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Incomplete interval fuzzy preference relations and their applications 

 

 

Abstract 

This paper investigates incomplete interval fuzzy preference relations. An additive consistency property of 

fuzzy preference relations proposed by Herrera-Viedma et al. (2004) is first extended to a more general 

case. This property is then generalized to interval fuzzy preference relations (IFPRs) based on additive 

transitivity. Subsequently, we examine how to characterize additive consistent IFPR. Using these new 

characterizations, we propose a method to construct an additive consistent IFPR from an acceptable 

incomplete IFPR comprising n-1 preference data and an estimation algorithm for an acceptable incomplete 

IFPR with more known elements. Numerical examples are provided to illustrate the effectiveness and 

practicality of the proposed solution procedure. 

 

Keywords: Incomplete interval fuzzy preference relation; Additive consistent; Group decision making. 

 

1. Introduction 

A fuzzy preference relation satisfying additive reciprocity is one of the most common 

preference relations for expressing a decision maker’s (DM’s) preference over alternatives. In a 

decision making process, the DM often needs to compare a set of n decision alternatives ix  

( 1, 2,...,i n ), thereby constructing a fuzzy preference relation (Herrera-Viedma et al., 2004; 

Kacprzyk, 1986; Orlovsky, 1978; Tanino, 1984; Wang and Fan, 2007; Xu et al., 2009; Xu et al., 

2013c; Xu, 2005). However, the DM may have vague knowledge about the preference degrees of 

one alternative over another and cannot estimate his/her preference with an exact numerical value, 

but with an interval number. In this case, the DM constructs an interval preference relation.  

Saaty and Vargas (1987) first presented interval judgments as a way to model subjective 

uncertainty. Afterwards, different methods are proposed to generate weights from interval 

comparison matrices, such as linear programing (LP) (Arbel, 1989; Kress, 1991), lexicographic 

goal programming (LGP) (Islam et al., 1997; Wang, 2006), fuzzy preference programming (FPP) 

(Mikhailov, 2002; Mikhailov, 2004), two-stage logarithmic goal programming (TLGP) (Wang et 

al., 2005), eigenvector method (EM) (Wang and Chin, 2006), Lambda-Max method (Csutora and 

Buckley, 2001), goal programming method (GPM) (Wang and Elhag, 2007), etc. 
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    For IFPRs, Xu (2004b) defined the concept of a compatibility degree between two IFPRs, and 

showed the compatibility relationship between individual IFPRs and collective IFPR. Herrera et 

al.(2005) developed an aggregation process for combining IFPRs with other types of information 

such as numerical preference relation and linguistic preference relation. Jiang (2007) gave an 

index to measure the similarity degree between two IFPRs, and employed an error-propagation 

principle to determine a priority vector for the aggregated IFPRs. Recently, Xu and Chen (2008b) 

established some linear programming models for deriving priority weights from various IFPRs. 

Wang and Li (2012) developed goal-programming-based models for deriving interval weights 

from IFPRs for both individual and group decision-making situations.  

The aforesaid research focused on preference relations with complete information. A complete 

preference relation of order n necessitates the completion of all n(n-1)/2 judgments in its entire top 

(lower) triangular portion where the lower (top) triangular part is implied by additive reciprocity. 

Sometimes, however, a DM may develop a preference relation with incomplete information due to 

a variety of reasons such as time pressure, lack of knowledge, and the DM’s limited expertise 

related with the problem domain (Chiclana et al., 2008; Lee et al., 2007; Xu and Da, 2008; Xu and 

Da, 2009; Xu et al., 2010; Xu et al., 2013a; Xu et al., 2013b; Xu, 2004a; Xu, 2005; Xu and Chen, 

2008a); In addition, when the number of the alternatives, n, is large, it may be impractical to 

require the DM to perform all the n(n-1)/2 required comparisons for a complete pairwise 

comparison matrix (Fedrizzi and Silvio, 2007); Moreover, it is sometimes convenient or necessary 

to skip some direct comparison between alternatives even if the total number of alternatives is 

small (Fedrizzi and Silvio, 2007); In some other cases, a DM is unable to express any kind of 

preference between two or more options due to the expert’s insufficient knowledge of the problem 

or inability in discriminating the degree to which one option is preferred to another (Alonso et al., 

2004; Alonso et al., 2008; Herrera-Viedma et al., 2007a; Herrera-Viedma et al., 2007b; Xu, 2012).   

A critical concern for incomplete fuzzy preference relations is to estimate the missing values. 

Herrera-Viedma et al. (2007a) proposed an iterative procedure to estimate the missing information 

in an expert’s incomplete fuzzy preference relation. The procedure is guided by the additive 

consistency property and uses only the preference values provided by the expert. Fedrizzi and 

Giove (2007) put forward a new method for calculating missing elements in an incomplete fuzzy 

preference relation by maximizing global consistency. Later, Chiclana et al. (2009) pointed out 

that the two methods are very similar in calculating missing values. Chiclana et al. (2008) 
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presented a new estimation method based on the U-consistency criterion for incomplete fuzzy 

preference relations. Alonso et al. (2008) presented a procedure to estimate missing preference 

values for incomplete fuzzy, multiplicative, interval-valued, and linguistic preference relations. 

Liu et al. (2012b) developed a method to calculate missing values by minimizing the squared error 

of an incomplete fuzzy preference relation and its priority weight vector. Xu (2012) devised an 

approach to extending each incomplete multiplicative preference relation to a complete one by 

exploiting multiplicative transitivity properties. Xia et al. (2012) furnished an algorithm to 

estimate missing values for an incomplete linguistic preference relation based on multiplicative 

consistency. Recently, research has been extended to interval-valued preference relations. For 

instance, Alonso et al. (2008) put forward a procedure to estimate missing information for the 

incomplete interval preference relations. Genç et al. (2010) examined consistency, missing value(s) 

and derivation of priority vectors from IFPRs based on multiplicative transitivity. Liu et al. (2012a) 

proposed a new method to obtain priority weights from incomplete interval multiplicative 

preference relations. However, limited research has been devoted to incomplete IFPRs. As such, it 

is necessary to pay attention to this issue. 

Another important issue is the consistency of the judgment information provided by DMs 

(Chiclana et al., 2002; Herrera-Viedma et al., 2004). It is obvious that consistent information is 

more relevant and important than the information containing contradictions. Consistency is 

associated with certain transitivity properties. Different properties have been suggested to model 

transitivity of fuzzy preference relations. One of these properties is the “additive transitivity”, 

which, as shown in by Herrera-Viedma et al. (2004), can be seen as a parallel concept to Saaty’s 

consistency property for multiplicative reciprocal preference relations. 

The aim of this paper is to propose methods for constructing additive consistent IFPRs based on 

acceptable incomplete IFPRs. We first extend an additive consistency property proposed by 

Herrera-Viedma et al. (2004) for fuzzy preference relations to a more general case. This property 

is then extended to IFPRs based on additive transitivity.  After further characterizing additive 

consistent IFPRs, we develop two algorithms for estimating missing elements from acceptable 

incomplete IFPRs. A procedure is then laid out for handling GDM problems with acceptable 

incomplete IFPRs.  

    The rest of this paper is organized as follows. Section 2 reviews some properties of fuzzy 

preference relations. Section 3 first introduces the concepts of interval multiplicative reciprocal 
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preference relations and IFPRs as well as their transformation function. The property of additive 

consistent fuzzy preference relations in Section 2 is then extended to IFPRs, followed by further 

characterizations of additive consistent IFPRs. Section 4 presents two approaches to construct 

additive consistent IFPRs based on acceptable incomplete IFPRs.  A case study is furnished in 

Section 5 to illustrate how to apply our algorithms. We conclude the paper in Section 6. 

 

2. Additive consistent fuzzy preference relations 

    Let 1 2{ , ,..., }nX x x x ( 2n  ) be a finite set of alternatives, where ix  denotes the i th alternative. 

In multiple attribute decision making problems, a DM needs to rank alternatives 1 2, ,..., nx x x  from 

the best to the worst according to preference information. A brief description of multiplicative and 

fuzzy preference relations is given below. 

2.1 Multiplicative preference relations 

    A multiplicative preference relation is a positive preference relation A X X  , A   ( )ij n na  , 

where ija  denotes the DM’s relative preference of alternative ix  over jx . The measurement of ija  

is described by a ratio scale and in particular, as shown by Saaty (1980), {1/ 9,1/ 8,...,1, 2,...,ija   

9} : 1ija   denotes the DM’s indifference between ix  and jx , 9ija  (or 1/ 9jia  ) denotes that ix  

is absolutely preferred to jx , and {2,3,...,8}ija   denotes intermediate preference evaluations. 

