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Abstract
Function-as-a-Service (FaaS) allows developers to define, orchestrate and runmodular
event-based pieces of code on virtualised resources, without the burden of managing
the underlying infrastructure nor the life-cycle of such pieces of code. Indeed, FaaS
providers offer resource auto-provisioning, auto-scaling and pay-per-use billing at
no costs for idle time. This makes it easy to scale running code and it represents
an effective and increasingly adopted way to deliver software. This article aims at
offering an overview of the existing literature in the field of next-gen FaaS from three
different perspectives: (i) the definition of FaaS orchestrations, (ii) the execution of
FaaS orchestrations in Fog computing environments, and (iii) the security of FaaS
orchestrations. Our analysis identify trends and gaps in the literature, paving the way
to further research on securing FaaS orchestrations in Fog computing landscapes.

Keywords FaaS · Serverless · Fog Computing · Security · Cloud computing

Mathematics Subject Classification 68-02 · 68N19 · 68M14

1 Introduction

Function-as-a-Service (FaaS) is evolving microservice-based software architectures
into function-based ones [1,2], as an instance of the serverless paradigm in Cloud
settings [3]. Indeed, FaaS applications can be obtained by suitably orchestrating state-
less, event-triggered functions running on virtualised Cloud infrastructures, with no
need for programmers to set up nor to directly operate the deployment stack. One
one hand, from a programmer’s perspective, the FaaS paradigm permits focussing
only on the business logic of an application implemented by composing functions
as simple, well defined building blocks and by decoupling the writing of application
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code from the (automated)management of the deployment servers. On the other hand,
form a provider’s perspective, the FaaS paradigm requires more fine-grained resource
allocation strategies to enable on-demand and faster provisioning and scaling, based
on containers, as well as to feature pay-as-you-go billing for each running function
instance.

Amazon launched serverless computing with AWS Lambda in 2015 [4], pri-
marily intended for Cloud computing settings. Meanwhile, Fog computing [5,6]
emerged to exploit processing, storage and networking resources along the Cloud-IoT
continuum—from personal devices, through network switches, to Cloud datacentres.
The main goal of the Fog is to support the stringent Quality of Service (QoS) require-
ments of next-gen IoT applications as well as to improve the Quality of Experience
(QoE) of the existing ones [7–9]. Indeed, the Fog permits processing—where it is
best-suited along the Cloud-IoT continuum—the huge amounts of data that the Inter-
net of Things (IoT) is producing daily so to enact prompter responses to sensed events
and to improve contextual data insights.

The idea of applying the serverless paradigm in the Fog looks appealing and promis-
ing [10]. Event-based serverless functions are naturally suited to define computation
on IoT data, containerisation technologies are lightweight and can run on most edge
devices, and on-demand execution of functions can lead to improved usage of resource-
constrained devices, closer to the edge of the Internet [11–13]. However, the adoption
of the FaaS paradigm in Fog scenarios poses the challenge of preserving and enforcing
security constraints. Indeed, the Fog comes along with new distinctive security threats
to be faced [14]. Indeed, Fog infrastructures will have to deal with the many issues
related to the physical vulnerability of accessible edge devices, reducing the avail-
able Trust Computing Base (TCB), viz. the set of hardware and software which can
be considered trustable in a system. Factually, edge devices could be easily hacked,
broken or even stolen by malicious users and can only offer a limited set of security
countermeasures [15]. Moreover, serverless platforms should provide isolation among
users and accurate accounting for billing purposes [1], which might be non-trivial to
ensure in highly pervasive Fog infrastructures with hundreds of nodes and, possibly,
of service providers.

In this context, how to realise secure FaaS orchestration in Fog computing is still
a largely open research problem, being security monitoring and enforcement more
complex to achieve than in traditional Cloud settings due to the aforementioned char-
acteristics of the FaaS and Fog paradigm [16].
The goal of this survey is to offer an overview of the existing literature, so to identify
open challenges to tackle the above research problem. To accomplish this objective,
we organised the review of existing literature and platforms under the following three
main perspectives:

P1. languages, models and methodologies to define FaaS orchestrations,
P2. platforms, techniques and methodologies to execute FaaS orchestrations in the

Fog, and
P3. techniques and methodologies to secure FaaS orchestrations both statically and at

runtime.
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The rest of this article is organised as follows. After describing some commercial
and open source FaaS platforms to outline their main characteristics under P1–P3
(Sect. 2), we describe the methodology followed to realise our survey and to define
the corpus of the reviewed scientific literature (Sect. 3). Then, we analyse it under the
aforementioned perspectives P1 (Sect. 4), P2 (Sect. 5) and P3 (Sect. 6). Finally, by
identifying research gaps at the intersections of those perspectives, we point to some
specific open problems and future research challenges for securing the execution of
FaaS orchestrations in the Fog (Sect. 7).

2 FaaS platforms

In this section, we overview the main features of commercial and open source FaaS
platforms which are currently used in the software industry to implement serverless
systems. To better capture and depict the current FaaS world, it is worth mentioning
and briefly illustrating the existing platforms being the ones where FaaS has been
initially started, developed and put in production environments. For such reason, we
decided to review some of the most commonly used FaaS platforms in this Section,
while focussing the rest of the article on the state of the art in the research literature.
The selection was performed starting from the most prominent FaaS platforms, and
refined by relying upon existing surveys1 comparing commercial and open source FaaS
platforms, and finally by using web search engines and GitHub. This section gives
an overview of existing FaaS platforms recapitulating on their main characteristics
and the trends that are ongoing in the serverless settings, already considering the
three perspectives analysed later on this survey, viz. function orchestration definition,
executing orchestration in the Fog and security of FaaS orchestration.

AWS Lambda [4]—It is the FaaS platform offered by Amazon. Being inte-
grated with the Amazon Web Services (AWS) suite, it permits to natively run
functions—called Lambda functions—written in a set of commonly used pro-
gramming languages (viz. Java, Go, PowerShell, Node.js, C�, Python and Ruby).
Besides, it permits defining specific triggers to launch functions and to automat-
ically manage the allocated resources to execute. It features pay-per-use billing,
with precision at the level of hundreds of milliseconds.
Workflow-based orchestrations of distributed applications can be specified with
AWS Step Functions [21], that allows designing workflows by defining a set of
states and guarded transactions between them. States can be tasks or language con-
structs (viz. if-then-else, parallel execution and maps) that modify the execution
flow. Tasks represent single units of work and they can be Lambda functions, AWS
services or activities. Activities are worker services implemented and hosted by
the users and featuring an AWS resource address obtainable through AWS con-
sole, SDK or API. Workflows have an initial state and a final state, and every state
must declare its successor, and whether it represents a successful or failed execu-
tion in case it is an end state. Asynchronous tasks are not supported natively. By

