable of reducing the number of PCs
that need to be provided would be most needed in order to reduce the strain and the time consumption for the
experts without substantial loss of information.

5.2.2 Overview of the algorithm of Fedrizzi and Giove (2013) for optimal sequencing
in incomplete large-dimensional PCMs

In this section, the algorithm for optimal sequencing (i.e. the optimal choice of PCs) in incomplete large-
dimensional PCMs proposed by Fedrizzi and Giove (2013) is briefly summarized as its part is utilized in the
method for dealing with incomplete large-dimensional PCMs proposed in the following section. For a more
detailed description of the algorithm, interested readers can refer to Fedrizzi and Giove (2013).

Fedrizzi and Giove (2013) proposed an algorithm for iteratively selecting PCs that should be provided by
the DM in an incomplete PCM. The algorithm was presented in the form for APCMs-A. Nevertheless, the
authors themselves emphasized that the approaches based on APCMs and MPCMs are equivalent (this was
also shown in detail in Section 2.4).

The algorithm uses a selection rule based on two criteria. The first criterion, quantified by yij , is used to
achieve enough indirect PCs (rik, rkj) for every missing PC rij of the APCM-A R = {rij}ni,j=1. The second
criterion, quantified by zij , is used to reduce possible inconsistency of judgments. A scoring function F is
defined to determine the usefulness of selecting a particular pair of not yet mutually compared objects oi
and oj , i, j ∈ {1, . . . , n}. A high value of the scoring function indicates high necessity to compare oi with oj ,
i, j ∈ {1, . . . , n}. Thus, at each step of the algorithm, the pair of objects with the maximal value of F is selected.
The scoring function is defined as

F (yij , zij) = λyij + (1− λ)zij , (V.1)

where λ ∈ [0, 1] is the parameter quantifying the importance of the criterion yij over the criterion zij . Using the
simplified notation f(oi, oj) := F (yij , zij) to refer directly to the pair of objects, the selection rule is defined as

(oi, oj) = arg max
(ok,ol)∈Ω\Q

f(ok, ol), (V.2)

where Q is the set of PCs that were already provided by the DM during the questioning process and Ω =
{(oi, oj); i, j = 1, . . . , n, i < j} is the set of all PCs between the n objects. The criteria used in the scoring
function (V.1) are defined by the following formulas:

yij = 1− |si|+ |sj |
2(n− 2)

, (V.3)

zij =
φij

|si ∩ sj |+ 1

1

3
=

3

|si ∩ sj |+ 1
φij . (V.4)

First, let us analyze the expression (V.3), where si = {k; (oi, ok) ∈ Q∨(ok, oi) ∈ Q} and |si| is the cardinality1

of the set si. Then |si| + |sj | is the number of PCs involving object oi or object oj . The maximum value of |si|
is n − 2 since (oi, oj) was not yet provided and (oi, oi) is excluded. Thus, the maximum value of |si| + |sj |
is 2(n − 2), and |si|+|sj |

2(n−2) represents the normalized number of PCs involving objects oi or oj . Criterion yij is
defined by (V.3) in order to have the scoring function F increasing in both variables. Criterion yij determines
the lack of PCs suffered by objects oi and oj .

Now, let us analyze the expression (V.4), where φij is the mean inconsistency of the indirect PCs of objects
oi and oj . First, let us define the variable µij representing the mean value of all indirect PCs of oi and oj , based
on the additive-consistency condition (II.28):

µij =

 0 if si ∩ sj = Ø,∑
k∈si∩sj

rik+rkj−0.5
|si∩sj | if si ∩ sj ̸= Ø. (V.5)

Because indirect PCs of objects oi and oj are usually not completely consistent, the mean inconsistency φij

of indirect PCs of oi and oj is defined as

φij =

 0 if si ∩ sj = Ø,∑
k∈si∩sj

(rik+rkj−0.5−µij)
2

|si∩sj | if si ∩ sj ̸= Ø. (V.6)

1cardinality |s| of the set s is the number of its elements; e.g. | {2, 4, 5} | = 3
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Note that for si ∩ sj ̸= Ø, φij is the variance of (rih + rhj − 0.5), and it holds that φij = 0 if and only if all the
indirect PCs of oi and oj are additively consistent according to Definition 9.

The maximum achievable reduction ∆φij of φij is obtained if the direct PC is rij = µij and, in such a case,
∆φij =

φij

|si∩sj |+1 . In the formula (V.4), ∆φij is normalized, i.e. it is divided by 1
3 as it is the maximum achievable

value of ∆φij ; see Fedrizzi and Giove (2013). The criterion zij expresses the normalized maximum achievable
reduction of the inconsistency φij which can be reached by means of the direct PCs of oi and oj .

The algorithm for selecting the PCs that should be provided by the DM in an incomplete APCM-A given by
Fedrizzi and Giove (2013) consists of the following steps:

1. At the beginning, no PCs are performed and Q = Ø. Thus, yij = 1, zij = 0, and f(oi, oj) = λ for all
i, j = 1, . . . , n. Instead of a random selection, recommended initial PCs are {(o2i−1, o2i); i = 1, . . . , n

2 } if
n is even and {(o2i−1, o2i); i = 1, . . . , n−1

2 } if n is odd.

2. In each step of the selection process, the value of the scoring function f is quantified for each missing
PC (oi, oj) by using the formula (V.1). According to (V.2), the suitable PC (oi, oj) is selected. In the case
of equal values of f(oi, oj), the pair of objects oi∗ , oj∗ such that i∗ + j∗ minimizes i+ j is selected. In the
case of equal values of i+ j, the pair containing the minimum index is selected.

3. The selection is stopped when the value of the scoring function becomes lower than the threshold δ ∈
[0, 1] which is subjectively defined by the DM, i.e.

max
(oi,oj)∈Ω\Q

f(oi, oj) ≤ δ. (V.7)

5.3 New method for incomplete large-dimensional PCMs

In this section a novel method for large-dimensional PCMs is proposed. In particular, Section 5.3.1 provides
a detailed description of the method. In Section 5.3.2, the application of the method is demonstrated on an
illustrative example and compared with another well-known method for large-dimensional PCMs. In Section
5.3.3, the method is applied to the evaluation model for the Registry of Artistic Performances and the results
are confronted with the results obtained by the original model proposed by Stoklasa et al. (2013). In Section
5.3.4, the results of numerical simulations are provided in order to analyze the performance of the method.

5.3.1 Description of the method
In this section, a novel method for inputting PCs in large-dimensional PCMs and for computing interval priorities
from incomplete PCMs is proposed. The method combines the concept of weak consistency with the PC-
selection process proposed by Fedrizzi and Giove (2013). The proposed interactive algorithm guides the
DM through the PC-input phase by identifying which pair of objects should be compared next. This way, the
increase of preference information in the incomplete PCM is maximized and the compliance with the weak-
consistency condition is ensured in each step of the algorithm. This results in a weakly consistent incomplete
PCM after each input. Moreover, information on all feasible preference intensities of each missing PC of an
incomplete PCM (that is such values that would not violate the weak consistency when put in the PCM) is
available in each step of the algorithm. Values that are unambiguous are input automatically into the PCM and
the DM is not bothered to provide these. This way, the amount of information contained in the incomplete PCM
can increase after each step without the effort of the DM. When enough information is provided by the DM,
the algorithm stops asking the DM for inputs and determines the preference ordering of the objects and their
priorities, which are in this case in the form of intervals.