This relation is multiplicative reciprocal, i.e., 1ij jia a  , , {1,2,..., }i j n   and in particular, 1iia  , 

{1,2,..., }i n  . Its consistency is defined by Saaty (1980) as follows. 

Definition 1. Let ( )ij n nA a   be a multiplicative preference relation, then A  is called consistent 

(Saaty, 1980), if ij ik kja a a , for all i , j , k . 

 

2.2 Fuzzy preference relations 

    A fuzzy preference relation R  is described as follows: R X X  , ( )ij n nR r  , with 

membership function :Ru [0,1]X X  , where ( , )R i j iju x x r  denotes the preference degree of 

alternative ix  over jx  (Kacprzyk, 1986; Tanino, 1984): 0.5ijr   denotes indifference between ix  
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and jx , 1ijr  , denotes that ix  is definitely preferred to jx , and 0.5 1ijr   (or 0 0.5jir  ) 

denotes that ix  is preferred to jx  to a varying degree. 

Definition 2. Let ( )ij n nR r   be a preference relation, then R  is called a fuzzy preference relation 

if  

[0,1]ijr  , 1ij jir r  , 0.5iir  , for all ,i j N .                                                                    (1) 

 

Definition 3. Let ( )ij n nR r   be a fuzzy preference relation, then R  is additive consistent if the 

following additive transitivity (Tanino, 1984) is satisfied: 

      
0.5ij ik jkr r r   , for all , , 1,2,...,i j k n                                                                        (2) 

 

2.3 Characterizing additive consistency of fuzzy preference relations 

    Herrera-Viedma et al. (2004) studied the transformation between multiplicative preference 

relations with values in the interval scale [1/9,9] (Alonso et al., 2004) and fuzzy preference 

relations with values in [0,1] and furnished the following propositions. 

Proposition 1 (Herrera-Viedma et al., 2004). Consider a set of alternatives 1 2{ , ,..., }nX x x x , 

associated with a multiplicative reciprocal preference relation ( )ij n nA a   with [1/ 9,9]ija  . Then, 

a corresponding fuzzy preference relation, ( )ij n nR r  , with [0,1]ijr  , associated with A is given 

as follows: 

                   9

1
( ) (1 log )

2ij ij ijr g a a                                                                                              (3) 

Proposition 2 (Herrera-Viedma et al., 2004). For a fuzzy preference relation ( )ij n nR r  , the 

following statements are equivalent: 

(a) 
3

2ij jk kir r r   , , ,i j k ; 

(b) 
3

2ij jk kir r r   , i j k  . 

Proposition 3 (Herrera-Viedma et al., 2004). For a fuzzy preference relation ( )ij n nR r  , the 

following statements are equivalent: 
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(a) 
3

2ij jk kir r r   , i j k  ; 

(b) ( 1) ( 1)( 2) ( 1)

1
...

2i i i i j j ji

j i
r r r r   

 
     , i j . 

 

2.4 A new characterization of additive consistency 

  Herrera-Viedma et al. (2004) showed that Proposition 3 can be used to construct an additive 

consistent fuzzy preference relation from a set of 1n   values 12 23 1{ , ,..., }n nr r r  . The aforesaid 

propositions were also used by Wang and Chen (2007; 2008). In the following, a more general 

result is provided. 

Proposition 4. For a fuzzy preference relation ( )ij n nR r  , the following statements are equivalent: 

(a) 
3

2ij jk kir r r   , , ,i j k N  ; 

(b) 
1 1 2 1

1
...

2t t tij j j j j j i

t
r r r r




     , , , 1, 2,...,li j N l t   . 

Proof. ( ) ( )a b  Mathematical induction is employed to prove this part of the proposition. It is 

obviously true for 1t   as it is reduced to the additive reciprocity property in Definition 2. Next, if 

the hypothesis is true for t n , 

1 1 2 2 1 1

1
...

2n n n n nij j j j j j j j i

n
r r r r r

  


       

we shall prove that it is also true for 1t n   

1 1 2 1 1 1 1 1 2 2 1 1 1 1
... ( ... )

n n n n n n n n n n n nij j j j j j j j i ij j j j j j j j j j ir r r r r r r r r r r
       

             

                         
1 1

1

2 n n n nj i j j j i

n
r r r

 


     

                         
1 1

1 1 3 2

2 2 2 2n n n nij j j j i

n n n
r r r

 

  
        

So the result is established. 

( ) ( )b a . 

  1 1ij jk ki ji kj kir r r r r r        

           
1 1 1 1

1 1
2 ( ... ) ( ... )

2 2t tij j j jj j k ki

t t
r r r r r

 

 
           
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1 1 1 1

1 ( ... ... )
t tij j j jj j k kit r r r r r
 

          

           
2 1 3

1
2 2

t
t


     

This completes the proof. 

    Furthermore, in the proof process, it is obvious that the differences of 2 1 3 2, ,...,j j j j   1t tj j   

are not necessarily equal to 1. As a matter of fact, the differences do not have to be identical. 

    Proposition 4 differs from Proposition 3 in that any sequence of values 
1 1 2 1
, ,..., ,

t t tij j j j j j ir r r r


 (for 

example 31 15 57 73, , ,r r r r ) will work for Proposition 4. But Proposition 3 requires preference values 

to follow a consecutive order such as 12 23 1 1, ,..., ,n n nr r r r . Therefore, Proposition 4 includes 

Proposition 3 as a special case.    

     

3. Interval fuzzy preference relations and their characterizations 

    In the following, we shall first introduce some operational laws for interval numbers (Hayes, 

2003; Moore, 1966). We then present a relationship between an interval multiplicative preference 

relation and an IFPR. The characterizations of additive consistent fuzzy preference relations in 

Section 2 are subsequently extended to IFPRs, followed by other useful results. 

Let 1 1 1[ , ]a a a  , 2 2 2[ , ]a a a  , [ , ]a a a   be three positive interval numbers, then 

(a) 1 2 1 1 2 2 1 2 1 2[ , ] [ , ] [ , ]a a a a a a a a a a             ;                                                                       (4) 

(b) 1 2 1 1 2 2 1 2 1 2[ , ] [ , ] [ , ]a a a a a a a a a a            ;                                                                       (5) 

(c) 1 2 1 1 2 2 1 2 1 2[ , ] [ , ] [ , ]a a a a a a a a a a             ;                                                                        (6) 

(d) log ( ) [log , log ]n n na a a  ;                                                                                                      (7) 

(e)  1 [1/ ,1/ ]a a a   .                                                                                                                   (8) 

 

Definition 4. An interval preference relation ( )ijA a  is multiplicative reciprocal if and only if 

1
ji ija a  . 

Definition 5 (Xu, 2010). If a positive interval multiplicative reciprocal preference relation 

( )ijA a  satisfies: 

ij ik kja a a  , for all , , 1, 2,...,i k j n , and i k j                                                          (9) 
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then ( )ijA a  is multiplicative consistent. 

Note that if an interval multiplicative reciprocal preference relation is multiplicative consistent, 

for all , , {1,2,..., }i k j n , as pointed out by Xu (2010), it is necessary to require i k j  , 

otherwise, ( )ijA a  would be reduced to a crisp number judgment matrix (Saaty’s multiplicative 

reciprocal preference relation). For more detail, readers are referred to (Xu, 2010). The 

implication is that it is only necessary to verify Eq.(9) for the upper (or lower) triangular portion 

of the preference relation when multiplicative consistency is checked. 

Definition 6 (Xu, 2004b). Let ( )ijR r  be an interval valued preference relation, if 

                 [ , ]ij ij ijr r r  , [ , ]ij ji jir r r  , 1ij ji ij jir r r r       , 

                 0ij ijr r   , for all , 1, 2,...,i j n  

then R  is called an interval fuzzy preference relation (IFPR). 

Definition 7. Let ( )ijR r  be an IFPR, if 

              [0.5,0.5]ij jk ikr r r   , i j k                                                                                    (10) 

then R  is called an additive consistent IFPR. 

Proposition 5. For a set of alternatives 1 2{ , ,..., }nX x x x , and its associated interval 

multiplicative reciprocal preference relation ( )ijA a  with 1
ji ija a  , a corresponding IFPR, 

( )ijR r , associated with A  is given as 

           9

1
( ) ([1,1] log )

2ij ij ijr g a a                                                                                               (11) 

such that 

(a) 1ij jir r   , ,i j N  ; 

(b) 1ij jir r   . ,i j N  . 