1 For more details and comparisons of existing FaaS platforms, we refer readers to the surveys by Scheuner
and Leitner [17], Lopez et al. [18], Wang et al. [19] and Yussupov et al. [20].
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default, a failure in a task causes the failure of the whole workflow execution. It is
possible to specify a retry policy for a state to manage faulty executions. Standard
and express workflows are considered. Standard workflows can be used for long-
running, durable, and auditable workflows, while express workflows are suitable
for high-volume, event-processing workloads. The given workflow language is
available in a visual graph-based version as well as in JSON format.
Moreover, Amazon permits running Lambda functions on Fog nodes using AWS
IoT Greengrass [22]. Greengrass extends Cloud capabilities to local edge devices
that connect to IoT devices. It is possible to deploy a Lambda function on such
local devices. User configurations enable setting up memory limits for running
functions and to selecting the lifecycle type of such functions. Similarly to AWS
Step Functions workflows, two types of lifecycles are offered for GreenGrass func-
tions: on-demand for short-lived functions that are stopped after the execution, and
long-lived functions that run continuously.
From a security perspective, Amazon promotes a shared responsibility model,
dividing the security of the Cloud and in the Cloud. Security of the Cloud is Ama-
zon’s responsibility and it comprehends the infrastructure protection, in terms
of hardware security and the layer of software that concerns storage, network and
computation. Security in theCloud is the client’s responsibility and it comprehends
sensitivity of data, company’s requirements, and applicable laws and regulations.
To assist clients in performing identity and access management, Amazon supplies
an identity and access management service that helps an administrator in securely
controlling access to AWS resources.
Azure functions [23]—It is the FaaS platform by Microsoft, featuring a billing
strategy analogous to the one of AWS Lambda and integrating with the Azure
Cloud services. Azure Functions supports various commonly used programming
languages (viz. C�, Javascript, F�, Java, PowerShell, Python, Typescript). The use
of triggers to execute functions is similar to the one of AWS Lambda. Differently
from AWS, Azure Functions feature pay-per-use billing with a precision of sec-
onds and allows monthly subscriptions.
Durable Functions [24] enableswriting stateful functions and, in particular, orches-
trator functions. Orchestrator functions can be used to compose stateless and
stateful functions. The Durable Functions platform is written in C� and it features
the same expressive power of the Microsoft flagship language. An orchestrator
function inputs a context, that is an object used to call the orchestrated functions.
The name of the function called and its arguments are passed to the context that
will return the final result. The functions orchestrated are called synchronously
or asynchronously, with the possibility to wait for the end of parallel executions
by setting up suitable barriers. From an orchestrator function, it is possible to call
other orchestrator functions as well. Under the hood, Durable Function extensively
relies upon message passing through asynchronous queues.
Microsoft enables deploying Azure Functions on Fog nodes by using Azure IoT
Edge [25]. Azure IoT Edge is a collection of services which enables extending
Azure Cloud resources with edge nodes and IoT devices, creating a Cloud-IoT
computing continuum. Deploying Azure Functions to edge devices requires func-
tions to be containerised using Docker, having their images published in the Azure

123



Secure FaaS orchestration in the fog: how far are we? 1029

registry. Azure Functions that meet these requirements can be then deployed to
available Fog nodes directly through the Azure portal. The monitoring and the
results of a function can be checked using the IoT Hub, the component of the
Azure Cloud that manages IoT Edge devices.
On the security perspective, similarly to AWS Lambda, Azure Functions guaran-
tees platform security by protecting functions from other clients, updating virtual
machines and runtime software, and encrypting every communication between
services. They supply a service to monitor activities, logging analytics to individ-
uate attacks, and a service to manage authentication and authorization. In their
comparison among existing FaaS platforms, Wang et al. [19] raised a warning on
a potential security vulnerability of Azure Functions since the platform allows
different tenants to share the same Virtual Machine for hosting their FaaS, what
might represent a stepping stone for cross-function side-channel attacks.
Cloud functions [26]—It is the FaaS platform offered by Google. Similarly to
AWS Lambda and Azure Functions, it supports fewer programming languages
(viz. Node.js, Python, Go, and Java). Similarly to Amazon and Microsoft, Cloud
Functions use triggers to execute functions. Billing is pay-per-use with precision
at the level of hundreds of milliseconds.
Google does not provide developers with specific languages and tools to compose
serverless functions on its FaaS platform. Naturally, any programming language
of choice can be used by application developers to manually orchestrate HTTP
requests to function end-points without specific support for FaaS orchestration
constructs.
Google Cloud Functions security is oriented to the access control, split across
identity-based and network-based access control. The identity-based access con-
trol is granted on a per-function basis via Cloud access management to allow for
control over developer operations or function invocations. In the network-based
access control, access is controlled by specifying network settings for individual
functions. This allows for more control over the network ingress and egress, i.e.
to and from the functions.

Apache OpenWhisk [27]—It is an open-source FaaS platform, initially created
by IBM and, later on, maintained by the Apache Foundation. OpenWhisk allows
developers to write serverless functions—calledActions—that can be dynamically
scheduled and run in response to associated events—via Triggers—from external
sources or from HTTP requests.
The full platform could be too resource-demanding to be executed on Fog nodes.
To get around this limitation and use the same codebase of the main project,
OpenWhisk developers reduced the components of the full version to a smaller
architecture that is more suited to be placed on Fog nodes. They call it Lean
OpenWhisk,2 and the architecture on a node is reduced only to the Controller
(responsible for load balancing) and the Invoker (responsible for executing server-
less functions) of the full version, with a lean load-balancer tomanage the handling
of functions.

2 Lean OpenWhisk https://github.com/kpavel/incubator-openwhisk/tree/lean.
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OpenWhisk delegates completely to the platform administrator the duty to secure
the target infrastructure and to the functions operators the security of applications.
IBM cloud functions [28]—It is the FaaS platform offered by IBM, based onOpen-
Whisk. Functions can be naturally integrated with IBMCloud services. Support is
provided for several programming languages (viz. Javascript, Python, Swift, PHP,
Go, Java, Ruby, .Net Core) and are accepted as well user-supplied executable files
to be run as containers starting from public Docker images. The execution model
of the functions is the OpenWhisk one. IBMCloud Functions features pay-per-use
billing time with precision at the level of seconds.
IBMCloudFunctions offers IBMComposer [29],which extendsOpenWhisk built-
in function composition capabilities with conditional branching, error handling
(try-catch, retry), loop constructs, parallel execution, asynchronous invocation,
and map. Indeed, OpenWhisk by itself only allows pipelining functions. The com-
positions are expressed in Javascript or Python languages and compiled into JSON,
ready to be deployed to the OpenWhisk platform. The library mimics the control
flow of an imperative program language, treating functions as statements. Redis
key-value storage can be exploited to perform stateful computations, such as in
the case of parallel function executions to temporarily store results as soon as they
are ready.
IBMCloud Functions does not currently support execution on Fog nodes. The only
serverless support on the Edge IBM supplies is to run web service functions, that
are part of Cloud IBM Internet Services, mainly oriented to support web-based
applications.
Concerning security, IBM follows the same policy of the other commercial FaaS
platforms, even if they do not have a specific documentation entry related to the
FaaS service. Generally speaking, IBM guarantees infrastructure security leaving
application-related aspects to their clients.
Kubernetes-based platforms—Many existing platforms are built on top of Kuber-
netes and use it as their container orchestration engine for serverless functions.
They run on private, public or hybrid Clouds and, being container-based, they can
support any programming language of choice. The use of Kubernetes as orchestra-
tion engine for containers that will run serverless functions implies the possibility
to run them on compatible Fog nodes. Open source platforms are expected to pro-
vide more flexibility and control compared to the commercial ones at the price of
having more responsibility in terms of security.

Fission [30]—It is an open source community-based serverless framework
that permits writing functions in every language, mapping them to incoming
HTTP requests or other events. It allows orchestrating Fission functions with
FissionWorkflows, still at an early stage of development, by expressing suitable
YAMLworkflows as sequences of tasks to be executed. Tasks can be functions,
HTTP requests to a service or control flow constructs. The constructs include
conditional branching and many loop variants. The foreach construct features
for parallel execution over different parts of the input.
Kubeless [31]—It is a Kubernetes-native serverless framework, open source
and community maintained, that allows deploying functions without having to
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worry about the underlying infrastructure. It uses CustomResourceDefinitions
(CRDs) to extend theKubernetesAPI, which allows developers to interact with
functions as if they were native Kubernetes objects. Runtimes and languages
needed to deploy a function can be specified by the users.
Knative [32]—It is a FaaS platform that leaves higher-level concepts (viz. API,
CLIs, tooling) to a vendors to integrate with other platforms. It is open source
and community-based. As Kubeless, it uses CRDs to extends the Kubernetes
API. It can be integrated with Istio, a service that provides, authentication,
authorisation and encryption of communication.
OpenFaaS [33]—It is an open source serverless platformmaintained by Open-
FaaS Ltd. It permits, through a command-line interface, packing functions into
Docker containers. In each container, a Web server acts as an entry point to
the container and allows invoking the hosted function.
Nuclio [34]—It is a serverless platform focused on data, I/O, and compute-
intensive workloads, maintained by Iguazio Ltd. It provides GPU execution
and easy integration with data science libraries and tools. It is the only one of
this group that proposes both a vanilla open source version and an enterprise
version with extended features, viz. platform hosted on the maintainers’ Cloud
and it is provided support for authentication and authorisation.