Let us consider objects o1, o2, . . . , on to which priorities need to be assigned. The PC of a pair of objects
oi and oj will be denoted as (oi, oj). Considering that the MPCM approach, the APCM-A approach, and the
APCM-M approach are equivalent (transformation of one representation into the other can be done using the
formulas reviewed in Section 2.4), the DM can express the preference intensities in any of these forms. For
the sake of the algorithm presentation and without any loss of generality by presenting the algorithm only for
one PCM approach, the MPCM approach is chosen in this section to present the algorithm. This approach is
used also because the practical application of large-dimensional PCMs presented in Section 5.2.1 was actually
done using a MPCM. In this way, it will be possible to confront the outputs of the algorithm proposed in this
section with the practical result using the full-information MPCM approach directly.

Saaty’s scale given in Tab. II.1 is used here for expressing the PCs in the MPCM M = {mij}ni,j=1 , i.e.
mij ∈ { 1

9 ,
1
8 , . . . ,

1
2 , 1, 2, . . . , 8, 9}, i, j = 1, . . . , n, with the meanings described in Tab. II.1. Since MPCM M is

multiplicatively reciprocal, it is sufficient to enter only the PCs above the main diagonal of M or alternatively
only the PCs below the main diagonal of M. In this algorithm, without any loss of information, the PCs above
the main diagonal of M are required from the DM. Hence, the set Ω of all PCs required to complete the PCM is
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Ω = {(oi, oj); i, j = 1, . . . , n, i < j}, the cardinality of Ω being |Ω| = n(n− 1)/2. The objective of this algorithm
is twofold: (i) finding such a set Ω̄ ⊂ Ω that its cardinality (i.e. the number of the PCs required from the DM)
allows for the computation of all the priorities of objects, and (ii) proposing a way of generating the elements of
this set in such order that minimizes the cardinality of Ω̄.

The set of all PCs already performed will be denoted by Q, and the set of PCs not yet entered into the
MPCM will be denoted Ω \Q. For each (oi, oj) ∈ Ω \Q, the set FVij ⊆ { 1

9 ,
1
8 , . . . ,

1
2 , 1, 2, . . . , 8, 9} of all feasible

values that are in compliance with the weak-consistency condition (II.11) will be always given. For simplicity
and in the figures, the notation [minFVij ,maxFVij ] will be used where there is no risk of ambiguity. The
notation [minFVij ,maxFVij ] represents a range of the values from Saaty’s scale from minFVij to maxFVij

for a given (oi, oj) ∈ Ω \Q. For example, the set {6, 7, 8, 9} will be denoted as [6, 9] and interpreted as a range
of values of Saaty’s scale from 6 to 9. An incomplete MPCM will be denoted M̂ = {m̂ij}ni,j=1, where

m̂ij =

{
[mL

ij ,m
U
ij ] for (oi, oj) ∈ Ω \Q,

mij for (oi, oj) ∈ Q.

It is obvious that [mL
ij ,m

U
ij ] = [minFVij ,maxFVij ] for each (oi, oj) ∈ Ω \Q.

The process of guided input of the preference information and computation of the priorities of n compared
objects can be summarized in the following steps:

1. The DM chooses which PCM will be used to express the preference intensities (MPCM is considered for
the purpose of the description of the algorithm). The diagonal elements (oi, oi) of MPCM M̂ = {m̂ij}ni,j=1

are set, i.e. m̂ii = 1 for all i = 1, . . . , n. The sets of feasible values (FV sets) FVij are established for
(oi, oj) ∈ Ω \Q. At the beginning, FVij = [ 19 , 9] for (oi, oj) ∈ Ω.

2. The DM provides initial PCs. In this algorithm, the setting proposed by Fedrizzi and Giove (2013) is used,
i.e. the set of initial PCs {(o2i−1, o2i) , i = 1, . . . , ⌊n

2 ⌋
}

, where ⌊n
2 ⌋ is the floor2 of n

2 , is required from the
DM. However, also a different set of initial PCs can be selected. The only restriction is that these initial
PCs do not violate the weak-consistency condition (II.11).

The following Steps 3–5 are repeated until the stopping criterion is met:

3. Based on the algorithm of Fedrizzi and Giove (2013), we determine iteratively which PC (oi, oj) ∈ Ω \Q
is to be provided next by the DM. The PC (oi, oj) that maximizes the scoring function (V.1) is selected,
and the DM is asked to provide the corresponding preference intensity into the incomplete PCM M̂ . The
DM selects the value of the PC (oi, oj) from its FV set FVij .

4. Based on the weak-consistency requirement, the FV set FVij is recalculated for each missing PC
(oi, oj) ∈ Ω \ Q. The weak-consistency rules (II.11)–(II.14) for MPCMs are used in this step of the al-
gorithm to determine [minFVij ,maxFVij ].

Obviously, the FV set is restricted only when an indirect PC exists. That is when for a PC (oi, oj) not yet
entered into the MPCM there exists at least one object with index k, k ̸= i, j, such that the PCs (oi, ok)

and (ok, oj) are already entered into the incomplete MPCM M̂ or restricted FV sets are determined for
them.

5. Missing PCs (oi, oj) ∈ Ω\Q, for which FVij contains just a single element, are entered into the incomplete
MPCM M̂ automatically. Obviously, the occurrence of such single-element FVij sets is far more frequent
when a discrete scale is used for making PCs of objects. In real-life applications, the requirement of a
discrete scale rather than a continuous scale is not a constraint of the decision-making problem. That is
because in real-life applications discrete scales of numbers (either crisp of fuzzy) with assigned linguistic
terms expressing the intensities of preference are used far more frequently than continuous scales. Dis-
crete scales are more natural for DMs as they provide the required simplifying granularity for continuous
universes similar to the common language. The algorithm, however, remains valid also for continuous
scales. Since the choice of the scale is out of the scope of this thesis, discrete Saaty’s scale as given
in Tab. II.1 is assumed for the description of the algorithm. The sets FVij are recalculated (Step 4 is
performed) after each such input and Step 5 is performed again. Steps 4 and 5 are repeated until there
are no elements of the incomplete MPCM M̂ that could be entered automatically this way.

6. Stopping criterion: For every missing PC in the incomplete MPCM M̂ , there exists at least one indirect
PC.

This condition requires us to be able to determine for each missing PC (oi, oj) a restricted set of feasible
intensities of preference which could be entered in order to preserve weak consistency of the MPCM.

2floor ⌊x⌋ of x ∈ R is the largest integer lower or equal to x; e.g. ⌊5.7⌋ = 5
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Once the stopping criterion is met, we know for each PC (oi, oj) of the incomplete MPCM M̂ either its
value or its FV set FVij restricted by the weak consistency if the PC (oi, oj) was not entered yet.

This stopping criterion varies from the stopping criterion proposed by Fedrizzi and Giove (2013). Since
the scope of this method is to be able to compute the interval priorities of objects, it is required that for
each missing PC in the incomplete MPCM M̂ there exists at least one indirect PC. This means that, for
each missing PC m̂ij , we are able to determine a (restricted) set FVij of feasible intensities of preference
which can be entered in order to preserve the weak-consistency condition (II.11).

7. The so-called reciprocal FV sets are identified, i.e. such FVij , (oi, oj) ∈ V ⊆ Ω \Q, that contain at least
one of the values of the respective scale along with its reciprocal value. As an example, a set containing
the two numbers 3 and 1

3 is a reciprocal FV set. From a reciprocal FV set FVij , it is not possible to
derive which object from the pair (oi, oj) is preferred to the other. This ambiguity is not desired. Thus,
all reciprocal FV sets need to be replaced by a specific value provided by the DM or by a non-reciprocal
FV set (as a consequence of filling in a value from another reciprocal FV set), so that V = Ø. The DM
is asked to provide a PC (ok, ol) ∈ V such that (ok, ol) = arg max

(oi,oj)∈V
|FVij |. In the case that there are

more pairs of objects with the same maximal cardinality of their reciprocal FV sets, one of them is chosen
randomly. Alternatively, to make the algorithm more user friendly, the DM can be asked to provide the PC
of one pair of objects of his/her choice. After such PC is provided, i.e. after the DM chooses one value
from the given reciprocal FV set, FVij , (oi, oj) ∈ Ω \Q, are recalculated using Steps 4 and 5. This step
is repeated until there are no reciprocal FV sets left.

