27 research outputs found

    Semi-empirical calibration of the Integral Equation Model for SAR data in C-band and cross polarization using radar images and field measurements

    Get PDF
    The estimation of surface soil parameters (moisture and roughness) from Synthetic Aperture Radar (SAR) images requires the use of well-calibrated backscattering models. The objective of this paper is to extend the semi-empirical calibration of the backscattering Integral Equation Model (IEM) initially proposed by Baghdadi et al. (2004 and 2006) for HH and VV polarizations to HV polarization. The approach consisted in replacing the measured correlation length by a fitting/calibration parameter so that model simulations would closely agree with radar measurements. This calibration in C-band covers radar configurations with incidence angles between 24° and 45.8°. Good agreement was found between the backscattering coefficient provided by the SAR and that simulated by the calibrated version of the IEM

    Comparison between backscattered TerraSAR signals and simulations from the radar backscattering models IEM, Oh, and Dubois

    Get PDF
    The objective of this paper is to evaluate on bare soils the surface backscattering models IEM, Oh, and Dubois in X-band. This analysis uses a large database of TerraSAR-X images and in situ measurements (soil moisture and surface roughness). Oh's model correctly simulates the radar signal for HH and VV polarizations whereas the simulations performed with the Dubois model show a poor correlation between TerraSAR data and model. The backscattering Integral Equation Model (IEM) model simulates correctly the backscattering coefficient only for rms1.5 cm in using Gaussian function. However, the results are not satisfactory for a use of IEM in the inversion of TerraSAR data. A semi-empirical calibration of IEM was done in X-band. Good agreement was found between the TerraSAR data and the simulations using the calibrated version of the IEM

    A newsoil roughness parameter for themodelling of radar backscattering over bare soil

    Get PDF
    International audienceThe characterisation of soil surface roughness is a key requirement for the correct analysis of radar backscattering behaviour. It is noteworthy that an increase in the number of surface roughness parameters in a model also increases the difficulty with which data can be inverted for the purposes of estimating soil parameters. In this paper, a new description of soil surface roughness is proposed for microwave applications. This is based on an original roughness parameter, Zg, which combines the three most commonly used soil parameters: root mean surface height, correlation length, and correlation function shape, into just one parameter. Numerical modelling, based on the moment method and integral equations, is used to evaluate the relevance of this approach. It is applied over a broad dataset of numerically generated surfaces characterised by a large range of surface roughness parameters. A strong correlation is observed between this new parameter and the radar backscattering simulations, for the HH and VV polarisations in the C and X bands. It is proposed to validate this approach using data acquired in the C and X bands, at several agricultural sites in France. It was found that the parameter Zg has a high potential for the analysis of surface roughness using radar measurements. An empirical model is proposed for the simulation of backscattered radar signals over bare soil

    Influence of Surface Roughness Spatial Variability and Temporal Dynamics on the Retrieval of Soil Moisture from SAR Observations

    Get PDF
    Radar-based surface soil moisture retrieval has been subject of intense research during the last decades. However, several difficulties hamper the operational estimation of soil moisture based on currently available spaceborne sensors. The main difficulty experienced so far results from the strong influence of other surface characteristics, mainly roughness, on the backscattering coefficient, which hinders the soil moisture inversion. This is especially true for single configuration observations where the solution to the surface backscattering problem is ill-posed. Over agricultural areas cultivated with winter cereal crops, roughness can be assumed to remain constant along the growing cycle allowing the use of simplified approaches that facilitate the estimation of the moisture content of soils. However, the field scale spatial variability and temporal variations of roughness can introduce errors in the estimation of soil moisture that are difficult to evaluate. The objective of this study is to assess the impact of roughness spatial variability and roughness temporal variations on the retrieval of soil moisture from radar observations. A series of laser profilometer measurements were performed over several fields in an experimental watershed from September 2004 to March 2005. The influence of the observed roughness variability and its temporal variations on the retrieval of soil moisture is studied using simulations performed with the Integral Equation Model, considering different sensor configurations. Results show that both field scale roughness spatial variability and its temporal variations are aspects that need to be taken into account, since they can introduce large errors on the retrieved soil moisture values

    Roughness spatial distribution in agricultural parcels in Buenos Aires Province, Argentina

