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ABSTRACT Machine learning (ML) is expected to solve many challenges in the fifth generation (5G) of
mobile networks. However, ML will also open the network to several serious cybersecurity vulnerabilities.
Most of the learning in ML happens through data gathered from the environment. Un-scrutinized data
will have serious consequences on machines absorbing the data to produce actionable intelligence for the
network. Scrutinizing the data, on the other hand, opens privacy challenges. Unfortunately, most of the ML
systems are borrowed from other disciplines that provide excellent results in small closed environments.
The resulting deployment of such ML systems in 5G can inadvertently open the network to serious security
challenges such as unfair use of resources, denial of service, as well as leakage of private and confidential
information. Therefore, in this article we dig into the weaknesses of the most prominent ML systems that are
currently vigorously researched for deployment in 5G. We further classify and survey solutions for avoiding
such pitfalls of ML in 5G systems.

INDEX TERMS 5G, cybersecurity, machine learning, mobile networks, survey, threats, vulnerabilities,
wireless networks.

I. INTRODUCTION
Machine learning (ML) has gained a lot of research attention
in wireless networks. The main aim, similar to other research,
is to improve the performance of the network or the services
that use the underlying network as an enabler for the services.
Furthermore, the complexity in communication networks
due to increasing heterogeneity in networking equipment,
end-user devices, applications, and services enforces us to
automate network operations [1], [2]. Thus, automation is the
main driving force behind using ML in wireless networks.
However, the state of the art application of ML in wireless
networks has adopted a sporadic approach where the fix-
and-patch philosophy prevails. In doing so, the concepts of
ML are usually borrowed from existing mature technologies
such as machine vision and robotics. Such use of borrowed
concepts solve the particular problem under consideration,
but inadvertently create other challenges. Those challenges
include the inefficient use of network resources for gath-
ering and disseminating un-called for data, straining the
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processing and memory capacities of different networked
nodes, and unintentionally opening the network to security
vulnerabilities.

5G will connect many aspects of society through the net-
work ranging from critical infrastructures such as e-health,
transportation, and electrical grid systems to user environ-
ments such as smart homes and handheld devices. However,
there will be many security challenges within the techno-
logical enablers of 5G such as software defined network-
ing (SDN), network functions virtualization (NFV), massive
multiple-input and multiple-output (MIMO) antennas, and
the diverse types of devices and services such as Internet of
Things (IoT) devices and virtual reality services [3]. Since,
for most of the novel services ML technologies have been
sought to help minimize manual configurations or human
involvement, a pertinent question arises: will ML approaches
be secure or further open the network to more security vul-
nerabilities and challenges?

The integration of the concepts of ML and 5G can lead
to potential security threats and challenges if proper consid-
eration is not given to the underlying security concerns [18].
Some of these emerging weaknesses have been recognized by
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TABLE 1. Surveys in the area of 5G, machine learning, and security. Surveys are classified according to their focus areas, i.e., whether they concentrate on
the security of mobile networks, applications of ML in mobile networks, security threats caused by ML, or defensive mechanisms for hardening ML. The
main focus of a survey is highlighted with ‘F’ and briefly covered areas with ‘+’.

the research community and mentioned in surveys, which are
listed in Table 1. However, existing surveys on 5G security
have given ML threats, at most, only a brief introduction [3],
[5], [10], [15] or focused on specific ML approaches [19],
while surveys on ML in 5G [8], [13], [16] have handled
security threats only briefly. On the other hand, surveys on
ML security [6], [7], [12], [14], [16], [17] miss the char-
acteristics of technologies, applications, and data flows of
5G networks. There is no survey that would combine the three
dimensions – mobile networks, security, and ML – into a
single balanced presentation.

In this article, we delve into the potential security chal-
lenges caused by integrating the concepts and technologies
of ML into 5G, and provide possible solutions and research
directions. We provide a broad survey on ML induced secu-
rity threats and solutions in the scope of5G networks. Con-
ventionally, functionality, performance, and cost have been
studied separately from dependability and security [20]. Our
interdisciplinary systems approach [21], [22] combines views
from the data-driven andML oriented security research fields
with the views and approaches from mobile network and
5G platform security fields. A systems approach is needed
whenever a conventional reductive or analytical approach
does not work since the system is not the sum of its parts
because of nonlinear relationships. We show that security
vulnerabilities may emerge when applying ML to 5G net-
works.We provide classifications of threats and solutions and
identify potential attack paths and weaknesses in 5G.

This article is organised as follows: Section II provides the
background on the important intersection points of ML and
5G security. The section summarizes and classifies security
threats and reviews the characteristics of generic ML attacks

that may affect different domains of the 5G architecture.
Section III analyses security threats in 21 use cases of ML
in 5G. Section IV focuses on weaknesses in 5G networks.
The section explores technical and operational capabilities
for detecting and exploiting inherent vulnerabilities in 5G
networks and emerging technologies. Section V provides
potential solutions by surveying standardization and research
activities for securing data and ML processes in 5G net-
works. Recommendations for further work and research are
discussed in Section VI. Section VII concludes the article.

II. SECURITY CHALLENGES IN ML AND 5G
5G will utilize various concepts, disciplines, and technolo-
gies of ML to not only mitigate the risks involved with
human-control, but also to empower wireless networks to
self-control, adapt, and heal themselves with changing user,
service and traffic requirements, as well as dynamic net-
work conditions [23]. In this vein, ML is poised to be
used in almost every part of 5G networks from the physical
layer to the application layer, and for diverse services using
5G networks as underlying connectivity platform, as shown
in Fig. 1.

Consequently, there are huge research efforts onML appli-
cations for 5G, as evident from the survey articles pub-
lished recently [24], [25] as well as from the standardization
efforts [26]. The application of ML in these areas necessitates
the investigation of possible security challenges ML could
pose to 5G networks. To elaborate on the arising security
challenges in 5G due to the application of ML, below we
briefly describe 5G security architecture, provide classifi-
cation of threats, and describe generic security challenges
in ML.
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FIGURE 1. A generic network architecture of 5G using ML.

A. ML AND SECURITY IN 5G ARCHITECTURE
To give a high-level overview of the possible challenges,
consider Fig. 1, where the applications of ML in different
parts of the network are visualized. The application areas
are broadly categorized as 1) Infrastructure Management,
2) Network Operations, 3) Service Orchestration and Man-
agement, 4) Assurance, and 5) Security. There are many
different use-cases for ML in each of these categories span-
ning from end-user devices and access networks to opera-
tors’ central clouds. For example, ML will be applied in the
access network to increase spectral efficiency or for other
intelligent use of radio resources [27]; in the edge near the
access network to intelligently serve latency-critical services
by providing higher resources in the edge [28] and IoT [29];
in the backhaul or transport network for traffic classifica-
tion [30] or improving network management with the help of
SDN [31]; and for improving the performance of cloud-based
services [32], [33].

The 5G security architecture has been defined in the latest
3GPP technical specification (release 15) [34] with the fol-
lowing main domains:
• Network access security (I): Comprises the set of
security features that enables a user equipment (UE)
to securely authenticate and access network ser-
vices. Access security includes security of 3GPP
and non-3GPP access technologies, and the delivery

of the security context from serving network to
the UE.

• Network domain security (II): Comprises a set of
security features that enable network nodes to securely
exchange signaling and user plane data.

• User domain security (III): Consists of security fea-
tures that enable secure user access to UE.

• Application domain security (IV): Includes security
features that enable applications (user and provider
domains) to securely exchange messages.

• Service Based Architecture (SBA) domain security
(V): Comprises of security features for network ele-
ment registration, discovery, and authorization, as well
as security for service-based interfaces.

• Visibility and configurability of security (VI):
Includes features that inform users whether security
features are in operation or not.

