58 research outputs found

    Phase entrainment and perceptual cycles in audition and vision

    Get PDF
    Des travaux récents indiquent qu'il existe des différences fondamentales entre les systèmes visuel et auditif: tandis que le premier semble échantillonner le flux d'information en provenance de l'environnement, en passant d'un "instantané" à un autre (créant ainsi des cycles perceptifs), la plupart des expériences destinées à examiner ce phénomène de discrétisation dans le système auditif ont mené à des résultats mitigés. Dans cette thèse, au travers de deux expériences de psychophysique, nous montrons que le sous-échantillonnage de l'information à l'entrée des systèmes perceptifs est en effet plus destructif pour l'audition que pour la vision. Cependant, nous révélons que des cycles perceptifs dans le système auditif pourraient exister à un niveau élevé du traitement de l'information. En outre, nos résultats suggèrent que du fait des fluctuations rapides du flot des sons en provenance de l'environnement, le système auditif tend à avoir son activité alignée sur la structure rythmique de ce flux. En synchronisant la phase des oscillations neuronales, elles-mêmes correspondant à différents états d'excitabilité, le système auditif pourrait optimiser activement le moment d'arrivée de ses "instantanés" et ainsi favoriser le traitement des informations pertinentes par rapport aux événements de moindre importance. Non seulement nos résultats montrent que cet entrainement de la phase des oscillations neuronales a des conséquences importantes sur la façon dont sont perçus deux flux auditifs présentés simultanément ; mais de plus, ils démontrent que l'entraînement de phase par un flux langagier inclut des mécanismes de haut niveau. Dans ce but, nous avons créé des stimuli parole/bruit dans lesquels les fluctuations de l'amplitude et du contenu spectral de la parole ont été enlevés, tout en conservant l'information phonétique et l'intelligibilité. Leur utilisation nous a permis de démontrer, au travers de plusieurs expériences, que le système auditif se synchronise à ces stimuli. Plus précisément, la perception, estimée par la détection d'un clic intégré dans les stimuli parole/bruit, et les oscillations neuronales, mesurées par Electroencéphalographie chez l'humain et à l'aide d'enregistrements intracrâniens dans le cortex auditif chez le singe, suivent la rythmique "de haut niveau" liée à la parole. En résumé, les résultats présentés ici suggèrent que les oscillations neuronales sont un mécanisme important pour la discrétisation des informations en provenance de l'environnement en vue de leur traitement par le cerveau, non seulement dans la vision, mais aussi dans l'audition. Pourtant, il semble exister des différences fondamentales entre les deux systèmes: contrairement au système visuel, il est essentiel pour le système auditif de se synchroniser (par entraînement de phase) à son environnement, avec un échantillonnage du flux des informations vraisemblablement réalisé à un niveau hiérarchique élevé.Recent research indicates fundamental differences between the auditory and visual systems: Whereas the visual system seems to sample its environment, cycling between "snapshots" at discrete moments in time (creating perceptual cycles), most attempts at discovering discrete perception in the auditory system failed. Here, we show in two psychophysical experiments that subsampling the very input to the visual and auditory systems is indeed more disruptive for audition; however, the existence of perceptual cycles in the auditory system is possible if they operate on a relatively high level of auditory processing. Moreover, we suggest that the auditory system, due to the rapidly fluctuating nature of its input, might rely to a particularly strong degree on phase entrainment, the alignment between neural activity and the rhythmic structure of its input: By using the low and high excitability phases of neural oscillations, the auditory system might actively control the timing of its "snapshots" and thereby amplify relevant information whereas irrelevant events are suppressed. Not only do our results suggest that the oscillatory phase has important consequences on how simultaneous auditory inputs are perceived; additionally, we can show that phase entrainment to speech sound does entail an active high-level mechanism. We do so by using specifically constructed speech/noise sounds in which fluctuations in low-level features (amplitude and spectral content) of speech have been removed, but intelligibility and high-level features (including, but not restricted to phonetic information) have been conserved. We demonstrate, in several experiments, that the auditory system can entrain to these stimuli, as both perception (the detection of a click embedded in the speech/noise stimuli) and neural oscillations (measured with electroencephalography, EEG, and in intracranial recordings in primary auditory cortex of the monkey) follow the conserved "high-level" rhythm of speech. Taken together, the results presented here suggest that, not only in vision, but also in audition, neural oscillations are an important tool for the discretization and processing of the brain's input. However, there seem to be fundamental differences between the two systems: In contrast to the visual system, it is critical for the auditory system to adapt (via phase entrainment) to its environment, and input subsampling is done most likely on a hierarchically high level of stimulus processing