Proof. As ( )ijA a  is an interval multiplicative reciprocal preference relation, by Definition 4, 

1
ji ija a  , that is 

1 1
[ , ] [ , ]ji ji

ij ij

a a
a a

 
                                                                                                              (12) 

Thus 
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1
ji

ij

a
a


 , 

1
ji

ij

a
a


 .                                                                                                            (13) 

1ji ija a   , 1ji ija a                                                                                                               (14) 

By Proposition 1 and Eq.(11) and the operational law (Eq.(7)) for interval numbers, we have 

   9 9

1 1
(1 log ) ([1,1] log [ , ])

2 2ij ij ij ijr a a a      

Thus 

9

1
(1 log )

2ij ijr a    

9

1
(1 log )

2ij ijr a    

Similarly, 

9

1
(1 log )

2ji jir a    

9

1
(1 log )

2ji jir a    

Therefore,  

9 9 9

1 1
(1 log ) (1 log ) 1 log 1

2 2ij ji ij ji ij jir r a a a a             ,  

9 9 9

1 1
(1 log ) (1 log ) 1 log 1

2 2ij ji ij ji ij jir r a a a a             , , {1,2,..., }i j n   

The proof is thus completed. 

Next, we examine the relationship between multiplicative consistency of an interval 

multiplicative reciprocal preference relation and additive consistency of its converted IFPR as per 

Eq.(11). 

Proposition 6. If an interval multiplicative reciprocal preference relation ( )ijA a  is 

multiplicative consistent, then its corresponding IFPR ( )ijR r  is additive consistent, and 

(a) 
3

2ij jk kir r r     , i j k   ; 

(b) 
3

2ij jk kir r r     , i j k   ; 
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(c) ( 1) ( 1)( 2) ( 1)

1
...

2i i i i j j ji

j i
r r r r   

   
 

     , i j  ; 

(d) ( 1) ( 1)( 2) ( 1)

1
...

2i i i i j j ji

j i
r r r r   

   

 
     , i j  ; 

(e) 
1 1 2 1

1
...

2t t tij j j j j j i

t
r r r r



    
     , 1 2 ... ti j j j     ; 

(f) 
1 1 2 1

1
...

2t t tij j j j j j i

t
r r r r



    
     , 1 2 ... ti j j j     . 

Proof.  Since ( )ijA a is multiplicative consistent, by Definition 5, ij jk ika a a  , for i j k   . 

Taking a logarithm operation (Eq.(7)) on both sides yields 

         9 9 9log log logij jk ika a a  , i j k    

Thus 

        9 9 9

1 1 1
([1,1] log ) ([1,1] log ) ([1,1] log ) [0.5,0.5]

2 2 2ij jk ika a a        

By Eq.(11), we have 

 [0.5,0.5]ij jk ikr r r    

[ , ] [ , ] [ , ] [0.5,0.5]ij ij jk jk ik ikr r r r r r         

0.5ij jk ikr r r     , 0.5ij jk ikr r r      

By Proposition 5, we have 

3

2ij jk kir r r     , 
3

2ij jk kir r r     , i j k    

Thus the expressions (a) and (b) are established. 

    Let i j , and k j i  . The expression (c) can be rewritten as follows: 

( 1) ( 1)( 2) ( 1)

1
...

2i i i i j j ji

k
r r r r   

   


     , i j   

    Mathematical induction is used to prove this part. It is clearly true for 1k  . Next if the 

hypothesis is true for k n  

( 1) ( 1)( 2) ( 1)( ) ( )

1
...

2i i i i i n i n i n i

n
r r r r   

      


      

then for 1k n  : 

     ( 1) ( 1)( 2) ( 1)( ) ( )( 1) ( 1)...i i i i i n i n i n i n i n ir r r r r    
                
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( 1) ( 1)( 2) ( 1)( ) ( )( 1) ( 1)( ... )i i i i i n i n i n i n i n ir r r r r    
                 

( ) ( )( 1) ( 1)

1
( )

2 i n i i n i n i n i

n
r r r  

     


     

( ) ( )( 1) ( 1)

1
( 1)

2 i i n i n i n i n i

n
r r r  

     


      

1 3 2

2 2 2

n n 
    

thus the expression (c) is confirmed and (d) can be analogously asserted. Similar to Proposition 4, 

(e)–(f) can be verified. 

Proposition 7. An IFPR ( )ijR r  is additive consistent if and only if (1) ij ik lj lkr r r r      ; (2) 

ij ik lj lkr r r r      , i j k   , 1, 2,...,l n . 

Proof.  If an IFPR ( )ijR r  is additive consistent by Definition 7, then 

            [0.5,0.5]ij jk ikr r r   ,  i j k    

1

2ij jk ikr r r     , 
1

2ij jk ikr r r     , i j k    

1

2ij ik jkr r r     , 
1

2ij ik jkr r r     , i j k    

Similarly, 

[0.5,0.5]lj jk lkr r r   , l j k    

1

2lj jk lkr r r     , 
1

2lj lk lkr r r     , l j k    

1

2lj lk jkr r r     , 
1

2lj lk lkr r r     , l j k    

thus 

          ij ik lj lkr r r r      , ij ik lj lkr r r r      , ,i l j k   . 

On the contrary, 

    If ij ik lj lkr r r r      , ij ik lj lkr r r r      , i j k    

    Let l j , since 0.5jj jjr r   , then 

        0.5ij ik jkr r r     , 0.5ij ik jkr r r     , i j k    
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That is  

       0.5ij jk ikr r r     , 0.5ij jk ikr r r     , i j k    

      [0.5,0.5]ij jk ikr r r   , i j k    

This completes the proof. 

    Proposition 7 reveals an important property of an additive consistent IFPR. For upper (or lower) 

triangular interval values, the difference of the lower bounds between any two corresponding 

columns should be a constant for all rows. The same is true for the upper bounds of the interval 

preference values. Proposition 6 and Proposition 7 will play an important role in devising our 

algorithms to construct complete IFPRs based on an incomplete relation. 

    Note that, if the original multiplicative reciprocal preference values in ( )ijA a  are not 

assessed on the {1/9, 1/8, …, 8, 9} scale, we may have obtained a matrix R  with entries not in the 

interval [0,1], but in an interval [ ,1 ]c c  , where 0c  , c  indicates the minimum value in 

matrix R , 1 c  gives the maximum value of matrix R . In this case, the obtained values have to 

be converted using a transformation function that preserves reciprocity and additive consistency, 

i.e., :[ ,1 ] [0,1]f c c   , verifying 

(a) ( ) 0f c  ;                                                                                                                               (15) 

(b) (1 ) 1f c  ;                                                                                                                             (16) 

(c) ( ) ( ) 1f x f x   , [ ,1 ]x c c    ;                                                                                         (17) 

(d) If 
3

2
x y z     , 

3
( ) ( ) ( )

2
f x f y f z     , , , [ ,1 ]x y z c c      ;                             (18) 

(e) If 
3

2
x y z     ,

3
( ) ( ) ( )

2
f x f y f z     , , , [ ,1 ]x y z c c                                     (19) 

A linear function satisfying (a) and (b) takes the form 

    ( )f x x    , , R   ; 

    ( )f x x    , , R   ; 

If 
1

1 2c
 


 , 

1 2

c

c
 


, then  

     
1

( )
1 2 1 2 1 2

c x c
f x x

c c c


  
  

  
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1

( )
1 2 1 2 1 2

c x c
f x x

c c c


  
  

  
 

 (c) can be easily verified as 

     
( ) 2

( ) ( ) 1
1 2 1 2 1 2

x c x c x x c
f x f x

c c c

   
     
    

  
 

If 
3

2
x y z     , 

3

2
x y z      

    ( ) ( ) ( )
1 2 1 2 1 2

x c y c z c
f x f y f z

c c c

  
     
    

  
 

                                        
( ) 3 3 / 2 3 3

1 2 1 2 2

x y z c c

c c

     
  

 
 

   ( ) ( ) ( )
1 2 1 2 1 2

x c y c z c
f x f y f z

c c c

  
     
    

  
 

                                        
( ) 3 3 / 2 3 3

1 2 1 2 2

x y z c c

c c

     
  

 
 

(d) and (e) are also confirmed. 