This overview of the FaaS platform outlines the state of the art of production-ready
platforms concerning the three perspectives mentioned in the Introduction. As afore-
mentioned, the rest of this survey is focused on the state of the art in the research
literature.

3 Setting the stage

In this section, we describe the criteria used to sort out the research articles included
in this survey for the three different perspectives P1–P3 identified in the Introduction.
Throughout our work, we relied upon the material available in the leading scientific
research libraries (i.e. IEEE Xplore Digital Library, Wiley Online Library, ACM Dig-
ital Library, Web of Science) by searching them through their search engines and
Google Scholar. To fully capture the advances in the field, both journal and confer-
ence articles were collected during the search phase. Finally, references in selected
articles were also considered to find more works to review.

During this phase, we adopted the following search and selection criteria:

P1 Languages, models and methodologies to define FaaS orchestrations.
Main search criteria: (FaaS ∨ serverless) ∧ (composition ∨ orchestration) ∧
(language ∨ model).
Inclusion criteria: We included proposals on languages, formal methods and mod-
els that permit defining and combining single serverless functions, in order to
orchestrate them into more complex applications.
Exclusion criteria: We excluded those works lacking the possibility to define
orchestrations of serverless functions, proposals that rely on FaaS as an enabling
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Fig. 1 Articles surveyed and
classified P1—defining FaaS
orchestrations, P2—executing
FaaS orchestrations in the Fog
and P3—securing FaaS
orchestrations

technology but do not directly propose research advances on FaaS, and compar-
isons or surveys on existing serverless platforms as well.

P2 Platforms, techniques and methodologies to execute FaaS orchestrations in the
Fog.
Main search criteria: (Fog ∨ Edge) ∧ (FaaS ∨ serverless) ∧ (placement ∨
scheduling ∨ execution).
Inclusion criteria: We included proposals on platforms, approaches and frame-
works that contain methodologies or strategies to support the execution of
applications emerging from serverless orchestrations in Fog scenarios3.
Exclusion criteria:We excluded those works lacking novel orchestration strategies
or capable of running FaaS only on single nodes. We also excluded works that are
using existing serverless platforms as use cases without discussing orchestration
details, nor research contributions under the considered perspective.

P3 Techniques and methodologies to secure FaaS orchestrations both statically and
at runtime.
Main search criteria: (FaaS ∨ serverless) ∧ security.
Inclusion criteria: We included proposals on novel tools, methodologies and
approaches to secure the execution of serverless functions and their input/output
data.
Exclusion criteria: We excluded works discussing security analyses without
proposing any specific tool, methodology or approach to secure serverless exe-
cution.

From the selected corpus we excluded also patents, posters and publicly archived
theses. Throughout this initial phase, we collected and analysed over 80 scientific
articles, which were then reduced to 29 by applying the aforementioned inclusion
and exclusion criteria. Figure 1 shows the articles found under the three perspectives
P1–P3, and highlights the very few works that we identified at their intersections.

3 Fog computing implies exploiting a continuity of Cloud, Edge and IoT resources, while Edge computing
only focuses on exploiting local edge devices. However, the terms Fog and Edge are oftentimes used
interchangeably in the literature. For this reason, we also considered and surveyed articles including the
Edge keyword.
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Fig. 2 Categorisation of articles
in P1—defining FaaS
orchestrations

It is worth noting that the intersection between P2 and P3 is empty since none of
these works targets both security aspects of FaaS orchestration and FaaS orchestration
in Fog settings.

4 Defining FaaS orchestrations

This section surveys languages and methodologies proposed to define FaaS orchestra-
tion, i.e. to programmatically combine simple well-defined serverless functions into
more complex applications. The maturing of such languages and methodologies is
essential for easily implementing new FaaS-based applications, and for the develop-
ment and functioning of next-gen FaaS platforms.

4.1 Literature review

Figure 2 sketches the categorisation we will use to describe the articles surveyed in
this section.

Theworks byBaldini et al. [35], Jangda et al. [36] andGabbrielli et al. [37] introduce
formal techniques for modelling and analysing existing FaaS orchestration platforms,
with the two-fold objective of designing next-gen FaaS systems and of verifying
properties of FaaS orchestrations.

Among the first authors highlighting the importance of devising new and safe lan-
guages to enable FaaS orchestration, Baldini et al. [35] present the serverless trilemma,
a set of constraints that identifies the need of a careful evaluation of trade-offs in func-
tion orchestration. Those trade-offs mainly concern the fact that (i) functions should
be considered as black boxes, (ii) function orchestration should preserve a substitu-
tion principle4 with respect to synchronous invocation, and (iii) function invocations
should not be double-billed. To support their analysis, after formally formulating the
aforementioned trilemma, the authors present a model of the reactive core of Open-
Whisk, and an OpenWhisk implementation of a solution to the trilemma, considering
sequential compositions only. The considered reactive core of OpenWhisk is based
on events (triggers) which represent a class of topics in an abstract message queue.
Functions (Actions), have a unique name, their specific source codes, and always input

4 From the point of view of an invoking client, the synchronous invocation to a single function or to a set
of orchestrated functions should be indistinguishable.
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and output dictionaries. A serverless orchestration is then represented as a set of rules,
associating a specific topic of a trigger to a function. Each rule has an enabled status
bit that determines if a message of a trigger results in an invocation of the function.
The two operations to compose functions are invoke, used to run a function on a
given input, and fire, used to create a new message for the event queue related to a
trigger. When a new message is created, all the rules associated with that trigger are
checked, and the enabled rules start the function invocations with themessage as input.
This mechanism is completely asynchronous and only permits composing sequences
of functions based on events.

Jangda et al. [36] aim at enabling programmers to reason on the correctness of
the serverless functions and FaaS orchestrations they implement, by helping them in
better understanding and dealing with low-level operational details of FaaS platforms.
In this context, they open sourced5 the Serverless Programming Language (SPL).
SPL is a domain-specific language based on a operational semantics, that models a
serverless platform accounting failures, concurrency, function restarts, and instance
reuse happening under the hood of such platform and considering interactions with
external services. Communication is via message passing, modelling events via the
“receive event” and “return result” primitives. Overall, the SPL language for function
orchestration features three main primitives: simple function invocation, sequential
execution of functions passing the output of one to another, and application of a func-
tion to a tuple modifying only the first element of the tuple while leaving the others
unchanged. Those primitives permit expressing only simple orchestrations of server-
less functions,without loops nor conditionals,which, however, have been implemented
in the experimental prototype of SPL. Last, to make the input/output format uniform,
a sub-language for JSON transformations is used. Experimental results are promising
and improve over OpenWhisk performance.

Gabbrielli et al. [37] propose their Serverless Kernel Calculus (SKC), a formalism
to model event-based function orchestration which combines features of λ-calculus
and of π -calculus to describe functions and their communication, respectively. The
basic model is then extended with stateful computation relying on message queues
or databases, and event-based function compositions. Features typical of λ-calculus
are used to model (recursive) function declarations, while communication is based
on futures that represent the return value asynchronous function invocations. The
event-based programming paradigm, typical of FaaS systems, is then modelled by
encapsulating events in user-defined handler functions, which cannot directly invoke
one another. Last but not, least, external services are considered as potential sources
of events triggering function executions. An evaluation of the expressiveness of SKC
in capturing all relevant features of FaaS orchestrations is performed over a real use
case from a user registration system implemented in AWS Lambda.

The works proposed by López et al. [38], Eismann et al. [39] and Yang et al. [40],
exploit the definition of FaaS orchestration expressed as workflows to model FaaS
applications or to perform evaluations on cost or performance.

