941 research outputs found

    A non-invasive diagnostic system for early assessment of acute renal transplant rejection.

    Get PDF
    Early diagnosis of acute renal transplant rejection (ARTR) is of immense importance for appropriate therapeutic treatment administration. Although the current diagnostic technique is based on renal biopsy, it is not preferred due to its invasiveness, recovery time (1-2 weeks), and potential for complications, e.g., bleeding and/or infection. In this thesis, a computer-aided diagnostic (CAD) system for early detection of ARTR from 4D (3D + b-value) diffusion-weighted (DW) MRI data is developed. The CAD process starts from a 3D B-spline-based data alignment (to handle local deviations due to breathing and heart beat) and kidney tissue segmentation with an evolving geometric (level-set-based) deformable model. The latter is guided by a voxel-wise stochastic speed function, which follows from a joint kidney-background Markov-Gibbs random field model accounting for an adaptive kidney shape prior and for on-going visual kidney-background appearances. A cumulative empirical distribution of apparent diffusion coefficient (ADC) at different b-values of the segmented DW-MRI is considered a discriminatory transplant status feature. Finally, a classifier based on deep learning of a non-negative constrained stacked auto-encoder is employed to distinguish between rejected and non-rejected renal transplants. In the “leave-one-subject-out” experiments on 53 subjects, 98% of the subjects were correctly classified (namely, 36 out of 37 rejected transplants and 16 out of 16 nonrejected ones). Additionally, a four-fold cross-validation experiment was performed, and an average accuracy of 96% was obtained. These experimental results hold promise of the proposed CAD system as a reliable non-invasive diagnostic tool

    Diffusion-weighted magnetic resonance imaging in diagnosing graft dysfunction : a non-invasive alternative to renal biopsy.

    Get PDF
    The thesis is divided into three parts. The first part focuses on background information including how the kidney functions, diseases, and available kidney disease treatment strategies. In addition, the thesis provides information on imaging instruments and how they can be used to diagnose renal graft dysfunction. The second part focuses on elucidating the parameters linked with highly accurate diagnosis of rejection. Four parameters categories were tested: clinical biomarkers alone, individual mean apparent diffusion coefficient (ADC) at 11-different b- values, mean ADCs of certain groups of b-value, and fusion of clinical biomarkers and all b-values. The most accurate model was found to be when the b-value of b=100 s/mm2 and b=700 s/mm2 were fused. The third part of this thesis focuses on a study that uses Diffusion-Weighted MRI to diagnose and differentiate two types of renal rejection. The system was found to correctly differentiate the two types of rejection with a 98% accuracy. The last part of this thesis concludes the work that has been done and states the possible trends and future avenues

    Aerospace Medicine and Biology: A continuing bibliography with indexes, supplement 159

    Get PDF
    This bibliography lists 257 reports, articles, and other documents introduced into the NASA scientific and technical information system in September 1976

    Recipes for calibration and validation of agent-based models in cancer biomedicine

    Full text link
    Computational models and simulations are not just appealing because of their intrinsic characteristics across spatiotemporal scales, scalability, and predictive power, but also because the set of problems in cancer biomedicine that can be addressed computationally exceeds the set of those amenable to analytical solutions. Agent-based models and simulations are especially interesting candidates among computational modelling strategies in cancer research due to their capabilities to replicate realistic local and global interaction dynamics at a convenient and relevant scale. Yet, the absence of methods to validate the consistency of the results across scales can hinder adoption by turning fine-tuned models into black boxes. This review compiles relevant literature to explore strategies to leverage high-fidelity simulations of multi-scale, or multi-level, cancer models with a focus on validation approached as simulation calibration. We argue that simulation calibration goes beyond parameter optimization by embedding informative priors to generate plausible parameter configurations across multiple dimensions

    Report on computational assessment of Tumor Infiltrating Lymphocytes from the International Immuno-Oncology Biomarker Working Group.

    Get PDF
    Funder: U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI)Funder: National Center for Research Resources under award number 1 C06 RR12463-01, VA Merit Review Award IBX004121A from the United States Department of Veterans Affairs Biomedical Laboratory Research and Development Service, the DOD Prostate Cancer Idea Development Award (W81XWH-15-1-0558), the DOD Lung Cancer Investigator-Initiated Translational Research Award (W81XWH-18-1-0440), the DOD Peer Reviewed Cancer Research Program (W81XWH-16-1-0329), the Ohio Third Frontier Technology Validation Fund, the Wallace H. Coulter Foundation Program in the Department of Biomedical Engineering and the Clinical and Translational Science Award Program (CTSA) at Case Western Reserve University.Funder: Susan G Komen Foundation (CCR CCR18547966) and a Young Investigator Grant from the Breast Cancer Alliance.Funder: The Canadian Cancer SocietyFunder: Breast Cancer Research Foundation (BCRF), Grant No. 17-194Assessment of tumor-infiltrating lymphocytes (TILs) is increasingly recognized as an integral part of the prognostic workflow in triple-negative (TNBC) and HER2-positive breast cancer, as well as many other solid tumors. This recognition has come about thanks to standardized visual reporting guidelines, which helped to reduce inter-reader variability. Now, there are ripe opportunities to employ computational methods that extract spatio-morphologic predictive features, enabling computer-aided diagnostics. We detail the benefits of computational TILs assessment, the readiness of TILs scoring for computational assessment, and outline considerations for overcoming key barriers to clinical translation in this arena. Specifically, we discuss: 1. ensuring computational workflows closely capture visual guidelines and standards; 2. challenges and thoughts standards for assessment of algorithms including training, preanalytical, analytical, and clinical validation; 3. perspectives on how to realize the potential of machine learning models and to overcome the perceptual and practical limits of visual scoring
    corecore