Proposition 8. Let (1) (2) ( ), ,..., mR R R  be m  IFPRs, then their weighted average 

(1) (2) ( )
1 2 ... m

mR R R R      , [0,1]l  , 
1

1
m

ll



                                                  (20) 

is also an IFPR such that 

1ij jir r   , 1ij jir r   , , {1,2,..., }i j n          

Proof.  Since (1) (2) ( ), ,..., mR R R  are IFPRs, it follows that 

   ( ) ( ) 1l l
ij jir r   , ( ) ( ) 1l l

ij jir r   , , {1,2,..., }i j n  , 1, 2,...,l m  

Then by Eq.(20), we have 

        (1) (2) ( )
1 2 ... m

ij ij ij m ijr r r r         , (1) (2) ( )
1 2 ... m

ij ij ij m ijr r r r         , , {1,2,..., }i j n   

        (1) (2) ( )
1 2 ... m

ji ji ji m jir r r r         , (1) (2) ( )
1 2 ... m

ji ji ji m jir r r r         , , {1,2,..., }i j n   

(1) (1) (2) (2) ( ) ( )
1 2( ) ( ) ... ( )m m

ij ji ij ji ij ji m ij jir r r r r r r r                  

             1 2 ... 1m        

(1) (1) (2) (2) ( ) ( )
1 2( ) ( ) ... ( )m m

ij ji ij ji ij ji m ij jir r r r r r r r                  

             1 2 ... 1m        
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The proof is thus completed.          

Proposition 9. Let (1) (2) ( ), ,..., mR R R  be m  additive consistent IFPRs, then their weighted average 

       (1) (2) ( )
1 2 ... m

mR R R R      , [0,1]l  , 
1

1
m

ll



                                                       (21) 

is also an additive consistent IFPR. 

 Proof.   Since (1) (2) ( ), ,..., mR R R  are additive consistent IFPRs by Definition 7. 

     ( ) ( ) ( ) [0.5,0.5]l l l
ij jk ikr r r   , i j k    

then by Eq.(21), we have 

(1) (2) ( )
1 2 ... m

ij ij ij m ijr r r r       

(1) (2) ( )
1 2 ... m

jk jk jk m jkr r r r       

(1) (2) ( )
1 2 ... m

ik ik ik m ikr r r r       

      (1) (1) (2) (2) ( ) ( )
1 2( ) ( ) ... ( )m m

ij jk ij jk ij jk m ij jkr r r r r r r r           

           (1) (2) ( )
1 2( [0.5,0.5]) ( [0.5,0.5]) ... ( [0.5,0.5])m

ik ik m ikr r r          

           (1) (2) ( )
1 2 1 2 1 2... [( ... ) / 2, ( ... ) / 2]m

ik ik m ik m mr r r                    

           [0.5,0.5]ikr   

This completes the proof. 

 

4.  Procedures for constructing complete IFPRs based on acceptable incomplete IFPRs 

4.1 Incomplete interval fuzzy preference relations 

    A complete n n  preference relation requires ( 1) / 2n n   judgments in its entire top (or lower) 

triangular portion. Sometimes, however, a DM may furnish a preference relation with incomplete 

information due to a variety of reasons. Next, we first present basic concepts of incomplete IFPRs, 

then develop two procedures for estimating missing values. 

Definition 8. Let ( )ijR r  be an n n  preference relation, if at least one element in the upper (or 

lower) triangular part is not given by the DM, denoted by an unknown variable “x”, and remaining 

interval values provided by the DM satisfy  

            [1,1]ij jir r  , [0.5,0.5]iir  , for all ijr                                                                        (22) 

then R  is called an incomplete IFPR, where   is the set of all the known elements in R . 
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Definition 9. The elements ijr , klr  of R  are called adjacent if { , } { , }i j k l   .  

For a missing element ijr , it can be determined indirectly if there exist a sequence of adjacent 

known elements  
1 1 2
, ,ij j jr r  ...,

tj jr . 

Definition 10. Let ( )ijR r  be an incomplete IFPR. If all missing elements of R  can be 

determined by the known elements, then R  is called an acceptable incomplete IFPR. Otherwise, 

R  is an unacceptable incomplete IFPR. 

   Next, we extend the necessary condition (Herrera-Viedma et al., 2007b; Xu and Da, 2008) of 

acceptable incomplete fuzzy preference relations to the case of incomplete IFPRs.  

Proposition 10. Let ( )ijR r  be an incomplete IFPR. If R  is an acceptable incomplete IFPR, then 

there exists at least one known non-diagonal element in each row or each column of R , i.e. there 

exist at least (n-1) judgments provided by the DM. 

Definition 11. Let ( )ijR r  be an incomplete IFPR, if the known elements satisfy 

      
1 1 2 1

1
...

2t t tij j j j j j i

t
r r r r



    
     , for 1 2 ... ti j j j                                                             (23) 

     
1 1 2 1

1
...

2t t tij j j j j j i

t
r r r r



    
     ,   for 1 2 ... ti j j j     ,                                                      (24) 

then R  is called an additive consistent incomplete IFPR. 

 

4.2 An estimation procedure for acceptable incomplete IFPRs with the fewest number of 

judgments 

Next, by exploiting Proposition 5 and Proposition 6 or Proposition 7, a simple and practical 

method is developed for constructing a complete additive consistent IFPR based on an acceptable 

incomplete IFPR with the fewest number of judgment data (i.e., n-1 preference values): 

Algorithm Ⅰ 

Step 1. For a decision problem, let 1 2{ , ,..., }nX x x x  be a discrete set of alternatives. The DM 

conducts pairwise comparisons among the alternatives and furnished his/her assessment as an 

acceptable incomplete IFPR ( )ij n nR r   (if the DM provides his/her evaluation as an acceptable 

incomplete interval multiplicative reciprocal preference relation ( )ij n nA a  , then ( )ij n nA a   can 
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be converted to a corresponding incomplete IFPR ( )ij n nR r   by Propositions 5), with only n-1 

judgments. 

Step 2. Utilizing Proposition 6 or Proposition 7 to determine all unknown elements in R , and 

yield an additive consistent interval preference relation ( )ij n nR r   . If this preference relation 

contains any values falling outside the unit interval [0,1] , but within the interval [ ,1 ]c c  , then a 

transformation function 1 2( ) x c
cf x 

  can be applied to preserve the reciprocity and additive 

transitivity, resulting in an additive consistent IFPR. 

Step 3. End. 

 

Example 1. Assume that a decision problem involves evaluating seven faculties ix  ( 1, 2,...,7i  ) 

at a university. The DM assesses these seven faculties (alternatives) by pairwise comparison and 

provides his/her judgment as follows: 

    31 [0.4,0.7]r  , 32 [0.1,0.3]r  , 34 [0.3,0.4]r  , 35 [0.4,0.7]r  , 36 [0.3,0.8]r  , 37 [0.4,0.9]r  . 

Step 1. By Definition 8 and the aforesaid information provided by the DM, one obtains the 

following acceptable incomplete IFPR, where “x” denotes the unknown judgment. 

[0.5,0.5]

[0.5,0.5]

[0.4,0.7] [0.1,0.3] [0.5,0.5] [0.3,0.4] [0.4,0.7] [0.3,0.8] [0.4,0.9]

[0.5,0.5]

[0.5,0.5]

[0.5,0.5]

[0.5,0.5]

x x x x x x

x x x x x x

R x x x x x x

x x x x x x

x x x x x x

x x x x x x

 
 
 
 
   
 
 
 
  

 

Step 2. Utilize Proposition 6 and Proposition 7 to determine all missing elements in R  as follows: 

13 311 0.3r r    , 13 311 0.6r r    , 23 321 0.7r r    , 23 321 0.9r r    , 

12 23 31

3
0.1

2
r r r      , 12 23 31

3
0.2

2
r r r      , 21 121 0.8r r    , 21 121 0.9r r    , 

23 33 24 34 24 23 33 34 0.5r r r r r r r r               , 24 23 33 34 0.8r r r r       , 

25 23 33 35 0.6r r r r       , 25 23 33 35 1.1r r r r       ,  

26 23 33 36 0.5r r r r       , 26 23 33 36 1.2r r r r       , 
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27 23 33 37 0.6r r r r       , 27 23 33 37 1.3r r r r       , 