B. THREAT CATEGORIES
ML exposes various mobile assets to security threats: the
configuration of infrastructure and network functions, as well
as QoS levels are increasingly dependent on ML; also, infor-
mation assets that are collected from 5G networks can be crit-
ical from the user privacy, operator, or customer organization
confidentiality perspective.
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We classify threats that ML induces into five categories.
Our classification borrows, but also differs from classi-
cal cybersecurity threat classification approaches, such as
spoofing, tampering, repudiation, disclosure of information,
denial-of-service (DoS) and elevation of privileges (STRIDE)
model [35]. Our focus is on ML vulnerabilities, such as
indirect tampering of models, and their 5G-specific threat
manifestations. Common traditional threat categories like
spoofing, tampering, repudiation, and elevation of privileges
categories are seen as ways for an adversary to substantiate
these threats. The main threats that ML induces include:
• Denial-of-Service (DoS) - causing misconfiguration,
congestion or overload situations leading to unavailabil-
ity of network services.

• Denial-of-Detection (DoD) - preventing ML from gen-
erating signals from events, attacks, or failures; enabling
intrusions and other threats.

• Unfair use or resources (Unf) - stealing of service
(e.g., routing only an adversary to an uncongested slice)
or causing an extra burden or energy consumption for
victims.

• Leaking company secrets (Conf) - adversary learns
operational or business-critical information from net-
work operators or end-user organizations. Valuable pri-
vate or confidential information can reside in collected
or inferred data or in the ML model itself, as noted
in [36].

• Privacy leakage (Pri) - customer specific – e.g.,
user behavior revealing – sensitive parameters, data,
or learned models (that can have legislative protection,
such as [37]) become available to outsiders.

C. GENERIC SECURITY CHALLENGES IN ML
The basic operating principle of ML, that is, take the
information of the environment (raw data) as input, process
it (learning and training), and produce intelligent action-
able information (classification or prediction) as output, with
feedback and iterations in between, can inadvertently open
security loopholes into the system. In principle, the attacks
against ML are quite straightforward. An adversary can send
false data to the systems which are learning or operational.
An adversary may eavesdrop, intercept, or modify transmit-
ted data. An adversary may gain access to ML processes,
models, or actionable information.

1) ATTACKS AGAINST ML
Attacks fooling ML can be, in general, classified using six
attributes [6], [38]. Firstly, influence is an attribute which
describes whether the attack affects training and poisons
learned models, like in [39], or whether the attack tampers
with learning outcomes to evade analysis, like in [40]. Sec-
ondly, specificity defines whether an attack is targeted and
aims for mis-classifications or whether an attack is indis-
criminate and affects a model’s performance and reliability.
Thirdly, the security violation attribute defines the adver-
sary’s security goal, which may be a violation of integrity,

availability or privacy. Fourthly, the frequency attribute
describes how often an attack can happen; is it a one-time
event or can it happen iteratively. Fifthly, knowledge refers to
amount of information the adversary has on the target system.
In white-box attacks, the adversary knows the internals of the
ML system. In black-box attacks, the adversary knows only
input and outputs. Sixthly, falsification defines whether the
goal is to get the MLmodel to produce false positives or false
negatives.

In addition to attacks against system’s operational behavior
through ML processes, there are attacks that target confiden-
tial information contained in learnedmodels or collected data.
For instance, hosts learning or executing models (running in
edge or in operator’s cloud) may be attacked. Also, private
and company-critical information can be stolen from the data
masses when being transmitted or stored. Further, models can
be reproduced from the training data (inversion attack [41])
or from the model parameters (model extraction attack [42]).

2) INHERENT LIMITATIONS OF ML SYSTEMS
The feasibility of ML depends on the quality of data.
In complex and heterogeneous settings, collecting realis-
tic and comprehensive data sets is often a challenge [43].
ML also introduces major maintenance challenges in com-
plex settings [44]. Mixing large numbers of data sources
leads to unpredictable entanglements and hidden feedback
loops. Data sources may become unstable over time and
have dependencies that are difficult to analyze. Similarly,
models and ML-based systems may be entangled, and small
changes may lead to unexpected situations and vulnerabil-
ities. ML is by its very nature statistical, predictions are
always possibilities, and in the case of many varieties of
learning algorithms, the amount of error is unknown for new
data. In addition, the underlying causality of unexplainable
ML remains obscure, to the effect that the output may not
reflect the intended cause, but may be something completely
different with an accidental correlation with it. This kind of
fault is difficult to detect since the model might still yield
good results [45].

One advantage of deep-learning based ML algorithms is
the capability to automatically extract features (i.e. measur-
able properties that are worth of being observed) from the
data [16]. Unfortunately, this means that the knowledge of the
individual feature’s contribution to the model’s predictions is
lost [46]. This is a serious security handicap as well, since
without this knowledge, attacker’s possible additions to the
training data have a better chance of remaining undetected.
Insight into features is necessarily needed to spot this kind
of tampering. The need for explainable AI to reveal these
problems has been recognized in [45], coined as ‘explain to
control’.

White box adversaries – with access to models or algo-
rithms and learning data – have the best position for attacking.
However, due to transferability of adversarial samples [47],
also adversaries with little information on victims’ ML mod-
els can craft good attacks against deep learning algorithms.
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TABLE 2. The use cases of machine learning in 5G domains and related threats.

It is enough that the adversary can train an own substitute
model for the same task and then generate adversarial samples
against it.

III. ML THREATENS THE USE CASES OF 5G
ML has been proposed for various application areas of 5G.
Existing work on identifying and classifying use cases
include ETSI’s Experiential Networked Intelligence spec-
ifications [26]. In Table 2, we map these use cases to
the domains of the security architecture and to the threat
categories we identified in the previous section. The use
case-specific threats are then analyzed in the following sub-
sections.

A. THREATS TO INFRASTRUCTURE MANAGEMENT
Network infrastructure, which comprises of diverse sets of
networking equipment, is currently capable of having differ-
ent network architectures to support diverse kinds of services.
ML can support various processes for infrastructure manage-
ment, including resource allocation, maintenance, and plan-
ning. For instance,ML enables intelligent load balancing [48]
between data centers as well as autonomous resourcing to
manage peak traffic loads and optimize energy consump-
tion [49]. In load balancing scenarios, data is collected on
link loads, and forwarding and resourcing decisions are made
based on the learned optimal outcomes. High traffic load
situations, such as sporting events, can be predicted using
ML-algorithms, which can also assist in planning the priori-
tizing and resourcing.

Traffic steering and peak management can lead to DoS
situations where all the traffic loads are directed towards

a single target, exhausting the resources of the victim data
center, and leaving other resources unused and unavail-
able. Policy-driven traffic steering may also lead to situ-
ations where the resources of a particular data center are
consumed or purchased unfairly. Live virtual machine and
virtual function migrations have also gained momentum in
balancing loads in the infrastructure. At non-peak hours,
ML-guidedmigration of virtual functions enables energy sav-
ings as idle servers can be set to a low-power state. However,
an ML-based system may be spoofed to sub-optimal energy
consumption, where functions remain in underutilized but
high-powered servers, or to DoS situations where functions
are packed into a few servers with exhausted resources.

Unmanned aerial vehicle (UAV) and satellite-based com-
munication have been proposed [50], e.g., for access net-
works and backhauls in public safety scenarios. If the deploy-
ment and control of this aerial 5G infrastructure depends on
ML [51], new threats could be seen towards their availability
leading to risks to assets or, at worst, to personnel safety, e.g.
due to crashing devices.

B. THREATS TO NETWORK OPERATIONS
ML solutions can support various management actions per-
formed in mobile networks during run-time to enable various
self-organizing capabilities [52]–[54]. ETSI use cases [26]
propose, for example, a network that can manage allocations
and sharing of dynamic IP addresses based on the expected
needs of devices. It can also find optimal RF parameters to
optimize radio coverage and capacity based on the location,
load, and environmental situation of UEs. The network can
also minimize disturbances by finding time periods where
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software updates cause minimal interference. ML can opti-
mize the management, orchestration, and migration of fron-
thaul and core network functions as well as cloud services
based on load estimates, predicted traffic models, utilization
patterns, or an application’s inspected class and character-
istics. Self-organizing network capabilities supporting end-
users’ quality of experience could be enabled by allowing
ML to monitor thousands of KPIs and autonomously adapt
networks parameters [55].