Described technique enables us to reduce the amount of information required from the DM as much as
possible since providing the PC of the pair of objects with the maximal cardinality of the problematic set
adds the most information to the MPCM.

8. The preference ordering of objects is derived from the incomplete MPCM M̂ . For each object (repre-
sented by the corresponding row of the MPCM), we determine the number of elements in the given row
of the MPCM that are greater than or equal to the indifference value or for which the elements of the FV
set are all greater than or equal to the indifference value, which is 1 for MPCMs. Based on this informa-
tion, the objects o1, o2, . . . , on can be reordered from the most preferred one to the least preferred one,
i.e. o(1) ≽ o(2) ≽ · · · ≽ o(n). The respectively permuted MPCM with rows and columns ordered from the
most preferred object to the least preferred one will be denoted M̂o.

9. In order to obtain the priorities of objects from the incomplete MPCM M̂ , the sets FVij of feasible intensi-
ties of preference for all missing PCs are considered to be intervals given by the minimal and the maximal
value in the set (for example, the set {3, 4, 5} is now considered to be the interval [3, 5]). This allows us to
obtain the priorities of objects in the form of intervals. The interval priorities can be obtained either from
the preference-ordered MPCM M̂o or from the non-preference-ordered MPCM M̂ . It is obvious that in
both cases we would obtain the same interval priorities as the matrices are the same up to a permutation.

To obtain the interval priorities w1, . . . , wn of objects, the fuzzy extension of the GMM proposed in Section
4.2.3.2 is used here. Specifically, either the formulas (IV.91)–(IV.94) or the formulas (IV.97)–(IV.100) are
applied to the incomplete MPCM M̂ = {m̂ij}ni,j=1 . Realize that the incomplete MPCM M̂ is in fact an
interval FMPCM; the filled-in PCs are crisp numbers, which are a special case of intervals, and we have
intervals of feasible values for all missing PCs. All the formulas for obtaining fuzzy priorities provided in
Chapter IV are explicitly written for trapezoidal FPCMs. Nevertheless, recall that interval FPCMs are a
particular case of trapezoidal FPCMs. Therefore, keeping this in mind, we can easily apply the formulas
(IV.91)–(IV.94) or (IV.97)–(IV.100) to the incomplete MPCM M̂ = {m̂ij}ni,j=1 .

Note that in the case when the DM provides preference information utilizing APCMs-A or APCMs-M,
the formulas (IV.158) and the formulas (IV.219)–(IV.222), respectively, are used for deriving the interval
priorities.

From the formulas (IV.91)–(IV.94) and from the argumentation preceding their construction (see p. 84)
it is obvious that the resulting interval priorities contain all the priorities that would be computed for any
particular selection of real values from the sets FVij corresponding to the missing PCs in M̂ (that is if M̂
was completed) preserving the weak-consistency condition. This means that if the DM provided all the
missing PCs preserving the weak consistency, the crisp priorities computed from such a MPCM would
lie within the computed interval priorities.

Furthermore, because the interval priorities wi = [wL
i , w

U
i ], i = 1, . . . , n, obtained by the formulas (IV.97)–

(IV.100) from an incomplete weakly consistent MPCM are normalized according to Definition 28, i.e.
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wi ⊆ [0, 1] and

wL
i +

n∑
j=1
j ̸=i

wU
j ≥ 1, wU

i +

n∑
j=1
j ̸=i

wL
j ≤ 1 i = 1, . . . , n,

the interval priorities get very narrow with an increasing dimension n of a MPCM.

Further, the interval priorities obtained from the preference-ordered MPCM M̂o by the formulas (IV.97)–
(IV.100) have the following property. From the weak consistency and particularly from the property of a
non-decreasing sequence of elements in each row and a non-increasing sequence of elements in each
column of an ordered weakly consistent MPCM, it follows that any two interval priorities wi, wj , i, j ∈
{1, . . . , n} , obtained by formulas (IV.97)–(IV.100) can be ordered according to the standard partial order
≤ on intervals; [a, b] ≤ [c, d] if a ≤ c, b ≤ d. Therefore, ≤ is a total order on the set of all interval priorities
wi, i = 1, . . . , n. Recall that, according to Step 8, the preference ordering of objects is derived immediately
from the preference information in M̂o without the need of computing the interval priorities. Moreover, for
any two objects oi, oj such that oi ≻ oj , it holds that wi > wj ; for the case when oi ≽ oj and oj ≽ oi it
holds that wi = wj .

5.3.2 Illustrative example and comparison study
For better understanding, the novel method is demonstrated step-by-step on a simple illustrative example of a
weakly consistent MPCM of seven objects. In addition, the performance of the method is compared with the
well-known method for incomplete MPCMs proposed by Herrera-Viedma et al. (2004).

Obviously, applying the proposed method to a PCM of just several (in this case seven) objects has only
limited significance in practice as such a PCM does not require many PCs from the DM in the first place.
However, for better visual illustration of each step of the proposed algorithm, an example with just several
objects is more convenient.

Let o1, o2, . . . , o7 be objects which need to be compared and whose priorities need to be determined by the
DM. In order to compare seven objects pairwisely, the DM would have to provide 21 PCs in the full-information
case. By applying the new algorithm, only a part of these 21 PCs will be required from the DM. In order to
evaluate the performance of the new algorithm we need to confront its results with the results obtainable in the
hypothetical full-information case. Therefore, let us consider the MPCM given in Fig. V.1 as the full-information
MPCM M that would be obtained if the DM provided all 21 PCs. For better illustration, easier understanding
and an easy check of the compliance with the weak-consistency condition (II.11), the objects in the MPCM M
given in Fig. V.1 are ordered from the most preferred one to the least preferred one. For the sake of simplicity,
only the PCs above the main diagonal are given since the PCs below the main diagonal are the reciprocals of
the corresponding PCs above the main diagonal. The priorities w1, . . . , w7 of objects o1, . . . , o7 obtainable from
the full-information MPCM M by the GMM (II.24) are given in the second column of Tab. V.1.

Figure V.1: MPCM with all PCs provided by the DM.

The method proposed in this chapter is designed to be applicable to general PC problems with no informa-
tion about the preference ordering of the objects which are to be compared pairwisely, i.e. we suppose that the
ordering of the objects from the most preferred one to the least preferred one is not known at the beginning
of the decision-making process. This means that the method can be applied to any random initial ordering of
objects in the MPCM. Let us therefore assume that the preference ordering of objects is not known in advance
and, instead, the objects are ordered randomly. Let us assume the random initial order of the objects as given
in Fig. V.2. The empty MPCM M̂ = {m̂ij}ni,j=1 in Fig. V.2 is the starting matrix where the PCs identified by
the algorithm are going to be provided by the DM or entered automatically based on the weak-consistency
condition.

Notice that the labeling of objects in the incomplete MPCM M̂ = {m̂ij}ni,j=1 in Fig. V.2 does not correspond
to the numbering of rows and columns of the MPCM anymore. For example, object o1 is not in the first row
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Figure V.2: Starting empty MPCM M̂ .

of the MPCM, but, instead, it is in the fourth row now. Therefore, it is important to realize that from now on
when we refer to a PC (oi, oj), this does not necessarily correspond to the PC m̂ij in the i−th row and the j−th
column of M̂.