14 13 33 34 0.1r r r r       , 14 13 33 34 0.5r r r r       , 

15 13 33 35 0.2r r r r       , 15 13 33 35 0.8r r r r       , 

16 13 33 36 0.1r r r r       , 16 13 33 36 0.9r r r r       , 

17 13 33 37 0.2r r r r       , 17 13 33 37 1r r r r       , 

45 35 34 44 0.6r r r r       , 45 35 34 44 0.8r r r r       , 

46 36 34 44 0.5r r r r       , 46 36 34 44 0.9r r r r       , 

47 37 34 44 0.6r r r r       , 47 37 34 44 1r r r r       , 

56 36 35 55 0.4r r r r       , 56 36 35 55 0.6r r r r        

57 37 35 55 0.5r r r r       , 57 37 35 55 0.7r r r r       , 

67 37 36 66 0.6r r r r       , 67 37 36 66 0.6r r r r        

41 141 0.5r r    , 41 141 0.9r r    , 42 241 0.2r r    , 42 241 0.5r r    , 

43 341 0.6r r    , 43 341 0.7r r    ,  

51 151 0.2r r    , 51 151 0.8r r    , 52 251 0.1r r     , 52 251 0.4r r    , 

53 351 0.3r r    , 53 351 0.6r r    , 54 451 0.2r r    , 54 451 0.4r r    , 

61 161 0.1r r    , 61 161 0.9r r    , 62 261 0.2r r     , 62 261 0.5r r    , 

63 361 0.2r r    , 63 361 0.7r r    , 64 461 0.1r r    , 64 461 0.5r r    , 

65 561 0.4r r    , 65 561 0.6r r    , 

71 171 0r r    , 71 171 0.8r r    , 72 271 0.3r r     , 72 271 0.4r r    , 

73 371 0.1r r    , 73 371 0.6r r    , 74 471 0r r    , 74 471 0.4r r    , 

75 571 0.3r r    , 75 571 0.5r r    , 76 671 0.4r r    , 76 671 0.4r r    . 

Thus, 
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[0.5,0.5] [0.1,0.2] [0.3,0.6] [0.1,0.5] [0.2,0.8] [0.1,0.9] [0.2,1]

[0.8,0.9] [0.5,0.5] [0.7,0.9] [0.5,0.8] [0.6,1.1] [0.5,1.2] [0.6,1.3]

[0.4,0.7] [0.1,0.3] [0.5,0.5] [0.3,0.4] [0.4,0.7] [0.3,0.8] [0.4,0.9]

[0.5,0.9] [R  0.2,0.5] [0.6,0.7] [0.5,0.5] [0.6,0.8] [0.5,0.9] [0.6,1]

[0.2,0.8] [ 0.1,0.4] [0.3,0.6] [0.2,0.4] [0.5,0.5] [0.4,0.6] [0.5,0.7]

[0.1,0.9] [ 0.2,0.5] [0.2,0.7] [0.1,0.5] [0.4,0.6] [0.5,0.5] [0.6,0.6]

[0,0.8] [ 0.3,0.4] [0.1



 ,0.6] [0,0.4] [0.3,0.5] [0.4,0.4] [0.5,0.5]

 
 
 
 
 
 
 
 
 
  

 

    As the preference relation contains values falling outside the interval [0,1] and c = 0.3, a 

transformation function 1 2( ) x c
cf x 

  is applied to the lower and upper bounds of each interval 

value in R , yielding 

[0.5,0.5] [0.25,0.31] [0.38,0.56] [0.25,0.5] [0.31,0.69] [0.25,0.75] [0.31,0.81]

[0.69,0.75] [0.5,0.5] [0.63,0.75] [0.5,0.69] [0.56,0.88] [0.5,0.94] [0.56,1]

[0.44,0.63] [0.25,0.38] [0.5,0.5] [0.38,0.44] [0.44,0.63

R 
] [0.38,0.69] [0.44,0.75]

[0.5,0.75] [0.31,0.5] [0.56,0.63] [0.5,0.5] [0.56,0.69] [0.5,0.75] [0.56,0.81]

[0.31,0.69] [0.13,0.44] [0.38,0.56] [0.31,0.44] [0.5,0.5] [0.44,0.56] [0.5,0.63]

[0.25,0.75] [0.06,0.5] [0.31,0.68] [0.25,0.5] [0.44,0.56] [0.5,0.5] [0.56,0.56]

[0.19,0.69] [0,0.44] [0.25,0.56] [0.19,0.44] [0.38,0.5] [0.44,0.44] [0.5,0.5]

 
 
 
 
 
 
 
 
 
  

 

Alonso et al. (2008) proposed a different procedure to estimate missing values in an incomplete 

IFRP (see Appendix). For a comparison with our approach, their procedure is applied to 

determine the missing judgments in this example. 

By Eq. (32), RL  and RR  are obtained as follows: 

0.5

0.5

0.4 0.1 0.5 0.3 0.4 0.3 0.4

0.5

0.5

0.5

0.5

x x x x x x

x x x x x x

RL x x x x x x

x x x x x x

x x x x x x

x x x x x x

 
 
 
 
   
 
 
 
  

, 

0.5

0.5

0.7 0.3 0.5 0.4 0.7 0.8 0.9

0.5

0.5

0.5

0.5

x x x x x x

x x x x x x

RR x x x x x x

x x x x x x

x x x x x x

x x x x x x

 
 
 
 
   
 
 
 
  

 

Step 1. In RL  and RR , “ x ” denotes an unknown value, and by Eq. (35), EV  of the known 

values are determined as: 

{(3,1), (3,2), (3,4), (3,5), (3,6), (3,7)}EV   

Step 2. By applying Eqs. (36)-(46), one has: 
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         11
12H  , 1

12 0crl  , 1
12 0crr   

        12
12 {3}H  ,  

 2
12 32 31 0.5 0.1 0.4 0.5 0.2crl rl rl        , 1

12 32 31 0.5 0.3 0.7 0.5 0.1crr rr rr       . 

         13
12H  , 3

12 0crl  , 3
12 0crr   

1        12

0 0.2 0
0.2

1
crl

 
  , 12

0 0.1 0
0.1

1
crr

 
  . 

Similarly, we can get  

       14 0.4crl  , 14 0.2crr  ,  15 0.5crl  , 15 0.5crr  ,  16 0.4crl  , 16 0.6crr  ,   

      17 0.5crl  , 17 0.7crr  ,   

After the first iteration ( 1h  ), we have 

      

[0.5,0.5] [0.2,0.1] [0.4,0.2] [0.5,0.5] [0.4,0.6] [0.5,0.7]

[0.5,0.5]

[0.4,0.7] [0.1,0.3] [0.5,0.5] [0.3,0.4] [0.4,0.7] [0.3,0.8] [0.4,0.9]

[0.5,0.5]

[0.5,0.5]

[0.5,0.5]

[0.5,0.5]

x

x x x x x x

R x x x x x x

x x x x x x

x x x x x x

x x x x x x















 
 
 
 
 
 

 

By repeating the estimation procedure, we finally have: 

  

0.5 0.2 0.6 0.4 0.5 0.4 0.5

0.8 0.5 0.9 0.7 0.8 0.7 0.8

0.4 0.1 0.5 0.3 0.4 0.3 0.4

0.6 0.3 0.7 0.5 0.6 0.5 0.6

0.5 0.2 0.6 0.4 0.5 0.4 0.5

0.6 0.3 0.7 0.5 0.6 0.5 0.6

0.5 0.2 0.6 0.4 0.5 0.4 0.5

RL

 
 
 
 
   
 
 
 
  

, 

0.5 0.1 0.3 0.2 0.5 0.6 0.7

0.9 0.5 0.7 0.6 0.9 1

0.7 0.3 0.5 0.4 0.7 0.8 0.9

0.8 0.4 0.6 0.5 0.8 0.9 1

0.5 0.1 0.3 0.2 0.5 0.6 0.7

0.4 0 0.2 0.1 0.4 0.5 0.6

0.3 0.1 0 0.3 0.4 0.5

1

0

RR

 
 
 
 
   
 
 
 
  

 

and 
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[0.5,0.5] [0.2,0.1] [0.6,0.3] [0.4,0.2] [0.5,0.5] [0.4,0.6] [0.5,0.7]

[0.8,0.9] [0.5,0.5] [0.9,0.7] [0.7,0.6] [0.8,0.9] [0.7,1] [0.8,1]

[0.4,0.7] [0.1,0.3] [0.5,0.5] [0.3,0.4] [0.4,0.7] [0.3,0.8] [0.4,0.9]

[0.6,0.8] [0.3R  ,0.4] [0.7,0.6] [0.5,0.5] [0.6,0.8] [0.5,0.9] [0.6,1]