ML exposes networks, access networks, and network ser-
vices for misconfigurations, which may lead to loss of avail-
ability or otherwise vulnerable states. IP allocation, software
roll out, application classification and application-based net-
work customization, as well as, time synchronization may
also affect the security of user devices and expose them,
for instance, to DoS attacks. Also, amounts of data, which
need to be collected to optimize self-organizing networks,
for example, have been identified [55] as a potential privacy
issue. Furthermore, the collected data may also jeopardize an
operator’s secrets.

As depicted in Fig. 1, DoS attacks will be more prominent
in network points where centralized decision-making hap-
pens, such as SDN control platforms, or when different users
try to access the same resource, for instance in the cloud,
edge or in the access network. DoD will be comparatively
more threatening in access and IoT networks. IoT will be
more prone to privacy leakage due to low capabilities for
strong encryption, while edge and central clouds will be
targets for unfair usage of resources, and clouds and commu-
nication channels will be favorite targets for the leakage of
secret information. All of these challenges can be potentially
exploited when ML is used without proper consideration of
the security of the involved technologies on the one hand, and
security weaknesses in ML techniques on the other hand.

C. THREATS TO SERVICE ORCHESTRATION
Service orchestration and management use cases automate
and optimize the end-to-end network for different applica-
tions and services such as voice, IoT, or content delivery
network (CDN) [56]–[59]. Networks can be customized for
different applications by allocating custom resources and
functions to application-specific end-to-end slices. ML can
be utilized to learn and recommended optimal configuration
rules, and to trigger alarms. Optimization criteria can includes
attributes such as sensitivity, popularity, or cost of the con-
tent, as well as needs of users in a particular geographical
location. Service orchestrations are often multi-domain sce-
narios where end-to-end service requires integration between
the customer organizations’ and access and core operators’
(customized) networks and this makes them more dependent
on each other also from security perspective.

In all the scenarios, availability is threatened due to mis-
configuration or DoD. In voice and content based-services,
privacy-critical end-user information is collected. In the
scenarios for end-to-end and wide-area network slice man-
agement, confidential management information from the

operator’s network, such as health, topology, or link utiliza-
tion data, may leak. Also, confidential or privacy critical
information on customer behavior or assets, which have been
integrated in the networks, such as operational information,
procedures, as well as numbers and types of devices, may
become compromised.

D. THREATS TO ASSURANCE
Assurance related use cases (considered, e.g., in [60]–[62])
analyze the network to identify and predict faults and their
root-causes, as well as to allocate resources to recover from
faults and to guarantee agreed service levels. Fault detection
can be performed in different parts of the network, includ-
ing access, backhaul and core network domains. Faults are
predicted and detected by monitoring and analyzing massive
amounts of data, with the help of ML. The data may originate
from monitored alarms, network topology, and network ser-
vice data. Root-cause analyses can then utilize e.g. decision
trees to find optimal means of recovery.

There are two types of generic against assurance. First,
DoD threats lead to situations where faults are not detected
and, thus, corrective actions are prevented. Second, an adver-
sary may inject false faults and alarms leading to inappropri-
ate corrections. Both may result in DoS or other vulnerable
situations. Operators can assure the behavior of their own
networks and the fulfillment of service level agreements by
predicting hazardous situations, detecting starvation, and by
allocating and prioritizing resources for customers accord-
ingly. However, when operators focus on service behavior in
customer specific slices, there is a risk that they also infer
confidential or private information on the customer.

E. THREATS TO SECURITY APPLICATIONS
5G will have many security challenges in many of its parts
and technologies, as described in [3]. Since 5G systems will
bemuchmore complex compared to the previous generations,
huge research efforts are dedicated to using ML for security
within the novel technological concepts used in 5G, and the
services that will be served by 5G networks, ranging from
security of novel IoT devices and IoT services [4], [63] to
virtual services in clouds [64]. In the physical layer security,
ML has been demonstrated to perform well at protecting
massive MIMO [65], demodulation [66], and from channel
contamination in mmWave, as well as in traffic analysis and
fingerprinting [67], [68].. In the network but also in the
application and UE domains, ML is applied for anomaly
or signature-based intrusion detection [69], as well as for
realistic honeypot creation [70], and vulnerability scanning
(e.g., scanners making use ofML for recognition of SW) [71].
Typically, ML-based security applications support expert-
based or autonomous security controls. In some cases,
end-users can be notified of the learned security threats with
visual indicators.

The use of ML to analyze singular traffic flows and files
(in an attempt to stop exploits and malware before they can
wreak havoc) faces challenges which are quite similar to
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the ones plaguing older, signature based malware detection
systems. One challenge is that the attacks, e.g., the recon-
naissance and exploit delivery phases can be very stealthy.
Also, the writers of new exploits/malware test their creations
against the malware detectors they consider they need to
thwart, ML based detectors included. Further, the providers
of ML-based malware scanners need to minimize the prob-
ability of ‘‘false positives’’ stemming from new, legitimate
software. Hence, the industry has noticed that ML models
also have a ‘‘best before’’ date [72]. Similarly, anomaly
detection-based applications require that models are continu-
ally learning or updated now and then, based on more recent
training data. Unfortunately, availability and quality of rele-
vant adversarial data for training is a challenge for ML-based
attack detection applications. Realistic data is often difficult
to collect as advanced attacks (that can be detected) are
relatively rare. Existing public data sets, such as Network
Security Laboratory-Knowledge Discovery and Data Mining
(NSL-KDD) [73] and its predecessors, also have limita-
tions [74] making them poor at detecting new attacks.

DoD is the evident security consequence of failing
intrusion-detection applications. In addition, inappropriate
ML-driven configurations may lead to the unfair use of
resources such as quarantining innocents, or DoS situations.
When ML replaces alternative security mechanisms, such
as fine-grained access policing or patching of pre-5G vul-
nerabilities as they break backward compatibility or require
extensive manual work, there is a risk that the overall security
posture of the system will be eroded. In 5G, the security risks
are even higher due to the integration of new technologies
using ML, as elaborated in the following section.

IV. ATTACKS AND WEAKNESSES IN 5G
This section explores ML-related security attacks against
5G networks. First, we will focus on mobile network-specific
vulnerabilities and attack vectors that can realize the threats,
which were discussed in the previous section. Then, we will
provide a deeper analysis of the security challenges and vul-
nerabilities, which are introduced by emerging 5G technolo-
gies. At the end of the section, we will take the opposite point
of view and look at how adversaries may utilize their own
ML-capabilities in attacks against traditional 5G functions.

A. NETWORK ENVIRONMENT-INDUCED WEAKNESSES
Relations between threats, attacks, and ML in the 5G mobile
network context are illustrated in Fig. 2. A generic process
model for autonomous systems [75] explains the role of ML.
The adaptation system monitors 5G functions and executes
reactions and reconfigurations after ML-supported analysis
and planning. The adversary may be an outsider trying to
influence monitoring data, or an insider or intruder within
some monitored 5G function, or even within the control
function. The adversary’s goal is to change thebehavior of
functions by affecting plans and execution or by evading
detection during the analysis, or to cause the leakage of
confidential or private data.

FIGURE 2. Threats in the system for autonomous 5G.