López et al. [38] propose Triggerflow, an architecture for serverless workflows.
Such a proposal aims at supporting heterogeneous workflows while exploiting both

5 Available at: https://plasma-umass.org/foundations-of-serverless/home/.
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the reactive design of the serverless paradigm and good performance for high-volume
workloads. The architecture of Triggerflow is based on an Event-Condition-Action
model in which triggers (active rules) define which function (i.e. action) must be
launched in response to Events, or to Conditions evaluated over one or more Events.
In such a model, workflows are represented as a finite state machine, where the states
are serverless functions and the transitions are labelled by triggers. The set of initial
states are functions linked to initial events, the set of final states are functions linked
to termination events. A trigger is a 4-tuple composed by (i) an Event, the atomic
piece of information that drives flows in applications, (ii) a Context, the state of the
trigger during its lifetime, (iii) a Condition, the active rules that filters events to decide
if they match in order to launch the corresponding functions, and (iv) an Action, one
or more function launched in response to matching Conditions. Experimental assess-
ments are performed using AWS Lambda and IBM Cloud Functions showing that
Triggerflow can support high-volume event processing workloads and transparently
optimise workflows of scientific applications.

Eismann et al. [39] combine learning techniques (to predict function execution times
and output parameters distributions) and Monte Carlo simulations (to predict costs)
in order to compare and optimise the cost of executing FaaS orchestration workflows.
Experimental evaluation, showing a 96.2% prediction accuracy, is performed over five
real function orchestrations over the Google Cloud Function infrastructure.

Still employing a workflow-based modelling of FaaS applications, Yang et al. [40]
propose EdgeBench, a benchmark to evaluate FaaS applications performances on the
Fog. Workflows can be declared by specifying the business logic of each function, the
data storage or transfer backends it needs, and its target execution tier (viz. IoT, Edge or
Cloud). Performance evaluation is prototyped in OpenFaaS and it is based on metrics
measured both at the function level (e.g. runtime latency, storage read/write latency,
and the function communication latency) and at the workflow-level (e.g. CPU usage,
network throughput). A benchmark is proposed for two representative applications
(i.e. video analytics and IoT-hub management).

From a different perspective, Gerasimov [41] proposes Anzer, a domain-specific
language that enables type-checking on function compositions. Anzer enables explicit
and type-safe FaaS compositions by relying upon a type system that features basic
types (integers, strings, boolean) along with the possibility to include user-defined
types. AMaybe constructor is also featured by the language to allow for optional data
types and polymorphism is supported, based on a well-defined notion of sub-typing.
Type checking is performed on the description of the input function compositions, and
compositions are considered safe if and only function inputs and outputs are coherently
described. Besides, Anzer offers a mechanism to recognise failed computations based
on monads, while it does not account for the presence of external services nor for
events generated externally from the function compositions. The current prototype
release6 of the Anzer platform is still under testing, relies upon Apache OpenWhisk
and only supports the Go language.

Finally, Persson and Angelsmark [42] focus on Fog settings, falling in the intersec-
tion of perspective P1, discussed in this section and P2 discussed in Sect. 5. Here we

6 Available at https://github.com/tariel-x/anzer.
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briefly illustrate the expressive characteristics of [42] to orchestrate serverless func-
tions. The approach extends an actor-based framework in a serverless manner, where
actors can be written as serverless functions. The Python-based declarative language
CalvinScript is used in [42] to implement IoT applications capable of expressing (also
through a graphical representation) the data-flow between functions and the place-
ment of functions on specific nodes. The control flow of an application is handled by
writing specific functions that handle the flow, e.g. to express a conditional branch a
function is needed that receives input data, tests a condition and passes the data to
another function based on such test. To illustrate the framework some IoT application
examples are detailed and it is described an overall comparison with FaaS platforms,
such as AWS Lambda and OpenWhisk.

4.2 Summary at a Glance

Table 1 resumes the main mechanisms offered by the surveyed articles. For each
surveyed approach, the columns in Table 1 indicate whether it features

– Support for basic programming constructs (viz. sequential composition, condi-
tional branching, iteration and parallel composition) which allow creating more
complex applications using serverless functions as building blocks,

– The possibility to exploit a direct trigger (e.g. anHTTP request) to invoke a specific
serverless function,

– The possibility to exploit a trigger by publish/subscribe events to automatically
run a function whenever such events happen,

– The possibility to define recursive functions, that is, to recursively invoke a function
at runtime,

– The availability of type checkingmechanisms verifying the correctness of compo-
sition of functions calls based on their input and output data types.

It is worth noting that the sequential construct is available in all surveyed approaches.
Other basic constructs—viz. sequential composition, conditional branching, iteration
and parallel composition—are featured bymost of the approaches in the literature [36–
40,42]. The usage of direct triggering is easier to implement although less flexible from
a programmer’s perspective and it is featured by [36–38,40]. In contrast, the triggering
by a subscribed event is featured only by [35,38]. Recursion is generally discouraged
by FaaS platform providers as it might lead to long execution times of functions and
repeated function calls, which actually cause paying for idle time, but it is nevertheless
allowed by [35–38]. Type checking on function compositions is only studied by [41],
while other solutions consider dictionaries as the only input/output types and do not
perform code analyses.

To improve the definition of FaaS orchestration, a wider usage of the function trig-
gering by subscribed events can help at decoupling functions from the caller, by easing
next-gen application development. For instance, this is especially important in the field
of IoT applications where the publish/subscribe mechanism is well-established and
functions run upon triggers from cyber-physical systems. By extending their support
to recursion, FaaS platforms could avoid launching new function instances (e.g. via
tail recursion optimisation) and unnecessary billing and resource-wasting behaviour,
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Fig. 3 Categorisation of articles
in P2—executing FaaS
orchestrations in the Fog

while allowing programmers to naturally express recursive functions. Type check-
ing is also an interesting line to follow to reduce errors by early detection of wrong
invocations. This permits avoiding run-time errors, by easing application testing and
maintenance.

Finally, as an alternative to orchestration languages and workflows employed
by most of the surveyed approaches, Calvin [42] exploits an actor-based model
to compose services and serverless functions into applications. Such models might
be interesting to further investigate in FaaS settings as they have recently been
employed to describe AI [43] applications—including annotations on their hardware
requirements—and parallel computing patterns [44].

5 Executing FaaS orchestrations in the Fog

This section surveys existing approaches proposed to execute FaaS orchestrations in
the Fog, i.e. to place, deploy, run orchestrated serverless functions along the Cloud-
IoT continuum, suitably closer to their end-users, or to IoT data sources, which trigger
them or wait for processed results. Research in this field is still emerging7 but it will be
utterly important to achieve context- and QoS-awareness of FaaS applications running
on next-gen networking infrastructures.

5.1 Literature review

Figure 3 sketches the categorisation we will use to describe the articles surveyed in
this section.

The works proposed by Cheng et al. [47], Baresi and Mendonça [48] and Baresi et
al. [49], Cicconetti et al. [50], Mortazavi et al. [51] and Persson and Angelsmark [42]
are based on FaaS platform orchestration in the Fog. They propose novel architectures
or adapt well-established ones to the Fog settings, in order to define and analyse the
serverless characteristics useful to next-gen application development.

7 There are several works that aim at supporting the serverless paradigm in the Fog proposing solutions or
techniques involving single nodes and tackling issues like intra-node communication, constrained resources
and function isolation [13,45,46]. Those works are excluded from the survey as per the exclusion criteria
detailed in Sect. 3.
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Cheng et al. [47] proposed Fog Function. It is based on a programming model
for data-intensive IoT applications, which exploits data-aware context discovery to
enable data-driven orchestration of serverless functions. The unit of computation is
called a Fog Function and is denoted by a unique identifier, a dockerised function, its
required inputs, and (possibly) its expected outputs, a geo-scope to suitably select input
data, an execution priority, and specific Service Level Objectives (SLOs) to be met at
runtime (e.g. latency, results accuracy). A centralised management node enables the
whole orchestration system by relying on two main components, viz. theOrchestrator
and the Discovery components. Besides, all involved Fog nodes run two distributed
software agents, viz. a Broker and aWorker. On one hand, Brokers collect contextual
data coming from the IoT, intermediate processing results and data on node resource
availability, which are then used by theDiscovery component to obtain a global system
view. On the other hand, Workers execute functions when suitably triggered by the
Orchestrator. Indeed, the Orchestrator receives Fog Functions from clients, subscribes
to the Discovery and exploits it to identify and process, via a suitable Worker, the
received input data. Last, the Orchestrator can migrate tasks from one node to another
within the managed Cloud-IoT continuum.