[0.5,0.5] [0.2,0.1] [0.6,0.3] [0.4,0.2] [0.5,0.5] [0.4,0.6] [0.5,0.7]

[0.6,0.4] [0.3,0] [0.7,0.2] [0.5,0.1] [0.6,0.4] [0.5,0.5] [0.6,0.6]

[0.5,0.3] [0.2,0] [0.6,0.1] [0.4,0] [0.5,0.3] [0.4,0.4] [0.5,0.5]

 
 
 
 
 
 
 
 
 
  

 

This example illustrates some drawbacks of Alonso et al. (2008)’s iterative process. Firstly, 

after the first iteration ( 1h  ), some estimated missing values such as 12r  and 14r  are undesirable 

because they do not constitute interval values due to 12 12rl rr , 14 14rl rr . Secondly, several 

iterations are needed to estimate some missing values. For example, 13r  could not be estimated 

during the first iteration. Instead, it can only be estimated at a later iteration based on both 

judgments data provided by the DM and estimated values during earlier iterations. In contrast, our 

method can estimate missing values in one step and all the missing values are estimated based on 

the preference values furnished by the DM. Thirdly, the derived R  by Alonso et al. (2008)’s 

method is no longer an IFPR because it does not satisfy conditions (a) and (b) of Proposition 5 or 

Proposition 7, while our estimated matrix R  is always an additive consistent IFPR.  

  

4.2 An estimation procedure for acceptable incomplete IFPRs with more known judgments 

    Next, we consider an acceptable incomplete IFPR ( )ijR r  with more known elements (on top 

of the minimum n-1 values). In this case, by Proposition 6, each missing element 
1k kj jr


 in ( )ijR r  

can be estimated. First, find a sequence of values 
1 1 2
, ,....,

tij j j j ir r r  ( 1 2 ... ti j j j    ) that include 

one and only one unknown element 
1k kj jr


. If 1k kj j  , 
1k kj jr


 is located in the middle of the 

sequence, and this missing element can be estimated as 
1 1 1

[ , ]
k k k k k kj j j j j jr r r
  

     by Eq.(23) and (24) as 

     
1 1 2 2 1 1 11

1 2 ...

1
( ... ...

2

1

#
)

k k k k t t t

t

k k ij j j j j j j j j j i
i j j

j j
j

t
r r r r r rr

   

     

 



 

 


      
 

                        

1 1 2 2 1 1 11

1 2 ...

1
( ... ...

2

1

#
)

k k k k t t t

t

k k ij j j j j j j j j j i
i j j

j j
j

t
r r r r r rr

   

     

 



 

 


      
 

 , 

        for all 
1 1 2 2 1
, ,..., ,...,

k k tij j j j j j ir r r r
 

                                                                                      (25) 
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If 1k kj j  , 
1k kj jr


is the last value in the sequence, and 
1k kj jr


 is equal to 
tj ir . In this case, it can be 

estimated as 
1 1 1

[ , ]
k k k k k kj j j j j jr r r
  

     by Eq.(23) and (24), where 

      
1 1 2 1

1 2 ...

1 1
( ... )

# 2t t t

t

j i ij j j j j
i j j j

t
r r r r



   

   

        
 ,                                                          

     
1 1 2 1

1 2 ...

1 1
( ... )

# 2t t t

t

j i ij j j j j
i j j j

t
r r r r



   

   

        
 ,   

         for all 
1 1 2 2 1
, ,...,

k kij j j j jr r r
 

                                                                                                   (26) 

  is the set of all the known elements in R , #  is the number of eligible sequences 
1 1 2
, ,...,ij j jr r  

tj ir . 
1k kj jr


 can be automatically obtained by Eq.(22) 

      
1 1

[1,1]
k k k kj j j jr r

 
  , [0.5,0.5]iir                                                                                             (27) 

 

Example 2. Consider an acceptable incomplete IFPR. 

       

[0.5,0.5] [0.3,0.5] [0.3,0.4] [0,0.3] [0.3,0.7]

[0.5,0.7] [0.5,0.5] [0.5,0.6] [0.4,0.7]

[0.4,0.7] [0.4,0.5] [0.5,0.5] [0.4,0.6]

[0.7,1] [0.5,0.5]

[0.3,0.7] [0.3,0.6] [0.4,0.6] [0.5,0.5]

x

R x

x x x

x

 
 
 
 
 
 
  

 

    In order to estimate the missing value 24r , the only sequence that contains one and only one 

unknown element 24r  is 12 24 41{ , , }r r r . By Eq.(25), we have  

24 12 411.5 1.5 0.3 1 0.2r r r          

24 12 411.5 1.5 0.5 0.7 0.3r r r          

For 34r , there exist two eligible sequences 12 23 34 41{ , , , }r r r r , 13 34 41{ , , }r r r  that include 34r , by Eq.(25), 

we have 

 34 12 23 41 13 41

1
(2 ) (1.5 )

2
r r r r r r             

 1
(2 0.3 0.5 1) (1.5 0.3 1) 0.2

2
         

 34 12 23 41 13 41

1
(2 ) (1.5 )

2
r r r r r r             



22 
 

 1
(2 0.5 0.6 0.7) (1.5 0.4 0.7) 0.3

2
         

For 45r , there exists a unique eligible sequence 14 45 51{ , , }r r r  containing 45r , then we have  

45 14 511.5 1.5 0 0.7 0.8r r r          

45 14 511.5 1.5 0.3 0.3 0.9r r r          

Thus, we have 

24 [0.2,0.3]r  , 34 [0.2,0.3]r  , 45 [0.8,0.9]r   

42 [0.7,0.8]r  , 43 [0.7,0.8]r  , 54 [0.1,0.2]r   

    Based on the aforesaid calculations, a complete additive consistent IFPR is constructed as: 

[0.5,0.5] [0.3,0.5] [0.3,0.4] [0,0.3] [0.3,0.7]

[0.5,0.7] [0.5,0.5] [0.5,0.6] [0.2,0.3] [0.4,0.7]

[0.4,0.7] [0.4,0.5] [0.5,0.5] [0.2,0.3] [0.4,0.6]

[0.7,1] [0.7,0.8] [0.7,0.8] [0.5,0.5] [0.8,0.9]

[0.3,0.7] [0.3,0.6] [0.

R 

4,0.6] [0.1,0.2] [0.5,0.5]

 
 
 
 
 
 
  

 

 

    In the real world, many decision making processes involve multiple stakeholders rather than a 

single DM. Next, Algorithm Ⅱis proposed to handle group decisions with incomplete IFPRs. 

 

Algorithm Ⅱ 

    For a group decision making problem, let 1 2{ , ,..., }nX x x x  be a discrete set of alternatives, 

1 2{ , ,..., }mE e e e  be a group of experts, 1 2( , ,..., )T
m     be the weight vector for the DMs, 

where 0l  , 1, 2,...,l m , 
1

1
m

ll



 . A decision procedure with acceptable incomplete IFPRs 

is described as follows: 

Step 1. Each expert le  ( 1, 2,...,l m ) compares each pair of alternatives and furnishes his/her 

assessments as an acceptable incomplete IFPR ( ) ( )( )l l
ij n nR r  . 

Step 2. Estimate missing elements in ( ) ( )( )l l
ij n nR r  ( 1,2,...,l m ) using the known elements 

through Eq.(25), and obtain complete IFPRs ( ) ( )( )l l
ij n nR r   . If any resulting preference relation 

contains values falling outside the interval [0, 1], and within the interval [ ,1 ]c c  , a 
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transformation function 1 2( ) x c
cf x 

  is applied to the upper and lower bounds for the interval 

values to convert the preference relation to an IFPR.  

Step 3. Use the interval fuzzy weighted averaging operator Eq.(21) to aggregate all individual 

complete IFPRs ( ) ( )( )l l
ij n nR r    ( 1, 2,...,l m ) into a collective IFPR ( )ij n nR r   . 

Step 4. Utilize the interval normalizing rank aggregation method  

            1

1 1

n

ijj
i n n

iji j

r
w

r



 




 




,  1, 2,...,i n                                                                                         (28) 

to derive average degree iw  of the i th alternative over all the other alternatives. 