1) ATTACK VECTORS IN 5G
Depending on the use case, mobile networks have several
potential attack surfaces, where poisoned training and evad-
ing operational data can come into play.
Network components (base stations, SDN switches, vir-

tualized infrastructure and functions, and cloud and edge
servers hosting ML functions etc.) may be intruded upon.
An adversary that has successfully penetrated the first
defenses (access controls, firewalls or physical security in
mobile networks) can carry out different attacks [76] –
man-in-the-middle, falsified data, spoofed data, etc. – when
trying to influence ML-functions. As 5G cells are becom-
ing smaller and functions are moving closer to the edge,
the number of functions and data sources with less physical
protection increases [77]. As data sources are adminis-
trated in different domains by different entities, their trust-
worthiness becomes difficult to determine by centralized
ML components [78].
Open air interfaces provide a path to influence aspects

such as measurements of the physical radio layer proper-
ties. Adversarial attacks against signal classifications are
more powerful than classical (white noise based) jamming
attacks on the wireless channel. For instance, in evasion
attacks, slightly distorted signals can be misidentified by
deep-learning classifiers [79]. Also, user plane integrity pro-
tection, which was introduced in 5G [34], is not mandatory
feature and thus leaves the door open to tampered application
layer data from UEs.
A misbehaving UE may input malicious data for ML

functions which utilize information from the UE components.
Vulnerabilities in network security may also enable UEs to
gain access to ML functions, which do not utilize inputs
directly from UEs. For instance, part of 5G and 4G access
network communication is unprotected [80], [81]. This vul-
nerability enables man-in-the-middle attacks in 4G. Unfor-
tunately, vulnerabilities identified in 4G remain still valid
as 5G networks are backward compatible and, thus, open
to downgrading or bidding down attacks [82]. For instance,
unauthenticated broadcasting messages could enable rogue
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base stations to mislead ML-capable self-organized access
networks [83]. These attacks against deep learning classifiers
can be based, e.g., on malicious input, which is generated
using fast gradient sign or Jacobian-based saliencymapmeth-
ods [84].
Development and supply time threats exist for ML soft-

ware products, as well as devices, which are running ML
and collecting data. The supplier – often a commercial or
open-source third-party developer – may be careless or mali-
cious and their systems may be intruded upon in order
to implant malicious functionality or backdoors [85]–[87].
Backdoors are difficult to detect from ML algorithms as the
malicious functionality triggers only upon input known to the
adversary.

An attack on ML is likely to be a stepping stone itself,
as is the case with incapacitating ML alerts. Or, the aim
might be to trigger some adaptations that are beneficial for
the purposes of the attacker. Often this concerns starting some
reserve functionality or back-up procedure or downgrading
the network to a previous generation.

2) RECONNAISSANCE IN 5G ML
In targeted white-box attacks, attackers need to understand
how theML in 5G works. A question is: how does an attacker
learn about ML?

ML algorithms and software come from different suppliers.
Open source components are available to all adversaries who
are practicing attacks. Detailed information on commercial
operator-grade solutions can be acquired only by limited
parties, e.g., operators and governmental agencies, but it is a
possibility that there are malicious actors within their ranks.
Networkmanagement processes, includingML-related appli-
cations, reside mainly within the operator domain, allow-
ing adversaries only indirect visibility. However, part of the
data may be available through open air interfaces and some
ML processes may reside in user devices and thus be avail-
able to adversaries. Adversaries inside 5G network domains
may utilize network vulnerability scanning approaches and
tools [76] to identify the existence of particular network
services, which may then reveal information on deployed
ML software, including its manufacturer and version.
As ML models may be trained in other locations or by
using common or synthetic data samples, an adversary may
be aware also of the models which a recognized piece of
ML software is executing.

External adversaries may try to resolve parameters by
observing network behavior, for instance, during test attacks.
However, an active testing strategy may reveal attackers
methods and motives prematurely. The feedback an attacker
gets from a target network is however scarce without an
already gained stepping stone. An intruder aiming to tamper
with ML functionality needs insider access, such as misused
legitimate privileges or undetected system penetration, in
order to stealthy collect, and send reconnaissance information
on 5G system and ML processes.

B. SECURITY CHALLENGES IN THE LATEST
TECHNOLOGIES
1) SECURITY CHALLENGES IN MASSIVE MIMO SYSTEMS
MassiveMIMO is the most promising and disruptive technol-
ogy for the 5G physical layer. In a massive MIMO system,
a base station is typically equipped with a large number of
antenna elements that simultaneously support a large num-
ber of users [88]. The security vulnerabilities of a massive
MIMO system are divided in two categories in [89]: passive
and active. In an passive attack, legitimate transmissions are
eavesdropped upon. In case of an active attack, the attacker
also transmits signals to disrupt or corrupt a legitimate trans-
mission. The active attacks can be further divided into two
categories: jamming attacks and pilot spoofing attacks. The
goal of a jamming attack is to disrupt the transmission by
sending a large amount of data towards the base station
or the users. Pilot spoofing is an intelligent form of active
attack where the attacker pretends to be a legitimate user by
contaminating the pilots.

ML algorithms are typically used for discovering a pat-
tern in existing data, predicting values or extracting features,
which are all very useful tools to detect active adversaries.
Naturally, the application of ML algorithms to secure a
massive MIMO system is of great interest to the research
community [3], [90]. An obvious challenge to using ML to
secure a massive MIMO system is the high overhead due to
the large amount of training data required by the ML algo-
rithms. This becomes critical for large numbers of antenna
streams generated in a massive MIMO system. For example,
a 64-antenna base station will require separate training data
for each antenna, i.e., 64 times more data and processing
required than a typical intrusion detection system. Therefore,
they aremore vulnerable to a jamming attackwhen the system
is already suffering from a high data overhead [90].

Unlike conventional small-scaleMIMO systems, amassive
MIMO system supports a large number of single antenna
users. The mobility of these users can be a big challenge as
the ML algorithms are typically trained for specific channel
quality and characteristics. The channel characteristics can
change dramatically over time and space due to the mobility
of the users. A massive MIMO system trained for particu-
lar environment might not function properly in a different
environment. In much of the literature, the training is done
offline due to the complexity and time required for the train-
ing algorithm [91], [92]. The training algorithms, such as,
backpropagation, take a considerable amount of time and
hence, retraining in the field can be a challenging task.

In addition, ML schemes for massive MIMO systems also
suffer from the availability of reliable data sets. Researchers
often face the problem of not having broad access to real
base station data while designing an algorithm. The reason
is that the data sponsors are often bound by non-disclosure
agreements and sharing base station data can also reveal com-
promising information [93]. Most researchers depend on syn-
thesized data sets obtained by simulations and other methods.
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In many cases, the simulation may be based on optimistic and
even unrealistic systemmodels. For example, massiveMIMO
system simulations often assume perfect channel state infor-
mation (CSI) availability at the transmitter or receiver, per-
fectly synchronized transmission and reception, uncorrelated
MIMOchannels etc. As a consequence, a prevalent opinion of
the research community is that experiments performed using
synthetic data usually lack relevance or realism [94].

In case of supervised learning, a massive MIMO sys-
tem must be trained in the absense of eavesdroppers. If the
absense of an attacker cannot be guaranteed, an unsupervised
learning approach needs to be adopted. Besides, it is not
possible to detect a new attack when relevant training data
is not available, with supervised learning methods. However,
unsupervised learning algorithms are less accurate and trust-
worthy than supervised learning methods because the input
data is not known and labeled beforehand. The user needs to
interpret and label the clustered output of unsupervised learn-
ing. Due to the importance of security services, an unreliable
method is not an ideal solution. In addition, the unsupervised
learning algorithms are more complex compared to the super-
vised learning algorithms.

2) SECURITY CHALLENGES IN SDN
SDN separates the network control functions from the data
forwarding plane into a centralized control platform, serving
as a central vantage point with global visibility of the network
state. With programmable interfaces, the behavior of the
forwarding plane can be monitored and controlled remotely,
and deploying new networking functions can be simplified.
However, centralizing the control plane also brings about
new challenges such as security resilience and scalability.
Therefore, ML approaches have been proposed to improve
the resilience of the control plane under security attacks, and
intelligently deploy flow forwarding rules in the data plane
to avoid scalability challenges [31]. For example, in [95]
decision trees [96], naive Bayes [97], and support vector
networks [98] have been proposed to increase the tolerance
of control platforms under different security attacks. For
intelligent flow forwarding, flow feature extraction through
ML has been proposed in [99], to enable application-aware
policy enforcement in SDN. Similarly, ML techniques can be
used to evaluation the characteristics of the flow and possible
paths to minimize delays and efficiently use the available
bandwidth [100].

