508 research outputs found

    Secure FaaS orchestration in the fog: how far are we?

    Get PDF
    AbstractFunction-as-a-Service (FaaS) allows developers to define, orchestrate and run modular event-based pieces of code on virtualised resources, without the burden of managing the underlying infrastructure nor the life-cycle of such pieces of code. Indeed, FaaS providers offer resource auto-provisioning, auto-scaling and pay-per-use billing at no costs for idle time. This makes it easy to scale running code and it represents an effective and increasingly adopted way to deliver software. This article aims at offering an overview of the existing literature in the field of next-gen FaaS from three different perspectives: (i) the definition of FaaS orchestrations, (ii) the execution of FaaS orchestrations in Fog computing environments, and (iii) the security of FaaS orchestrations. Our analysis identify trends and gaps in the literature, paving the way to further research on securing FaaS orchestrations in Fog computing landscapes

    DevOps for Trustworthy Smart IoT Systems

    Get PDF
    ENACT is a research project funded by the European Commission under its H2020 program. The project consortium consists of twelve industry and research member organisations spread across the whole EU. The overall goal of the ENACT project was to provide a novel set of solutions to enable DevOps in the realm of trustworthy Smart IoT Systems. Smart IoT Systems (SIS) are complex systems involving not only sensors but also actuators with control loops distributed all across the IoT, Edge and Cloud infrastructure. Since smart IoT systems typically operate in a changing and often unpredictable environment, the ability of these systems to continuously evolve and adapt to their new environment is decisive to ensure and increase their trustworthiness, quality and user experience. DevOps has established itself as a software development life-cycle model that encourages developers to continuously bring new features to the system under operation without sacrificing quality. This book reports on the ENACT work to empower the development and operation as well as the continuous and agile evolution of SIS, which is necessary to adapt the system to changes in its environment, such as newly appearing trustworthiness threats

    Ontologies in Cloud Computing - Review and Future Directions

    Get PDF
    Cloud computing as a technology has the capacity to enhance cooperation, scalability, accessibility, and offers discount prospects using improved and effective computing, and this capability helps organizations to stay focused. Ontologies are used to model knowledge. Once knowledge is modeled, knowledge management systems can be used to search, match, visualize knowledge, and also infer new knowledge. Ontologies use semantic analysis to define information within an environment with interconnecting relationships between heterogeneous sets. This paper aims to provide a comprehensive review of the existing literature on ontology in cloud computing and defines the state of the art. We applied the systematic literature review (SLR) approach and identified 400 articles; 58 of the articles were selected after further selection based on set selection criteria, and 35 articles were considered relevant to the study. The study shows that four predominant areas of cloud computing—cloud security, cloud interoperability, cloud resources and service description, and cloud services discovery and selection—have attracted the attention of researchers as dominant areas where cloud ontologies have made great impact. The proposed methods in the literature applied 30 ontologies in the cloud domain, and five of the methods are still practiced in the legacy computing environment. From the analysis, it was found that several challenges exist, including those related to the application of ontologies to enhance business operations in the cloud and multi-cloud. Based on this review, the study summarizes some unresolved challenges and possible future directions for cloud ontology researchers.publishedVersio

    Machine Learning Threatens 5G Security

    Get PDF
    Machine learning (ML) is expected to solve many challenges in the fifth generation (5G) of mobile networks. However, ML will also open the network to several serious cybersecurity vulnerabilities. Most of the learning in ML happens through data gathered from the environment. Un-scrutinized data will have serious consequences on machines absorbing the data to produce actionable intelligence for the network. Scrutinizing the data, on the other hand, opens privacy challenges. Unfortunately, most of the ML systems are borrowed from other disciplines that provide excellent results in small closed environments. The resulting deployment of such ML systems in 5G can inadvertently open the network to serious security challenges such as unfair use of resources, denial of service, as well as leakage of private and confidential information. Therefore, in this article we dig into the weaknesses of the most prominent ML systems that are currently vigorously researched for deployment in 5G. We further classify and survey solutions for avoiding such pitfalls of ML in 5G systems