    The Involvement of Endogenous Neural Oscillations in the Processing of Rhythmic Input: More Than a Regular Repetition of Evoked Neural Responses

    Get PDF
    It is undisputed that presenting a rhythmic stimulus leads to a measurable brain response that follows the rhythmic structure of this stimulus. What is still debated, however, is the question whether this brain response exclusively reflects a regular repetition of evoked responses, or whether it also includes entrained oscillatory activity. Here we systematically present evidence in favour of an involvement of entrained neural oscillations in the processing of rhythmic input while critically pointing out which questions still need to be addressed before this evidence could be considered conclusive. In this context, we also explicitly discuss the potential functional role of such entrained oscillations, suggesting that these stimulus-aligned oscillations reflect, and serve as, predictive processes, an idea often only implicitly assumed in the literature

    Rhythmic auditory cortex activity at multiple timescales shapes stimulus–response gain and background firing

    Get PDF
    The phase of low-frequency network activity in the auditory cortex captures changes in neural excitability, entrains to the temporal structure of natural sounds, and correlates with the perceptual performance in acoustic tasks. Although these observations suggest a causal link between network rhythms and perception, it remains unknown how precisely they affect the processes by which neural populations encode sounds. We addressed this question by analyzing neural responses in the auditory cortex of anesthetized rats using stimulus–response models. These models included a parametric dependence on the phase of local field potential rhythms in both stimulus-unrelated background activity and the stimulus–response transfer function. We found that phase-dependent models better reproduced the observed responses than static models, during both stimulation with a series of natural sounds and epochs of silence. This was attributable to two factors: (1) phase-dependent variations in background firing (most prominent for delta; 1–4 Hz); and (2) modulations of response gain that rhythmically amplify and attenuate the responses at specific phases of the rhythm (prominent for frequencies between 2 and 12 Hz). These results provide a quantitative characterization of how slow auditory cortical rhythms shape sound encoding and suggest a differential contribution of network activity at different timescales. In addition, they highlight a putative mechanism that may implement the selective amplification of appropriately timed sound tokens relative to the phase of rhythmic auditory cortex activity

    Rhythmic auditory cortex activity at multiple timescales shapes stimulus-response gain and background firing

    Get PDF
    Kayser C, Wilson C, Safaai H, Sakata S, Panzeri S. Rhythmic auditory cortex activity at multiple timescales shapes stimulus-response gain and background firing. J Neurosci. 2015;35(20):7750-62

    Cortical Dynamics of Language

    Get PDF
    The human capability for fluent speech profoundly directs inter-personal communication and, by extension, self-expression. Language is lost in millions of people each year due to trauma, stroke, neurodegeneration, and neoplasms with devastating impact to social interaction and quality of life. The following investigations were designed to elucidate the neurobiological foundation of speech production, building towards a universal cognitive model of language in the brain. Understanding the dynamical mechanisms supporting cortical network behavior will significantly advance the understanding of how both focal and disconnection injuries yield neurological deficits, informing the development of therapeutic approaches

    Spatio-temporal Principles of Infra-slow Brain Activity

    Get PDF
    In the study of systems where basic laws have eluded us, as is largely the case in neuroscience, the simplest approach to progress might be to ask: what are the biggest, most noticeable things the system does when left alone? Without any perturbations or fine dissections, can regularities be found in the basic operations of the system as a whole? In the case of the brain, it turns out that there is an amazing amount of activity even in the absence of explicit environmental inputs or outputs. We call this spontaneous, or resting state, brain activity. Prior work has shown that spontaneous brain activity is dominated by very low frequencies: the biggest changes in brain activity happen relatively slowly, over 10’s-100’s of seconds. Moreover, this very slow activity of the brain is quite metabolically expensive. The brain accounts for 2% of body mass in an adult, but requires 20% of basal metabolic expenditure. Remarkably, the energy required to sustain brain function is nearly constant whether one is engaged in a demanding mental task or simply out to lunch. Furthermore, work over the past three decades has established that the spontaneous activities of the brain are not random, but instead organized into specific patterns, most often characterized by correlations within large brain systems. Yet, how do these correlations arise, and does spontaneous activity support slow signaling within and between neural systems? In this thesis, we approach these questions by providing a comprehensive analysis of the temporal structure of very low frequency spontaneous activity. Specifically, we focus on the direction of travel in low frequency activity, measured using resting state fMRI in humans, but also using electrophysiological techniques in humans and mice, and optical calcium imaging in mice. Our temporal analyses reveal heretofore unknown regularities in the way slow signals move through the brain. We further find that very low frequency activity behaves differently than faster frequencies, that it travels through distinct layers of the cortex, and that its travel patterns give rise to correlations within networks. We also demonstrate that the travel patterns of very low frequency activity are highly dependent on the state of the brain, especially the difference between wake and sleep states. Taken together, the findings in this thesis offer a glimpse into the principles that govern brain activity