However, an inherent limitation of SDN is overlooked
in the state of the art. The SDN control platforms are
still involved in fetching the data or flow features for
ML algorithms to use for training and learning purposes.
Since fingerprinting the SDN control platforms has been
demonstrated, such systems can further make it easy for
resource exhaustion attacks [101]. Similar to flow setup
requests in SDN, model inversion attacks [41] in decision
trees, as suggested for SDN in [95], reveal confidence values
by making prediction requests to ML models. Furthermore,
the most important or highly used implementations of SDN,

such as OpenFlow [102], commonly used between the con-
trol and data planes, are reactive or event-driven in nature.
Similarly, the north-bound APIs that have received little
research attention, such as Procera [103], are also reactive.
Hence, implementing proactive ML-based security measures
on such reactive systems poses a significant implementation
challenge. Since SDN will play an important role in different
parts of 5G such as backhaul and core networks, extending
security vulnerabilities in SDN with ML will directly impact
the operation of the whole network.

3) SECURITY CHALLENGES IN NFV
NFV is an 5G enabler facilitating cooperation between infras-
tructure providers, access and core network operators, and
service providers. It eases customized deployment of network
resources. In NFV, access and core network functionality are
deployed as software on top of hardware infrastructure which
can be shared between different tenants, network operators or
application-specific slices. NFV security relies on the isola-
tion capabilities of virtualization layer to prevent interference
and information leaking between software running in differ-
ent virtual machines or containers [104]. NFV management
requires automated orchestration where ML has a major role.
ML has been, e.g., proposed for detectingmalfunctions [105],
[106] and service level agreement violations [107], for clas-
sifying traffic and detecting hidden flows [108], for network
QoS management [54], as well as for virtualized incident
detection functionality [109], [110].

However, virtualization complicates the determination of
trustworthiness and accuracy of the collected data. First, vir-
tualization may introduce trust issues: with more cooperating
parties and sharing of resource, the risk of insider attacks and
information leaking increases [111]. Also, different admin-
istrative domains may not be willing to share security infor-
mation on the trustworthiness of hosting platforms or hosted
functions. Second, the location of monitoring probes affects
both to trustworthiness and the accuracy of information [112].
The trustworthiness of data coming frommigrated virtualized
functions is more challenging to track as hosting servers may
have different security postures at different times and loca-
tion. Data coming from functions on the edge may be more
likely to be compromised, due to weaker physical protection,
than functions hosted on a highlysecure cloud. Probes inside
virtual machines are more vulnerable as they are exposed
to breaches through both the hosted functions and hosting
platform. Probes outside functions, in the host or in external
network hardware, are more secure but have a limited view
of events.

The migration of virtual functions also has other effects
on security. The models of migrated ML functions may be
trained in different locations and conditions than where they
are used. Consequently, unanticipated security vulnerabili-
ties may arise. Also, confidential models may be migrated
with the functions and may consequently leak if migrated to
untrustworthy operation environments.
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4) SECURITY CHALLENGES IN MEC
Multi-access edge computing (MEC) facilitates 5G’s low
latency services by bringing computation and storage near
to end-user devices. Two concepts, i.e., edge-enabled ML
and ML-enabled edge are on the forefront of integrating the
concepts of the two technologies. Edge-enabled ML builds
on the premise of low capacity of devices that force the
ML processing into the resources in the edge. ML-enabled
edge extends the capabilities of the edge through the method-
ologies of ML, in other words it makes the edge resource
intelligent so it can autonomously serve the nearby end-user
devices. Each of these ML-MEC integration approaches have
their own security implications.

A challenge with edge-enabled ML concerns confidential-
ity, that is, the retaining of the confidentiality and integrity
of the ML model. This is due to problems with guarantee-
ing isolation between the users in the edge, when this is a
shared resource, and for guaranteeing the authenticity of ML
functions and models migrating to the edge. No ‘‘foolproof’’
technology exists, and nasty surprises are always possible,
as was the case with the Intel ‘‘Spectre’’ [113] and related
‘‘Meltdown’’ vulnerabilities. TheML-enabled edge function-
alities are similarly vulnerable, and there may be unexpected
ways they can be confused when their operation reflects
external influences.

5) SECURITY CHALLENGES IN IoT
IoT is the key area where 5G will play an important role.
5G will support IoT use cases both with radio technologies
and architectural enablers [114]. Knowing that the number of
devices in massive IoT can be humongous and that the data it
generates will be huge, i.e., big data, using ML for efficient
service provisioning will be inevitable. Massive signalling
storms caused by the IoT have been recognized [115] as a
challenge for backhaul and home network capacity. Similarly,
large spikes of IoT triggered event information may be a
challenge for the latency and capacity of ML systems. When
adversary-initiated signaling spikes are rare, anomalous, and
unpredictable, they may cause noise which may prevent ML
from operating correctly.

Data coming from cheap, weakly protected, and often
unpatched IoT types of UE are often less trusted. In some
cases, small IoT devices do generate data but have no
capacity for strong authentication and integrity protection.
False data injection or masquerading a legitimate node in
an ML-controlled system will pose serious security chal-
lenges. Network traffic analysis techniques have been suc-
cessfully combined [116] with ML to profile devices and
to resolve types of IoT devices. The significance of such
profiling threats increases as 5G will support various special
purpose devices and critical cyber-physical applications, such
as healthcare and transportation.

C. ML AS AN ADVERSARIAL TOOL AGAINST 5G
Attackers may utilize their own ML solutions and prod-
ucts when analyzing information that is available from

5G interfaces. For instance, the wireless channel is very
susceptible to eavesdropping and ML has been proposed as
a means to predict transmissions and thus to find the opti-
mal timing for jamming as, e.g., in [117]. Also, 5G control
layers may leak (side-channel) information through response
times [118] that may reveal knowledge about network inter-
nals or usage. Adversaries gaining access to internal 5G
databases, can utilize ML techniques to infer amounts of
privacy critical information in a manner that was previously
unfeasible [14]. Further, ML algorithms have been shown
to improve the accuracy of devices’ identification via RF
fingerprinting [119] and this exposes transmitting UEs for
location tracking.

V. POTENTIAL SECURITY SOLUTIONS
Security solutions to mitigate threats to ML systems can be
classified to five categories as presented in Table 3. The clas-
sification combines data-driven defensive mechanism cate-
gories [11], [17], [120] and mobile network-specific security
approaches. The ‘5G Refs’ column of the table lists refer-
ences to relevant standardization, applications, or research
within the scope of 5G or 5G enablers. The table also iden-
tifies the domains of the security architecture (see Subsec-
tion II-A) were mechanisms are relevant and the threats (see
Subsection II-B) that the mechanisms will primarily mitigate.
Solutions are mapped to threats by analyzing whether they
protect the confidentiality or integrity of input data, which is
collected from the 5G platform (marked as ‘D’ in the table),
whether the mechanisms protects ML algorithm, processes,
or learned output (marked as ‘M’ in the table), or whether
the mechanism is a generic approach that can protect both
(marked as ‘G’ in the table).

Fig. 3 illustrates the central concepts of the defenses.
The figure also highlights the relations between different
solution categories. Platform and communication security
approaches provide a protection for stored and transmit-
ted data as well as ML processes. Emerging 5G technolo-
gies NFV, SDN, and MEC provide additional security and
isolation for customer-specific ML deployments. Reactive,
algorithmic, privacy enhancing technologies address specific
challenges in ML systems by teaching, assessing, and super-
vising data sources and processes.