Based on several uses cases, the works by Baresi and Mendonça [48] and Baresi
et al. [49] identify key characteristics to adapt the FaaS paradigm to Fog scenar-
ios and propose a 3-tiered self-managing platform for Multi-access Edge Computing
(MEC) infrastructures, respectively. The characteristics identified in SEP [48] include
(i) low-latency computation offloading to reduce response times, (ii) inter-platform
collaboration to achieve prompt and balanced resource allocation, (iii) latency optimi-
sation to reduce communication overhead, (iv) opportunistic data analysis to achieve
faster processing of IoT inputs, (v) geo-aware edge nodes coordination via publish-
subscribe mechanisms, (vi) stateful application partitioning into functions to reduce
computation times and resource requirements. Via an OpenWhisk prototype, they
demonstrate the need to further reduce latencies and computing overhead of existing
FaaS systems, by possibly exploiting hierarchical orchestration mechanisms. Indeed,
later on, Baresi et al. [49] propose a 3-tiered hierarchical framework—PAPS—for
decentralised self-management of function containers in MEC scenarios. First, based
on latency-aware clustering, a centralised network supervisor clusters thewhole infras-
tructure into communities. Then, each community elects aLeader nodewhich attempts
avoiding SLO (viz. response and maximum execution times) violations by optimally
placing containers onto its community nodes. Finally, single nodemanagement handles
containers scaling to deal with workload variations and to ensure locally meeting the
set SLOs. Simulations in PeerSim [52] show promising results of PAPS in optimising
the considered SLOs according to the proposed 3-tiered self-management architecture.

Another work focusing on enabling FaaS in MEC architectures is carried out by
Cicconetti et al. [50], by proposing that all involved edge nodes (viz. MEC hosts) run
a serverless platform. Such a distributed platform interacts with a centralised MEC
Orchestrator to retrieve—upon client requests—the functions to be executed and on
which host execute them depending on the client’s context. The mapping from client
nodes to functions and MEC hosts is maintained by an optimiser component. Three
different optimisation strategies to determine and update the mapping are proposed,
i.e. static (unchanged over time), centralised (based on global network knowledge at
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the orchestrator) and decentralised (based on distributed local function dispatchers).
Experimental assessment of the three strategies results in the static strategy showing
the worst performance in terms of latency and the best in terms of bandwidth usage,
having client requests always mapped to the same MEC host. On the other hand,
the centralised and the decentralised strategies outperform the static one in terms of
latency but show way higher bandwidth usage due to communication overhead from
the orchestrator/dispatcher.

Mortazavi et al. [51] rely on a Fog computing platform based on a multi-tier Cloud-
IoT infrastructure. In this context, they propose CloudPath a platform to support the
execution of FaaS applications in Cloud-IoT scenarios. CloudPath nodes feature a
container runtime and a module that can dynamically deploy and remove applications,
according to users’ preferences, system policies and node resources. Example system
policies might require a function to run on a specific level of the IoT-to-Cloud path
hierarchy, or on any higher layer towards the Cloud. The current prototype permits
choosing among threemain layers (e.g. Edge, Core, Cloud) in the hierarchy by suitably
labelling the functions, and to set latency requirements. Experimental assessments on
CloudPath show that response times lower by a factor of 10 with respect to using a
single public Cloud.

By extending an actor-based approach for serverless computing, Persson and
Angelsmark [42] extend their prototype IoT platform, Calvin [53], with FaaS capabil-
ities. Calvin permits defining distributed actor as unit components to process data, and
to make those actors interact into graph-based workflows. The authors extend Calvin
with IoT-based functions called kappaswhich can be triggered by Calvin actors. Such
functions can have input and output (e.g. face recognition), no input nor output (e.g.
reaction to sensed events, periodical updates), only input (e.g. storage), or only out-
put (e.g. temperature reading). Analysing and comparing their proposal with existing
platforms—e.g AWS Lambda and Apache OpenWhisk—the authors found similar
basic principles, with main differences highlighted in the possibility to write stateful
kappas and fewer resources needed to run the Calvin framework, being suitable for
Fog settings.

Differently from previous works Pinto et al. [54], Das et al. [55], Aske and Zhao
[56], Cho et al. [57], Cicconetti et al. [58] and Rausch et al. [59] propose approaches
to optimise the placement of serverless functions in the Fog, by relying on monitored
metrics (e.g. latency, billing) or on available hardware resources to make informed
decisions.

Pinto et al. [54] aim at dynamically deciding whether to run a serverless function
within the local Edge network or on Cloud servers, based on historical data on the
function execution times. An edge proxy is in charge of making such a decision, and
three heuristics (viz. greedy, upper confidence bounds and Bayesian upper confidence
bounds) have been proposed to do so. Besides, the proposed approach is capable of
handling failures (e.g. Internet disconnection) by forcing computation to happen on
local edge resources.

On the same line of work, Das et al. [55] present a framework to dynamically decide
where to execute tasks in Fog infrastructures, trying to optimise execution time and
function billing costs. To this end, a regression-based prediction model is trained on
three representative single-function applications—viz. image resizing, face detection
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and speech-to-text—to estimate compute, network transfer and storage latencies, and
costs. The optimisation framework runs on edge nodes, directly receiving input from
IoT data sources. A decision engine extracts the input characteristics and leverages the
prediction model to decide on whether to execute a function in the Cloud or locally
(still using Cloud resources for storage purposes). Experimental assessments show
that the prediction model only incurs in 6% absolute error when estimating execution
times, thus improving by 3 orders of magnitude the featured latency with respect
to Edge-only computation, which takes longer to queue up and process incoming
requests.

Aske and Zhao [56] proposeMPSC, a serverless monitoring and scheduling system
to assist programmers in selecting a serverless provider, based on average execu-
tion time, affinity constraints, and costs. After monitoring the providers’ performance
in real-time, the proposed framework recommends where to execute functions also
accounting for user-defined scheduling policies written in Python. The framework
exposes a RESTAPI to be used by the FaaS applications to load function requirements
and scheduling policies and to trigger function execution. Experimental results—with
AWS Lambda, IBM Bluemix and Apache OpenWhisk—show 200% faster round-trip
execution times when compared to execution on a single provider and, in general,
greater flexibility in using Edge computing in continuity with Cloud resources to
adaptively improve application QoS.

Aiming at reducing latencies and avoiding exceeding maximum response times,
Cho et al. [57] present RACER, a solution to distribute FaaS workload over hierarchi-
cally organised Fog infrastructures. In the considered scenario, edge devices produce
function tasks to be placed on Fog infrastructure nodes to run. The proposed solu-
tion solves the placement problem employing a (relaxed version of the) token bucket
algorithm [60], considering task constraints. TheRACERController checks the admis-
sibility of tasks for the whole network while RACERAgents are in charge of managing
individual edge regions, by employing reinforcement learning to optimise workload
distribution and response times, notifying to the controller local decisions. Simula-
tions show that RACER outperforms both static workload distribution and Area [61],
a state-of-the-art algorithm for workload distribution, for what concerns the achieved
response times. Besides RACER incurs in decision times which are two orders of
magnitude lower than those of Area.

