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A Takagi–Sugeno Fuzzy Rule-Based Model for
Soil Moisture Retrieval From SAR Under

Soil Roughness Uncertainty
Niko E. C. Verhoest, Bernard De Baets, and Hilde Vernieuwe

Abstract—Radar remote sensing has shown its potential for
retrieving soil moisture from bare soil surfaces. Since the backscat-
tering process is also influenced by soil roughness, the character-
ization of this roughness is crucial for an accurate soil moisture
retrieval. However, several field experiments have shown a large
variability of the roughness parameters. Describing these param-
eters by means of possibility distributions allows to account for
their uncertainty. Verhoest et al. introduced a retrieval procedure
which calculates from these uncertain roughness parameters the
possibility distribution of retrieved soil moisture, from which a soil
moisture value and uncertainty upon the retrieval are estimated.
The main disadvantage of their technique is the high computa-
tional demand, which hampers an operational application. In this
paper, a fuzzy modeling approach, which is based on fuzzy rules
of the Takagi–Sugeno type, is introduced that accurately simulates
the soil moisture and the uncertainty upon its retrieved value as
obtained by the possibilistic procedure.

Index Terms—Fuzzy model, possibility theory, SAR, soil mois-
ture, soil roughness, uncertainty.

I. INTRODUCTION

SOIL roughness is an important factor that, among others,
determines the scattering of microwaves at the Earth’s

surface. Therefore, it is important to accurately know the
roughness state in order to invert the backscattered signal into
soil moisture. Several studies, however, have shown that soil
roughness is very variable, even within one field [2], and
its parameterization is not straightforward as, for instance, it
depends on the profile length that is used to determine the
roughness parameters [2]–[4] or the type of measuring device
used [5]. This leads to a large uncertainty upon the roughness
parameters, causing an increase of the uncertainty upon the
retrieved soil moisture values. Furthermore, when applying
Synthetic Aperture Radar (SAR) remote sensing of soil mois-
ture at a large scale in an operational mode, it is impossible
to perform soil roughness experiments at each field, and thus,
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average roughness parameters, which may be assigned to a type
of tillage, need to be assumed. Of course, one should be aware
that this approach may lead to significant errors on the retrieved
soil moisture values.

Satalino et al. [6] investigated the retrieval accuracy when
limited soil roughness information is available. They applied
artificial neural networks to invert the backscattering coefficient
into soil moisture content. In order to train the neural network,
Satalino et al. [6] used the traditional Integral Equation Model
(IEM) [7], [8] that is valid for a single-scale description of the
surface roughness and the multiscale IEM [9] which is based on
a band-limited fractal process description of surface roughness.
They found that the main source of error in the retrieved
volumetric moisture content was caused by the variations in
roughness conditions, and that the use of a single- or multiscale
roughness description was not critical for inversion studies
[10]. Mattia et al. [10] tried to constrain the range of possible
retrieval values using a priori information on soil moisture,
which was obtained from a simple water balance model, and
a priori surface roughness, which was derived from an empir-
ical model. Simulated and experimental results demonstrated
that this technique resulted for multipolarized (i.e., HH- and
VV-polarization) C-band data in an accuracy of approximately
5 vol.% for the retrieved soil moisture, provided that sufficient
accurate a priori information on surface parameters is available.
Soil moisture retrieval from single polarized data is less accu-
rate, but the difference in accuracy with multipolarized data de-
creases when the uncertainty upon the geophysical parameters
increases [10].