    Digital twins from smart manufacturing to smart cities: a survey

    Get PDF
    Digital twins are quickly becoming a popular tool in several domains, taking advantage of recent advancements in the Internet of Things, Machine Learning and Big Data, while being used by both the industry sector and the research community. In this paper, we review the current research landscape as regards digital twins in the field of smart cities, while also attempting to draw parallels with the application of digital twins in Industry 4.0. Although digital twins have received considerable attention in the Industrial Internet of Things domain, their utilization in smart cities has not been as popular thus far. We discuss here the open challenges in the field and argue that digital twins in smart cities should be treated differently and be considered as cyber-physical "systems of systems", due to the vastly different system size, complexity and requirements, when compared to other recent applications of digital twins. We also argue that researchers should utilize established tools and methods of the smart city community, such as co-creation, to better handle the specificities of this domain in practice.This work was supported in part by the Project ‘‘I3T—Innovative Application of Industrial Internet of Things (IIoT) in Smart Environments’’ (MIS 5002434) implemented under the ‘‘Action for the Strategic Development on the Research and Technological Sector,’’ funded by the Operational Programme ‘‘Competitiveness, Entrepreneurship and Innovation’’ (NSRF 2014–2020), and in part by Greece and the European Union (European Regional Development Fund)

    DevOps for Trustworthy Smart IoT Systems

    Get PDF
    ENACT is a research project funded by the European Commission under its H2020 program. The project consortium consists of twelve industry and research member organisations spread across the whole EU. The overall goal of the ENACT project was to provide a novel set of solutions to enable DevOps in the realm of trustworthy Smart IoT Systems. Smart IoT Systems (SIS) are complex systems involving not only sensors but also actuators with control loops distributed all across the IoT, Edge and Cloud infrastructure. Since smart IoT systems typically operate in a changing and often unpredictable environment, the ability of these systems to continuously evolve and adapt to their new environment is decisive to ensure and increase their trustworthiness, quality and user experience. DevOps has established itself as a software development life-cycle model that encourages developers to continuously bring new features to the system under operation without sacrificing quality. This book reports on the ENACT work to empower the development and operation as well as the continuous and agile evolution of SIS, which is necessary to adapt the system to changes in its environment, such as newly appearing trustworthiness threats

    Deep learning for internet of underwater things and ocean data analytics

    Get PDF
    The Internet of Underwater Things (IoUT) is an emerging technological ecosystem developed for connecting objects in maritime and underwater environments. IoUT technologies are empowered by an extreme number of deployed sensors and actuators. In this thesis, multiple IoUT sensory data are augmented with machine intelligence for forecasting purposes

    Wearables and Internet of Things (IoT) Technologies for Fitness Assessment: A Systematic Review

    Get PDF
    Wearable and Internet of Things (IoT) technologies in sports open a new era in athlete?s training, not only for performance monitoring and evaluation but also for fitness assessment. These technologies rely on sensor systems that collect, process and transmit relevant data, such as biomark ers and/or other performance indicators that are crucial to evaluate the evolution of the athlete?s condition, and therefore potentiate their performance. This work aims to identify and summarize recent studies that have used wearables and IoT technologies and discuss its applicability for fitness assessment. A systematic review of electronic databases (WOS, CCC, DIIDW, KJD, MEDLINE, RSCI, SCIELO, IEEEXplore, PubMed, SPORTDiscus, Cochrane and Web of Science) was undertaken according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. From the 280 studies initially identified, 20 were fully examined in terms of hardware and software and their applicability for fitness assessment. Results have shown that wearable and IoT technologies have been used in sports not only for fitness assessment but also for monitoring the athlete?s internal and external workloads, employing physiological status monitoring and activity recognition and tracking techniques. However, the maturity level of such technologies is still low, particularly with the need for the acquisition of more?and more effective?biomarkers regarding the athlete?s internal workload, which limits its wider adoption by the sports community.4811-99FE-2ECD | Luis Paulo RodriguesN/

    Machine Learning Meets Communication Networks: Current Trends and Future Challenges

    Get PDF
    The growing network density and unprecedented increase in network traffic, caused by the massively expanding number of connected devices and online services, require intelligent network operations. Machine Learning (ML) has been applied in this regard in different types of networks and networking technologies to meet the requirements of future communicating devices and services. In this article, we provide a detailed account of current research on the application of ML in communication networks and shed light on future research challenges. Research on the application of ML in communication networks is described in: i) the three layers, i.e., physical, access, and network layers; and ii) novel computing and networking concepts such as Multi-access Edge Computing (MEC), Software Defined Networking (SDN), Network Functions Virtualization (NFV), and a brief overview of ML-based network security. Important future research challenges are identified and presented to help stir further research in key areas in this direction
    • 

    corecore