Cicconetti et al. [58] propose an architecture to realise serverless computing at the
Edge in an Software-Defined Networking (SDN) scenario where network routers can
assign function execution to edge devices based on an arbitrary cost (e.g. latency,
bandwidth usage, energy consumption). The network state and the edge resource
availability is monitored and updated by SDN controllers. Three different placement
strategies are proposed: (i) Least-Impedance (LI), always selecting the minimum cost
node, (ii) Random-Proportional (RP), selecting a node with a probability propor-
tional to its cost to avoid overloading always the same nodes, and (iii) Round-Robin
(RR) fairly combining cost and workload considerations. Both (ii) and (iii) achieve
long-term fairness in allocating FaaS, while (iii) also achieves short-term fairness.
Simulations with OpenWhisk show that the proposed RP and RR strategies can effi-
ciently handle fast-changing workload and network conditions, whilst LI performs
worse than static allocation.
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More recently, based on their model to annotate function requirements [62], Rausch
et al. [59] present Skippy, a container-based scheduler to optimise the placement of
serverless functions in the Fog. Skippy relies onmulti-criteria optimisation and extends
thedefault scheduling logic ofKubernetes by introducing fourFog-oriented scheduling
constraints: (i) proximity to container image registries, (ii) proximity to data produc-
ers, (iii) available node resources and (iv) Edge or Cloud locality. Such constraints
can be weighted differently to adapt the scheduling behaviour so to achieve differ-
ent objectives (e.g. minimising execution times, bandwidth usage, costs or resource
exploitation). Skippy dynamically and distributedly collects information on node
resources, while it inputs the target network topology as a graph annotated with (static)
bandwidth values. Experimental assessment with OpenFaaS on a small-scale testbed
shows that Skippy enables locality-sensitive function placement, with higher data
throughput and reduced bandwidth usage.

Finally, Bermbach et al. [63] are the sole to take an infrastructure provider’s perspec-
tive. They advocate the need for a distributed auction-based strategy to allocate FaaS
to (Cloud or Edge) providers’ nodes. In this scenario, programmers submit functions
to target nodes alongwith a storage and processing bid. By accepting or rejecting those
bids, target nodes can decide whether to store function executables and, afterwards,
whether they can actually run them depending on their currently available resources.
Rejected requests are then pushed to the next node on the path towards the Cloud. Pre-
liminary simulation results show that this approach can increase providers’ revenues
in Fog serverless scenarios.

5.2 Summary at a Glance

Table 2 offers an overview of the reviewed articles, showing which elements the
orchestration strategy consider. For each surveyed approach, the columns of Table 2
indicate if the proposed orchestration strategy features

– Latency-awareness, aiming at reducing the latency of application responses,
– Resource-awareness, trying to optimise the hardware resources of the nodes that
execute serverless functions,

– Allowing a custom strategy, which permits platform users to express their own
strategy to orchestrate functions in the Fog,

– Cost-awareness, aiming at reducing the costs by the platform clients,
– Data-awareness, permitting to exploit what IoT data represent and where are
produced, in order to improve functions placement and scaling,

– Bandwidth-awareness, trying to reduce the overall bandwidth usage of the net-
work,

– Failure-awareness, being able to recognise and to try to overcome possible run-
time failures, e.g. nodes that became unreachable.

It is worth mentioning that the latency of applications (considered in [48–51,55–59])
and the resource optimisation of nodes (considered in [47–49,51,56–59,63]) are taken
into account the most in the surveyed literature. [42,51,56,63] also allow specifying
user-defined strategies. [55,56,59,63] take into account the costs, an important element
in the FaaS settings. Only [47,50,59] are oriented to data-awareness, which represents
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Fig. 4 Categorisation of articles
in P3—securing FaaS
orchestrations

a key element in Fog applications being generally centred on IoT data extraction
and analysis. Finally, [50,54,59] consider the bandwidth and the possibility to be
temporally isolated from the Cloud, due to network failures.

To enhance the execution of FaaS orchestration in the Fog, solutions aimed at reduc-
ing bandwidth, which is among the objectives of the Fog paradigm, deserve further
investigation. Another aspect worth further investigation concerns topology-aware
strategies like strategies capable of grouping Fog nodes to achieve faster workload
processing and to coordinate better on overall resource usage. It is also important to
detect and resolve failures at run-time, especially in Fog settings where the connec-
tion to devices or their limited resources can make nodes unexpectedly unreachable
or unable to execute functions [64].

Additionally, preliminary work exploiting the FaaS paradigm in Osmotic Com-
puting [65] shows that it would be of interest to devise orchestration strategies that
consider peculiarities of such an emerging paradigm, e.g. availability of functions in
different versions, with different requirements, to permit adaptation when no eligible
placement can be found that meet all initially set requirements. Finally, it would be
interesting to define a set of benchmark applications and infrastructures to evaluate and
compare the performance of FaaS orchestration strategies in Fog scenarios. A starting
point towards this direction could be the recent work by Yang et al. [40], discussed in
Sect. 4.

6 Securing FaaS orchestrations

This section surveys approaches proposed to secure the execution of FaaS orchestra-
tions, i.e. to enforce data and billing integrity, confidentiality and availability through
specialised hardware and/or code analyses techniques. The evolution and adoption of
such approaches are crucial to increase programmers’ and end-users’ trust in serverless
systems, especially by enabling secure FaaS on next-gen Cloud-IoT infrastructures.

6.1 Literature review

Figure 4 sketches the categorisation we will use to describe the articles surveyed in
this section.
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In the scope of this section, most of the surveyed works (i.e. [66–70]) focus on
the exploitation of specialised hardware resources, the Intel SGX, that permit creating
enclaves8 to protect the memory and the execution of functions from superusers of
certain machines. Intel SGX permits creating a Trust Computing Base (TCB) in order
to protect the execution from possibly malicious FaaS providers. Almost all of these
works try to protect data confidentiality. Only [70] do not address data integrity as a
protected asset. Finally, all works but [67] address function integrity, protecting either
the chain, the memory or the code of serverless functions.

First, Trach et al. [66] presentClemmys, a secure platform for serverless computing
implemented by relying on Apache OpenWhisk. A shielded execution framework
is built on top of Intel SGX and used to run unmodified applications, by securely
handling the FaaS platform gateway and the workers that execute functions. Function
data are protected by implementing the encryption of incoming traffic on the gateway
and by distributing encryption keys to the workers through a key management system.
Communication is performed by a specific message format that contains information
about the name of the invoked function and information about the order of execution
of a function chain, viz. a function composition, so that any function can realise when
chain execution has been tampered.

Still based on OpenWhisk, Alder et al. [67] propose S-FaaS, an architecture to pro-
vide strong security and accountability guarantees in FaaS settings tying to guarantee
a correct estimation of the resources used to both the FaaS provider and the function
provider. The architecture proposed includes a Key Distribution Enclave (KDE) and
worker enclaves running on the FaaS platform. The KDE is responsible for distribut-
ing the keys to the workers, for publishing them to clients and for attesting such keys
and each worker enclave. To activate a function, clients encrypt the input data with
the published key together with the hash of the function to invoke. Then, the KDE
attests the working enclave before passing the incoming data to the correct target
function. Finally, such a function processes the data and returns the encrypted out-
put, also generating a receipt for the client to attest that its execution completed. The
enclave setup for function execution also enables a resource management mechanism
that measures metrics of the execution and uses keys distributed by the KDE to sign
such measurements, permitting to attest the resource consumption.

Brenner and Kapitza [68] propose a design for a secure FaaS architecture based on
Javascript (JS) isolation capabilities. To achieve that, the authors use recent JS engines
to guarantee isolation of functions. The use of a specific interpreted language permits to
make assumptions to perform optimisations, i.e. bundle libraries with function code
to augment isolation, store a single interpreter in the enclave and reuse of runtime
contexts. The authors propose a general architecture and two related specific instances
based on different JS engines (SecureDuk and Google Secure V8), being the first more
lightweight and the latter more performant. The general architecture has in the enclave
a connection manager to communicate with clients, a JS interpreter and sandboxes to
execute functions. Every function is loaded from external storage and attested using the
Intel SGX. The encryption schema uses two keys, one to for the communication with

8 An enclave provides hardware-level isolate code and region of memory, unreachable from any process
outside the enclave, even high privilege ones.
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clients and one to protect data on external storage. The two different implementations
with the JS engines are used to validate and test the design in different settings.