At the beginning of the algorithm, the diagonal elements are set to the value 1 and the DM is asked to
provide initial PCs (o3, o4), (o6, o1), and (o2, o5) as it is required in Step 2 of the algorithm. Any value from
Saaty’s scale can be chosen in this step. This is because the FV sets for all missing PCs are [ 19 , 9]. For easier
orientation in the figures the initial FV sets [ 19 , 9] are replaced by empty fields. Only the FV sets calculated from
indirect PCs in the following steps of the algorithm will be entered into the incomplete MPCM M̂.

Steps 3 to 5 are repeated until the stopping criterion is met. In Step 3, we apply the algorithm based on
searching for a missing PC (oi, oj) with the maximum value of the scoring function (V.1), i.e. the missing PC
that should be provided by the DM. In this illustrative example, both criteria of the scoring function (V.1) are
considered to have the same importance, therefore the parameter λ = 0.5 is set.

As already mentioned in the previous section, in contrast to the method proposed by Fedrizzi and Giove
(2013), we require the incomplete MPCM M̂ to be weakly consistent; it has to satisfy the properties (II.11)–
(II.14). According to this requirement, in Step 4, we are able to restrict the sets FVij of feasible intensities of
preference for some missing PCs. If any set FVij contains only one value, this value is entered automatically
into the incomplete MPCM M̂ as suggested in Step 5.

Fig. V.3 demonstrates the incomplete MPCM M̂ after the initial PCs (o3, o4) = 1, (o6, o1) = 1
9 , and (o1, o5) =

9 and after the first iteration of the algorithm. The first PC chosen in the first iteration and provided by the DM
is (o3, o7) = 8. As it can be seen from the incomplete MPCM M̂, the PC (o4, o7) = 8 was filled in automatically
according to the weak consistency since (o3, o4) = 1 and (o3, o7) = 8. The legend explaining the notation used
in the figures in this section is provided in Fig. V.4.

Figure V.3: Incomplete MPCM M̂ after the first iteration.

Figure V.4: Legend.

Fig. V.5 shows the incomplete MPCM M̂ after the second iteration of the algorithm. The PC (o4, o6) = 8 was
provided by the DM, and according to the weak consistency, one missing PC and ranges for other three missing
PCs were added automatically. For example, the range [1/9, 1/2] for the missing PC (o3, o1) was derived from
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the PCs (o3, o6) = 8 and (o6, o1) = 1/9 according to the first rule of the weak-consistency property (II.13). The
DM continues providing the missing PCs until the stopping criterion is met. The incomplete MPCM obtained at
the moment of meeting the stopping criterion is given in Fig. V.6.

Figure V.5: Incomplete MPCM M̂ after the second iteration.

Figure V.6: Incomplete MPCM M̂ after the stopping criterion is met.

Two reciprocal FV sets are present in the incomplete MPCM M̂ in Fig. V.6; see the PCs (o6, o2) = [ 19 , 9]
and (o6, o7) = [ 18 , 8]. This means that we are not even able to decide which object is preferred to the other one
for these pairs of objects; the information obtained from the indirect PCs is too vague. Therefore, according to
Step 7, we have to ask the DM to determine the intensities of preference for these pairs of objects.

First the DM is asked to provide the PC (o6, o2) as its reciprocal FV set has the biggest cardinality (|FV62| =
|{ 1

9 ,
1
8 , . . . ,

1
2 , 1, 2, . . . , 9}| = 17). In this particular case no restriction of the other FV sets occurs. Afterwards,

the DM provides the PC (o6, o7) and, as a consequence, the FV set of (o5, o7) is reduced from [2, 8] to [7, 8] .

Fig. V.7 shows the incomplete MPCM M̂ after Step 7.

Figure V.7: Incomplete MPCM M̂ after removing the reciprocal FV sets.

Once the reciprocal FV sets are removed, we are able to order the compared objects from the most pre-
ferred one to the least preferred one according to Step 8 and to reorder the whole incomplete MPCM M̂

accordingly. Fig. V.8 demonstrates the preference-ordered incomplete MPCM M̂o with FV sets for all missing
PCs. The reader can verify that by choosing any value from any of the FV sets the weak consistency of the
incomplete MPCM M̂o is not violated.

According to Step 9 of the algorithm, the interval priorities of objects are obtained from the incomplete
MPCM M̂o. The interval priorities are summarized in Tab. V.1 along with the crisp priorities computed from the
full-information MPCM M given in Fig. V.1.

Let us summarize the results of this illustrative example. In order to have complete preference information
and to compute crisp priorities of objects, the DM would have to provide 21 PCs. Using the algorithm for
incomplete PCMs proposed in Section 5.3.1, the DM had to provide only 10 PCs (approx. 48%). Other 7 PCs
(approx. 33%) were added automatically based on the weak-consistency condition and 4 PCs (approx. 19%)
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Figure V.8: Final preference-ordered incomplete MPCM M̂o.

were missing with FV sets the elements of which do not violate the weak consistency of the incomplete MPCM
M̂o. The proposed algorithm did not only spare the DM more than half of the PCs, but it also provided very
good results. The calculated interval priorities are quite narrow and contain the original priorities; see Tab. V.1.
Recall that it was mentioned in Step 9 of the algorithm that this is a general property that always holds.

Table V.1: Priorities of objects.

Objects Crisp priorities Interval priorities Priorities obtained
obtained by obtained by according to Herrera-
the GMM the new method Viedma et al. (2004)

o1 0.5083 [0.4840, 0.5102] 0.2377
o2 0.1765 [0.1765, 0.2594] 0.1128
o3 0.1166 [0.0896, 0.1170] 0.2284
o4 0.1166 [0.0896, 0.1170] 0.2284
o5 0.0463 [0.0363, 0.0472] 0.0535
o6 0.0228 [0.0213, 0.0273] 0.1128
o7 0.0128 [0.0122, 0.0131] 0.0264

To emphasize the advantage and the significant contribution of this method to the decision-making theory,
it is also compared here with another well-known method for incomplete MPCMs. Particularly, the method pro-
posed by Herrera-Viedma et al. (2004) will be applied to this illustrative example for the comparison. Notice that
the paper of Herrera-Viedma et al. (2004) has been cited over 560-times which suggests wide recognition of
the method). In the method proposed by Herrera-Viedma et al. (2004), only n−1 PCs above the main diagonal,
i.e. {(oi, oi+1); i = 1, . . . , n− 1} , are required from the DM. The remaining PCs are completed automatically
so that the resulting MPCM M = {mij}ni,j=1 is multiplicatively consistent according to (II.4). Clearly, in most of
the cases, the missing PCs completed by this automatic procedure exceed Saaty’s scale

[
1
9 , 9
]
. That is why

Herrera-Viedma et al. (2004) suggest to transform the obtained MPCM M given on scale
[
1
c , c
]
, c > 9, into the

MPCM M ′ =
{
m′

ij

}n
i,j=1

given on scale
[
1
9 , 9
]

by using transformation formula

m′
ij = m

1/ log9 c
ij , i, j = 1, . . . , n. (V.8)

In Fig. V.9, the completed, transformed and ordered MPCM M ′ after providing the 6 initial PCs above the
main diagonal is given. The 6 PCs provided by the DM are highlighted in bold. Obviously, unlike the incomplete
MPCM M̂o in Fig. V.8, the MPCM M ′ in Fig. V.9 differs substantially from the original MPCM in Fig. V.1. Thus,
also the priorities obtained from this MPCM given in the last column of Tab. V.1 vary essentially from the
original priorities given in the second column. Even the ranking of the objects based on these priorities varies
from the ranking obtained in the full-information case.