A. SECURITY SOLUTIONS FOR LIMITATION
OF ML SYSTEMS
1) ALGORITHM ROBUSTNESS
Several techniques exist for making ML algorithms more tol-
erant to malicious input. In adversarial training [142] mali-
cious samples are included in the training data. The approach
requires that the defenders are able to collect or generate
valid examples of known attacks.Defensive distillation trains
ML models to be resilient against black box attacks [143]. In
the 5G context, adversarial training has been utilized [121]
to improve attack resiliency of convolutional neural network
algorithms in self-organized networks. Sophisticated and
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TABLE 3. Solutions for ML induced threats.

FIGURE 3. Relations between categories of solutions for securing
ML systems.

targeted attacks inside 5G networks are typically quite rare.
A challenge may then be how to acquire or generate realistic
adversarial examples. Therefore, it is important that different
domains and operators cooperate and share information on
detected threats and adversarial samples. Similarly, honey-
pot techniques (discussed in Subsection V-B2) provide an
approach to collecting adversarial samples [144]. Genera-
tive adversarial networks (essentially two ‘competing’ deep
neural networks) can generate large amounts of adversarial
training data [122].

Adversarial examples can be utilized also in security
assessments and penetration testing. In security assessments,
adversarial samples are used in testing data sets (instead of
training data sets) in order to evaluate algorithms suscepti-
bility to malicious input. Testing complex ML solutions is

challenging and different tools for automation have emerged.
For instance, tests and metric methodologies for evaluat-
ing how extensively the ML product has been tested have
been defined [145]. Detecting backdoor attacks from ML
algorithms or in general form software is challenging [146].
However, some research efforts have been made towards
automating backdoor detection from deep neural networks by
using activation clustering [147].

The trustworthiness of ML algorithms can be improved by
minimizing number of data sources, which may be poisoned
or which complicate behavior of hl the algorithms. With
‘feature engineering’, i.e., by analyzing the effect of features
on the ML outcomes and removing features that yield no
useful information, and simpler algorithms like clustering,
the results vs. inputs aremore explainable. As the applications
of ML are becoming increasingly weighty, the explainabil-
ity has received more attention [45], [123]. ML provides
only probabilities of eventualities of interest. These proba-
bilities can be improved by more mathematically rigorous
approaches.

2) REACTIVE DEFENSES
Reactive solutions that monitor input or behavior (out-
put) of ML algorithms in order to detect adversarial sam-
ples. Concept drift [148]–[150] is a reactive approach
where the performances of ML models are continuously
monitored to catch adversarial changes in behavior. The
approach detects gradual changes in the accuracy of model
and needs for re-calibration or re-training. Adversarial
detection [151]–[153] approaches focus on the input of ML
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and utilize learning or statistical means to detect poisoned or
suspicious data entries from training sets.

B. SECURITY SOLUTIONS FOR NETWORK-INDUCED
WEAKNESSES
1) PLATFORM PROTECTION
Different technical preventive mechanisms exist for pro-
tecting and verifying the trustworthiness of equipment
in 5G devices. The first layers of defenses include the phys-
ical protection in data centers and local deployments near
basestations and end at the firewalls at the network bound-
aries. Other defensive layers include access control at the
operation system, application, virtual and equipment level, as
well as software configuration and trust management (includ-
ing virus scanners, trusted boot, and trusted computing based
attestation approaches). These solutions protect data sources
and ML platforms from external attacks. Trusted computing
technologies have been proposed [154] also to protect imma-
terial properties related to ML models.

To address insider threats, trustworthy personnel security
is needed. Policies and procedures must assure that access to
data andML processes are given only for legitimate purposes.
Further, access control and logging solutions are needed to
guard ML interfaces. Frequent monitoring and auditing of
access can then detect insiders who are misusing ML ser-
vices. Personnel operating ML must be given the proper
education and tools to mitigate risks of vulnerabilities due
to ML misconfiguration.

2) REACTIVE DEFENSES IN 5G PLATFORMS
Security information event management solutions [125],
[126], [155] utilize ML to detect ongoing security threats,
anomalies, and intrusions in network elements and orches-
trate automated responses. Human approval and surveillance
can be part of reactive ML-based security solutions, particu-
larly when the correct autonomous behavior in every situation
cannot be trusted. Targeted monitoring enables defenses to
learn more from attacks. Also, to enable monitoring systems
to gain more accurate security awareness on the end-to-end
situation, cross-domain data and cyber threat intelligence
sharing [131] is needed.

An attacker needs to bewary of being tricked himself.Hon-
eypots and tar-pits are an interesting playground for ML, both
from the point of view of attackers and defenders. Honeypots
are environments to safely learn adversarial techniques and,
thus, a source for collecting realistic adversarial samples. In
honeypots, ML can also have two active roles: it can help the
honeypots to behavemore credibly, while an attacker may use
ML to tell fake and true apart. In a mobile network context,
a monitoring infrastructure with high-interaction virtualized
mobile device honeypots [156] has been demonstrated. The
architecture for correlating honeypot information included
1) anomaly detectors for femtocell base stations, 2) malware
detectors running on virtual platform on Android devices,
and 3) anomaly detection in the operator command and

control center (connected to the core network and analyz-
ing control-plane data). Further, ML can also play a role
in improving honeypots to be stealthier and undetectable
for adversaries [70], [157]. For instance, Markov decision
trees as well as reinforcement ad Q-learning have been pro-
posed [158]–[160] for determining the optimal strategies to
interact with adversaries within honeypots.

3) COMMUNICATION SECURITY
Communication security solutions are needed to protect
authenticity, confidentiality, and integrity of data flowing
from UEs and network functions to ML functions in operator
or user organization networks. 5G provides standard security
mechanisms [34] for different cases. Security in 5G new radio
is based on the 5G or Extensible Authentication Protocol vari-
ant of Authentication and Key Agreement (5G-AKA or EAP-
AKA’) for authentication as well as the SNOW3G, Advanced
Encryption Standard - Counter Mode, or ZUC algorithms for
confidentiality and integrity. Data flows between radio and
core networks are protected typically with Internet Protocol
Security and management interfaces towards network func-
tions with Transmission Layer Security and Open Authen-
tication protocols and manufacturer-specific authentication.
While end-to-end learning solutions that collect data through
5G networks may utilize, e.g., the Secure Realtime Protocol
or (Datagram) Transmission Layer Security to protect data.

4) PRIVACY PRESERVING TECHNIQUES
Privacy protection solutions are particularly useful when col-
lecting application-specific information or when collecting
information on UE. Cryptographic means – such as [141]
multiparty computation, zero-knowledge argument schemes,
and homomorphic encryption – can protect isolated informa-
tion pieces but still enable learning models, which do not con-
tain and, thus cannot leak, privacy-critical knowledge. Non-
cryptographic solutions include differential privacy solutions,
which protectML results by introducing noise, e.g., to predic-
tions or the execution time [161].
Federated learning [162] is an approach where learning is

distributed to several places to improve efficiency. From the
security perspective, federated learning can improve privacy,
which in turn may increase the contribution and thus enable
building better and more robust inference models [163]. The
privacy advantage comes from secure aggregation [164].
In federated learning, raw data is not shared when collabora-
tive models are created. The results are aggregated only when
the number of data sources is sufficient and thus does not
reveal privacy-sensitive information. Open challenges in fed-
erated learning are that efficiency comes at the cost of accu-
racy and that the cooperative parties may more easily inject
backdoors into the global model because the training data
is hidden [87]. Within the scope of 5G research, federated
learning has been integraded [139] into the 3GPP 5GNetwork
Data Analytics (NWDA) function. Further, blockchain based
approaches [138] have been proposed to protect integrity
of federated networks and to detect malicious cooperating
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parties. Future research challenges [140] in the 5G scope
include heterogeneity of systems as well as lack of cooper-
ation incentives and trust between different domains.