Verhoest et al. [1] have demonstrated a procedure which
allows to account for the uncertainty upon the roughness
parameters. This procedure is based on describing rough-
ness by means of possibility distributions for the root-mean-
square (rms) height and correlation length. Through inverting
a backscattering model (IEM) for all possible combinations
of rms and correlation length, a possibility distribution of
soil moisture is obtained, which is then used to calculate the
retrieved soil moisture value and the uncertainty thereupon.
Although this procedure yields satisfactory results with respect
to retrieval uncertainty, Verhoest et al. [1] pointed out that
the procedure was computationally very intensive due to the
large amount of backscatter model inversions needed. In this
paper, it is shown that Takagi–Sugeno fuzzy rule-based models
can be used to simulate the retrieval results of the possibilistic
procedure, with the advantage of being extremely fast.
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This paper is structured as follows. In Section II, a
short overview of the possibilistic retrieval procedure of
Verhoest et al. [1] is given, and Takagi–Sugeno fuzzy rule-
based modeling is introduced. Section III describes the deriva-
tion of the Takagi–Sugeno fuzzy rule-based retrieval model.
The results of the model are discussed in Section IV. Finally,
conclusions are drawn.

II. METHODOLOGY

A. Possibilistic Retrieval Procedure

Verhoest et al. [1] suggested to describe soil roughness
parameters by possibility distributions for a certain type of
tillage. Their reasoning, herefore, was twofold. First, roughness
measurements may lead to a wide range of roughness parame-
ters even within the same field, and therefore, assigning a single
roughness parameter set to that specific field may introduce an
error. Second, as the basic idea of remote sensing is to make
observations without the need of further in situ measurements,
one may subdivide one remotely sensed scene in different fields
with the same type of tillage, which all have similar, but not
exactly the same, soil roughness. The uncertainty that goes with
the roughness parameters makes it difficult to determine the
correct probability distribution. Yet, describing the roughness
parameters by possibility distributions, which are weaker de-
scriptions than the corresponding probability distributions [11],
is more appropriate as they can explicitly deal with uncertainty.
Possibility theory, which is introduced by Zadeh [12] as an
extension to fuzzy set theory, allows to perform reasoning on
imprecise or vague concepts and is a mathematical tool that
allows to deal with different types of uncertainty.

Verhoest et al. [1], as well as this paper, assume soil rough-
ness to be single scaled, such that roughness can be described
by an autocorrelation function (ACF), which, for tillage-
induced roughness, corresponds to the exponential functions
[2], an rms height s and correlation length l. The latter is defined
as the spatial lag over which the ACF remains higher than 1/e
[13]. For very rough soils, Oh et al. [14] and Davidson et al. [4]
found that the Gaussian ACF often better describes the spatial
correlation structure. In function of the type of soil roughness
and the profile length, smooth and medium rough soils may also
be described as a multiscale process [4], [10]. Rougher soils
usually can be described by a single-scale ACF. Fortunately, the
choice between the single- or multiscale roughness description
is not critical for inversion studies [6], [10]. If roughness would
be multiscaled, a similar approach as Verhoest et al. [1] can
be applied, where other roughness parameters describing the
multiscale roughness should be considered, and an appropriate
backscatter model should be applied.

The methodology of the possibilistic retrieval procedure is
summarized in the flowchart of Fig. 1. First, a possibility dis-
tribution is assigned to the type of tillage under consideration.
Therefore, a data set of roughness values for one type of tillage
is analyzed, and a symmetrical trapezoidal possibility distribu-
tion is chosen that is wide enough to ensure that it covers all
roughness values for that type of tillage. It has been shown
by Dubois et al. [15] that this type of possibility distribution
is optimal when roughness parameters are ill known. In the

Fig. 1. Flowchart of the possibilistic retrieval procedure of Verhoest et al. [1].
Rounded boxes indicate input, rectangular boxes refer to operations, and
ellipses represent output.

Fig. 2. Example of a possibility distribution of roughness parameter x
(i.e., rms height or correlation length).

future work, we will exploit the results of ongoing research
on the inference of possibility distributions from the empirical
data [16]. Fig. 2 demonstrates such a possibility distribution
π. Roughness values x, for which π(x) = 1, are completely
possible to occur, whereas when π(x) = 0, x is an impossible
value for the considered type of roughness.