Step 5. Utilize the following formula (Facchinetti et al., 1998; Wang et al., 2005; Xu and Da, 2002) 

           ( ) min max ,0 ,1i j
i j

i i j j

w w
p w w

w w w w

 

   

             
                                                          (29) 

to obtain the possibility degree ( )ij i jp p w w  , and construct a complementary matrix 

( )ij n nP p  , where 

        0ijp  , 1ij jip p  , 0.5iip  , , 1, 2,...,i j n  

Step 6. Utilize the normalizing rank aggregation method (Xu et al., 2009)  

      1

2 / 2

n

ijj
i

p

n
 


, 1, 2,...,i n                                                                                                      (30) 

to derive a priority vector 1 2( , ,..., )T
n     based on the complementary matrix P . The 

alternatives ix ( 1,2,...,i n ) are ranked in a descending order as per the values of i  

( 1,2,....,i n ). 

Step 7. End. 

5. Case study 

    This section presents a group decision making problem that is concerned with evaluating and 

selecting potential suppliers for the Pars Solar Company (adapted from (Hadi-Vencheh and 

Mirjaberi, 2011)). The firm produces solar boiler and solar water refiners. In its production 

process, the company needs to purchase solar panels in different sizes and voltages from different 

suppliers. Currently, Pars Solar Company has five potential suppliers from five different countries,  

the U.S., Germany, China, Turkey, and Iran, denoted as ix  ( 1, 2,...,5i  ), respectively. 
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A committee consisting of three managers le  ( 1, 2,3l  ) (whose weighting vector is (1 / 3,   

1 / 3,1 / 3)T ) from different departments has been set up to provide their assessment on the five 

suppliers ix  ( 1, 2,...,5i  ). Assume that the managers le  ( 1, 2,3l  ) give their evaluations as the 

following acceptable incomplete IFPRs ( ) ( )( )l l
ij n nR r   ( 1,2,3l  ): 

(1)

[0.5,0.5] [0.2,0.6] [0.4,0.7]

[0.5,0.5] [0.7,0.8] [0.9,1]

[0.2,0.3] [0.5,0.5] [0.4,0.6]

[0.4,0.8] [0,0.1] [0.4,0.6] [0.5,0.5] [0.4,0.5]

[0.3,0.6] [0.5,0.6] [0.5,0.5]

x x

x x

R x x

x x

 
 
 
 
 
 
  

, 

(2)

[0.5,0.5] [0.2,0.5]

[0.5,0.5] [0.3,0.5]

[0.5,0.8] [0.5,0.7] [0.5,0.5] [0.4,0.6] [0.3,0.4]

[0.4,0.6] [0.5,0.5]

[0.6,0.8] [0.5,0.5]

x x x

x x x

R

x x x

x x x

 
 
 
 
 
 
  

, 

(3)

[0.5,0.5] [0.3,0.4] [0.4,0.6] [0.1,0.2]

[0.6,0.7] [0.5,0.5] [0.4,0.5] [0.4,0.7]

[0.4,0.6] [0.5,0.5] [0.2,0.3]

[0.8,0.9] [0.5,0.6] [0.7,0.8] [0.5,0.5] [0.7,0.8]

[0.3,0.6] [0.2,0.3] [0.5,0.5]

x

x

R x x

x x

 
 
 
 
 
 
  

. 

To illustrate the solution process of Algorithm Ⅱ, the missing elements are first estimated for 

( ) ( )( )l l
ij n nR r   ( 1,2,3l  )  

Step 1. Using the known elements and Eq.(23), (24), we have: 

 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
12 23 34 45 51 24 45 51 24 41

1
(2.5 ) (2 ) (1.5 )

3
r r r r r r r r r r                      

        1
(2.5 0.7 0.4 0.4 0.6) (2 0.9 0.4 0.6) (1.5 0.9 0.8)

3
             

       0.1  

 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
12 23 34 45 51 24 45 51 24 41

1
(2.5 ) (2 ) (1.5 )

3
r r r r r r r r r r                      

    1
(2.5 0.8 0.6 0.5 0.3) (2 1 0.5 0.3) (1.5 1 0.4)

3
             

   0.2  
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 (1) (1) (1) (1) (1) (1)
13 34 45 51 34 41

1
(2 ) (1.5 )

2
r r r r r r             

        1
(2 0.4 0.4 0.6) (1.5 0.4 0.8)

2
        

       0.225  

 (1) (1) (1) (1) (1) (1)
13 34 45 51 34 41

1
(2 ) (1.5 )

2
r r r r r r             

        1
(2 0.6 0.5 0.3) (1.5 0.6 0.4)

2
        

       0.55  

 (1) (1) (1) (1) (1) (1)
52 23 34 45 24 45

1
(2 ) (1.5 )

2
r r r r r r             

        1
(2 0.8 0.6 0.5) (1.5 1 0.5)

2
        

        0.05  

 (1) (1) (1) (1) (1) (1)
52 23 34 45 24 45

1
(2 ) (1.5 )

2
r r r r r r             

        1
(2 0.7 0.4 0.4) (1.5 0.9 0.4)

2
        

       0.35  

(1) (1) (1)
53 34 451.5 1.5 0.6 0.5r r r         

       0.4  

(1) (1) (1)
53 34 451.5 1.5 0.4 0.4r r r         

       0.7  

Then we have 

(1)
12 [0.1,0.2]r  , (1)

21 [0.8,0.9]r  , (1)
13 [0.225,0.55]r  , (1)

31 [0.45,0.775]r  ,  

(1)
52 [0.05,0.35]r  , (1)

25 [0.65,0.95]r  , (1)
53 [0.4,0.7]r  , (1)

35 [0.3,0.6]r  . 

Based on (1)R  and the aforesaid calculations, a complete IFPR (1)R  is constructed for DM 1e  as 

follows: 
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(1)

[0.5,0.5] [0.1,0.2] [0.225,0.55] [0.2,0.6] [0.4,0.7]

[0.8,0.9] [0.5,0.5] [0.7,0.8] [0.9,1] [0.65,0.95]

[0.45,0.775] [0.2,0.3] [0.5,0.5] [0.4,0.6] [0.3,0.6]

[0.4,0.8] [0,0.1] [0.4,0.6] [0.5,0.5] [0.4,0.5]

[0.3,0.6] [

R 

0.05,0.35] [0.4,0.7] [0.5,0.6] [0.5,0.5]

 
 
 
 
 
 
  

 

Similarly, we obtain 

(2)

[0.5,0.5] [0.4,0.5] [0.2,0.5] [0.1,0.6] [ 0.1,0.4]

[0.5,0.6] [0.5,0.5] [0.3,0.5] [0.2,0.6] [0,0.4]

[0.5,0.8] [0.5,0.7] [0.5,0.5] [0.4,0.6] [0.2,0.4]

[0.4,0.9] [0.4,0.8] [0.4,0.6] [0.5,0.5] [0.3,0.3]

[0.6,1.1] [0.6,1

R





] [0.6,0.8] [0.7,0.7] [0.5,0.5]

 
 
 
 
 
 
  

 

As this preference relation contains values that fall outside the interval [0,1], it is necessary to 

apply the transformation function 1 2( ) x c
cf x 

  to convert it to an IFPR as  

(2)

[0.5,0.5] [0.42,0.5] [0.25,0.5] [0.17,0.58] [0,0.42]

[0.5,0.58] [0.5,0.5] [0.33,0.5] [0.25,0.58] [0.08,0.42]

[0.5,0.75] [0.5,0.67] [0.5,0.5] [0.42,0.58] [0.25,0.42]

[0.42,0.83] [0.42,0.75] [0.42,0.58] [0.5,0.5] [

R 

0.33,0.33]

[0.58,1] [0.58,0.92] [0.58,0.75] [0.67,0.67] [0.5,0.5]

 
 
 
 
 
 
  

 

For DM 3e , one can easily obtain its complete IFPR as 

(3)

[0.5,0.5] [0.3,0.4] [0.4,0.6] [0.1,0.2] [0.333,0.633]

[0.6,0.7] [0.5,0.5] [0.6,0.625] [0.4,0.5] [0.4,0.7]

[0.4,0.6] [0.375,0.4] [0.5,0.5] [0.2,0.3] [0.4,0.6]

[0.8,0.9] [0.5,0.6] [0.7,0.8] [0.5,0.5] [0.7,0.8]

[0.367

R 

,0.667] [0.3,0.6] [0.4,0.6] [0.2,0.3] [0.5,0.5]

 
 
 
 
 
 
  

 

 

Step 2. Utilize the interval additive weighted averaging operator Eq.(21) to fuse the constructed 

complete IFRPs (1)R , (2)R , (3)R  into a collective complete IFPR ( )ij n nR r    as 

[0.5,0.5] [0.273,0.367] [0.292,0.55] [0.157,0.46] [0.244,0.584]

[0.633,0.727] [0.5,0.5] [0.543,0.642] [0.517,0.693] [0.377,0.69]

[0.45,0.708] [0.358,0.457] [0.5,0.5] [0.34,0.493] [0.317,0.54]

[0.54,0.843] [0.307,0

R 

.483] [0.507,0.66] [0.5,0.5] [0.477,0.543]

[0.416,0.756] [0.31,0.623] [0.46,0.683] [0.457,0.523] [0.5,0.5]

 
 
 
 
 
 
  
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Step 3. By employing the interval normalizing rank aggregation method Eq.(31), one can derive 

the average degree iw  for each alternative as 

    1 [0.1009,0.2350]w  , 2 [0.1769,0.3105]w  , 3 [0.1353,0.2576]w  , 4 [0.1604,0.2893]w  , 

    5 [0.1475,0.2946]w  . 