In order too demonstrate how far the MPCM M ′ in Fig. V.9 obtained by the method proposed by Herrera-
Viedma et al. (2004) is from the original MPCM M in comparison to the incomplete MPCM M̂o obtained by
the method proposed in the previous section, their distances will be measured. In particular, the distance for
MPCMs defined by Cook and Kress (1988) is utilized for this scope. Since the incomplete MPCM M̂o in Fig.
V.8 contains intervals, it is necessary to generalize the distance of Cook and Kress (1988) to interval FMPCMs
first. For two interval FMPCMs M

1
=
{
m1

ij

}n
i,j=1

,m1 =
[
m1L

ij ,m1U
ij

]
,M

2
=
{
m2

ij

}n
i,j=1

,m2 =
[
m2L

ij ,m2U
ij

]
, the
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Figure V.9: MPCM M ′ obtained by the approach of Herrera-Viedma et al. (2004).

interval distance based on the distance defined by Cook and Kress (1988) is given as D(M
1
,M

2
) =

[
dL, dU

]
dL = min

m1
ij∈[m

1L
ij ,m1U

ij ]
m2

ij∈[m
2L
ij ,m2U

ij ]

n−1∑
i=1

n∑
j=i+1

| ln(m1
ij/m

2
ij)|

=

n−1∑
i=1
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j=i+1

min
m1

ij∈[m
1L
ij ,m1U

ij ]
m2

ij∈[m
2L
ij ,m2U

ij ]

| ln(m1
ij/m

2
ij)|,

(V.9)

dU = max
m1

ij∈[m
1L
ij ,m1U

ij ]
m2

ij∈[m
2L
ij ,m2U

ij ]

n−1∑
i=1

n∑
j=i+1

| ln(m1
ij/m

2
ij)|

=

n−1∑
i=1

n∑
j=i+1
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m1
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1L
ij ,m1U
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| ln(m1
ij/m

2
ij)|.

(V.10)

For crisp MPCMs, the interval distance given by (V.9), (V.10) is identical to the distance originally defined by
Cook and Kress (1988). By applying the formulas (V.9) and (V.10), the distance of the MPCM obtained by the
method proposed by Herrera-Viedma et al. (2004) given in Fig. V.9 and the original MPCM given in Tab. V.1
is D = 22.8941. The interval distance of the interval FMPCM in Fig. V.8 from the original MPCM in Fig. V.1 is
D = [0, 4.3934]. Clearly, D = [0, 4.3934] is significantly smaller than D = 22.8941, which demonstrates better
performance of the method proposed in this thesis.

Notice that the lower boundary value dL of the distance of any incomplete MPCM with intervals of feasible
values for all missing PCs obtained by the new method from the hypothetical full-information MPCM is always
0. This follows from the fact that the incomplete MPCM always contains the hypothetical full-information MPCM
obtainable if all PCs were provided by the DM, which is the substance and the main advantage of the proposed
method.

5.3.3 Application of the method to the Evaluation model for the Registry of Artistic
Performances

In this section, the large-dimensional problem of evaluating outcomes of artistic performance in the Czech
Republic that was solved by Stoklasa et al. (2013) and briefly introduced in Section 5.2.1 is approached. The
method for optimal construction of an incomplete MPCM and obtaining interval priorities of the categories of
artistic production introduced in Section 5.3.1 is applied. The outcome of the new method is compared with
the outcome given by Stoklasa et al. (2013). Again, we draw from the knowledge of the complete MPCM
and conduct a numerical experiment. In particular, we start with an empty MPCM of randomly ordered 27
categories of works of art, we utilize the novel method proposed in Section 5.3.1, and, whenever a PC is
required from the DM, we find the appropriate value in the complete MPCM given in Fig. V.10.

We assumed the randomly generated initial order of the categories (i.e. categories are not ordered ac-
cording to their preference but randomly) given in the heading of Fig. V.11. For better orientation and simpler
notation, the number of the corresponding row was assigned to each category. First, the DM was asked to
provide 13 initial PCs {(2i− 1, 2i) ; i = 1, . . . , 13}. Subsequently, the algorithm for selecting the missing PCs
(i, j) , i, j ∈ {1, 2, . . . , 27} , i < j, which should be provided by the DM was applied. The parameter λ = 0.5
was used in the scoring function (V.1) as both its criteria were considered to have the same importance. The
algorithm was stopped after just 109 PCs provided by the DM.

Because missing PCs with reciprocal FV sets were present in the incomplete MPCM at that stage, it was
not possible to order the categories from the most preferred one to the least preferred one immediately. First,

150



Figure V.10: Complete weakly consistent MPCM obtained by Stoklasa et al. (2013).
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Figure V.11: Incomplete weakly consistent MPCM after filling in the PCs by the DM.

152



Table V.2: Interval and crisp priorities of the categories.

Categories Crisp priorities Interval priorities
1 AKX 0.1357 [0.1314, 0.1370]
2 AKY 0.1132 [0.1126, 0.1166]
3 AKZ 0.0967 [0.0917, 0.0995]
4 ALX 0.0862 [0.0829, 0.0895]
5 ALY 0.0761 [0.0687, 0.0799]
6 ALZ 0.0612 [0.0593, 0.0660]
7 AMX 0.0552 [0.0542, 0.0573]
8 AMY 0.0498 [0.0495, 0.0509]
9 AMZ 0.0418 [0.0415, 0.0423]
10 BKX 0.0385 [0.0382, 0.0390]
11 BKY 0.0335 [0.0333, 0.0340]
12 BKZ 0.0292 [0.0280, 0.0296]
13 BLX 0.0269 [0.0258, 0.0273]
14 BLY 0.0222 [0.0211, 0.0249]
15 BLZ 0.0204 [0.0194, 0.0215]
16 BMX 0.0184 [0.0176, 0.0192]
17 BMY 0.0167 [0.0160, 0.0175]
18 BMZ 0.0134 [0.0133, 0.0140]
19 CKX 0.0117 [0.0114, 0.0125]
20 CKY 0.0106 [0.0102, 0.0112]
21 CKZ 0.0088 [0.0088, 0.0092]
22 CLX 0.0080 [0.0077, 0.0082]
23 CLY 0.0072 [0.0067, 0.0074]
24 CLZ 0.0057 [0.0053, 0.0066]
25 CMX 0.0047 [0.0045, 0.0051]
26 CMY 0.0042 [0.0040, 0.0045]
27 CMZ 0.0038 [0.0035, 0.0040]

it was necessary to remove all reciprocal FV sets FVij . This was done iteratively and after the replacement of
every single reciprocal FV set FVij either by a PC provided by the DM or by a non-reciprocal FV set, all the
remaining missing elements were recalculated. In order to eliminate all the reciprocal FV sets, 23 PCs were
required from the DM overall. The incomplete MPCM obtained after this step is shown in Fig. V.11. Finally, the
categories compared in the incomplete MPCM were ordered from the most preferred one to the least preferred
one. The preference-ordered weakly consistent incomplete MPCM is given in Fig. V.12.

In the original method proposed by Stoklasa et al. (2013), the experts had to provide all 351 PCs. When
the new method was applied to the problem, only 145 PCs (approx. 41%) were required. Other 153 PCs
(approx. 44%) were added automatically according to the weak consistency and, for the remaining 53 PCs
(approx. 15%), sets of feasible intensities of preference were derived from the weak-consistency properties.
These FV sets are relatively narrow containing at most 4 values. Furthermore, the incomplete MPCM contains
the original complete MPCM, i.e. all the filled-in PCs are the same and the FV set provided for each missing
PC in the incomplete MPCM always contains the preference intensity of the corresponding PC in the complete
MPCM; compare Fig. V.10 and Fig. V.12.

Interval priorities of the categories were obtained from the incomplete MPCM in Fig. V.12 by using the
formulas (IV.97)–(IV.100). The interval priorities together with the crisp priorities obtained from the complete
MPCM in Fig. V.10 by the GMM (II.24) are given in Tab. V.2. Obviously, the crisp priorities of the categories
lie within the intervals delimited by the interval priorities. This result is natural since the FV sets for missing
PCs in the incomplete PCM obtain all feasible intensities of preference that preserve the weak consistency.
Therefore, the complete MPCM given in Fig. V.10 provided by Stoklasa et al. (2013) can be obtained from the
weakly consistent incomplete MPCM in Fig. V.12 by a particular combination of values from the FV sets.