As s and l can be assumed to be separable, we can calculate
for the considered type of tillage the possibility of the parameter
combination (x, y), with x and y, respectively, the rms height,
and the correlation length. This is done through the minimum
operator

π(x, y) = min (πs(x), πl(y)) (1)

where πs and πl are the possibility distributions of the rms
height and the correlation length, respectively. Note that some
publications (e.g., [4] and [17]) reveal some dependences be-
tween s and l. Equation (1) does not explicitly assume any type
of dependence and is as such compatible with any dependence
assumption. It is important to stress that (1) does not at all
reflect independence.

In the next step of the retrieval procedure, for each level
α (α ∈ [0, 1], in practice, a step size of 0.05 was chosen), all
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combinations with a possibility larger than α are used to in-
vert the observed backscattering coefficient, using a simplified
version of the IEM [18] (ks < 3 and m < 0.4, where k is the
wavenumber, and m is the surface slope which equals s/l for
an exponentially autocorrelated surface [7], [19]). However, if
roughness conditions do not allow its use, other backscattering
models should be selected. The obtained dielectric constant is
converted into volumetric moisture content using the algorithm
of Dobson et al. [20]. If values lower than the residual moisture
content are obtained (i.e., 2 vol.% in the example demonstrated
next), then the residual moisture content is retained. If the
dielectric mixing model of Dobson et al. [20] results in soil
moisture values larger than saturation (i.e., 45 vol.% for the
next test case), then the soil is considered to be saturated.
The lowest and highest soil moisture values obtained for all
combinations of s and l at a certain α then determine the subset
of retrieved soil moisture values at that level α. All these subsets
determine the possibility distribution of retrieved soil moisture.
Finally, the possibility distribution is converted into a proba-
bility distribution using the pignistic transformation [21], [22]
that tries to preserve the symmetry properties of the possibility
distribution into the probability distribution. In order to obtain
one specific value for the retrieved soil moisture content, the
mean of the obtained probability distribution is calculated. As
shown by Verhoest et al. [1], the standard deviation of this
probability distribution can be related to the uncertainty upon
the retrieval.

Although their methodology was mainly tested using syn-
thetical data, Verhoest et al. [1] applied the possibilistic re-
trieval algorithm to the European Remote Sensing (ERS) data
that are obtained from two sites in Belgium and one site in Italy.
However, this required the use of calibrated roughness coeffi-
cients, resulting in a root-mean-square error (rmse) between the
observed and inverted soil moisture of less than 6 vol.%.

B. Takagi–Sugeno Fuzzy Rule-Based Model

Verhoest et al. [1] remarked that the high computational
requirement needed when applying the possibilistic retrieval
procedure may hamper its application in an operational mode.
This shortcoming can be overcome through simulating the
inversion results using the data-driven methods such as neural
networks or fuzzy modeling. In this paper, we will design a
fuzzy rule-based model that is capable of accurately reproduc-
ing the results of the possibilistic retrieval procedure, with the
major advantage of being very fast when applied.

The Takagi–Sugeno fuzzy rule-based model was first pro-
posed by Takagi and Sugeno [23] and differs from the general
Mamdani–Assilian type of fuzzy models [24] by the fact that
the consequent part of the fuzzy rules is given by a polynomial
function instead of a fuzzy set. For a p-dimensional input
space, we can define the antecedent fuzzy sets Ai as the
Cartesian product Ai = A1,i1 × · · · × Ap,ip

, with i1 ∈
{1, . . . , n1}, . . . , ip ∈ {1, . . . , np}, and n1, n2, . . . , np the
number of fuzzy sets each input variable is partitioned into.
A membership function is then defined as the mathematical
function which defines the degree of the membership of an
element in a fuzzy set.