    Get PDF
    O uso de imagens SAR para estimar e monitorar a umidade superficial do solo requer que se considere outros fatores que influenciam na retrodifusão do sinal-radar, entre os quais a rugosidade da cobertura da superfície à escala de centímetro é muito importante. Há diversos métodos para determinar a rugosidade, mas muitos são caros ou de operação de campo complexa. Neste trabalho, é apresentado um método versátil e econômico que usa máquina fotográfica e tela quadrada. Cada fotografia é processada numericamente obtendo a altura RMS, como parâmetro da rugosidade da cobertura. Por meio de técnicas geoestatísticas de krigagem é estimada a distribuição espacial da rugosidade. São mostradas experiências em áreas com cobertura de trigo, localizadas na área agrícola serrana da Província o Buenos Aires, Argentina. Os valores de RMS encontrados (29 mm < RMS < 48 mm) foram analisados com quatro critérios de rugosidade. É expressa sua utilidade para estimar o estado hídrico superficial de solos em áreas agrícolas mediante sua aplicação como entrada (input) nos modelos de retrodispersão de imagens SAR.Use of SAR images for soil surface moisture estimation requires taking into account the other factors that influence the radar backscattering signal, among which the surface cover roughness at centimeter scale is very important. There are several methods to determine the roughness, but many are expensive or complex field operation. A versatile and economic method that uses a photographic camera and a girded screen is presented. Each picture is numerically processed obtaining the RMS height, as parameter of the crop-soil complex roughness. By means of krigging geostatistics techniques the spatial distribution of roughness is estimated. Experiences in parcels with wheat cover, located in the hill agricultural area of Buenos Aires Province, Argentina are shown. The found RMS values (29 mm < RMS < 48 mm) are analyzed with four roughness approaches. Their utility in order to estimate soil surface moisture status in agricultural parcels by means of their application like input into the SAR images backscattering models is stated.Facultad de Ciencias Agrarias y Forestale

    Roughness spatial distribution in agricultural parcels in Buenos Aires Province, Argentina

    Get PDF
    O uso de imagens SAR para estimar e monitorar a umidade superficial do solo requer que se considere outros fatores que influenciam na retrodifusão do sinal-radar, entre os quais a rugosidade da cobertura da superfície à escala de centímetro é muito importante. Há diversos métodos para determinar a rugosidade, mas muitos são caros ou de operação de campo complexa. Neste trabalho, é apresentado um método versátil e econômico que usa máquina fotográfica e tela quadrada. Cada fotografia é processada numericamente obtendo a altura RMS, como parâmetro da rugosidade da cobertura. Por meio de técnicas geoestatísticas de krigagem é estimada a distribuição espacial da rugosidade. São mostradas experiências em áreas com cobertura de trigo, localizadas na área agrícola serrana da Província o Buenos Aires, Argentina. Os valores de RMS encontrados (29 mm < RMS < 48 mm) foram analisados com quatro critérios de rugosidade. É expressa sua utilidade para estimar o estado hídrico superficial de solos em áreas agrícolas mediante sua aplicação como entrada (input) nos modelos de retrodispersão de imagens SAR.Use of SAR images for soil surface moisture estimation requires taking into account the other factors that influence the radar backscattering signal, among which the surface cover roughness at centimeter scale is very important. There are several methods to determine the roughness, but many are expensive or complex field operation. A versatile and economic method that uses a photographic camera and a girded screen is presented. Each picture is numerically processed obtaining the RMS height, as parameter of the crop-soil complex roughness. By means of krigging geostatistics techniques the spatial distribution of roughness is estimated. Experiences in parcels with wheat cover, located in the hill agricultural area of Buenos Aires Province, Argentina are shown. The found RMS values (29 mm < RMS < 48 mm) are analyzed with four roughness approaches. Their utility in order to estimate soil surface moisture status in agricultural parcels by means of their application like input into the SAR images backscattering models is stated.Facultad de Ciencias Agrarias y Forestale

    Soil Moisture Retrieval from Microwave Remote Sensing Observations

    Get PDF
    This chapter mainly describes the vegetated soil moisture retrieval approaches based on microwave remote sensing data. It will be comprised of three topics: (1) SAR polarimetric decomposition is to model the full coherency matrix as a summation of the surface, dihedral, and volume scattering mechanisms. After removing the volume scattering component, the soil moisture is estimated from the surface and dihedral scattering components. Particularly, various dynamic volume scattering models will be critically reviewed, allowing the readers to select the appropriate one to capture the complex variations of the volume scattering mechanism with crop phenological growth. (2) Radiative transfer model is to express the radar backscattering coefficient as the incoherent summation of different scattering components. Hereby, we will review the water cloud model and its several extensions for enhanced soil moisture retrieval. (3) Compared to the active radar, the passive radiometer possesses high temporal resolution but coarse spatial resolution. The third topic is dedicated to review the microwave emission models and the active-passive combined approaches, in the context of Soil Moisture and Ocean Salinity (SMOS) and Soil Moisture Active and Passive (SMAP) missions

    A potential use for the C-band polarimetric SAR parameters to characterise the soil surface over bare agriculture fields

    Get PDF
    The objective of this study was to analyze the potential of the C-band polarimetric SAR parameters for the soil surface characterization of bare agricultural soils. RADARSAT-2 data and simulations using the Integral Equation Model (IEM) were analyzed to evaluate the polarimetric SAR parameters' sensitivities to the soil moisture and surface roughness. The results showed that the polarimetric parameters in the C-band were not very relevant to the characterization of the soil surface over bare agricultural areas. Low dynamics were often observed between the polarimetric parameters and both the soil moisture content and the soil surface roughness. These low dynamics do not allow for the accurate estimation of the soil parameters, but they could augment the standard inversion approaches to improve the estimation of these soil parameters. The polarimetric parameter alpha_1 could be used to detect very moist soils (>30%), while the anisotropy could be used to separate the smooth soils
    corecore