C. SECURITY SOLUTIONS FOR THE LATEST
TECHNOLOGIES
1) SECURITY SOLUTIONS FOR MASSIVE MIMO
The security issues related to the usage of ML for massive
MIMO systems need to be solved by not only addressing
ML topics but also by modifying the system itself. The
use of 64 antennas or less can provide the required spatial
multiplexing gain and also reduce the data flow between the
fronthaul and the baseband. Thus, the risk of a jamming attack
can be reduced by reducing the antenna dimensions of a
massive MIMO system.

The data overhead can also be reduced by using compres-
sion mechanisms that works with little to no loss of accuracy
for a deep neural network. This is possible as there exist many
redundancies with parameters of a large neural network. Two
common strategies for compressing the parameters are quan-
tization and pruning. The number of bits of the parameters
can be reduced to compress the entire network. However, this
requires a careful word length study to avoid performance
loss. Pruning techniques reduce the number of redundant
connections of a neural network.

The stability of an ML algorithm is necessary to support
user mobility in massive MIMO systems. A stable ML algo-
rithm does not deteriorate significantly when tested with a
slightly different and independent dataset. A method called
stability training takes perturbed samples asinput to the algo-
rithm along with theunperturbed samples and introduces a
consistency constraint as an additional objective [165]. The
goal of the solution is to align the outputs for unperturbed
and perturbed samples. Stability training can be adopted for
massive MIMO systems to support mobility. A number of
inherently stable ML algorithms have been listed in [166],
such as bounded support vector machine regression, regular-
ized least square regression in a reproducing kernel Hilbert
space, relative entropy regularization, maximum entropy dis-
crimination etc., which can be explored to support mobility
of massive MIMO. A naive and expensive solution is to run
several ML solutions in parallel for different environments.
Nevertheless, these solutions might still not be effective
forvery high speed moving networks, i.e., trains due to the
rapid change in environments and frequent handovers.

Even though simulation-based synthesized data is frowned
upon in the research community, the authors of [167] argue
that radio communication presents a special case where
simulation-based training data can be quite meaningful.
In reality, radio signals are synthetically generated and radio
channel effects are also well characterized. Hence, synthetic
data generated by realistic simulation parameters and appro-
priate channel models can be useful for benchmarking dif-
ferent ML algorithms for a massive MIMO base station.
We would like to note that completely relying on synthetic

data is not an ideal solution either and any ML based solution
should also be verified with real-world data.

An alternative solution for channel invariant active adver-
sary detection is known as device fingerprinting. Device-
dependentDevice dependent radio-metrics such as frequency
and phase shift differences can be used as unique fingerprints.
In [168], the authors proposed a non-parametric Bayesian
method to detect and classify multiple devices in a unsu-
pervised manner. The authors proved the effectiveness of
the method against Sybil and Masquerade attacks using both
simulation and experimental measurements.

2) SECURITY SOLUTIONS FOR SDN
Since the main point of concern in SDN is the availability
of the control plane, the concepts of ML must be used in
a way not to further complicate or in the worst case, com-
promise availability. In general, a number of mechanisms are
used to increase the availability of the control platform, such
as hierarchical control plane architectures, distributing and
devolving control plane functionalities, or increasing the scal-
ability by increasing the processing capabilities and adding
multiple controllers [101]. However, withML the case will be
different and simply increasing the control plane processing
capabilities may not suffice [169].

One powerful capability the SDN philosophy brings to
communication networks is network abstraction. A pro-
grammable network with global visibility of all resources and
packets flowing through it provides an opportunity to map
different services and functions according to the capability
of the resources on the one hand, and monitor for secu-
rity vulnerabilities and lapses on the other hand. Therefore,
the deployment of ML techniques ensuring such visibility
and granular control can yield the results required from ML
without compromising security. To overcome the possibil-
ities of the control plane becoming a bottleneck, an intu-
itive approach would be to deploy ML mechanisms after
verifying the resource availability for ML processing and
data exchange using the visibility of global network resource
stats. For example, this could work by placing ML functions
alongside specific network control functions in an edge or
fog node after ensuring resources for the respective processes
within those nodes, as evaluated in [170].

The selection of the mechanism of ML should be based
on not only the requirements of the service or application,
but also on network resources, as different ML mechanisms
have different performance and network requirements in
SDN [171]. For example, some mechanisms require more
processing, memory, and communication rounds compared
to others, and thus, in coordination with the controller will
introducemore scalability and availability challenges. To deal
with such problems by logically distributing the control
planes, reinforcement learning mechanisms will not only
facilitate coordination but also help to improve in improving
resilience, as demonstrated in [127]. Reinforcement learning
can also be explicitly used to improve the security of SDNs
autonomously [128].
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3) SECURITY SOLUTIONS FOR NFV
Security and privacy requirements for ML data collection
include secure communication, access controls, as well as
use of ML to detect abnormally operating devices [130].
ML-related NFV components in the security architec-
ture [134], [135] include the NFV Security Controller, which
orchestrates system-wide security policies, and security ana-
lytic services, which receive monitoring telemetry across
NFV systems and applyML to detect emerging threats. Secu-
rity ML applications in NFV include, e.g., anomaly detection
within control traffic and service chaining [129], analysis of
adversarial behavior in virtual honeypots [132], as well as
virtual machine and host based intrusion detection.

NFV enables customization and isolation of application-
specific functions. Consequently, collected privacy and
confidentiality-critical data flows can be isolated into own
network slices [136]. Similarly, ML functions can be
application-specific and isolated. As data flows in slices can
be more homogeneous [172], input validation and algorithm
robustness may also be more easily achieved. Strong isola-
tion requires that the number of functions which are shared
between slices are minimized. A challenge in slice-specific
learning is that it limitsML’s view of the overall situation and,
hence, typically some (potentially privacy filtered) informa-
tion sharing from the slices is needed.

4) SECURITY SOLUTIONS FOR MEC
MEC provides inherent privacy and security protection char-
acteristics. Data from privacy-critical applications can be
stored and processed in local edge servers, which are within
local administrative control and trust domains [173]. Thus
critical data or applications are not necessarily exposed to
threats which exists in less-trusted cloud domains. On the
other hand, in situations were data backups are necessary and
when MEC cannot be assured to have sufficient (e.g., phys-
ical) protection, long-term data or more critical data may be
selected to be stored and processed within cloud (potentially
in encrypted form). When data is shared from the edges to
gain global intelligence, federated learning approaches can
be utilized to minimize the amount of shared privacy critical
information.

MEC can be utilized to distribute security functionality
close to the end-users and access networks. To detect mali-
cious inputs against deep learning, a distributed approach has
been proposed [124] for recognizing adversarial examples.
The approach decouples deep learning located in network
traffic forwarding elements from the conditional generative
adversarial network which is located in the mobile edge.

In general, the correct operation ofML systems depends on
the availability of data. Resilient and redundant edge architec-
tures, such as [50], can be utilized to ensure that crucial data
is available for ML systems, which are located at the edge or
which collect information from the edge.

VI. FUTURE RESEARCH DIRECTIONS
5G is connecting critical infrastructures through novel tech-
nological developments, where ML is poised to play an

important role. However, many potential security challenges
could arise, not only due to the inherent security limitations
of ML, but also due to the limitations within the technologies
using ML. This work discusses such challenges, their impli-
cations, and the limited possible solutions. Below some of the
most pertinent future research directions which have received
less research attention are discussed.

A. SECURITY METRICS FOR ML IN 5G
‘If you cannot measure it, you cannot improve it’ –a phrase
often quoted from Lord Kelvin– is true also in the con-
text of 5G cybersecurity. Operators, manufacturers, user
organizations, and application providers need a comprehen-
sive understanding of how trustworthy the network and its
ML components are and howwell defenses work. This aware-
ness can be gained with formally defined metrics which mea-
sure how well available security solutions prevent identified
threats. Metrics can be qualitative and follow the common
criteria type of frameworks [174], or they can be quantita-
tive as many dependability-related metrics [175]. However,
there are still many gaps in research related to security met-
rics [176]. In the context of 5G ML, one open challenge
is that affecting factors are not always observable. Spoofed
ML models or even failed attempts may not be detected.
Also, because the metrics are not universal and comparable,
it is challenging to understand how good the system is as
a whole.