For a first-order Takagi–Sugeno model, we then obtain the n
fuzzy rules of the following form

Ri : IF (X1, . . . , Xp) is Ai

THEN Y = a1,iX1 + a2,iX2 + · · · + ap,iXp + bi (2)

where a1,i, . . . , ap,i, and bi are the parameters of the con-
sequent part of rule Ri, and n is dependent on the type of
identification method (see further). For an input vector x =
(x1, . . . , xp), Ai(x) is usually calculated as

Ai(x) = A1,i1(x1) · A2,i2(x2) · · ·Ap,ip
(xp). (3)

The resulting output value y is then computed by weighing the
individual rule outputs

y =
∑n

i=1 wi(x)(a1,ix1 + · · · + ap,ixp + bi)∑n
i=1 wi(x)

(4)

where wi(x) is the degree of fulfillment of rule i, which, for the
above type of rules, is given by the membership degree Ai(x).
Through this weighted average, the first-order Takagi–Sugeno
model is able to approximate a nonlinear function based on a
set of linear functions.

For the construction of a Takagi–Sugeno model, different
identification methods can be used. If expert knowledge is
available, an expert can define the fuzzy sets of the an-
tecedent variables through their membership function, using
prior knowledge and experience. Yet, such human interaction
in the process may lead to results that are not repeatable by
others or for other data sets. However, if expert knowledge
is not available, data-driven identification techniques, such as
fuzzy clustering algorithms or grid partitioning, can be applied.
Such an approach has the major advantage of being repeatable
by different persons and is, therefore, being advised as the
technique to be used. Fuzzy clustering algorithms subdivide the
input–output space in a number of clusters, each corresponding
to a fuzzy rule. Different techniques are available to perform
the clustering. The fuzzy c-means and the Gustafson–Kessel
clustering algorithm [25] are among the most popular, while
other algorithms, such as the Gath–Geva clustering algorithm
[26], have shown, for a hydrological case study, to perform
better [27].

In this paper, grid partitioning will be performed. Initially, the
domain of the antecedent variables is subdivided into equidis-
tant and identically shaped membership functions. Fig. 3 shows
a possible fuzzy partitioning of the problem considered in this
paper: the antecedent variables backscattering coefficient and
incidence angle are partitioned into four and three linguistic
terms, respectively, and modeled by means of triangular mem-
bership functions. Alternative shapes, such as trapezoidal or
bell-shaped membership functions, can be chosen. Using the
available input–output data (see Section III), the locations of
the membership functions can be optimized. The rule base is
established in such a way that all combinations of antecedent
fuzzy sets are covered, i.e., n = Πp

i=1ni fuzzy rules that have
to be optimized, where p is the number of antecedent variables,
and ni is the number of membership functions of variable i
(e.g., for Fig. 3, 4 × 3 = 12 rules will be obtained). A major



1354 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 45, NO. 5, MAY 2007

Fig. 3. Example of a grid partitioning of the input domain, which is defined
by the backscattering coefficient and the incidence angle in four and three
triangular membership functions, respectively.

drawback of this technique is that the membership functions
for every variable are constructed independently of each other,
causing that the relationship between the variables is neglected.
Another disadvantage lies in the fact that since all combinations
of antecedent membership functions need to be covered into
rules, adding an additional membership function increases the
model complexity and makes the identification process more
difficult. The number of membership functions chosen should
be a tradeoff between the model complexity and the model
accuracy. In order to remain linguistically interpretable, the
maximum number of membership functions per input variable
should not exceed seven [28].