Gjerdrum et al. [69] present Diggi, a FaaS framework to execute secure distributed
functions while maintaining a small TCB. The framework runtime is split into two
parts, one considered trusted and one considered untrusted. Each physical host runs
a daemon process that executes the untrusted runtime shared by functions, all featur-
ing distinct instances of the trusted runtime within their respective enclaves. On one
hand, the trusted runtime manages thread scheduling, message passing, state preser-
vation, key distribution, and key attestation. On the other hand, the untrusted runtime
handles deployment, lifecycle management, configuration, inter-node messaging, net-
working, and filesystem interaction. Functions must implement specific callbacks and
can register custom ones, in order to be managed by the runtime. Applications may be
composed by multiple functions that are compiled, signed, and deployed according to
well-defined specification files formatted in JSON. Tomanage deployment, attestation
and keys distribution is expected the presence of a trusted component (trusted root),
that has to run inside a trusted security domain, in order to run a protocol to perform
multi-attestation and key distribution to the functions.

Finally, Qiang et al. [70] propose Se-Lambda, a secure serverless computing frame-
work that resorts to theWeb Assembly sandboxed environment besides the Intel SGX.
The architecture of the framework is formed by modules on the API Gateway and by
a two-way sandbox for every function, that depends on the enclaves to be considered
trusted. The modules on the API Gateway handle the security checks on every client
request and attest the sandbox of the functions that should execute such request. The
two-way protection provided by the sandbox consists of protecting functions data by
using SGXenclaves protects fromone side, and to protect the host runtime of theCloud
provider using WebAssembly sandboxed environment from the other. To overcome
the overhead of creating and destructing enclaves and sandboxes, the lifecycle of such
components is modified to permits to dynamically load functions into the sandboxes
reusing initialised enclaves.

Differently from previous proposals, Alpernas et al. [71] and Datta et al. [72] rely
on information flow control [73] techniques to identify information leaks or unsafe
access to data or functions. Those techniques are generally based on a security lattice,
i.e. a graph that defines a partial order on well-defined data security levels, usually
from low to high. Data and stakeholders involved in the system are tagged with such
levels to enforce policies that try to prevent low-level stakeholders from accessing or
modifying high-level data.

Ononehand,Alpernas et al. [71] presentTrapeze, an approach for dynamic informa-
tion flow control in serverless systems with the objective to protect data confidentiality
by external attackers or by misconfigured applications, by enforcing the property of
termination-sensitive non-interference (TSNI). Input and output of each function is
monitored to tracks the flow of information and enforces a security policy. A trusted
authentication gateway tags with security labels all external input and output chan-
nels and use them to build the security lattice. Labels are assigned at runtime to every
serverless function activation based on the event that triggers the function, e.g anHTTP
request has the label of the client that performs the request. The access to storage data
or communication channels is permitted by functions with the label at least of the
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same level on the security lattice. When a function creates or updates a record in the
store, the record inherits the function’s label. Instead, when it reads from the store, the
function only observes values whose labels are below or equal to its own label. From
the function’s perspective, the store behaves as if it did not contain any data that the
function may not observe. To implement such storage access semantic are employed
faceted storage, meaning that each storage record can contain several values with dif-
ferent security labels. The Trapeze prototype implementation is currently compatible
with AWS Lambda and Apache OpenWhisk.

On the other hand, Datta et al. [72] propose Valve, an approach for transparent
dynamic information flow of serverless functions aiming to protect leaks of data due
to malicious or buggy functions. The solution works in a setting where every commu-
nication passes through a centralised gateway, in which is placed a Valve controller.
Functions are executed in containers, in which are placed entities called Valve agents.
The agents keep track of every communication of the functions by proxying network
requests issued from within the containers, learning the information flow, labelling it
with taints and sending them to the controller. When operating in enforcement mode,
the agents authorise or deny requests according to the security policy theymust guaran-
tee. During enforcement mode, the agents perform post-invocation garbage collection
by deleting modified files, in order to avoid leaks of data from container reuse. The
controller runs as a service besides the functions of the platform, performing four tasks:
(i) it checks the information flow of the application, based on the taints received from
the agents, (ii) it generates a default security policy based on such accumulated knowl-
edge, (iii) it incorporates rules specified by developers and other configuration into the
security policy, (iv) it manages the enforcement mode by sending the security policy
to the agents. To represent the policies, the authors proposed a specification grammar,
where each policy is defined by a set of functions with ingress and egress rules with a
condition on the taints to allow or deny data exchange. A comparison of Valve against
OpenFaaS with Trapeze [71] shows that Valve can mitigate common attacks, while
assisting developers in auditing the information flows of their applications.

From a language-based perspective, Boucher et al. [74] propose a design for
serverless platforms that runuser-submittedmicroservices—in the formof functions—
within shared processes. The objectives of this work are to improve latency of
serverless applications and to increase the security of serverless functions provid-
ing strong isolation within the processes. The solution is guided by language-based
isolation with defence in depth. To achieve their goals, the authors leverage on Rust,
a type-safe compiled programming language that uses a lightweight runtime similar
to the C language. Only functions written in Rust are admitted in the platform and
languagemechanism are exploited to guarantee the isolation of functionswithout dam-
aging the performances. The aspect that Rust does not provide is the possibility that a
function fully occupied the CPU and a malicious or a buggy function can stall all the
processes. To avoid this issue, authors prevents the use of some system calls that can
block the execution. To reduce the submission of unsafe code, there is a whitelisting
of Rust libraries considered safe to be used. If the application compiles it is proven
memory-safe and if it links then it depends only on trusted libraries. Then, the deploy-
ment server produces a shared object file, which the provider then distributes to each
compute node on which it might run.
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Recently, Gadepalli et al. [75] proposed Sledge, a serverless framework for sin-
gle edge nodes, based on the WebAssembly runtime (i.e. a binary instruction format
for a stack-based VMs). Sledger employs lightweight function isolation and allows
executing multiple untrusted modules in the same process, while guaranteeing mem-
ory safety and control-flow integrity. An ad-hoc compiler from LLVM bytecode to
WebAssembly enables four different configurations for runtimememory access bound
checks. This enables Sledge to leverage heterogeneous hardware and software capa-
bilities for bounds check management, while also allowing edge providers to identify
trade-offs between application performance and the cost of checkingmemory accesses.
Sledge also implements software-based safety checks on function pointer invocations
to ensure control-flow integrity by checking that modules only invoke functions they
can access, with valid input types.

Last, but not least, it is worth mentioning the work by Gerasimov [41], already
introduced in Sect. 4. The type system introduced by this approach can naturally
prevent application developer mistakes that can lead to security vulnerabilities. It can
be used to protect the integrity of function chaining, preventing to have a type error
between two consecutive functions.

6.2 Summary at a Glance

Table 3 shows themain aspects emerged by analysing the proposed solutions. For each
approach, the columns in Table 3 are divided into three groups

– Protected asset, which includes

– Data confidentiality and data integrity that are the most classical assets of
information security,

– Function integrity is intended as code, local memory or order in a function
chain,

– Billing, which is intended as the measurement by the platform that will cause
a cost for the clients.

– Causes considered that threat such assets, divided in

– FaaS provider, the entity that manages the platform or a malicious employee
within such entity,

– External attacker, an unknown party that tries to violate the system,
– Application provider, who manages the FaaS application running on the plat-
form,

– Function developers mistakes either in code functions or platform configura-
tions.

– the Protection technique employed, individuated in

– Function sandbox, that is used to isolate the functions by means of specialised
hardware or runtime support,

– Remote attestation, which consists in acknowledging securely clients or other
functions,
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– Key management systems, that protect and distribute encryption keys,
– Information flow control, employed to recognise information leaks during the
communication flow,

– Defence in depth, which is the strategy to stratify a system defence around the
assets,

– Function type system, intend as typing input and output of functions to avoid
type errors in a chain.