    A Visionary Approach to Listening: Determining The Role Of Vision In Auditory Scene Analysis

    Get PDF
    To recognize and understand the auditory environment, the listener must first separate sounds that arise from different sources and capture each event. This process is known as auditory scene analysis. The aim of this thesis is to investigate whether and how visual information can influence auditory scene analysis. The thesis consists of four chapters. Firstly, I reviewed the literature to give a clear framework about the impact of visual information on the analysis of complex acoustic environments. In chapter II, I examined psychophysically whether temporal coherence between auditory and visual stimuli was sufficient to promote auditory stream segregation in a mixture. I have found that listeners were better able to report brief deviants in an amplitude modulated target stream when a visual stimulus changed in size in a temporally coherent manner than when the visual stream was coherent with the non-target auditory stream. This work demonstrates that temporal coherence between auditory and visual features can influence the way people analyse an auditory scene. In chapter III, the integration of auditory and visual features in auditory cortex was examined by recording neuronal responses in awake and anaesthetised ferret auditory cortex in response to the modified stimuli used in Chapter II. I demonstrated that temporal coherence between auditory and visual stimuli enhances the neural representation of a sound and influences which sound a neuron represents in a sound mixture. Visual stimuli elicited reliable changes in the phase of the local field potential which provides mechanistic insight into this finding. Together these findings provide evidence that early cross modal integration underlies the behavioural effects in chapter II. Finally, in chapter IV, I investigated whether training can influence the ability of listeners to utilize visual cues for auditory stream analysis and showed that this ability improved by training listeners to detect auditory-visual temporal coherence

    25th Annual Computational Neuroscience Meeting: CNS-2016

    Get PDF
    Abstracts of the 25th Annual Computational Neuroscience Meeting: CNS-2016 Seogwipo City, Jeju-do, South Korea. 2–7 July 201

    25th annual computational neuroscience meeting: CNS-2016

    Get PDF
    The same neuron may play different functional roles in the neural circuits to which it belongs. For example, neurons in the Tritonia pedal ganglia may participate in variable phases of the swim motor rhythms [1]. While such neuronal functional variability is likely to play a major role the delivery of the functionality of neural systems, it is difficult to study it in most nervous systems. We work on the pyloric rhythm network of the crustacean stomatogastric ganglion (STG) [2]. Typically network models of the STG treat neurons of the same functional type as a single model neuron (e.g. PD neurons), assuming the same conductance parameters for these neurons and implying their synchronous firing [3, 4]. However, simultaneous recording of PD neurons shows differences between the timings of spikes of these neurons. This may indicate functional variability of these neurons. Here we modelled separately the two PD neurons of the STG in a multi-neuron model of the pyloric network. Our neuron models comply with known correlations between conductance parameters of ionic currents. Our results reproduce the experimental finding of increasing spike time distance between spikes originating from the two model PD neurons during their synchronised burst phase. The PD neuron with the larger calcium conductance generates its spikes before the other PD neuron. Larger potassium conductance values in the follower neuron imply longer delays between spikes, see Fig. 17.Neuromodulators change the conductance parameters of neurons and maintain the ratios of these parameters [5]. Our results show that such changes may shift the individual contribution of two PD neurons to the PD-phase of the pyloric rhythm altering their functionality within this rhythm. Our work paves the way towards an accessible experimental and computational framework for the analysis of the mechanisms and impact of functional variability of neurons within the neural circuits to which they belong
    corecore