III. TAKAGI–SUGENO RETRIEVAL MODEL

A. Data Set

In order to derive a fast alternative to the possibilistic re-
trieval algorithm, i.e., the Takagi–Sugeno retrieval model, a
data set was constructed based on the possibilistic retrieval
procedure. Therefore, 10 000 random combinations of radar
backscattering coefficient and incidence angle were inverted for
a given roughness description (see Table I) using the possibilis-
tic approach, yielding the retrieved soil moisture as well as the
estimated uncertainty upon the retrieval. As will be mentioned
later, this data set will be subdivided in data sets for training,
checking, and validating of the Takagi–Sugeno models. The
roughness possibility distributions of the first class are based
on the roughness measurements that are performed with 25-m-
long laser-derived roughness profiles of rotary tilled soils [2].
The parameters of the trapezoidal possibilities are chosen sub-
jectively, trying to fit the observations. Additional research is
needed to estimate the possibility distributions on histograms
that are constructed on a small data sets. In order to do so, we
will exploit the results of ongoing research on the inference of
possibility distributions from the empirical data [16]. However,

TABLE I
DEFINITION OF THE POSSIBILITY DISTRIBUTIONS OF THE RMS HEIGHT

AND THE CORRELATION LENGTH FOR THE TWO ROUGHNESS

CLASSES CORRESPONDING TO A ROTARY TILLED FIELD.
THE PARAMETERS a, b, c, AND d ARE DEFINED IN FIG. 2

the definition of the possibility distributions will not influence
the results obtained in this paper. For the second class, a lower
uncertainty upon the roughness parameters is given in order to
assess the impact of the uncertainty upon the roughness param-
eters. The random backscattering coefficient was drawn from
a uniform distribution extending over a range that was defined
by the minimum and maximum backscattering coefficients that
were obtained with IEM for all possible soil moisture values
and roughness parameters for the considered type of tillage
and incidence angles. For the experiment described in this
paper, the ERS satellite configuration was adopted [i.e., C-band
(5.3 GHz) VV-polarization]. Due to local topography, the local
incidence angle will vary. For the data sets generated, a range of
[15◦, 30◦] was chosen, from which the random incidence angles
were drawn uniformly.

Fig. 4 displays these data sets, where on the left-hand side,
the retrieved soil moisture values are given, while the right-
hand side demonstrates the estimated uncertainty as predicted
by the possibilistic retrieval procedure. With respect to the
retrieved value, generally, an overestimation is made for the
intermediate soil moisture values, whereas underestimations
are observed at higher moisture contents. The extent of these
over- and underestimations increases when the uncertainty
of the roughness classes increases (i.e., when the possibility
distributions become wider). For a detailed discussion on the
retrieval results of the possibilistic procedure, we refer to
Verhoest et al. [1].

B. Performance Indexes

The accuracy of the identified Takagi–Sugeno models is
evaluated through using the three performance indexes. These
are the rmse, the mean absolute error (MAE), and the bias
(BIAS) given, respectively, by

rmse =

√√√√ 1
N

N∑
k=1

(y(k) − ym(k))2 (5)

MAE =
1
N

N∑
k=1

|y(k) − ym(k)| (6)

BIAS =
1
N

N∑
k=1

(y(k) − ym(k)) (7)
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Fig. 4. Data sets used for the identification and validation of the Takagi–Sugeno models. (a) and (b) Roughness class 1. (c) and (d) Roughness class 2. (a) and
(c) Retrieved soil moisture. (b) and (d) Estimated uncertainty as a function of backscattering coefficient and incidence angle.

where N is the number of data points, and ym and y are the
modeled and observed soil moisture, respectively. The optimal
values of these performance indexes are zero, indicating a
perfect match of the model.

C. Identification of the Takagi–Sugeno Model

Since we have no a priori knowledge on the number of
membership functions to be used, we varied the number of
membership functions for each of the antecedent variables
(backscattering coefficient and incidence angle) between three
and seven. The identification of the model was based on the
adaptive network-based fuzzy inference system (ANFIS) [29],
which represents the fuzzy model as a multilayer feedforward
neural network. In order to employ ANFIS, the p symmetrical
triangular membership functions are constructed which overlap
at degree 0.5 with their neighboring membership function (i.e.,
Ruspini partition [30]), such that the complete input space is
covered with membership functions. Then, the parameters of
the membership functions are adjusted, and the parameters of
the consequent part of the different rules are determined in a
learning process through a hybrid method that consists of a
backpropagation to estimate the parameters of the antecedent

membership functions and a least squares estimation method to
identify the parameters of the consequent part.