 

Step 4. By using Eq.(29) to compare each iw  with each jw ( 1,2,...,j n ), we develop a 

complementary matrix ( )ij n nP p   as  

       

0.5 0.217 0.389 0.284 0.311

0.783 0.5 0.685 0.572 0.581

0.611 0.315 0.5 0.387 0.409

0.716 0.428 0.613 0.5 0.514

0.689 0.419 0.591 0.486 0.5

P

 
 
 
 
 
 
  

 

Step 5. By applying the normalizing rank aggregation method (Xu et al., 2009), one has 

(0.136,0.250,0.178,0.222,0.215)T   

    A final ranking of the alternatives can thus be derived as follows: 

    2 5 4 3 1x x x x x     

  Therefore, the best alternative is 2x . 

   We can also compare the final result with what is implied in the initial incomplete input. From 

(1)R , it can be determined that the partial ranking order by the first manager 1e  is 2 3x x , 2 4x x , 

the partial ranking order by the third manager 3e  is 2 1x x , 4 5x x . Based on these partial 

orderings, it is sensible to expect that 2x  arise as the best alternative, consistent with the 

prediction by our model here. 

Numerical examples illustrate how to apply the proposed method to construct complete IFPRs 

based on acceptable incomplete IFPRs. Generally speaking, the proposed approach is relatively 

easy for use in determining missing values. More importantly, Herrera-Viedma et al. (2004) 

proposed a method to construct a consistent fuzzy preference relation from n-1 preference values 

12 23 1{ , ,..., }n nr r r  . Sometimes, this may be a challenge for the DM to provide his/her consecutive 

pairwise judgments 12 23 1{ , ,..., }n nr r r  . Based on Proposition 10, if R  is an acceptable incomplete 
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IFPR, then there exists at least one known non-diagonal element in each row or each column of R . 

Therefore, an acceptable incomplete IFPR with at least (n-1) judgments provided by the DM. 

12 23 1{ , ,..., }n nr r r   is only one example that makes up an acceptable incomplete IFPR. The proposed 

approach herein is able to handle any acceptable incomplete IFPR with n-1 judgment data such as 

12 13 1{ , ,..., }nr r r , 21 23 2{ , ,..., }nr r r , 21 31 1{ , ,..., }nr r r . If the DM can provide more judgments, one can use 

the sequence(s) of known values 
1 1 2
, ,...,ij j jr r   

1
,

t t tj j j ir r


 to estimate the missing values. Therefore, 

our proposed approach can be applied to more general IFPRs. 

 

6. Conclusions 

This paper first extends an additive consistency property (Herrera-Viedma et al., 2004) of fuzzy 

preference relations to a more general case. This property is then generalized to IFPRs based on 

additive transitivity. After further characterizing additive consistent IFPRs, we propose a method 

to construct additive consistent IFPRs from acceptable incomplete IFPRs. Numerical studies 

illustrate that the proposed method can handle acceptable incomplete IFPRs with as few as n-1 

judgment data. Subsequently, another algorithm is developed to deal with GDM problems with 

acceptable incomplete IFPRs. This procedure is composed of two phases, the estimation of 

missing preference values and the selection of the best alternative(s) where missing elements are 

determined by the sequences of known values 
1 1 2 1
, ,..., ,

t t tij j j j j j ir r r r


.  

In the future, the proposed framework will be applied to other group decision making problems 

such as supplier selection (Chen et al., 2006), e-business (Mohanty and Bhasker, 2005), 

technology adoption (Choudhury et al., 2006), broadband internet service selection (Wang and 

Parkan, 2008), and air-conditioning systems selection (Xu, 2009). 
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Appendix 

    Alonso et al. (2008) proposed the following procedure to estimate missing values for IFPRs. 
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An IFPR ( )ijR r  can be viewed as two “independent” fuzzy preference relations, the first one 

RL  corresponding to the left bounds of the intervals and the second one RR  corresponding to the 

right bounds of the intervals. 

   ( ) ([ , ])ij ij ijR r rl rr   with ( )ijRL rl  and ( )ijRR rr  and ij ijrl rr  ,i j                            (32) 

Step 1. Determine the set B , the set MV  and the set EV  as follows: 

              {( , ) | , {1,..., } }B i j i j n i j                                                                                     (33) 

             {( , ) | is unknown}ijMV i j B r                                                                                    (34) 

            \EV B MV                                                                                                                 (35) 

where MV  is the set of pairs of alternatives for which the preference degree of the first alternative 

over the second one is unknown or missing; EV  is the set of pairs of alternatives for which the 

expert provides preference values, and the symbol “\” denotes the exclusion relation. In Alonso et 

al.(2008)’s method, it does not take into account the preference value of one alternative over itself 

as i ix x  is always assumed. 

Step 2. If MV  , then go to Step 4. Otherwise, the following iterative procedure is used to 

estimate the missing value ikcrl  and ikcrr  in the set hEMV  at the h th iteration, where 0EMV  , 

( , ) hi k EMV , and 1h  , shown as follows: 

        1
1

0
, | ( , ), ( , )

h
h
ik l

l
H j i k i j j k EV EMV





    
 

 ;                                                                   (36)                       

        1
2

0
, | ( , ), ( , )

h
h
ik l

l
H j i k j k j i EV EMV





    
 

 ;                                                                  (37) 

        1
3

0
, | ( , ), ( , )

h
h
ik l

l
H j i k i j k j EV EMV





    
 

 ;                                                                  (38) 

       
1

1 2 3

0
( , ) \ and

h
h h h

h l ik ik ik
l

EMV i k MV EMV i k j H H H




       
 

   ;                                  (39) 

      1

1 1
11

1
, if # 0

#

0,otherwise

h
ik

j h
ik ikh

j Hikik

crl H
Hcrl 

  




, 1

1 1
11

1
, if # 0

#

0,otherwise

h
ik

j h
ik ikh

j Hikik

crr H
Hcrr 

  




                       (40) 
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     1

2 2
22

1
, if # 0

#

0,otherwise

h
ik

j h
ik ikh

j Hikik

crl H
Hcrl 

  




, 1

2 2
22

1
, if # 0

#

0,otherwise

h
ik

j h
ik ikh

j Hikik

crr H
Hcrr 

  




                     (41) 

     1

3 3
33

1
, if # 0

#

0,otherwise

h
ik

j h
ik ikh

j Hikik

crl H
Hcrl 

  




,  1

3 3
33

1
, if # 0

#

0,otherwise

h
ik

j h
ik ikh

j Hikik

crr H
Hcrr 

  




                     (42) 

     
1 2 3
ik ik ik

ik

crl crl crl
crl


 

 , 
1 2 3
ik ik ik

ik

crr crr crr
crr


 

                                                              (43) 

1 2 3 1 2 3# # # ,  if # # # 0

1,otherwise

h h h h h h
ik ik ik ik ik ikH H H H H H


       

 


                                                        (44) 

where the symbol “#” denotes the number of elements in a given set,  

         1 0.5j
ik ij jkcrl rl rl   , 2 0.5j

ik jk jicrl rl rl   , 3 0.5j
ik ij kjcrl rl rl   ,                             (45) 

and  

          1 0.5j
ik ij jkcrr rr rr   , 2 0.5j

ik jk jicrr rr rr   , 3 0.5j
ik ij kjcrr rr rr   ,                          (46) 

Step 3. if 0ikcrl   or 0ikcrr  , then 0ikcrl   or 0ikcrr                                                         (47) 

            else if  1ikcrl   or 1ikcrr  , then 1ikcrl   or 1ikcrr                                                    (48) 

Step 4. End. 
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