Using the new method, we obtained the interval priorities of the categories which represent very well the
actual priorities obtained from the complete MPCM (compare the results in Tab. V.2). In contrast to the original
method, however, only 145 PCs were required from the DMs instead of 351. This means that the amount of
the information required from the DM was reduced to only 41% of the information required by Stoklasa et al.
(2013). This is a very significant reduction of the information required from the DM that reduces considerably
the strain and time demands and raises the quality of the information provided.
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Figure V.12: Preference-ordered incomplete weakly consistent MPCM.
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5.3.4 Simulations and numerical results

Simulations were performed to evaluate the benefit of the proposed method from the point of view of sparing a
part of PCs required from the DM. MPCMs of dimensions n = 5, 10, . . . , 30 were considered.

The proposed method was applied to 600 randomly generated weakly consistent MPCMs, 100 of each
dimension. For each such a MPCM, an empty initial MPCM of the given dimension n was considered and
the new method was applied to the empty MPCM in order to identify iteratively the missing PCs that should
be provided by the DM. Whenever such a missing PC was identified, the value of the PC was taken from
the complete MPCM and entered into the incomplete MPCM. The number x of PCs required in the iterative
algorithm from the DM was computed. Consequently, also the number of spared PCs was computed as
n(n − 1)/2 − x. After applying the method to all 100 MPCMs of the given dimension n, an average number of
spared PCs was computed as well as an average % of spared PCs. The numerical results are presented in
Tab. V.3.

According to the results presented in Tab. V.3, the average percentage of the spared PCs increases with
the increasing dimension of the MPCM. For MPCMs of dimension 15 and greater, more than 60% of the PCs
are spared on average. However, it is necessary to point out that, despite this huge reduction in the number
of PCs required from the DM, the resulting interval priorities obtained by the formulas (IV.97)–(IV.100) from
the final incomplete weakly consistent MPCM always contain the crisp priorities obtainable from the original
randomly generated weakly consistent MPCM. Moreover, as discussed on p. 145, the interval priorities get
very narrow with the increasing dimension of the MPCM.

Table V.3: Average number of spared PCs required from the DM.

dimension of PCMs n=5 n=10 n=15 n=20 n=25 n=30

number of PCs required in
10 45 105 190 300 435the full-information case

average number of spared PCs 4 24 64 123 207 312

average % of spared PCs 42% 53% 61% 65% 69% 72%

5.4 Conclusion

An answer to the second research question, “How can the amount of preference information required from
the DM in a large-dimensional PCM be reduced while still obtaining comparable priorities of objects”, was
provided in this chapter. In particular, a novel approach for dealing with incomplete large-dimensional PCMs
was introduced. The approach is applicable to all three types of PCMs examined in this thesis, i.e. MPCMs,
APCMs-A, as well as APCMs-M.

The proposed method strives to identify the tradeoff between decreasing the number of PCs required from
the DM and obtaining a sufficient amount of information to compute relevant priorities of objects. The method is
suggested as a possible solution to large-dimensional problems where the complete information (i.e. providing
all PCs) is either costly, too time consuming, or infeasible to obtain or where the preference intensities in the
large-dimensional PCMs require (frequent) revisions.

In the first part of the method, an iterative algorithm for optimal choice of PCs that should be provided by
the DM in an incomplete large-dimensional PCM is applied. The algorithm is based on the combination of
the weak-consistency condition introduced by Jandová and Talašová (2013) for MPCMs and by Jandová et al.
(2017) for APCMs, with the modified version of the optimal PC-selection algorithm proposed by Fedrizzi and
Giove (2013). The weak consistency is imposed as a minimum consistency requirement on the incomplete
PCM and it is required during the whole process of entering PCs into the incomplete PCM. As a consequence,
certain PCs are added automatically on the base of PCs previously provided by the DM and, for some PCs,
intervals of feasible values that could be entered without violating the weak consistency are provided. The
algorithm is stopped when for every missing PC in the incomplete PCM there exists an interval of feasible
values. Afterward, interval priorities of objects are derived from such an incomplete PCM by means of formulas
proposed in Chapter IV.

The whole method is designed in such a way that the interval priorities derived from the incomplete large-
dimensional PCM include the priorities of objects obtainable from any weakly consistent completion of the
incomplete PCM. This means that the interval priorities contain the crisp priorities that would be obtained from
the hypothetical complete PCM obtainable if the DM provided all PCs in the PCM.

The numerical results of performed simulations demonstrate that the application of the proposed algorithm
can significantly reduce the number of PCs required from the DM and thus results in significant resource sav-
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ings. At the same time, a high accuracy of the output is guaranteed by the algorithm as the resulting interval
priorities contain the priorities that would be obtained from the hypothetical complete PCM. For randomly gen-
erated MPCMs of dimension n ≥ 15, even more than 60% of PCs required (with respect to the full-information
case) were spared on average. The numerical example of a small 7x7 PCM exhibited a reduction of ca. 50%
in the number of PCs required (from 21 to 10). In the real-life case study of the works-of-art evaluation model
utilizing a 27x27 PCM, the number of PCs required from the experts was reduced by ca. 60% (from 351 PCs
only 145 were required). The obtained interval priorities of the 27 categories of works of art contain the crisp
priorities obtained from the original complete PCM and they are very narrow.
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Chapter VI

Discussion and future research

6.1 Discussion

“Traditional” methods based on PCMs were not designed to cope with MCDM problems under uncertainty.
However, uncertainty is integral to human mind and, thus, it is necessarily closely related to decision making.
In order to properly handle uncertainty, methods based on PCMs were extended to fuzzy numbers that allow for
better modeling of uncertain PCs of objects. When extending PCMs to FPCMs, it is of paramount importance
to extend appropriately the key properties of PCMs and of the related methods in order to reflect properly the
preference information contained in FPCMs.

Beside the inability to capture uncertainty, the “traditional” methods based on PCMs are also unable to deal
with incompleteness of preference information. The problem of incomplete preference information concerns
especially large-dimensional PCMs where it is not possible or reasonable to obtain complete preference in-
formation from the DM, e.g. due to time or cost limitations. When dealing with incomplete large-dimensional
PCMs, compromise between maximally reducing the number of PCs required from the DM and obtaining
reasonable priorities of objects from the incomplete PCM is of crucial importance.

Thus, the thesis was aiming at answering two research questions:

(1) Based on a FPCM of objects, how should fuzzy priorities of these objects be determined so that they
reflect properly all preference information available in the FPCM?

(2) How can the amount of preference information required from the DM in a large-dimensional PCM be
reduced while still obtaining comparable priorities of objects?

The first research question was answered by pursuing four tasks identified in Section 1.3. Each task and
the related findings are summarized as follows:

(1.a) Well-known and in practice most often applied methods based on PCMs were critically reviewed in Chap-
ter II. In particular, three types of PCMs were examined - MPCMs, APCMs-A, and APCMs-M.

Two key properties of PCMs and of the related methods were identified - reciprocity of the related PCs
and invariance under permutation of objects. Reciprocity of the related PCs is an inherent property
of every PCM that results from the meaning of PCs in the PCM (multiplicative reciprocity for MPCMs
and additive reciprocity for APCMs-A and APCMs-M). Invariance under permutation of objects had been
introduced as a property that every “good” method should satisfy. is

Therefore, it is necessary to extended properly both these properties also to FPCMs.

(1.b) In Chapter IV, critical review of the approaches to the fuzzy extension of the methods reviewed in Chapter
II within task (1.a) was done and two main drawbacks were identified.