From the data set, 5000 points were randomly chosen to train
the neural network; 2000 other points were used as checking
data to prevent overfitting of the model to the training data set.
The identified Takagi–Sugeno model corresponds to the model
with the lowest rmse on the checking data. As it is possible that
the retained model generates impossible soil moisture values
(i.e., higher than saturation or lower than residual moisture
content), an additional constraint is set that maximizes (mini-
mizes) the Takagi–Sugeno derived soil moisture to the saturated
(residual) moisture content. When negative uncertainties are
obtained, which are merely an artefact of the Takagi–Sugeno
model, and the model is unable to perfectly simulate the sharp
transition in the surface when an uncertainty of 0 vol.% is
reached, the value was set to zero. Finally, the remaining 3000
points were used for validation.

Tables II and III give the best and worst performance indexes
obtained for the Takagi–Sugeno models for the retrieved soil
moisture and the estimated uncertainty, respectively, upon the
retrieval for all combinations of numbers of membership func-
tions per antecedent variable. Also indicated is the combination
at which these optimal values are obtained. Generally, it is
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TABLE II
BEST AND WORST PERFORMANCE INDEXES OBTAINED FOR THE TAKAGI–SUGENO MODELS OF THE RETRIEVED SOIL MOISTURE

WHEN THE NUMBER OF MEMBERSHIP FUNCTIONS PER ANTECEDENT VARIABLE WAS VARIED BETWEEN THREE AND SEVEN.
ALSO GIVEN BETWEEN BRACKETS (nB × nI) IS THE NUMBER OF MEMBERSHIP FUNCTIONS FOR THE BACKSCATTERING

COEFFICIENT nB AND INCIDENCE ANGLE nI FOR WHICH THE INDEX IS OBTAINED

TABLE III
BEST AND WORST PERFORMANCE INDEXES OBTAINED FOR THE TAKAGI–SUGENO MODELS OF THE ESTIMATED UNCERTAINTY UPON

THE RETRIEVAL OF SOIL MOISTURE WHEN THE NUMBER OF MEMBERSHIP FUNCTIONS PER ANTECEDENT VARIABLE WAS

VARIED BETWEEN THREE AND SEVEN. ALSO GIVEN BETWEEN BRACKETS (nB × nI) IS THE NUMBER OF MEMBERSHIP

FUNCTIONS FOR THE BACKSCATTERING COEFFICIENT nB AND INCIDENCE ANGLE nI FOR WHICH THE INDEX IS OBTAINED

found that the more membership functions used per antecedent
variable, the better the performance index becomes. As can
be observed from these tables, the performance indexes for
whatever combination of number of membership functions are
low (i.e., less than 1 vol.%, even for the worst case), and there-
fore, optimizing for the number of membership functions per
antecedent variable does not result in models with a significant
better performance.

When comparing the different performance indexes on the
validation data set with those on the training data set, similar
results are found. This reveals that no overfitting of the different
models was obtained. Overall, we find that, for all models, the
rmse made is less than 0.2 vol.%, which can be regarded as
negligible given the fact that the rmse of the retrieval procedure
is approximately 6 vol.% [1].

IV. RESULTS

A. Discussion of the Obtained Takagi–Sugeno Models

Figs. 5 and 6 display the resulting membership functions or
fuzzy sets that are obtained for the retrieved soil moisture for
Takagi–Sugeno models with three (top figures), five (middle
figures), and seven (bottom figures) membership functions for
each of the antecedent variables for the first and second rough-
ness class, respectively. Similar graphs can be made for the
Takagi–Sugeno models that simulate the estimated uncertainty.
In order to have a good identification, a considerable overlap

should exist between adjacent fuzzy sets in order to assure that
all points of the input domain are well described by at least one
fuzzy set. Furthermore, to be linguistically interpretable, fuzzy
sets should not be similar and highly overlapping; redundant
membership functions should, therefore, be merged to one
fuzzy set [31]. For the different Takagi–Sugeno models that
have been identified, a good identification was obtained. How-
ever, one should be aware that the models obtained can only be
applied in the specific cases for which they were developed.
When other roughness conditions or sensor configurations
apply, the previously described procedure for identifying the
Takagi–Sugeno models needs to be repeated.