It is worth mentioning that the main focus is on the protection of confidentiality of
data provided to serverless functions and on the results of their computation, indeed,
all the surveyed solutions but [41,74] are defending such asset. Data integrity is less
considered, only half of the works surveyed take it in account [66–69]. The integrity of
functions is also an important aspect of the serverless scenario that has been targeted
by [41,66,68–70,74,75]. Correct billing is an asset considered only by [67], even if
costs are always pinpointed a key characteristic of the FaaS model. Most the time, the
FaaS provider is considered untrusted (i.e. [66–70]) and it is considered dangerous
almost as an external attacker (i.e. [66,68–71,74,75]). The application provider can also
be considered malicious respect to the users of the application [66,67,72]. Functions
flaws and platformsmisconfigurations are another possible cause of security problems,
[41,71,72,74,75] try to employ methods to prevent them. For this reason, there is
a preference for techniques relying on specialised hardware to sandbox and attest
functions or to manage the encryption keys, like those featured by [66–69], while
only [75] employs runtime support sandboxing. Information flow control approaches
are only employedby [71,72],while defence-in-depth is only proposedby [74]. Finally,
[41,75] are the sole proposals including function type safety.

The vast majority of the reviewed works employ runtime monitoring techniques
and have an impact on applications performances. Having static analysis techniques
that can assist the monitoring can be helpful to improve security while reducing the
burden of the runtime. In settings where the FaaS provider can be considered trusted,
information flow techniques can be useful.

7 Conclusions

This article surveyed methodologies and techniques to achieve the secure execution
of FaaS orchestrations in Fog computing. Particularly, we considered and analysed
exiting solutions:

P1. to define FaaS orchestrations, focussing on the composition of serverless functions
into complex applications and considering linguistics aspects that will be key in
easing the development and functioning of next-gen FaaS system (Sect. 4),

P2. to execute FaaS orchestrations in the Fog, focussing on methodologies to place,
deploy, run orchestrated serverless functions along the Cloud-IoT so to enable
serverless computing closer to IoT devices and to end-users, thus improving the
overall QoS and QoE of running FaaS applications (Sect. 5), and

P3. to secure FaaS orchestrations, focussing on enforcing and protecting data integrity,
confidentiality and functions integrity, thus securing serverless platforms and run-
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ning FaaS applications and improving developers’ and users’ trust in next-gen
FaaS systems (Sect. 6).

We gave an overview of recent relevant research activities under P1–P3, aiming at
identifying open challenges at their intersection, i.e. aiming at realising secure FaaS
orchestration in Fog settings. To the best of our knowledge, there are currently no
proposals that fall in such intersection. We now analyse possible future directions
that can be explored to further investigate these emerging topics, by first considering
pairwise intersections of P1–P3.

P1 ∩ P2 (Defining FaaS orchestrations ∩ Executing FaaS orchestrations in the
Fog)

– Orchestration-aware Execution All approaches reviewed under P2 focus on
executing one function at a time, lacking the possibility to exploit information
on the behaviour of an application composed of a set of orchestrated func-
tions. Particularly, in the Fog, orchestration-aware approaches can enable better
function placement to FaaS-enabled computing nodes along the Cloud-IoT
continuum, thus improving overall resource management and QoS of running
applications, e.g. by selecting nodes more suited for certain types of func-
tion workload. Besides, exploiting data-flow information can further improve
decision-making on function deployment, e.g. by placing functions according
to data-locality principles to avoid unnecessary data transfers between “con-
secutive” functions, or between IoT data sources and data processing functions.

– Definition and Execution of context- and QoS-aware orchestrations Only few
works [43,59] are focussing on methodologies or approaches to defining con-
text or QoS requirements of both single functions and function orchestrations.
Defining annotations or specification languages to allow developers specify-
ing contextual constraints (e.g. hardware, software requirements, node affinity)
and QoS constraints (e.g. latency, bandwidth) on FaaS orchestrations, could
improve the execution of FaaS-based applications in the Fog. Recent works in
Cloud and Fog scenarios [76], consider these aspects in the context- and QoS-
aware placement of multi-service applications, and it would be of interest to
adapt/extend those methodologies also to handle FaaS orchestrations.

P1 ∩ P3 (Defining FaaS orchestrations ∩ Securing FaaS orchestrations)

– Definition of Security requirements As per our analysis, there are no propos-
als of definitions of security requirements for: (i) FaaS orchestrations (i.e.
defining security policies for an application composed by a set of serverless
functions), (ii) single functions (e.g. requiring the availability of certain secu-
rity countermeasures or white-listing execution only on certain nodes), and
(iii) data flowing across functions (e.g. using partially ordered security lev-
els to avoid disclosure of data). Enabling the possibility to specify —analyse,
and enforce— such security requirements also in FaaS landscapes (as done, for
instance, inmicroservice-based architectures [14,77]) will move a step towards
supporting multi-level security strategies in next-gen FaaS systems along Fog
infrastructures.
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– Static analyses of FaaS orchestrations The definition of the aforementioned
security requirements can also enable static analyses of FaaS orchestrations
to early detect errors and security flaws both in FaaS orchestrations and in
their placement, lightening the burden on runtime support. This is especially
relevant in settings where hardware resources are limited (i.e. closer to the
network edge), and the footprint of (runtime and infrastructure) monitoring
can impact on application performance. Another interesting line in static anal-
yses includes devising more sophisticated static type checking techniques of
functions orchestrations, which were only preliminarily studied in [41].

P2∩P3 (ExecutingFaaSorchestrations in theFog∩SecuringFaaSorchestrations)

– Secure Execution of FaaS orchestrations in the Fog Most of the reviewed
security approaches for FaaS rely on specialised hardware, which is diffi-
cult to achieve in Fog settings due to the presence of many heterogeneous,
general-purpose or resource-constrained devices. To securely execute FaaS
orchestrations in the Fog, serverless runtime support needs to be aware of the
security requirements of both single functions and orchestrations, and their data
and data flows, respectively. To this end, a possible interesting direction con-
sists of supporting and verifying dynamically, at runtime, the aforementioned
requirements, using them to assist orchestration and execution of serverless
applications in the Fog. Such runtime support could make use and extend con-
solidated information flowcontrol techniques [73] as only proposed by [71,72],
and as successfully exploited in other fields, such as programming languages
[78], web applications [79,80], and databases [81].

Finally, pursuing the main ambition of our survey, we conclude by pointing to future
lines of work that fall at the intersection between all the three considered perspectives
P1–P3:

P1 ∩ P2 ∩ P3 (Secure FaaS Orchestration in the Fog)

– Secure placement ofFaaSOrchestration in theFogToenable the secure deploy-
ment of FaaS orchestrations to Fog infrastructures, it would be interesting to
jointly consider the (hardware, software and network QoS) requirements of
FaaS orchestrations and their security requirements. Security requirements
can concern needed (hardware, software and organisational) countermeasures
(as in [14]), and policies to secure data flows and external service interactions.
To this end, information-flow security permit checking FaaS orchestration for
information leaks, by labelling functions with suitable security types. A com-
patible labelling of computing nodes can then drive function placement in
a security-aware manner, while also considering other metrics. Finally, the
adaptive deployment of different versions of a serverless function depending
on contextual information, as envisioned by Osmotic Computing, is also an
interesting line to investigate.

– Fog platforms for FaaS orchestrationsRealising a platform to securelymanage
the Monitor-Analyse-Plan-Execute cycle of FaaS orchestrations in Cloud-IoT
settings—while monitoring security, QoS and billing—is an interesting open
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research challenge. Such a platform will need to be natively multi-tenant and
capable of offering suitable views and management tools to all involved stake-
holders, i.e. application operators, FaaS service providers and infrastructure
providers. All these impose handling security in a holistic and extensible
manner so to forbid malicious behaviours from all parties, and to preserve
confidentiality and integrity of both data and code. Overall, the availability of
new FaaS platforms will both enable a plethora of next-gen IoT applications
and create a new flexible market for serverless computing in Fog settings,
allowing application operators to specify and have enforced at runtime their
target functional and non-functional SLOs.
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