The reviewed approaches are mostly based on applying standard fuzzy arithmetic to the fuzzy extension
of the methods and they violate the reciprocity of the related PCs or the invariance under permutation
of objects. This leads to false results (resulting fuzzy priorities of objects in particular) that distort the
preference information contained in the FPCM.

(1.c) Necessity of applying constrained fuzzy arithmetic to the fuzzy extension of the methods based on PCMs
in order to reflect properly the preference information contained in the FPCM was demonstrated in Chap-
ter IV.

Constrained fuzzy arithmetic allows for imposing constraints on operands of arithmetic operations with
fuzzy numbers. Therefore, reciprocity of the related PCs, which is an inherent property of PCMs, is
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introduced as a constraint in the computations with PCs in a FPCM. Applying constrained fuzzy arithmetic
with reciprocity constraints to the fuzzy extension of the methods reviewed in Chapter II also automatically
ensures invariance of the methods under permutation of objects.

(1.d) The fuzzy extension of the methods critically reviewed within task (1.a) was proposed in Chapter IV in
such a way that it reflects properly all preference information contained in the FPCM.

Specifically, a whole set of methods based on constrained fuzzy arithmetic was proposed in the thesis
to deal with three types of FPCMs - FMPCMs, FAPCMs-A, and FAPCMs-M. FPCMs were defined prop-
erly and two definitions of consistency were given for each type of FPCMs. Formulas for obtaining the
fuzzy maximal eigenvalue of a FMPCM were proposed and properties of the fuzzy maximal eigenvalues
were identified. The fuzzy maximal eigenvalue is indispensable in order to define fuzzy extension of
Consistency Index and Consistency Ratio for verifying acceptable multiplicative consistency of FMPCMs
and to define a fuzzy extension of the EVM. Finally, methods for deriving fuzzy priorities of objects from
FPCMs were proposed. The methods proposed for each type of FPCMs are mutually equivalent. FM-
PCMs, FAPCMs-A, and FAPCMs-M can be transformed one into another together with the respective
consistency properties. Similarly, fuzzy priorities obtained from FMPCMs, FAPCMs-A, and FAPCMs-M
can be transformed one into another. The proposed methods were compared with the methods criti-
cally reviewed within task (1.c). Further, it was proved that all new methods based on constrained fuzzy
arithmetic preserve the reciprocity of PCs and are invariant under permutation of objects. By preserving
these two key properties, the fuzzy priorities obtained by the new methods reflect better the preference
information contained in FPCMs in comparison to the fuzzy priorities obtained by the methods reviewed
within task (1.c).

The methods based on constrained fuzzy arithmetic introduced within the answer to the research question
(1) require the same amount of preference information from the DM as the reviewed methods based on stan-
dard fuzzy arithmetic. However, unlike them, they are invariant under permutation of objects and they preserve
the reciprocity of the related PCs. This means that, based on the same amount of preference information from
the DM, the new methods provide results that better reflect the preference information contained in the FPCMs,
which leads to a better quality of decisions.

The second research question was answered by pursuing two tasks identified in Section 1.3. The tasks
were

(2.a) to propose an efficient method for partially filling an incomplete large-dimensional PCM that minimizes
the number of PCs required from the DM but provides a sufficient amount of preference information;

(2.b) to propose a suitable method for deriving priorities from an incomplete large-dimen- sional PCM that
reflect the incompleteness of preference information and that are “close” to the priorities obtainable from
the hypothetical complete PCM.

The tasks resulted to be highly interconnected. In particular, development of the method in task (2.a) was
substantially influenced by the requirement to obtain priorities that are “close” to the priorities obtainable from
the hypothetical complete PCM. Thus, it is difficult to draw a clear line between the two tasks and, consequently,
it is not possible to represent the findings separately for each task.

Tasks (2.a) and (2.b) were carried out by proposing an iterative algorithm for optimal choice of PCs that
should be provided by the DM in an incomplete large-dimensional PCM. The algorithm is based on the concept
of weak consistency. The weak-consistency condition is a minimum requirement of consistency that has to
be satisfied in each step of the algorithm. Based on the weak-consistency condition, some missing PCs
are entered into the PCM automatically and, for some, intervals of feasible values are provided. The whole
process is based on searching for a compromise between minimizing the number of PCs provided by the DM
and maximizing the amount of preference information contained in the incomplete PCM. At the end of the
process, interval priorities of objects are computed using the formulas proposed in Chapter IV. The interval
priorities include the priorities of objects obtainable from any weakly consistent completion of the incomplete
PCM. This means that the interval priorities contain the priorities that would be obtained from the hypothetical
complete PCM obtainable if the DM provided all PCs in the PCM. The average percentage of spared PCs in
an incomplete PCM increases with the increasing dimension of the PCM; for PCMs of 15 or more objects,
more than 60% of PCs are spared on average. Despite this great reduction of PCs required from the DM, the
resulting interval priories are very narrow for large-dimensional PCMs.

The novel method is particularly useful for real-life decision-making problems where providing all PCs is ei-
ther costly, too time consuming, or infeasible to obtain. It is also very effective in dealing with large-dimensional
problems where PCs provided by the DM require frequent revisions. By applying the method, the preference in-
formation required from the DM is significantly reduced which leads to cost reduction and time saving. Despite
this reduction, the method provides results (resulting interval priorities) that are very close to the hypothetical
results obtainable from the complete preference information.
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Naturally, the methods developed in this thesis have some limitations. In Chapter IV, new MCDM methods
based on FPCMs were introduced. The methods were developed by applying constrained fuzzy arithmetic
to the fuzzy extension of well-known and in practice most often applied methods based on PCMs (that were
critically reviewed in Chapter II). Unlike the methods based on standard fuzzy arithmetic, the new methods
preserve both the reciprocity of the related PCs and the invariance under permutation of objects, which are
two key properties identified for PCMs and for the related methods. Thus, it is justifiable to claim that the fuzzy
priorities of objects obtained by the new methods reflect the preference information contained in FPCMs better
in comparison to the fuzzy priorities obtained by the methods based on standard fuzzy arithmetic. However,
the whole idea of “properly reflecting” the preference information contained in FPCMs by means of the fuzzy
extension of methods based on PCMs in this thesis is based on the assumption that the original methods are
a suitable means of representing the preference information contained in PCMs.

The limitation of the method for dealing with large-dimensional PCMs proposed in Chapter V is that the
method is based on the assumption that the preference system of the DM is in compliance with the weak-
consistency condition. The weak-consistency condition is imposed as a minimal and very natural requirement
of consistency in the method, and the DM is expected to provide weakly consistent preference information.
Nevertheless, it is not guaranteed that every DM is able or willing to keep weak consistency during the process
of providing PCs. If the DM refuses weak consistency as not reflecting properly his or her preference system,
the method proposed in Chapter V cannot be used.

Another limitation might be that the formulas proposed in the thesis are based on highly non-linear opti-
mization problems and should be, therefore, carefully managed by numerical computation. In this thesis, some
optimization methods predefined in Matlab were used.

6.2 Future research

Despite the effort, the thesis could not cover all issues related to the fuzzy extension of MCDM methods based
on PCMs. Therefore, there is still a lot of space for future research. In the following, some ideas are presented.

Calibration: In Section 2.2.1, Saaty’s scale of linguistic terms with assigned integers for expressing inten-
sities of preference in MPCMs was reviewed, and its fuzzy extension was studied in Section 4.2.1. However, as
mentioned in Section 2.2.1, the linguistic terms do not correspond very well to the respective numerical values
that are distributed uniformly in the interval [1, 9]. This problem naturally concerns also the fuzzy extension of
Saaty’s scale. Thus, as mentioned in Section 4.2.1, it would be appropriate to customize Saaty’s scale for
each DM with respect to the given decision problem. The first attempt of customizing the scale by using fuzzy
numbers was done by Ishizaka and Nguyen (2013). However, as mentioned in Section 4.2.1, the process for
customizing the scale is not designed well, which results in an inappropriate calibration. Therefore, this area
still needs to be explored more thoroughly in order to design an appropriate calibration process.