As was mentioned before, the overall error made by the fuzzy
models is small. However, it is interesting to study the error
surface of the Takagi–Sugeno modeled output. Figs. 7 and 8
display the error surfaces together with their probability density
of the first and second roughness class, respectively. These
surfaces are obtained for the Takagi–Sugeno models with seven
membership functions for the backscattering coefficient as well
as the incidence angle. As can be seen from the probability
density, the errors are not biased (average error is close to zero,
cf. the small values of BIAS in Tables II and III), and only
a small spread of errors is obtained (cf. the small rmse and
MAE values in Tables II and III). The largest errors made by
the Takagi–Sugeno models of retrieved soil moisture as well
as the estimated uncertainty are found in the transition zone
between the nearly saturated and saturated soil moisture. This
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Fig. 5. Membership functions for retrieved soil moisture for roughness
class 1.

is mainly caused by the sudden change in slope in the surface
once saturation is reached.

B. Comparison of Possibilistic and Takagi–Sugeno Retrieval

To further validate the Takagi–Sugeno retrieval model, a
comparison was set up where the two techniques were applied
to 100 synthetical data points. For this experiment, for each
class, 100 backscatter values were generated with IEM, using
random values for soil moisture (uniformly distributed in the
interval [2 vol.%, 45 vol.%] and further referred to as observed
soil moisture) and incidence angle (uniformly distributed in
the interval [15◦, 30◦]). The roughness parameters applied are
distributed according to the probability distribution derived
from the roughness possibility distributions using the pignis-
tic transformation. The obtained backscattering coefficients
with corresponding incidence angle were then inverted to soil
moisture and estimated uncertainty using both the possibilistic
retrieval procedure and the Takagi–Sugeno models, and the
CPU time needed was determined. Fig. 9 shows the retrieved
soil moisture values for both methods versus the observed
soil moisture. As can be seen from this graph, both models
generate similar results (rmse on the differences between both
techniques, which is calculated over the 100 points equals 0.10

Fig. 6. Membership functions for retrieved soil moisture for roughness
class 2.

and 0.27 vol.% for roughness classes 1 and 2, respectively).
Fig. 10 shows that the uncertainty upon the retrieved soil mois-
ture value as predicted by both techniques is modeled similarly
(with an rmse on the differences between the possibilistic and
Takagi–Sugeno approach of 0.11 and 0.16 vol.% for classes 1
and 2, respectively).

As the rmse values on the differences between the possibilis-
tic and the Takagi–Sugeno results are very small compared to
the rmse made on the retrieved soil moisture value based on the
possibilistic approach, similar rmse values are expected for the
Takagi–Sugeno retrieved soil moisture. Fig. 9 demonstrates that
soil moisture prediction between both methods is comparable,
which is reflected in the fact that the difference in rmse on the
soil moisture estimation for both models is less than 0.02 vol.%
(i.e., for class 1, rmse values are 8.528 and 8.530 vol.% for
the possibilistic and Takagi–Sugeno retrieval, respectively; for
class 2, values of 4.714 and 4.703 vol.% are obtained, respec-
tively). With respect to soil moisture, such small difference can
be considered as negligible, from which one can conclude that
both models retrieve soil moisture with the same accuracy. The
above experiment shows that if Takagi–Sugeno retrieval models
would be identified for experimental data, similar retrieval
results as obtained with the possibilistic retrieval algorithm will
be obtained.
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Fig. 7. Error surface and probability distribution of the error made with the Takagi–Sugeno model for the class 1 roughness. (a) and (b) Retrieved soil moisture.
(c) and (d) Estimated uncertainty.