We can identify and define metrics – security key perfor-
mance indicators (KPIs) – for evaluating effectiveness and
efficiency or trustworthiness of individual 5G ML solutions.
Examples of metrics include:

• Algorithm robustness can be measured through security
assessments and testing efforts as well as through the
amount, freshness, and quality of adversarial samples.
Samples used for training should cover known threats,
including the most recent ones seen or proposed for the
5G context.

• Reactive defenses can be measured by counting the
number of false positives and false negatives and true
positives and negatives. The evaluation can be done
against known data sets or attack libraries. Detection
rate metrics are estimates based on adversarial history
and do not guarantee effectiveness against new types of
zero-day attacks. ETSI [177] has specified metrics for
addressing the maturity of security event detection sys-
tems.Metrics can also relate to the efficiency, such as the
detection time. For instance, a study of security systems
for Domain Name System (DNS) security reveals that
most of the systems that employ ML require hours or
even days to detect threats [178].

• Platform protection and communication security mech-
anisms have their own strength metrics and their effec-
tiveness can be measured by evaluating prevented or
detected intrusions, events of poisoned or evasive data,
or privacy breaches.
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Mobile network device vendors verify and certify net-
work equipment and function trustworthiness by using
third-party test laboratories. 3GPP has developed generic
and product specific-security assurance specifications and
processes [179] for evaluating security compliance of prod-
uct development and product lifecycle management. The
approach might be applicable for verifying data sources and
ML implementations. Currently, no assurance specifications
exist for ML products.

In addition to knowing the trustworthiness of an individual
ML product, there is a need for solutions that can track the
security situation of the whole 5G network or end-to-end
service chain at the run-time. ML solutions need to track
security KPIs of data sources as well as potentially adapt
to changing situations and detected threats. At the network
level, the situation becomes more complex as the number
of data sources and ML elements increases. Future research
and solutions for managing these complexities related to the
trustworthiness of ML are needed.

B. OPTIMAL COMPOSITION OF SECURITY SOLUTIONS
Inherent protection for 5G networks comes from its par-
tially closed nature. Network components, interfaces, and
functions – including ML software – are not available for
everybody. 5G networks incorporate various platform and
communication security solutions protecting the integrity of
the platform and data and for keeping external adversaries
outside. However, the size and complexity of 5G networks
have left the networks partially open to advanced adversaries.
Persistent adversaries will eventually find weaknesses in the
large attack surface of 5G. Resource rich adversaries (includ-
ing nation-level agencies, or competing operators) have the
same capabilities as the defenders and may, e.g., purchase or
otherwise acquire the same ML software that the defenders
are using and use it for stealth testing and rehearsing attacks.
Consequently, a single layer of defense is not likely to be
sufficient. Vertical 5G perimeter defenses must be enforced
with ML-based security applications that protect ML func-
tions and 5G platforms from threats coming from inside,
as well as with approaches for robustness and resiliency of
ML algorithms.

Further research is needed to explore synergies and opti-
mal composition of different mechanisms. It is important
to determine which attacks and adversarial samples can be
trusted to be filtered in perimeter defenses, and whether the
remaining threats are detectable from data flows and learned
models, or whether models are trainable for robustness. What
compromises can be made to minimize the development and
operational costs of the defenses?

One aspect to consider when doing cost-benefit evalua-
tions, is how much resources the evolution of security solu-
tions require. The adversaries do not rest on their laurels,
and legitimate developers are likely to adopt unforeseen, pro-
gressive methods as well. For instance, when improvements
on algorithm robustness were developed, new sophisticated
attacks [17], [180] quickly emerged to circumvent them.

Many security-related ML models have a maximum useful
lifetime, and they should be updated regularly like traditional
virus scanner ‘signature databases’.

C. 5G ADAPTATIONS FOR ML SECURITY
While solutions and research for increasing robustness and
resiliency of ML algorithms exist in other domains, there
is lack of research in the 5G network domain. This gap –
illustrated by the lack of references in Table 3 – empha-
sizes the need for additional interdisciplinary and applied
research. There is a need to understand how applicable dif-
ferent defensive solutions are with 5G’s unique data flows
and restrictions. Industry and the research community need
to study and explore 5G adaptations to solutions such as
testing [181] and certification [182], as well as explainabil-
ity [183] of ML products.

D. CROSS-LAYER SYNCHRONIZATION
The research on the application of ML is mostly focused on
improving a particular functionality or service in a specific
layer of communication. Albeit the independence provided
by the layered architecture, the use of ML in one layer
can have unintentional negative consequences on another
layer which can lead to security vulnerabilities. For example,
intelligent spectrum sharing is gaining momentum in 5G.
Hence, ML is used during the process to understand if a
frequency slot is free and then to obtain it. However, different
ML procedures for improving different performance metrics
are used in the upper layers, such as the network or routing
layer. The security of the system will require first to secure
the information sharing procedure among the contending and
provider peers, and second to adjust the upper layers for
aspects such as secure routing, so that end-to-end security is
maintained. Hence, mechanisms to synchronize different ML
procedures used in different layers to avoid security lapses
and tomakeML solutionsmore robust are necessary and need
further research.

E. AI-DEFINED SECURE NETWORKING
ML and AI have the potential to improve the trustworthi-
ness and robustness of 5G networks. Recently, the merg-
ing of the concepts of ML in the form of ML and SDN
have been proposed to bring intelligence through softwarized
network functions in communication networks. However,
the concepts of SDN have been limited to the Open-
Flow [102] implementation of SDN. OpenFlow, no doubt,
has helped implement SDN in practice, yet SDN needs more
than OpenFlow offers [184]. SDN can be defined by three
fundamental abstractions, i.e., forwarding, distribution and
specification abstractions [184]. The forwarding abstraction
should hide the underlying network complexity from appli-
cations, which OpenFlow achieves [102]. The distribution
abstraction, in principle, should enable logically central-
ized control even though it may be physically distributed.
The specification abstraction should enable applications to
express a specific network behavior without delving into the
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network implementation. The need to identify where exist-
ing ML approaches fit into these abstractions, based on the
desired improvement of a specific KPI, must be understood
first. Novel ML concepts and techniques that can utilize
the abstractions towards an automated ML or AI-defined
end-to-end secure network must be developed. Further-
more, ML-based security approaches that benefit from these
abstractions have received very little research attention.

Interesting research questions include aspects such as
whether ML could make networking threat and trust-driven.
When we can automatically detect threats and attacks as
well as assess the trustworthiness of ML-defined network
segments, we can utilize this information in automated rout-
ing decision processes and route critical data flows through
more trusted networks. More future research is needed to
understand how ML can be used to infer security metrics
and KPIs and to predict threat-levels in different network
segments, slices, functions, or ML systems.

VII. CONCLUSION
Due to the increasing diversity in connected devices and
the emergence of new services, intelligent network opera-
tions leveraging the concepts or disciplines of ML are highly
researched. However, most of the state of the art takes the
concepts of ML from other mature technologies such as
robotics and computer vision as it is and use it in wireless
networks such as 5G. Such a direct use of the concepts
of ML in the 5G network infrastructure gives rise to many
challenges, the most prominent one being compromised net-
work security. ML opens potential vulnerabilities and attack
paths against the availability and integrity of 5G services and
eases user tracking and privacy violation attacks that were
unfeasible with traditional adversarial methods. On the other
hand, unique 5G data for learning and testing own protocols
and applications in different domains, layers, and use cases
necessitates solutions that are tailored for mobile networks.
In this article, the challenges arising due to ML in 5G net-
works were discussed, followed by potential solutions to
those challenges. Themain objective of this work was to draw
attention for future research towards secure deployment of
ML techniques in 5G and future wireless networks.
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