Consistency: In Chapter IV, two consistency conditions were proposed for each type of FPCMs, one very
weak and easy to reach and one very strong and difficult to reach. For real-life applications, a compromise
between these two definitions of consistency might be useful. Therefore, searching for such a definition of
consistency that is again invariant under permutation and preserves the reciprocity property of PCs is a subject
for future research.

Weak consistency: As discussed in Chapter II, weak-consistency conditions for MPCMs and APCMs pro-
vide an intuitive minimum consistency requirement. These definitions of consistency are less restrictive than
traditional definitions of consistency reviewed in Chapter II and fuzzified in Chapter IV, and they provide DMs
with some space for expressing their preferences. Further, weak consistency is much easier to reach and
to control during the process of entering PCs into a PCM. This is especially convenient for real-life applica-
tions. Therefore, it would be useful to have such definitions of weak consistency also for FPCMs. The first
step towards the fuzzy extension of the weak-consistency condition was done by Krejčı́ and Stoklasa (2016)
who applied a fuzzy extension of the weak-consistency condition for MPCMs in the evaluation of scientific
monographs.

Aggregation: Because of the excessive extent of the topic, the fuzzy extension of aggregation methods for
obtaining final priorities of alternatives representing their final multi-criteria evaluations was not dealt with in this
thesis. However, it is a very important part of the methods for dealing with FPCMs. Similarly as for definitions of
consistency and methods for deriving fuzzy priorities of objects from FPCMs, also aggregation methods have
to be extended properly to FPCMs by applying constrained fuzzy arithmetic in order to preserve the reciprocity
property of the related PCs. Such fuzzy extension becomes considerably more complex in comparison to the
fuzzy extension of the consistency conditions and of the methods for deriving priorities of objects since fuzzy
priorities of criteria and alternatives obtained from several FPCMs are involved in the aggregation process.
Nevertheless, for the completeness of the MCDM methods based on FPCMs proposed in this thesis, it is
necessary to deal also with this issue. The fuzzy extension of the weighted average for aggregating fuzzy
priorities obtained from FMPCMs was already introduced by Krejčı́ et al. (2017). The fuzzy extension of the
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aggregation methods for FAPCMs-A and FAPCMs-M are still left for future research.
Multiple DMs: Another issue that was not addressed in this thesis is considering multiple DMs. A large

number of methods based on PCMs have been proposed in the literature to deal with MCDM problems involving
multiple DMs and some of the methods have been extended also to FPCMs. With the fuzzy extension of
these methods very same challenges that have been approached in this thesis arise. In particular, it is again
necessary to preserve the reciprocity of PCs in FPCMs as well as the invariance of the methods in order to
reflect appropriately the preference information provided by multiple DMs.

Incomplete large-dimensional FPCMs: The last but not least topic for future research is the fuzzy ex-
tension of the method for dealing with incomplete large-dimensional PCMs that was proposed in Chapter V.
The method proposed in Chapter V is designed for large-dimensional problems where the DM provides PCs
by means of crisp numbers. However, as discussed in the thesis, crisp numbers cannot model properly uncer-
tainty stemming from subjectivity of human thinking and from vagueness of information about the problem that
are very often related to MCDM problems. Therefore, a fuzzy extension of the method proposed in Chapter V
is needed in order to handle properly large-dimensional problems with uncertainty as well as with incomplete-
ness of preference information provided by the DM. Thus, the last but not least topic for future research is the
fuzzy extension of the method for dealing with incomplete large-dimensional PCMs proposed in Chapter V.
The fuzzy extension of the method requires a fuzzy extension of the weak-consistency condition, on which the
method is based. Besides that, a large number of rules derived from the weak-consistency condition has to be
fuzzified accordingly and employed in the iterative process of identifying PCs that should be provided by the
DM. At the end of the process of entering PCs into the incomplete large-dimensional FPCM, we would obtain
a FPCM instead of an interval PCM, which is the output of the current method. Afterwards, in order to derive
fuzzy priorities from such a FPCM, it would be sufficient to apply one of the methods proposed in Chapter IV.
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List of abbreviations

AHP Analytic Hierarchy Process
APCM additive pairwise comparison matrix
APCM-A additive pairwise comparison matrix with additive representation
APCM-M additive pairwise comparison matrix with multiplicative representation
DM decision maker
EVM eigenvector method
FAPCM fuzzy additive pairwise comparison matrix
FAPCM-A fuzzy additive pairwise comparison matrix with additive representation
FAPCM-M fuzzy additive pairwise comparison matrix with multiplicative representation
FMPCM fuzzy multiplicative pairwise comparison matrix
FPCM fuzzy pairwise comparison matrix
GMM geometric mean method
LLSM logarithmic least squares method
MCDM multi-criteria decision making
MPCM multiplicative pairwise comparison matrix
PC pairwise comparison
PCM pairwise comparison matrix

List of mathematical symbols

∅ empty set
N set of natural numbers
R set of real numbers
R+ set of positive real numbers greater than 0

U × V cartesian product of two sets U and V

Rn n−ary cartesian power of set R
F(R) set of all fuzzy sets defined on R
FN (R) set of all fuzzy numbers defined on R
FN (R+) set of all positive fuzzy numbers
FN (R)n n−ary cartesian power of set FN (R)
x ∈ Ω element belonging to set Ω
|Ω| cardinality of set Ω
Ω\Q difference of sets Ω and Q

Ω ∩Q intersection of sets Ω and Q

Ω ∪Q union of sets Ω and Q

(x1, x2, . . . , xn) n−tuple, i.e. an ordered list of n elements, n ∈ N
[a, b], c = [cL, cU ] closed interval
]a, b[ open interval
c̃ fuzzy set
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Supp c̃ support of c̃
Core c̃ core of c̃
c̃(α) α−cut of c̃
c̃(0) = Cl(Supp c̃) closure of the support of c̃
c ∈ c̃ element belonging to the closure of the support of c̃
c̃ = (cL, cM , cU ) triangular fuzzy number
c̃ = (cα, cβ , cγ , cδ) trapezoidal fuzzy number
A = {aij}ni,j=1 square matrix

Ã = {ãij}ni,j=1 square fuzzy matrix
|A| determinant of matrix A

AT transpose of matrix A

ÃT transpose of fuzzy matrix A

λ = EVMλ(A) maximal eigenvalue of matrix A

w = EVMw(A) normalized maximal eigenvector of matrix A

w = (w1, . . . , wn)
T column vector

wT = (w1, . . . , wn) row vector
w̃ = (w̃1, . . . , w̃n)

T column fuzzy vector
w = (w1, . . . , wn)

T column interval vector
∧ logical conjunction
∨ logical disjunction
ln natural logarithm
log9 logarithm of base 9

f−1 inverse of function f

⌊x⌋ floor of x ∈ R
k! factorial of number k ∈ N
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M. Fedrizzi and J. Krejčı́. A note on the paper ‘Fuzzy Analytic Hierarchy Process: Fallacy of the popular
methods. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 23(6):965–970,
2015.

J. Fichtner. On deriving priority vectors from matrices of pairwise comparisons. Socio-Economic Planning
Sciences, 20(6):341–345, 1986.

J. Figueira, S. Greco, and M. Ehrogott. Multiple Criteria Decision Analysis: State of the Art Surveys. Springer,
New York, 2005.

M. Gavalec, J. Ramı́k, and K. Zimmermann. Decision making and optimization. Springer, 2015. ISBN 978-3-
319-08322-3.
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