C. Comparison of Runtime

The main objective of developing the Takagi–Sugeno fuzzy
rule-based model was to overcome the high computational
effort and, consequently, the runtime needed by the original
possibilistic retrieval procedure. Therefore, a comparison of the
runtime that is needed for both methods on the 100 randomly
chosen data points was made.

The possibilistic retrieval procedure needed 3934 and 4584 s
CPU time on a pentium 2-GHz Intel processor for the first
and second roughness class, respectively. The Takagi–Sugeno
model required 0.0005 s in both cases. These values clearly
demonstrate the benefit of using the Takagi–Sugeno approach
above the possibilistic retrieval procedure without loss of ac-
curacy. Yet, one should be aware of the high computational
load for the construction of the data set (10 000 points require
more than 100 h of CPU time) and the identification (CPU time
depends on the number of membership functions per antecedent
variable, ranging from 1 min for three membership functions
for each input variable to 22 min for seven membership func-
tions for each antecedent variable for the identification of one
Takagi–Sugeno model). This computational effort should only
be made once, and if the retrieval model needs to be applied in
an operational mode, this exercise is worth the effort.

V. CONCLUSION

Takagi–Sugeno fuzzy rule-based models have been identi-
fied that they are able to retrieve the soil moisture and the
uncertainty upon the retrieval from SAR backscattering co-
efficients. The possibilistic retrieval procedure (developed by
Verhoest et al. [1]), which allows to account for soil roughness
uncertainty, was applied to generate the training data needed to
identify the Takagi–Sugeno models. This requires an a priori
knowledge on the tillage state which may be derived from crop
calendars as this information allows to reveal the tillage state of
the fields. Then, for each tillage state, possibility distributions
can be deduced from roughness data or through calibration
as demonstrated by Verhoest et al. [1]. Future research will
address this problem in which a recently developed technique
for inferring possibility distributions from the empirical data
[16] will be applied. Grid partitioning was used, and the number
of membership functions was varied between three and seven.
It was found that, even with three membership functions for
both antecedent variables (backscattering coefficient and inci-
dence angle), accurate results were obtained with the fuzzy
rule-based models. Increasing the number of fuzzy sets per
antecedent variable generally increased the performance of
the models.
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Fig. 8. Error surface and probability distribution of the error made with the Takagi–Sugeno model for the class 2 roughness. (a) and (b) Retrieved soil moisture.
(c) and (d) Estimated uncertainty.

Fig. 9. Possibilistic retrieved (dots) and Takagi–Sugeno modeled (crosses)
soil moisture versus observed soil moisture for (a) roughness class 1 and
(b) roughness class 2.

The objective of identifying the Takagi–Sugeno models for
the retrieval of soil moisture and the uncertainty upon the
retrieval was to overcome the major disadvantage of the original
possibilistic retrieval procedure of the high demand of CPU
time. A small experiment, in which the possibilistic and the
Takagi–Sugeno alternative were run on 100 data points, showed
that both methods retrieve soil moisture with the same accuracy.
However, a tremendous gain in runtime is obtained when the

Fig. 10. Possibilistic (dots) and Takagi–Sugeno modeled (crosses) estimated
uncertainty versus observed soil moisture for (a) roughness class 1 and
(b) roughness class 2.

fuzzy rule-based model is applied. Therefore, in an operational
mode, the Takagi–Sugeno model should be advised as it can
invert a complete radar scene in a couple of minutes. However,
if the technique should be applied just once to a couple of data
points, then the total time necessary for creating the training and
validation data set and the identification of the Takagi–Sugeno
models cannot be justified, and we advise to use the possibilistic
retrieval procedure as proposed by Verhoest et al. [1].
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